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Abstract 
 

  This thesis aims to focus on the usage of recurrent neural networks (RNNs) for the exact short-

term electrical load forecasting in Greece. This research is quite relevant, particularly in the context of the 

energy issues in Greece, which is plagued with expensive electricity. For instance, in Greece in August 

2022, the prices for electricity were the highest in Europe with tariffs ranging from 436 Euros for every 

Megawatt hour. These high rates thus imply that there is the need to enhance the development of efficient 

and precise methods of electric load forecasting. 

RNN, a type of ANN, is designed to handle sequential data and hence, is applied in the modeling 

and prediction of time series data, including electricity load profiles. To this end, purpose of this study is 

to examine how various structures and characteristics of these networks influence their effectiveness in 

event prediction. The research involved developing and implementing state of the art deep learning 

methods with Python. These algorithms were derived from historical electricity consumption data and 

statistical error analysis to evaluate the algorithms’ forecast of load demand. Most of the contributions 

were centered on the LSTM models which can be viewed to be rather efficient at making extremely good 

predictions of time series data due to their intricate architecture. 

Other than the LSTM models, this work also explores other types of Recurrent Neural Networks; 

those include Gated Recurrent Units, which are also known as GRU and the Simple Recurrent Neural 

Network, which is abbreviated as RNN. As a result of the fact that LSTMs have a more complex gating 

mechanism than GRUs, the latter are effectively less complex in terms of computation while still providing 

considerable results in load forecasting. Being the least complex of all the other types, Simple RNNs do 

assist in capturing the temporal characteristics of load data. The paper also draws comparisons between 

the models and provides a detailed and exhaustive approach to the hyperparameters’ tuning of these 

models through grid search, the study also outlines the strengths and weaknesses of each model. The 

application of these various types of RNNs strengthens the performance of the forecasting models, 

allowing for the understanding of the versatility of the RNN architectures in the context of Greece’s energy 

market. 

 

Key words: electric load demand, recurrent neural networks, deep learning, time series forecasting, short-

term forecast, LSTM, GRU, Simple RNN, Python, grid search optimization, hyperparameter tuning, model 

evaluation metrics, RMSE, MAE, 𝑅2 score, historical electricity usage data, predictive accuracy, data 

scaling, sliding window method, sequential data, advanced neural networks, machine learning, 

visualization. 
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Section Ι : Theoretical Part 
 

1.1 Historical Overview of Power Systems 
 

This paper provides chronological and geographic information about electricity starting from ancient 

Greece, for instance, when Thales of Miletus discovered that rubbing fur on amber would result in the 

amber being able to attract small objects like hair due to the electric charge that had built up on the amber. 

Over the course of time, the human civilization has come a long way in terms of comprehending and 

applying the concept of electricity. The name ‘electric’ was introduced by English physician William Gilbert 

in the early seventeenth century from the Greek word for amber ‘elektron’. 

The 18th and 19th centuries marked major developments in inventions that led to development of 

today’s power systems. The first battery was invented by an Italian scientist Alessandro Volta in 1800 AD; 

therefore, the electric potential got its unit named Volt. The French mathematician and physicist André-

Marie Ampère expounded on the relation between magnetism and electric currents, which paved the way 

for the electromagnetic technologies like motors, generators, and transformers. 

As for the sphere of electric power generation and distribution Thomas Edison was a leading figure, 

and he owned 1093 patents in his practice. Edison’s practical incandescent light bulb came in to the market 

in 1878 and by the end of the nineteenth century he had put up the Pearl Street Station, the first ever 

commercial electric power station that supplied DC power within a limited area. However, problems with 

DC power supply for long distance transmission emerged and brought the war of currents between DC 

supplied by Edison and AC supplied by Tesla. Tesla, an inventor with more than 800 patents, advocated for 

AC technology in power systems against the DC technology that was already dominant at the time but he 

was right as AC technology was efficient in the transmission of power over long distances. 

 

 

 

 

Figure 1: Edison's Jumbo dynamo. Courtesy: National Park Service, 
Edison National Historic Site.(Sourcre) 

http://www.dpvgroup.com/ges-illusions-destiny-controlled-worlds-real-losses/
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More advanced improvements were made in the early 20th Century through the identification of 

field effect by Lilienfeld and the creation of the first useful bipolar transistor through the efforts of 

physicists from Bell Laboratories namely Walter Brattain, Bardeen and Shockley which led to the power 

electronics revolution. 

These personalities and their works form the milestones in the development of electric power 

systems, which has become an essential part of the today’s world. The history of electricity can be divided 

into several stages starting from the initial phenomenon of static electricity to the general use of AC power 

systems and it has been a process full of innovations, competition and achievements. 

 

1.2 Electric Power System (EPS) 
 

An EPS is a complex network that is responsible for the important function of transmitting electricity 

from power plants where it is produced to the consumers. At the core of this network are three primary 

components: generation, transmission, and distribution. 

Generation is the first stage of power production. Power plants are involved in this process and they 

can be of different types that are powered by different energy sources, be it the conventional sources of 

energy such as coal, natural gas, and oil or the new age sources such as wind, solar, hydro and geothermal 

energy. Energy source selection is a critical factor that influences the system’s environmental impact and 

sustainability. 

Transmission is the high voltage electricity transport from the power stations to the substations 

which are nearer to the consumption centers. Transmission lines are the ‘highways’ of the EPS which are 

used to transport large amount of electricity from one place to another within the EPS network with 

minimum loss. In order to increase the capacity and reliability of these lines, concepts of material science 

and engineering are used. 

Electricity distribution can be defined as the last stage through which electricity is supplied from the 

substations to the consumers. This step brings down the voltage to levels that are safe to be used in homes, 

companies, and other facilities. The distribution network becomes more complex due to the need to meet 

the needs of many consumers while still providing dependable and high-quality power. 

 

Figure 2: Representation of the Electric Power System (EPS) (Source) 

https://www.researchgate.net/figure/Representation-of-the-Electric-Power-System-EPS_fig3_318229494
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The modern EPS also includes advanced control systems in which remote detection and control as 

well as automatic switching to maintain balance between the load and the supply, to provide stable 

network, and to address any issues that may occur. These systems also incorporate IT and big data to 

enhance efficiency and accommodate DER such as rooftops solar PVs and energy storage systems into the 

grid. Thus, EPS is developing with the utilization of IoT devices, smart meters, and real-time data 

communication based on the smart grid technology to improve efficiency and manage energy. Thanks to 

this technology, consumers are engaged in energy management, demand response, and the connection 

of renewable energy sources to the grid and adoption of the distributed model. 

This paper aims at exploring the various aspects of modernization of Electric Power Systems in 

order to cope up with the ever rising energy demands of the world population and the shift towards the 

environmentally friendly energy resources. Technological advancement in energy storage systems like 

batteries and other types of energy storage systems are crucial for managing the variability of renewable 

energy sources and hence the energy supply. 

 

1.3 Electric Power Load Forecasting (EPLF) 
 

Electric Power Load Forecasting (EPLF) is a critical component of operational and strategic planning 

of modern electric power systems (EPS). It also covers all stages of the electricity provision process from 

generation through transmission and distribution to the final consumer, as well as both tactical and 

strategic levels of the power sector’s evolution. In terms of functionality, EPLF has a positive impact on the 

effectiveness and dependability of power generation and transmission. Thus, load prediction can help 

power companies to manage the plant production, cut down the costs of operations and prevent 

unwanted pressures on the grid system. This forecasting lets the utility providers manage the generation 

in real-time, so there is a correct balance between the supply and demand and prevent the risk of 

blackouts or systems overload. Also, through forecasting of demand variations, EPLF aids in the efficient 

management of the grid with regard to the incorporation of intermittent renewable energy sources leading 

to a more stable and reliable energy supply. 

Therefore, EPLF is very important in the formulation of investment on infrastructure and technology. 

Thus, the long term load demand forecasts are useful in decisions such as the construction of new power 

plants, upgrading of the transmission system and the creation of distribution networks. This foresight plays 

a significant role in the management of the EPS in a way that the future energy requirements and 

technological development are met hence fostering a healthy and sustainable energy industry. EPLF also 

has a great economic effect on the society. By managing the time at which fuel is bought and the time at 

which generation takes place, it helps in cutting down losses and thus increases the revenue of power 

companies. Also, it is capable of dynamic pricing schemes hence, consumers can pay less during off-peak 

hours, encourage the use of energy-saving products, and reduction in energy wastage. The importance of 

EPLF to the society cannot be over emphasized as follows. Thus, it supports the stability of the essential 

services and the functioning of life in general by guaranteeing the availability of electricity. This is because 

EPLF assist in the lowering of green house emissions through the encouragement of renewable energy 

sources as opposed to conventional power from fossil fuel. With the shift of energy systems internationally 
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towards sustainable production, EPLF helps to harmonize the energy production with the environmental 

objectives. 

In conclusion, the EPLF is a pillar in the management and development of electric power systems as 

it offers a myriad of advantages that are imperative for operational efficiency, planning, financial health, 

and community well-being. Thus, the role of EPLF in addressing the challenges of the growing demand for 

electricity and the complexity of the energy sector and directing the EPS to a sustainable development 

becomes more important. 

 

Figure 3: Architecture of an ideal smart grid (SG) with bi-directional information flow, including distributed energy sources 

 

1.4 Types of Load Forecasting 
 

EPS require electricity demand forecasting which can be categorized based on the horizon of the 

forecast. All the categories are useful in the EPS in terms of operation and strategy. 

• Very Short-Term Forecasting (VSTF): VSTF is used in periods of less than one hour, thus it is 

vital for the real-time management of supply and demands. It needs to have fast and flexible 

models to address the changes that occur in the grid at any given time. 

• Short-Term Forecasting (STF): STF is employed for daily operational planning and takes a 

few hours to a day, which includes generation and transmission scheduling. This is useful for 

load profiling which helps in load balancing and also for incorporating the daily renewable 

energy production. 
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• Medium-Term Forecasting (MTF): MTF is a short to medium term assistance that helps in 

system planning and procurement which may take a few days to several months. It is useful 

for maintenance planning and short term resource planning, and can include the effect of 

the seasonality or market conditions. 

• Long-Term Forecasting (LTF): Having a time frame of one year or more, LTF is employed in 

the formulation of strategies and policies, as well as in the provision of infrastructure. It 

entails the assessment of the long-term dynamics of the economic, demographic and 

technological factors in relation to the major investments in the EPS. 

Every time period has its own peculiarities and requires particular approaches to the forecast to 

be as precise and credible as possible. The incorporation of renewable energy sources has added more 

challenges to these tasks of forecasting, and therefore, has made it very crucial to employ sophisticated 

models to achieve better estimates. 

The objective of this research paper is to identify and implement the state-of-the-art DL methods 

in the field of Short-term Load Forecasting  (STLF). This advanced research methodology aims at improving 

the accuracy and efficiency of the forecasting models in the field of electric power systems that is 

constantly changing. 

 

Figure 4: Types of load forecasting models according to the forecast horizon Identification of the scope and type of input 
parameters (Source) 

https://www.researchgate.net/figure/fig1_264937761
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1.5 Key Determinants Influencing Electrical Load Dynamics 
 

In the field of Electric Power Load Forecasting (EPLF), there are several factors that affect the 

electrical load each of which makes the process of demand forecasting rather complex. Understanding all 

these elements is crucial in the formulation of an accurate and efficient model for forecasting. 

Temporal Dynamics: One of the most important factors in EPLF is the temporal aspect, especially in 

the short-term forecasting. The electricity consumption has a clear trend with daily, weekly, and seasonal 

patterns. This periodicity is due to the daily, weekly, or annual patterns of consumers’ behavior, when 

specific hours of the day, days of the week, or seasons of the year are characterized by different levels of 

electricity consumption. These patterns are useful for regulating the supply of electricity in relation to the 

consumption levels during different time intervals. 

Economic Conditions: The economic situation of a country is a critical factor that influences the use 

of electricity. The rate and pattern of electricity usage are dependent on the economic growth, industrial 

advancement, and market trends. Although this factor is more obvious in the long-term load forecasting, 

it cannot be ignored in short-term changes in load. GDP growth, industrial production, and consumer 

expenditures are some of the factors used to forecast short term electricity demand. 

Climatic Influence: Weather conditions are one of the most important factors that affect the load of 

electricity especially in the residential and agricultural sectors. Weather conditions such as temperature 

and humidity affect the consumption of electricity in areas of heating, cooling, and agricultural activities. 

Therefore, it is crucial to incorporate the weather forecasting into the EPLF models to capture the impacts 

of climate on the electricity demand. 

Random Variables: In addition to the above mentioned systematic factors, stochastic factors and 

black swans also influence the electricity demand. Random events that cannot be anticipated, for instance, 

a halt in production or an event that is not planned for the public, affects the load in a manner that is hard 

to predict. These random factors call for some level of flexibility in the models used in making the forecast. 

To conclude, the proper forecasting of electricity demand within an EPS depends on the 

understanding of the various factors that influence it. The dynamics of time, economic factors, climate 

factors, and other factors define the dynamics of electricity demand, which means that EPLF models must 

be highly sophisticated and flexible. 
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Figure 5: Example of the factors that can affect the LF model (Source) 

 

1.6 Fundamentals of Neural Networks: Understanding the 

Biological and Computational Paradigms 
 

Neural Networks, a general term for a class of models, are based on the biological systems, especially 

the human brain. Going back to the 19th century, scientists identified that the brain is made up of different 

units known as neurons that are necessary for communication. These neurons are about 10 billion and are 

the primary structures of the brain creating many physical connections and pathways. In these networks, 

every neuron is connected to the others and each neuron has 1000 to 10000 connections which allows for 

intricate communication in the brain. 

https://www.researchgate.net/figure/The-factors-that-can-affect-the-LF-model_fig1_368259596
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A neuron, different in structure, is enclosed by a membrane and has a special function of conducting 

electrical impulses. The anatomy of a neuron is comprised of three main components: dendrites for the 

input, the main body of the cell, and the axon which connects with other neurons. The axon transfers the 

signal to the dendrites of the next neurons through synapses. Neurons receive and integrate input signals 

in their dendrites and when the total amount of the signals is above a certain level, the neuron produces 

an output signal along its axon to other neurons. 

This neural communication entails several forms of signals. The neuron's potential changes in 

response to incoming signals, leading to two distinct states: The resting potential and energy potential can 

be defined as. If the cumulative potential crosses a certain level, then the neuron gets activated and sends 

an electrical impulse. This process is controlled by the electrical characteristics of the synapses that are 

the points of contact between neurons and which mediate the transmission of the signals to certain 

extent. The transmission of information through the brain’s neural pathways is a function of energy 

potential irrespective of the signal type, underlining the complexity of neural communication.

 

Figure 6: Illustration of a neuron (Source) 

The Perceptron is one of the simplest ANNs and it is a model of a neuron itself. It works on input 

vectors to generate an output using a transition function. ANNs are divided into layers; the input layer, the 

hidden layer(s), and the output layer. The units in these layers are also connected to other units in the 

layers which makes them influence each other’s activation. The inputs are introduced into the input layer 

and move through the hidden layers and the final response is obtained from the output layer. ANNs are 

characterized by several architectural aspects such as the number of hidden layers, number of nodes in 

each layer, the connections between the nodes, the thresholds, the transfer functions, the initial weights 

and the training algorithms. 

The creation of such models, both natural and artificial, neural networks are shown to be intricate 

and versatile structures. Artificial networks try to mimic biological neurons, but are in reality, a scaled 

down version of the marvelous structure of the human brain. This ongoing exploration and simulation of 

https://www.myschoolexams.com.ng/tag/neurons/
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neural processes are still contributing to the enhancement of knowledge concerning both the biological 

and artificial intelligence systems, and thus creating a way to new developments in the future. 

 

1.6.1 A Journey Through Time: The Evolution of Artificial Neural 

Networks 
 

Artificial Neural Networks (ANNs) as a field has come a long way from the time it was born. The 

first appearance of a neural network was in the year 1943, when the neurophysiologist Warren McCulloch 

and the mathematician Walter Pitts published “A Logical Calculus of the Ideas Immanent in Nervous 

Activity. ” This paper laid down the foundation for neural network. 

Hebb introduced the concept of artificial neuron in the year 1949. This was a major advance 

because it offered at least some foundation upon which more advanced and practical NNs could be 

constructed. Following the aforementioned, in 1957, the Perceptron, the first neural network computer 

was developed by Frank Rosenblatt. This invention was critical, because it showed how the concepts of 

neural networks can be used in computation. 

