MSc Thesis Emmanouil Prokakis

UNIVERISTY OF PIRAEUS - DEPARTMENT OF INFORMATICS
MNANENIZTHMIO MEIPAIQY — TMHMA MNMAHPO®OPIKH

Msc ((IIIIIIIIIIIIIIIIIIIIInformatics-.IIIIIIIIIIIIIIIIII))

MSc Thesis
MeTarmTuyxiakn Alatpin

Thesis Title: Benchmarking Software Design patterns in CRM

Systems

ZUYKPITIK a&loAdynan ZxedlaaTikwy MpoTiTTwy o€
ouoTAuatra CRM

TitTAog AlatpiBAg:

Student’s name-surname: Emmanouil Prokakis

OvouaTeTTwvuuo QoITnTA: EupavounA Mpokdkng
Father’s name: Kyriakos
Matpwvupo: Kupidkog
Student’s ID No:
MIMNA2236
Ap1Bu6G MnTpwou:
Supervisor: Efthymios Alepis, Professor
EmBAéTTWY: Eubupiog AAETTNG, KaBnynthg

October 2024 / OkTtwRplog 2024

Benchmarking Software Design Patterns in CRM Systems 1

MSc Thesis Emmanouil Prokakis

3-Member Examination Committee
TpipueAAg E¢eTaoTikr) ETTpoTm)

Efthymios Alepis Maria Virvou Constantinos Patsakis
Professor Professor Associate Professor
EuBupiog AAETTNG Mapia Bippou KwvaoTavrivog MNMatadkng
Kabnyntig Kalnyntpia AvatrAnpwTrig Kabnyntrg

Benchmarking Software Design Patterns in CRM Systems 2

MSc Thesis Emmanouil Prokakis

Abstract

Software Design Patterns (SDP’s) constitute proven solutions to reoccurring problems in software
development that provide ready-to-apply solutions for object instantiation, object structure,
delegating responsibility and materializing functionality. With the use of Software Quality Metrics
(SQMs), we attempt to quantify the quality characteristics of the software, which is constantly
evolving. In this present paper, we intend to observe the effects of design pattern introduction in
software quality and the reflection of these improvements in SQMs. In a custom CRM Springboot
application, which will be built twice (once with design patterns and once without them), we will
measure the impact of design patterns in a set of literature - derived metrics. We determined that
design patterns have a positive influence in software quality and structure that can be reflected in
SQMs, as long as they are applied properly and don’t introduce unnecessary complexity.

Subject Area: Software engineering

Keywords: Software Design Patterns, Software Quality Metrics, Software Quality, Benchmarking,
Java, Springboot, CRM

Abstract in Greek

Ta ZxedlaoTIKA TTIPOTUTTA ATTOTEAOUV £TOINEG Kal OOKIMOOMPEVEG CUVTAYEG yia Tnv €TTiAuan
TPORANUATWY OTn PNXavikh AoyiopikoU. [Mapéxouv £Toiueg AUCEIG yia TNV apXIKOTToinGn
QVTIKEINEVWYV, TN dopr Twv KAGoewv Kal TN dlauoipacn Twy appodioThTwy. Me Tn xprion HETPIKWY
ETMYXEIPOUMPE VA TTOCOTIKOTTOINCOUE TTOIOTIKA XAPAKTNPIOTIKA Wiag UAOTToinoNG, TTPOKEINEVOU VA
agloAoyooupE TNV KATAOKEUR TNG. ZTO TTAQICIO TNG TTapouoag epyaciag Ba dnuioupyRooupE pia
CRM e@apuoyn, karaokeualovtag 1o backend og Java Springboot pe kai xwpig Tn xprion Twv
2xedIa0TIKWYV MNpoTUTTWYV. ZTNn CUuVEXEIQ, Ba ATTOTIMACOUKE TNV TTOIOTATA TwV OUO UAOTTOINCEWY HE
TN XPNon METPIKWY TTou CUAAEXBNKkav atrd Tn BIBAloypagia. KataAAgaue oTo cuptrépacua OTi N
XpPAon Twv ZXedlaoTiKWV MPOoTUTTWV aTTOTUTTWVETAI BETIKA OTIG PETPIKEG TTOIGTNTAG, £POCOV N
XPAoN TOUG YivVETal € CWOTO TPOTTO KAl OEV £10AYEI AOKOTTN TTOAUTTAOKOTNTA.

Benchmarking Software Design Patterns in CRM Systems 3

MSc Thesis Emmanouil Prokakis

Acknowledgements

I would like to thank my professor Efthymios Alepis, who, by communicating great knowledge and
passion for the subject, always manages to inspire developing engineers to dig deeper into
software engineering and evolve their skills.

Benchmarking Software Design Patterns in CRM Systems 4

MSc Thesis Emmanouil Prokakis

Contents
ADSTIACT ... 3
F o F (= Tod AT] == 3
ACKNOWIEAGEMENTS ... 4
1. Introductions and GOalS...........ccuvviiiiiiiiiiiiiiiiiiee e 6
2.1 Presenting Software Design Patterns...........ccccccco 6
2. 1.1 INErOAUCHION ... e e e 6
2.1.2 Benefits of Design Pattern Use...........oooovviiiiiii i, 7
2.1.3 Design pattern FEVIEWuuuuuiriiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeaaaaes 8
2.2. Discussion on Software Quality MetriCS...............uuviiiiiiiiiiiiiiiiiiiiiiiiiinnns 13
T O 31/ Y o] o] 7= 4 o ISP 14
3.1 Implementation ArchiteCtureccoiiiiiiiiii 15
3.2 Implementation SCOPEcoooeiiiiiiiee e 15
3.3 Implementation ANAlYSISccooviiiii i 25
3.3.1 Client Implementation Presentation...............ccccovviiii i, 25
3.3.2 Design Pattern Implementation Presentation..................ccoevvvvinnnnnnn. 41
3.3.3 Non Design Pattern Implementation Presentation 73
4. BenChmarkingcooouuiiiiiiii e 92
4.1 Establishing a framework for Benchmarking Design Patterns 92
4.2 Application to MNS CRM Implementation............ccccccvviiiiiiieiiiiiiiiinn, 100
4.3 Results and ObServations................uuuiiiiiiiiiiiiiiiiiieees 107
@7 0] o o3 U1 1] o - SRR 108

Benchmarking Software Design Patterns in CRM Systems 5

MSc Thesis Emmanouil Prokakis
1. Introductions and Goals

In the present paper we intend to benchmark the use of Software Design Patterns using
established Software Quality Metrics. The core of a CRM application will be created twice, with
one version making use of design patterns and the other doing the opposite. By calculating
metrics for both implementations, we hope to see how the introduction of design patterns is
reflected on the benchmarking metrics results.

Both CRM back-end implementations will offer the same functionality, but one of them will build
certain modules with design patterns included. A collection of metrics will be defined and a custom
metric-calculation program will be created to analyze both applications’ codebases and calculate
the set of metrics for each. We will then focus our efforts on comparing the total / average metrics
for both implementations and, following that, we will analyze and compare specific modules -
where patterns were introduced - as separate use cases

Our CRM implementations will be written in Java Springboot with the help of JetBrains IDE. We
will also deliver a complete front-end user interface for the web-service back-end, that will be built
in ReactJS. This is to provide the reader with a complete understanding of the software scope
and functionality, so that we can easily get to analyzing the web API code architecture and design
pattern use opportunities.

Regarding the paper’s structure, in section 2 we will focus on introducing the theory behind design
patterns (2.1) and the ideas behind Software Quality Metrics (2.2). In section 3, we will review our
CRM implementation’s architecture (3.1) and scope (3.2), which will be followed by the complete
analysis of our implementations (3.3). Section 3.3.1 will describe and present the front-end
ReactJS application, while 3.3.2 and 3.3.3 will focus on the Java back-end codebases with the
use and lack of design patterns respectively. Section 4 will include our benchmarking analysis,
focusing on establishing a benchmarking framework (4.1), applying the framework on our custom
Springboot applications (4.2) and, lastly, we will demonstrate our results (4.3). Section 5 will refer
to our conclusions.

2.1 Presenting Software Design Patterns

2.1.1 Introduction

Software Design Patterns (SDP’s) constitute proven solutions to reoccurring problems in Software
Development that promote best practices and don’t require reinventing the wheel to provide
solutions and accomplish certain system behaviors (Mohammed & Elish, 2013; Aversano et al,
2007).

