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Evyoaprotieg

OLokAnpovovtag v mopovca Metantuytakn Awatpipn, oev Bo pmopovoa va uny avaeepdm
oTo dTopa Tov GUVETEAEGAV GE aTH. Apykd, Ba nBela va gvyapiotiom Bepud ta PEAN g
TPIUEAOVG EMTPOTNG YL TO XPOVO TOV aPLEpmcay oty aflohdynon g Aatpifrg kot
wwontépag tov emPAénovta Kadnynt Mapxo Kovtpa yio v adidionn kabodnynon tov otnv
ekmovnon avtng. Emmiéov, Oa 0ela va evyaplotnom, TOVG GUUEOITNTEG Kot TOVS PIAOLG pov,
kol Wwitepa tov [wpyo Kovvio, yioo v epydymon toug ko’ OAn v O1dpkeld TOL
Metanmtuylakov. Téhog, evyaptot®d amd to PéOn TG Kapdtig Lov TNV OKOYEVELYL LoV 1) oTtoia

pe otnpilet adoreintwg oe Kabe kKivnon pov.






Hepiinyn

H navonuio COVID-19 éxet empépel onpavtikéc TayKOGUIEC TPOKANGELS, OMALITMOVTOG
Aemtopepn] avdAvorn dedopévov peydiov OyKov pe oTOYO TN ANYN OTOPACEMV
onuoéotag vyetac. H mapovoa Sumhopatikny epyacio LeAetd v epoappoyn nebdoddwv
TOAVUETAPANTAC avaAvong yio tnv e€egpevvnon Un KAWVIKOV mapoydviov Tov
ovpuPpdirovv otnv enidpacn g movonuiag COVID-19 otnv kowotnta tng Madpitng.
[Tapdéro mov mn vmapyovca PipAloypo@ic ETIKEVIPOVETAL KLPIOG OTO KALVIKE
anoteAéoHATO, 1 Epyacia £yl @G oTOXO VA SLEVPVUVEL TNV KOTAVONGT TNG Tavonpiog
pécw NG €EETAONG OMUOYPOPIKMOV, KOWMVIKOOIKOVOUIKAV Kol KALATOAOYIKAOV
petaPintov. H €pesvva ypnowomolei tmv Avaivon Kopiov Zuvvictowcov, tnv
[MoAwdpounon Mepikav Erayiotov Tetpaydvov kat tTnv k-means péfodo avéivong
KOTA ovoTAdeg yio tnv emefepyacio Kol epunveia 0ed0UEVOV DYNAOV S10GTAGEWDV.
AvTéG o1 TEYVIKEG €lval KOTAAANAEG Yo TNV avoyvdplon ovvleTov mpoTtOiTOV Kot
oyx€ce®V OV Umopel va vdpyovv ota dedopnéva, fonbovrag otnv aviyvevon Kpiciumv
Topayoviov wov oyetilovratr pue v mavonuio COVID-19. Bacilopevolr otn pelén
tov Pérez-Segura et al.[66], spapudlovpe kot mapovoialovpe nOG pmopodv ot
npoavapepbeicec TEYVIKEG VO €POpPUOGTOVV O©€ TPOAYUOTIKG dedopéva yio Vv
avakalvyn kpicipov moapaydviov Kivodvov mov ouvvéBaiav otnv EEapomn TG
mavonuioc. Ta evpiuota avadelkvoovy TNV avAayKn Yo TPOGAPUOCUEVES GTPATNYIKEG
omuooctog vyeiag, Aappfdvoviag vroOym TIC S10QOPETIKEC OLVONKES G€ JLAPOPES
neployxés. Méca amd avtnv TV avAAvon, GTOXEVOVIE GTNV KAAVTEPT KATOVONGT TOV
dedopévov, kat kat' enéktaon ™ Pabdtepn kKatavonomn g morvoldotatng enidpaong

™G movonpiag.






Abstract

The COVID-19 pandemic has introduced significant global challenges, requiring
detailed analysis of vast datasets to guide public health decisions. This thesis studies
the implementation of multivariate analysis methods to explore the non-clinical factors
influencing the pandemic's impact in the community of Madrid. While much of the
existing research has focused on clinical outcomes and medical interventions, the
present study aims at broadening the understanding by examining demographic,
socioeconomic, and climatological variables. The research employs Principal
Component Analysis, Partial Least Squares Regression, and k-means clustering to
process and interpret high-dimensional data. These techniques are suitable for
uncovering complex patterns and relationships that may be present in the datasets,
thereby shedding light on some of the key factors associated with COVID-19
transmission and severity. Building on the study by Pérez-Segura et al. [66], the thesis
demonstrates how these techniques can be applied to real-world data to uncover critical
risk factors. The findings emphasise the need for tailored public health strategies,
considering the diverse conditions across different regions. Through this exploration,
it aims to enhance the statistical power of data analysis, ensuring more accurate and

comprehensive insights into the pandemic's multidimensional impact.






TABLE OF CONTENTS

LISE OF TADIES. ..ttt ettt bbbt XVi
LISE OF FIGUIES ...ttt ettt ettt e et esbe et esneesne e neeneesnaeneeas XVilil
LiSt OF ADDIEVIATIONS. ... ..o iiieiicie ettt sreebe e nneas XX
CHAPTER 1 INTrOGUCTION ....vetiitieiieieie ettt bbbt 1
CHAPTER 2 Dimensionality REAUCLION...........cccviiuiiiiiecie e 6
/220 A 1 0o 1 od 1 o o PSSP 6
2.2 Principal Component ANAIYSIS.........ciiiiiiieiieie sttt e e ste e sreas 7
2.3 Univariate Partial Least Squares REGreSSION ..........cceiveiieiiieieeie e 17
2.4 Multivariate Partial Least SQUares REgreSSION..........ccvveririririeieieniesie e 21
2.5 Other Dimensionality Reduction TEChNIQUES .........ccveiveiiiiieieeie e 23
CHAPTER 3 CIUSEEr ANGIYSIS ....cvveiieiecie sttt reene e 28
K 200 A 111 0o 1 od o] o USSR 28
CHAPTER 4 Multivariate Analysis of Risk Factors of the COVID-19 Pandemic in the

Community of Madrid, SPaiN..........ccouiiiiiiiicce e e 41
4.1 Introducing the SUDJECt: AN OVEIVIEW.........coiiiiiiiieieie et 41
4.2 TNE PIIMANY AIMN .ottt et e e e st e e aae et e saeesbeensesseesbeeneesreesteennesreeseans 42
4.2.1 The SOCIOECONOMIC TIMENSION ....cvviuieieitiiie sttt 43
4.2.2 POIHULION QIMENSION.......cviiiiiieiie sttt e et see e esteeneesneesteeneenreenseans 45
4.2.3 Climatological dimMENSION ...........coveiiiieiece et 46
4.3 An alternative statistical @pProach...........ccccceeiiiiiii i 46
4.4 RESUILS AN AISCUSSION.....cvveiieiieiiiesieeiesiee e etesee e e e steesteaseesaaesteasaesseesteaneesseesseeneesseensens 48
4.4.1 Principal Component ANAIYSIS.........ciiiiiiiiieiiie et srae e 48
4.4.2 CIUSTEN ANAIYSIS ...t e et e e e te e e e e beesrne s 52
4.4.3 REGIeSSION ANAIYSIS .. .ottt bbb b bbb 57
4.4.3.1 C.Madrid: Regression Model COMPAIISONS .........ccveiiieiieiiiieiee e sre e 61
4.4.3.2 Madrid-Surroundings: Regression Model CompariSoNnS...........ccccvevveiiieiieeviieeneesnnn 62
4.4.3.3 North-East & Madrid-City: Regression Model Comparisons............ccoceveveriivneennn, 63
CHAPTER 5 Concluding Remarks & Future EXPansions...........cccceevveiieiiieesiiesieesneasieesinens 65
RETEIBNCES ...t b ettt be et et e b e b e e b e ereenre e e enes 68

Xiii



Xiv



XV



2.1
4.1
4.2
4.3
4.4
4.5
4.6

List of Tables

Similarities and dissimilarities between PCA and PLSR.
Summary of independent variables.
PCA components loadings.

PLSR components loadings.

Comparison of the mean values of the original variables by cluster.

Regression models with PCA components.
Regression models with PLSR components.

XVi

22
44
49
50
55
S7
59



Xvii



2.1
3.1

3.2

3.3

3.4

4.1
4.2
4.3
4.4
4.5
4.6

List of Figures

A sample scree plot produced in R.

Visual representation of the Algorithmic Procedure | for the
implementation of k-means.

Scree Test portraying the optimal number of clusters to be
kept.

Sillouete Plot portraying the optimal number of clusters to be
kept.

Gap Statistics Plot portraying the optimal number of clusters to
be kept.

Correlation matrix between independent variables.

Scree plot for PCA models.

Scree plot for the selection of clusters.

Cluster between Madrid’s districts.

Components by clusters in Madrid’s districts.

Boxplot of COVID-19 cases by cluster.

Xvilii

15
32

33

34

35

47
49
52
53
53
56



XiX



List of Abbreviations

AIDS Acquired Immunodeficiency Syndrome
AlC Akaike Information Criterion

ANOVA Analysis of Variance

BIC Bayesian information criterion

CO Carbon Monoxide

COVID-19 Coronavirus Disease of 2019
DBSCAN Density-Based Spatial Clustering of Applications with Noise

DRTs Dimensionality Reduction Techniques
GMM Gaussian Mixture Models

ICA Independent Component Analysis

LVs Latent Variables

LLE Locally Linear Embedding

MIC Mean Item Complexity

NO2 Nitrogen Dioxide

NO Nitrogen Monoxide

NIPALS Non-linear Iterative Partial Least Squares
NMF Non-negative Matrix Factorization
OPTICS Ordering Points To Identify the Clustering Structure
PLSR Partial Least Squares Regression

PM2.5 Particulate Matter

PCA Principal Component Analysis

PCs Principal Components

RSD Respiratory System related Death

RMSE Root Mean Square Error

SIMPLS SIMplified of the Partial Least Squares
SvD Singular Value Decomposition

S0O2 Sulphur Dioxide

SS Sum of Squared

t-SNE t-Distributed Stochastic Neighbor Embedding
TAI Total Accumulated Infections

XX



Dis Total Dispersion
UMAP Uniform Manifold Approximation and Projection
WHO World Health Organization

XXi



XXii



List of Abbreviations in Greek

AIDS >Hvdpopo Eniktnng Avocoavendpketog
AIC Kpurfpo IMinpogopiag Akaike
ANOVA Avaivon Alocmopdg

BIC Kpimpro ITAnpogopiag Bayes

CO Movoégido tov AvBpaka,

COVID-19 Nocog tov Kopwvoiot 2019
DBSCAN Xopwr Opadonoinon Epappoydv pe ®o6pufo pe Baon Tnv

[Mukvémta

DRTs Teyxvikég Meimwong Alootdcewv

GMM Movtéha Miéng I'kaovclovov Katavoudv

ICA Avdivon AveEdpTnNToV ZUVIGTOCOV

LVs AavBdvovcsec Metafantég

LLE Tomud ypoppukn epeoTeLoN

MIC Méon [HoAvmhokotnTo Ztoryeiov

NO2 A0&gidio Tov Almtov

NO Movoégido tov Almtov

NIPALS Mn-ypappikny Eravoinntikn MéBodog Mepikaov Elayiotov
Tetpayovov

NMF Mn-apvnrtikn [apayovionoinon ITvdxkmv

OPTICS AwdtoEn  Ztoyelov  yioo tov  Evtomiopd g Aoung
Opadomoinong

PLSR [MoAwdpounon Mepikav Elaylotov Tetpaydvaov

PM2.5 Yopototokr YAn

PCA Avaivon Kopiov Xuvictoodv

PCs Kvpteg Xvviethoeg

RSD OdvoTol XyeTikol Ie T0 AVamvevoTikd OoTnuo

RMSE Pia Méong Tetpaymvikng Amdxiong

SIMPLS Amlomompévn Avérvon Mepikav Elayiotov Tetpaydvov

SVD Avdonaon (ITivaka) Xe Idalovoeg Tiuég

S0O2 Awo&gido Tov Ociov

XXiii



SS
t-SNE
TAI
Dis
UMAP
WHO

Abpoicpa Tetpaymvav

Yroyaotikn Epedtevon errvioong pe Bdon v Katavoun t
2UVOMKES ZVooWPELVIEVEC MOADVGELC

2UVOAIKT XKESOOM

[Ipocéyyion kat [Tpofoin Opodpopeng IoAdamidtrag
[Maykoopiog Opyaviopdg Yyeiag

XXV



CHAPTER 1

Introduction

The 2019 Coronavirus Disease (COVID-19) pandemic has presented unprecedented
challenges worldwide, necessitating extensive analysis of large datasets to aid public
health decision-making. As the virus spreads rapidly, understanding transmission
dynamics, identifying at-risk populations, and predicting patient outcomes became
crucial. Governments and healthcare providers had to quickly adapt, relying heavily
on data to provide effective responses. This prompted the need for complex analytical
algorithms capable of processing high-dimensional datasets.

