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Περίληψη 

 

 

Η πανδημία COVID-19 έχει επιφέρει σημαντικές παγκόσμιες προκλήσεις, απαιτώντας 

λεπτομερή ανάλυση δεδομένων μεγάλου όγκου με στόχο τη λήψη αποφάσεων 

δημόσιας υγείας. Η παρούσα διπλωματική εργασία μελετά την εφαρμογή μεθόδων 

πολυμεταβλητής ανάλυσης για την εξερεύνηση μη κλινικών παραγόντων που 

συμβάλλουν στην επίδραση της πανδημίας COVID-19 στην κοινότητα της Μαδρίτης. 

Παρόλο που η υπάρχουσα βιβλιογραφία επικεντρώνεται κυρίως στα κλινικά 

αποτελέσματα, η εργασία έχει ως στόχο να διευρύνει την κατανόηση της πανδημίας 

μέσω της εξέτασης δημογραφικών, κοινωνικοοικονομικών και κλιματολογικών 

μεταβλητών. Η έρευνα χρησιμοποιεί την Ανάλυση Κύριων Συνιστωσών, την 

Παλινδρόμηση Μερικών Ελαχίστων Τετραγώνων και την k-means μέθοδο ανάλυσης 

κατά συστάδες για την επεξεργασία και ερμηνεία δεδομένων υψηλών διαστάσεων. 

Αυτές οι τεχνικές είναι κατάλληλες για την αναγνώριση σύνθετων προτύπων και 

σχέσεων που μπορεί να υπάρχουν στα δεδομένα, βοηθώντας στην ανίχνευση κρίσιμων 

παραγόντων που σχετίζονται με την πανδημία COVID-19. Βασιζόμενοι στη μελέτη 

των Pérez-Segura et al.[66], εφαρμόζουμε και παρουσιάζουμε πώς μπορούν οι 

προαναφερθείσες τεχνικές να εφαρμοστούν σε πραγματικά δεδομένα για την 

ανακάλυψη κρίσιμων παραγόντων κινδύνου που συνέβαλαν στην έξαρση της 

πανδημίας. Τα ευρήματα αναδεικνύουν την ανάγκη για προσαρμοσμένες στρατηγικές 

δημόσιας υγείας, λαμβάνοντας υπόψη τις διαφορετικές συνθήκες σε διάφορες 

περιοχές. Μέσα από αυτήν την ανάλυση, στοχεύουμε στην καλύτερη κατανόηση των 

δεδομένων, και κατ' επέκταση τη βαθύτερη κατανόηση της πολυδιάστατης επίδρασης 

της πανδημίας.



 

  



 

 

Abstract 

 

 

The COVID-19 pandemic has introduced significant global challenges, requiring 

detailed analysis of vast datasets to guide public health decisions. This thesis studies 

the implementation of multivariate analysis methods to explore the non-clinical factors 

influencing the pandemic's impact in the community of Madrid. While much of the 

existing research has focused on clinical outcomes and medical interventions, the 

present study aims at broadening the understanding by examining demographic, 

socioeconomic, and climatological variables. The research employs Principal 

Component Analysis, Partial Least Squares Regression, and k-means clustering to 

process and interpret high-dimensional data. These techniques are suitable for 

uncovering complex patterns and relationships that may be present in the datasets, 

thereby shedding light on some of the key factors associated with COVID-19 

transmission and severity. Building on the study by Pérez-Segura et al. [66], the thesis 

demonstrates how these techniques can be applied to real-world data to uncover critical 

risk factors. The findings emphasise the need for tailored public health strategies, 

considering the diverse conditions across different regions. Through this exploration, 

it aims to enhance the statistical power of data analysis, ensuring more accurate and 

comprehensive insights into the pandemic's multidimensional impact. 
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CHAPTER 1  

 

Introduction 
 

 

  The 2019 Coronavirus Disease (COVID-19) pandemic has presented unprecedented 

challenges worldwide, necessitating extensive analysis of large datasets to aid public 

health decision-making. As the virus spreads rapidly, understanding transmission 

dynamics, identifying at-risk populations, and predicting patient outcomes became 

crucial. Governments and healthcare providers had to quickly adapt, relying heavily 

on data to provide effective responses. This prompted the need for complex analytical 

algorithms capable of processing high-dimensional datasets. 

 

  The existing literature on COVID-19 has focused mostly on the clinical aspects of 

the pandemic, which is justifiable considering the urgent need to develop therapies, 

vaccines, and public health guidelines globally. Significant strides have been made in 

these areas, resulting in the development and distribution of vaccines and treatment 

protocols that have saved countless lives (Polack et al.  [67], Baden et al. [25]). 

Additionally, numerous studies have focused on the clinical consequences of 

hospitalised COVID-19 patients (Zhou et al. [82], Evans et al. [36]). The impact of the 

pandemic was enormous globally but uneven across countries. According to the World 

Health Organization (WHO), some countries have managed to avoid any coronavirus 

cases since the pandemic started in early 2020. Many of these places are islands in the 

Pacific and Atlantic Oceans, likely benefiting from their isolation and being 

surrounded by the sea. Their success may also be due to strict travel policies. In 

contrast, countries like China, Italy, and Spain were heavily affected (Haug et al. [44]). 

This difference can be attributed to various clinical and non-clinical factors. 

Quarantines, non-pharmaceutical intervention strategies, climate, geographic 

coordinate system, and socioeconomic conditions are among the potential factors that 

influenced the impact of COVID-19 on different countries and communities. Despite 
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this, many aspects remain unclear, prompting ongoing scientific research to identify 

non-clinical risk factors that make societies vulnerable to these types of events. In the 

case of COVID-19 pandemic, this task is particularly difficult due to the short duration 

of the pandemic and the complex relationships among factors from different aspects, 

making the answer to this question multi-dimensional and requiring a collaborative 

approach. Thus, researchers have turned to the development of more individuali sed 

approaches. The factors that can be used to express aspects of the COVID-19 pandemic 

in some countries or even continents are quite diverse, thereof making it almost 

impossible to create a standardised (generalised) model. Under these conditions, it is 

clear that “one-size-fits-all” approaches in the aftermath of a pandemic cannot be 

effectively developed, and the need for tailored strategies is evident due to the 

heterogeneity of the factors across the world (Nicola et al. [62], Hale et al. [42]). 

 

  Multivariate analysis has emerged as a vital tool in this context, offering the 

capability to process and interpret complex datasets and identify associations, 

interactions, and patterns among multiple variables analysed simultaneously. The 

primary goal is to simplify high-dimensional data while retaining essential 

information, allowing for more accurate identification of the dataset's structure 

(Jolliffe and Cadima [50], Koutras [13]). This type of analysis enables researchers to 

uncover patterns and relationships that are not immediately apparent, providing a 

deeper understanding of the subject under investigation. For instance, multivariate 

analysis has helped to identify key risk factors associated with severe COVID-19 

outcomes, enabling targeted interventions for vulnerable populations (Pérez -Segura et 

al. [66]). Their study demonstrates the application of multivariate techniques in 

COVID-19 research. By examining the complex interactions between various 

demographic, socioeconomic, and climatological variables, the study provides insights 

into the factors contributing to COVID-19 spread and severity in the community of 

Madrid. Such studies highlight the critical role of multivariate analysis in advancing 

our understanding of COVID-19 and its transmission within multi-dimensional spaces. 

 

  Among the most popular multivariate methods are Principal Component Analysis 

(PCA), Partial Least Squares Regression (PLSR), and k-means clustering. While these 
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methods may not be the best for every type of data analysis, they are particularly 

suitable for the subject analysed in this thesis. These dimensionality reduction and 

clustering techniques provide insights into large and complex datasets. Their 

application is especially useful in the context of the COVID-19 pandemic, as evidenced 

by the analysis conducted by Pérez-Segura et al. [66]. This thesis builds on the 

techniques of Pérez-Segura et al. [66] to demonstrate how multivariate methods can 

be leveraged in complex analysis. Our goal is not to dispute the established procedures 

or conclusions but to enhance the statistical power of the analysis by applying 

alternative methods. This approach aims to address potential gaps in the dataset and 

uncover additional insights. Specifically, we set out to achieve three key aims: First, 

we will collect and preprocess the data according to their framework to ensure a solid 

analytical foundation. Second, we will implement the multivariate techniques used in 

their study [66]. Third, we aim to explore alternative dimensionality reduction 

approaches, with a particular focus on evaluating PLSR's effectiveness in improving 

model performance and interpretability. Beyond overall model performance, we will 

investigate the contribution of individual variables and their associations with COVID-

19 by analysing patterns within the DRTs components and latent variables. Through 

these aims, we seek to extend the findings of Pérez-Segura et al. [66] and provide 

further insights into the applicability of PLSR for analysing complex datasets.  

 

  Chapter 2 explores dimensionality reduction techniques, focusing on PCA and PLSR. 

These methods simplify complex datasets and enhance interpretability. PCA is 

particularly useful in exploratory data analysis, identifying underlying structures 

within the data (Abdi and Williams [20], Pearson [65], Koutras [13]). PLSR combines 

features of PCA and multiple regression, finding latent variables that capture 

significant variation in the response variable, thus increasing predictive power.  

 

  Chapter 3 explores clustering techniques, primarily k-means clustering. This 

partitioning method classifies datasets into distinct clusters summari sed by their 

centroids. k-means clustering effectively identifies homogeneous subgroups within a 

dataset, useful in fields like image analysis, bioinformatics, social sciences and pattern 

recognition (MacQueen [59]). 
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  Chapter 4 applies the methodologies from Chapters 2 and 3 to analyse the COVID-

19 pandemic, drawing insights from the study conducted by Pérez-Segura et al. [66]. 

This chapter demonstrates how these techniques can be employed to understand non -

clinical risk factors associated with COVID-19 transmission and severity, aiming to 

enhance understanding of the disease's impact on specific communities.  

 

  Chapter 5 offers concluding remarks, summarising the findings and highlighting the 

significance of multivariate analysis techniques in advancing our understanding of 

complex phenomena like the COVID-19 pandemic. It discusses the implications of the 

research conducted and suggests potential avenues for future exploration in the field 

of multivariate analysis and public health.  
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CHAPTER 2 

 

Dimensionality Reduction 

 
2.1 Introduction 

 

  Understanding data analysis approaches can often prove perplexing, especially when 

it comes to exploring complex high-dimensional spaces. Within the latter, a new set of 

challenges emerges, commonly categorised under the term “curse of dimensionality”. 

Unlike lower-dimensional spaces, where information is more densely populated, high -

dimensional ones experience sparsity, making it difficult to draw accurate conclusions. 

With the increase in dimensions, the amount of data required for conducting a reliable 

analysis grows exponentially, often exceeding practical limits. Alongside the 

challenges encountered in conventional techniques, the additional assumptions lurking 

in high-dimensional data further complicate analysis and interpretation, making it 

increasingly challenging to gain a deep understanding of the data. To address these 

complications, Dimensionality Reduction Techniques (DRTs) have been developed to 

project high-dimensional information into a lower-dimensional space while preserving 

a large percentage of the information contained in the original data. By decreasing 

dimensionality, DRTs allow more effective analysis and visuali sation of complex 

datasets. This thesis explores the intricacies of dimensionality reduction, examining 

its importance, methods, and implications in data analysis  (Van der Maaten and Hinton 

[74], Koutras [13]). 

 

  Facilitating the exploration and interpretation of large and complex datasets plays a 

crucial role in modern data analysis. DRTs can enhance the efficiency of machine 

learning algorithms by reducing computational complexity and improving predictive 

accuracy (Van der Maaten and Hinton [74]). In today's vastly information-driven world, 

the large amounts of data pose a significant difficulty for analysts to understand, 

making DRTs essential tools.  While some aspects are inevitably missing, the 
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advantages of applying such techniques outweigh this concern (Ntotsis and 

Karagrigoriou [64]). Some of the key aspects that highlight the transformative power 

of DRT in simplifying data analysis, are: 

 

• Multicollinearity: Multicollinearity is the phenomenon where independent 

variables are highly correlated, posing a significant challenge in regression 

analysis. Dimensionality reduction can solve this problem by transforming the 

correlated variables into a new set of variables that are not correlated with each 

other, making the model more stable and easier to interpret.  

 

• Noise Reduction: By retaining only the most important features, researchers can 

focus on key information, potentially leading to improved model accuracy.  

 

• Computational Efficiency: Fewer dimensions not only simplify the model but 

also enhance computational efficiency. For example, machine learning 

algorithms trained on lower-dimensional data are more efficient in terms of 

execution time and computational resources.  