Gamma et al (1995), layed down the first 23 patterns in their book “Design Patterns

Elements of Reusable Object-Oriented Software”. Said patterns are described as the “Gang of
Four patterns” (Ampatzoglou et al, 2013), referencing the four authors of the aforementioned
book, who set the stage for the SDP literature. The original 23 patterns were classified into six
different groups based on their purpose (Creational, Structural, Behavioral) and scope (class,
object).

Creational patterns focus on providing an abstraction for the object instantiation process. Their
main goal is to decouple the client code from the creation and composition of objects, while at the
same time delivering a simpler interface for use. Using creational patterns, client code can be
agnostic to the specific concrete implementation of classes, utilizing only supertype (interface)
references to refer to concrete implementations. Structural patterns concentrate on the way

Benchmarking Software Design Patterns in CRM Systems 6

MSc Thesis Emmanouil Prokakis

different class hierarchies interact to form more complex structures. According to Aratchige et al
(2022), structural patterns help developers form cohesive software architectures by providing best
practices for object composition and inheritance. Lastly, Behavioral patterns are interested in
providing solutions for delegating responsibilities between different objects and supporting
particular actions (Eckel).

All class patterns make use of inheritance to modify a class, compose implementations or provide
new behavior, while all object patterns favor object composition to delegate object instantiation or
extend with new functionality.

2.1.2 Benefits of Design Pattern Use

The motivation behind establishing specific reusable design patterns is to provide proven
solutions that encapsulate best practices and make software implementations more flexible,
allowing for reuse of already successful architectures (Gamma et al, 1995). Patterns are meant
to make object oriented systems more flexible, maintainable and, certain parts of them, reusable
and robust. SDP’s entail the essence of know-how in terms of design principles, improving
software structure, speeding up delivery and allowing for better communication between
developers. Tichy (1998) catalogs the problems solved by applying design patterns as the
following: Decoupling, Variant Management, State Handling, Control, Virtual Machines,
Convenience patterns, Compound patterns, Concurrency, Distribution. For the scope of this
present paper, the effects on decoupling, variant management, state handling and control will
become apparent in later sections.

Gamma et al (1995) underline the importance of designing software to be flexible to change and
adapt. Software evolution could entail class redefinition and reimplementation that could affect a
system in multiple ways and, thus, be costly. Through the use of SDP’s, we can help ensure
software is allowed to evolve in a certain manner without being forced to refactor large parts of
the application. Eckel states that patterns offer a layer of abstraction in order to isolate particular
details of an implementation. The goal is to separate parts of the applications that are expected
to remain the same from parts that are expected to change, stopping the propagation of changes
and general refactoring from materializing.

Design patterns provide templates to design code that avoids many common design flaws. For
instance, SDPs promote the use of interface supertype references to objects, which allows
decoupling of the client code from the implementation specifics. On the contrary, tight coupling
leads to monolithic architectures that require multiple modifications on different classes to support
minor changes in functionality. By providing abstractions to the calling environment, patterns are
able to limit the knowledge of the client code in regard to class implementation specifics. Another
example of how patterns help avoid design flaws is that they show ways of extending functionality
without being dependent on inheritance. On more complex systems, subclassing can be difficult
to implement since thorough understanding of the parent types is required. Overriding functions,
for example, that have mutual dependencies can lead to refactoring and overriding even more
methods. SDPs provide more flexibility to extend functionality by applying object composition and
delegation of responsibilities to supply new functionality in a more maintainable and easy way.

It is worth mentioning that applying design patterns should always be done to solve a specific
problem that is mitigated using the pattern. Applying patterns when not necessary can complicate
implementations with unnecessary complexity and overhead.

This paper will focus on the 23 original SDPs, as they were defined in the Gang of Four book.
We'll be focusing our attention to a lower layer of abstraction without touching high-level
architectural patterns.

Benchmarking Software Design Patterns in CRM Systems 7

MSc Thesis Emmanouil Prokakis
2.1.3 Design pattern review

Creational Patterns

The Creational Patterns take up five (5) out of the 23 original Gang of Four patterns. Their main
objective is to abstract the object instantiation process by encapsulating it in a separate class. All
the calling environment is aware of is just the supertype reference to the instantiated class.
Through a polymorphic reference, client-code is separated from the specific implementation
details.

Singleton (1)

The Singleton design pattern helps enforce that only one instance of a class exists, while ensuring
that the entire application has access to the same resource, without the need for global variables
(Harmes & Diaz, 2008). Singleton implementation offers a global access point to a class that can
only be instantiated once without polluting the namespace.

Controlled access to the sole instance of the target object allows for easy modifications to the
functionality or the number of objects that are produced by the Singleton implementation.

Abstract Factory (2)

The Abstract factory pattern specializes in producing a set of related products (objects) and is
intended for cases where the creation of objects of the same family is needed.

The calling environment is separated from the implementation classes, utilizing only supertype
(interface) references to the instantiated objects that result from the a

Abstract Factory. Related objects are created in a reusable concrete factory class, that
encapsulates the instantiation of the related product family set, while avoiding assumptions of the
calling environment in regard to hardcoding implementation classes’ names (Gamma et al, 1993;
Gamma et al, 1995).

Different product lines can be used by swapping the concrete abstract factory class in order to
support a different product family. This also allows for enforcing that the calling environment can
only work with a single object family at once.

Factory (3)

The Factory pattern delegates the responsibility of instantiating its member objects to subclasses
(Harmes & Diaz, 2008; Gamma et al, 1995). Client code will be designed to work with polymorphic
references, meaning that it will be possible to work with any implementations of the ‘product
object’ without the need for refactoring.

Performance and efficiency benefits can also become apparent in situations where the creation
of objects entails setup operations. These operations can be done once for all objects by the
concrete Factory class and, thus, reduce setup costs and duplicate code.

Benchmarking Software Design Patterns in CRM Systems 8

MSc Thesis Emmanouil Prokakis

Prototype (4)

The Prototype pattern provides the ability to clone existing objects with specific state. Prototype
benefits include the simplification of object instantiation, decoupling of the client code from the
implementation classes and easier instantiation of complex objects (Gamma et al, 1995).

The cloning of the prototypical instance can also help in mitigating the need to define new
subclasses. Cloning ensures that no inheritance will be needed to support different variants of
class, where variants are defined based on different state combinations. In such manner, classes
will be defined dynamically at runtime and are not statically named during compilation (tight
coupling).

Builder (5)

As in the previously described patterns, Builder accomplishes the separation of the instance
construction process from the calling environment. The Builder pattern is targeted at cases where
complex objects need to be built from different parts and the representation of the object should
be hidden from the client code.

Essentially, a concrete Builder class offers the functionality to assemble an instance with all the
different parts that make it up. Director classes can make calls to the concrete Builder and control
the object instantiation process by calling the step-by-step builder functions.

Structural patterns

Structural design patterns focus their attention on object relationships and structure in a way that
changes in one part of the system don’t require changes elsewhere (Eckel). They heavily rely on
object composition in order to achieve more modularity and flexibility by building solid and
maintainable architectures. Out of the original 23 patterns, seven (7) are categorized as
Structural.

Proxy (1)

The Proxy design pattern defines a wrapper class to control access to the target object, also
called the real subject (Harmes & Diaz, 2008). It maintains a reference to the target object through
object composition, implements the same interface as the real subject and delegates operations
to it, while also providing more control over how the target object is consumed by the calling
environment (Gamma et al, 1995). Common reasons for using the Proxy pattern are to control
the instantiation of resource-expensive objects on demand, enforce variant levels of access on
the real subject and ensure thread-safety when accessing the object

Decorator (2)

Decorator allows for a flexible extension of functionality of the original object without resorting to
inheritance and can be used interchangeably with its target object. This can be done dynamically
for specific objects, without having to modify the class hierarchy and statically bind the new
behavior (Gamma et al, 1995).

For example, by subclassing we accept that every single instance of a subclass inherits the new
behavior of the supertype. On the contrary, through a Decorator / Wrapper class, that implements
the same interface and delegates actions to the target object, we have the freedom to choose
whether we want a certain behavior to be performed. Thus, new responsibilities can be added to
specific objects in a flexible manner.

Benchmarking Software Design Patterns in CRM Systems 9

MSc Thesis Emmanouil Prokakis

Composite (3)

The Composite design pattern makes it so that the client code can treat composite objects
(objects that have children objects as part of a hierarchy) the same way was their children objects,
which can either be leaves or composite themselves (Harmes & Diaz, 2008). This is achieved
through a common interface and provides loose coupling for the individual objects as well as an
easy way to traverse the entire hierarchy and perform operations by passing them from one layer
to the next. This pattern is suited for when a hierarchy of objects exists and we need to perform
an operation to all or a subset of the nodes.