The existing literature on COVID-19 has focused mostly on the clinical aspects of
the pandemic, which is justifiable considering the urgent need to develop therapies,
vaccines, and public health guidelines globally. Significant strides have been made in
these areas, resulting in the development and distribution of vaccines and treatment
protocols that have saved countless lives (Polack et al. [67], Baden et al. [25]).
Additionally, numerous studies have focused on the clinical consequences of
hospitalised COVID-19 patients (Zhou et al. [82], Evans et al. [36]). The impact of the
pandemic was enormous globally but uneven across countries. According to the World
Health Organization (WHO), some countries have managed to avoid any coronavirus
cases since the pandemic started in early 2020. Many of these places are islands in the
Pacific and Atlantic Oceans, likely benefiting from their isolation and being
surrounded by the sea. Their success may also be due to strict travel policies. In
contrast, countries like China, Italy, and Spain were heavily affected (Haug et al. [44]).
This difference can be attributed to various clinical and non-clinical factors.
Quarantines, non-pharmaceutical intervention strategies, climate, geographic
coordinate system, and socioeconomic conditions are among the potential factors that

influenced the impact of COVID-19 on different countries and communities. Despite



this, many aspects remain unclear, prompting ongoing scientific research to identify
non-clinical risk factors that make societies vulnerable to these types of events. In the
case of COVID-19 pandemic, this task is particularly difficult due to the short duration
of the pandemic and the complex relationships among factors from different aspects,
making the answer to this question multi-dimensional and requiring a collaborative
approach. Thus, researchers have turned to the development of more individualised
approaches. The factors that can be used to express aspects of the COVID-19 pandemic
in some countries or even continents are quite diverse, thereof making it almost
impossible to create a standardised (generalised) model. Under these conditions, it is
clear that “one-size-fits-all” approaches in the aftermath of a pandemic cannot be
effectively developed, and the need for tailored strategies is evident due to the

heterogeneity of the factors across the world (Nicola et al. [62], Hale et al. [42]).

Multivariate analysis has emerged as a vital tool in this context, offering the
capability to process and interpret complex datasets and identify associations,
interactions, and patterns among multiple variables analysed simultaneously. The
primary goal is to simplify high-dimensional data while retaining essential
information, allowing for more accurate identification of the dataset's structure
(Jolliffe and Cadima [50], Koutras [13]). This type of analysis enables researchers to
uncover patterns and relationships that are not immediately apparent, providing a
deeper understanding of the subject under investigation. For instance, multivariate
analysis has helped to identify key risk factors associated with severe COVID-19
outcomes, enabling targeted interventions for vulnerable populations (Pérez-Segura et
al. [66]). Their study demonstrates the application of multivariate techniques in
COVID-19 research. By examining the complex interactions between various
demographic, socioeconomic, and climatological variables, the study provides insights
into the factors contributing to COVID-19 spread and severity in the community of
Madrid. Such studies highlight the critical role of multivariate analysis in advancing

our understanding of COVID-19 and its transmission within multi-dimensional spaces.

Among the most popular multivariate methods are Principal Component Analysis

(PCA), Partial Least Squares Regression (PLSR), and k-means clustering. While these



methods may not be the best for every type of data analysis, they are particularly
suitable for the subject analysed in this thesis. These dimensionality reduction and
clustering techniques provide insights into large and complex datasets. Their
application is especially useful in the context of the COVID-19 pandemic, as evidenced
by the analysis conducted by Pérez-Segura et al. [66]. This thesis builds on the
techniques of Pérez-Segura et al. [66] to demonstrate how multivariate methods can
be leveraged in complex analysis. Our goal is not to dispute the established procedures
or conclusions but to enhance the statistical power of the analysis by applying
alternative methods. This approach aims to address potential gaps in the dataset and
uncover additional insights. Specifically, we set out to achieve three key aims: First,
we will collect and preprocess the data according to their framework to ensure a solid
analytical foundation. Second, we will implement the multivariate techniques used in
their study [66]. Third, we aim to explore alternative dimensionality reduction
approaches, with a particular focus on evaluating PLSR's effectiveness in improving
model performance and interpretability. Beyond overall model performance, we will
investigate the contribution of individual variables and their associations with COVID-
19 by analysing patterns within the DRTs components and latent variables. Through
these aims, we seek to extend the findings of Pérez-Segura et al. [66] and provide
further insights into the applicability of PLSR for analysing complex datasets.

Chapter 2 explores dimensionality reduction techniques, focusing on PCA and PLSR.
These methods simplify complex datasets and enhance interpretability. PCA is
particularly useful in exploratory data analysis, identifying underlying structures
within the data (Abdi and Williams [20], Pearson [65], Koutras [13]). PLSR combines
features of PCA and multiple regression, finding latent variables that capture

significant variation in the response variable, thus increasing predictive power.

Chapter 3 explores clustering techniques, primarily k-means clustering. This
partitioning method classifies datasets into distinct clusters summarised by their
centroids. k-means clustering effectively identifies homogeneous subgroups within a
dataset, useful in fields like image analysis, bioinformatics, social sciences and pattern

recognition (MacQueen [59]).



Chapter 4 applies the methodologies from Chapters 2 and 3 to analyse the COVID-
19 pandemic, drawing insights from the study conducted by Pérez-Segura et al. [66].
This chapter demonstrates how these techniques can be employed to understand non-
clinical risk factors associated with COVID-19 transmission and severity, aiming to

enhance understanding of the disease's impact on specific communities.

Chapter 5 offers concluding remarks, summarising the findings and highlighting the
significance of multivariate analysis techniques in advancing our understanding of
complex phenomena like the COVID-19 pandemic. It discusses the implications of the
research conducted and suggests potential avenues for future exploration in the field

of multivariate analysis and public health.






CHAPTER 2

Dimensionality Reduction

2.1 Introduction

Understanding data analysis approaches can often prove perplexing, especially when
it comes to exploring complex high-dimensional spaces. Within the latter, a new set of
challenges emerges, commonly categorised under the term “curse of dimensionality”.
Unlike lower-dimensional spaces, where information is more densely populated, high-
dimensional ones experience sparsity, making it difficult to draw accurate conclusions.
With the increase in dimensions, the amount of data required for conducting a reliable
analysis grows exponentially, often exceeding practical limits. Alongside the
challenges encountered in conventional techniques, the additional assumptions lurking
in high-dimensional data further complicate analysis and interpretation, making it
increasingly challenging to gain a deep understanding of the data. To address these
complications, Dimensionality Reduction Techniques (DRTSs) have been developed to
project high-dimensional information into a lower-dimensional space while preserving
a large percentage of the information contained in the original data. By decreasing
dimensionality, DRTs allow more effective analysis and visualisation of complex
datasets. This thesis explores the intricacies of dimensionality reduction, examining
its importance, methods, and implications in data analysis (Van der Maaten and Hinton
[74], Koutras [13]).

Facilitating the exploration and interpretation of large and complex datasets plays a
crucial role in modern data analysis. DRTs can enhance the efficiency of machine
learning algorithms by reducing computational complexity and improving predictive
accuracy (Van der Maaten and Hinton [74]). In today's vastly information-driven world,
the large amounts of data pose a significant difficulty for analysts to understand,

making DRTs essential tools. While some aspects are inevitably missing, the



advantages of applying such techniques outweigh this concern (Ntotsis and
Karagrigoriou [64]). Some of the key aspects that highlight the transformative power

of DRT in simplifying data analysis, are:

e Multicollinearity: Multicollinearity is the phenomenon where independent
variables are highly correlated, posing a significant challenge in regression
analysis. Dimensionality reduction can solve this problem by transforming the
correlated variables into a new set of variables that are not correlated with each
other, making the model more stable and easier to interpret.

¢ Noise Reduction: By retaining only the most important features, researchers can
focus on key information, potentially leading to improved model accuracy.

e Computational Efficiency: Fewer dimensions not only simplify the model but
also enhance computational efficiency. For example, machine learning
algorithms trained on lower-dimensional data are more efficient in terms of
execution time and computational resources.

e Visualisation: Visualization is an essential part of data analysis. Reducing the
data dimensionality to two or three dimensions, can help researchers gain
insights into the underlying structure and relationships.

e Overfitting: In most cases, datasets contain numerous features; hence, reducing
their number makes the model less prone to overfitting.

e Non-linear to Linear Data: Through DRTs, non-linear data can be transformed
into linearly separable data, leading to a more easily analysable model.

2.2 Principal Component Analysis

Large datasets are accompanied by a plethora of problems, increasing the potential for
inconsistencies in both analysis and interpretation. Principal Component Analysis (PCA) stands
as a fundamental tool for reducing data complexity. Introduced by Pearson [65] and further

developed by Hotelling ([47],[48]), PCA transforms correlated variables into a new set of



uncorrelated ones (Principal Components - PCs), which are ordered so as to capture the
maximum variance of the original data, facilitating easier interpretation and analysis (Koutras
[13]). By compressing the most significant variation into the initial PCs, PCA provides a
condensed yet accurate representation of the original dataset. This approach enhances the
interpretability of statistical tests and analysis results without sacrificing data fidelity. PCA
finds applications in several scientific areas such as finance, biology, image processing and
social sciences. In finance, it helps identify underlying factors that drive asset price movements;
in biology, it aids in deciphering complex gene expression patterns; in image compression and
reconstruction of visual data, it enables faster transmission and storage; in social sciences it
helps understanding patterns among highly correlated variables (Varmuza and Filzmoser [75],
Hoffmann and Bradley [46]).

To better understand how PCA functions, it is essential to explore how the principal
components are derived. The process begins by identifying the first PC, which captures the
largest amount of variance in the data. Below, we walk through the mathematical steps involved

in deriving the first principal component.

2.2.1. Deriving the first PC
Let us consider a sample of n individuals, each with p observed characteristics (random
variables) Xy, X, ..., Xp. We represent the data in an n x p matrix X, where each element x;;

contains the value of the j-th characteristic for the i-th individual

X11 X12  t Xyp
X21 Xz2 v Xgp

X=1: : . : - (2.1)
Xn1 Xn2 7 Xpp

Then, we define a new variable Y, which is a linear combination of the original variables
X1, X, 0, Xp

Y = 0(1X1 + a2X2 + -+ apo,



where ay, @, ..., a, € R are coefficients that determine the linear combination. For each

observation i, the corresponding value of the new variable Y is given by
Vi = 01X + AxXip + o+ Xy, i=12,..,n
The goal of PCA is to determine the coefficients a;, ay, ..., @, S0 that the variance of Y is

maximised. This is equivalent to maximising the total sum of squares of Y, which can be

expressed mathematically as

Dis(Y) = ) (i = 7% 22)

Starting from the sum of squared distances (SS) of the observations from the mean of Y, we
have

SSy = Zn: zn: O —y)? = %ii —y)? =
i=1

r=1i=r+1 r=1

(2.3)

%Zn: zn:(yr —-9? - 22n:(yr —Noi—-»N+ zn:(yi - )
= =1 i=1

The sum of cross terms (XL, (y- — ¥)(y; — ¥)) simplifies because of the mean property
Yie.(yi —y) = 0, thus Eq. (2.3) takes the form

SSY=%2 Z(yr y)? +Z(yl y)]

—_

EZ[n(yr -2+ Dis(Y)] = %(nDis(Y) + nDis(Y)) = nDis(Y),



thus, we have proved that
SSy = nDis(Y). (2.4)

Therefore, the problem of maximising SSy of Eqg. (2.4)is equivalent to finding the
coefficients ay, @, ..., a, for which the Dis(Y) of Eq. (2.2) is maximised. Hence, it comes
down to the conclusion that the first PC is the linear combination that maximise the Var(Y),

i.e.,

max Var(Y)

al,az,...,ap

subject to the constraint

p

Zajz =1 |a] =1

j=1

This maximisation is achieved by considering the eigenvector corresponding to the largest
eigenvalue of the covariance matrix S, where S = ﬁX’X. The eigenvector provides the

coefficients a;, a, ..., a, that define the first PC.