 

• Visualisation: Visualization is an essential part of data analysis. Reducing the 

data dimensionality to two or three dimensions, can help researchers gain 

insights into the underlying structure and relationships . 

 

• Overfitting: In most cases, datasets contain numerous features; hence, reducing 

their number makes the model less prone to overfitting.  

 

• Non-linear to Linear Data: Through DRTs, non-linear data can be transformed 

into linearly separable data, leading to a more easily analysable model.  

 

 

 

 2.2 Principal Component Analysis 

 

  Large datasets are accompanied by a plethora of problems, increasing the potential for 

inconsistencies in both analysis and interpretation. Principal Component Analysis (PCA) stands 

as a fundamental tool for reducing data complexity. Introduced by Pearson [65] and further 

developed by Hotelling ([47],[48]), PCA transforms correlated variables into a new set of 
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uncorrelated ones (Principal Components - PCs), which are ordered so as to capture the 

maximum variance of the original data, facilitating easier interpretation and analysis (Koutras 

[13]). By compressing the most significant variation into the initial PCs, PCA provides a 

condensed yet accurate representation of the original dataset. This approach enhances the 

interpretability of statistical tests and analysis results without sacrificing data fidelity. PCA 

finds applications in several scientific areas such as finance, biology, image processing and 

social sciences. In finance, it helps identify underlying factors that drive asset price movements; 

in biology, it aids in deciphering complex gene expression patterns; in image compression and 

reconstruction of visual data, it enables faster transmission and storage; in social sciences it 

helps understanding patterns among highly correlated variables (Varmuza and Filzmoser [75], 

Hoffmann and Bradley [46]). 

 

  To better understand how PCA functions, it is essential to explore how the principal 

components are derived. The process begins by identifying the first PC, which captures the 

largest amount of variance in the data. Below, we walk through the mathematical steps involved 

in deriving the first principal component. 

 

2.2.1. Deriving the first PC 

  Let us consider a sample of n individuals, each with p observed characteristics (random 

variables) 𝑋1, 𝑋2, … , 𝑋𝑃. We represent the data in an 𝑛 × 𝑝 matrix 𝑋, where each element 𝑥𝑖𝑗

 contains the value of the 𝑗-th characteristic for the 𝑖-th individual 

 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

] . (2.1) 

 

  Then, we define a new variable 𝑌, which is a linear combination of the original variables 

𝑋1, 𝑋2, … , 𝑋𝑃 

 

𝑌 = 𝛼1𝑋1 + 𝛼2𝑋2 + ⋯ + 𝛼𝑝𝑋𝑝, 
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where 𝛼1, 𝛼2, … , 𝛼𝑝 𝜖 ℛ are coefficients that determine the linear combination. For each 

observation 𝑖, the corresponding value of the new variable 𝑌 is given by 

 

𝑦𝑖 = 𝛼1𝑥𝑖1 + 𝛼2𝑥𝑖2 + ⋯ + 𝛼𝑝𝑥𝑖𝑝,        𝑖 = 1,2, … , 𝑛. 

 

  The goal of PCA is to determine the coefficients 𝛼1, 𝛼2, … , 𝛼𝑝 so that the variance of 𝑌 is 

maximised. This is equivalent to maximising the total sum of squares of 𝑌, which can be 

expressed mathematically as 

 

𝐷𝑖𝑠(𝑌) = ∑(𝑦𝑖 − 𝑦̅)2.  

𝑛

𝑖=1

(2.2) 

 

  Starting from the sum of squared distances (SS) of the observations from the mean of 𝑌, we 

have 

 

𝑆𝑆𝑌 = ∑ ∑ (𝑦𝑟 − 𝑦𝑖)2

𝑛

𝑖=𝑟+1

𝑛

𝑟=1

=
1

2
∑ ∑(𝑦𝑟 − 𝑦𝑖)

2

𝑛

𝑖=1

𝑛

𝑟=1

= 

 

1

2
∑ [∑(𝑦𝑟 − 𝑦̅)2 − 2 ∑(𝑦𝑟 − 𝑦̅)(𝑦𝑖 − 𝑦̅)

𝑛

𝑖=1

+ ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

𝑛

𝑖=1

]

𝑛

𝑟=1

. (2.3) 

 

  The sum of cross terms (∑ (𝑦𝑟 − 𝑦̅)(𝑦𝑖 − 𝑦̅)𝑛
𝑖=1 ) simplifies because of the mean property 

∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1 = 0, thus Eq. (2.3) takes the form 

 

𝑆𝑆𝑌 =
1

2
∑ [∑(𝑦𝑟 − 𝑦̅)2 + ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

𝑛

𝑖=1

]

𝑛

𝑟=1

=  

 

1

2
∑[𝑛(𝑦𝑟 − 𝑦̅)2 + 𝐷𝑖𝑠(𝑌)]

𝑛

𝑟=1

=
1

2
(𝑛𝐷𝑖𝑠(𝑌) + 𝑛𝐷𝑖𝑠(𝑌)) = 𝑛𝐷𝑖𝑠(𝑌), 

 

 



 10 

  thus, we have proved that 

 

𝑆𝑆𝑌 = 𝑛𝐷𝑖𝑠(𝑌). (2.4) 

 

  Therefore, the problem of maximising 𝑆𝑆𝑌 of Eq. (2.4) is equivalent to finding the 

coefficients 𝛼1, 𝛼2, … , 𝛼𝑝 for which the 𝐷𝑖𝑠(𝑌) of Eq. (2.2) is maximised. Hence, it comes 

down to the conclusion that the first PC is the linear combination that maximise the 𝑉𝑎𝑟(𝑌), 

i.e., 

 

max
𝛼1,𝛼2,…,𝛼𝑝

𝑉𝑎𝑟(𝑌) 

 

subject to the constraint 

 

∑ 𝑎𝑗
2 = 1

𝑝

𝑗=1

⟺ ‖𝑎‖ = 1.  

 

  This maximisation is achieved by considering the eigenvector corresponding to the largest 

eigenvalue of the covariance matrix 𝑆, where 𝑆 =
1

𝑛−1
𝑋′𝑋. The eigenvector provides the 

coefficients 𝛼1, 𝛼2, … , 𝛼𝑝 that define the first PC.  

 

  While the eigenvector mathematically defines the first PC, understanding its geometric 

interpretation provides a deeper insight into how these components relate to the data. By 

considering the geometric representation, we can better grasp how the data is transformed in 

the reduced dimensional space. The geometric interpretation can be used to express 𝐷𝑖𝑠(𝑌) 

through the matrix 𝑋 = (𝑥𝑖𝑗). If we denote by 𝑥̅𝑗  the sample means for the values, we collected 

for each characteristic 𝑋 

 

𝑥̅𝑗 =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛

𝑖=1

, 𝑗 = 1,2, … , 𝑝 , (2.5) 
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then, 𝑦̅ can be expressed as  

 

𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

=  
1

𝑛
∑(𝛼1𝑥𝑖1 + 𝛼2𝑥𝑖2 + ⋯ + 𝛼𝑝𝑥𝑖𝑝

𝑛

𝑖=1

). 

 

  If we denote the scores of the PC for each individual by 𝑓 = 𝑦𝑖 − 𝑦̅, we get 

 

𝑓 = 𝛼1(𝑥𝑖1−𝑥̅1) + 𝛼2(𝑥𝑖2−𝑥̅2) + ⋯ + 𝛼𝑝(𝑥𝑖𝑝−𝑥̅𝑝),  

 

which can be simplified as 

  

𝑓 = 𝒛𝒊
′𝒂, 𝑖 = 1,2, … , 𝑛 (2.6)  

 

where, 𝜶 is the vector of coefficients ([𝛼1, 𝛼2, … , 𝛼𝑝]) and 𝒛𝒊 is the vector of centred data for 

the i-th observation ([𝑥𝑖1−𝑥̅1, 𝑥𝑖2−𝑥̅2, … , 𝑥𝑖𝑝−𝑥̅𝑝]).  

 

  The total dispersion of the set 𝑁 along the vector 𝒂 will be denoted as 𝐷𝑖𝑠𝛼(𝑁), that is 

 

𝐷𝑖𝑠𝛼(𝑁) = 𝐷𝑖𝑠(𝑌) =  ∑ 𝑓𝑖
2

𝑛

𝑖=1

= 𝒇′𝒇 = (𝑍𝒂)′(𝑍𝒂) = 𝒂′(𝑍′𝑍)𝒂. (2.7) 

 

  Maximising the dispersion with respect to 𝜶, subject to the constraint 𝜶′𝜶 = 1, yields the first 

PC −this is a well-known result from linear algebra. More specifically, if the matrix 𝑍′𝑍 

contains non-negative eigenvalues, denoted 𝜆1, 𝜆2, … , 𝜆𝑝, and assuming that 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥

𝜆𝑝 ≥ 0, with corresponding unit eigenvectors 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒑, we can establish the following 

  

1. The vector 𝜶 that optimises the expression 𝒂′(𝑍′𝑍)𝒂 is the eigenvector 𝒖𝟏 associated 

with the highest eigenvalue 𝜆1. 

2. The highest value of the quadratic form is equal to 𝜆1, thus 

 

max
‖𝑎‖=1

𝐷𝑖𝑠𝛼(𝑁) = max
‖𝑎‖=1

𝐷𝑖𝑠𝑢1
(𝑁) = max

‖𝑎‖=1
 𝒂′(𝑍′𝑍)𝒂 = 𝜆1. 
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 The variable Y, which maximises this expression, is referred to as the first principal component. 

This provides a concise explanation of how the first PC is derived by finding the direction 

(eigenvector) that maximises the variance (associated with the largest eigenvalue) in the dataset. 

 

2.2.2 Deriving the rest PCs 

  Building on the framework provided for the first PC, the concept of principal components can 

be extended to identify additional components that capture the remaining variance in the data, 

while being orthogonal to the previous components. After determining the first, which 

corresponds to the direction along which the variance 𝜆1 is maximised, the procedure continues 

to identify additional PCs. These components are orthogonal to the previous ones and account 

for the remaining variance in the dataset. To formalise this process, the concepts of 

orthogonality and maximisation come into play, ensuring that each subsequent PC is computed 

in a way that preserves these important properties. 

 

  Each subsequent PC corresponds to an eigenvector of the matrix 𝑍′𝑍. The 𝑗-th PC is associated 

with the unit eigenvector 𝑢𝑗  that maximises the 𝒂′(𝑍′𝑍)𝒂, under the condition that 𝒂 is 

orthogonal to all previously found eigenvectors 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒋−𝟏. The 𝑗-th PC captures the 

variance 𝜆𝑗, corresponding to the 𝑗-th largest eigenvalue of 𝑍′𝑍 

 

𝐷𝑖𝑠𝑢𝑗
(𝑁) = 𝒖𝒋

′(𝑍′𝑍)𝒖𝒋 = 𝜆𝑗 , 𝑗 = 1,2, … , 𝑝. (2.8)  

 

  The total dispersion 𝐷𝑖𝑠(𝑁) of the dataset can be decomposed as the sum of the dispersions 

along all PCs 

 

𝐷𝑖𝑠(𝑁) = ∑ 𝜆𝑗

𝑝

𝑗=1

= ∑ 𝒖𝒋
′(𝑍′𝑍)𝒖𝒋

𝑝

𝑗=1

. (2.9) 

 

This means that each PC contributes 𝜆𝑗 to the total variance of the data. 

 

  The proportion of the total variance explained by the first 𝑗 PCs is given by 
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𝜆1 + 𝜆2 + ⋯ + 𝜆𝑗

𝐷𝑖𝑠(𝑁)
=

𝜆1 + 𝜆2 + ⋯ + 𝜆𝑗

𝜆1 + 𝜆2 + ⋯ + 𝜆𝑝
, 1 ≤ 𝑗 ≤ 𝑝. (2.10) 

 

This indicates the cumulative proportion of variance captured by the first 𝑗 components. 

 

  In practice, when 𝑝 is large, often only the first few PCs (those associated with the largest 

eigenvalues) are retained, as they capture the majority of the variance. The matrix 𝑍′𝑍 can be 

approximated by summing only the terms corresponding to these leading eigenvalues 

 

𝑍′𝑍 ≈ 𝜆1𝒖𝟏𝒖𝟏
′ + 𝜆2𝒖𝟐𝒖𝟐

′ + ⋯ + 𝜆𝑗𝒖𝒋𝒖𝒋
′, 1 ≤ 𝑗 ≤ 𝑝. (2.11)  

 

If the eigenvalues 𝜆𝑗+1  ≥. . . ≥ 𝜆𝑝 are relatively small, then the approximation in Eq. (2.11) 

provides a good representation of the original data in a lower-dimensional space.  