Adapter (4)

By using the Adapter pattern we can allow two incompatible interfaces to work with one another
without modifying the existing implementation (Harmes & Diaz, 2008). The adapter wraps around
the class that needs to be adapted and implements the other interface method to achieve
compatibility. Essentially, the adapter class translates the method calls of the calling environment
into compatible method calls with the existing implementation. The Adapter pattern conforms the
protocol of one class to another (Gamma et al, 1993).

Bridge (5)

The main goal of the Bridge pattern is to ensuring decoupling of the abstraction and the
implementation hierarchies, so that they can evolve independently. The abstraction defines the
high-level logic and, through object composition, has a reference to the implementor to which it
delegates operations. The implementor is more low-level and is related to the specifics of the
implementation. Through the Bridge pattern, we can allow for the implementor’s implementation
to evolve without requiring modifications in the abstraction (higher-level logic). Bridges are very
useful because the help make code more modular and improve the flexibility of abstractions.

Facade (6)

The Facade patterns is dedicated to providing a single, simple and unified interface to client code
for accessing a complex subsystem (Gamma et al, 1995). The Facade class acts as an
intermediary between client code and the subsystem classes, allowing for decoupling and
independent evolution of the subsystem. Subsystem classes can also take advantage of the
Facade pattern to layer themselves further. Lastly, the simpler interface exposed to the calling
environment also reduces complexity and improves readability of the client code.

Flyweight (7)

Flyweight aims to help in optimizing an application by sharing state between similar objects when
a large number of instances are needed (Harmes & Diaz, 2008). It works by converting a lot of
independent objects into a few shared objects for the client code. In order to reduce the number
of instances, state is segregated into intrinsic state (data shared with the objects inside Flyweight
class) and extrinsic state (data that is unique to the calling environment and can’t be shared). In
addition, since the objects are shared and to avoid problems with creating instances, the
Flyweight pattern also employs the use of a factory to handle instance creation (Gamma et al,
1995).

Benchmarking Software Design Patterns in CRM Systems 10

MSc Thesis Emmanouil Prokakis

Behavioral Patterns

According to Eckel, behavioral patterns specialize in handling certain types of actions, like
algorithms, iteration, separation of responsibilities or fulfilling a request. Gamma et al (1993) note
that behavioral patterns have to do with how classes interact with each other and how they
distribute operations. They define strategies for class cooperation and communication to
materialize a specific functionality, since tasks cannot be completed by just one class alone. Out
of the original 23 Gang of Four patterns, 11 are in the behavioral subset.

Chain of Responsibility (1)

The core idea of the Chain of Responsibility (CoR) pattern is to decouple the sender and the
receiver of a message by allowing the message to travel through a “chain” of different handlers
(Gamma et al, 1995). This becomes especially useful if we don’t know ahead of time which
handler is supposed to take care of a specific request. Handlers are chained together by utilizing
object composition, in a structure that resembles a standard linked list implementation. In case
the request is not meant to be handled by a certain handler, it can be passed down to the next
one.

When making use of the CoR pattern, both the sender and the receiver of the message have no
knowledge of each other. Responsibilities can be separated on different handlers and the chain
can be modified dynamically on runtime, allowing for a lot of modularity and flexibility for the
implementation.

Observer (2)

The Observer pattern defines a one-to-many relationship between a subject and its observers,
ensuring that any changes in the subject will be disseminated to its observers (Gamma et al,
1995). This pattern is prevalent in event-handling systems and promotes loose coupling between
the subject and the observers. All the subject knows is the interface of observer items and their
implementation can be defined dynamically at runtime without the need for any assumptions by
the subject. The communication between the subject and its dependent observers adheres to the
pub-sub principle.

Iterator (3)

By using the Iterator pattern we enable traversing a collection object (iterable) without exposing
its underlying structure to the calling environment (Gamma et al, 1995). The Iterator encapsulates
the logic for accessing and traversing the list object, allowing for different traversal
implementations, decoupling from the client code (since there is no need to accommodate the
internal representation of the list) and simplification of the latter. Different collections can be
traversed by using the Iterator pattern due to its support for polymorphic iteration through a
common interface for iterable objects.

Command (4)

According to Harmes & Diaz (2008), the Command pattern enables the parameterization of a
method call along with the decoupling of the object invoking the action from its implementation.
All Command objects share a common interface that defines an execute method to encapsulate
a request.

Benchmarking Software Design Patterns in CRM Systems 11

MSc Thesis Emmanouil Prokakis

By employing the Command pattern, we achieve better control over the handling of requests,
opening the way for queues, undo / redo functionality, logging / reapplying changes and modeling
transaction centric systems (Gamma et al, 1995). Additionally, new commands can be added
easily without the need for modifications of the existing implementation. This is because the
above-mentioned pattern promotes the decoupling of the abstraction from its representation.

Strategy (5)

The Strategy pattern encapsulates different algorithms / behaviors in classes defined by a
common interface, permitting interchanging the strategy (i.e. an encapsulated algorithm) used by
a context class. Object composition is used to delegate tasks to the strategy (Gamma et al, 1995).
Due to the common interface, the actual implementation is defined dynamically at runtime while
ensuring the decoupling of the context class and the actual algorithm that gets executed. Strategy
works as a better replacement of inheritance for implementing different behaviors for the same
operation / method. For instance, defining three different behaviors for a class means hard-coding
the implementation on each subtype. With the Strategy pattern, we can decouple the
implementation logic from the context, making it more modular and flexible.

Mediator (6)

With the Mediator pattern we can control multiple interactions between a group of objects while
the Mediator class acts as an intermediary between them (Gamma et al, 1995). A concrete
Mediator class holds references to the colleague objects (object composition) and promotes
decoupling by handling all their interactions. Thus, the colleague objects never directly reference
each other, reducing the number of interconnections in the system and, as a consequence, the
need for refactoring when changes are due. The Mediator class provides a central point of control
for handling object interactions, abstracting the interaction process and shifting focus away from
the individual behaviors of colleagues, which are encapsulated inside their respective classes.

Interpreter (7)

The Interpreter pattern specializes in modeling the grammar of a simple language making it
possible to represent and interpret sentences (Gamma et al, 1995). Different classes are used for
representing grammar rules and contribute to building abstract syntax trees to support the
modeling of the language rules and grammar.

Visitor (8)

By using the Visitor pattern, new functionality can be added to existing objects without having to
modify their classes (Gamma et al, 1995). New operations can be encapsulated in new Visitor
classes promoting the Separation of Concerns and the reduction of class pollution with additional
methods. Since Visitor classes contain the entire logic of the new operation, they provide a central
point for handling the new functionality and reusing it when needed. Objects that consume Visitor
classes will accept a Visitor and then call that Visitor's method by passing themselves as context.

Memento (9)

While respecting class encapsulation, the Memento pattern allows for an object’s internal state to
be saved in a snapshot Memento object and restored later (Gamma et al, 1995). The
aforementioned pattern can act as the backbone of an undo-redo mechanism (with the additional
support of a stack-like data structure) or helping a system recover from errors. Encapsulation is
protected because only the “originator” object is able to create instances of the Memento and
restore back to them.

Benchmarking Software Design Patterns in CRM Systems 12

MSc Thesis Emmanouil Prokakis

Template Method (10)

The Template Method pattern grants us the ability to specify the core structure of an algorithm
while at the same time deferring to subclasses the implementation of certain algorithm steps
(Gamma et al, 1995). The subtypes can’t redefine the skeleton of the algorithm, but are only
capable of defining the implementation of specifics steps (methods); the structure of the algorithm
is maintained. Through the non-overridable supertype method (which defines the algorithm
skeleton), the parent class makes calls to the method implementations of the subclasses.

State (11)

The State pattern is great for cases where changes in the object’s internal state should be
reflected on the operations performed by the target object (Gamma et al, 1995). Large conditional
logic structures can be avoided since the State pattern makes it so that the operation performed
will be defined at runtime, based on the target’s internal state.

Each possible condition is modelled in its own State class, promoting the Single Responsibility
principle and the Separation of Concerns. Encapsulating a specific operation in a separate State
class offers great flexibility (adding a new operation requires no modification in the existing
implementation) and moves the system away from multipart monolithic conditional statements.

2.2. Discussion on Software Quality Metrics

Software Quality Assurance (SQA) refers to a process of monitoring software engineering
methods to ensure quality in the final product (Lee, 2014). Software Quality Metrics (SQM’s) are
utilized by SQA to quantify the specifics of software quality. According to Trivedi & Kumar (2012),
they attempt to quantify the quality and performance characteristics during the build phase of the
software. The latter is under the process of Software Evolution, during which modifications and
enhancements take place. Due to complexity, SQM'’s play a vital role in keeping Software Quality
under control during Software Evolution (Drouin, Badri & Toure, 2013).