While the eigenvector mathematically defines the first PC, understanding its geometric
interpretation provides a deeper insight into how these components relate to the data. By
considering the geometric representation, we can better grasp how the data is transformed in
the reduced dimensional space. The geometric interpretation can be used to express Dis(Y)

through the matrix X = (x;;). If we denote by X; the sample means for the values, we collected

for each characteristic X

n
_ 1 .
X =52xij, j=12,..,p, (2.5)
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then, y can be expressed as

n

-

i=1

}7:

3|
3|

n
Z((llxil + arxip + -+ apxip).
i=1

If we denote the scores of the PC for each individual by f = y; — ¥y, we get
f=ay(xin—%1) + ap(xip—%,) + - + ap(xip—%,),
which can be simplified as
f = za, i=12,..,n (2.6)

where, a is the vector of coefficients ([ay, a5, ..., ap]) and z; is the vector of centred data for

the i-th observation ([x;; —X;, X;2—X3, ..., Xip—Xp]).

The total dispersion of the set N along the vector a will be denoted as Dis, (N), that is
n
Dis,(N) = Dis(Y) = z fF=1f=0Ca)(Za)=a (Z'Z)a. (2.7)
i=1

Maximising the dispersion with respect to a, subject to the constraint a’a = 1, yields the first
PC —this is a well-known result from linear algebra. More specifically, if the matrix Z'Z
contains non-negative eigenvalues, denoted A4, 4,, ..., 4,, and assuming that 4, > 4, = --- =

A, = 0, with corresponding unit eigenvectors uy, uy, ..., u,, we can establish the following
1. The vector a that optimises the expression a'(Z'Z)a is the eigenvector u, associated
with the highest eigenvalue A,.

2. The highest value of the quadratic form is equal to A, thus

max Dis,(N) = max Dis, (N) = max a'(Z'Z)a = A,.
llall=1 lall=1 ! lall=1
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The variable Y, which maximises this expression, is referred to as the first principal component.
This provides a concise explanation of how the first PC is derived by finding the direction
(eigenvector) that maximises the variance (associated with the largest eigenvalue) in the dataset.

2.2.2 Deriving the rest PCs

Building on the framework provided for the first PC, the concept of principal components can
be extended to identify additional components that capture the remaining variance in the data,
while being orthogonal to the previous components. After determining the first, which
corresponds to the direction along which the variance 1, is maximised, the procedure continues
to identify additional PCs. These components are orthogonal to the previous ones and account
for the remaining variance in the dataset. To formalise this process, the concepts of
orthogonality and maximisation come into play, ensuring that each subsequent PC is computed
in a way that preserves these important properties.

Each subsequent PC corresponds to an eigenvector of the matrix Z'Z. The j-th PC is associated
with the unit eigenvector wu; that maximises the a’(Z’Z)a, under the condition that a is

orthogonal to all previously found eigenvectors uy, uy, ..., u;_4. The j-th PC captures the

variance 4;, corresponding to the j-th largest eigenvalue of Z'Z
Dis, (N) = w(Z' 2w =%,  j=12,..,p. (2.8)

The total dispersion Dis(N) of the dataset can be decomposed as the sum of the dispersions

along all PCs
p p
Dis(N) = le = z u;(Z'Z)u;. (2.9)
j=1 j=1

This means that each PC contributes A; to the total variance of the data.

The proportion of the total variance explained by the first j PCs is given by
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DlS(N) _11+AZ+'“+AP’

1<j<p (2.10)

This indicates the cumulative proportion of variance captured by the first j components.

In practice, when p is large, often only the first few PCs (those associated with the largest
eigenvalues) are retained, as they capture the majority of the variance. The matrix Z'Z can be

approximated by summing only the terms corresponding to these leading eigenvalues

Z'Z = uguy + Luyu; + - + Luju, 1<j<p. (2.11)

If the eigenvalues 4;,.; =...= A, are relatively small, then the approximation in Eq. (2.11)

provides a good representation of the original data in a lower-dimensional space.

Note that many functions in the programming language R, such as the function principal()
from package “psych” that we utilise in Chapter 4, often represent the eigenvectors in scaled

forms related to the principal components

v; = Aju]-, 1<j<p.

The eigendecomposition, i.e., the process of finding eigenvectors and eigenvalues of the input
matrix, is typically implemented and applied after scaling the data. This decomposition is
generally recommended in high-dimensional cases to formulate the PCs due to its lower
computational demands. An alternative to eigendecomposition is the Singular Value
Decomposition (SVD), which decomposes the original data matrix into three matrices: one
containing the left singular vectors, a diagonal matrix holding the singular values, and one
containing the right singular vectors. While SVD offers numerical stability and versatility in
handling non-square matrices, it requires the calculation of all singular values and vectors,
potentially increasing computational complexity. Additionally, it may not offer as

straightforward an interpretation of results as eigendecomposition.

13



Beyond SVD, other methods such as iterative approaches including Von Mises Iteration, also
known as power iteration (Von Mises and Pollaczek-Geiringer [77], Roughgarden and Valiant
[17]), Lanczos iteration (Lanczos [57]), and the Jacobi eigenvalue algorithm (Golub and Van
der Vorst [40]), could also be used for formulating scores and loadings. These iterative methods,
while potentially computationally efficient for large datasets, may require careful parameter
tuning and do not guarantee convergence for all datasets.

In this study, we opt for eigendecomposition mainly due to its efficiency in handling high-
dimensional data in terms of both time and memory consumption. It facilitates the identification
of key patterns and structures within datasets by revealing the dominant directions of variation
and serves as a foundational tool in several DRTs aiding in the exploration and interpretation
of complex data relationships. All these factors make the method a reasonable choice for large-

scale data analysis tasks, ensuring both accuracy and efficiency.

In general, the eigendecomposition can be performed either on the covariance or the
correlation matrix. When the eigendecomposition is performed on the covariance matrix, it
helps to identify the directions in which the data varies the most. On the other hand, when the
eigendecomposition is performed on the correlation matrix, it helps in finding the directions in
which the data vary the most, but this time it signifies how each feature is related to the others
while considering their different scales or units of measurement. The correlation matrix is often
preferred because it allows for easier comparison of values and facilitates clearer

communication of information regarding any linear patterns present in the dataset.

One of the most crucial tasks in PCA is determining the number of components to retain. This
decision is critical as it directly influences the interpretability and performance of subsequent
analysis (Jolliffe [49]). Various methods exist to ascertain an optimal number of components,
each with its own rationale, advantages, and drawbacks. Among the most effective and

commonly used methods are (Koutras [13])
1. Kaiser's Criterion: Kaiser's criterion suggests retaining components with

eigenvalues greater than one, as these components explain more variability than

a single original variable and are therefore considered worthy of retention.
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While straightforward and easy to implement, Kaiser's criterion may not always
be applicable, especially in datasets with complex structures or non-linear

associations (Kaiser [52]).

2. Catell’s Scree Test (Scree Plot): One popular approach involves plotting the
eigenvalues against the number of components. The “elbow” point on the
resulting plot (see e.g. Fig. 2.1), where the eigenvalues begin to level off, is
typically considered as an indicator of the optimal number of components to
retain. This approach allows for a visual assessment of the proportion of
variance explained by each component. While simple and intuitive, the
subjective determination of the “elbow” point can sometimes be challenging,

leading to potential ambiguity in the selection process (Cattell [31]).

Fig 2.1: A sample scree plot produced in R. The Kaiser criterion is shown in red.
Source: Wikipedia [18]

Scree Plot
Ts] a
o
o ] Y
2 w |
S o]\
© <1 o
=2 [Te]
IV
. Sﬂ__
- —_— )
Te} ST 0 —g—n_
=3 O —o0—0o_¢o_
T T T T T T I T | |

1 2 3 4 5 6 7 8 9 10 11 12

Component Number

3. Cumulative Variance: By selecting the number of components that enclose a
high percentage of variance (usually at least 70% or 80%), researchers can
effectively capture the structure of the original data (see Eq. (2.11)). This
approach provides a clear criterion for component selection, ensuring that a

significant amount of information is retained. However, it may result in
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retaining more components than necessary, which can (potentially) lead to
overfitting and increased computational complexity (Wehrens [78]).

Selecting the optimal number of components involves careful consideration of
various factors, including the proportion of variance explained, model complexity, and
predictive performance. While no single approach is considered superior, a
combination of them, tailored to the specific characteristics of the dataset and the
research objectives, can help ensure a robust and meaningful reduction of the
dimensions. In most cases, it is advisable to utilise the initial 2 or 3 PCs, as they can

be effectively visualised in 2- or 3-dimensional spaces.

As with many statistical methods, PCA works under certain assumptions. If these
assumptions are violated, the validity and interpretability of the results may be

compromised. The core assumptions of PCA are:

1. Linearity: The first assumption is that the relationships between

independent variables are linear.

2. Large Sample Size: PCA performs better with a large sample size, which
ensures that the covariance matrix is accurately estimated. Small sample

sizes can potentially lead to unstable results.

3. Independence of Principal Components: The derived PCs are orthogonal,
meaning they are statistically independent of each other, simplifies

interpretation.

4, Normality (optional): PCA is generally insensitive to deviations from
normality. However, when the data is normally distributed, the PCs more
accurately reflect the underlying structure of the data, facilitating more
meaningful interpretation. PCA can still be applied to non-normally

distributed data, though the results may be less reliable.
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Assessing and addressing these assumptions is essential for ensuring the validity,
reliability, and interpretability of PCA results in practical data analysis scenarios
(Laerd Statistics [14]). While PCA offers numerous benefits, it is crucial to recognise
its limitations and potential drawbacks. In cases of large datasets or intricate
multicollinearity structures, PCA may lead to model overestimation or
underestimation, affecting the accuracy of analysis. Researchers must carefully
evaluate dataset characteristics and explore alternative techniques, such as non-linear

DRTs, to address these challenges effectively.

Overall, PCA represents a vital tool for data analysts, providing an efficient approach
to dimensionality reduction. By simplifying data representation without compromising
accuracy, PCA enables researchers to uncover hidden insights and make well-justified

decisions across diverse applications.

2.3 Univariate Partial Least Squares Regression

Exploring beyond PCA, another DRT frequently used is the Partial Least Squares
Regression (PLSR). While PCA uncovers patterns and reduces dimensionality by
maximising variance in the predictor matrix X, PLSR focuses on finding components
that explain the variation in the predictor matrix X while also maximising the
relationship with the response variable Y. In other words, it aims to identify patterns
in X that are most useful for predicting Y. Although both techniques share the same

goal of simplifying complex data, each brings a unique perspective to the table.

As discussed in Section 2.2, PCA aims to capture the maximum variance in the data
by creating PCs. These components are ordered by the amount of variance they explain,
allowing for data visualisation and dimensionality reduction. However, PCA may not
always be optimal for modelling tasks, particularly when the goal is to maximise the
predictive power of the model. This is where PLSR can be useful, as it uses both
predictor inputs and response outputs (Rosipal and Kramer [69]). To complement this,
PLSR creates new predictors, often referred to as Latent Variables (LVs), which are

linear combinations of the original predictor variables. These LVs are constructed so
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that they are highly associated with the response variable, thus capturing predictive
relationships between the two groups of variables. By doing so, it identifies a
parsimonious representation of the predictor variables that most accurately

corresponds to the response variable (Wold et al. [80], Wehrens [78]).