 

  Note that many functions in the programming language R, such as the function principal() 

from package “psych” that we utilise in Chapter 4, often represent the eigenvectors in scaled 

forms related to the principal components 

 

𝒗𝒋 =  √𝜆𝑗𝒖𝒋, 1 ≤ 𝑗 ≤ 𝑝.   

 

  The eigendecomposition, i.e., the process of finding eigenvectors and eigenvalues of the input 

matrix, is typically implemented and applied after scaling the data. This decomposition is 

generally recommended in high-dimensional cases to formulate the PCs due to its lower 

computational demands. An alternative to eigendecomposition is the Singular Value 

Decomposition (SVD), which decomposes the original data matrix into three matrices: one 

containing the left singular vectors, a diagonal matrix holding the singular values, and one 

containing the right singular vectors. While SVD offers numerical stability and versatility in 

handling non-square matrices, it requires the calculation of all singular values and vectors, 

potentially increasing computational complexity. Additionally, it may not offer as 

straightforward an interpretation of results as eigendecomposition. 
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  Beyond SVD, other methods such as iterative approaches including Von Mises Iteration, also 

known as power iteration (Von Mises and Pollaczek-Geiringer [77], Roughgarden and Valiant 

[17]), Lanczos iteration (Lanczos [57]), and the Jacobi eigenvalue algorithm (Golub and Van 

der Vorst [40]), could also be used for formulating scores and loadings. These iterative methods, 

while potentially computationally efficient for large datasets, may require careful parameter 

tuning and do not guarantee convergence for all datasets. 

 

  In this study, we opt for eigendecomposition mainly due to its efficiency in handling high-

dimensional data in terms of both time and memory consumption. It facilitates the identification 

of key patterns and structures within datasets by revealing the dominant directions of variation 

and serves as a foundational tool in several DRTs aiding in the exploration and interpretation 

of complex data relationships. All these factors make the method a reasonable choice for large-

scale data analysis tasks, ensuring both accuracy and efficiency.  

 

  In general, the eigendecomposition can be performed either on the covariance or the 

correlation matrix. When the eigendecomposition is performed on the covariance matrix, it 

helps to identify the directions in which the data varies the most. On the other hand, when the 

eigendecomposition is performed on the correlation matrix, it helps in finding the directions in 

which the data vary the most, but this time it signifies how each feature is related to the others 

while considering their different scales or units of measurement. The correlation matrix is often 

preferred because it allows for easier comparison of values and facilitates clearer 

communication of information regarding any linear patterns present in the dataset. 

 

  One of the most crucial tasks in PCA is determining the number of components to retain. This 

decision is critical as it directly influences the interpretability and performance of subsequent 

analysis (Jolliffe [49]). Various methods exist to ascertain an optimal number of components, 

each with its own rationale, advantages, and drawbacks. Among the most effective and 

commonly used methods are (Koutras [13]) 

 

1. Kaiser's Criterion: Kaiser's criterion suggests retaining components with 

eigenvalues greater than one, as these components explain more variability than 

a single original variable and are therefore considered worthy of retention. 
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While straightforward and easy to implement, Kaiser's criterion may not always 

be applicable, especially in datasets with complex structures or non-linear 

associations (Kaiser [52]). 

 

2. Catell’s Scree Test (Scree Plot): One popular approach involves plotting the 

eigenvalues against the number of components. The “elbow” point on the 

resulting plot (see e.g. Fig. 2.1), where the eigenvalues begin to level off, is 

typically considered as an indicator of the optimal number of components to 

retain. This approach allows for a visual assessment of the proportion of 

variance explained by each component. While simple and intuitive, the 

subjective determination of the “elbow” point can sometimes be challenging, 

leading to potential ambiguity in the selection process (Cat tell [31]).  

 

Fig 2.1: A sample scree plot produced in R. The Kaiser criterion is shown in red. 

Source: Wikipedia [18] 

 

 

3. Cumulative Variance: By selecting the number of components that enclose a 

high percentage of variance (usually at least 70% or 80%), researchers can 

effectively capture the structure of the original data (see Eq. (2.11)). This 

approach provides a clear criterion for component selection, ensuring that a 

significant amount of information is retained. However, it may result in 
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retaining more components than necessary, which can (potentially) lead to 

overfitting and increased computational complexity (Wehrens [78]).  

 

  Selecting the optimal number of components involves careful consideration of 

various factors, including the proportion of variance explained, model complexity, and 

predictive performance. While no single approach is considered superior, a 

combination of them, tailored to the specific characteristics of the dataset and the 

research objectives, can help ensure a robust and meaningful reduction of the 

dimensions. In most cases, it is advisable to utilise the initial 2 or 3 PCs, as they can 

be effectively visualised in 2- or 3-dimensional spaces. 

 

  As with many statistical methods, PCA works under certain assumptions. If  these 

assumptions are violated, the validity and interpretability of the results may be 

compromised. The core assumptions of PCA are: 

 

1. Linearity: The first assumption is that the relationships between 

independent variables are linear.  

 

2. Large Sample Size: PCA performs better with a large sample size, which 

ensures that the covariance matrix is accurately estimated. Small sample 

sizes can potentially lead to unstable results.  

 

3. Independence of Principal Components: The derived PCs are orthogonal, 

meaning they are statistically independent of each other, simplifies 

interpretation. 

 

4. Normality (optional): PCA is generally insensitive to deviations from 

normality. However, when the data is normally distributed, the PCs more 

accurately reflect the underlying structure of the data, facilitating more 

meaningful interpretation. PCA can still be applied to non-normally 

distributed data, though the results may be less reliable.  
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  Assessing and addressing these assumptions is essential for ensuring the validity, 

reliability, and interpretability of PCA results in practical data analysis scenarios 

(Laerd Statistics [14]). While PCA offers numerous benefits, it is crucial to recognise 

its limitations and potential drawbacks. In cases of large datasets or intricate 

multicollinearity structures, PCA may lead to model overestimation or 

underestimation, affecting the accuracy of analysis. Researchers must carefully 

evaluate dataset characteristics and explore alternative techniques, such as non-linear 

DRTs, to address these challenges effectively. 

 

  Overall, PCA represents a vital tool for data analysts, providing an efficient approach 

to dimensionality reduction. By simplifying data representation without compromising 

accuracy, PCA enables researchers to uncover hidden insights and make well-justified 

decisions across diverse applications.  

 

 

 2.3 Univariate Partial Least Squares Regression 

 

  Exploring beyond PCA, another DRT frequently used is the Partial Least Squares 

Regression (PLSR). While PCA uncovers patterns and reduces dimensionality by 

maximising variance in the predictor matrix 𝑋, PLSR focuses on finding components 

that explain the variation in the predictor matrix 𝑋 while also maximising the 

relationship with the response variable 𝑌. In other words, it aims to identify patterns 

in 𝑋 that are most useful for predicting 𝑌. Although both techniques share the same 

goal of simplifying complex data, each brings a unique perspective to the table.  

 

  As discussed in Section 2.2, PCA aims to capture the maximum variance in the data 

by creating PCs. These components are ordered by the amount of variance they explain, 

allowing for data visualisation and dimensionality reduction. However, PCA may not 

always be optimal for modelling tasks, particularly when the goal is to maximise the 

predictive power of the model. This is where PLSR can be useful, as it uses both 

predictor inputs and response outputs (Rosipal and Kramer [69]). To complement this, 

PLSR creates new predictors, often referred to as Latent Variables (LVs), which are 

linear combinations of the original predictor variables. These LVs are constructed so 
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that they are highly associated with the response variable, thus capturing predictive 

relationships between the two groups of variables. By doing so, it identifies a 

parsimonious representation of the predictor variables that most accurately 

corresponds to the response variable (Wold et al. [80], Wehrens [78]). 

 

  To better understand the decomposition of data in PLSR, it is useful to examine the approach 

outlined by Ng [15]. Let 𝑋 = [𝒙𝟏 … 𝒙𝒎] be an 𝑛 × 𝑚 mean-centred matrix and let 𝑌 =

[𝒚𝟏 … 𝒚𝒑] be a 𝑛 × 𝑝 mean-centred matrix. In the univariate case, where 𝑌 = 𝑦1 is an 𝑛 × 1 

vector, the aim is to decompose the matrices 𝑋 and 𝑌 as follows 

 

𝑋 = 𝑇𝑃′ 

and 

𝑌 = 𝑈𝑄′. (2.12) 

 

Here, 𝑇 (𝑛 × 𝑙) and 𝑈 (𝑛 × 𝑙) are matrices of latent scores (𝑙 denotes the number of 

extracted LVs), representing the new variables that are linear combinations of the 

original predictors and response variables. The matrices 𝑃 and 𝑄 are loadings that 

define these linear combinations. Note that the scores, even though they are denoted 

as in PCA, their formulas differ. In the case of PLSR, scores represent the new 

coordinates of the samples in the LV space. PLSR is (commonly) employed with the 

use of NIPALS (Non-linear Iterative Partial Least Squares) (Wold [79]) or SIMPLS 

(SIMplified of the Partial Least Squares) (De Jong [34]) algorithm to iteratively derive 

the LVs. These algorithms iteratively calculate the weights, scores, and loadings. The 

steps for the NIPALS algorithm are as follows. 

 

 

• Step I (Initialisation): 

- Choose an initial vector 𝑡 = 𝑋𝑗 for some column of 𝑗 of 𝑋. 

- Set 𝑢 = 𝑌𝑗 for some column 𝑗 of 𝑌. 
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• Step II (Iterative Updates): 

- Repeat the following procedure until convergence1, i.e., until 𝑡 stop 

changing 

 

𝑝 ∶=  
𝑋′𝑢

‖𝑋′𝑢‖
, 

 

𝑡 ∶=  𝑋𝑝, 

 

𝑞 ∶=  
𝑌′𝑡

‖𝑌′𝑡‖
, 

 

𝑢 ∶=  𝑌𝑞. 

 

- These steps ensure that the LVs 𝑡 and 𝑢 capture the most covariance between 𝑋 and 

𝑌. 

 

• Step III (Deflation)2: 

After determining the first pair of LVs, deflate the matrices 𝑋 and 𝑌 to remove 

the information captured by the current LVs 

 

 

𝑋 ∶=  𝑋 − 𝑡𝑝′ 

and  

𝑌 ∶=  𝑌 − 𝑢𝑞′. 

 

 

 

 
1 In the case when the 𝑌 matrix has only one variable, we can set 𝑞 to 1 and the last two steps of the loop can be 

omitted. 

 
2 The term "deflation" in the context of PLSR refers to the process of removing the information that has been 

captured by the current LV from the original matrices 𝑋 and 𝑌. This ensures that subsequent LVs explain 

different aspects of the data, rather than repeating the information already captured. 
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• Step IV (Repetition): 

Repeat Steps II and III to extract further LVs until the desired number of them 

is obtained. 

 

  Through this iterative process, PLSR captures the essential patterns in the data by 

projecting it onto a lower-dimensional space. This is done while simultaneously 

maximising the covariance between the predictors and the response variable.  Note that 

the iterative process in PLSR can also be viewed through the lens of eigenvalue 

problems. The vectors 𝑝 and 𝑞 derived during the NIPALS iterations are not directly 

eigenvectors, but rather weight vectors that aim to maximise the covariance 

between 𝑋 and 𝑌 through iterative projections. 

 

  Once the LVs 𝑇 and 𝑈 are determined, a regression model can be built  up to relate 𝑋 

and 𝑌 through the latent variables, namely 

 

𝑌 = 𝑋𝑃𝛽𝑄′, (2.13) 

 

  where 𝛽 is the matrix of regression coefficients that links the latent scores 𝑇 and 𝑈.  

 

  When it comes to the assumptions that must be met, PLSR shares some with PCA due 

to their conceptual similarities in dimensionality reduction. PLSR must meet the same 

assumptions as PCA (i.e., linearity, absence of multicollinearity, adequate sample size, 

interval or ratio data, and normality). Additionally, PLSR has unique assumptions  

(Wold et al. [80]) such as 

 

  1. Homoscedasticity: PLSR assumes homoscedasticity, meaning that the variance of 

the residuals is constant across all levels of the independent variables. 