Different SQM’s have been conceived through the years in an attempt to quantitatively express
the quality characteristics that define “well written” software.

Still used old metrics include Lines of Code (LOC), number of functions and lines of comments
(Molnar, 2020). When referring to these old metrics, Singh et al (2011) argue that counting
modules are a better way to estimate the size of a piece of software than functions, with module
being a part of the application that can be compiled independently. In the case of LOC, comments
and blank lines can be excluded. Size could also be estimated by counting the number of tokens
in the codebase. In 1977, Halstead proposed, among others, the Halstead Program Volume (HV)
metric to assess the size, and therefore complexity, of a program (Lee, 2014; Singh et al, 2011).

Moving away from quantification of size, McCabe (1976) proposed the idea of Cyclomatic
Complexity (CC) in Software, applying Graph Theory to Software Engineering to address the
control flow of the application. The CC / Cyclomatic Number, coming from Graph Theory, refers
to the number of independent paths through a codebase (Singh et al, 2011). Lee (2014) states
that CC counts the number of decision elements in a program, adding the number of conditions,
the number of decisions and the value of 1.

An attempt by Henry & Kafura (1984) was made to measure Information Flow Complexity (IFC),
referring to the volume of information going in and out of a system (Lee, 2014). IFC takes into
account the size of software (quantified by lines of code, number of functions/modules) along with

Benchmarking Software Design Patterns in CRM Systems 13

MSc Thesis Emmanouil Prokakis

information flows into and out of the system, underlying the importance of the complexity added
due to integrations with other components (Lee, 2014; Singh et al, 2011).

The Maintainability Index (MI) was introduced in the early 1990s by Oman and Hagemeister
(1992) as a metric for quantifying software maintainability. Ml is a composite metric that utilizes
older metrics, such as, HV, CC and LOC, with applied weights (Welker, 2001). It focuses on the
magnitude of operations and operands, logic complexity and the size of the codebase. The
calculation formula is the following:

MI = 171 - 5.2 x log2(HV) - 0.23 x CC - 16.2 x log2(LOC)

Chidamber and Kemerer (1994) introduced the CK SQM suite targeting object oriented systems,
which includes six different metrics (Drouin, Badri & Toure, 2013).

¢ Weighted Methods per Class (WMC) counts the cyclomatic complexity of each method
of class and sums it up in a per class metric.

¢ Number of Children (NOC) is a per class metric that sums the number of direct subtypes
of a class, indicating which classes are being heavily reused for inheritance. In general,
even though a lot of inheritance signifies reusability, having a large amount of subclasses
in the same hierarchy level can be considered a “bad” characteristic that can be mitigated
by the use of design patterns (e.g. Decorator, Strategy).

e Coupling Between Objects (CBO) refers to the number of coupled classes of a class
which is valid when access to another classes method and members takes place. Tight
coupling between modules can appear problematic in terms of maintenance and
flexibility, due to having to make modifications in one part of a system because of changes
elsewhere. Most design patterns incorporate some type of supertype interface reference
to promote loose coupling of classes.

e Depth of the Inheritance Tree (DIT) focuses on the longest path from the root supertype
to its target subtype. A longer path could mean higher complexity due to the total amount
of inherited properties and hard-wired static behavior.

e Response For a Class (RFC) is interested in a set of methods in a class along with the
method calls in code outside of the boundaries of said class. Essentially, it counts the
number of methods that can be executed in response to a message of an object of the
class.

e Lack of Coherence in Methods (LCOM) indicates the dissimilarity between methods
based on the attributes accessed by those methods. It’s a per class metric of cohesion
with the intention of establishing if a class adheres to the Single Responsibility principle.
Methods that are not related to each other should be separated into different classes.

3. CRM Application

In the scope of this present paper, effort will be put into creating a basic CRM web application.
The purpose of this implementation is to build the CRM back-end logic twice, once with and once
without the use of design patterns. Our main goal is to observe the improvements SDPs are
expected to achieve in regards to software quality, flexibility, maintainability and reliability.

The CRM Application will be implemented with ReactJS for the front-end and Java Springboot in
the back-end. We want the single React application to interact with each of the backend
implementations interchangeably, since the design pattern analysis will be performed on the Java
backend. Even though the benefits of a microservices architecture are clear (O’Connor, Elger &
Clarke, 2017; De Laurentis, 2019), we will proceed with a monolithic design of the backend logic
in order to maximize the interaction between different components and make the use of design
patterns more essential. More specifically, the effects of tight coupling will be more prevalent in a
monolithic system, due to the number of class interconnections and interdependencies.

Benchmarking Software Design Patterns in CRM Systems 14

MSc Thesis Emmanouil Prokakis

Some inspiration on CRM functionality, referring completely to what a CRM does (not design or
implementation), was taken from the Open Source SuiteCRM application. The official website
was utilized to retrieve information about CRM entities (e.g. Accounts, Contacts, Leads etc) and
processes (Lead Conversion). The application created in the scope of this paper is for educational
use only and is in no way an alternative / competitor to a complete CRM solution like SuiteCRM
or any other.

The CRM application of this paper will be named MNS CRM.

3.1 Implementation Architecture

The CRM logic will be implemented in Java and the Springboot framework. The CRM Application
Ul will be created with React for the front-end side of things. React will perform REST API calls to
the back-end and will send / receive JSON requests. We want the Ul element of the CRM App to
be separate from the back-end logic for many reasons, but, in the scope of this paper, it is
important to be able to use each back-end implementation interchangeably with the same React
client.

3.2 Implementation Scope

MNS CRM will support core CRM tables, henceforth called “Entities”, like Accounts (end
customers), Contacts (customer staff), Leads (potential customers), Opportunities (sales
attempts), Tasks, Cases (support tickets and inquiries) and Voice Calls (phone communications
with end customers). Database records will be called Entity entries. We will present the database
schema in visual diagrams that were made with the help of dbdiagram.io.

For every Entity, there should be the ability to perform CRUD operations through the API
endpoints. Each entry will have its own page, where the user will be able to view, edit, delete and
create new entries. Lists will also be available for all Entities to allow for a tabular view of the
entries. The rendering of the Entity attributes in the Entity view & edit pages will be done
dynamically in the front-end, based on the JSON response provided by the Springboot web
service.

Accounts will be the core Entity of the CRM. They represent end-customer entities, with whom
the users of the CRM interact. Accounts have a self-reference (one-to-many), allowing for a
hierarchical structure to be maintained. Additionally, Accounts have a one-to-many relationship
with Contacts, Opportunities, Cases and VoiceCalls. An Account can also optionally have a one-
to-one relationship with a Lead entry.

Benchmarking Software Design Patterns in CRM Systems 15

https://docs.suitecrm.com/user/

MSc Thesis Emmanouil Prokakis

duration

created

modified

pemm— =T
id 2 uuic id UuID :

unt_id category

Figure 1.1. Visual Representation of Account data-model and relationships

At this point, it is important to note that our architecture will support bidirectional references. This
means that both the parent and the child will maintain references to each other. For instance, an
Account will contain a list of children Contacts and the child Contact will have a reference field
that contains the parent Account entry. With this method, one request will be enough to display a
single record and its relationships. This will allow for greater flexibility in the frontend, where pages
are to be made generic and dynamic for all MNS CRM Entities. Additionally, we can claim it is
good for performance, since it will reduce the total number of HTTP requests required to render
a page.

Benchmarking Software Design Patterns in CRM Systems 16

MSc Thesis Emmanouil Prokakis

Get Account By Id with Rels

http://localhost:8080/api/account/5a4fb274-f5bb-445f-be2c-bf7f11a85528/complete

Params Authorization Headers (7) Body Scripts Tests Settings
Query Params

Key Value

Body Cookies Headers (5) Test Results

Pretty Raw Preview Visualize

1
"id": "5adfb274-f5bb-445f-b
"parentId": null,
"companyName": "B
"leadId": null,

"industry": C
"revenue": 98000.0,

)

"billingAddress": "Kolokotroni

"description": null,

"type": "Company",

"website": null,

"clientRating":

"vat": -

"created":

"modified": 024

"parent": null,

"parentlLead": null,

"contacts": [

g
"1f C c7-b c98da8adcda",

"accountId": "¢ fh274-£5bb-445f-beZ
"firstName": i
"lastName":

",
\

"email": ords.,com",

"phone": null,
"mobile": " C
"prefix":
"birthdate": "19
"department": null,
"role": " !