To better understand the decomposition of data in PLSR, it is useful to examine the approach
outlined by Ng [15]. Let X = [x1 ...x,,] be an n X m mean-centred matrix and let Y =

[y1 .- ¥p] b€ @ n X p mean-centred matrix. In the univariate case, where Y =y, isann x 1

vector, the aim is to decompose the matrices X and Y as follows

X=TP
and
Y =UQ'. (2.12)

Here, T (nx 1) and U (n x [) are matrices of latent scores (I denotes the number of
extracted LVSs), representing the new variables that are linear combinations of the
original predictors and response variables. The matrices P and Q are loadings that
define these linear combinations. Note that the scores, even though they are denoted
as in PCA, their formulas differ. In the case of PLSR, scores represent the new
coordinates of the samples in the LV space. PLSR is (commonly) employed with the
use of NIPALS (Non-linear Iterative Partial Least Squares) (Wold [79]) or SIMPLS
(SIMplified of the Partial Least Squares) (De Jong [34]) algorithm to iteratively derive
the LVs. These algorithms iteratively calculate the weights, scores, and loadings. The

steps for the NIPALS algorithm are as follows.

o Step I (Initialisation):
- Choose an initial vector ¢t = X; for some column of j of X.

- Setu =Y, for some column j of Y.
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e Step Il (Iterative Updates):
- Repeat the following procedure until convergence!, i.e., until t stop

changing

. X'u
P Xl

t:= Xp,

. Y't
T= ey

u:=Yq.

- These steps ensure that the LVs t and u capture the most covariance between X and
Y.

e Step I11 (Deflation)?:
After determining the first pair of LVs, deflate the matrices X and Y to remove

the information captured by the current LVs

X =X—-tp
and
Y :=Y—-uq'

1 In the case when the Y matrix has only one variable, we can set g to 1 and the last two steps of the loop can be
omitted.

2 The term "deflation” in the context of PLSR refers to the process of removing the information that has been

captured by the current LV from the original matrices X and Y. This ensures that subsequent LVs explain
different aspects of the data, rather than repeating the information already captured.
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e Step IV (Repetition):
Repeat Steps Il and 111 to extract further LVs until the desired number of them

is obtained.

Through this iterative process, PLSR captures the essential patterns in the data by
projecting it onto a lower-dimensional space. This is done while simultaneously
maximising the covariance between the predictors and the response variable. Note that
the iterative process in PLSR can also be viewed through the lens of eigenvalue
problems. The vectors p and g derived during the NIPALS iterations are not directly
eigenvectors, but rather weight vectors that aim to maximise the covariance

between X and Y through iterative projections.

Once the LVs T and U are determined, a regression model can be built up to relate X

and Y through the latent variables, namely

Y = XPBQ’, (2.13)

where B is the matrix of regression coefficients that links the latent scores T and U.

When it comes to the assumptions that must be met, PLSR shares some with PCA due
to their conceptual similarities in dimensionality reduction. PLSR must meet the same
assumptions as PCA (i.e., linearity, absence of multicollinearity, adequate sample size,
interval or ratio data, and normality). Additionally, PLSR has unique assumptions
(Wold et al. [80]) such as

1. Homoscedasticity: PLSR assumes homoscedasticity, meaning that the variance of
the residuals is constant across all levels of the independent variables.
Heteroscedasticity can lead to inefficient estimates and affect the reliability of the

model.
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2. Independence: PLSR assumes that the observations are independent of each other.
Violation of this assumption, such as in the presence of autocorrelation in time-series

data, can lead to biased estimates and incorrect inference.

These assumptions are critical for ensuring the validity and reliability of the PLSR
model. While some deviations can be tolerated, significant violations may require

alternative methods or pre-processing steps to address these issues.

2.4 Multivariate Partial Least Squares Regression

One advantageous aspect of PLSR is its flexibility to handle both univariate and
multivariate responses. In the case of a univariate response, as discussed, PLSR
operates similarly to traditional regression models, where a single response variable is
predicted based on a set of predictor variables. Thus, the univariate approach is useful

for predicting a single outcome of interest.

However, PLSR can also be extended to a multivariate approach when dealing with
multiple response variables. This capability allows to simultaneously model the
relationships between predictor variables and multiple response variables, capturing
complex dependencies among them. This multivariate approach is especially useful
when analysing datasets with correlated responses or when the aim is to determine how
predictors influence multiple outcomes simultaneously. A multivariate approach is
beneficial because it accounts for the correlations between response variables,
providing more robust and comprehensive modelling results. Additionally, by jointly
modelling multiple responses, PLSR can reveal shared patterns and underlying
relationships that may not be apparent when analysing each response variable
separately. Nevertheless, implementing PLSR in multivariate scenarios, can
potentially introduce challenges, particularly in terms of computation and
interpretation. The calculation becomes more complex as the model must estimate the
relationships between predictor variables and multiple response variables
simultaneously. Additionally, interpreting the coefficients and contributions of
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predictor variables to each

multivariate setting.

response variable becomes more nuanced

in the

Table 2.1 summarises the similarities and dissimilarities between PCA and PLSR
(Wold et al. [80], Van der Maaten and Hinton [74], Wehrens [78], Rosipal and Kramer

[69]).

TABLE 2.1

Similarities and dissimilarities between PCA and PLSR.

PCA VS PLSR

SIMILARITIES

DISSIMILARITIES

Dimensionality Reduction: Both PCA
and PLSR tries to reduce the dimensions of
original dataset by creating new variables
(called PCs and LVs respectively).

Supervision: The primary distinction
between PCA and PLSR lies in their
supervision status. PCA is an unsupervised
technique, meaning it operates solely based
on the structure of the predictor variables. In
contrast, PLSR is a supervised technique that
explicitly incorporates information from both
predictor and response variables to construct
new variables

Linear Transformations: Both methods
apply linear transformations to derive the
new variables. PCA derives principal
components by finding linear combinations
of the original variables; PLSR constructs
components that are linear combinations of
both the predictor variables and the response
variable.

Objective: PCA aims to maximise the
variance of the data, capturing as much
information as possible in the new variables.
On the other hand, PLSR aims to maximise
the covariance between the predictor
variables and the response variable, focusing
on predictive modelling rather than data
exploration.

Orthogonality: The new variables created
by PCA and PLSR are orthogonal to each
other.

Interpretation: While PCA provides insight
into the underlying structure of the data by
identifying patterns and relationships among
variables, PLSR is more focused on
prediction, making it a preferred choice when
the goal is to build a predictive model.
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2.5 Other Dimensionality Reduction Techniques

In addition to the techniques discussed in detail above, there are a variety of DRTSs,
each of which has unique advantages and limitations. Below, we briefly document
these alternative techniques to inform the reader of their existence and provide a
broader context; however, they will not be implemented in the application of this

thesis.

e Sparse PCA is a variant of PCA that encourages sparsity in the principal
components, resulting in a more interpretable representation of the data. It
selects a subset of the original features while retaining most of the variance.
Sparse PCA is useful for feature selection and dimensionality reduction in high-
dimensional datasets. However, finding the optimal sparsity level can be
challenging, and the resulting representation may not always be intuitive
(Bertsimas et al. [28]).

e Kernel PCA is a nonlinear extension of PCA that maps data into a higher-
dimensional space using a kernel function before performing PCA. This allows
capturing nonlinear relationships in the data. Kernel PCA is flexible and can
handle complex data structures, however, it requires tuning of kernel parameters

and may be computationally demanding for large datasets (Scholkopf et. al.

[70]).

e Independent Component Analysis (ICA) is a technique used to separate a
multivariate signal into independent components. It assumes that the observed
data are a linear combination of independent sources and aims to recover these
sources. ICA is particularly useful for blind source separation and feature
extraction. However, it relies on strong statistical assumptions and may struggle

with mixed signals or non-Gaussian distributions (Comon [33]).

e Autoencoder is a neural network architecture used for unsupervised learning

of efficient data representations. It consists of an encoder and a decoder, which
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learn to compress and reconstruct the input data, respectively. Autoencoders are
versatile and can capture complex patterns in the data. However, they may
suffer from overfitting and require careful architecture design and training
(Kramer [56]).

Uniform Manifold Approximation and Projection (UMAP) is a DRT that
emphasises in preserving both local and global structures in the data. It
constructs a low-dimensional representation by optimizing a low-dimensional
embedding to match the high-dimensional data nearest neighbours. UMAP is
known for its potential to handle large datasets efficiently. However, like t-
SNE, UMAP may require parameter tuning and can be sensitive to local density

variations.

t-Distributed Stochastic Neighbor Embedding (t-SNE) is widely used for
visualizing high-dimensional data by mapping them to a lower-dimensional
space while preserving the local structure. It is particularly effective for
exploring clusters and patterns in the data. However, t-SNE can be
computationally demanding and sensitive to hyperparameters, requiring careful

tuning (Van der Maaten and Hinton [74]).

Locally Linear Embedding (LLE) aims to preserve local relationships within
the data by reconstructing each data point as a linear combination of its
neighbours. This technique is useful for unfolding nonlinear manifolds and
capturing the underlying structure of the data. LLE is robust to noise and
outliers, but it may struggle with very high-dimensional data and requires

careful selection of parameters.

Isomap is a method for nonlinear dimensionality reduction that focuses on
preserving the global geometry of the data. By constructing a graph representing
the data's intrinsic geometric structure, Isomap embeds the data into a lower-

dimensional space. One advantage of [somap is its potential to capture nonlinear
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relationships in the data. However, it can be sensitive to noise and outliers,

which may affect the quality of the embedding (Tenenbaum et al. [73]).

e Non-negative Matrix Factorization (NMF) decomposes a non-negative data
matrix into two lower-dimensional matrices, representing parts-based
representations of the original data. It is commonly used for feature extraction
and modelling tasks. NMF is interpretable and suitable for sparse and non-
negative data. However, it requires careful initialization and may be trapped in

local optima.

e Random Projection is a simple yet effective technique for dimensionality
reduction. It projects high-dimensional data onto a lower-dimensional subspace
using a random matrix. Despite its simplicity, random projection can preserve
pairwise distances reasonably well and is computationally efficient. However,
it may not capture complex nonlinear relationships in the data as effectively as

other methods.

DRTs can be classified using several criteria, each offering unique insights into data
analysis. Understanding the diverse classifications and methodologies of them, enables
researchers to implement these techniques effectively in various tasks. Whether
seeking to simplify data structures, uncover hidden patterns, or enhance predictive
models, DRTs offer a versatile way for exploring the complexities of high-dimensional

data.

One fundamental classification of DRTs revolves around feature extraction and
feature selection methods. Feature selection techniques, shift through variables to
identify and remove irrelevant or redundant ones, resulting in a streamlined dataset.
On the other hand, feature extraction techniques like PCA and PLSR create new

variables that condense and summarise information from the original dataset.

Additionally, DRTs can be categorised based on the presence of class labels in the

data, distinguishing between supervised and unsupervised approaches. Supervised
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techniques like PLS use class labels to extract discriminant information or LVs from
the data. In contrast, unsupervised techniques such as PCA and Isomap operate without
class labels, identifying patterns and relationships based solely on the data's intrinsic

structure.

Furthermore, DRTs can be categorised based on the data structure, and more precisely
by taking into account whether it occurs linear or non-linear relationship between the
variables of the examined dataset. Linear techniques, like PCA excel in capturing
linear relationships between variables. On the other hand, non-linear methods such as
Isomap and Kernel PCA are optimal at uncovering complex, non-linear patterns within

the data.

Considering the distinctions outlined above, PCA emerges as an unsupervised linear
feature extraction technique, highlighting complex patterns hidden within data
structures without the need for external guidance. Conversely, PLSR takes on the role
of a supervised linear feature extraction technique, leveraging class labels to guide the

extraction of information and enhance predictive modelling capabilities.