Heteroscedasticity can lead to inefficient estimates and affect the reliability of the 

model. 
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  2. Independence: PLSR assumes that the observations are independent of each other. 

Violation of this assumption, such as in the presence of autocorrelation in time -series 

data, can lead to biased estimates and incorrect inference.  

 

  These assumptions are critical for ensuring the validity and reliability of the PLSR 

model. While some deviations can be tolerated, significant violations may require 

alternative methods or pre-processing steps to address these issues.  

 

 

2.4 Multivariate Partial Least Squares Regression 

 

  One advantageous aspect of PLSR is its flexibility to handle both univariate and 

multivariate responses. In the case of a univariate response, as discussed, PLSR 

operates similarly to traditional regression models, where a single response variable is 

predicted based on a set of predictor variables. Thus, the univariate approach is useful 

for predicting a single outcome of interest.  

 

  However, PLSR can also be extended to a multivariate approach when dealing with 

multiple response variables. This capability allows to simultaneously model the 

relationships between predictor variables and multiple response variables, capturing 

complex dependencies among them. This multivariate approach is especially useful 

when analysing datasets with correlated responses or when the aim is to determine how 

predictors influence multiple outcomes simultaneously. A multivariate approach is 

beneficial because it accounts for the correlations between response variables, 

providing more robust and comprehensive modelling results. Additionally, by jointly 

modelling multiple responses, PLSR can reveal shared patterns and underlying 

relationships that may not be apparent when analysing each response variable 

separately. Nevertheless, implementing PLSR in multivariate scenarios, can 

potentially introduce challenges, particularly in terms of computation and 

interpretation. The calculation becomes more complex as the model must estimate the 

relationships between predictor variables and multiple response variables 

simultaneously. Additionally, interpreting the coefficients and contributions of 
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predictor variables to each response variable becomes more nuanced in the 

multivariate setting.  

 

 

Table 2.1 summarises the similarities and dissimilarities between PCA and PLSR 

(Wold et al. [80], Van der Maaten and Hinton [74], Wehrens [78], Rosipal and Kramer 

[69]). 

 

 

TABLE 2.1 

Similarities and dissimilarities between PCA and PLSR. 

 

PCA VS PLSR  
 

 

SIMILARITIES 
 

 

DISSIMILARITIES 
 

Dimensionality Reduction: Both PCA 

and PLSR tries to reduce the dimensions of 

original dataset by creating new variables 

(called PCs and LVs respectively). 

Supervision: The primary distinction 

between PCA and PLSR lies in their 

supervision status. PCA is an unsupervised 

technique, meaning it operates solely based 

on the structure of the predictor variables. In 

contrast, PLSR is a supervised technique that 

explicitly incorporates information from both 

predictor and response variables to construct 

new variables 

Linear Transformations: Both methods 

apply linear transformations to derive the 

new variables. PCA derives principal 

components by finding linear combinations 

of the original variables; PLSR constructs 

components that are linear combinations of 

both the predictor variables and the response 

variable. 

Objective: PCA aims to maximise the 

variance of the data, capturing as much 

information as possible in the new variables. 

On the other hand, PLSR aims to maximise 

the covariance between the predictor 

variables and the response variable, focusing 

on predictive modelling rather than data 

exploration. 

Orthogonality: The new variables created 

by PCA and PLSR are orthogonal to each 

other. 

Interpretation: While PCA provides insight 

into the underlying structure of the data by 

identifying patterns and relationships among 

variables, PLSR is more focused on 

prediction, making it a preferred choice when 

the goal is to build a predictive model. 
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2.5 Other Dimensionality Reduction Techniques  

 

  In addition to the techniques discussed in detail above, there are a variety of DRTs, 

each of which has unique advantages and limitations. Below, we briefly document 

these alternative techniques to inform the reader of their existence and provide a 

broader context; however, they will not be implemented in the application of this 

thesis. 

 

• Sparse PCA is a variant of PCA that encourages sparsity in the principal 

components, resulting in a more interpretable representation of the data. It 

selects a subset of the original features while retaining most of the variance. 

Sparse PCA is useful for feature selection and dimensionality reduction in high-

dimensional datasets. However, finding the optimal sparsity level can be 

challenging, and the resulting representation may not always be intuitive 

(Bertsimas et al. [28]).  

 

• Kernel PCA is a nonlinear extension of PCA that maps data into a higher -

dimensional space using a kernel function before performing PCA. This allows 

capturing nonlinear relationships in the data. Kernel PCA is flexible and can 

handle complex data structures, however, it requires tuning of kernel parameters 

and may be computationally demanding for large datasets (Schölkopf et. al. 

[70]).  

 

• Independent Component Analysis (ICA) is a technique used to separate a 

multivariate signal into independent components. It assumes that the observed 

data are a linear combination of independent sources and aims to recover these 

sources. ICA is particularly useful for blind source separation and feature 

extraction. However, it relies on strong statistical assumptions and may struggle 

with mixed signals or non-Gaussian distributions (Comon [33]).  

 

• Autoencoder is a neural network architecture used for unsupervised learning 

of efficient data representations. It consists of an encoder and a decoder, which 
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learn to compress and reconstruct the input data, respectively. Autoencoders are 

versatile and can capture complex patterns in the data. However, they may 

suffer from overfitting and require careful architecture design and training 

(Kramer [56]).  

 

• Uniform Manifold Approximation and Projection  (UMAP) is a DRT that 

emphasises in preserving both local and global structures in the data. It 

constructs a low-dimensional representation by optimizing a low-dimensional 

embedding to match the high-dimensional data nearest neighbours. UMAP is 

known for its potential to handle large datasets efficiently. However, like t -

SNE, UMAP may require parameter tuning and can be sensitive to local density 

variations.  

 

• t-Distributed Stochastic Neighbor Embedding  (t-SNE) is widely used for 

visualizing high-dimensional data by mapping them to a lower-dimensional 

space while preserving the local structure. It is particularly effective for 

exploring clusters and patterns in the data. However, t -SNE can be 

computationally demanding and sensitive to hyperparameters, requiring careful 

tuning (Van der Maaten and Hinton [74]).  

 

• Locally Linear Embedding (LLE) aims to preserve local relationships within 

the data by reconstructing each data point as a linear combination of its 

neighbours. This technique is useful for unfolding nonlinear manifolds and 

capturing the underlying structure of the data. LLE is robust to noise and 

outliers, but it may struggle with very high-dimensional data and requires 

careful selection of parameters.  

 

• Isomap is a method for nonlinear dimensionality reduction that focuses on 

preserving the global geometry of the data. By constructing a graph representing 

the data's intrinsic geometric structure, Isomap embeds the data into a lower-

dimensional space. One advantage of Isomap is its potential to capture nonlinear 
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relationships in the data. However, it can be sensitive to noise and outliers,  

which may affect the quality of the embedding (Tenenbaum et al. [73]).  

 

• Non-negative Matrix Factorization  (NMF) decomposes a non-negative data 

matrix into two lower-dimensional matrices, representing parts-based 

representations of the original data. It is commonly used for feature extraction 

and modelling tasks. NMF is interpretable and suitable for sparse and non-

negative data. However, it requires careful initialization and may be trapped in 

local optima.  

 

• Random Projection is a simple yet effective technique for dimensionality 

reduction. It projects high-dimensional data onto a lower-dimensional subspace 

using a random matrix. Despite its simplicity, random projection can preserve 

pairwise distances reasonably well and is computationally efficient. However, 

it may not capture complex nonlinear relationships in the data as effectively as 

other methods. 

 

  DRTs can be classified using several criteria, each offering unique insights into data 

analysis. Understanding the diverse classifications and methodologies of them, enables 

researchers to implement these techniques effectively in various tasks. Whether 

seeking to simplify data structures, uncover hidden patterns, or enhance predictive 

models, DRTs offer a versatile way for exploring the complexities of high-dimensional 

data.  

 

  One fundamental classification of DRTs revolves around feature extraction and 

feature selection methods. Feature selection techniques, shift through variables to 

identify and remove irrelevant or redundant ones, resulting in a streamlined dataset. 

On the other hand, feature extraction techniques like PCA and PLSR create new 

variables that condense and summarise information from the original dataset.  

 

  Additionally, DRTs can be categorised based on the presence of class labels in the 

data, distinguishing between supervised and unsupervised approaches. Supervised 
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techniques like PLS use class labels to extract discriminant information or LVs from 

the data. In contrast, unsupervised techniques such as PCA and Isomap operate without 

class labels, identifying patterns and relationships based solely on the data's intrinsic 

structure.  

 

  Furthermore, DRTs can be categorised based on the data structure, and more precisely 

by taking into account whether it occurs linear or non-linear relationship between the 

variables of the examined dataset.  Linear techniques, like PCA excel in capturing 

linear relationships between variables. On the other hand, non-linear methods such as 

Isomap and Kernel PCA are optimal at uncovering complex, non-linear patterns within 

the data. 

 

  Considering the distinctions outlined above, PCA emerges as an unsupervised linear 

feature extraction technique, highlighting complex patterns hidden within data 

structures without the need for external guidance. Conversely, PLSR takes on the role 

of a supervised linear feature extraction technique, leveraging class labels to guide the 

extraction of information and enhance predictive modelling capabilities.  

 

  Closing this Section, we mention that PCA is essentially a data-driven tool aimed at 

uncovering patterns in terms of variance explained, while PLSR is more geared 

towards predictive modeling and capturing the relationships between variables. The 

choice between the two techniques depends on the specific objectives and needs of the 

analysis. PLSR is often described as a supervised analogy of PCA, but their connection 

extends beyond the simple dichotomy between supervised and unsupervised methods. 

Despite their similarities, the theoretical frameworks and mathematical algorithms 

used are quite different. PLSR typically utilises algorithms such as SIMPLS (De Jong 

[34]) or NIPALS (Wold [79]) to iteratively generate LVs. These algorithms are 

designed to incorporate both predictor and response variables and maximise the 

covariance between them, which helps in capturing the predictive relationships 

between these variables. In contrast, PCA does not rely on such specific algorithms 

designed for regression tasks. It focuses only on the structure of the predictor variables 

and aims to maximise the variance of the data. 



 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

CHAPTER 3 

 

Cluster Analysis 
 

3.1 Introduction  

 

  Cluster analysis, or shortly clustering, is a crucial technique in data analysis for 

finding groups of related data points. It is used to explore hidden patterns or structures 

within large collections of data. This allows researchers to understand corresponding 

groups of similar data points, providing insights into the underlying structure of the 

data. Clustering involves partitioning a dataset into subsets (also called clusters) such 

that items belonging to the same cluster are more similar to each other than to those in 

different clusters. As the number of features or dimensions in a dataset increases, 

clustering faces unique challenges. High-dimensional data tends to be sparse, making 

it harder to identify meaningful clusters. Unlike lower-dimensional spaces, where 

clusters are more apparent, high-dimensional spaces require a significantly larger 

amount of data to maintain statistical reliability. This sparsity complicates both the 

analysis and interpretation of data, making it challenging to gain accurate  insights 

(Hastie et al. [43]). To overcome these issues, many clustering algorithms have been 

engineered to work efficiently with high-dimensional data. These algorithms are 

tailored to discover complex patterns that are not easily observed, enhancing the 

processing and understanding of the data. Clustering reduces complexity in the data 

and increases the efficiency of machine learning models and other analytic methods 

(Aggarwal [21]). 

 

  Clustering is a well-known concept that has been practiced for ages. From an early 

age, we automatically group objects and entities in our minds, such as distinguishing 

dogs from cats, basketball from football, or even identifying someone's biological 

gender. It is through the process of grouping and sub-grouping that learning happens, 

as we organise patterns observed in everyday activities (Jain et al. [51]). The majority 

of the approaches have been developed since the mid-1960s. However, the 
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computational intensity required for these techniques initially hindered their practical 

use. Over the last couple of decades, the rise of microcomputers has led to the creation 

of many statistical software packages for various machines and platforms, specifically 

for clustering data. By 2020, even complex datasets with many variables and large 

sample sizes can yield potentially useful results with relatively little effort (Hastie  et 

al. [43]). Clustering has had a significant impact on many scientific fields. For 

example, the classification of chemical elements in Mendeleev's periodic table in the 

1860s was a landmark application, crucial for understanding atomic structure. In 

astronomy, the classification of stars into dwarfs and giants using the Hertzsprung -

Russell diagram of temperature versus luminosity significantly influen ced the 

development of the theory of the universe's creation (Kaufman and Rousseeuw [54], 

Everitt et al. [37]). 