The backpropagation algorithm, which is considered to be the primary method of training of 

neural network was proposed by Paul Werbos in 1965. This method learning greatly improved the 

capability of neural networks. After this, in 1980, Kunihiko Fukushima introduced the first Convolutional 

Neural Network (CNN) which opened up a new avenue in the pattern recognition area for instance, 

handwritten digit recognition. 

The ensuing two decades of the 1990s and the 2000s were significant with major achievements 

including the development of LSTM by Sepp Hochreiter and Jürgen Schmidhuber in 1998 and the deep 

learning model by Geoffrey Hinton and Ruslan Salakhutdinov in 2006. They were very helpful in solving 

problems which demand sequence data analysis as well as in the construction of advanced neural 

networks. 

Another demonstration of the capabilities of deep learning was seen in 2012 when Geoffrey 

Hinton and his team came up with AlexNet, a deep convolutional neural network which significantly 

enhanced the performance of image recognition. The advancement of deep learning was further boosted 

with outstanding performances in AI; for instance, Google’s AlphaGo triumphing over world champion Lee 

Sedol in Go in 2015 and AlphaZero surpassing the best chess engines globally in 2017. 

To the rapid advancement of ANNs in the year 2022, the creation of the ChatGPT, one of the most 

sophisticated language models, can also be attributed. ChatGPT has achieved excellent performance in 

many NLP tasks, which has proved the potential of neural networks in processing and generating human 

language. 

Moving forward, the area of ANNs has a lot of possibilities. There could be neural networks that 

do not replicate human conscience but enhance it and therefore, come up with solutions that will 

revolutionize health, environment and many other fields. It can be expected that in the future there will 

be ANNs with the ability to make decisions on their own, outsmarting the current ones and stepping into 

the creative and innovative territory that was previously only accessible to the human mind. 
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Thus, the history of ANNs is not only a sequence of technical advancements, but also a history of 

people’s inspiration and creativity. It depicts the society’s efforts to demystify the human intelligence and 

attempt to emulate it through artificial systems and innovations that are being made one after the other. 

 

1.6.2 Diverse Architectures of Artificial Neural Networks 
 

ANNs have been developed into many structures, each of which is intended to solve certain tasks 

and operate with certain data. In this regard, we discuss some of the most well-known architectures 

including feedforward neural networks, recurrent neural networks (RNN), convolutional neural networks 

(CNN). 

 Feedforward Neural Networks (FNNs): Multi-layer perceptron (MLP) is the most basic structure 

of ANNs which is a feedforward neural network. These are networks in which data passes in one direction 

from the input layer to the output layer through one or more layers of hidden nodes. These hidden layers 

are very important for capturing the relationships in the data and to convert the input data into output. 

Feedforward networks have one major feature, and that is the adjustment of weights between inter-

neurons through a process referred to as backpropagation that aims at improving the network’s predictive 

capabilities using gradient descent algorithms. 

 

Figure 7: Example of a Feedforward Neural Network (ANN) (Source) 

 

Recurrent Neural Networks (RNNs): RNNs are designed to work with sequential data such as 

textual data or data with temporal relation. Among the characteristics of RNNs, it is necessary to single 

https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
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out feedback connections, which allow information to be stored and transferred across different input 

sequences. This architecture generally includes a hidden state that passes information between different 

time steps and, as a result, the model’s outputs depend on the previous and current inputs. LSTM networks 

that fall under the category of RNNs lessen the vanishing gradient problem with the help of specific control 

gates. RNNs are especially good at applications where sequence of data is used, like speech recognition 

and language translation. 

 

Figure 8: Example of a Recurrent NN (RNN) (Source) 

Convolutional Neural Networks (CNNs): CNNs are mainly applied in image processing and they 

are packaged to work for data that has a grid like structure. The architecture has convolutional layers which 

apply number of filters to the input and extracts features from it and then there are pooling layers which 

basically down sample the data. This design allows CNN to self-learn and extract the spatial pyramids of 

the data which makes them suitable for computer vision applications. 

https://botpenguin.com/glossary/recurrent-neural-network
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Figure 9: Example of Convolutional Neural Network (CNN) (Source) 

 

 Layered Complexity in ANNs: Most of the ANNs have at least one hidden layer containing nodes 

which may be fully or partially connected. Generally, the networks with one hidden layer and all-to-all 

interconnection are used in various fields. The placement of these layers and nodes is a basic feature of 

ANN’s architecture and enhances its capacity to identify and details in data. 

 Every type of ANN from the simplest feedforward network to the more complicated RNNs and 

CNNs, has certain strengths. These include from the fundamental data classification in feedforward 

networks to the complex applications of natural language processing in RNNs and image recognition in 

CNNs, which confirms the effectiveness of the neural networks. 

 

1.6.3 The Role of Activation Functions in Artificial Neural Networks 
 

The functions used to introduce non-linearity in the output of neural network are called activation 

functions or transfer functions and are an essential part of neural networks. This non-linearity is crucial to 

the network’s capacity to learn and imitate patterns in the data. In the realm of ANNs, activation functions 

are typically divided into two broad categories: Hence, there are two types, namely linear and non-linear. 

 Sigmoid, Tanh, and ReLU functions are some of the linear activation functions that work with direct 

proportionality between the input and the output to provide reliable results. The Hard Limiter Function 

and the Step Function that give a constant output when a certain boundary is crossed and the Signum 

Function that partitions the input into three regions of output are the examples of this category. Despite 

the fact that they are among the simplest types of models, the linear functions are not capable of analyzing 

multivariate data because of their linear structure. 

 On the other hand, non-linear activation functions are important to the enhanced features of 

neural networks especially in deep learning. The Sigmoid Function that transforms inputs to the output 

layer into a range between 0 and 1 is suitable for output layers that are supposed to give probabilities. The 

https://medium.com/@rubentak/deep-learning-and-convolutional-neural-networks-6cdccc458a7
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Hyperbolic Tangent (Tanh) function scales the input between -1 and 1 and produces an output that is 

symmetric which is beneficial in some neural network architectures. Among them, there is the Rectified 

Linear Unit (ReLU) which simply sets negative values to zero and keeps positive values, known for speeding 

up the training process and adding non-linearity whereas introduced non-linearity is one of the most 

important factors in the learning process of the network. 

 

Figure 10: Activation Functions for ANNs (Source) 

It is imperative to choose a suitable activation function and the choice is determined by the 

structure of the network and the type of data used. Even though linear functions are useful for the simpler 

models, non-linear functions are essential for the networks that are working with patterns and deep 

learning. Each of them, with their own properties, occupies a certain level in neural networks, affecting 

the learning process of the networks and the efficiency in various tasks. Therefore, activation functions 

are important components of the ANNs as they define the learning algorithm and performance of the 

network in regards to classification and data modeling problems. 

 

1.6.4 Understanding Recurrent Neural Networks 
 

 Earlier in this paper, Recurrent Neural Networks (RNNs) have been introduced as one of the most 

important subcategories of Artificial Neural Networks because of its capacity to handle sequential data. 

https://www.researchgate.net/figure/Different-Activation-functions_fig5_352982057
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However, the major difference between RNNs and feedforward neural networks is that RNNs contain 

feedback connection which enable it to keep some form of memory concerning previous inputs. This 

section focuses on explaining the working and the mechanism of RNNs. 

 RNNs are known to have loops which make it possible for the networks to store information and 

therefore, they have memory. This characteristic enables RNNs to continue having a chain of thoughts 

which is very useful when working with sequences. In other words, they do not received each input 

independently: they also have a memory of what has been received before, which makes them particularly 

suitable for sequential data. This architecture is different from the conventional neural networks that do 

not have this memory part and work with each input separately. 

 

Figure 11: Architecture of RNN (Source) 

 An example of such RNN architecture is depicted in Figure 11. RNNs have a structure that is 

characterized by an iterative process through which information is passed from one layer to another. This 

can be depicted as a chain of numerous neural network units where information is transferred to the next 

unit. This chainlike structure indicates that the operation of RNNs is mainly related to the sequential data, 

for instance, lists and sequences. RNNs are well suited to numerous applications due to the fact that 

sequence input/output is inherent within their architecture, and include speech recognition, language 

modeling, translation, and image captioning. 

 Furthermore, RNNs are very effective in cases when there is a relationship between the past and 

the present information. It is worth using RNNs for implementing simple cases when the most recent data 

is enough to make a prediction or classification and where there is no need to store all the data. 

Nevertheless, there is a problem when the context goes deeper in the past, and that is when RNNs work 

worse. This is because of the fact that the probability of being able to learn how to associate information 

from one point to another reduces as the distance between the two points in question rises. 

 On the other hand, one of the main issues of RNNs is that they suffer from the vanishing and 

exploding gradient problem as a result of the depth of the network in time. This issue can complicate the 

training of the network and its ability to recognize long-term relations. New structures for architectures 

https://www.simplilearn.com.cach3.com/tutorials/deep-learning-tutorial/rnn.html
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like Long Short-Term Memory (LSTM) have been designed to solve this issue and enhance the capability 

to learn the dependency over long sequences. 

 

1.6.5 The Evolution and Mechanisms of Long Short-Term Memory 

(LSTM) Networks in Depth: A Comparative Analysis with Traditional 

Recurrent Neural Networks (RNNs) 
 

The LSTMs are a type of Recurrent Neural Network (RNN) which has architecture that is capable 

of addressing the issues with other RNNs and their limited capability to learn relationships between distant 

time steps. Understanding LSTM thus boils down to understanding the structure that is used in order to 

learn long term dependencies. The building block of an LSTM network is known as LSTM cell which 

incorporates the gates. These are the input gate, output gate, and forget gate which regulate the input 

and output of the cell and what should be retained or discarded. This property of managing memory is 

helpful in solving the vanishing gradient problem which is a typical challenge with standard RNNs in that 

the network’s ability to capture information from previous time steps diminishes with increasing time 

steps. 

 

Figure 12: Architecture of LSTM (Source) 

 Hence the use of LSTM networks has been widely applied in the analysis of time series and 

sequential data to deliver very accurate results. For instance, they have been applied in the area of the 

financial markets where they have been observed to outperform other methods that do not incorporate 

memory. This is because the LSTMs have the ability to learn long-term dependencies in the sequential 

data which helps in making better out-of-sample directional movements’ predictions. 

 Hence the use of LSTM networks has been widely applied in the analysis of time series and 

sequential data to deliver very accurate results. For instance, they have been applied in the area of the 

financial markets where they have been observed to outperform other methods that do not incorporate 

memory. This is because the LSTMs have the ability to learn long-term dependencies in the sequential 

data which helps in making better out-of-sample directional movements’ predictions. [8] 

https://link.springer.com/article/10.1007/s12652-023-04643-4
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In this way, the main distinction between LSTMs and RNNs is the architecture and the feature of 

solving the issues with long-term dependencies. However, it is known that RNNs are supposed to be able 

to model long dependency; in practice, they do not because of the problem of gradient explosion. This is 

because the proposed specialized LSTMs, which have gate mechanisms, are designed to address this issue 

and thus to be capable of capturing information from more time-stamps’ steps. LSTMs are thus very useful 

for sequences that are long and situations where there is a large time difference between two useful pieces 

of information. Thus, the LSTMs have been designed in a manner that their performance and efficiency 

are improved by the use of peephole connections and other gating structures for memory control. 

Consequently, LSTMs can be viewed as one of the most effective solutions for developing nn in 

the context of sequential data. As opposed to the normal RNNs, they have improved performance in the 

management of long-term dependencies; therefore they can be applied in language translation, financial 

analysis, among others. Shift from RNNs to LSTMs is seen as a solution to the above problems in sequence 

modeling and especially tasks where context in a sequence is important. 

 

1.6.6 Unveiling the Gated Recurrent Unit (GRU): A Comparative 

Analysis with RNNs and LSTMs 
 

 The GRU networks are an enhanced version of RNNs that were proposed to help overcome the 

issue of vanishing gradient problem, which affects the performance of RNNs. The major novelty of GRU is 

the gating mechanism which aims at controlling the information flow. This mechanism is composed of two 

gates: The two gates which are the update gate and the reset gate are also used. The update gate is used 

to decide which part of the past information (from previous time steps) has to be passed on to the future 

while the reset gate decides which part of the previous information has to be forgotten. This structure 

provides the ability to GRUs to learn the dependence from the long sequences data without the drawbacks 

of the gradient vanishing so widespread in the traditional RNNs. Also, the results have shown that the 

GRUs are almost as effective as another sophisticated RNN model – the LSTM for tasks including 

polyphonic music modeling, speech signal modeling, and other tasks, but with fewer numbers of 

parameters and a simpler architecture that enhances the computational efficiency. 

LSTMs are made simpler by GRUs where the input and forget gates are combined into an update 

gate. They also combine cell state and hidden state, which simplifies the structure and the computations 

without having much impact on the network performance. This makes GRUs a great candidate for those 

applications where model complexity and efficiency are of the same significance as prediction quality. For 

instance, in Sequential modeling problems such as NLP and speech recognition, GRUs have given good 

performance with fairly lesser time consumption than the RNNs and LSTMs. 

In relation to RNNs and LSTMs, the major strength of GRUs is that they reduce the vanishing 

gradient problem while requiring fewer resources than LSTMs. This is why GRUs are ideal to use in devices 

that have a low computational power or when the processing has to be done in real time. While LSTMs 

are still the go to model for tasks that may require the additional layers of the LSTM due to the handling 

of long term dependencies, GRUs present a good balance of architecture complexity, computational 
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requirements and accuracy. Comparing the two, GRU and LSTM, the decision mainly depends on the 

particular task to be solved and the number of calculations that can be made. 

 

Figure 13: Architectures comparison of RNN - LSTM – GRU (Source) 

Considering all that has been said, GRU can be considered as a major contribution to the creation 

of neural networks for sequential data processing. Due to the problems with traditional RNNs and as a 

more accessible solution than LSTMs, GRUs have extended the range of fields that can be effectively used 

with deep learning models with sequence and time series data. 

 

1.6.7 Operation and Training of Artificial Neural Networks (ANNs) 
 

 The operation of artificial neural networks (ANNs) involves two primary stages: the training phase 

and the prediction phase. 

 In the training phase, the neural network is trained on data known as the training set, through a 

process of adjustments of the internal weights of the neural network. This process starts with the feed of 

a number of observation values into the network. The network’s weights and biases are gradually adjusted 

in an attempt to reach the smallest possible prediction errors. The objective of this phase is to fine-tune 

these parameters in order to better describe the data by employing an adequate learning algorithm. In 

training, there are several strategies that can be used for instance gradient descent technique to fine tune 

the weights of the given network. 

 After the training stage, the neural network enters the prediction phase in which its efficiency is 

measured with the help of a test set. In this stage the network uses the weights and the biases which have 

been determined during the training process to new input data and produces output values. The above 

values are then compared to the actual values in the test set to compute the statistical prediction error. 

This error measurement is very important because it allows for the determination of the networks’ 

accuracy and its ability to generalize. 

 However, there are Several aspects that have to be carefully taken into consideration to enable an 

efficient operation of an ANN. First of all, the architectural design of the network has to be optimal. This 

entails; the number of hidden layers, the number of neurons per layer, the activation functions, the 

training algorithm, and the number of epochs. All of these elements are very important in the network 

and its learning process as well as ability to work with data and deduce from it. Secondly, data partitioning 

https://www.mdpi.com/1996-1073/13/22/6121
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is important as follows. The data which is available must be split into two, the training set and the test set. 

It is a general tendency to allocate 75-80 percent of the data for training and the remaining fifteen to 

twenty percent for testing. This division helps the network to have enough data for learning while at the 

same time having enough data for performance assessment. Lastly, the neural network must have a good 

prediction of the training data set as well as the testing data set while maintaining low statistical prediction 

errors. The training process is a successive process that can be rather slow, particularly in the case of big 

data or a large number of neurons. Generally, the number of neurons in the hidden layer is selected based 

on the nature of the problem and experimentation. If the number is rather small, then the network may 

not be able to learn from the data at all which is called underfitting. Similarly, if the number of neurons is 

too high, the network is likely to over-fit and produce good results for the training data but poor results 

for new data. There is an important consideration on the neurons’ count and it is entirely dependent on 

the problem at hand and the size of data. Furthermore, it is necessary to look at the sorts of activation 

functions used in the network, as well. The activation functions help to bring non linearity in the network 

and hence to learn the complex relations in the data. Other activation functions that are frequently used 

are sigmoid function, hyperbolic tangent function (tanh), and rectified linear unit (ReLU). The type of 

activation function used in the network greatly affects the training process as well as the network’s ability 

to predict the output. Also, the choice of the training algorithm may influence the time and efficiency of 

the learning process. There are various algorithms like Stochastic Gradient Descent, Adam, RMSprop and 

each of these has its own pros and cons in terms of convergence and computation. 