Closing this Section, we mention that PCA is essentially a data-driven tool aimed at
uncovering patterns in terms of variance explained, while PLSR is more geared
towards predictive modeling and capturing the relationships between variables. The
choice between the two techniques depends on the specific objectives and needs of the
analysis. PLSR is often described as a supervised analogy of PCA, but their connection
extends beyond the simple dichotomy between supervised and unsupervised methods.
Despite their similarities, the theoretical frameworks and mathematical algorithms
used are quite different. PLSR typically utilises algorithms such as SIMPLS (De Jong
[34]) or NIPALS (Wold [79]) to iteratively generate LVs. These algorithms are
designed to incorporate both predictor and response variables and maximise the
covariance between them, which helps in capturing the predictive relationships
between these variables. In contrast, PCA does not rely on such specific algorithms
designed for regression tasks. It focuses only on the structure of the predictor variables

and aims to maximise the variance of the data.
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CHAPTER 3

Cluster Analysis

3.1 Introduction

Cluster analysis, or shortly clustering, is a crucial technique in data analysis for
finding groups of related data points. It is used to explore hidden patterns or structures
within large collections of data. This allows researchers to understand corresponding
groups of similar data points, providing insights into the underlying structure of the
data. Clustering involves partitioning a dataset into subsets (also called clusters) such
that items belonging to the same cluster are more similar to each other than to those in
different clusters. As the number of features or dimensions in a dataset increases,
clustering faces unique challenges. High-dimensional data tends to be sparse, making
it harder to identify meaningful clusters. Unlike lower-dimensional spaces, where
clusters are more apparent, high-dimensional spaces require a significantly larger
amount of data to maintain statistical reliability. This sparsity complicates both the
analysis and interpretation of data, making it challenging to gain accurate insights
(Hastie et al. [43]). To overcome these issues, many clustering algorithms have been
engineered to work efficiently with high-dimensional data. These algorithms are
tailored to discover complex patterns that are not easily observed, enhancing the
processing and understanding of the data. Clustering reduces complexity in the data
and increases the efficiency of machine learning models and other analytic methods

(Aggarwal [21]).

Clustering is a well-known concept that has been practiced for ages. From an early
age, we automatically group objects and entities in our minds, such as distinguishing
dogs from cats, basketball from football, or even identifying someone's biological
gender. It is through the process of grouping and sub-grouping that learning happens,
as we organise patterns observed in everyday activities (Jain et al. [51]). The majority

of the approaches have been developed since the mid-1960s. However, the
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computational intensity required for these techniques initially hindered their practical
use. Over the last couple of decades, the rise of microcomputers has led to the creation
of many statistical software packages for various machines and platforms, specifically
for clustering data. By 2020, even complex datasets with many variables and large
sample sizes can yield potentially useful results with relatively little effort (Hastie et
al. [43]). Clustering has had a significant impact on many scientific fields. For
example, the classification of chemical elements in Mendeleev's periodic table in the
1860s was a landmark application, crucial for understanding atomic structure. In
astronomy, the classification of stars into dwarfs and giants using the Hertzsprung-
Russell diagram of temperature versus luminosity significantly influenced the
development of the theory of the universe's creation (Kaufman and Rousseeuw [54],

Everitt et al. [37]).

Clustering methods are a major branch of modern data analysis and have applications
across all scientific disciplines for exploring and interpreting large, complex datasets.
Grouping data can reveal hidden patterns and relationships that researchers might not
otherwise discover. This is why these techniques are highly effective in many fields
such as healthcare, social and economic sciences, and ecology, as they inform
researchers about the dynamics within their objects of study, enabling wiser decisions.
Furthermore, they can enhance the performance of machine learning models by

simplifying the data and reducing noise (Berkhin [27]).

There are various clustering techniques, each offering unique advantages and
limitations. Understanding these aspects may help in choosing the most appropriate
method for specific data analysis tasks. In Section 3.2, we briefly document several
techniques to provide a broader context, but these techniques will not be implemented
here. This thesis focuses on the k-means clustering algorithm (also known as the
MacQueen algorithm) due to its relevance to the application of this research (see

Chapter 4).

K-means partitions data into k clusters by assigning each data point to the cluster

whose mean is closest. It is frequently selected for its simplicity and computational
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efficiency, particularly in handling large datasets (Koutras [13], Hastie et al. [43]).
Furthermore, the technique is computationally fast and typically converges.
(terminates) after a few iterations, often reaching the final solution early in the process,
with only minimal adjustments needed afterward. This efficiency makes it particularly
suitable for big data applications, as it requires minimal memory and computational
power. The algorithm’s ability to quickly form clusters, often resulting in groups of
approximately equal size, enhances its utility in large-scale analyses (Koutras [13]).
Moreover, k-means is versatile and applicable across diverse domains. Its methodology
is straightforward, as outlined by Bishop [29]. Below, we outline the steps for its

implementation.

Algorithmic Procedure |

Step | (Initialisation): The first step is initialisation, where k initial centroids py are
chosen. These centroids can be selected randomly or by using techniques like k-
means++ (Arthur and Vassilvitskii [24]) to improve convergence. In the case of random

initialisation, each centroid py is chosen from the data points x;

U = X;, fork =1,2,...,K.
Step Il (Assignment): In the assignment step, each data point x; is assigned to the
nearest centroid. The assignment is based on the Euclidean distance between the data
point and each centroid. The data point x; is assigned to the cluster whose centroid
U is closest

¢; = argming||x; — le||2

Here, c; is the index of the centroid closest to x;and ||xl- — |J-k|| denotes the Euclidian

distance.

Step 11 (Update): The update step involves recalculating the centroids. Each centroid

U is updated by taking the mean of all data points assigned to that cluster
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where Cj is the set of points assigned to the k-th cluster, and |Cy| is the number of

points in cluster k.

Step IV (lIteration): The assignment and update steps are repeated iteratively.
Specifically, the assignment and update steps are alternated until the centroids no
longer change significantly or a predefined number of iterations is reached (See Fig
3.1). Convergence is typically assessed by checking if the changes in centroids

positions are below a certain cutoff ¢, i.e.,

t+1

||uk —uf(” <, for all k,

where ! is the centroid of cluster k at iteration t, and ¢ is a positive cutoff point.

31



Fig 3.1: Visual representation of the Algorithmic Procedure | for the
implementation of k-means.

Retrieved from Koutras [13]
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While k-means clustering offers numerous advantages, it also presents certain
limitations. One of the major challenges is determining the optimal number of clusters.
Deciding the best number of clusters is not straightforward, and common approaches
such as the Scree Test, Silhouette Analysis, or Gap Statistics are often employed for

this purpose (Kaufman and Rousseeuw [54]).

One commonly used technique is the Scree Test (also known as elbow method), which
involves plotting the within-cluster sum of squares against the number of clusters and
identifying the point where the rate of decrease levels off (known as the “elbow” in
the curve). This point indicates the optimal k for testing. A visual representation of
the technique can be seen in Fig. 3.2, which illustrates the results of the elbow method,

where the total within-cluster sum of squares is plotted against the number of clusters.
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The “elbow” of the curve, where the rate of decrease significantly slows, can be seen

at k = 4, indicating that three clusters are optimal in this example.

Fig 3.2: Scree Test portraying the optimal number of clusters to be kept (4).

Retrieved from Kassambara [12]
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On the other hand, Silhouette Analysis measures how well each data point fits within
its assigned cluster compared to other clusters. The silhouette score for each point is
calculated by taking the difference between the average distance to points in its own
cluster and the average distance to points in the nearest cluster, normalised by the
maximum of the two. The score ranges from -1 to 1, where

e a score close to 1 indicates that the point is well-clustered and far from the
neighbouring clusters,
e a score near 0 suggests that the point is on or near the boundary between
clusters, and
e anegative score indicates that the point might be assigned to the wrong cluster.
Higher average silhouette scores across all data points suggest better-defined and more
distinct clusters. This can be used as a metric for evaluating the quality of clustering

results and selecting the optimal number of clusters. Fig. 3.3 illustrates an example of
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a Silhouette Plot, showing how the silhouette score changes with different numbers of
clusters. The optimal number of clusters is often where the silhouette score is highest,

as seen in this example where k =2 clusters yield the highest average silhouette score.

Fig 3.3: Sillouete Plot portraying the optimal number of clusters to be kept (2).
Retrieved from Kassambara [12]
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Another approach, Gap Statistics compare the total within-cluster variation -
essentially the sum of squared distances between each data point and its cluster
centroid- for different numbers of clusters with the expected values under a null
reference distribution. The expected values refer to the total within-cluster variation
that would be observed if the data were uniformly distributed without any inherent
cluster structure. The null reference distribution represents this random uniform
distribution of data points. The method identifies the number of clusters that
maximises the Gap Statistic, which is the difference between the observed within-
cluster variation and these expected values, thereby determining the optimal clustering
structure (Hastie et al. [43]). Fig. 3.4 presents a Gap Statistics plot, where the gap
statistic is plotted against the number of clusters. The number of clusters at which the

gap statistic is maximised, (here k = 4) is considered the optimal choice. This point
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represents the maximum difference between the observed clustering result and what
would be expected if the data had no real clusters.

Fig 3.4: Gap Statistics Plot portraying the optimal number of clusters to be kept (4)
Retrieved from Kassambara [12]
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Additionally, the efficiency of the k-means algorithm can depend significantly on the
choice of initial centroids. Poor initialisation can lead to suboptimal clustering results,
a phenomenon often referred to as the “local minimum problem”. To mitigate this,
methods like k-means++ (Arthur and Vassilvitskii [24]) are employed to improve the

selection of initial centroids by spreading out the initial points, thus increasing the
likelihood of converging to a better solution.

The technique also assumes that clusters are spherical and of similar size. This
assumption may not always hold true for real-world datasets, a fact leading to
suboptimal clustering when the actual data clusters vary in shape and size. Moreover,
it is susceptible to outliers, which can distort the placement of centroids and affect the
overall clustering outcome. Outliers, being distant from other data points, can

disproportionately influence the centroid calculations, leading to skewed clusters.
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Addressing these issues often requires preprocessing steps such as outlier detection

and removal, or using more robust clustering methods that are less sensitive to outliers.

In the context of our application, k-means clustering will be used to extract and group
district data. The goal is to cluster districts based on various parameters to uncover
similarities and patterns among them. By clustering these districts, we aim to identify
meaningful patterns and similarities across different attributes. This understanding is
crucial for making decisions and optimising resource allocation within the city of
Madrid. Understanding the application of this technique to specific datasets may reveal
hidden patterns and structures that might otherwise go unnoticed. This study aims to
illustrate practical applications of the technique in data analysis, demonstrating how
analysts can effectively leverage it to enhance their analytical processes, drawing upon

foundational research.

Summarising, k-means is a non-hierarchical clustering method. This method is
iterative and based on the principle of the centre of the group, known as the centroid.
The centroid represents the mean value of each variable for a single group. During
clustering, each observation is placed in a group based on its proximity to the centroids
of all groups. Essentially, for each observation, we calculate its distance from each
centroid and assign it to the group with the minimum centroid distance. The main
difference between these methods lies in when and how they update the centroids and
reassign each observation. Euclidean distance is the standard and often ideal approach
for such calculations, though other distance metrics can also be effective. The power
of these methods lies in the continual iterative updating of centroids as observations
are assigned to groups. This iterative process refines the groups over time until the
clustering stabilises, resulting in no further changes. This approach efficiently groups
data points into clusters, facilitating the identification of patterns and structures within
large datasets. Non-hierarchical methods are widely used in various fields, from

clinical research to climatology, due to their simplicity and effectiveness.
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3.2

Alternative Clustering Techniques

In addition to the techniques discussed in detail above, there exists a variety of

clustering techniques, each of which has unique advantages and limitations.

Understanding these can help in choosing the most appropriate for specific data

analysis tasks. Below, we briefly document several alternative techniques in order to

inform the reader of their existence and provide a broader context; however, they will

not be implemented in the application of this thesis.

Hierarchical Clustering: Hierarchical clustering builds a hierarchy of clusters
by either iteratively merging smaller clusters into larger ones (agglomerative)
or splitting larger clusters into smaller ones (divisive). This method does not
require the number of clusters to be specified and generates a dendrogram to
visualise the cluster hierarchy. However, it may be computationally intensive

for large datasets and is sensitive to noise or outliers (Nielsen [63]).

Agglomerative Clustering: A specific type of hierarchical clustering,
agglomerative clustering starts with each data point as its own cluster and
merges the closest pairs of clusters iteratively. It is simple to understand and
implement and provides a comprehensive cluster hierarchy. Nonetheless, it is
computationally intensive for large datasets and sensitive to the choice of

distance metric (Kononenko and Kukar [55]).