"rraatad" - A2A-AR-1AT2A 11

Figure 1.2. Retrieving an Account entry.

Benchmarking Software Design Patterns in CRM Systems 17

MSc Thesis Emmanouil Prokakis

Get Contact By Id with Rels

http:/flocalhost:8080/api/contact/1feadSbc-d339-44c7-b209-8c98daB8adcda/complete

Params Authorization Headers (7) Body Scripts Tests Settings
Query Params

Key

Body Cookies Headers (5) Test Results

Pretty Raw Preview Visualize JSON v

1

"id": "1fe -44c7-b2 da8adcda",

"accountId":) -f5bb-445f-I c-bf7f11a¢

"firstName":

"lastName":

"email": "vfy

"phone": null,

"mobile":

"prefix": "I

"birthdate": "1992-02

"department": null,

"role": "Ma

"created":

"modified": "2024

"parent": {
"id": "5a4fb274-f5bb-445f-be2c-bf7f11a85528",
"parentId": null,

"companyName": "Broken R
"leadId": null,
“industry": "Music",
"revenue": 98000.0,

"billingAddress": "Kolokotroni 14",

"description": null,
"type": "Company",
"website": null,
"clientRating": 5,
"vat": "814367505",
"create

"modified":

Figure 1.3. Retrieving the child Contact.

Contacts model staff that is employed in an Account entry, thus there is a one-to-many relationship
between Accounts and Contacts. Contacts can also have a one-to-many relationship with Cases.
This is because when a Case is opened for an Account, communication takes place between the
CRM user and an employee of the end-customer.

Benchmarking Software Design Patterns in CRM Systems 18

MSc Thesis

id?
parent_id
lead_id
parent_id_txt
lead_id_txt
company_name
IS_active
industry
revenue
bill_address
description
account_type
website
client_rating
vat

created

modified

id 2 uuiD
account_id

first_name

last_name varchar
emall varchar
phone

maobile

prefix

5_active boolear
birthdate

department

role varchar
account_id_txt

created = times tamp

modified timestamyg

Emmanouil Prokakis

id 2
account_id
case_id
account_to_txt
case_id_txt
title
customer_phone
agent_name
call_date
duration
created

modified

id 2 uuID
account_id

contact_id JUID
account_id_txt

contact_id_txt varchar
title

reason

source

category varchar
severity

status

created_date

closed_date

created timestamg

modified timestamyg

Figure 1.4. Visual Representation of Contact data-model and relationships

Leads refer to potential customers that can go through the Sales funnel. The have no parent
entries and, once converted, will be translated into an Account, a Contact and an Opportunity

Benchmarking Software Design Patterns in CRM Systems

19

MSc Thesis Emmanouil Prokakis

entry. Leads maintain a one-to-many relationship with Tasks, since specific task-actions might be
needed to successfully convert a Lead.

id & uuiD
CoMmpany_name warchar
company_vat varchar
contact_person varchar
contact_prefix warchar
company_address warchar
contact_role varchar m
contact_email warchar id o uuiD
contact_mobile varchar parent_id uuiD
contact_phone warchar leadild uulD
company_industry varchar parent_ id_trt sarchar
SRl Cezaily lead_id_txt varchar
created timestamp company_name I
modified by I5_active boolean
Industry varchar
id & uuio bill_address varchar
lead _id uuIp description varchar
lead _id_txt varchar atcount_type varchar
opportunity_id uuin website varchar
opportunity_id_tt varchar client_rating
name varchar vat varchar
reason varchar created timestamp
due_date date modified timestarnp
status varchar
type varchar
created timestamp
madified timestamp

Figure 1.5. Visual Representation of Lead data-model and relationships

Opportunities are the actual sales opportunities where, if successful, a sale is made and invoiced.
Opportunities are always related to a parent Account and have their own Status lifecycle. There
is a one-to-many relationship between Opportunities and Tasks, because certain task-actions
might be needed to guide an Opportunity to success.

Benchmarking Software Design Patterns in CRM Systems 20

MSc Thesis Emmanouil Prokakis

(R
company_address varchar
contact_role varchar m
contact_email varchar id o uuID
contact_mobile varchar parent id UUID
contact_phone varchar jead. id UuID
company_industry varchar parent id_txt RS
status varchar lead.id.txt i
created iy company_name varchar
modified timestamp is_active (Ve

industry varchar
revenue

ide uuip bill_address varchar

lead_id UuID description varchar

lead_id_txt varchar account_type varchar

opportunity_id uulD website varchar

opportunity_id_txt varchar client_rating

name varchar vat varchar

reason har created

due_date date modified timestamp

status varchar

type varchar

created timestamp

modified timestamp

id 2 uuiD

id 2 uuID
account_id uuib
account_id
account_id_txt varchar
first_name
title varchar
last_name varchar
status var =
email
type varchar
4 ¥ phone varchar
comments text - -
maebile varchar
description text
P prefix varchar
expected_revenue double ’
I5_active boolean
created timestamp
F birthdate date
modified timestamp
department varchar
role varchar
account_id_txt varchar

B st

Figure 1.6. Visual Representation of Opportunity data-model and relationships

Benchmarking Software Design Patterns in CRM Systems 21

MSc Thesis

Cases belong in the “support” Entities of MNS CRM and are used for logging, handling and solving

Emmanouil Prokakis

Customer Support related issues for Accounts. There is a parent reference for an Account and a
Contact entry and Cases have a one-to-many relationship with VoiceCalls, since multiple
communications with the client might be needed to resolve the Case.

id 2
account_id
first_name
ast_name
emai
phone
mobile
prefix
5_active

birthdate

department

role

account_id_bet

created

modified

id &2 uuID
parent_id uuiD
lead_id uuID
parent_id_txt varchar
lead_id_txt

company_name

Is_active boolean
industry wvarchar
revenue

bill_address

description
account_type varchar
website varchar

client_rating

vat varchar
created timestamp
modified timestamp

id &
account_id
case_id
account_id_tet
case_jid_txt
title
custormer_phone
agent_name
call_date
duration
created

madified

id£2 uuIip
account_id uuin
contact_id Ui
account_id_txt wvarchar
contact_id_tet varchar
title varchar
reason varchar
source varchar
category varchar
SEVErity wvarchar
status varchar
created_date date
closed_date date
created timestamp
modified timestamp
m |]

Figure 1.7. Visual Representation of Case data-model and relationships

Tasks model specific actions that need to be completed before a certain date. They have no
children references and always point to a parent entry that can be either a Lead or an Opportunity.

Benchmarking Software Design Patterns in CRM Systems

22

MSc Thesis Emmanouil Prokakis

ido uuip
company_name

company_vat

contact_person varcha
contact_prefix varcha
company_address varcha
contact_role rcha
contact_email

contact_mobile

contact_phone varchar

company_industry

status
created
modified
ide uuip

lead_id JUl
lead_id_txt

opportunity_id

opportunity_id_txt

name v a
reason

due_date

status

type

created timestamy

modified

ido uuID
account_id

account_id_txt

titie

status

type

comments

description

expected_revenue

created

modified

Figure 1.8. Visual Representation of Task data-model and relationships

VoiceCalls are also included in the “support” Entities of the present implementation. For every
phone-call / voice communication with the end-customer, a VoiceCall entry is maintained in MNS

Benchmarking Software Design Patterns in CRM Systems 23

MSc Thesis Emmanouil Prokakis
CRM. VoiceCalls are always related to an Account (many-to-one) and a Case entry (many-to-
one).

This is the complete database schema of MNS CRM.

i |

id2 uuip
ide uuID (¥

type
company_name archai o

d lay_text
company_vat archa Isplay_tex

api_value

contact_person]

contact_prefix archal

contact_email

idp uuID account_id
contact_mobile] ar parent_id UUID case_id
contact_phone e lead_id D account_id_tet
company_industry At parent_id_txt) case_id_bdt
status] lead_id_txt rcha title
created company_name a customer_phone
modified is active boolear agent_name
industry call_date
Task_ent el joubl. duration
id 2 uuID bill_address ! created
lead_id description rchal modified mestamy
lead_id_txt) account type
opportunity_id [website
opportunity_id_txt] client_rating
name | vat
reason] created [
due_date modified . Case_ ent
status archar o uuID
type =rchar account_id
created imest contact_id I
modified ir account_id_txt
contact_id_txt
title
Opportunity_ent
reason
id&> uuID
id 2 vuID source
account_id J
account_id) category
account_id_txt &
rst_name archa severity
title
last_name varchar status
status -
email] created_date
type
phone) closed_date
comments
mobile v ar created
description .
prefix] modified
expected_revenue double
s_active V
created
birthdate
modified
department
role
account_id_txt
created
modified T

dbdiagram.io

Figure 1.9. Complete Database schema, made with dbdiagram.io

MNS CRM will support two core sales process, the Lead Conversion and the Discount Calculation
process. During a Lead Conversion, a potential customer is led through the Sales funnel. If the
handling is successful, a Lead can be converted to an Account, a Contact and an Opportunity
entry, citing the source Lead’s data. The Discount process will consider the end-customer’s
industry, revenue and loyalty to provide a discount on an amount.