 

  Clustering methods are a major branch of modern data analysis and have applications 

across all scientific disciplines for exploring and interpreting large, complex datasets. 

Grouping data can reveal hidden patterns and relationships that researchers might not 

otherwise discover. This is why these techniques are highly effective in many fields 

such as healthcare, social and economic sciences, and ecology, as they inform 

researchers about the dynamics within their objects of study, enabling wiser decisions. 

Furthermore, they can enhance the performance of machine learning models by 

simplifying the data and reducing noise (Berkhin [27]). 

 

  There are various clustering techniques, each offering unique advantages and 

limitations. Understanding these aspects may help in choosing the most appropriate 

method for specific data analysis tasks. In Section 3.2, we briefly document several 

techniques to provide a broader context, but these techniques will not be implemented 

here. This thesis focuses on the k-means clustering algorithm (also known as the 

MacQueen algorithm) due to its relevance to the application of this research (see 

Chapter 4). 

 

  K-means partitions data into 𝑘 clusters by assigning each data point to the cluster 

whose mean is closest. It is frequently selected for its simplicity and computational 
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efficiency, particularly in handling large datasets (Koutras [13], Hastie et al. [43]). 

Furthermore, the technique is computationally fast and typically converges . 

(terminates) after a few iterations, often reaching the final solution early in the process, 

with only minimal adjustments needed afterward. This efficiency makes it particularly 

suitable for big data applications, as it requires minimal memory and computational 

power. The algorithm’s ability to quickly form clusters, often resulting in groups of 

approximately equal size, enhances its utility in large-scale analyses (Koutras [13]). 

Moreover, k-means is versatile and applicable across diverse domains. Its methodology 

is straightforward, as outlined by Bishop [29]. Below, we outline the steps for its 

implementation. 

  

Algorithmic Procedure I 

 

Step I (Initialisation): The first step is initialisation, where 𝑘 initial centroids μk are 

chosen. These centroids can be selected randomly or by using techniques like k-

means++ (Arthur and Vassilvitskii [24]) to improve convergence. In the case of random 

initialisation, each centroid μk is chosen from the data points 𝑥𝑖 

 

μk = 𝑥𝑖 , for 𝑘 = 1,2, … , 𝐾. 

 

Step II (Assignment): In the assignment step, each data point 𝑥𝑖 is assigned to the 

nearest centroid. The assignment is based on the Euclidean distance between the data 

point and each centroid. The data point 𝑥𝑖 is assigned to the cluster whose centroid 

μk is closest 

 

ci = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑖 − μk‖2 

 

Here, cI is the index of the centroid closest to xI and ||𝑥𝑖 − μk|| denotes the Euclidian 

distance.  

 

Step III (Update): The update step involves recalculating the centroids. Each centroid 

μk is updated by taking the mean of all data points assigned to that cluster  
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μk =
1

|𝐶𝑘|
∑ 𝑥𝑖

𝑥𝑖∈𝐶𝑖

 

  

 where 𝐶𝑘 is the set of points assigned to the k-th cluster, and |𝐶𝑘| is the number of 

points in cluster k. 

 

Step IV (Iteration): The assignment and update steps are repeated iteratively. 

Specifically, the assignment and update steps are alternated until the centroids no 

longer change significantly or a predefined number of iterations is reached  (See Fig 

3.1). Convergence is typically assessed by checking if the changes in centroids 

positions are below a certain cutoff 𝜀, i.e., 

 

||μk
𝑡+1  − μk

𝑡 || < 𝜀, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 

 

  where  μk
𝑡  is the centroid of cluster k at iteration t, and 𝜀 is a positive cutoff point. 
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Fig 3.1: Visual representation of the Algorithmic Procedure I for the  

implementation of k-means.  

Retrieved from Koutras [13] 

 

 

 

  While k-means clustering offers numerous advantages, it also presents certain 

limitations. One of the major challenges is determining the optimal number of clusters. 

Deciding the best number of clusters is not straightforward, and common approaches 

such as the Scree Test, Silhouette Analysis, or Gap Statistics are often employed for 

this purpose (Kaufman and Rousseeuw [54]).  

 

  One commonly used technique is the Scree Test (also known as elbow method), which 

involves plotting the within-cluster sum of squares against the number of clusters and 

identifying the point where the rate of decrease levels off (known as the “elbow” in 

the curve). This point indicates the optimal 𝑘 for testing. A visual representation of 

the technique can be seen in Fig. 3.2, which illustrates the results of the elbow method, 

where the total within-cluster sum of squares is plotted against the number of clusters. 
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The “elbow” of the curve, where the rate of decrease significantly slows, can be seen 

at 𝑘 = 4, indicating that three clusters are optimal in this example. 

 

Fig 3.2: Scree Test portraying the optimal number of clusters to be kept (4).  

Retrieved from Kassambara [12] 

 

 

 

  On the other hand, Silhouette Analysis measures how well each data point fits within 

its assigned cluster compared to other clusters. The silhouette score for each point is 

calculated by taking the difference between the average distance to points in its own 

cluster and the average distance to points in the nearest cluster, normali sed by the 

maximum of the two. The score ranges from -1 to 1, where 

• a score close to 1 indicates that the point is well-clustered and far from the 

neighbouring clusters, 

• a score near 0 suggests that the point is on or near the boundary between 

clusters, and 

• a negative score indicates that the point might be assigned to the wrong cluster.  

Higher average silhouette scores across all data points suggest better-defined and more 

distinct clusters. This can be used as a metric for evaluating the quality of clustering 

results and selecting the optimal number of clusters.  Fig. 3.3 illustrates an example of 
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a Silhouette Plot, showing how the silhouette score changes with different numbers of 

clusters. The optimal number of clusters is often where the silhouette score is highest, 

as seen in this example where 𝑘 =2 clusters yield the highest average silhouette score.  

 

Fig 3.3: Sillouete Plot portraying the optimal number of clusters to be kept (2).  

Retrieved from Kassambara [12] 

 

 

 

  Another approach, Gap Statistics compare the total within-cluster variation -

essentially the sum of squared distances between each data point and its cluster 

centroid- for different numbers of clusters with the expected values under a null 

reference distribution. The expected values refer to the total within-cluster variation 

that would be observed if the data were uniformly distributed without any inherent 

cluster structure. The null reference distribution represents this random uniform 

distribution of data points. The method identifies the number of clusters that 

maximises the Gap Statistic, which is the difference between the observed within-

cluster variation and these expected values, thereby determining the optimal clustering 

structure (Hastie et al. [43]). Fig. 3.4 presents a Gap Statistics plot, where the gap 

statistic is plotted against the number of clusters. The number of clusters at which the 

gap statistic is maximised, (here 𝑘 = 4) is considered the optimal choice. This point 
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represents the maximum difference between the observed clustering result and what 

would be expected if the data had no real clusters. 

 

Fig 3.4: Gap Statistics Plot portraying the optimal number of clusters to be kept (4)  

Retrieved from Kassambara [12] 

 

 

 

  Additionally, the efficiency of the k-means algorithm can depend significantly on the 

choice of initial centroids. Poor initialisation can lead to suboptimal clustering results, 

a phenomenon often referred to as the “local minimum problem”. To mitigate this, 

methods like k-means++ (Arthur and Vassilvitskii [24]) are employed to improve the 

selection of initial centroids by spreading out the initial points, thus increasing the 

likelihood of converging to a better solution.   

 

  The technique also assumes that clusters are spherical and of similar size. This 

assumption may not always hold true for real-world datasets, a fact leading to 

suboptimal clustering when the actual data clusters vary in shape and size. Moreover, 

it is susceptible to outliers, which can distort the placement of centroids and affect the 

overall clustering outcome. Outliers, being distant from other data points, can 

disproportionately influence the centroid calculations, leading to skewed clusters. 
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Addressing these issues often requires preprocessing steps such as outlier detection 

and removal, or using more robust clustering methods that are less sensitive to outliers.  

 

  In the context of our application, k-means clustering will be used to extract and group 

district data. The goal is to cluster districts based on various parameters to uncover 

similarities and patterns among them. By clustering these districts, we aim to identify 

meaningful patterns and similarities across different attributes. This understanding is 

crucial for making decisions and optimising resource allocation within the city of 

Madrid. Understanding the application of this technique to specific datasets may reveal 

hidden patterns and structures that might otherwise go unnoticed. This study aims to 

illustrate practical applications of the technique in data analysis, demonstrating how 

analysts can effectively leverage it to enhance their analytical processes, drawing upon 

foundational research. 

 

  Summarising, k-means is a non-hierarchical clustering method. This method is 

iterative and based on the principle of the centre of the group, known as the centroid. 

The centroid represents the mean value of each variable for a single group. During 

clustering, each observation is placed in a group based on its proximity to the cent roids 

of all groups. Essentially, for each observation, we calculate its distance from each 

centroid and assign it to the group with the minimum centroid distance. The main 

difference between these methods lies in when and how they update the centroids and 

reassign each observation. Euclidean distance is the standard and often ideal approach 

for such calculations, though other distance metrics can also be effective. The power 

of these methods lies in the continual iterative updating of centroids as observations 

are assigned to groups. This iterative process refines the groups over time until the 

clustering stabilises, resulting in no further changes. This approach efficiently groups 

data points into clusters, facilitating the identification of patterns and structures within 

large datasets. Non-hierarchical methods are widely used in various fields, from 

clinical research to climatology, due to their simplicity and effectiveness.  
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3.2 Alternative Clustering Techniques  

 

  In addition to the techniques discussed in detail above, there exists a variety of 

clustering techniques, each of which has unique advantages and limitations. 

Understanding these can help in choosing the most appropriate for specific data 

analysis tasks. Below, we briefly document several alternative techniques in order to 

inform the reader of their existence and provide a broader context; however, they will 

not be implemented in the application of this thesis. 

 

• Hierarchical Clustering: Hierarchical clustering builds a hierarchy of clusters 

by either iteratively merging smaller clusters into larger ones (agglomerative) 

or splitting larger clusters into smaller ones (divisive). This method does not 

require the number of clusters to be specified and generates a dendrogram to 

visualise the cluster hierarchy. However, it may be computationally intensive 

for large datasets and is sensitive to noise or outliers (Nielsen [63]). 

 

• Agglomerative Clustering: A specific type of hierarchical clustering, 

agglomerative clustering starts with each data point as its own cluster and 

merges the closest pairs of clusters iteratively. It is simple to understand and 

implement and provides a comprehensive cluster hierarchy. Nonetheless, it is 

computationally intensive for large datasets and sensitive to the choice of 

distance metric (Kononenko and Kukar [55]). 

 

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN): 

DBSCAN groups points that are close to each other based on a distance metric 

and marks points in low-density regions as outliers. This method can find 

clusters of arbitrary shapes and is robust to noise. However, it requires careful 

tuning of its parameters and may struggle with clusters of varying densities 

(Ester et al. [35]). 
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• Gaussian Mixture Models (GMM): GMM assumes that data points are 

generated from a mixture of several Gaussian distributions with unknown 

parameters. It provides a probabilistic clustering approach that can capture more 

complex cluster shapes. However, GMM requires specifying the number of 

clusters and can be computationally expensive (Bishop [29]). 

 

• Spectral Clustering: Spectral clustering uses the eigenvalues of the similarity 

matrix of the data to perform dimensionality reduction before clustering in 

fewer dimensions. It can handle non-convex clusters and is often more effective 

for data that is not well separated. However, it is computationally expensive and 

sensitive to the choice of similarity matrix (Von Luxburg [76]). 

 

• Ordering Points To Identify the Clustering Structure (OPTICS): OPTICS is 

an extension of DBSCAN that creates an augmented ordering of the database, 

representing its density-based clustering structure. This method can identify 

clusters of varying densities. However, it is more complex and computationally 

intensive than DBSCAN (Ankerst et al. [23]). 

 

• Mean Shift: Mean Shift iteratively shifts each data point towards the mode 

(highest density point) of its neighborhood until convergence. It does not 

require specifying the number of clusters and can find arbitrarily shaped 

clusters. However, it is computationally expensive and requires careful 

selection of the bandwidth parameter (Cheng [32]). 