 

1.6.8 Supervised and Unsupervised Learning: The Two Pillars of 

Training Artificial Neural Networks 
 

 ANNs are the computational systems that have the capability of learning from input data and 

appearing the output through a number of internal mechanisms. Two major learning paradigms that are 

commonly used in neural networks include Supervised learning and unsupervised learning. 

 In supervised learning, the network is trained using the labeled data where for every input there 

is one correct output. This method is mainly used in activities like regression and classification to decide 

on the outcome based on the input data. Some of the most used algorithms of supervised learning are 

logistic regression, naive Bayes, support vector machines, artificial neural networks and random forests. 

Supervised learning is widely used in speech recognition, image classification, and predictive analytics 

among other applications. 

 On the other hand, unsupervised learning is the process of training the network with the data 

which is not accompanied with the labeled responses. This manner of analysis is primarily preoccupied 

with the goal of identifying hidden patterns within the data, which may include grouping similar data 

points. This technique is common in applications that include image classification for instance in photo 

recognition; the system sorts the images based on the similarity in the patterns without prior information 

on the categories. Some of the other important areas where unsupervised learning can be applied are as 

follows; anomaly detection, market basket analysis and dimensionality reduction. 
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 Therefore, it is crucial to state that the two main categories of learning techniques that are used 

in the training of ANNs are supervised and unsupervised learning and that each of these techniques is 

used in a different set of applications ranging from predictive analytics to image recognition. 

 

Figure 14: Supervised vs Unsupervised Learning (Source) 

 

1.6.9 Key Error Metrics for Evaluating ANN Predictions 
 

 While comparing the results of artificial neural network (ANN) with the actual results several 

statistical measures for finding the error are used. These metrics assist in determining the level of risk in 

estimating a particular physical quantity, presented as a value with its uncertainty. Below are the key error 

metrics used to evaluate the precision of ANN forecasts, along with detailed descriptions of each. 

Below are the key error metrics used to evaluate the precision of ANN forecasts, along with 

detailed descriptions of each: 

• Mean Squared Error (MSE): Mean Squared Error is a fundamental metric that represents 

the average of the squared differences between predicted values and actual values. This 

metric penalizes larger errors more severely, making it useful for assessing the overall 

performance of the prediction model. Mathematically, MSE is expressed as: 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑦𝑖 −  𝑦𝑖̂)

2

𝑛

𝑖=1

 

where 𝑦𝑖  are the actual values, 𝑦𝑖̂ are the predicted values, and n is the number of 

observations. By squaring the errors, MSE ensures that larger discrepancies between 

predicted and actual values have a more significant impact on the final error metric. 

 

https://ubiai.tools/data-labeling-with-unsupervised-learning/
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• Root Mean Squared Error (RMSE): Root Mean Squared Error is derived from MSE and 

provides an error metric in the same units as the original data. It is calculated as: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

RMSE is advantageous for understanding the magnitude of prediction errors, as it 

translates the error into the same scale as the data being analyzed. It is widely used in 

regression analysis to evaluate model performance and interpret the practical significance 

of the prediction errors. 

 

• Mean Absolute Error (MAE): Mean Absolute Error measures the average absolute 

difference between predicted values and actual values, providing a straightforward 

interpretation of the average error magnitude. It is calculated as: 

𝑀𝐴𝐸 =   
1

𝑛
 ∑|𝑦𝑖 −  𝑦𝑖̂|

𝑛

𝑖=1

  

MAE is less sensitive to outliers compared to MSE, making it a reliable metric for 

understanding the typical error magnitude in predictions without disproportionately 

emphasizing larger errors. 

 

• Mean Absolute Percentage Error (MAPE): Mean Absolute Percentage Error expresses the 

prediction error as a percentage of the actual values, offering a normalized measure of 

accuracy that facilitates comparisons across different datasets or models. MAPE is defined 

as: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑦𝑖 −  𝑦𝑖̂

𝑦𝑖
| × 100

𝑛

𝑖=1

 

This metric is particularly useful for comparing model performance in contexts where the 

scale of data varies significantly, as it provides a percentage-based error measurement. 

 

• Mean Bias Deviation (MBD): Mean Bias Deviation measures the average bias in 

predictions, indicating whether the model tends to systematically overestimate or 

underestimate actual values. It is calculated as: 

𝑀𝐵𝐷 =   
1

𝑛
 ∑(𝑦𝑖 −  𝑦𝑖̂)

𝑛

𝑖=1

 

MBD helps in understanding the direction and magnitude of bias in model predictions, 

providing insights into systematic errors that might need correction. 

 

• Symmetric Mean Absolute Percentage Error (sMAPE): Symmetric Mean Absolute 

Percentage Error is a variation of MAPE that ensures both overestimation and 

underestimation are equally penalized. It is defined as: 
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𝑠𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑

|𝑦𝑖 −  𝑦𝑖̂|

(|𝑦𝑖 −  𝑦𝑖̂|) 2⁄

𝑛

𝑖=1

 × 100 

• MAPE is particularly useful in ensuring symmetry in error measurement, making it a fair 

metric for evaluating the accuracy of forecasts where both types of errors are critical. 

These statistical error metrics are essential for thoroughly evaluating the performance and 

reliability of ANN predictions. They allow for the refinement and optimization of models to achieve greater 

accuracy and robustness in various forecasting applications. 

In addition to the key error metrics, the Coefficient of Determination (R²) and Adjusted R² are also 

important for evaluating ANN predictions. R² measures the proportion of variance in the dependent 

variable that is predictable from the independent variables, providing an indication of the model's 

goodness of fit. It is defined as 𝑅2 = 1 −  
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

 , where 𝑦̅ is the mean of the actual values. 

Adjusted R² modifies the R² value based on the number of predictors in the model, offering a more 

accurate measure for models with multiple predictors. These metrics, along with the previously discussed 

error metrics, provide a comprehensive framework for assessing the accuracy and reliability of ANN 

predictions, facilitating the development of more precise and effective forecasting models. 

 

1.7 Time Series Analysis and Forecasting: Concepts and 

Techniques 
 

A time series is a set of data which is arranged in a manner that it has a time axis with each data 

point being associated with a particular point in time. These are data that are usually collected at particular 

intervals say daily and the data could be numerical or categorical. Time series data is often in tabular form 

where the data is divided by time intervals and usually stored in a CSV format where one column has time 

stamp and the other has the data values. 

Time series represent data indexed over time, with time as the independent variable and the 

dependent variable being factors such as: 

• Stock market prices 

• Company sales data 

• Sensor readings from smart devices 

• Electrical energy consumption measurements 

To derive meaningful insights from time series data, it is crucial to decompose the series and 

analyze its fundamental components. These include the general direction or trend of the data, systematic 

changes that occur at regular intervals known as seasonality, repetitive cycles of business activity, and 

other variations which are irregular. For instance, when analyzing time series data of an airline, one could 

identify seasonality that is related to holidays, passengers’ traffic, and certain cycles that are tied to the 
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economic cycles. Describing these components is important, as it allows one to choose suitable models 

for time series forecasting. 

Seasonality means the occurrences that happen at certain intervals that could be daily, weekly, 

monthly, or yearly. Seasonality is an important aspect that should be considered when making forecasts 

on data as it reveals the cyclic trends of data. Techniques of data transformation include seasonal 

decomposition, differencing, and Holt-Winters method that can help to eliminate seasonality. However, 

not all time series exhibit seasonality since this aspect depends on the data that is under analysis and the 

context in which it is collected. 

 

Figure 15: Example of Seasonality (Source) 

Trend in a time series refers to the course of action, which depicts the direction of the data either 

rising, falling or stable in the given period. Trends are long lasting patterns which are shaped by such factors 

as economic and demography. Trends are a way of analyzing the situation and predicting future behavior 

of individuals or groups of people. A few of the common methods include linear regression, moving 

averages, exponential smoothing to name but a few. It is also necessary to identify the points of change 

when trends may turn. 

Cyclic behavior is a pattern that recurs over a time span longer than a season and is often 

attributed to exogenous factors such as the business cycle. Therefore, cyclicality is evident in variables 

such as GDP, employment, and production rates. It is possible to identify cyclic behavior in order to reveal 

general trends and patterns and increase the level of forecast precision. The techniques that are used to 

identify cyclic behavior include decomposition, spectral analysis, and wavelet analysis. 

Irregular fluctuations are variations that cannot be attributed to trend, seasonality or cyclical 

patterns. Such fluctuations are usually brought about by events that are beyond the control of the 

company or changes in the market needs. These variations are crucial to detect in order to get to know 

the tendencies of the data and to enhance the results of the predictive models. 

https://charterandgo.com/seasonality-in-travel-and-how-to-maximize-the-revenue-opportunity/
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Figure 16: Trend, Seasonality, Cyclic behavior, and Irregular fluctuations (Source) 

 

1.7.1  Main Aspects of Time Series Forecasting 
 

Time series analysis is a statistical technique that deals with the prediction of future values from 

the past record. This forecasting can be categorized into two primary aspects: the quantity of the time 

series to be predicted and the time span for the prediction. The two types of time series forecasting are 

univariate and multivariate. 

Univariate Forecasting is a type of forecasting that deals with a single variable at a time. The main 

goal is to forecast the values of this one variable based on the past observations of this variable. For 

instance, predicting the sales of a certain product in the next three months based on the previous sales 

records is a univariate forecast. It is preferable because it uses less complex models, is easy to understand, 

and takes less time to compute. Nevertheless, it has some drawbacks, including the restriction of the 

information search space and the possibility of ignoring other factors that may affect the results. 

On the other hand, Multivariate Forecasting is a type of forecasting that deals with more than 

one time series variable whereby the forecast of one variable is dependent on several other related 

variables. For example, predicting the sales of a given product based on the past sales records, weather 

conditions, the amount of money spent on advertisement, and the general economic situation. This 

approach provides a better model comprehensiveness, better accuracy, and the ability to model more 

intricate relationships between the variables. However, it also comes with its own set of problems such as 

the models becoming more complex, the computations becoming more demanding, and the results being 

harder to explain.  

It is also possible to classify time series forecasting in terms of the time horizon for the prediction, 

namely, short-term and long-term. 

Short-term forecasting is the process of estimating the values in the near future within days, 

weeks, or months. An example of short term forecasting is the estimation of the daily electricity demand 

https://ogre51.medium.com/in-time-series-forecasting-what-do-you-think-is-the-difference-between-seasonality-and-cyclicity-f4e8d9523d24
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for the following week. This type of forecasting is mostly based on frequent data, including hourly or daily 

data and is used for the operational and tactical level planning, inventory management, and scheduling. 

Some of the most popular models used in short-term forecasting are exponential smoothing, ARIMA, and 

simple moving averages because they are able to respond to changes in the recent data quickly. 

Long-term Forecasting, on the other hand, is the process of making predictions about values over 

a longer period of time, for instance, months, years, or even decades. For instance, predicting the 

population change in the next ten years is a case of long-term forecasting. This type usually deals with less 

frequent data, for instance, monthly, quarterly, or yearly data and is useful for strategic planning, capacity 

planning, and long-term investments. Long term forecasting is done using models like SARIMA (Seasonal 

ARIMA), Holt-Winters exponential smoothing and various machine learning models like recurrent neural 

networks, long short-term memory networks etc. 

 

 1.7.2 Time Series Models: AR, MA, ARMA, ARIMA 
 

Time series models are critical tools for the analysis and forecasting of data points collected or 

recorded in sequential order over time. Among the most prominent and widely utilized models in this 

domain are the AutoRegressive (AR) model, the Moving Average (MA) model, the AutoRegressive Moving 

Average (ARMA) model, and the AutoRegressive Integrated Moving Average (ARIMA) model. 

The AutoRegressive (AR) model utilizes past values of a variable to predict its future values, 

assuming that the current value is a linear combination of its previous values and a stochastic term. 

Formally, an AR model of order p (AR(p)) is represented as: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜖𝑡 

where 𝑦𝑡 is the current value, 𝜙1, 𝜙2,…, 𝜙𝑝 are the parameters of the model, and 𝜖𝑡 is the white noise 

error term. 

 The Moving Average (MA) model focuses on the dependency between an observation and a 

residual error from a moving average model applied to lagged observations. It models the current value 

of the series as a linear combination of past forecast errors. An MA model of order q (MA(q)) is expressed 

as: 

𝑦𝑡 = 𝜖𝑡 + 𝜃1𝜖𝑡−1 +  𝜃2𝜖𝑡−2 + ⋯ +  𝜃𝑞𝜖𝑡−𝑞 

where 𝜖𝑡 is the white noise error term, and 𝜃1, 𝜃2, … , 𝜃𝑞 are the parameters of the model. 

 Τhe AutoRegressive Moving Average (ARMA) model combines both AR and MA models to 

describe a time series. It captures both the relationships between past values and past errors, making it 

suitable for stationary time series data. An ARMA model of order p and q (ARMA (p, q)) is defined as: 

𝑦𝑡 =  𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 +  𝜖𝑡 + 𝜃1𝜖𝑡−1 +  𝜃2𝜖𝑡−2 + ⋯ +  𝜃𝑞𝜖𝑡−𝑞 

where 𝑦𝑡 is the current value, 𝜙1, 𝜙2,…, 𝜙𝑝 are the autoregressive parameters, 𝜃1, 𝜃2, … , 𝜃𝑞 are the 

moving average parameters, and 𝜖𝑡 is the white noise error term. 
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 The AutoRegressive Integrated Moving Average (ARIMA) model extends the ARMA model by 

including differencing to make the time series stationary. This model is particularly useful for non-

stationary data. ARIMA incorporates the AR and MA components along with an integration component 

that represents the differencing of raw observations to make the series stationary. An ARIMA model of 

order p, d and q (ARIMA(p, d, q)) is represented as: 

𝛥𝑑𝑦𝑡 = 𝜙1𝛥𝑑𝑦𝑡−1 + 𝜙2𝛥𝑑𝑦𝑡−2 + ⋯ + 𝜙𝑝𝛥𝑑𝑦𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ +  𝜃𝑞𝜖𝑡−𝑞  

where 𝛥𝑑 denotes the differencing operator applied d times, , 𝜙1, 𝜙2,…, 𝜙𝑝 are the autoregressive 

parameters,  𝜃1, 𝜃2, … , 𝜃𝑞 are the moving average parameters, and 𝜖𝑡 is the white noise error term. 

These models form the foundation of time series analysis and forecasting, providing powerful 

tools for understanding and predicting future values based on historical data. 
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Section ΙI : Implementation 
 

2.1 Electric Load Data Extraction and Preparation 
 

 In this thesis, the daily electricity demand was obtained from the ENTSO-E website instead of 

directly from ADMIE as the Independent Power Transmission Operator. The following are the reasons that 

informed this decision. 

 First of all, a Selenium script was developed to download and format the data from the ADMIE 

website. The following script was then used to extract and clean the data so that it was in a format that 

could be analysed. The purpose of the script was to move through ADMIE’s website, obtain daily SCADA 

system load files, and save them in a specific directory. 

 This script first defines the start and end dates for the data extraction period and forms the URLs 

for each of the days in between. It then proceeds to set the Chrome WebDriver to download the data files 

to a folder of the user’s choice and it proceeds to loop through the URLs to download each file. 

 However, after conducting detailed checks, it was revealed that there were some discrepancies in 

the ADMIE data where 33 days of electricity demand records were missing. Plugging in these gaps with 

median values would have brought in errors and inconsistency which could have affected the credibility of 

the models used in forecasting. 

 To ensure high quality of the data, it was decided to obtain the data from ENTSO-E instead. ENTSO-

E provides several advantages: 

1. Completeness of Data: ENTSO-E provides complete and daily data sets, which are not 

interrupted, this is very important for the time series analysis. This helps to make the 

forecasting models developed to be accurate and reliable. 

2. Clarity and Transparency: The data from ENTSO-E is easily understandable and all the 

information is well explained. Detailed explanations of how the data is calculated can be 

found on their data views page. 

3. Standardization and Harmonization: The information is collected from various 

transmission system operators in Europe including ADMIE for Greece. This makes the 

analysis easy and comparable across different countries due to standardization. 

4. Timeliness and Accessibility: ENTSO-E offers data that is constantly being updated and 

easily retrievable and thus useful in the current and future research and analyses. 