Benchmarking Software Design Patterns in CRM Systems 24

MSc Thesis Emmanouil Prokakis

3.3 Implementation Analysis

3.3.1 Client Implementation Presentation

Before taking a look at the implemented solution in the back-end, we believe it would be bengficial
to review the application front-end to get a better understanding of the functionality as end users
of the CRM. The entire source code for the ReactJS application can be found at
https://github.com/emmprokak/mns_crm_client.

When the web app loads, users are placed in the “Overview” page, that includes information about
the CRM.

282 MNSCRM

Overview Account Contact Lead Opportunity Task Case call

Welcome to MNS CRM.

An implementation made to benchmark Software Design Patterns in CRM systems.
The back-end is powered by Java Springboot and the beautiful front-end here is made with ReactJS.

This web app is complimentary to the back-end implementation and is intended to provide a visual interface for interacting with the business logic and
entities.

You can use it to navigate different Entities such as Accounts, Contacts, Leads, Opportunities, Cases, VoiceCalls and Tasks
By clicking on the Entity names on the navbar, you can navigate to the Tabular View of each Entity. A table containing the relative data will be displayed.
From the Tabular View, you can drill down to a specific entry by clicking the link-highlighted attribute. From inside the EntryPage of a specific entry, you will

be able to view the entrys data, create a new entry, update the present entry or delete it. After deleting an entry, you will be redirected back the Tabular
view for that Entity.

Figure 2.1. Client App landing page

By clicking on the Entity names placed on the navbar, the user can navigate to the TabularView
of multiple Entities. For each Entity, a data-table that provides a “tabular” representation of
database records is rendered.

Benchmarking Software Design Patterns in CRM Systems 25

https://github.com/emmprokak/mns_crm_client

MSc Thesis

Emmanouil Prokakis

Overview Account Contact Lead Opportunity Task Case Call
Viewing Account entries
Yearly Billing - - Client Source Is
Company Name Industry R oy Address Description Type Website Rating VAT Created On LastUpdatedOn Parent Lead Active
Estate Menidi Real 2024-08-10 2024-08-10
keli; real nid. 7
Chotp Estate 2000000 Dekelias 35 a great real estate company Company esmenidigr 10 98002855 2011 2014 yes
the first to 2024-08-10 2024-08-10
Testopoulos Inc Insurance 25000 55 [Company testopoulos.gr 6 896640720 20111 2015 yes
2024-08-10 2024-08-10
Food 35000 Dimitriou 82 bread company Person psomi-tora.gr 8 799570819 yes
20:11 20:16
. 4 i
Menidi Housing Housing 10000 Sevastou 11 housing for all Company 4 ss211768s 20240810 20249610 Eastaflenid yes
20:18 20:18 Group
Kolokotroni 2024-08-10 2024-08-10
Broken Records Music 98000 14 Company 5 814367505 21:20 21:20 yes
Overview Account Contact Lead Opportunity Task Case call
Viewing Contact entries
First Name Last Name Email Phone Mabile Prefix Birthdate Department Rale Created On Last Updated On Parent Is Active
George Kanellopoulas ghkanel@artopoulos.com 6973200494 Mr 2000-08-31 Manager 2024-08-1020:11 2024-08-10 21:21 Artopoulos AE yes
Vaggelis Fytas viytas@records.com 498002880 Mr 1992-02-25 Manager 2024-08-1020:11 2024-08-10 21:26 Broken Records. yes
Kostas Mimikopoulos kmimiko@menidi.gr 6920009221 Mr ‘Communication Emplayee 2024-08-1021:22 2024-08-1021:22 Menidi Housing yes
Giannis. Mimikopoulos gmimiko@menidigr 2102722887 6983244898 Mr Director CEQ 2024-08-1021:23 2024-08-1021:23 Menidi Housing yes
Xristos Georgopoulos xgeo@menidigr 2108871324 694532001 Mr CEO 2024-08-1021:24 2024-08-1021:24 Estate Menidi Group yes
Kostantinos Riskakis krisk@records.com 6932141919 Mr Employee 2024-08-1021:28 2024-08-1021:28 Broken Records yes
282 MNS CRM
Overview Account Contact Lead Opportunity Task Case Call
Viewing Opportunity entries
Title Status Type Description Comments Expected Revenue Created On Last Updated On Related Account
Sell PC's New upsell new ddr5 tech client has repeatedely asked for 2200 2024-08-10 20:11 2024-08-10 21:31 Broken Records.
Provide Consulting New upsell help with tech migration 1000 2024-08-1021:32 2024-08-10 21:32 Menidi Housing
Sell MNS Server Software Quote sell 3000 2024-08-1021:33 2024-08-10 21:33 Artopoulos AE

Figure 2.4. Tabular View of Opportunity entries

The implementation of the Tabular View is fully generic and dynamic for all Entities. The API
request that retrieves the entry list is made by the App component and the entryList is then passed
down to the TabularView component. The first record entry is fetched and parsed to identify the
data-table columns. A loop inside the JSX section, renders the columns dynamically. A second
loop follows, which is responsible for dynamically rendering a Row for every record and a Cell for
every field of every record. This implementation provides great flexibility since it easily establishes
a working TabularView for new Entities that might be added in the future.

Benchmarking Software Design Patterns in CRM Systems

26

MSc Thesis Emmanouil Prokakis

div
Header as="h2"-Viewing {entityName} entries </Header

recordList?.length > @ ?
Table celled color="red"
TableHeader
TableRow
{fields.map(field =>
TableHeaderCell key={"h" + field}-{LabelMapper.fieldNameTolLabelMap[field]}</TableHeaderCell
'}
TableRow
TableHeader:

TableBody

{recordList.map(ro
Table.Row key={"tRow" + row.id}

{fields.map(col =>
Table.Cell
collapsing={false}
textAlign="center"
verticalAlign="middle"
key={"rec" + row["id"] + col}

TabularCell recordObject={row} fieldName={col} cellClicked={fieldClicked} entityName={entityName}

Table.Cell
)

Table.Row:

TableBody:

Table

Figure 2.5. Tabular View generic implementation

In case no entries are found for an Entity, an informative message appears with button-triggered
modal for creating a new entry.

282 MNSCRM

QOverview Account Contact Lead Opportunity Task Case Call

Viewing Task entries

No records where found Create a Task?

Figure 2.6. No records found page for Tasks

Benchmarking Software Design Patterns in CRM Systems 27

MSc Thesis Emmanouil Prokakis

282 MNSCRM

Overview Account Contact Lead Opportunity Task Case Call

Viewing Case entries

No records where found Create a Case?

Figure 2.7. No records found page for Cases

span>No records where found</s
Button onClick={modalButtonPressed} style={{marginLeft: "20px"}}-Create a {entityName}?-/Button
div

TabularModal entityName={entityName}
childModalClosed={modalClosed} showModal={noRecordModalOpen} modalKey={modalKey}
div

Figure 2.8. No records founds page implementation

By clicking a the linkable-attribute of an Entity entry, the user will be navigated to the Entry page
for that record.

282 MNSCRM

Account (9b74a381-440b-45d7-bfa4-911637617ead)

a great real estate company
esmenidi gr

contacts (1)

First Name Last Name Role

Xristos Georgopaule: ceo

cases (0)

calls (0)

Client Rati
Gl g opportunities (0}

Created On
2024-08-1020:11

Figure 2.9. Account Entry Page example

Benchmarking Software Design Patterns in CRM Systems 28

MSc Thesis

282 MNSCRM

Overdiew Account Contact Lead Opportunity Task Case

Opportunity (66b940a3-9a7e-4b48-80a1-a6414af485f)

new ddr5 tech

Emmanouil Prokakis

Status
New

Description
ew ddsS toch

repeatedely asked for

Expected Revenue
2200

Created On
2024-08-1020:11

Last Updated On
2024-08-1021:31

Related Account

Figure 2.10. Opportunity Entry Page example

tasks (0)

The entry page can be divided into four (4) sections. The top-left and top-right components refer
to the Entry Header and the Entry actions. The former includes the Entity name, the Entity id and
a couple of important attributes for each Entity. Through the viewableFields list, the rendering of
the Entry Header is dynamic for all Entities. The same is true for the latter, where every action-
button is generically created for the relative Entity entry.