 

• Affinity Propagation: Affinity Propagation uses a message-passing algorithm 

between data points to identify exemplars that best represent the clusters. It 

does not require specifying the number of clusters and can identify clusters of 

varying shapes and sizes. However, it is computationally expensive and may 

produce many clusters if not tuned properly (Frey and Dueck [39]). 
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The choice of the appropriate method is determined by the properties of the dataset at 

hand and the research objectives of the clustering process. The existence of many 

clustering techniques assists data science researchers in addressing high-dimensional 

and complex data problems, enabling them to make the best use of their insights. 
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CHAPTER 4 

 

Multivariate Analysis of Risk 

Factors of the COVID-19 

Pandemic in the Community of 

Madrid, Spain 

 
 

4.1 Introducing the Subject: An Overview 

 

  In late 2019, the first cases of coronavirus emerged in China's Wuhan Province. By 

January 2020, a new strain, SARS-CoV-2, was confirmed, sparking a global pandemic 

that impacted countries unevenly (WHO [19]). While some, like Spain and Italy, faced 

significant challenges, others were hardly affected. This discrepancy has led to 

increased scientific interest in understanding why certain societies are more 

susceptible to COVID-19. Researchers have explored various environmental factors, 

such as weather conditions and pollution levels, to determine their role in the virus's 

spread (Shakil et al. [71], Briz-Redón and Serrano-Aroca [30]). Despite numerous 

studies, reaching a scientific consensus has proven difficult due to several reasons. 

Differences in variable measurement, the selection of variables, the analytical methods 

applied, and spatiotemporal considerations are some of the challenges (Haug et al. 

[44]). This has prompted the need for more comprehensive research to overcome these 

issues. 

 

  To address these gaps, Pérez-Segura et al. [66] considered a multivariate approach. 

They considered a wide range of factors such as socioeconomic conditions and 

atmospheric pollution by focusing on Madrid’s community during the pandemic's 

initial wave. By employing advanced statistical methods, the study aimed on  providing 
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deeper insights into the complex interplay between environmental factors and COVID -

19 transmission. Thus, rather than seeking universal conclusions, they attempt ed to 

uncover localised vulnerabilities and identify practical strategies to enhance societal 

resilience. By understanding the unique challenges faced by different communities, 

their paper contributes to more effective disaster preparedness efforts in the case of 

similar events in the future. 

 

4.2 The primary aim  

 

  The primary goal of the study [66] is to investigate how environmental factors affect 

COVID -19 infections in the Madrid community. To achieve this, the authors employed 

a method involving multiple variables, mainly focusing on climatological, pollution, 

and social aspects. Their approach can be characterised as a three-step algorithmic 

process exploiting multivariate techniques. Initially, potential risk factors were 

identified and selected based on existing literature. Then, a feature extraction DRT, 

namely PCA, was applied to reduce the number of variables while retaining most of 

the variability of the original variables. Finally, a k-means clustering analysis was 

conducted to categorise the territory based on these new risk factors, followed by 

statistical methods to characterise each cluster. Linear regression models were 

employed to understand the influence of each component on the total number of cases 

for the entire territory and for each cluster.  

 

  The data collection, pre-processing, cleaning, and analysis were conducted based on 

the procedures outlined in the Pérez-Segura et al. [66]. The statistical analysis was 

performed using R version 4.4.1 along with several libraries, including “sf”, 

“tidyverse”, “psych”, “extrafont”, “cluster”, “sandwich”, “lmtest”, “reshape2”, 

“factoextra”, “agricolae”, “ggspatial”, “nortest”, and “pls”. This thesis does not aim 

to challenge the established procedures and findings of the paper. Instead, it seeks to 

explore how the statistical power of the analysis can be enhanced through alternative 

DRTs.  

 

  A deeper dive into the data used shows that the total number of municipalities in the 

community of Madrid was considered, excluding the municipality of Madrid itself and 
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instead utilising its 21 districts for better comparability. Thus, a total of 199 districts 

and municipalities were included, with data sourced from publicly available databases. 

The analysis focused on the first-wave data from March to May 2020, when the first 

lockdown was imposed in Spain. Data for the target variable, i.e., the total accumulated 

infections (TAI) in the Madrid community, were obtained from the open dataset 

“COVID 19 -TIA” (Datos Abiertos Comunidad de Madrid [7]) by the municipalities 

and districts of Madrid. Absolute values were used instead of ratios per 100,000 

population to account for population differences.  To address the missing data (~21%) 

caused by confidentiality −where cases with fewer than 6 instances were replaced with 

NA− a constant value of 5 was used for imputation. This simple and consistent 

approach helps avoid distorting the data while allowing the analysis to proceed 

efficiently. Additionally, a Box-Cox logarithmic transformation was applied to further 

normalize the data and improve its suitability for analysis. 

 

  The independent variables used in the analysis are summarised in Table 4.1, with 

population size included as a control variable in the regression models due to its 

influence on the total number of cases. These variables were selected based on studies 

in the literature that support their impact on COVID-19 transmission. They are 

categorised into three dimensions (groups): Socioeconomic (Section 4.2.1), Pollution 

(Section 4.2.2), and Climatological (Section 4.2.3). Each dimension addresses 

different but interconnected factors related to COVID-19 infection and transmission, 

offering a comprehensive approach to understanding the pandemic. 

 

 

4.2.1 The socioeconomic dimension  

 

  The socioeconomic aspect of the study focuses on four key factors: two demographic 

elements and two economic indicators. The proportion of individuals aged 65 and older 

and population density constitute the demographic elements. Research has highlighted 

the heightened vulnerability of specific age groups, particularly the elderly, to COVID-

19 (Kang and Jung [53]). This underscores the importance of understanding population 

density, which plays a pivotal role in disease transmission. Studies, such as Carozzi's 

[6], have validated a positive correlation between higher population  density and 
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increased transmission rates. However, findings from Sun et al. [72] suggest that 

population density did not significantly impact infection rates during COVID-19 initial 

wave, though it remains relevant due to subsequent lockdown measures implemented 

post-surge. 

 

TABLE 4.1 

Summary of independent variables. 

Variable Measure 

  

Socioeconomic Dimension 

 

Density Population density 

Age Percentage of the population over 65 years 

old 

Income Per capita income by municipality from 

Estimate of the Municipal Gross Domestic 

Product 

Workers Percentage of workers supported by social 

security 

  

Pollution Dimension 

 

CO Carbon monoxide, micrograms per cubic 

meter 

NO Nitrogen monoxide, micrograms per cubic 

meter 

𝐍𝐎𝟐 Nitrogen dioxide, micrograms per cubic meter 

𝐒𝐎𝟐 Sulphur dioxide, micrograms per cubic meter 

Ozone Ozone, micrograms per cubic meter 

PM2.5 Particulate matter < PM2.5 

RSD Respiratory System related Death rate 

  

Climatological Dimension 

 

Temperature Temperature April average level 

Humidity Humidity April average level 

 Control Variable 

Population Number of people 
Data Sources: Pérez-Segura et al. [66], Datos Abiertos Comunidad de Madrid [7], Ayuntamiento de Madrid [2], 

Ayuntamiento de Madrid [3], Bankinter [5], Instituto de Estadística [11], Ayuntamiento de Madrid [4], Datos 

Abiertos Comunidad de Madrid [8], Portal de Datos Abiertos del Ayuntamiento de Madrid [16], Instituto National 

de Estadística  [9], AEMET [1], Instituto de Estadística [10]. 
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  The role of economic status in pandemic transmission has been evident in previous 

outbreaks, such as the Spanish flu and Acquired Immunodeficiency Syndrome (AIDS)  

(Grantz et al. [41], Prual et al. [68]). The study by Hawkins et al. [45] revealed 

associations between geographic incidence and socioeconomic status. Additionally, 

insufficient economic resources can result in limited access to hygiene facilities and 

substandard living conditions, including overcrowded housing, which poses cha llenges 

to implementing social distancing measures during lockdowns. Pérez-Segura et al. [66] 

incorporates economic factors like per capita income and the proportion of workers 

relying on social security. Including the percentage of workers accounts for economic 

disparities within regions, as average income alone may not accurately portray the 

quality of the labour market.  

 

  Overcrowding poses a significant challenge to maintaining social distancing 

measures during lockdowns, increasing the risk of infection. Economic challenges, 

including unemployment or limited job opportunities, may drive individuals to engage 

in risky behaviours to secure income. Theoretical work by Ahmed et al. [22] suggests 

that impoverished populations may experience poorer health outcomes due to 

inadequate living conditions, heightening their vulnerability to COVID-19. Therefore, 

including these economic factors in this study provides a more in-depth understanding 

of the socioeconomic dynamics at play. 

 

4.2.2 Pollution dimension 

 

  Numerous studies have identified a relationship between air pollution and COVID -

19, impacting both infection rates and mortality (Fernández et al.  [38], Marquès et al. 

[60]). Although the exact pathways through which pollution influences these outcomes 

remain unclear, the consistent findings across studies indicate a genuine correlation. 

Examining pollution involves two different variables, each assessing pollution in 

diverse ways across regions. One variable involves measuring pollutants like carbon 

monoxide (CO), nitrogen monoxide (NO), sulphur dioxide (SO2), nitrogen dioxide 

(NO2), ozone, and particulate matter (PM2.5) in the Madrid community. The other 

examines the proportion of deaths attributed to respiratory issues  -Respiratory System 

related Death rate (RSD), providing an indirect indicator of chronic pollution levels in 
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the region. The latter is reinforced by the work of Zheng et al.  [81], who indicated that 

prolonged exposure to pollutants correlates with increased COVID-19 case numbers. 

 

4.2.3 Climatological dimension 

 

  Temperature and humidity play crucial roles in respiratory illnesses like influenza, 

but their influence on COVID-19 remains uncertain. While Bashir et al. [26] noted a 

positive correlation between temperature and transmission, Ma et al. [58] identified a 

negative association. Conversely, studies such as those by Mollalo et al. [61] found no 

link between these factors. In this context, a literature review by Briz -Redon and 

Serrano-Aroca [30] reports that 33 studies indicate a negative association, while only 

6 show a positive one, and 7 studies report no significant association. Similarly, 

ambiguity surrounds the impact of humidity. According to the same review by Briz -

Redon and Serrano-Aroca [30], most studies incorporating humidity demonstrate a 

negative correlation, with fewer indicating a positive correlation or no correlation at 

all (13, 3, and 6 studies, respectively).  

 

 

 

4.3  An alternative statistical approach 

 

  In the paper by Pérez-Segura et al. [66], the authors used PCA to analyse the data. In 

this thesis, we propose using PLSR as an alternative DRT. We will first replicate the 

analysis conducted with PCA and then perform our own analysis using PLSR. The final 

regression results from both methods will be compared to evaluate the differences. For 

consistency and comparability with the PCA approach, the latent variables derived 

from PLSR will be referred to as components within this application.  

 

  Our intention to investigate PCA and similar DRTs stems from an observation made 

during the data pre-processing phase. Significant correlations were noted in the 

correlation matrix of independent variables, even after scaling the data. As illustrated 

in Fig. 4.1, correlations often exceed 0.5 in absolute terms.  Therefore, exploring DRTs 
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like PCA and PLSR could offer valuable insights of the data and (potentially) improve 

the robustness of the analysis. 

 

 

 

FIGURE 4.1 

Correlation matrix between independent variables. 

 

 

 

  Unlike PCA, which focuses on the associations within the independent matrix alone, 

PLSR simultaneously considers both the associations within the independent matrix 

(𝑋) and those between the independent matrix and the target variable ( 𝑌). This 

characteristic makes PLSR particularly suitable for our analysis, aligning with our goal 

of predicting the target variable based on the independent variables. While it can be 
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seen as a supervised extension of PCA, it differs in its assumptions and methodology. 

By incorporating both independent and target variables, this approach potentially 

offers a more comprehensive understanding of the data relationships and may improve 

the predictive performance of our model. Thus, employing PLSR alongside PCA could 

enhance the robustness of our analysis and provide valuable insights for regr ession 

modelling. 

 

  It is important to stress that we maintain the clusters identified in the original paper 

across all DRTs to ensure comparability. The original study emphasi sed that the 

distinctions among clusters were influenced by longitudinal characteristics, so we have 

chosen to follow this approach to remain consistent with their findings.  

 

  In the final part of our study, we conduct regression analysis to evaluate the 

effectiveness of these approaches within the districts of Madrid. By adhering to the 

established clusters and analysing them in the context of Madrid’s districts, we aim to 

offer a comprehensive comparison of the applied DRTs. 

 

4.4 Results and discussion  

 

4.4.1 Principal Component Analysis 

 

  Initially, it is worth mentioning that the assumptions necessary for applying PCA 

have been examined using the metrics outlined in Pérez-Segura et al. [66]. The same 

(or equivalent) metrics mentioned in Chapter 2.3 were used to evaluate the 

appropriateness of the data for PLSR. More precisely, Bartlett’s test of sphericity 

supported the null hypothesis of variance independence, while the Kaiser-Meyer-Olkin 

measure revealed adequate sampling adequacy for the data in all cases. The results 

indicate that the data satisfy the requirements for both DRTs, confirming the validity 

and reliability of our analysis. 