Density-Based Spatial Clustering of Applications with Noise (DBSCAN):
DBSCAN groups points that are close to each other based on a distance metric
and marks points in low-density regions as outliers. This method can find
clusters of arbitrary shapes and is robust to noise. However, it requires careful
tuning of its parameters and may struggle with clusters of varying densities

(Ester et al. [35]).
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Gaussian Mixture Models (GMM): GMM assumes that data points are
generated from a mixture of several Gaussian distributions with unknown
parameters. It provides a probabilistic clustering approach that can capture more
complex cluster shapes. However, GMM requires specifying the number of

clusters and can be computationally expensive (Bishop [29]).

Spectral Clustering: Spectral clustering uses the eigenvalues of the similarity
matrix of the data to perform dimensionality reduction before clustering in
fewer dimensions. It can handle non-convex clusters and is often more effective
for data that is not well separated. However, it is computationally expensive and

sensitive to the choice of similarity matrix (Von Luxburg [76]).

Ordering Points To Identify the Clustering Structure (OPTICS): OPTICS is
an extension of DBSCAN that creates an augmented ordering of the database,
representing its density-based clustering structure. This method can identify
clusters of varying densities. However, it is more complex and computationally

intensive than DBSCAN (Ankerst et al. [23]).

Mean Shift: Mean Shift iteratively shifts each data point towards the mode
(highest density point) of its neighborhood until convergence. It does not
require specifying the number of clusters and can find arbitrarily shaped
clusters. However, it is computationally expensive and requires careful

selection of the bandwidth parameter (Cheng [32]).

Affinity Propagation: Affinity Propagation uses a message-passing algorithm
between data points to identify exemplars that best represent the clusters. It
does not require specifying the number of clusters and can identify clusters of
varying shapes and sizes. However, it is computationally expensive and may

produce many clusters if not tuned properly (Frey and Dueck [39]).
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The choice of the appropriate method is determined by the properties of the dataset at
hand and the research objectives of the clustering process. The existence of many
clustering techniques assists data science researchers in addressing high-dimensional

and complex data problems, enabling them to make the best use of their insights.
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CHAPTER 4

Multivariate Analysis of Risk
Factors of the COVID-19
Pandemic in the Community of
Madrid, Spain

4.1 Introducing the Subject: An Overview

In late 2019, the first cases of coronavirus emerged in China's Wuhan Province. By
January 2020, a new strain, SARS-CoV-2, was confirmed, sparking a global pandemic
that impacted countries unevenly (WHO [19]). While some, like Spain and Italy, faced
significant challenges, others were hardly affected. This discrepancy has led to
increased scientific interest in understanding why certain societies are more
susceptible to COVID-19. Researchers have explored various environmental factors,
such as weather conditions and pollution levels, to determine their role in the virus's
spread (Shakil et al. [71], Briz-Reddn and Serrano-Aroca [30]). Despite numerous
studies, reaching a scientific consensus has proven difficult due to several reasons.
Differences in variable measurement, the selection of variables, the analytical methods
applied, and spatiotemporal considerations are some of the challenges (Haug et al.
[44]). This has prompted the need for more comprehensive research to overcome these

issues.

To address these gaps, Pérez-Segura et al. [66] considered a multivariate approach.
They considered a wide range of factors such as socioeconomic conditions and
atmospheric pollution by focusing on Madrid’s community during the pandemic's

initial wave. By employing advanced statistical methods, the study aimed on providing
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deeper insights into the complex interplay between environmental factors and COVID-
19 transmission. Thus, rather than seeking universal conclusions, they attempted to
uncover localised vulnerabilities and identify practical strategies to enhance societal
resilience. By understanding the unique challenges faced by different communities,
their paper contributes to more effective disaster preparedness efforts in the case of

similar events in the future.

4.2  The primary aim

The primary goal of the study [66] is to investigate how environmental factors affect
COVID -19 infections in the Madrid community. To achieve this, the authors employed
a method involving multiple variables, mainly focusing on climatological, pollution,
and social aspects. Their approach can be characterised as a three-step algorithmic
process exploiting multivariate techniques. Initially, potential risk factors were
identified and selected based on existing literature. Then, a feature extraction DRT,
namely PCA, was applied to reduce the number of variables while retaining most of
the variability of the original variables. Finally, a k-means clustering analysis was
conducted to categorise the territory based on these new risk factors, followed by
statistical methods to characterise each cluster. Linear regression models were
employed to understand the influence of each component on the total number of cases

for the entire territory and for each cluster.

The data collection, pre-processing, cleaning, and analysis were conducted based on
the procedures outlined in the Pérez-Segura et al. [66]. The statistical analysis was
performed using R version 4.4.1 along with several libraries, including “sf”,
“tidyverse”, “psych”, “extrafont”, “cluster”, “sandwich”, “Imtest”, “reshape2”,
“factoextra”, “agricolae”, “ggspatial”, “nortest”, and “pls”. This thesis does not aim
to challenge the established procedures and findings of the paper. Instead, it seeks to
explore how the statistical power of the analysis can be enhanced through alternative

DRTs.

A deeper dive into the data used shows that the total number of municipalities in the

community of Madrid was considered, excluding the municipality of Madrid itself and
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instead utilising its 21 districts for better comparability. Thus, a total of 199 districts
and municipalities were included, with data sourced from publicly available databases.
The analysis focused on the first-wave data from March to May 2020, when the first
lockdown was imposed in Spain. Data for the target variable, i.e., the total accumulated
infections (TAI) in the Madrid community, were obtained from the open dataset
“COVID 19 -TIA” (Datos Abiertos Comunidad de Madrid [7]) by the municipalities
and districts of Madrid. Absolute values were used instead of ratios per 100,000
population to account for population differences. To address the missing data (~21%)
caused by confidentiality —where cases with fewer than 6 instances were replaced with
NA- a constant value of 5 was used for imputation. This simple and consistent
approach helps avoid distorting the data while allowing the analysis to proceed
efficiently. Additionally, a Box-Cox logarithmic transformation was applied to further

normalize the data and improve its suitability for analysis.

The independent variables used in the analysis are summarised in Table 4.1, with
population size included as a control variable in the regression models due to its
influence on the total number of cases. These variables were selected based on studies
in the literature that support their impact on COVID-19 transmission. They are
categorised into three dimensions (groups): Socioeconomic (Section 4.2.1), Pollution
(Section 4.2.2), and Climatological (Section 4.2.3). Each dimension addresses
different but interconnected factors related to COVID-19 infection and transmission,

offering a comprehensive approach to understanding the pandemic.

4.2.1 The socioeconomic dimension

The socioeconomic aspect of the study focuses on four key factors: two demographic
elements and two economic indicators. The proportion of individuals aged 65 and older
and population density constitute the demographic elements. Research has highlighted
the heightened vulnerability of specific age groups, particularly the elderly, to COVID-
19 (Kang and Jung [53]). This underscores the importance of understanding population
density, which plays a pivotal role in disease transmission. Studies, such as Carozzi's

[6], have validated a positive correlation between higher population density and
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increased transmission rates. However, findings from Sun et al. [72] suggest that
population density did not significantly impact infection rates during COVID-19 initial

wave, though it remains relevant due to subsequent lockdown measures implemented

post-surge.

TABLE 4.1

Summary of independent variables.

Variable Measure

Socioeconomic Dimension

Density Population density
Age Percentage of the population over 65 years
old
Income Per capita income by municipality from
Estimate of the Municipal Gross Domestic
Product
Workers Percentage of workers supported by social
security

Pollution Dimension

CO Carbon monoxide, micrograms per cubic
meter
NO Nitrogen monoxide, micrograms per cubic
meter
NO, Nitrogen dioxide, micrograms per cubic meter
SO, Sulphur dioxide, micrograms per cubic meter
Ozone Ozone, micrograms per cubic meter
PM2.5 Particulate matter < PM2.5
RSD Respiratory System related Death rate

Climatological Dimension

Temperature Temperature April average level
Humidity Humidity April average level
Control Variable
Population Number of people

Data Sources: Pérez-Segura et al. [66], Datos Abiertos Comunidad de Madrid [7], Ayuntamiento de Madrid [2],
Ayuntamiento de Madrid [3], Bankinter [5], Instituto de Estadistica [11], Ayuntamiento de Madrid [4], Datos
Abiertos Comunidad de Madrid [8], Portal de Datos Abiertos del Ayuntamiento de Madrid [16], Instituto National

de Estadistica [9], AEMET [1], Instituto de Estadistica [10].
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The role of economic status in pandemic transmission has been evident in previous
outbreaks, such as the Spanish flu and Acquired Immunodeficiency Syndrome (AIDS)
(Grantz et al. [41], Prual et al. [68]). The study by Hawkins et al. [45] revealed
associations between geographic incidence and socioeconomic status. Additionally,
insufficient economic resources can result in limited access to hygiene facilities and
substandard living conditions, including overcrowded housing, which poses challenges
to implementing social distancing measures during lockdowns. Pérez-Segura et al. [66]
incorporates economic factors like per capita income and the proportion of workers
relying on social security. Including the percentage of workers accounts for economic
disparities within regions, as average income alone may not accurately portray the

quality of the labour market.

Overcrowding poses a significant challenge to maintaining social distancing
measures during lockdowns, increasing the risk of infection. Economic challenges,
including unemployment or limited job opportunities, may drive individuals to engage
in risky behaviours to secure income. Theoretical work by Ahmed et al. [22] suggests
that impoverished populations may experience poorer health outcomes due to
inadequate living conditions, heightening their vulnerability to COVID-19. Therefore,
including these economic factors in this study provides a more in-depth understanding

of the socioeconomic dynamics at play.

4.2.2 Pollution dimension

Numerous studies have identified a relationship between air pollution and COVID -
19, impacting both infection rates and mortality (Fernandez et al. [38], Marques et al.
[60]). Although the exact pathways through which pollution influences these outcomes
remain unclear, the consistent findings across studies indicate a genuine correlation.
Examining pollution involves two different variables, each assessing pollution in
diverse ways across regions. One variable involves measuring pollutants like carbon
monoxide (CO), nitrogen monoxide (NO), sulphur dioxide (SO2), nitrogen dioxide
(NO2), ozone, and particulate matter (PM2.5) in the Madrid community. The other
examines the proportion of deaths attributed to respiratory issues -Respiratory System

related Death rate (RSD), providing an indirect indicator of chronic pollution levels in
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the region. The latter is reinforced by the work of Zheng et al. [81], who indicated that

prolonged exposure to pollutants correlates with increased COVID-19 case numbers.

4.2.3 Climatological dimension

Temperature and humidity play crucial roles in respiratory illnesses like influenza,
but their influence on COVID-19 remains uncertain. While Bashir et al. [26] noted a
positive correlation between temperature and transmission, Ma et al. [58] identified a
negative association. Conversely, studies such as those by Mollalo et al. [61] found no
link between these factors. In this context, a literature review by Briz-Redon and
Serrano-Aroca [30] reports that 33 studies indicate a negative association, while only
6 show a positive one, and 7 studies report no significant association. Similarly,
ambiguity surrounds the impact of humidity. According to the same review by Briz-
Redon and Serrano-Aroca [30], most studies incorporating humidity demonstrate a
negative correlation, with fewer indicating a positive correlation or no correlation at

all (13, 3, and 6 studies, respectively).

4.3 An alternative statistical approach

In the paper by Pérez-Segura et al. [66], the authors used PCA to analyse the data. In
this thesis, we propose using PLSR as an alternative DRT. We will first replicate the
analysis conducted with PCA and then perform our own analysis using PLSR. The final
regression results from both methods will be compared to evaluate the differences. For
consistency and comparability with the PCA approach, the latent variables derived

from PLSR will be referred to as components within this application.

Our intention to investigate PCA and similar DRTs stems from an observation made
during the data pre-processing phase. Significant correlations were noted in the
correlation matrix of independent variables, even after scaling the data. As illustrated

in Fig. 4.1, correlations often exceed 0.5 in absolute terms. Therefore, exploring DRTs
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like PCA and PLSR could offer valuable insights of the data and (potentially) improve

the robustness of the analysis.

FIGURE 4.1

Correlation matrix between independent variables.
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Unlike PCA, which focuses on the associations within the independent matrix alone,
PLSR simultaneously considers both the associations within the independent matrix
(X) and those between the independent matrix and the target variable (Y). This
characteristic makes PLSR particularly suitable for our analysis, aligning with our goal

of predicting the target variable based on the independent variables. While it can be
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seen as a supervised extension of PCA, it differs in its assumptions and methodology.
By incorporating both independent and target variables, this approach potentially
offers a more comprehensive understanding of the data relationships and may improve
the predictive performance of our model. Thus, employing PLSR alongside PCA could
enhance the robustness of our analysis and provide valuable insights for regression
modelling.