Case (2a0béfc1-af6b-4ce5-ba8c-9adaBa709342)

Customer Service
In Progress

Figure 2.11. Entity Header example for Cases

Account (9b74a381-440b-45d7-bfad-9f1637617ead)

Estate Menidi Group
a great real estate company
esmenidi.gr

Create Account Update Account Delete Account

Figure 2.12. Entity Header example for Accounts

Benchmarking Software Design Patterns in CRM Systems

29

MSc Thesis Emmanouil Prokakis

div className="header—top-container™
div className="entity-header"
v className="entity-header-object"
Parse.firstLetterCapital(entityName) n style={{fontSize: "@.7em"}}>({record["id"]}

v className="entity-header-preview-fields"
fieldCollection.map(field =>
viewableFields.includes(field) ?

div ke "headd-" + field} style={{marginRight: "2@px"}
1 key={"head-" + field record[field])an

an key={"head-" + field span

/ className="actions—container"

standardActions.map({act =>
EntityAction key={act} entityName={entityName} entryId={record["id"]} actionLabel={act} actionClicked={actionClicked

)

renderLeadConversionAction()

Figure 2.13. Rendering of Entity Header components implementation

The bottom-left component of the Entity page is referred to as the main data container and
includes the attribute values of the relative entry.

-
First Name Last Name
Kostas Mimikopoulos
Email Phone
kmimiko@menidi.gr
Mobile Prefix
6920009221 Mr
Birthdate Department

Communication

Role Created On
Employee 2024-08-1021:22
Last Updated On Parent
2024-08-1021:22 Menidi Housing
Is Active
yes

\

Figure 2.14. Main data area example of Contact

s N
Title Status
Sell PC's New
Type Description
upsell new ddr5 tech
Comments Expected Revenue
client has repeatedely asked for 2200
Created On Last Updated On
2024-08-1020:11 2024-08-1021:31
Related Account
Broken Records

p. >y

Figure 2.15. Main data area example of Opportunity

Benchmarking Software Design Patterns in CRM Systems 30

MSc Thesis Emmanouil Prokakis

Following the paradigm set by other parts of the implementation, the rendering of these fields is
also dynamic, defined by the fields included in the JSON response from the web service. The
response object's attributes are separated into two columns and each field is rendered
dynamically in one of the two columns.

function seperateFieldsIntoTwoGroups
if(!entry
return

const leftList =
const rightList =
const total =

const relFields =

for(let field of Ot t.keys(entry)
if(nonRenderableFields.includes (field)){
continue

}

if(Array.isArray(entry[field])){
Logger. log("added to rel fields"

Logger. log(field
relFields.push(field
continue

}

if{idx % 2 === @){
leftList.push(field
Yelse{
rightList.push{field
}

total.push{field)
idx++

setFirstColFields(leftList
setSecondColFields(rightList
setFieldTotal(total
setRelationshipFields(relFields
Logger.log(relFields

Figure 2.16. Dynamic field parsing logic

Benchmarking Software Design Patterns in CRM Systems 31

MSc Thesis Emmanouil Prokakis

assName="main-record-data-container"
className="field-group-container"
div className="1left-div"

firstColFields.map(field => {
EntityPageField key={field} fieldName={field} fieldValue={entry[field]} entityName={entityName
relatedEntrySelected={relatedRecordSelected

className="right-div"

secondColFields.map(field
EntityPageField key={field} fieldName={field} fieldValue={entry[field]} entityName={entityName
relatedEntrySelected={relatedRecordSelected

Figure 2.17. Dynamic rendering of fields in two column

function renderFieldValue
if(typeof fieldValue = 'object"
const [id, displayValue] = Parse.handleObjectValue(fieldValue, fieldName, entityName)
const relatedObjectType = getRelatedObjectType(fieldValue)
return <a onClick={entryObjectSelected} data-id={id} data-object={relatedObjectType}
style={{cursor : "pointer"}}-{displayValue}-/a

return Parse.parseTableValue(fieldValue, fieldName

function entryObjectSelected(event){
relatedEntrySelected(EventGenerator.getRelatedLinkEvent (event.target.dataset.id, event.target.dataset.object)

return(
div className="field-container"
el htmlFor={fieldName} className='field-label'={LabelMapper.fieldNameToLabelMap[fieldName]

1 className="field-value'
renderFieldValue()

Figure 2.18. Implementation of EntityPageField component

All related fields are also collected in a separate list variable for the fourth and last component of
the Entry page. The related records area is responsible for rendering mini-tabular views for the
children entries of the displayed Entity entry.

Benchmarking Software Design Patterns in CRM Systems 32

MSc Thesis

contacts (2)
First Name Last Name Role
Vaggelis Fytas Manager
Kostantinos Riskakis Employee
cases (1)
Title Category Status
Help with Server Installation Customer Service In Progress
calls (0)
opportunities (1)
Title Status Type
Sell PC's New upsell

Figure 2.19. Related records area example for Account

-

cases (1)
Title Category Status
Help with Server Installation Customer Service In Progress

Figure 2.20. Related records area example for Contact

Emmanouil Prokakis

The rendering of each children list is dynamically handled by the RelatedEntriesGroup component

which, in turn, loads the RelatedEntriesTable component.

Benchmarking Software Design Patterns in CRM Systems

33

MSc Thesis Emmanouil Prokakis

relationshipFields?.length > @ ?
div className="related-records—area"

{

relationshipFields.map(field => (
RelatedEntriesGroup key={"rel" + field} entityName={entityName} relationshipName={field}
entryId={entryId} relatedEntriesList={entry[field]}

relatedEntrySelected={relatedRecordSelected}

Figure 2.21. Rendering each related list dynamically implementation

return
div
¢ style={{margin: "1@px 0"}
an style={{color: "blue", fontSize: "1.4em"} relationshipName} ({relatedEntriesList?.length})</span

RelatedEntriesTable relationshipName={relationshipName} originEntityName={entityName
recordList={relatedEntriesList} relatedRecordClicked={relatedEntrySelected

Figure 2.22. RelatedEntriesGroup component implementation

All clickable fields will navigate the user on the entry that the linkable attribute represents. This is
possible through a generated event, which is bubbled up across the entire component hierarchy.
All parts of the implementation that support these links make use of the EventGenerator class,
which provides a centralized generator of events to be handled by the EntryPage and App
components.

class EventGenerator{

static getEvent(name, source, value){
return
name, source, value

static getRelatedLinkEvent(entryId, entityName){
return
entryld, entityName

Figure 2.23. EventGenerator class implementation

Users can also interact with the action buttons. They provide access to “create”, “update” and
“delete” functionality and clicking an action button causes a modal to appear. Create modals
contain no data and are responsible for inserting a new entry to the database. Update modals
automatically load the currently present entry of the Entry page and every modification on these
data will be interpreted as an update to the currently present entry. The delete modal contains no

Benchmarking Software Design Patterns in CRM Systems 34

MSc Thesis

Emmanouil Prokakis

data and will handle the deletion of the currently present entry from the database. The modal
action buttons are colour-coded, so that the user has one more sign about the operation he/she

is about to commit.

Create Contact
Add values
First Name Last Name
Email Phone
Is Active Mobile
Active [
Parent Account Prefix
Birthdate Department
Role

Figure 2.24. Create Contact Modal example

Benchmarking Software Design Patterns in CRM Systems

Cancel

Create

35

MSc Thesis Emmanouil Prokakis

Update Contact
Add values

First Name Last Name

Kostantinos] [Riskakis]
Email Phone
[krisk@records.com]]
Is Active Mobile
| Active

6932141919

Parent Account Prefix
[Broken Records -] [Mr -]
Birthdate Department

Role
[Employee -]

Cancel Update

Figure 2.25. Update Contact Modal example

Delete Contact

Are you sure you want to delete Contact with id: 9c54ca8c-ac42-4eec-alée-555b90dc19ef

Figure 2.26. Delete Contact Modal example

If a Lead’s Status is set to “Success”, a “Convert” action will also appear. That operation will trigger
the Lead Conversion process for that Lead entry. This modal button is also colour-coded.