Therefore, by using the comprehensive, well-documented, and up-to-date data from ENTSO-E, 

this thesis guarantees the usage of high-quality data for the development of reliable and precise electricity 

load forecasting models. The selection of ENTSO-E as the data source mitigates the issue of limited data 

from ADMIE and thus improves the credibility of the study findings. This shows that the selection of data 

used in this thesis was done with a lot of care to ensure that only the most accurate data was used in the 

analysis of the forecasting methods used in this study. 

https://transparency.entsoe.eu/content/static_content/Static%20content/knowledge%20base/data-views/load-domain/Data-view%20Total%20Load%20-%20Day%20Ahead%20-%20Actual.html
https://www.entsoe.eu/about/inside-entsoe/members/
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Initially, a script in Python is meant to read, aggregate, and store electricity load data from several 

CSV files obtained from the ENTSO-E website. This process ensures that all the data that is to be included 

in the analysis is integrated into a single format, which is beneficial for analysis and forecasting. 

 This data spans from the beginning of the year 2021 to the end of the year 2023 to give a clear 

picture of the trends in electricity demand during this period. All the necessary data has been included in 

the dataset to help in the analysis of the electricity load patterns. The format of the dataset is following: 

 

Time (EET/EEST) Day-ahead 
Total Load Forecast 

[MW] - BZN|GR 

Actual Total Load 
[MW] - BZN|GR 

01.01.2021 00:00 - 01.01.2021 01:00 4756 4671 

01.01.2021 01:00 - 01.01.2021 02:00 4556 4316 

01.01.2021 02:00 - 01.01.2021 03:00 4415 4136 

01.01.2021 03:00 - 01.01.2021 04:00 4215 3830 

01.01.2021 04:00 - 01.01.2021 05:00 4045 3652 

… … … 
Table 1: Initial table of consumption demand 

 The column “Time (EET/EEST)” indicates the specific date and time for each recorded in the 

correct time zone for Greece, while the column “Day-ahead Total Load Forecast [MW] - BZN|GR” 

represents the day-ahead forecast of the total electricity load per market time unit within the Greek 

bidding zone. This forecast is generated at the latest two hours before the gate closure time of the day-

ahead market or by 12:00 PM local time on the day before (D-1), if no specific gate closure time applies. 

The forecast aims to provide an estimate of the electricity demand based on historical load profiles for 

similar days, incorporating variables such as weather conditions, climate, and socioeconomic factors. It is 

intended for informational purposes and is subject to updates in the event of significant changes, defined 

as alterations of at least 10% of the total load forecast for any market time unit. This forecast is primarily 

produced by Transmission System Operators (TSOs) and Distribution System Operators (DSOs) using 

advanced meteorological data and other predictive analytics to anticipate the load. The column "Actual 

Total Load [MW] - BZN|GR" provides the actual total electricity load recorded per market time unit within 

the Greek bidding zone. The actual load is determined by summing the power generated by plants 

connected to both TSO and DSO networks, and then adjusting for the balance of imports and exports on 

interconnections with neighboring bidding zones and the power absorbed by energy storage resources. 

This information is published at most one hour (H+1) after the end of each operating period, ensuring 

timely and accurate reporting of actual electricity consumption. 

 The first step of the transformation of the dataset is to remove the second part after the dash   ('-

') from column “Time (EET/EEST)”, the reason is to ensure that only the relevant date information is 

retained, making the date format consistent across the dataset. After that, the type will be datetime and 

the format YYYY-MM-DD HH:MM:SS. Then, we delete column “Day-ahead Total Load Forecast [MW] - 

BZN|GR “ because we need only actual load. Lastly, in case there is no 1-hour granularity, we resample per 

hour and forward fill the missing hours. In that way, we have transformed the load consumption data in 

the following way: 
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Time Load 

2021-01-01 00:00:00 4671 

2021-01-01 01:00:00 4316 

2021-01-01 02:00:00 4136 

2021-01-01 03:00:00 3830 

2021-01-01 04:00:00 3652 

… … 

Table 2: Table of consumption after transformation 

 

2.1.1 Weather Data Extraction and Preparation 
 

The weather data were sourced from the “Open-Meteo” API using a robust script in Python. 

import openmeteo_requests 
import requests_cache 
import pandas as pd 
from retry_requests import retry 
 
cities_dict = {"ATH": {"latitude": 37.9838, "longitude": 23.7278}, 
"SKG": {"latitude": 40.6436,"longitude": 22.9309}} 
 
# Setup the Open-Meteo API client with cache and retry on error 
cache_session = requests_cache.CachedSession('.cache', expire_after = -1) 
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2) 
openmeteo = openmeteo_requests.Client(session = retry_session) 

for i in cities_dict: 
print(cities_dict[i]["latitude"]) 
params = { 
"latitude": cities_dict[i]["latitude"], 
"longitude": cities_dict[i]["longitude"], 
"start_date": "2021-01-01", 
"end_date": "2023-31-12", 

"hourly": ["temperature_2m", "relative_humidity_2m", "rain",␣ 
"wind_speed_10m"], 

"timezone": "Europe/Athens" 
} 
responses = openmeteo.weather_api(url, params=params) 



P a g e  | 36 

 

 

The code shows how to get and clean historical weather data for several cities in Greece, 

particularly Athens (ATH) and Thessaloniki (SKG) using the Open-Meteo API. First, the required libraries 

are imported for the API interactions such as ‘openmeteo_requests’, for caching the responses 

‘requests_cache’, for data manipulation ‘pandas’, and for handling the request failures ‘retry_requests’. 

This configuration allows the script to be prepared for handling API calls and be able to deal with possible 

errors. 

A cached session Is created using “requests_cache” to store API responses locally, which helps to 

avoid redundant requests and improves performance. This session is configured to retry failed requests 

up to five times with an exponential backoff, enhancing the robustness of the data retrieval process. The 

“openmeteo_requests.Client” is then initialized with this session, setting up the Open-Meteo API client to 

manage API interactions effectively. 

The API endpoint and parameters are defined next, specifying the latitude and longitude for 

each city (Athens and Thessaloniki), the date range for the data (from January 1, 2021, to December 31, 

2023), the desired weather variables, and the time zone (Europe/Athens). The parameters ensure that 

# Process first location. Add a for-loop for multiple locations or weather models 
response = responses[0] 
print(f"Coordinates {response.Latitude()}°N {response.Longitude()}°E") 
print(f"Elevation {response.Elevation()} m asl") 

 print(f"Timezone {response.Timezone()} {response.TimezoneAbbreviation()}") 
print(f"Timezone difference to GMT+0 {response.UtcOffsetSeconds()} s") 

# Process hourly data. The order of variables needs to be the same as requested. 
hourly = response.Hourly() 
hourly_temperature_2m = hourly.Variables(0).ValuesAsNumpy() 
hourly_relative_humidity_2m = hourly.Variables(1).ValuesAsNumpy() 
hourly_rain = hourly.Variables(2).ValuesAsNumpy() 
hourly_wind_speed_10m = hourly.Variables(3).ValuesAsNumpy() 
hourly_data = {"date": pd.date_range( 
start = pd.to_datetime(hourly.Time(), unit = "s", utc = False), 
end = pd.to_datetime(hourly.TimeEnd(), unit = "s", utc = False), 
freq = pd.Timedelta(seconds = hourly.Interval()), 
inclusive = "left" 
)} 
hourly_data["temperature_2m"] = hourly_temperature_2m 
hourly_data["relative_humidity_2m"] = hourly_relative_humidity_2m 
hourly_data["rain"] = hourly_rain 
hourly_data["wind_speed_10m"] = hourly_wind_speed_10m 
hourly_dataframe = pd.DataFrame(data = hourly_data) 

print(hourly_dataframe) 

hourly_dataframe.to_excel(f'weather_data_{i}.xlsx',header=True,index=False) 
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the retrieved data is relevant and specific to the locations and time period of interest. The chosen 

variables include temperature at 2 meters, relative humidity at 2 meters, rain, and wind speed at 10 

meters. Temperature is measured in degrees Celsius (°C), relative humidity in percentage (%), rain in 

millimeters (mm), and wind speed in kilometers per hour (km/h). 

The script then extracts the hourly weather data from the response, converting each requested 

variable (temperature, relative humidity, rain, and wind speed) into a NumPy array for efficient handling. 

A pandas DataFrame is created to organize the hourly weather data, including a date range generated 

based on the start and end times of the data, with a frequency corresponding to the data’s interval. The 

extracted weather variables are then added to the DataFrame, ensuring that the data is structured and 

ready for analysis. 

 Finally, the DataFrame containing the hourly weather data for each city is exported to an Excel 

file, saving it to the specified directory. This step ensures that the processed data is easily accessible for 

further analysis and integration with other datasets, such as electricity load forecasting models. This 

automated process ensures efficient retrieval, processing, and storage of historical weather data, 

facilitating robust and accurate forecasting analysis in this thesis. 

Date temperature_2
m 

relative_humidity_2
m 

rain wind_speed_10m 

2021-01-01 00:00:00 9.712 79.64074 0 7.771331 

2021-01-01 01:00:00 9.262 82.36791 0 6.439876 

2021-01-01 02:00:00 9.262 81.80262 0 6.12 

2021-01-01 03:00:00 8.712 82.86843 0 6.409617 

2021-01-01 04:00:00 9.012 78.71679 0 5.804825 

… … … … … 

Table 3: Weather Data example of Athens 

 

2.1.2 Explanation for Merging Data and Importance of Temporal 

Features in Forecasting 
 

After obtaining and cleaning the electricity load and weather data, the subsequent important step 

was to combine these two data sets in order to enable the prediction of electricity demand. Thus, we 

combined the data from various sources for the same dates and obtained a single dataset that contains 

the actual electricity load and weather conditions for the given time intervals. This approach helps in 

gathering all the necessary data in one place and therefore, provides a better understanding of the factors 

that affect electricity consumption. 

 Combining weather data with electricity load data is important for the following reasons. First of 

all, it enables the analysis of the effects of weather variables including temperature, humidity, rainfall and 

wind speed on electricity consumption. This integration is important in the creation of good predictive 

models that can help in determining the future electricity consumption patterns given the past 
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consumption rates and other environmental factors. The merged dataset is useful in that it gives a more 

complete picture of the interaction between weather and electricity usage. 

 Furthermore, the integration of time variables like day of the week and month is crucial in 

enhancing the accuracy of the demand forecasting. It is often observed that electricity consumption is not 

constant throughout the week because of the differences in the industrial, commercial, and residential 

activities between the weekdays and weekends. For instance, electricity consumption is normally low 

during the weekend because many companies and industries are not in operation. Thus, by flagging the 

weekends in the dataset, the model can take into consideration such changes and, therefore, provide a 

better estimate of the daily fluctuations in demand. 

 Likewise, identifying the month of the year in the dataset is crucial because seasonal changes 

affect the electricity consumption. Variations in temperature and daylight hours in the course of the year 

influence the heating, cooling and lighting requirements, which in turn cause variations in electricity 

consumption. This is because the month is incorporated as a feature in the model and this will help the 

model to capture these seasonal patterns of demand in the long run. This consideration of temporal 

factors is important in the generation of accurate and timely electricity load forecasts which are important 

in energy management and planning. 

 Combining weather and electricity load data with time features improves the performance of the 

models and also reveals the factors that affect electricity consumption. This holistic approach shows that 

data cleaning and data integration are critical to the production of accurate and reliable energy 

management forecasts. 

date Load temperatur
e_2m_ATH 

relative_humi
dity_2m_ATH 

rain
_AT
H 

wind_speed
_10m_ATH 

temperatur
e_2m_SKG 

relative_humi
dity_2m_SKG 

rain
_SK
G 

wind_speed
_10m_SKG 

Wee
kend 

Mo
nth 

2021-01-
01 
00:00:00 

4671 9.7119999 79.640739 0 7.7713308 6.2639999 88.253304 0 8.6400003 0 1 

2021-01-
01 
01:00:00 

4316 9.2620001 82.367912 0 6.4398761 7.7639999 81.037544 0 3.5999999 0 1 

2021-01-
01 
02:00:00 

4136 9.2620001 81.80262 0 6.1199999 7.9639997 81.064873 0 3.96 0 1 

2021-01-
01 
03:00:00 

3830 8.7119999 82.868431 0 6.4096174 6.6139998 84.36219 0 6.4799995 0 1 

Table 4: Final table Format 

 

2.2 Exploratory data analysis (EDA) 
 

Exploratory Data Analysis (EDA) helps in understanding the characteristics of the data and the 

structure of the dataset. This process is important in order to understand the key characteristics of the 

data including the means, spread, and shape of the data which are the basis of constructing good and 

reliable forecasting models. 
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2.2.1 Key Insights from Descriptive Statistics 
 

 Central Tendency: The mean values obtained from the dataset help in establishing the normal 

conditions during the time of analysis. The electricity load per year is about 5,624.03 MW, which is useful 

for general consumption where trends or changes may be observed. For weather conditions, the average 

temperature in Athens (18.33°C) and Thessaloniki (16.04°C) which are the average conditions in the course 

of the year and therefore, give an idea of the normal weather that may affect the demand for electricity. 

 Dispersion and Variability: The standard deviation values reveal the degree of fluctuation within 

the dataset. The electricity load's standard deviation is significant at 1,233.39 MW, suggesting substantial 

variability in consumption. This variability underscores the importance of developing forecasting models 

that can effectively accommodate these fluctuations. Similarly, the temperature variability in Athens 

(8.03°C) and Thessaloniki (8.52°C) indicates considerable changes in weather conditions, which are crucial 

factors in predicting energy usage. 

 Range and Extremes: Analyzing the minimum and maximum values provides insights into the 

dataset's range and extremes. The electricity load varies widely, from a minimum of 408 MW to a 

maximum of 10,967 MW, highlighting the need to manage both low and high demand periods effectively. 

The temperature range in Athens (-2.04°C to 43.81°C) and Thessaloniki (-5.44°C to 40.46°C) reflects the 

diverse climatic conditions that must be factored into the forecasting models. 

 Quartiles and Distribution: The quartiles offer a detailed view of the data distribution, helping to 

understand the spread and potential skewness. The lower quartile (Q1: 4,689 MW) and upper quartile 

(Q3: 6,345.25 MW) of electricity load reveal a substantial interquartile range, indicating a wide distribution 

of demand values. The median temperatures in Athens (17.66°C) and Thessaloniki (15.46°C) suggest that 

the central tendency is around moderate climatic conditions, which is vital for understanding seasonal 

variations in electricity demand. 

 

2.2.2 Key Insights from Heatmap Visual 
 

 A heatmap is a graphical representation of data in the form of a matrix where the intensity of the 

color is used to represent the value of the data point. Every cell in the matrix is painted in a certain color 

depending on the value it contains, which helps to distinguish certain patterns, tendencies and 

interconnections between the variables. In the case of exploratory data analysis, a heatmap is especially 

helpful in visualizing the relationship between several variables and easily distinguish between positive 

and negative correlations. The values are between -1 which is a perfect negative correlation to +1 which 

is a perfect positive correlation. 



P a g e  | 40 

 

 

Figure 17: Heatmap Visual 

Interestingly, there is a moderate positive correlation between the temperature in Athens (0.31) 

and Thessaloniki (0.30) with electricity load, suggesting that higher temperatures in these cities lead to an 

increase in electricity consumption. Similarly, wind speed in Athens shows a weak positive correlation 

(0.19) with electricity load. On the other hand, relative humidity in both Athens (-0.39) and Thessaloniki 

(-0.40) demonstrates moderate negative correlations with electricity load, indicating that higher humidity 

levels are associated with reduced electricity usage. Additionally, the weekend variable exhibits a weak 

negative correlation (-0.18), implying that electricity load tends to be lower on weekends, while the month 

variable shows a very weak negative correlation (-0.06), suggesting minimal seasonal variation. 

The correlation heatmap also reveals significant temperature correlations between Athens and 

Thessaloniki, with a very strong positive correlation (0.96), indicating that temperature changes in one city 
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closely mirror those in the other. Furthermore, there is a moderate positive correlation (0.60) between 

relative humidity in Athens and Thessaloniki, and a moderate positive correlation (0.32) between wind 

speeds in these two cities. Rainfall in both Athens and Thessaloniki shows very weak correlations with 

other variables, suggesting that rain does not significantly impact electricity load or other weather 

conditions. Temporal factors such as weekends and months show very weak correlations with most 

variables, highlighting that the distinction between weekends and weekdays has a minor influence on the 

variables, while seasonal temperature variations are more pronounced. 