 

  The Scree Test plot depicted in Fig. 4.2 suggests retaining 3 components. 

Additionally, in PCA, the cumulative variability accounts for approximately 71%, 

while in PLSR, it reaches about 85% when retaining the first 3 components. 
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Furthermore, additional metrics, such as Mean Item Complexity (MIC) and the 

hypothesis test for component sufficiency, yield identical results. Specifically, the 

MIC is calculated as 1.5, and the test for the sufficiency of three components gives a 

Root Mean Square Error (RMSE) of 0.07, with an empirical chi -square value of 168.  

 

 

FIGURE 4.2 

Scree plot for PCA models. 
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TABLE 4.2 

PCA components loadings. 

  
Pollution and 

Density 
Particulate Matter and 

Temperature Socioeconomic 

Age  -0.57   

SO2 0.87     

CO 0.86     

NO 0.74     

Ozone -0.43 -0.83   

RSD    0.54   

Density 0.73     

PM2.5    0.92   

NO2 0.53  0.68   

Temperature    0.76   

Humidity -0.56 -0.50   

Income     0.87 

Workers     0.76 

Note: Loads less than 0.4 have been suppressed. The most representative factor loadings are indicated in bold type. 

 

 

  Table 4.2 presents the output of PCA, as described by Pérez-Segura et al. [66]. Based 

on it, three components emerged from the initial 13 variables, accounting for 71% of 

the original variability. The components were interpreted based on factor loadings 

detailed in Table 4.2. Although these empirical dimensions may differ from the 

initially projected theoretical ones due to the lack of validated scales, they still 

effectively summarise the 13 risk factors. Notably, population density showed a strong 

association with a climatic factor, which is logical as pollution often correlates with 

human population density. 
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TABLE 4.3 

PLSR components loadings. 

  
      Air Quality and   
             Density 

Respiratory 

System Deaths 

              Environmental and  
          Demographic Influences 

Age  -0.13 -0.27 0.50 

SO2   0.35 -0.13 0.42 

CO   0.32   0.57 

NO   0.27     

Ozone  -0.37   0.22 0.35 

RSD   0.17   0.83                         -0.33 

Density   0.32                            0.40 

PM2.5   0.20                           -0.61 

NO2   0.38                           -0.28 

Temperature              -0.31                         -0.75 

Humidity -0.37 0.12   

Income 0.14 -0.28 0.39 

Workers 0.26 -0.23 0.15 

Note: Loads zero or close to zero have been suppressed. The most representative factor loadings are indicated in bold type. 

 

  In Table 4.3, the components of PLSR are analysed to understand their relationships 

with the predictor variable. Component 1 can be labelled as “Air Quality and Density”, 

since pollutants such as SO2, CO, NO2, Ozone, and Humidity display the highest 

loadings, indicating strong associations with this component. Density in this 

component exhibits the same level of significance as the pollutant variables. 

Component 2, labelled as “Respiratory System Deaths”, is distinct as only one variable 

emerges as significantly more influential than others, with a loading more than twice 

as important compared to the others. Given the nature of this study, which aims to 

explore the impact of these factors during the pandemic and considering that RSD 

significantly increased during this period, component 2 potentially contains 

meaningful information. In component 3, designated as “Environmental and 

Demographic Influences”, temperature and PM2.5 exhibit strong negative loading 

values, indicating an inverse relationship, while Age and CO display positive loading 

values. These interpretations provide valuable insights into how the predictor variables 

contribute to the different components identified through the PLSR analysis.  
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  When comparing Tables 4.2 and 4.3, several observations emerge: 

− PLSR highlights Age and RSD as significant variables, unlike PCA. This 

difference arises from PLSR's consideration of associations within the X-matrix 

and between the X-matrix and Y-matrix. Age is a known factor in mortality 

rates, including in the case of COVID-19, while RSD are a major cause of 

COVID-19-related deaths.  

 

− In contrast, PLSR does not emphasise the importance of income and workers as 

much as PCA approach do. This discrepancy may stem from the lack of strong 

evidence linking these variables to COVID-19 or other independent variables. 

This pandemic impacted countries with varying economic strengths. Even in 

PCA, income and workers show limited connections to other variables, 

particularly in the third component.  

 

− Overall, while these differences exist, both DRTs generally involve variables 

that contribute to at least one component, validating their selection. It is 

important to note that these observations do not necessarily suggest PLSR is 

better than PCA but rather document differences in outcomes 

 

  The RMSE was calculated between the response and the three components generated 

by each approach to assess their predictive ability. PLSR outperformed PCA with an 

RMSE value of 0.87, in contrast to PCA’s value of 4.23.  

 

4.4.2 Cluster Analysis  

 

  For the purpose of facilitating comparative analysis and gaining a deeper 

understanding of the underlying mechanisms of each DRT, we employed the k-means 

clustering methodology as delineated in Pérez-Segura et al. [66]. In their work, they 

utilised the Scree Test of the within-cluster sum of squares for each number of clusters 

(see Fig. 4.3), resulting in the selection of three clusters.  
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FIGURE 4.3 

Scree plot for the selection of clusters. 

Source: Pérez-Segura et al. [66]   

 

 

  This enabled us to discern the diverse ecosystems within the community of Madrid 

based on the considered risk factors.  

 

  The rationale behind the selection and naming of clusters, as portrayed by Pérez -

Segura et al. [66], serves as the basis for our cluster analysis methodology. The 

clustering described in the study aimed to identify distinct ecosystems within the 

community of Madrid based on various risk factors (Fig. 4.4). Upon replicating the 

procedure, it was observed that the clusters resulting from k-means have been slightly 

altered for better cluster interpretability. It was observed that the “Madrid -City” 

cluster, comprising the city's 21 districts, exhibited elevated levels of pollution, 

population density, and socioeconomic indicators compared to the other clusters (Fig. 

4.5). 
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FIGURE 4.4 

Cluster between Madrid’s districts. 

Source: Pérez-Segura et al. [66]   

 

 

FIGURE 4.5 

Components by clusters in Madrid’s districts. 

     Source: Pérez-Segura et al. [66]. 
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Conversely, concerning particulate matter and temperature factors, Madrid 

demonstrated a negative score like that of the “North-East” cluster. The “Madrid-

Surroundings” cluster encompassed 96 municipalities, including densely populated 

areas, where particulate matter and temperature factors were notable. While pollution 

and population density were lower than in the “Madrid-City” cluster, they surpassed 

those of the “North-East” cluster. Additionally, this region exhibited the poorest 

socioeconomic conditions. Lastly, the “North-East” cluster consisted of 82 

municipalities, predominantly rural areas with fewer than 5000 inhabitants, 

characterised by lower pollution levels and socioeconomic status.  

 

  Table 4.4 provides a detailed summary of each cluster's characteristics based on the 

average scores of the original variables. The Analysis of Variance (ANOVA) analysis 

revealed significant differences in means across all variables in at least one cluster. To 

get a better understanding, a post hoc examination (Scheffé ́s test) was conducted to 

pinpoint the specific clusters with differences. The “Madrid-City” cluster emerged as 

the most polluted area in the region, followed by the “Madrid-Surroundings” cluster, 

while the “North-East” cluster showed lower pollution levels, something reasonable 

due to population density. Similarly, the socioeconomic aspect followed a similar 

pattern, with “Madrid-City” recording the highest scores. However, the measurements 

of particulate matter and temperature showed a different trend. In this case, the “North-

East” cluster appeared to be the most humid, whereas the “Madrid-Surroundings” 

cluster experienced the highest temperatures. Interestingly, “Madrid-City” displayed 

the lowest scores for both variables. 
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TABLE 4.4 

Comparison of the mean values of the original variables by cluster. 

Source: Pérez-Segura et al. [66].  

Variable 
Cluster 

ANOVA (p-Value) 
Madrid-City Madrid-Surroundings  North-East 

  Social Dimension   

Density 14.25 0.85 0.05 <0.01 

SD 9.82 1.32 0.05   

Income 40,590.98 21,877.74 24,445.71 <0.01 

SD 17,966.81 11,808.98 14,445.71   

% Workers 0.6 0.31 0.22 <0.01 

SD 0.39 0.2 0.11   

  Climate Dimension   

Humidity 65.96 71.16 75.98 <0.01 

SD 0 3.56 0.54   

Temperature 9.69 12.83 10.89 <0.01 

SD 0 0.92 1.6   

  Pollution Dimension   

PM2.5 4.05 6.66 3.45 <0.01 

SD 0.22 0.69 1.07   

SO2 4.33 1.29 1 <0.01 

SD 1.56 0.5 0   

CO 50.4 0.87 0.45 <0.01 

SD 12.33 0.69 0.19   

NO 4.15 1.82 1 <0.01 

SD 4.57 0.9 0.01   

NO2 17.01 14.04 1.68 <0.01 

SD 5.65 7.25 0.63   

Ozone 53.08 53.9 80.62 <0.01 

SD 4.61 3.84 4.24   
Dark gray, light gray and white are used to indicate that there are statistical differences between means. The darkest shade refers to 

the highest mean value, the light gray to the mean value and the white to the lowest mean value. When there are only statistically 

significant differences between two groups, only dark gray and light gray are used to distinguish the groups. Differences in means were 

tested by Scheffé ś methods at a significance level of 0.05. 
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FIGURE 4.6 

Boxplot of COVID-19 cases by cluster. 

Source: Pérez-Segura et al. [66].  

 

The diagram represents 𝑄2 (median value, line inside the box), the Q1 (lower boundary of the box), the Q3 (upper boundary of the 

box), the maximum and the minimum (vertical line) and the outliers (dots). 

 

  Fig. 4.6 shows how COVID-19 spread across each cluster. It is evident that the 

“Madrid-City” area had the highest number of infections. Additionally, the “Madrid-

Surroundings” cluster had many outliers, mainly made up of densely populated cities 

like Leganes (2963 cases), Alcala de Henares (2331 cases), and Mostoles (2079 cases), 

among others. Statistical tests confirmed significant differences in average infection 

levels among the three areas. These results highlight how risk factors can outline areas 

with different infection rates, although they do not pinpoint the exact influence of each 

factor. 

 

 

4.4.3 Regression Analysis 

 

Tables 4.5 and 4.6 present the outcomes of the regression models conducted for the 

entire territory (“C. Madrid”) and each cluster using PCA and PLSR. 
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TABLE 4.5 

Regression models with PCA components. 

 
*** p < 0, ** p < 0.01, * p < 0.05.  

 

  The results for PCA are provided in Table 4.5. Overall, the regression results suggest 

that the significance and importance of the components vary across regions. While “C. 

Madrid” and “Madrid-Surroundings” models highlight the relevance of specific 

components, the “North-East” and “Madrid-City” models indicate that these 

components may not be crucial predictors in those areas. Across all models, the 

population variable consistently shows high significance, underscoring its universal 

importance as a factor in the analysis.  

 

  More analytically, in the “C.Madrid” model, all components are significant and 

positively linked. The second component is the most influential, with a strong 

coefficient and highly significant p-value, suggesting it plays a crucial role in the 

model. The first component also contributes significantly, though to a lesser extent, 

while the third component, despite being the weakest among the three, still shows a 

statistically significant effect. The latter suggests that higher scores on the variables, 

including socioeconomic status, increase the risk of contracting COVID-19. This 

finding goes against existing theories on socioeconomic status and COVID -19 

transmission. However, it is essential to note that we are analysing variables at a 

municipal level, thus intra-municipal variability is not considered. Therefore, our 

results suggest that municipalities with higher socioeconomic status (more workers 

Coef. Coef. Coef. Coef.