It is important to stress that we maintain the clusters identified in the original paper
across all DRTs to ensure comparability. The original study emphasised that the
distinctions among clusters were influenced by longitudinal characteristics, so we have

chosen to follow this approach to remain consistent with their findings.

In the final part of our study, we conduct regression analysis to evaluate the
effectiveness of these approaches within the districts of Madrid. By adhering to the
established clusters and analysing them in the context of Madrid’s districts, we aim to

offer a comprehensive comparison of the applied DRTs.

4.4 Results and discussion

4.4.1 Principal Component Analysis

Initially, it is worth mentioning that the assumptions necessary for applying PCA
have been examined using the metrics outlined in Pérez-Segura et al. [66]. The same
(or equivalent) metrics mentioned in Chapter 2.3 were used to evaluate the
appropriateness of the data for PLSR. More precisely, Bartlett’s test of sphericity
supported the null hypothesis of variance independence, while the Kaiser-Meyer-OlKkin
measure revealed adequate sampling adequacy for the data in all cases. The results
indicate that the data satisfy the requirements for both DRTs, confirming the validity

and reliability of our analysis.
The Scree Test plot depicted in Fig. 4.2 suggests retaining 3 components.

Additionally, in PCA, the cumulative variability accounts for approximately 71%,

while in PLSR, it reaches about 85% when retaining the first 3 components.

48



Furthermore, additional metrics, such as Mean Item Complexity (MIC) and the
hypothesis test for component sufficiency, yield identical results. Specifically, the
MIC is calculated as 1.5, and the test for the sufficiency of three components gives a

Root Mean Square Error (RMSE) of 0.07, with an empirical chi-square value of 168.

FIGURE 4.2
Scree plot for PCA models.
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TABLE 4.2

PCA components loadings.

Pollution and Particulate Matter and
Density Temperature Socioeconomic
Age -0.57
S02 0.87
co 0.86
NO 0.74
Ozone -0.43 -0.83
RSD 0.54
Density 0.73
PM2.5 0.92
NO2 0.53 0.68
Temperature 0.76
Humidity -0.56 -0.50
Income 0.87
Workers 0.76

Note: Loads less than 0.4 have been suppressed. The most representative factor loadings are indicated in bold type.

Table 4.2 presents the output of PCA, as described by Pérez-Segura et al. [66]. Based
on it, three components emerged from the initial 13 variables, accounting for 71% of
the original variability. The components were interpreted based on factor loadings
detailed in Table 4.2. Although these empirical dimensions may differ from the
initially projected theoretical ones due to the lack of validated scales, they still
effectively summarise the 13 risk factors. Notably, population density showed a strong
association with a climatic factor, which is logical as pollution often correlates with

human population density.
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TABLE 4.3
PLSR components loadings.

Air Quality and Respiratory Environmental and
Density System Deaths Demographic Influences
Age -0.13 -0.27 0.50
SO2 0.35 -0.13 0.42
co 0.32 0.57
NO 0.27
Ozone -0.37 0.22 0.35
RSD 0.17 0.83 -0.33
Density 0.32 0.40
PM2.5 0.20 -0.61
NO2 0.38 -0.28
Temperature -0.31 -0.75
Humidity -0.37 0.12
Income 0.14 -0.28 0.39
Workers 0.26 -0.23 0.15

Note: Loads zero or close to zero have been suppressed. The most representative factor loadings are indicated in bold type.

In Table 4.3, the components of PLSR are analysed to understand their relationships
with the predictor variable. Component 1 can be labelled as “Air Quality and Density”,
since pollutants such as SO2, CO, NO2, Ozone, and Humidity display the highest
loadings, indicating strong associations with this component. Density in this
component exhibits the same level of significance as the pollutant variables.
Component 2, labelled as “Respiratory System Deaths”, is distinct as only one variable
emerges as significantly more influential than others, with a loading more than twice
as important compared to the others. Given the nature of this study, which aims to
explore the impact of these factors during the pandemic and considering that RSD
significantly increased during this period, component 2 potentially contains
meaningful information. In component 3, designated as “Environmental and
Demographic Influences”, temperature and PM2.5 exhibit strong negative loading
values, indicating an inverse relationship, while Age and CO display positive loading
values. These interpretations provide valuable insights into how the predictor variables

contribute to the different components identified through the PLSR analysis.
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When comparing Tables 4.2 and 4.3, several observations emerge:

— PLSR highlights Age and RSD as significant variables, unlike PCA. This
difference arises from PLSR's consideration of associations within the X-matrix
and between the X-matrix and Y-matrix. Age is a known factor in mortality
rates, including in the case of COVID-19, while RSD are a major cause of
COVID-19-related deaths.

— In contrast, PLSR does not emphasise the importance of income and workers as
much as PCA approach do. This discrepancy may stem from the lack of strong
evidence linking these variables to COVID-19 or other independent variables.
This pandemic impacted countries with varying economic strengths. Even in
PCA, income and workers show limited connections to other variables,
particularly in the third component.

— Overall, while these differences exist, both DRTs generally involve variables
that contribute to at least one component, validating their selection. It is
important to note that these observations do not necessarily suggest PLSR is
better than PCA but rather document differences in outcomes

The RMSE was calculated between the response and the three components generated
by each approach to assess their predictive ability. PLSR outperformed PCA with an
RMSE value of 0.87, in contrast to PCA’s value of 4.23.

4.4.2 Cluster Analysis

For the purpose of facilitating comparative analysis and gaining a deeper
understanding of the underlying mechanisms of each DRT, we employed the k-means
clustering methodology as delineated in Pérez-Segura et al. [66]. In their work, they
utilised the Scree Test of the within-cluster sum of squares for each number of clusters

(see Fig. 4.3), resulting in the selection of three clusters.
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FIGURE 4.3
Scree plot for the selection of clusters.

Source: Pérez-Segura et al. [66]
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This enabled us to discern the diverse ecosystems within the community of Madrid

based on the considered risk factors.

The rationale behind the selection and naming of clusters, as portrayed by Pérez-
Segura et al. [66], serves as the basis for our cluster analysis methodology. The
clustering described in the study aimed to identify distinct ecosystems within the
community of Madrid based on various risk factors (Fig. 4.4). Upon replicating the
procedure, it was observed that the clusters resulting from k-means have been slightly
altered for better cluster interpretability. It was observed that the “Madrid-City”
cluster, comprising the city's 21 districts, exhibited elevated levels of pollution,
population density, and socioeconomic indicators compared to the other clusters (Fig.
4.5).
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FIGURE 4.4
Cluster between Madrid’s districts.

Source: Pérez-Segura et al. [66]
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FIGURE 4.5

Components by clusters in Madrid’s districts.

Source: Pérez-Segura et al. [66].
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Conversely, concerning particulate matter and temperature factors, Madrid
demonstrated a negative score like that of the “North-East” cluster. The “Madrid-
Surroundings” cluster encompassed 96 municipalities, including densely populated
areas, where particulate matter and temperature factors were notable. While pollution
and population density were lower than in the “Madrid-City” cluster, they surpassed
those of the “North-East” cluster. Additionally, this region exhibited the poorest
socioeconomic conditions. Lastly, the “North-East” cluster consisted of 82
municipalities, predominantly rural areas with fewer than 5000 inhabitants,

characterised by lower pollution levels and socioeconomic status.

Table 4.4 provides a detailed summary of each cluster's characteristics based on the
average scores of the original variables. The Analysis of Variance (ANOVA) analysis
revealed significant differences in means across all variables in at least one cluster. To
get a better understanding, a post hoc examination (Scheffé’s test) was conducted to
pinpoint the specific clusters with differences. The “Madrid-City” cluster emerged as
the most polluted area in the region, followed by the “Madrid-Surroundings” cluster,
while the “North-East” cluster showed lower pollution levels, something reasonable
due to population density. Similarly, the socioeconomic aspect followed a similar
pattern, with “Madrid-City” recording the highest scores. However, the measurements
of particulate matter and temperature showed a different trend. In this case, the “North-
East” cluster appeared to be the most humid, whereas the “Madrid-Surroundings”
cluster experienced the highest temperatures. Interestingly, “Madrid-City” displayed
the lowest scores for both variables.
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TABLE 4.4
Comparison of the mean values of the original variables by cluster.

Source: Pérez-Segura et al. [66].

Cluster
Variable ANOVA (p-Value)

Madrid-City ~ Madrid-Surroundings  North-East

Social Dimension

Density 14.25 0.85 0.05 <0.01
SD 9.82 1.32 0.05
Income 40,590.98 21,877.74 24,445.71 <0.01
SD 17,966.81 11,808.98 14,445.71
% Workers 0.6 0.31 0.22 <0.01
SD 0.39 0.2 0.11
Climate Dimension
Humidity 65.96 71.16 75.98 <0.01
SD 0 3.56 0.54
Temperature 9.69 12.83 10.89 <0.01
SD 0 0.92 1.6
Pollution Dimension
PM2.5 4.05 6.66 3.45 <0.01
SD 0.22 0.69 1.07
SOz 4.33 1.29 1 <0.01
SD 1.56 0.5 0
co 50.4 0.87 0.45 <0.01
SD 12.33 0.69 0.19
NO 4.15 1.82 1 <0.01
SD 4.57 0.9 0.01
NO2 17.01 14.04 1.68 <0.01
SD 5.65 7.25 0.63
Ozone 53.08 53.9 80.62 <0.01
SD 4.61 3.84 4.24

Dark gray, light gray and white are used to indicate that there are statistical differences between means. The darkest shade refers to
the highest mean value, the light gray to the mean value and the white to the lowest mean value. When there are only statistically
significant differences between two groups, only dark gray and light gray are used to distinguish the groups. Differences in means were

tested by Scheffé’s methods at a significance level of 0.05.
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FIGURE 4.6
Boxplot of COVID-19 cases by cluster.

Source: Pérez-Segura et al. [66].
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Fig. 4.6 shows how COVID-19 spread across each cluster. It is evident that the
“Madrid-City” area had the highest number of infections. Additionally, the “Madrid-
Surroundings” cluster had many outliers, mainly made up of densely populated cities
like Leganes (2963 cases), Alcala de Henares (2331 cases), and Mostoles (2079 cases),
among others. Statistical tests confirmed significant differences in average infection
levels among the three areas. These results highlight how risk factors can outline areas
with different infection rates, although they do not pinpoint the exact influence of each

factor.

4.4.3 Regression Analysis

Tables 4.5 and 4.6 present the outcomes of the regression models conducted for the

entire territory (“C. Madrid”) and each cluster using PCA and PLSR.
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TABLE 4.5
Regression models with PCA components.

C. Madrid North-East Madrid-Surr i Madrid-City
Coef. Coef. Coef. Coef.
t p-value t p-value t p-value t p-value
(sD) (sD) (sD) (sD)
' ok ) ok
Intercept 317 37.80 <0.01 117 3.13 <0.01 3.69 10.52 <0.01 61 28.80 <0.01
( pt)
(0.08) (0.37) (0.35) (0.21)
ok R *
1st component 048 5.98 <0.01 062 -1.27 0.20 0.77 2.25 0.02 0.00 0.14 0.89
(0.08) -0.49 (0.34) (0.07)
ok ® K N
2nd component 0.75 12.36 <0.01 0.10 -0.87 0.38 0.07 0.17 0.86 013 -0.48 0.63
(0.06) (0.12) (0.40) (0.27)
* -
3rd component 0.16 231 0.02 0.15 -1.22 0.22 0.25 154 0.12 0.02 0.75 0.45
(0.06) (0.12) (0.16) (0.03)
e e ok x e
Population (;)0000) 11.66 <0.01 o(‘gooo) 17.06 <0.01 0('8000) 7.88 <0.01 O('gooo) 7.58 <0.01
Adjusted R-squared 0.82 0.83 0.66 0.81
p-values <0.01 <0.01 <0.01 <0.01
white test (p-values) <0.01 0.03 0.05 0.34
Model Additional
Information
AlC 504.51 48.65 268.77 -2.93
BIC 524.27 63.08 284.16 333
Loglik -246.25 -18.32 -128.38 7.46

¥ p<0,**p<0.01,*p<0.05.