In conclusion, the heatmap shows the main dependencies between the weather and the 

electricity load, with temperature and humidity playing the most important role. Temperature in Athens 

and Thessaloniki has a positive relationship with electricity load while humidity has a negative relationship 

with load. Weekend is another factor that slightly affects the electricity load, while the seasonal variations 

have a very little direct effect. Knowing these relationships can help in creating better models for the 

estimation of the electricity load depending on the weather and time, which will in turn enhance the 

management of energy and its consumption. 

 

2.2.3 Key Insights from Scatter Plot 
 

A scatter plot is a type of data visualization that displays values for typically two variables for a set 

of data. The data points are plotted on a two-dimensional graph, where each point represents an 

observation in the dataset. The position of each point on the graph is determined by the values of the two 

variables being compared. Scatter plots are particularly useful for identifying relationships, trends, and 

patterns between the variables. They can highlight correlations, clusters, and outliers, providing a visual 

way to understand complex data relationships. 

The following scatter plots show the U-shaped relationship between temperature and energy load 

in both Athens and Thessaloniki. 
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Figure 18: Scatter Plot  Temperature 2m ATH (°C) 

 

Figure 19: Scatter Plot  Temperature 2m SKG (°C) 

The scatter plots give a clear picture of the U-shaped relationship between temperature and 

energy load in both Athens and Thessaloniki. A U-shaped pattern in a scatter plot means that one variable 

decreases to a certain point and then increases again while the other variable also decreases to a certain 

point and then increases again. In the case of a U-shaped pattern, the dependent variable is usually lower 
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in the middle range of the independent variable and higher at both ends. This implies that the effect of 

the independent variable is relatively low at the middle level and high at the low and high levels of the 

independent variable. 

In Athens, the U-shaped relationship is characterized by a sharp rise in energy consumption at 

both low and high temperatures. In particular, when the temperature is below 10°C, the energy load 

increases sharply because of the increased demand for heating. On the other hand, as temperatures go 

up to 30°C, energy demand rises again due to the need for cooling. This pattern shows that the energy 

consumption is greatly influenced by the weather conditions with the energy load rising to 10,000MW 

during the extreme weather conditions. The energy consumption pattern in relation to temperature shows 

that energy consumption is relatively low in the temperature range of 15°C to 25°C where neither heating 

nor cooling is required to a large extent. 

Likewise, the scatter plot for Thessaloniki also depicts the U-shaped pattern similar to the one 

observed in Athens, which shows high energy consumption at both ends of the temperature scale. This 

consistency points to a regional pattern where extreme temperatures have a direct impact on energy 

consumption, requiring more heating or cooling. The energy load in Thessaloniki also decreases within the 

moderate temperature range, which also points to a period of low energy consumption. However, there 

is a clear trend of variability in energy load at the two ends with some of the values going up to 10,000MW 

which shows the impact of temperature on energy demand. The slight variations in the data spread at 

lower temperatures in Thessaloniki could be attributed to differences in energy consumption or 

temperature responsiveness across the region due to climatic or behavioral factors. 

 

Figure 20: Scatter Plot Humidity 2m ATH (%) 
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Figure 21: Scatter Plot Humidity 2m SKG (%) 

 While the temperature vs. energy load scatter plots depicted a U-shaped pattern, the scatter plots 

for relative humidity do not have a clear U-shaped pattern. Rather, it is more of a linear or slightly random 

pattern. The data points indicate that there is an inverse relationship between relative humidity and 

energy load. It is observed that as the relative humidity increases, the energy load decreases. This suggests 

that higher humidity levels could be linked to lower energy consumption, possibly because there is less 

requirement for heating and cooling in humid climates. At low humidity levels, the energy load values are 

quite dispersed and can be low, moderate, or high depending on the level of humidity. This suggests that 

energy demand is more volatile when the air is dry, which could be attributed to the fact that different 

temperatures may be needed to regulate the temperature indoors. When the humidity level is 60% and 

above, the energy load fluctuation is less and the data points are clustered closely together. This means 

that in the humid conditions, the energy load does not vary as much as it does in the dry conditions. The 

data points are clustered between 20% and 80% humidity, which means that these levels of humidity are 

typical for Athens. The energy load in this range is relatively stable, which indicates that the energy 

consumption is relatively stable under normal humidity conditions. 

 As in the case of Athens, Thessaloniki also shows a negative relationship between relative humidity 

and energy load. The energy load reduces with the increase in relative humidity, which supports the trend 

identified in the case of Athens. The energy load for Thessaloniki also exhibits less variability at higher 

humidity levels, as is the case with Athens. The data points are more clustered, which means that energy 

demand is more predictable in these circumstances. At low humidity levels, energy load is quite volatile, 

which means that people use different amounts of energy when the air is dry. This implies that other 

factors such as temperature may be the key determinants of energy demand in these conditions. The 

energy load values are quite dispersed in the range of 40-60% humidity, which means that the energy 
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consumption patterns are quite different in the moderate humidity conditions. This could be attributed to 

differences in weather or any other factor that may have been in play. 

 

2.2.4 Key Insights from Time Series Data 
 

The analysis of the electricity load data in the form of time series allows to reveal the patterns and 

tendencies that govern the energy consumption in the course of time. Breaking down the data into its 

original, trend, seasonal, and residual components, we can determine the key factors that affect the 

changes in electricity consumption. This detailed examination reveals the cyclical pattern of energy usage, 

the effects of long-term trends, and the importance of short-term deviations, thus providing a clear 

understanding of how all the factors interact to shape the energy load. These are important in the 

formulation of sound energy management and forecasting plans to help in the proper utilization of energy 

resources and to guarantee adequate energy supply for the year. 

 

Figure 22: Original Energy Load Data Over Time 

 The graph provided is called “Original Energy Load Data Over Time” and covers the period from 

January 2021 to December 2023, which shows the changes in energy consumption during different 

seasons and years. The most apparent feature is the cyclical fluctuations that are observed, which are 

related to the fluctuations in electricity consumption due to seasonal factors. For example, there is a high 

energy consumption in the winter because of heating and another spike in the summer because of cooling. 

This seasonality shows that the electricity demand is very much dependent on temperature variations and 

therefore it is crucial to prepare for the high demand during the hot or cold seasons. 

 Also, the graph shows that energy consumption is quite volatile from one year to another. The 

highest peaks are seen at the middle of 2021 and at the end of 2023, which may indicate the time of the 
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highest energy consumption. The data also reveal a general trend of decreasing baseline energy load over 

the years which could be due to increased efficiency in energy use or changes in energy use patterns. This 

trend underlines the need to track the energy demand and adjust the management approaches to the 

changes in the demand, both planned and unplanned. This time series data is very important in the 

analysis of energy consumption and in decision making that will help in the provision of energy supply that 

is stable and sustainable. 

 To gain a more nuanced understanding of these variations in energy demand, it is essential to 

delve deeper into the underlying trends and patterns captured in the data. The following analysis, utilizing 

advanced trend line techniques such as the Savitzky-Golay filter and polynomial regression, will help 

elucidate these patterns further. By examining these trend lines, we can identify both short-term 

fluctuations and long-term trends, offering valuable insights into the factors driving electricity 

consumption. 

 

Figure 23: Energy Load with Savitzky-Golay and Polynomial Regression Trend Lines 

 The application of Savitzky-Golay and Polynomial Regression for the combined trend analysis of 

energy load data is useful in identifying the patterns and fluctuations in the data. The Savitzky-Golay filter, 

depicted by the red line in the graph, is the best at removing short-term oscillations while keeping the 

overall shape and trend of the data intact. This feature makes it a perfect tool to show the periodic rise 

and fall patterns that are evident in the course of a year. For example, the filter clearly shows the seasonal 

trends of energy consumption with the peaks in the winter and summer seasons due to the increased 

usage of heating and cooling systems, respectively. These patterns show that the energy consumption is 

influenced by the seasons and this means that the energy providers need to prepare for the increased 

demand that comes with the particular seasons. 

 The green dashed line represents the Polynomial Regression trend line which gives a wider view 

of the overall trend of the data. Thus, the second-degree polynomial that is fitted to the energy load data 
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captures this overall trend of decreasing baseline energy consumption over the period of observation. This 

decline may be attributed to increased efficiency in energy use, which could have been brought about by 

the use of energy efficient technologies and measures. The Polynomial Regression trend line helps to 

eliminate the short-term fluctuations and gives a better understanding of the general tendencies of energy 

consumption. This approach is important for strategic planning because it allows to understand the causes 

of the long-term trend of energy consumption decrease and, thus, to define the ways of energy resources 

optimization and their further effective use. 

 Building on this analysis, the residuals graph offers a detailed look at the deviations from the 

expected energy load once these long-term trends have been accounted for. 

 

Figure 24: Residuals of Energy Load After Trend Removal 

The above graph gives a more detailed view of the deviations from the expected energy load, with 

the overall trend line having been removed. This visual representation is concerned with the variations in 

energy demand that cannot be attributed to the overall increase or decrease observed in the trend 

analysis. 

On the graph, the x-axis represents the dates from January 2021 to December 2023, while the y-

axis measures the residuals in megawatts (MW). The residuals are depicted in red, with a dashed line at 

y=0 indicating the baseline. Values above this line represent positive deviations from the trend, and values 

below it represent negative deviations. The consistent range of fluctuations around the zero line suggests 

that while there are significant deviations from the trend, these deviations are fairly regular. This 

consistency implies that the trend model effectively captures the cyclical variations in the data. 

Noteworthy anomalies are evident, particularly in late 2021 and mid-2023, where residuals 

sharply increase or decrease. These spikes likely indicate extraordinary events or anomalies such as sudden 

changes in temperature, shifts in economic activity, or policy changes impacting electricity consumption. 

The residuals also exhibit a noticeable seasonal pattern, with higher variability during the summer and 
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winter months. This aligns with periods of extreme weather conditions when the demand for electricity 

for heating or cooling typically varies more widely 

In the previous visual, we examined the trend lines derived from Savitzky-Golay filtering and 

polynomial regression, which highlighted the general movement of energy load over time and smoothed 

out short-term fluctuations to reveal long-term trends. This analysis provided a clear picture of the overall 

direction of electricity demand and identified significant peaks and troughs that correlate with seasonal 

changes. 

The residuals graph complements this analysis by focusing on the deviations from these trends. 

While the trend lines depict the overarching patterns in the data, the residuals expose the finer details, 

such as irregular fluctuations and anomalies that are not explained by the trend alone. Together, these 

visuals offer a comprehensive view of the energy load dynamics: the trend lines help in understanding the 

broad, long-term movements, while the residuals highlight the short-term variations and unexpected 

changes. This combined approach enables a deeper understanding of the factors influencing energy 

consumption and is crucial for developing more accurate forecasting models and effective energy 

management strategies. 

 

2.3 Architecting Effective Time Series Models for Energy 

Forecasting 
 

First of all, it was important to define the forecasting task as a supervised learning task. In this 

context, the task is to predict a target variable y given a set of input features x, and unlike most supervised 

learning problems, time series forecasting requires taking into account the temporal dimension, which 

means that it is necessary to take into account not only the relationships between external variables but 

also the time series patterns and trends. This integration of the time component is important in the context 

of forecasting since it enables one to make precise predictions. 

In our case, the target variable represents y the future values of the electrical load. The input 

features include not only past values of the electrical load but also relevant weather and calendar data. To 

effectively construct our forecasting models, three key concepts must be defined: forecasting length, past 

values length, and the sliding/rolling window method. 

For the purpose of this study that is concerned with short-term forecasting, the forecasting length 

or the output length is set at 24 hours. This means that our model will be able to predict the electrical load 

in MW every hour for the next day in detail. This way, we are able to model daily patterns and forecast 

short-term fluctuations in energy consumption effectively. 

Below, we will focus exclusively on the 24-hour input length. This decision is based on our findings 

that the 24-hour input length provides sufficient historical context for accurate predictions while also 

reducing computational complexity. This balance between accuracy and efficiency makes the 24-hour 

input length the most effective duration of past data to include, significantly enhancing the predictive 

capability of the model. 
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The sliding or rolling window method is a crucial technique for handling time series data in model 

training. This method involves creating a fixed-length input array of n past values that is progressively 

shifted forward to forecast the next set of future values. Specifically, in our implementation, the sliding 

window approach creates overlapping input and output pairs, where each input array contains n historical 

data points, and the corresponding output array holds the subsequent 24-hour forecast. This method 

effectively transforms the dataset into a structured format suitable for neural network algorithms, 

facilitating the model's ability to learn from historical patterns. 

 

Figure 25: Moving Window Function Example (Source) 

 To prepare the data for modeling, we apply the Min-Max scaler, which normalizes the data to a 

specified range, typically [0, 1]. This step is crucial for several reasons. First, it ensures that all features 

contribute equally to the learning process, preventing the model from being dominated by variables with 

larger scales. In the context of electrical load forecasting, where we integrate diverse data types like 

weather conditions and past load values, Min-Max scaling ensures that the numerical differences do not 

skew the learning algorithm's focus. Below is the formula: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥 −  𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

The key components of this transformation include: 

• 𝑥: The original data point. 

• 𝑥𝑚𝑖𝑛: The minimum value in the dataset for the feature being scaled. 

• 𝑥𝑚𝑎𝑥: The maximum value in the dataset for the feature being scaled. 

• 𝑥𝑠𝑐𝑎𝑙𝑒𝑑: The normalized value after applying the Min-Max scaling. 

Furthermore, applying the Min-Max scaler speeds up the learning process and leads to faster 

convergence. This is because the learning algorithms, especially neural networks, perform better when 

the input data is normalized. By bringing all features into the same scale, we reduce the complexity of the 

optimization problem, allowing the learning algorithm to find the optimal weights more efficiently. This is 

https://coderzcolumn.com/tutorials/data-science/time-series-resampling-and-moving-window-functions
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particularly beneficial for our time series data, which has varying ranges across different variables and time 

steps. Faster convergence not only reduces training time but also helps in achieving better generalization, 

thus improving the model's predictive accuracy on unseen data. 

Furthermore, applying the Min-Max scaler speeds up the learning process and leads to faster 

convergence. This is because the learning algorithms, especially neural networks, perform better when 

the input data is normalized. By bringing all features into the same scale, we reduce the complexity of the 

optimization problem, allowing the learning algorithm to find the optimal weights more efficiently. This is 

particularly beneficial for our time series data, which has varying ranges across different variables and time 

steps. Faster convergence not only reduces training time but also helps in achieving better generalization, 

thus improving the model's predictive accuracy on unseen data. 

 

2.4 Feed Forward Model 
 

In this section, we chose three specific cases for constructing and assessing feed-forward models, 

each of which is aimed at solving different problems of short-term electricity load forecasting. These 

scenarios were selected to investigate the performance of the feed-forward neural network with different 

input variables and prediction steps, thus offering a detailed assessment of the network’s forecasting 

potential. 

 The first scenario is a straightforward yet efficient way of making the prediction where the next 

hour load is predicted based on the previous 24 hours load. This model uses a one hour lagged data, where 

the data is shifted one hour for each observation. Thus, we guarantee that the model will learn the short-

term temporal dependencies in the load data. The input of the last 24 hours of data is used in the model 

to capture the most recent patterns and trends that are useful for predicting the next hour, thus making it 

suitable for very short-term forecasting. 

 The second scenario also uses the past 24 hours of load data but the prediction is made for the 

next 48 hours. In this model, the objective is to predict the load 48 hours in advance, which gives a longer 

view of the load forecast. This approach is especially helpful when the most recent data is not available or 

is not very relevant, and we have to make our predictions based on the data that is somewhat outdated. 

Thus, training the model with a 48-hour forecast horizon allows for the use of data that is at most two days 

old to predict the load for the next hour, which is useful for real-world applications of the model. 

 The third scenario incorporates high correlation features such as temperature and wind speed 

from two major cities, Athens and Thessaloniki, in addition to the load data. By including these exogenous 

variables, the model can capture the influence of weather conditions on electricity demand. This 

comprehensive approach allows the model to leverage the strong correlations between weather variables 

and electricity load, thereby improving its predictive accuracy. The inclusion of multiple features provides 

a holistic view of the factors affecting load patterns, making this model more versatile and robust in 

handling various external influences. 

 All these scenarios use feed-forward neural network with different structures, activation functions 

and methods of regularization. Thus, by changing these parameters and analyzing the results of the 

models’ performance, we will try to determine the best settings for load forecasting. The outcomes of 
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these models will be useful in identifying the best practices for short-term electricity load prediction, 

which will help in the enhancement of energy management systems. 