(SD) (SD) (SD) (SD)

       3.17*** 1.17** 3.69*** 6.1***

(0.08) (0.37) (0.35) (0.21)

       0.48*** -0.62 0.77* 0.00

(0.08) -0.49 (0.34) (0.07)

       0.75*** -0.10 0.07 -0.13

(0.06) (0.12) (0.40) (0.27)

  0.16* -0.15 0.25 0.02

(0.06) (0.12) (0.16) (0.03)

        0.00*** 0.00*** 0.00*** 0.00***

(0.00) (0.00) (0.00) (0.00)

Adjusted R-squared  

p-values

white test (p-values)

Model Additional

Information

AIC

BIC

Loglik 7.46-18.32

<0.01 

0.81

<0.01

0.34

-2.93

3.33

-128.38

28.80 <0.01 

0.14 0.89

-0.48 0.63

0.75 0.45

7.58<0.01 

0.66

<0.01

0.05

268.77

284.16

10.52 <0.01 

2.25 0.02

0.17 0.86

1.54 0.12

7.88<0.01 

0.83

<0.01

0.03

48.65

63.08

-246.25

3.13 <0.01 

-1.27 0.20

-0.87 0.38

-1.22 0.22

17.06

0.82

<0.01

<0.01

504.51

524.27

<0.01 

<0.01 

0.02

<0.01 

37.80

Madrid-Surroundings

t p-value

Madrid-City

t p-valuep-value

C. Madrid North-East

t p-value

<0.01 

5.98

12.36

(Intercept)

1st component

2nd component

3rd component

Population

t

2.31

11.66
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and higher incomes) might have more COVID-19 cases, although there could still be 

economic segregation within these municipalities affecting infection risk.   

 

  The partial models yield limited information due to the lack of statistical significance 

in the parameters. More precisely, the “C.Madrid” model, the “North-East” and 

“Madrid-City” models provide limited insights as none of the components reach 

statistical significance. The coefficients for the components are not only non-

significant but also small in magnitude, indicating that these factors do not 

substantially contribute to explaining the variation in the dependent variable within 

this region. Despite this, the population variable, consistent with other models, shows 

high significance, reinforcing its importance across different regions.  On the other 

hand, the “Madrid-Surroundings” model presents a somewhat mixed picture. The first 

component is statistically significant, suggesting it has a moderate impact on the 

dependent variable. However, the second and third components do not achieve 

significance, with the third component showing borderline relevance (for significance 

level 10%). This implies that while the first component may be an essential predictor 

in this region, the other components do not offer meaningful explanatory power. 

Nevertheless, as in other models, the population variable remains highly significant, 

confirming its strong influence. 

 

  This lack of significance in the partial models can potentially be attributed to two 

factors: (1) the small number of observations in each cluster and (2) the homogeneous 

behaviour of the target variable within each cluster.  
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TABLE 4.6 

Regression models with PLSR components. 

 
*** p < 0, ** p < 0.01, * p < 0.05.  

 

  The results from the PLSR model for the entire territory and each cluster are 

presented in Table 4.6. In summary, the regression results illustrate the varying 

influence of the components across different regions. While the population variable 

consistently show significance in most models, the components themselves do not 

always hold statistical significance, particularly in the North -East and Madrid-City 

models. The Madrid-Surroundings model stands out for the significance of the second 

and third components, although with differing effects. These findings suggest that the 

explanatory power of these components is region-specific, with population being the 

most consistent predictor across all models.  

 

  More analytically, in the “C. Madrid” model, the intercept is marginally significant 

with a p-value of 0.04. However, the three components do not show statistical 

significance, as indicated by their high p-values (0.89, 0.17, and 0.23, respectively). 

This suggests that these components do not contribute meaningfully to the model in 

this region. Interestingly, the population variable remains significant (p < 0.01), 

consistent with previous models, indicating that population continues to play a crucial 

role in explaining the dependent variable in “C. Madrid”. 

 

  In the “North-East” and “Madrid-City” models, the intercept is highly significant (p 

< 0.01), showing a strong baseline effect. However, like the “C.Madrid” model, the 

Coef. Coef. Coef. Coef.

(SD) (SD) (SD) (SD)

  0.39*          1.78***     1.82**      6.11***

(0.19) (0.5) (0.60) (0.43)

0.01 -0.06 0.22 0.01

(0.14) (0.21) (0.29) (0.11)

0.41 0.36  -3.97* -0.09

(0.31) (0.43) (1.51) (0.48)

0.40 -0.36     4.44** 0.08

(0.34) (0.40) (1.37) (0.44)

    0.00**       0.00*** 0.00        0.00***

(0.00) (0.00) (0.00) (0.00)

Adjusted R-squared  

p-values

white test (p-values)

Model Additional

Information

AIC

BIC

Loglik -225.98 -18.77 -117.96 7.01

<0.01 0.05 <0.01 0.33

463.97 49.55 247.92 -2.02

86% 83% 73% 81%

<0.01 <0.01 <0.01 <0.01

483.73 63.99 263.31 4.24

Population 2.51 <0.01 13.83 <0.01 1.35 0.17 8.35 <0.01 

0.01 -0.19 0.85

3rd component 1.19 0.23 -0.90 0.37 3.23 0.001

2nd component 1.34 0.17 0.84 0.40 -2.62

0.18 0.85

1st component 0.20 0.89 -0.29 0.77 0.77 0.44 0.14 0.88

(Intercept) 1.93 0.04 3.57 <0.01 3.00 <0.01 14.15 <0.01 

C. Madrid North-East Madrid-Surroundings Madrid-City

t p-value t p-value t p-value t p-value
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components do not demonstrate statistical significance, with p -values well above the 

conventional threshold of 0.05. This lack of significance suggests that these 

components do not hold substantial explanatory power in these regions. Despite this, 

the population variable is extremely significant (p < 0.01), confirming its critical 

importance in this model as well.  

 

  The “Madrid-Surroundings” model presents a more complex picture. The intercept is 

significant (p < 0.01), indicating a strong baseline effect. The first component is not 

significant (p = 0.44), suggesting it does not substantially influence the dependent 

variable in this region. However, the second component is significant (p = 0.01), 

though it has a negative coefficient, indicating an inverse relationship with the 

dependent variable. The third component is also significant (p = 0.001), with a strong 

positive coefficient, highlighting its importance in the model. Unlike in other regions, 

the population variable is not significant (p = 0.17), which contrasts with its 

significance in the other models, suggesting that population may not be as crucial in 

this particular region. 

 

  While some clusters showed significant associations between components and cases, 

others displayed less pronounced effects. Population density almost consistently 

emerged as a significant factor across clusters, influencing the distribution of COVID -

19 cases. However, non-significant intercepts and components in some clusters suggest 

a need for further investigation to fully understand transmission dynamics 

 

4.4.3.1 C.Madrid: Regression Model Comparisons 

 

  The regression model using PCA components for “C.Madrid” demonstrated  an 

adjusted R-squared value of approximately 0.82, indicating that the model explains 

about 82% of the total variation of COVID-19 outcomes. All components in this model 

exhibited significant p-values (<0.05), suggesting their importance in explaining the 

variance within the dataset. The Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) values were 504 and 524, respectively, indicating the 

model's goodness of fit and parsimony. The White test p-value is below the 

conventional significance level of 0.05, suggesting potential heteroscedasticity. 
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  In contrast, the PLSR model demonstrated superior performance with an adjusted R -

squared value of 0.86, indicating that the model explains about 86% of the total 

variation of COVID-19 outcomes. While the overall fit of the model was better, some 

components showed non-significant p-values (>0.05), suggesting a potential lack of 

statistical significance. The AIC (464) and BIC (484) values were lower compared to 

the PCA model, further indicating better model fitness and parsimony. Similar to the 

PCA model, the PLSR model exhibited potential heteroscedasticity based on the White 

test p-value. 

 

  Additionally, the PCA model indicate that the pollution and climate components had 

a greater influence than the socioeconomic component on the overall model. In 

contrast, the PLSR model indicates that RSD, as well as environmental and 

demographic characteristics, play the most important roles, which is in accordance 

with many research studies. Notably, PLSR is the only method that formulates a 

component whose identity is solely based on RSD. 

 

4.4.3.2 Madrid-Surroundings: Regression Model Comparisons 

 

  The PCA models for the “Madrid- Surroundings” demonstrated an adjusted R-squared 

value of 0.66, indicating that the model explains about 66% of the total variation of 

COVID-19 outcomes. Only the first component is significant (p=0.02), suggesting 

pollution and density factors play crucial role in this region. The AIC and BIC values 

were 269 and 284, respectively, indicating the model's goodness of fit and parsimony.  

The p-value obtained from the White test is exactly 0.05, which aligns with the 

conventional significance threshold, suggesting that the assumption of 

homoscedasticity may be questionable.  

 

  In contrast, the PLSR model demonstrated superior performance with an adjusted R -

squared value of 0.73, indicating that the model explains about 73% of the total 

variation of COVID-19 outcomes. While the overall fit of the model was better, the 

second and third components showed significant p-values (<0.05), suggesting RSD, 

Environmental and Demographic factors play a crucial role in this region. The AIC 
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(248) and BIC (263) values were lower compared to the PCA model, further indicating 

better model fitness and parsimony. The White test p-value is below the conventional 

significance level of 0.05, and lower than the one in the PCA models,  suggesting 

potential heteroscedasticity. 

 

4.4.3.3 North-East & Madrid-City: Regression Model Comparisons  

 

  The models applied to both the “North-East” and “Madrid-City” regions showed 

notable similarities, with only minor, non-significant differences. This suggests a high 

degree of consistency in performance across all methodologies.  
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CHAPTER 5 

 

Concluding Remarks & Future 

Expansions 

 
  The global COVID-19 outbreak has prompted scientists to investigate the factors that 

increase susceptibility to the virus. While most of the studies have focused on 

environmental factors, there remains much to learn.  

 

  In this thesis, we began our investigation by employing the same PCA as described 

and implemented by Pérez-Segura et al. [66] to condense thirteen identified risk factors 

into three distinct components, which accounted for 71% of the initial variance. These 

new variables included aspects such as pollution and population density, particulate 

matter and temperature, and socioeconomic status. Subsequently, these variables were 

used to map the various ecosystems within the region according to these risk 

dimensions. A regression analysis was then conducted using the formulated 

components as explanatory variables to examine potential differences in COVID-19 

infection rates across the identified clusters. Additionally, we employed an alternative 

approach by using PLSR as DRTs, instead of PCA. Doing so, we aimed to explore 

whether this alternative method could yield improved outcomes compared to the 

original approach. Each DRTs provided valuable insights into COVID-19 risk factors. 

While PCA model demonstrated statistical significance for most components, the 

PLSR model exhibited superior overall fitness and parsimony. For two clusters ( “C. 

Madrid” and “Madrid-Surroundings”), PLSR yielded significantly higher adjusted R2 

and Log-likelihood values, along with lower AIC and BIC values, compared to PCA. 

For the remaining two clusters (“North-East” and “Madrid-City”), both DRTs 

performed similarly with no significant differences. However, the presence of non -

significant p-values across all models suggests caution in interpreting certain risk 

factors. 
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  The PLSR model can be considered as the preferred choice for analysing COVID-19 

risk factors due to its superior model fit and parsimony. Despite encountering some 

non-significant components, the overall performance of the PLSR model surpasses that 

of PCA. Further investigation is warranted to validate the significance of individual 

risk factors identified by both approaches. As discussed in Chapter 3 and inside the 

work by Pérez-Segura et al. [66], the cluster models do not provide substantial 

information due to the non-significance of the parameters and the observed low 

sampling power. Thus, the lack of significance may be attributed to these issues. 

Overall, PLSR aligns with many previous studies, reinforcing the rationale behind the 

findings (Wehrens [78]). 

 

  A key finding of our study is that PLSR identified Respiratory System Deaths (RSD) 

as a significant factor in the formulation of its components. Specifically, the second 

component was heavily influenced by this variable, as shown in Table 4.3. In contrast, 

PCA model did not highlight RSD. This discrepancy, combined with the established 

strong association between this variable and COVID-19, underscores the importance 

of PLSR for modelling tasks related to this pandemic. This identification suggests 

PLSR’s enhanced suitability for such tasks. Furthermore, this finding calls for further 

investigation into which dimensionality reduction and clustering techniques are most 

effective for modelling complex phenomena like pandemics.  

 

  Potential future work could involve implementing the DRTs mentioned in Section 2.5 

and comparing the variables that emerge as key factors. For instance, Sparse PCA can 

yield even more informative outputs by introducing sparsity in the components.  

Furthermore, future work could include the utilisation of Gaussian Mixture Models 

(GMM) as an alternative to k-means clustering. This technique provides a more 

flexible approach by allowing clusters to have different shapes and sizes, 

accommodating data that does not conform to the rigid boundaries imposed by k-

means. Implementing such models could lead to improved cluster identification, 

particularly for datasets with overlapping clusters or non-linear associations. 
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Comparing the results of GMM with k-means could offer deeper insights into the 

structure of the data and provide a more comprehensive understanding of key variables.  
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