The results for PCA are provided in Table 4.5. Overall, the regression results suggest
that the significance and importance of the components vary across regions. While “C.
Madrid” and “Madrid-Surroundings” models highlight the relevance of specific
components, the “North-East” and “Madrid-City” models indicate that these
components may not be crucial predictors in those areas. Across all models, the
population variable consistently shows high significance, underscoring its universal

importance as a factor in the analysis.

More analytically, in the “C.Madrid” model, all components are significant and
positively linked. The second component is the most influential, with a strong
coefficient and highly significant p-value, suggesting it plays a crucial role in the
model. The first component also contributes significantly, though to a lesser extent,
while the third component, despite being the weakest among the three, still shows a
statistically significant effect. The latter suggests that higher scores on the variables,
including socioeconomic status, increase the risk of contracting COVID-19. This
finding goes against existing theories on socioeconomic status and COVID-19
transmission. However, it is essential to note that we are analysing variables at a
municipal level, thus intra-municipal variability is not considered. Therefore, our

results suggest that municipalities with higher socioeconomic status (more workers
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and higher incomes) might have more COVID-19 cases, although there could still be

economic segregation within these municipalities affecting infection risk.

The partial models yield limited information due to the lack of statistical significance
in the parameters. More precisely, the “C.Madrid” model, the “North-East” and
“Madrid-City” models provide limited insights as none of the components reach
statistical significance. The coefficients for the components are not only non-
significant but also small in magnitude, indicating that these factors do not
substantially contribute to explaining the variation in the dependent variable within
this region. Despite this, the population variable, consistent with other models, shows
high significance, reinforcing its importance across different regions. On the other
hand, the “Madrid-Surroundings” model presents a somewhat mixed picture. The first
component is statistically significant, suggesting it has a moderate impact on the
dependent variable. However, the second and third components do not achieve
significance, with the third component showing borderline relevance (for significance
level 10%). This implies that while the first component may be an essential predictor
in this region, the other components do not offer meaningful explanatory power.
Nevertheless, as in other models, the population variable remains highly significant,

confirming its strong influence.
This lack of significance in the partial models can potentially be attributed to two

factors: (1) the small number of observations in each cluster and (2) the homogeneous
behaviour of the target variable within each cluster.
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TABLE 4.6
Regression models with PLSR components.

C. Madrid North-East Madrid-Sur di Madrid-City
Coef. Coef. Coef. Coef.
t p-value t p-value t p-value t p-value
(SD) (sb) (SD) (sD)
% kK ok * % * Kk
(Intercept) 0.39 1.93 0.04 178 3.57 <0.01 1.82 3.00 <0.01 6.11 14.15 <0.01
(0.19) (0.5) (0.60) (0.43)
1st component 0.01 0.20 0.89 -0.06 -0.29 0.77 022 0.77 0.44 001 0.14 0.88
(0.14) (0.21) (0.29) (0.11)
-3.97* R
2nd component 0.41 1.34 0.17 036 0.84 0.40 3.97 -2.62 0.01 0.09 -0.19 0.85
(0.31) (0.43) (1.51) (0.48)
R *k
3rd component 0.40 1.19 0.23 036 -0.90 0.37 4.44 3.23 0.001 0.08 0.18 0.85
(0.34) (0.40) (1.37) (0.44)
% ok ok
Population 0.00 2,51 <0.01 0.00 13.83 <0.01 0.00 1.35 0.17 0.00 8.35 <0.01
(0.00) (0.00) (0.00) (0.00)
Adjusted R-squared 86% 83% 73% 81%
p-values <0.01 <0.01 <0.01 <0.01
white test (p-values) <0.01 0.05 <0.01 0.33
Model Additional
Information
AlIC 463.97 49.55 247.92 -2.02
BIC 483.73 63.99 263.31 4.24
Loglik -225.98 -18.77 -117.96 7.01

**¥p<0,**p<0.01,*p<0.05.

The results from the PLSR model for the entire territory and each cluster are
presented in Table 4.6. In summary, the regression results illustrate the varying
influence of the components across different regions. While the population variable
consistently show significance in most models, the components themselves do not
always hold statistical significance, particularly in the North-East and Madrid-City
models. The Madrid-Surroundings model stands out for the significance of the second
and third components, although with differing effects. These findings suggest that the
explanatory power of these components is region-specific, with population being the

most consistent predictor across all models.

More analytically, in the “C. Madrid” model, the intercept is marginally significant
with a p-value of 0.04. However, the three components do not show statistical
significance, as indicated by their high p-values (0.89, 0.17, and 0.23, respectively).
This suggests that these components do not contribute meaningfully to the model in
this region. Interestingly, the population variable remains significant (p < 0.01),
consistent with previous models, indicating that population continues to play a crucial

role in explaining the dependent variable in “C. Madrid”.

In the “North-East” and “Madrid-City” models, the intercept is highly significant (p

< 0.01), showing a strong baseline effect. However, like the “C.Madrid” model, the
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components do not demonstrate statistical significance, with p-values well above the
conventional threshold of 0.05. This lack of significance suggests that these
components do not hold substantial explanatory power in these regions. Despite this,
the population variable is extremely significant (p < 0.01), confirming its critical

importance in this model as well.

The “Madrid-Surroundings” model presents a more complex picture. The intercept is
significant (p < 0.01), indicating a strong baseline effect. The first component is not
significant (p = 0.44), suggesting it does not substantially influence the dependent
variable in this region. However, the second component is significant (p = 0.01),
though it has a negative coefficient, indicating an inverse relationship with the
dependent variable. The third component is also significant (p = 0.001), with a strong
positive coefficient, highlighting its importance in the model. Unlike in other regions,
the population variable is not significant (p = 0.17), which contrasts with its
significance in the other models, suggesting that population may not be as crucial in

this particular region.

While some clusters showed significant associations between components and cases,
others displayed less pronounced effects. Population density almost consistently
emerged as a significant factor across clusters, influencing the distribution of COVID -
19 cases. However, non-significant intercepts and components in some clusters suggest

a need for further investigation to fully understand transmission dynamics

4.4.3.1 C.Madrid: Regression Model Comparisons

The regression model using PCA components for “C.Madrid” demonstrated an
adjusted R-squared value of approximately 0.82, indicating that the model explains
about 82% of the total variation of COVID-19 outcomes. All components in this model
exhibited significant p-values (<0.05), suggesting their importance in explaining the
variance within the dataset. The Akaike information criterion (AIC) and Bayesian
information criterion (BIC) values were 504 and 524, respectively, indicating the
model's goodness of fit and parsimony. The White test p-value is below the

conventional significance level of 0.05, suggesting potential heteroscedasticity.
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In contrast, the PLSR model demonstrated superior performance with an adjusted R-
squared value of 0.86, indicating that the model explains about 86% of the total
variation of COVID-19 outcomes. While the overall fit of the model was better, some
components showed non-significant p-values (>0.05), suggesting a potential lack of
statistical significance. The AIC (464) and BIC (484) values were lower compared to
the PCA model, further indicating better model fitness and parsimony. Similar to the
PCA model, the PLSR model exhibited potential heteroscedasticity based on the White

test p-value.

Additionally, the PCA model indicate that the pollution and climate components had
a greater influence than the socioeconomic component on the overall model. In
contrast, the PLSR model indicates that RSD, as well as environmental and
demographic characteristics, play the most important roles, which is in accordance
with many research studies. Notably, PLSR is the only method that formulates a

component whose identity is solely based on RSD.

4.4.3.2 Madrid-Surroundings: Regression Model Comparisons

The PCA models for the “Madrid- Surroundings” demonstrated an adjusted R-squared
value of 0.66, indicating that the model explains about 66% of the total variation of
COVID-19 outcomes. Only the first component is significant (p=0.02), suggesting
pollution and density factors play crucial role in this region. The AIC and BIC values
were 269 and 284, respectively, indicating the model's goodness of fit and parsimony.
The p-value obtained from the White test is exactly 0.05, which aligns with the
conventional significance threshold, suggesting that the assumption of

homoscedasticity may be questionable.

In contrast, the PLSR model demonstrated superior performance with an adjusted R-
squared value of 0.73, indicating that the model explains about 73% of the total
variation of COVID-19 outcomes. While the overall fit of the model was better, the
second and third components showed significant p-values (<0.05), suggesting RSD,

Environmental and Demographic factors play a crucial role in this region. The AIC
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(248) and BIC (263) values were lower compared to the PCA model, further indicating
better model fitness and parsimony. The White test p-value is below the conventional
significance level of 0.05, and lower than the one in the PCA models, suggesting

potential heteroscedasticity.

4.4.3.3 North-East & Madrid-City: Regression Model Comparisons

The models applied to both the “North-East” and “Madrid-City” regions showed
notable similarities, with only minor, non-significant differences. This suggests a high

degree of consistency in performance across all methodologies.
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CHAPTER 5

Concluding Remarks & Future
Expansions

The global COVID-19 outbreak has prompted scientists to investigate the factors that
increase susceptibility to the virus. While most of the studies have focused on

environmental factors, there remains much to learn.

In this thesis, we began our investigation by employing the same PCA as described
and implemented by Pérez-Segura et al. [66] to condense thirteen identified risk factors
into three distinct components, which accounted for 71% of the initial variance. These
new variables included aspects such as pollution and population density, particulate
matter and temperature, and socioeconomic status. Subsequently, these variables were
used to map the various ecosystems within the region according to these risk
dimensions. A regression analysis was then conducted using the formulated
components as explanatory variables to examine potential differences in COVID-19
infection rates across the identified clusters. Additionally, we employed an alternative
approach by using PLSR as DRTSs, instead of PCA. Doing so, we aimed to explore
whether this alternative method could yield improved outcomes compared to the
original approach. Each DRTs provided valuable insights into COVID-19 risk factors.
While PCA model demonstrated statistical significance for most components, the
PLSR model exhibited superior overall fitness and parsimony. For two clusters (“C.
Madrid” and “Madrid-Surroundings”), PLSR yielded significantly higher adjusted R?
and Log-likelihood values, along with lower AIC and BIC values, compared to PCA.
For the remaining two clusters (“North-East” and “Madrid-City”), both DRTs
performed similarly with no significant differences. However, the presence of non-
significant p-values across all models suggests caution in interpreting certain risk

factors.
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The PLSR model can be considered as the preferred choice for analysing COVID-19
risk factors due to its superior model fit and parsimony. Despite encountering some
non-significant components, the overall performance of the PLSR model surpasses that
of PCA. Further investigation is warranted to validate the significance of individual
risk factors identified by both approaches. As discussed in Chapter 3 and inside the
work by Pérez-Segura et al. [66], the cluster models do not provide substantial
information due to the non-significance of the parameters and the observed low
sampling power. Thus, the lack of significance may be attributed to these issues.
Overall, PLSR aligns with many previous studies, reinforcing the rationale behind the
findings (Wehrens [78]).

A key finding of our study is that PLSR identified Respiratory System Deaths (RSD)
as a significant factor in the formulation of its components. Specifically, the second
component was heavily influenced by this variable, as shown in Table 4.3. In contrast,
PCA model did not highlight RSD. This discrepancy, combined with the established
strong association between this variable and COVID-19, underscores the importance
of PLSR for modelling tasks related to this pandemic. This identification suggests
PLSR’s enhanced suitability for such tasks. Furthermore, this finding calls for further
investigation into which dimensionality reduction and clustering techniques are most

effective for modelling complex phenomena like pandemics.

Potential future work could involve implementing the DRTs mentioned in Section 2.5
and comparing the variables that emerge as key factors. For instance, Sparse PCA can
yield even more informative outputs by introducing sparsity in the components.
Furthermore, future work could include the utilisation of Gaussian Mixture Models
(GMM) as an alternative to k-means clustering. This technique provides a more
flexible approach by allowing clusters to have different shapes and sizes,
accommodating data that does not conform to the rigid boundaries imposed by k-
means. Implementing such models could lead to improved cluster identification,

particularly for datasets with overlapping clusters or non-linear associations.
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Comparing the results of GMM with k-means could offer deeper insights into the
structure of the data and provide a more comprehensive understanding of key variables.
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