In the following section, we will discuss the code and the output for each of the cases. This analysis 

will also involve a thorough assessment of the model structure, training procedure, and evaluation criteria. 

We will also plot the training and validation loss and the actual and predicted load to determine the 

performance of each model. This will enable the author to identify the various merits and demerits of 

each of the scenarios and enable the author to make the right decision on the best approach to use in 

electricity load forecasting. 

 

2.4.1 Detailed Explanation of Feed-Forward Model Code and 

Implementation 
 

 Before training the models, it is crucial to prepare and scale the data appropriately. The dataset is 

first loaded and preprocessed, including setting the index to the date column and dropping the original 

date column. Three scenarios are defined for different model configurations and purposes. For each 

scenario, a set of features is selected and past values are generated using a sliding window approach, 

which ensures that the model has a sequence of past observations as input for making predictions. 

 

• Scenario 1 focuses on predicting the load one hour ahead using the past 24 hours of load data. 

• Scenario 2 extends this approach to a forecasting horizon of 48 hours, still using the past 24 hours 

of load data. 

 

 

 

 

file_path = “data_with_weekend_and_month.xlsx" 

=

=

=

features_request = {"window": [24]} 

=  

X1 = build_df.drop(columns=['Target_Tplus1']).values  

y1  =  build_df['Target_Tplus1'].values.reshape(-1,  1) 
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• Scenario 3 uses high-correlation features along with the load data to predict one hour ahead with 

a 48-hour horizon 

The input features and target variable are then normalized to the range of [0,1] using the 

MinMaxScaler from the scikit-learn library to make sure that all features are equally important to the 

model and to help the gradient descent optimization process. 

In order to determine the best model configuration, a grid search is performed over a set of 

hyperparameters. The grid search explores combinations of hidden layer architectures, dropout rates, 

learning rates, and batch sizes. The “product” function from the Itertools library is used to generate all 

possible combinations of these hyperparameters. For each combination, the model is trained and 

evaluated on the validation set, and the results are stored. The model with the lowest validation RMSE 

(Root Mean Squared Error) is selected as the best model. This exhaustive search helps in identifying the 

most effective model architecture and training parameters, ensuring that the model is well-optimized and 

performs robustly on unseen data. 

features_request = {"window": [24]} 

=  

X1 = build_df.drop(columns=['Target_Tplus1']).values  

y1  =  build_df['Target_Tplus1'].values.reshape(-1,  1) 

 

high_corr_features = ['Load', 'temperature_2m_ATH', 'temperature_2m_SKG', 'wind_speed_10m_ATH', 

'wind_speed_10m_SKG']  

=  

=  

temp_df = build_features(data[feature], features_request, target_lag=48,  

==  
target_col = temp_df['Target_Tplus48']  

temp_df = temp_df.drop('Target_Tplus48', axis=1) 
= + +

input_feats.append(temp_df) 
processed_data = pd.concat(input_feats, axis=1) 
processed_data['Target_Tplus48'] = target_col 
X3 = processed_data.drop(columns=['Target_Tplus48']).values  
y3 = processed_data['Target_Tplus48'].values.reshape(-1, 1) 

 

def train_and_evaluate_model(X, y, scenario_name, epochs=100): 
input_scaler = MinMaxScaler() 
output_scaler = MinMaxScaler() 

X_scaled = input_scaler.fit_transform(X) 
y_scaled = output_scaler.fit_transform(y) 
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split_index = int(len(X_scaled) * 0.8) 
=
=  

 
 

hidden_layers_options = [[64, 32], [128, 64], [256, 128, 64]] 

dropout_rate_options = [0.1, 0.01, 0.05] 

learning_rate_options = [0.001, 0.005, 0.01, 0.1] 

batch_size_options = [120, 240, 360] 

 

=  

for  hidden_layers, dropout_rate, learning_rate, batch_size in product(hidden_layers_options, 

dropout_rate_options,  learning_rate_options,  

model = create_model(X_train.shape[1], hidden_layers, dropout_rate,  

es_callback = EarlyStopping(monitor='val_loss', patience=5, verbose=0) 

=  
epochs=epochs, batch_size=batch_size, 
shuffle=True, validation_split=0.20, 
verbose=0, callbacks=[es_callback]) 

val_predictions = model.predict(X_val) 
val_predictions = output_scaler.inverse_transform(val_predictions) 
y_val_inv = output_scaler.inverse_transform(y_val) 

val_score = mean_squared_error(y_val_inv, val_predictions, squared=False) # RMSE 

 

best_params = min(results, key=lambda x: x[-  

dropout_rate={best_params[1]},

batch_size={best_params[3]},   val_score={best_params[4]:.2f}') 

 

best_model = create_model(X_train.shape[1], best_params[0], best_params[1], 

# Save model summary to a text file 

with open(f'{scenario_name}_model_summary.txt', 'w', encoding='utf-8') as f: 

best_model.summary(print_fn=lambda x: f.write(x + '\n')) 

 

history  =  best_model.fit(X_train,  y_train, 
epochs=epochs, 
batch_size=best_params[3], 
shuffle=True, validation_split=0.20, 
verbose=2, callbacks=[es_callback]) 

 
   predictions_train = best_model.predict(X_train) 
   predictions_val = best_model.predict(X_val) 
 
   predictions_train = output_scaler.inverse_transform(predictions_train) 
   y_train = output_scaler.inverse_transform(y_train) 
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The best model, as determined by the grid search, is then trained using the entire training set and 

validated against the validation set. The EarlyStopping callback is used to halt training early if the validation 

loss does not improve for a specified number of epochs, preventing overfitting and saving computational 

resources. During training, both training and validation loss are monitored, and the best model weights 

are saved for evaluation. Once training is complete, the model's predictions are transformed back to the 

original scale using the inverse transformation of the output scaler, and the RMSE is calculated for both 

training and validation sets to assess the model's performance. 

The process begins by defining a function, ‘create_model’, which constructs and compiles a feed-

forward neural network model. This function accepts several parameters including the number of input 

features (‘input_dim’), the architecture of hidden layers (‘hidden_layers’), the dropout rate 

(dropout_rate), and the learning rate (‘learning_rate’). The model is built using the Sequential API from 

TensorFlow's Keras library. Each hidden layer is followed by a dropout layer to mitigate overfitting by 

randomly setting a fraction of input units to zero at each update during training time, which helps prevent 

overfitting. The model ends with a Dense layer with a single unit to predict the target variable. The Adam 

optimizer is chosen for its efficiency and ability to handle sparse gradients on noisy problems, and the 

mean squared error (MSE) is used as the loss function for regression tasks. 

   predictions_val = output_scaler.inverse_transform(predictions_val) 
   y_val = output_scaler.inverse_transform(y_val) 
 
   train_rmse = mean_squared_error(y_train, predictions_train, squared=False) 
   val_rmse = mean_squared_error(y_val, predictions_val, squared=False) 

   train_mae = mean_absolute_error(y_train, predictions_train) 

   val_mae = mean_absolute_error(y_val, predictions_val) 

   train_r2 = r2_score(y_train, predictions_train) 

   val_r2 = r2_score(y_val, predictions_val) 

 

   print(f'{scenario_name} - Train RMSE: {train_rmse:.2f}') 

   print(f'{scenario_name} - Validation RMSE: {val_rmse:.2f}') 

   print(f'{scenario_name} - Train MAE: {train_mae:.2f}') 

   print(f'{scenario_name} - Validation MAE: {val_mae:.2f}') 

   print(f'{scenario_name} - Train R2: {train_r2:.2f}') 

   print(f'{scenario_name} - Validation R2: {val_r2:.2f}') 

 
   return history, y_train, predictions_train, y_val, predictions_val 

 

def create_model(input_dim, hidden_layers, dropout_rate, learning_rate): 
model = Sequential() 
model.add(Dense(hidden_layers[0], input_dim=input_dim, activation='relu')) 
model.add(Dropout(dropout_rate)) 

model.add(Dropout(dropout_rate)) 

model.add(Dense(1)) 
= model.compile(optimizer=optimizer, loss='mse', 

metrics=['mean_squared_error']) 

return  model 
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Finally, the results of the models are visualized. The training and validation loss for each scenario are 

plotted to show the convergence behavior and to check for overfitting or underfitting. Additionally, the 

actual versus predicted load values are plotted for both training and validation sets for each scenario. This 

visualization helps in understanding how well the model captures the patterns in the data and where it 

might be making errors. By comparing the performance across different scenarios, insights can be drawn 

about the effectiveness of different feature sets and model configurations in forecasting the electricity 

load. 

 

2.4.2 Comparative Analysis of Feed-Forward Model Scenarios and 

Performance Evaluation 
 

The above three scenarios analysis of the feed-forward neural network models in electricity load 

forecasting provide useful information on the models’ behavior and characteristics. The scenarios are 

based on different considerations for implementation and the impact that each has on the forecast quality 

and characteristics of the model’s ability to generalize. 

Performance Metric Scenario 1 Scenario 2 Scenario 3 

Train RMSE 187.24 618.14 559.11 

Validation RMSE 200.65 649.02 594.71 

Train MAE 140.95 472.04 424.83 

Validation MAE 151.09 472.19 462.88 

Train 𝑅2 0.98 0.73 0.78 

Validation 𝑅2 0.98 0.78 0.81 

Table 5: Performance Metrics for Different Scenarios 
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It is observed in Table 3 that Scenario 1 performed the best, with the lowest train and validation 

RMSE being 187.24 and 200.65, respectively. The given scenario employed a 24-hour sliding window for 

predicting the load of the next hour, which appears to be an optimal strategy for short-term forecasting. 

The best parameters for this setting were hidden layer sizes: [128, 64], dropout rate: 0.01, learning rate: 

0.001, and batch size: 360. The low dropout rate would have meant very little regularization was necessary, 

and this may insinuate that the model might be able to properly learn from data without overfitting. This 

is supported by high 𝑅2 values (0.98 for both training and validation) and thus a good fit for the model to 

the data. 

Scenario 2 was found to be forecast with high RMSE values, where train and validation scores were 

618.14 and 649.02, respectively. The parameters for this scenario mainly involved more extensive hidden 

layers of [256, 128, 64], a slightly higher dropout rate of 0.05, and a learning rate of 0.001 with a batch 

size of 240. Since the forecasting horizon here is much larger, the model is made even more complex and, 

therefore, requires a high dropout rate. However, it is still found that the performance lags Scenario 1, 

attributed to the increased level of uncertainty and variability in forecasting much further ahead, which is 

inherently challenging. 

Scenario 3 incorporated additional high-correlation features such as temperature and wind speed 

from Athens and Thessaloniki, along with the load data. Despite the inclusion of these potentially 

informative features, the model's performance did not improve significantly compared to Scenario 2. The 

best parameters for Scenario 3 were similar to those of Scenario 1 but included a learning rate of 0.005 

and a batch size of 240. The train and validation RMSE scores were 559.11 and 594.71, respectively, with 

𝑅2 values of 0.78 and 0.81. The results suggest that adding more features did not necessarily enhance the 

model's accuracy and may have introduced noise, complicating the learning process without providing 

substantial additional predictive power. 

Dense layers are designed to capture non-linear relationships between input features and output 

predictions, but they might not be as effective in capturing temporal dependencies and correlations in 

time-series data compared to sequence-based models like GRU, RNN, and LSTM. These models are 

specifically designed to handle sequential data and can retain information over time, making them more 

suitable for tasks involving time-dependent features and long-term dependencies. 
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Figure 26: Training and Validation Loss for Each Scenario 

 

 The loss graphs for all scenarios present this typical training behavior: rapid initial decline for 

training and validation loss and flattening at the convergence of models. The first scenario shows a drastic 

decrease in loss with a small number of undulations that appear very smooth, suggestive of stable training 

and good generalization. Scenarios 2 and 3 show more fluctuations in validation loss, again indicating more 

significant challenges in prediction at longer horizons, with more features involved. In turn, this analysis 

suggests potential overfitting, especially in the third scenario, where validation loss diverges from the 

training loss. This can be a result of overfitting of the model and the addition of further features that didn't 

represent proportional predictive value. On the other hand, the loss curves for Scenario 1 denote well-

regularized models with good performance on both training and validation sets. 

 



P a g e  | 58 

 

 

Figure 27: Actual vs. Predicted Load for Training and Validation Data Across Scenarios 
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For the first scenario, the model is able to predict the load data trend and seasonality quite well. 

The predicted values are very close to the actual load values, which means that the model has a good fit. 

The slight difference between the training and validation performance metrics shows that the model does 

not overfit the data, and performs well on new data. The model’s performance in predicting one hour 

ahead using the previous 24 hours of data is seen to be accurate from the high 𝑅2 values and low RMSE 

and MAE scores. 

In Scenario 2, although the trend is well captured, the model has higher errors compared to 

Scenario 1. The predictions are less accurate as seen by the larger dispersion around the actual values 

especially when the forecast is made for 48 hours in advance. 

The last scenario, which includes high-correlation features, does not enhance the performance 

compared to the second one. The additional features may bring in noise which may make the learning 

process difficult without adding much value to the prediction.  

In general, there is no severe overfitting across the scenarios; however, the Dense layers might not 

be exploiting the increased complexity of the models, which indicates that more complex models tailored 

for sequential data are required. 

 

 

2.5 Recurrent Neural Network 
 

In this section, we will discuss how the RNN models such as LSTM, GRU, and Simple RNN can be 

applied in electricity load forecasting. The RNN models are especially effective for time series prediction 

tasks because they are capable of modeling the temporal relationships and maintain the information over 

time. These models are intended for processing the sequential data and can adequately describe the 

dependencies between the past and future observations. 

Due to the computational intensity and the requirement of a large amount of computational 

power, we have decided to employ Google Colab’s virtual machine (VM) environment with GPU. The Colab 

VM offers access to GPUs which are very useful in the training of deep learning models. This makes it 

easier to search through the different model architectures and hyperparameters to use. 

For the recurrent neural network models, we will examine three particular cases, each of which 

will be aimed at capturing different facets of electricity load forecasting with the help of different input-

output window sizes and feature vectors. 

For the first scenario, the input window size is set to 24 hours and the output window size is set 

to 48 hours. The factors that have been incorporated in this scenario are the load, temperature and wind 

speed. The main goal is to make a forecast of the load for the next 48 hours. The goal of this scenario is to 

identify the temporal patterns in the last 24 hours of data to make precise predictions for the next 2 days. 

This configuration is designed to use the most recent data to identify the current tendencies and short-

term behavior of the load. Notably, the results of Scenario 1 will be compared with the results of Scenario 

3 from the feed-forward model, which has the same feature set and the same target for the prediction, 
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which will allow assessing the efficiency of recurrent neural networks in comparison with feed-forward 

ones. 

The second scenario uses an input window size of 48 hours and an output window size of 1 hour. 

This scenario is based on the same set of features as in the first scenario; the load, temperature and wind 

speed. The focus here is to assess the effect of having a longer history of data on the short-term prediction 

accuracy. This scenario aims at finding out whether including a longer history of input data can enhance 

the model’s capability of forecasting the next few minutes of load demand. 

In the third case, the input window size is set to 96 hours, and the output window size remains 48 

hours. This scenario includes high-correlation variables like temperature and wind speed from two cities, 

Athens and Thessaloniki along with the load data. The goal is still to predict the load for the next 48 hours. 

The goal of this scenario is to compare the performance of the model when using a longer history of data 

and other variables that are highly related to the load. Thus, this scenario is intended to determine 

whether the enhanced complexity and the longer input time contribute to the significant improvement of 

the prediction accuracy in comparison with the shorter and less complex configurations. 

 These scenarios are designed to provide a comprehensive analysis of the performance of RNN 

models in short-term electricity load forecasting. By comparing the results across different configurations, 

we aim to identify the most effective model architecture and feature set for accurate load prediction. 

Comparing Scenario 1 of the RNN model with Scenario 3 of the feed-forward model will also help in 

understanding the strengths and weaknesses of recurrent versus feed-forward approaches. 

 

2.5.1 Detailed Explanation of Recurrent Neural Networks Code and 

Implementation 
 

The first step of the data preparation is to normalize the input and output data. Initially, the 

columns to be scaled are defined, including load and various weather-related features. The input data is 

then extracted and transformed as needed. The MinMaxScaler is used to normalize the input data in the 

range of [0,1] so that no feature is dominating the training of the model. Also, the ‘Month’ and ‘Weekend’ 

columns are added to the scaled input data without scaling as they are categorical variables. The output 

data (load) is also normalized. This step is important in standardizing the data to a range that is more 

suitable for the neural network training and also to enhance the speed and stability of the models’ 

convergence. 

columns_to_scale = ['Load', 'temperature_2m_ATH', 
'temperature_2m_SKG','wind_speed_10m_ATH', 'wind_speed_10m_SKG']  # Columns to scale 
 
input_data = data[columns_to_scale].values 
output_data = data['Load'].values.reshape(-1, 1) # Define input and output data 
input_scaler = MinMaxScaler() 
output_scaler = MinMaxScaler() # Initialize the scalers 
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The script then moves to the creation of sliding window data which is crucial for time series 

forecasting since the data has been prepared. A function is created to produce input-output pairs by using 

a sliding window technique where “input_window_size is the number” of past observations to be used in 

making predictions and “output_window_size” is the number of steps ahead to be predicted. This function 

takes the dataset and for each input sequence, it appends the input sequence and its output value and 

then converts the lists to “numpy” arrays. This method enables the models to learn temporal 

dependencies in the data which is useful in time series analysis for prediction. 

 On the basis of the sliding window data, the script then defines a function to create different types 

of RNN models such as LSTM, GRU, and SimpleRNN based on the given parameters. This function takes 

the model type, input shape, hidden layers, dropout rate and learning rate as the parameters. It builds a 

sequential model and includes the RNN layers of the type LSTM, GRU, or SimpleRNN with the desired 

number of units and dropout layers to avoid overfitting. The last layer is a Dense layer with a single neuron 

for regression problems. The model is trained with the Adam optimizer and the mean squared error (MSE) 

loss function as this is a regression model. This makes it easy to test various RNN architectures since the 

code is broken down into modules. 

 

 

 

 

 

 

Scale the input data 
input_scaled = input_scaler.fit_transform(input_data) 
# Concatenate 'Month' and 'Weekend' columns without scaling 
input_scaled = np.concatenate([input_scaled, data[['Month', 'Weekend']]. values], axis=1) 
# Scale the output data 
output_scaled = output_scaler.fit_transform(output_data) 
# Verify the scaling 
print("Input Scaled Shape:", input_scaled.shape) 
print("Output Scaled Shape:", output_scaled.shape) 
 

def create_sliding_window_data(x, y, input_window_size, output_window_size): 
input_x, output_y = [], [] 
for i in range(len(x) - input_window_size - output_window_size + 1): 

input_x.append(x[i:i + input_window_size]) 
output_y.append(y[i + input_window_size + output_window_size - 1]) 

return np.array(input_x), np.array(output_y) 
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The training and the evaluation of the models are done by the “train_and_evaluate_model” 

function. This function does a grid search over the number of hidden layers, dropout rate, learning rate, 

and batch size to find the best model configuration. For each set of hyperparameters, the model is trained 

on the training data set with the help of early stopping and model checkpoint to avoid overfitting and to 

store the best model. Once the model is trained, the predicted values on the validation set are compared 

with the actual values and the performance metrics such as RMSE, MAE, and 𝑅2 are calculated. The best 

model configuration is selected using the validation RMSE and the model along with the training history is 

returned. 

 

 

 

 

 

 

# Define the RNN model creation function 
def create_rnn_model(model_type, input_shape, hidden_layers, dropout_rate,learning_rate): 

model = Sequential() 
if model_type == 'LSTM': 

model.add(LSTM(hidden_layers[0], input_shape=input_shape, 
return_sequences=True)) 

elif model_type == 'GRU': 

model.add(GRU(hidden_layers[0], input_shape=input_shape,␣ 
return_sequences=True)) 

elif model_type == 'SimpleRNN': 

model.add(SimpleRNN(hidden_layers[0], input_shape=input_shape,␣ 
return_sequences=True)) 

model.add(Dropout(dropout_rate)) 
 

for units in hidden_layers[1:]: 
if model_type == 'LSTM': 

model.add(LSTM(units, return_sequences=(units !=hidden_layers[-1]))) 
elif model_type == 'GRU': 

model.add(GRU(units, return_sequences=(units != hidden_layers[-1]))) 
elif model_type == 'SimpleRNN': 

model.add(SimpleRNN(units, return_sequences=(units !=hidden_layers[-1]))) 
 
model.add(Dropout(dropout_rate)) 
model.add(Dense(1)) 
model.compile(optimizer='adam', loss='mse', metrics=['mean_squared_error']) 
return model 
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def train_and_evaluate_model(model_fn, model_name, X_train, y_train, X_val, y_val, input_shape, 
hidden_layers_options, dropout_rate_options, learning_rate_options, batch_size_options, 
epochs=100): 
 

best_params = None 
best_val_score = float('inf') 
best_model = None 
best_history = None 
results = [] 

for hidden_layers, dropout_rate, learning_rate, batch_size in 

product(hidden_layers_options, dropout_rate_options, learning_rate_options, 
batch_size_options): 
 

print(f'Testing {model_name} with hidden_layers={hidden_layers}, 
dropout_rate={dropout_rate}, learning_rate={learning_rate}, 
batch_size={batch_size}') 
 
model = model_fn(input_shape, hidden_layers, dropout_rate, learning_rate) 
es_callback = EarlyStopping(monitor='val_loss', patience=5, verbose=0) 
 
checkpointer = ModelCheckpoint(filepath=f"best_{model_name}_model.h5", 
verbose=0, save_best_only=True) 
 
history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, 
validation_split=0.2, 
verbose=0, 
callbacks=[es_callback, checkpointer]) 
 
val_predictions = model.predict(X_val) 
val_predictions = output_scaler.inverse_transform(val_predictions) 
y_val_inv = output_scaler.inverse_transform(y_val) 
 
train_predictions = model.predict(X_train) 
train_predictions = output_scaler.inverse_transform(train_predictions) 
y_train_inv = output_scaler.inverse_transform(y_train) 
 
val_rmse = mean_squared_error(y_val_inv, val_predictions, squared=False) 
train_rmse = mean_squared_error(y_train_inv, train_predictions, squared=False) 
val_mae = mean_absolute_error(y_val_inv, val_predictions) 
train_mae = mean_absolute_error(y_train_inv, train_predictions) 
val_r2 = r2_score(y_val_inv, val_predictions) 
train_r2 = r2_score(y_train_inv, train_predictions) 
 
results.append((hidden_layers, dropout_rate, learning_rate, batch_size, val_rmse, 
train_rmse, val_mae, train_mae, val_r2, train_r2)) 
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To help in the visualization of the model’s performance, a function is created that plots the actual 

versus predicted load for both the training and validation data sets. This function creates two subplots: 

There is one for the training set and the other one is for the validation set. It shows the actual and 

predicted load values of the first 100 samples to assess the model’s effectiveness visually. This visualization 

allows for determining the degree to which the model fits the patterns and trends of the data and identifies 

the differences between the actual and predicted values. It is a very important step in the assessment of 

the model for electricity load forecasting. 

 

 

 

 

  if val_rmse < best_val_score: 
best_val_score = val_rmse 
best_params = (hidden_layers, dropout_rate, learning_rate, batch_size) 
best_model = model 
best_history = history 

 hidden_layers, dropout_rate, learning_rate, batch_size = best_params 

print(f'Best parameters for {model_name}: hidden_layers={hidden_layers}, 
dropout_rate={dropout_rate}, learning_rate={learning_rate}, batch_size={batch_size}, 
val_score={best_val_score:.2f}') 
 
print(f'Best {model_name} - Train RMSE: {train_rmse:.2f}') 
print(f'Best {model_name} - Validation RMSE: {val_rmse:.2f}') 
print(f'Best {model_name} - Train MAE: {train_mae:.2f}') 
print(f'Best {model_name} - Validation MAE: {val_mae:.2f}') 
print(f'Best {model_name} - Train R2: {train_r2:.2f}') 
print(f'Best {model_name} - Validation R2: {val_r2:.2f}') 
 
# Plot training and validation loss 
plt.figure(figsize=(14, 8)) 
plt.plot(best_history.history['loss'], label='Train Loss') 
plt.plot(best_history.history['val_loss'], label='Validation Loss') 
plt.title(f'{model_name}: Training and Validation Loss') 
plt.xlabel('Epoch') 
plt.ylabel('Loss') 
plt.legend() 
plt.show() 
 
return best_model, best_history, y_train_inv, train_predictions, y_val_inv, val_predictions 
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Finally, the script runs the defined scenarios and compares the performance of the LSTM, GRU, 

and SimpleRNN models. For each scenario, sliding window data is created, and the data is split into training 

and validation sets. The “train_and_evaluate_model” function is called for each model type, and the 

results are stored. After training all models, the combined results are printed, and the actual versus 

predicted load plots are generated for each model and scenario. This comprehensive evaluation and 

comparison of different RNN models and scenarios provide valuable insights into the models' performance 

and suitability for short-term electricity load forecasting tasks. 

# Plotting function 
def plot_predictions(y_true_train, y_pred_train, y_true_val, y_pred_val, title): 

 
plt.figure(figsize=(14, 8)) 
plt.subplot(2, 1, 1) 
plt.plot(y_true_train[:100], label='Actual Load') 
plt.plot(y_pred_train[:100], label='Predicted Load') 
plt.title(f'{title}: Training Data') 
plt.xlabel('Samples') 
plt.ylabel('Load') 
plt.legend() 
plt.subplot(2, 1, 2) 
plt.plot(y_true_val[:100], label='Actual Load') 
plt.plot(y_pred_val[:100], label='Predicted Load') 
plt.title(f'{title}: Validation Data') 
plt.xlabel('Samples') 
plt.ylabel('Load') 
plt.legend() 
plt.tight_layout() 
plt.show() 
 

# Collect and print results 
lstm_results = [] 
gru_results = [] 
rnn_results = [] 

# Scenarios 

scenarios = [{"input_window_size": 24, "output_window_size": 48, "name": "Scenario 1}, 

{"input_window_size": 48, "output_window_size":  1, "name": "Scenario 2"}, 

{"input_window_size": 96, "output_window_size": 48, "name": "Scenario 3"}] 

# Model configurations 
hidden_layers_options = [[64, 32], [128, 64], [256, 128, 64]] 
dropout_rate_options = [0.1, 0.01, 0.05] 
learning_rate_options = [0.001, 0.005, 0.01, 0.1] 
batch_size_options = [120, 240, 360] 
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for scenario in scenarios: 
# Create sliding window data 
X, y = create_sliding_window_data(input_scaled, output_scaled, 
input_window_size=scenario["input_window_size"], 
output_window_size=scenario["output_window_size"]) 

 
split_index = int(len(X) * 0.8) 
X_train, X_val = X[:split_index], X[split_index:] 
y_train, y_val = y[:split_index], y[split_index:] 

 
 
# Train and evaluate LSTM model 
best_lstm_model, lstm_history, lstm_y_train_inv, lstm_train_predictions, lstm_y_val_inv, 
lstm_val_predictions = train_and_evaluate_model( lambda input_shape, hidden_layers, 
dropout_rate, learning_rate: create_rnn_model('LSTM', input_shape, hidden_layers, 
dropout_rate, learning_rate), 'LSTM', X_train, y_train, X_val, y_val, 
(X_train.shape[1], X_train.shape[2]), hidden_layers_options, dropout_rate_options, 
learning_rate_options, batch_size_options) 
 
# Store LSTM results 
lstm_results.append({ 
"scenario_name": scenario["name"], 
"train_rmse": mean_squared_error(lstm_y_train_inv,lstm_train_predictions, squared=False), 
"val_rmse": mean_squared_error(lstm_y_val_inv, lstm_val_predictions,squared=False), 
"train_mae": mean_absolute_error(lstm_y_train_inv,lstm_train_predictions), 
"val_mae": mean_absolute_error(lstm_y_val_inv, lstm_val_predictions), 
"train_r2": r2_score(lstm_y_train_inv, lstm_train_predictions), 
"val_r2": r2_score(lstm_y_val_inv, lstm_val_predictions)}) 
 
# Train and evaluate GRU model 
best_gru_model, gru_history, gru_y_train_inv, gru_train_predictions, gru_y_val_inv, 
gru_val_predictions = train_and_evaluate_model( lambda input_shape, hidden_layers, 
dropout_rate, learning_rate:create_rnn_model('GRU', input_shape, hidden_layers, 
dropout_rate,learning_rate), 'GRU', X_train, y_train, X_val, y_val, (X_train.shape[1], 
X_train.shape[2]), hidden_layers_options, dropout_rate_options, 
learning_rate_options,batch_size_options) 
 
# Store GRU results 
gru_results.append({ 
"scenario_name": scenario["name"], 
"train_rmse": mean_squared_error(gru_y_train_inv, gru_train_predictions, squared=False), 
"val_rmse": mean_squared_error(gru_y_val_inv, gru_val_predictions,squared=False), 
"train_mae": mean_absolute_error(gru_y_train_inv,gru_train_predictions), 
"val_mae": mean_absolute_error(gru_y_val_inv, gru_val_predictions), 
"train_r2": r2_score(gru_y_train_inv, gru_train_predictions), 
"val_r2": r2_score(gru_y_val_inv, gru_val_predictions)}) 
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# Train and evaluate SimpleRNN model 

best_rnn_model, rnn_history, rnn_y_train_inv, rnn_train_predictions,␣ 
rnn_y_val_inv, rnn_val_predictions = train_and_evaluate_model( 

lambda input_shape, hidden_layers, dropout_rate, learning_rate:␣ 

create_rnn_model('SimpleRNN', input_shape, hidden_layers, dropout_rate,␣ 
learning_rate), 

'SimpleRNN', 
X_train, y_train, X_val, y_val, 
(X_train.shape[1], X_train.shape[2]), 

hidden_layers_options, dropout_rate_options, learning_rate_options,␣ 
batch_size_options 

) 
# Store SimpleRNN results 
rnn_results.append({ 
"scenario_name": scenario["name"], 

"train_rmse": mean_squared_error(rnn_y_train_inv,␣ 
rnn_train_predictions, squared=False), 

"val_rmse": mean_squared_error(rnn_y_val_inv, rnn_val_predictions,␣ 
squared=False), 

"train_mae": mean_absolute_error(rnn_y_train_inv,␣ 
rnn_train_predictions), 

"val_mae": mean_absolute_error(rnn_y_val_inv, rnn_val_predictions), 
"train_r2": r2_score(rnn_y_train_inv, rnn_train_predictions), 
"val_r2": r2_score(rnn_y_val_inv, rnn_val_predictions) 

}) 
# Plot predictions for LSTM 
plot_predictions(lstm_y_train_inv, lstm_train_predictions, lstm_y_val_inv, 
lstm_val_predictions, f'LSTM {scenario["name"]}') 
# Plot predictions for GRU 
plot_predictions(gru_y_train_inv, gru_train_predictions, gru_y_val_inv,gru_val_predictions, 
f'GRU {scenario["name"]}') 
# Plot predictions for SimpleRNN 
plot_predictions(rnn_y_train_inv, rnn_train_predictions, rnn_y_val_inv, rnn_val_predictions, 
f'SimpleRNN {scenario["name"]}') 

# Print combined results 
print_combined_results(lstm_results, "LSTM") 
print_combined_results(gru_results, "GRU") 
print_combined_results(rnn_results, "SimpleRNN") 
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2.5.2 Comparative Analysis of Recurrent Neural Models Scenarios 

and Performance Evaluation 
 

In this section, we present a comprehensive analysis of the results obtained from the various 

recurrent neural network (RNN) models: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), 

and SimpleRNN. We compare their performance on Scenario 1, which involves predicting electricity load 

using high-correlation features such as temperature and wind speed from Athens and Thessaloniki, with a 

24-hour input window size and a 48-hour prediction horizon. The performance metrics for each model 

include RMSE, MAE, and 𝑅2 scores, which provide insights into the accuracy and reliability of the models. 

 

Performance Metric LTSM GRU SimpleRNN 

Train RMSE 537.75 456.10 605.65 

Validation RMSE 573.17 485.32 601.06 

Train MAE 407.91 339.34 474.03 

Validation MAE 430.66 359.03 483.40 

Train 𝑅2 0.80 0.85 0.74 

Validation 𝑅2 0.83 0.88 0.81 

Table 6: Performance Metrics for Scenario 1 

 

Figure 28: Training and Validation Loss for Scenario1 and LTSM model 
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Figure 29: Training and Validation Loss for Scenario1 and GRU model 

 

Figure 30: Training and Validation Loss for Scenario1 and SimpleRNN  model 
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Figure 31: Actual vs. Predicted Load for LTSM Scenario 1 

 

 

Figure 32: Actual vs. Predicted Load for GRU Scenario 1 
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Figure 33: Actual vs. Predicted Load for SimpleRNN Scenario 1 

 For the LSTM model, the best parameters identified were hidden layers [128,64], a dropout rate 

of 0.01, a learning rate of 0.001, and a batch size of 120, achieved a validation RMSE of 573.17. The LSTM 

model showed a strong fit with an 𝑅2 score of 0.83 for validation data, indicating it captured the patterns 

in the load data effectively. The training and validation loss curves for the LSTM model showed a steady 

decrease, suggesting a well-generalized model with minimal overfitting. 

 In this case, the GRU model was found to be better than the LSTM model with a validation RMSE 

of 485.32 with hidden layers [256,128,64], dropout rate of 0.1, a learning rate of 0.01, and a batch size of 

240. The validation 𝑅2 score was 0.88, indicating that the GRU model was particularly effective in learning 

the temporal dependencies in the data. The training and validation loss curves demonstrated stable 

training, with the GRU model effectively balancing the trade-off between bias and variance. 

 The SimpleRNN model, with best parameters of hidden layers [128,64], a dropout rate of 0.01, a 

learning rate of 0.01, and a batch size of 120, had the highest validation RMSE of 601.06 among the three 

RNN models. Although the validation 𝑅2 score was still reasonably high at 0.81, indicating that SimpleRNN 

was able to capture significant patterns in the data, it was less effective compared to LSTM and GRU. The 

training and validation loss curves showed more fluctuations, suggesting that the SimpleRNN model 

struggled more with generalization compared to LSTM and GRU. 

 Analyzing the plots of actual vs. predicted load values for each model further reveals the 

effectiveness of these models in capturing the load trends and seasonality. The GRU model's predictions 

were closely aligned with the actual load values, showing smooth transitions and fewer deviations, 

reflecting its superior performance metrics. The LSTM model also demonstrated strong predictive 

capability, with the predicted values closely following the actual load patterns. On the other hand, the 
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SimpleRNN model exhibited larger deviations and inconsistencies, indicating its relative weakness in 

capturing the complex temporal dependencies. 

 Comparing the best RNN model, which is the GRU, with the Feed-Forward model in Scenario 3, 

we observe significant improvements. The Feed-Forward model achieved a validation RMSE of 594.71 and 

a validation 𝑅2 of 0.81. In contrast, the GRU model's validation RMSE of 485.32 and validation 𝑅2 of 0.88 

indicate a more accurate and reliable performance. This improvement can be attributed to the GRU's 

ability to capture temporal dependencies and interactions between multiple correlated features more 

effectively than the feed-forward architecture. The comparison highlights the superior capability of 

recurrent models like GRU in handling time-series data, especially when long-term dependencies and 

sequential patterns are crucial for accurate predictions. 

 This comprehensive comparison demonstrates the effectiveness of the GRU model in 

outperforming the feed-forward model for electricity load forecasting. The GRU model's ability to capture 

the sequential dependencies in the data leads to more accurate predictions and better generalization on 

the validation set. The inclusion of high-correlation features in the feed-forward model did not significantly 

enhance its performance, likely due to the model's inability to effectively leverage the temporal 

relationships between the features. In contrast, the GRU model, designed to handle sequential data, 

successfully utilized these features to improve forecasting accuracy. 

 In Scenario 2, the input window size is increased to 48 hours while the output window size is 

reduced to 1 hour. This scenario uses the same features as the first scenario—load, temperature, and wind 

speed—to evaluate whether including a longer history of input data can enhance the model’s capability 

of forecasting the next hour of load demand. Additionally, the sliding window approach is adjusted to focus 

on capturing short-term changes in load by predicting one hour ahead. The focus here is to determine if a 

longer history provides a significant advantage in capturing the temporal patterns necessary for accurate 

short-term predictions. 

Performance Metric LTSM GRU SimpleRNN 

Train RMSE 248.56 178.75 456.99 

Validation RMSE 312.35 161.64 523.77 

Train MAE 181.63 134.5 369.36 

Validation MAE 231.15 123.84 437.8 

Train 𝑅2 0.96 0.98 0.85 

Validation 𝑅2 0.95 0.99 0.86 

Table 7: Performance Metrics for Scenario 2 
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Figure 34: Training and Validation Loss for Scenario 2 and LTSM model 

 

Figure 35: Training and Validation Loss for Scenario 2 and GRU model 
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Figure 36: Training and Validation Loss for Scenario 2 and SimpleRNN model 

 

Figure 37: Actual vs. Predicted Load for LTSM Scenario 2 
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Figure 38: Actual vs. Predicted Load for GRU Scenario 2 

 

Figure 39: Actual vs. Predicted Load for SimpleRNN Scenario 2 

For the LSTM model in Scenario 2, the best parameters identified were hidden layers of [128, 64], 

a dropout rate of 0.01, a learning rate of 0.001, and a batch size of 120, achieving a validation RMSE of 

312.35. The LSTM model demonstrated substantial improvement in performance compared to Scenario 
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1, with an 𝑅2 score of 0.95 for the validation data, indicating it captured the load data patterns effectively. 

The training and validation loss curves (Figure 34) showed a consistent decrease, suggesting a well-

generalized model with minimal overfitting. The actual vs. predicted load graphs (Figure 37) reveal that 

the LSTM model closely followed the actual load trends with minimal deviations, showing strong predictive 

capability. 

For this case, the GRU model outperformed the LSTM model with a validation RMSE of 161.64, 

using hidden layers of [256, 128, 64], a dropout rate of 0.1, a learning rate of 0.001, and a batch size of 

120. The validation 𝑅2 score was 0.99, demonstrating the GRU model's effectiveness in learning the 

temporal dependencies in the data. The training and validation loss curves (Figure 35) exhibited stable 

training, with the GRU model maintaining a balance between bias and variance. The actual vs. predicted 

load graphs (Figure 38) for the GRU model showed that the predictions were closely aligned with the actual 

load values, indicating smooth transitions and fewer deviations, reflecting its superior performance 

metrics. 

The SimpleRNN model, with best parameters of hidden layers of [64, 32], a dropout rate of 0.05, 

a learning rate of 0.1, and a batch size of 120, achieved a validation RMSE of 523.77. Although the 

validation 𝑅2 score was reasonably high at 0.86, indicating that SimpleRNN could capture significant 

patterns in the data, it was less effective compared to LSTM and GRU. The training and validation loss 

curves (Figure 36) showed more fluctuations, suggesting that the SimpleRNN model struggled more with 

generalization. The actual vs. predicted load graphs (Figure 39) for SimpleRNN exhibited larger deviations 

and inconsistencies, indicating its relative weakness in capturing complex temporal dependencies. 

As a result of comparing the results of the two scenarios, it is evident that using a larger number 

of input data history and a different sliding window approach enhanced the predictive capability of both 

the LSTM and GRU models. In particular, the GRU model provided a significant improvement with a 

validation RMSE of 161.64 in Scenario 2 compared to 485.32 in Scenario 1. This enhancement can be 

ascribed to the GRU’s capacity to model temporal relationships with a larger input window and its 

appropriateness for short-term load forecasting. The comparison shows that the GRU model is more 

efficient in working with time-series data particularly when long term dependencies and short term 

predictions are relevant for the accurate prediction. The decrease in the RMSE and the increase in the 𝑅2 

in the Scenario 2 show that the usage of a longer time period and a sliding window with a specific focus 

helps to increase the accuracy of the forecast. This comparison shows that the GRU model is better than 

LSTM and SimpleRNN in Scenario 2, and to achieve better results, it is necessary to consider the longer 

history of data and the right sliding window settings. 

 In the third scenario, the input window size is 96 hours and the output window size is still 48 hours. 

This configuration, which includes the high-correlation variables of temperature and wind speed from 

Athens and Thessaloniki along with the load data, is used to predict the load for the next 48 hours. The 

goal is to determine if there is a notable gain in the prediction performance when using a larger input 

history size than the smaller ones. 
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Performance Metric LTSM GRU SimpleRNN 

Train RMSE 423.5 456.52 769.31 

Validation RMSE 508.09 466.72 845.89 

Train MAE 321.79 349.71 640.34 

Validation MAE 378.62 361.41 726.55 

Train 𝑅2 0.87 0.85 0.59 

Validation 𝑅2 0.86 0.89 0.62 

Table 8: Performance Metrics for Scenario 3 

 

Figure 40: Training and Validation Loss for Scenario 3 and LTSM model 
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Figure 41: Training and Validation Loss for Scenario 3 and GRU model 

 

Figure 42: Training and Validation Loss for Scenario 3 and SimpleRNN model 
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Figure 43: Actual vs. Predicted Load for LTSM Scenario 3 

 

Figure 44: Actual vs. Predicted Load for GRU Scenario 3 
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Figure 45: Actual vs. Predicted Load for SimpleRNN Scenario 3 

For the LSTM model in Scenario 3, the best parameters that were found were hidden layers [128, 

64], and dropout rate of 0.01, a learning rate of 0.001 and a batch size of 240, which gave it a validation 

RMSE of 508.09. The LSTM model showed good results with the validation 𝑅2 score of 0.86, which shows 

that it is efficient in the identification of load data patterns. The training and validation loss curves depicted 

a smooth declining pattern, which is a good sign of a well-learnt model with little chances of overfitting. 

Comparing the actual and predicted load values, the LSTM model closely mimicked the actual load trends, 

thus proving the model’s efficiency in load demand forecasting. 

 In this case, the GRU model was better than the LSTM model with the validation RMSE of 466.72 

with hidden layers of 64 and 32 neurons, the dropout rate of 0. 01, a learning rate of 0. 005, and a batch 

size of 120. The validation R2 score was 0. 89, which is an indication of the GRU model’s ability to learn 

and capture temporal dependencies in the data better than the other models. The training and validation 

loss curves of the GRU model showed that the model was well trained and the model did not overfit or 

underfit the data. The actual vs. predicted load graphs for the GRU model were in good agreement with 

the actual load values, which confirmed the model’s high accuracy. 

 The SimpleRNN model, with best parameters of hidden layers [128, 64], a dropout rate of 0.05, a 

learning rate of 0.1, and a batch size of 240, had the highest validation RMSE of 845.89 among the three 

RNN models. Although it achieved a validation R2 score of 0.62, indicating it captured significant patterns 

in the data, it was less effective compared to LSTM and GRU. The training and validation loss curves 

exhibited more fluctuations, suggesting that the SimpleRNN model struggled more with generalization 

compared to LSTM and GRU. The actual vs. predicted load plots for SimpleRNN displayed larger deviations 

and inconsistencies, highlighting its relative weakness in capturing complex temporal dependencies. 
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 Comparing Scenario 3 with Scenario 1 reveals significant insights into the impact of longer input 

windows on model performance across different RNN architectures. For the LSTM model, Scenario 3, 

which uses a 96-hour input window, significantly improved performance over Scenario 1 with a 24-hour 

input window. The validation RMSE in Scenario 3 decreased to 508.09 from 573.17 in Scenario 1, and the 

validation R2 slightly improved to 0.86 from 0.83. These improvements indicate that the LSTM model 

benefits from the additional temporal data, allowing it to capture more intricate patterns and 

dependencies. The training and validation loss curves in Scenario 3 showed a steady decline, further 

suggesting a well-generalized model with minimal overfitting. The actual vs. predicted load graphs also 

confirmed the LSTM model's enhanced predictive capability with the extended input window, closely 

aligning with actual load values. 

 The GRU model demonstrated its superior adaptability to longer input windows, as evidenced by 

its performance in Scenario 3. The GRU model's validation RMSE in Scenario 3 was 466.72, an 

improvement from 485.32 in Scenario 1, and the validation R2 increased to 0.89 from 0.88. These metrics 

highlight the GRU model's exceptional ability to learn from longer historical data and capture temporal 

dependencies effectively. The training and validation loss curves for the GRU model exhibited stable 

training, indicating no signs of overfitting or underfitting. The actual vs. predicted load graphs showed that 

the GRU model's predictions were in close agreement with the actual load values, reflecting its high 

accuracy and robustness. 

 Conversely, the SimpleRNN model, despite having a longer input window in Scenario 3, struggled 

with performance. The validation RMSE increased to 845.89 from 601.06 in Scenario 1, and the validation 

R2 dropped to 0.62 from 0.81, indicating its limitations in handling extended input sequences. The training 

and validation loss curves showed fluctuations, and the actual vs. predicted load plots displayed larger 

deviations, underscoring the SimpleRNN's difficulty in generalizing with increased data complexity. These 

findings emphasize the necessity of advanced architectures like LSTM and GRU for leveraging longer input 

windows effectively in time-series forecasting. 

 

Section ΙII : Conclusion 
 

3.1 Observations 
 

This thesis has aimed at comparing the performance of various neural network architectures for 

short-term electricity load forecasting with an emphasis on feed-forward neural networks and RNNs 

including LSTM and GRU models. The analysis was carried out across three distinct scenarios to evaluate 

the performance and robustness of each model configuration. 

The feed-forward neural network model was compared in three different situations with different 

inputs and output forecasts. The first scenario which used a 24 hour sliding window to predict the load for 

the next hour was the best among the feed-forward models. This configuration was able to capture short-

term temporal dependencies well, as evidenced by the low RMSE and high R² values, meaning that the 

model fit the data well without being overly complex. However, when the prediction horizon was increased 
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to 48 hours in the second scenario, the model’s accuracy was not as good. The higher level of complexity 

and the longer forecast horizon made the model more unpredictable and thus produced higher RMSE and 

lower R². In Scenario 3, the addition of features that are highly correlated with the target variable like 

temperature and wind speed did not enhance the feed-forward model’s performance. This implies that 

feed-forward networks may not be able to exploit more features and may even be hampered by them 

when the features introduce noise. 

In contrast, recurrent neural networks demonstrated superior performance across different 

scenarios, especially in handling sequential data. The LSTM and GRU models excelled in capturing 

temporal dependencies and long-term patterns in the data. In Scenario 1, the GRU model outperformed 

both LSTM and SimpleRNN, showcasing its ability to handle short-term predictions effectively with lower 

RMSE and higher R² scores. The GRU's simpler architecture compared to LSTM contributed to its 

robustness and efficiency in learning temporal patterns. 

When the input window was extended to 48 hours and the prediction horizon was reduced to 1 

hour in Scenario 2, the GRU model again exhibited the best performance. This scenario highlighted the 

GRU's capacity to model long-term dependencies and its adaptability to varying input lengths. The 

improved performance metrics underscored the importance of utilizing a longer input history for more 

accurate short-term predictions. On the other hand, the SimpleRNN model struggled with the increased 

input window size, leading to higher RMSE and lower R², indicating its limitations in handling complex 

temporal data compared to the GRU and LSTM models. 

In Scenario 3, which involved a 96-hour input window and a 48-hour prediction horizon, along 

with the inclusion of high-correlation features, the RNN models, particularly GRU, continued to show 

significant improvements over shorter input windows. The GRU model achieved the best performance 

metrics, further validating its effectiveness in capturing intricate temporal dependencies. The LSTM model 

also benefitted from the extended input window, showing better performance than in shorter scenarios. 

However, the SimpleRNN model's performance declined, highlighting its inadequacy for complex and 

longer sequential data in comparison to the GRU and LSTM models. 

 

3.2 Future Study 
 

 Future research should focus on several areas to enhance the predictive accuracy and robustness 

of these models. Firstly, further fine-tuning of model parameters using advanced optimization techniques 

such as Bayesian optimization or genetic algorithms could yield better results. Secondly, exploring 

ensemble methods that combine multiple models, such as GRU and LSTM, might leverage the strengths 

of different architectures and improve overall performance. Thirdly, incorporating additional influential 

factors like economic indicators, social activities, and more granular weather data could provide more 

comprehensive insights and improve model accuracy. 

 Furthermore, the models that can be used with real-time data and give the load forecast in real-

time could be useful for operational energy management. Expanding the prediction horizon from the 

short-term to the weekly or monthly level would be useful for energy planning. Using these models in 
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other areas or countries with different climatic and social-economic conditions may assess the 

transferability of the models. 

In conclusion, this thesis demonstrates the superior performance of GRU models in short-term 

electricity load forecasting, particularly when leveraging longer input histories and capturing temporal 

dependencies. The insights gained from this research provide a solid foundation for further advancements 

in the field of energy demand forecasting, ultimately contributing to more efficient and reliable energy 

management systems. The comparison of feed-forward and recurrent models highlights the critical role of 

temporal modeling in improving forecasting accuracy and underscores the need for advanced 

architectures in handling sequential data. 
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