Benchmarking Software Design Patterns in CRM Systems 36

MSc Thesis

&2 MNS CRM

Overview Account Contact Lesd Opportunity Task Case Call

Lead (Baf6329a-Oeea-4f 1f-bf02-h5289fc08509)

Dimitra Gianniou
Success

Emmanouil Prokakis

Company Name
loulia Giannicu

Contact Prefix
Ms

Contact Role
=21

Contact Mabile
6933232001

Company Industry Status.
Retail Success

Created On Last Updated On
2024-08-1021:30 2024-08-1021:43

Figure 2.27. Lead Entry page with Convert action visible

Convert Lead

Are you sure you want to convert Lead "loulia Gianniou"

An Account, Contact and Opportunity will be created based on Lead data.

tasks (0)

Figure 2.28. Convert Lead Modal example

Convert Lead

Congratulations!

Lead "loulia Gianniou" was successfully converted

Created Account: Created Contact: Created Opportunity:
loulia Gianniou Dimitra Gianniou loulia Gianniou Opportunity

Figure 2.29. Convert Lead Modal Success example

In case an error is returned during those operations, an informative

Cancel

message-notification will

appear on the top right of the screen. Such a case would be inserting a record with incomplete

required data or updating a record to that state.

Benchmarking Software Design Patterns in CRM Systems

37

MSc Thesis

Create Contact

First Name

Add values

Last Name

Test last name

Email

Phone

test@test.com

]

Is Active
Active

Parent Account

Mobile

6981600702

Prefix

[Testopoulos Inc

Birthdate

Department

1999-01-02

test

Role

Employee

Cancel m

Figure 2.30. Data validation error for Contact example

Create Case

Add values

Status

None

Reason

Source

Suppert

- l [Wiebsite

Category

Severity

Crisis Management

E

Related Account

Related Contact

{ Menidi Housing

Giannis Mimikopoulos

Figure 2.31. Data validation error for Case example

Emmanouil Prokakis

e Please provide first name and last
name for Contact

o Pleasa provide Titke, Reason,
Category and Status for Case

The create and update modals included fields that are different from Textlnput. These are the
Comboboxes, Checkboxes and EntryPointers. The Comboboxes’s values are dynamically set by
performing a request to the back-end table “Config_cfg”. The EntryPointer is special because is
visualizes database entries as Combobox options by performing a request to recently updated
records of the Entity it “points” at. The use of EntryPointer components is targeted for handling

Benchmarking Software Design Patterns in CRM Systems

38

MSc Thesis Emmanouil Prokakis

parent relationships of the present entry of the Entry page. The EntryPointer component is also
generic and reusable for all entities.

Add values

Status

New

In Progress

On hold

Pending Approval

] Closed

Figure 2.32. Dynamically defined Combobox options example

Related Account Re
None - \ [
None

loulia Gianniou
Broken Records
Menidi Housing
Artopoulos AE

Testopoulos Inc

Figure 2.33. Entry pointer with Account record options example

Benchmarking Software Design Patterns in CRM Systems 39

MSc Thesis Emmanouil Prokakis

Related Contact

None -
None

George Kanellopoulos

Waggelis Fytas

Kostas Mimikopoulos

Giannis Mimikopoulos

Xristos Georgopoulos

Kostantinos Riskakis

Dimitra Gianniou

Figure 2.34. Entry pointer with Contact record options example

function parseOptions(records
setOptionRecords (prevOptions
const existingIds = new prevOptions.map(option => option.key
const newOptions = records.filter(record => !existingIds.has(record.id
.map(record =>

{

key: record.id
value: record.id
text: getComboboxOptionDisplayLabel(record

return
... prevOptions
... Nnewlptions

Figure 2.35. Entry Pointer option parsing mechanism implementation

const fetchSampleRecords = async () => {
const records = await RequestService.getlLastModifiedRecords(entityName, 5, "modified", "desc"
if(records
parseOptions(records

setLoading(false

Figure 2.36. Entry Pointer dynamic retrieval of database entries for display

Benchmarking Software Design Patterns in CRM Systems 40

MSc Thesis Emmanouil Prokakis

Having seen the different components of the client application, we can view the complete
component hierarchy of the React components.

1

TabularView EntityPage

| [\

TabularRow TabularCell TabularModal ModalController EntityPageField

ModalContentHandler

RelatedEntriesGroup EntityHeader

ModalController RelatedEntriesTable

ModaiContentHandler
{ 1

I T
[T T T l
CreateUpdateAccountModal CreateUpdateContactModal CreateUpdateLeadModal CreateUpdateOpportunityModal CreateUpdateTaskModal

CreateUpdateCaseModal CreateUpdateVoiceCallModal LeadConversionModal

Figure 2.37. React Component Hierarchy

EntityAction

I oo

TabularRow

DeleteModal

3.3.2 Design Pattern Implementation Presentation

The Java Springboot implementation is a web service, intended to provide an exposed REST API
for the front-end application to use. Communication will be performed through JSON HTTP
requests / responses. Through the API, the client will be able to perform CRUD operations on the
CRM Entities and trigger business processes. The complete back-end application source code
can be found at https://github.com/emmprokak/mns-crm-backend-00.

Implementation Architecture and General Design

The present architecture implements the concept of bidirectional references, where both parent
and children entries will maintain references to the each-other. According to this design choice,
the child contains an attribute that shares the same data-type with the parent entity and points to
it, while the parent also maintains a list of entries that share the same data-type with the child
entity. In this manner, a single request to the parent will also fetch its children entries and a single
request to the child will include the parent entity with its static attributes.

All Entities of the CRM are annotated with the @Entity annotation and specify the tables and
fields of the underlying database. Table and Columns names are set explicitly to avoid coupling
database schema names with Java classes. All Entities that contain CRM data end in the postfix

_ent”, while the configuration tables will use the postfix “_cfg”.

The client interacts with the “Controller” layer of the back-end. The Controller layer is responsible
for routing and redirecting the incoming requests to the “Service” layer, which constitutes the
central component of the implementation and provides functions for all expected operations. Each
Entity has its own Service class implementation, providing functions for inserting new entries as
well as fetching, updating and deleting existing entries.

Benchmarking Software Design Patterns in CRM Systems 41

https://github.com/emmprokak/mns-crm-backend-00

MSc Thesis Emmanouil Prokakis

Even though the central Service layer is responsible for handling the Entity operations, it contains
little to no business logic inside of it. All specific actions that are needed for the operations to take
place are delegated into different components of the architecture.

More specifically, the handling of inserting and updating records is delegated to the
InsertUpdateTrigger module. The trigger acts as a wrapper of actions that need to take place
before successfully inserting / updating a database record. Calls are made to the ObjectMapper,
who handles the static mapping of attribute values, the RelationshipMapper, who handles the
bidirectional references between Entity entries and the ValidationProcessor, who ensures certain
data requirements on the entries to be inserted / updated.

Another example would be the DeleteTrigger, that focuses on abstracting the entry deletion
process while also removing all references from parent and children entries. This is a complicated
and logic-heavy part of the implementation and needs to be handled in its own separate module.

All database operations are abstracted by the Data Access Layer interfaces that follow the
“Repository” pattern. By extending the JPARepository interface, functions for CRUD and query
operations are handled by the framework and become available for each Entity.

When a request from the front-end is handled, a response is always sent back to the client. We
avoided sending over the actual Entities, since this would tightly couple the front-end
implementation with the Entity attributes of the database schema. For this reason, the Data
Transfer Object pattern was utilized. Once the request of the client has been handled, the resulting
entry (or list of entries) is transformed into an instance of a specific data class, which is then
returned to the client.

Each Entity has its own DTOs that are always structured in an inheritance hierarchy. The
“EntityDTOMinimal” DTOs contain only the core fields (non relationship fields) of each entry, while
lacking the references to parent entries and the lists that contain the children entries. The
“EntityDTOSimple” DTOs include the non relationship fields and the parent entry records, but lack
the children related lists. Lastly, the “EntityDTOComplete” DTOs incorporate all non relationship
fields, parent Entity entries and children related lists. This is to provide different options of
information access to the front-end application. For instance, retrieving a list of entries for
populating a Tabular View should not include lists of child records for each entry. On the contrary,
rendering the Entry Page for a single entry can be based on one single request that also fetches
parent and children entries.

Setting aside the Entities, there are also two Controllers for supporting the Configuration and
Business Processes. The Configuration Controller is responsible for providing combobox options
dynamically to the client. Standardized inputs like the account industry or case status can be
modelled as comboboxes in the wep app and these options are maintained in a separate
configuration table of the back-end. The Configuration Controller is responsible for fetching the
proper combobox options and returning them to the client for rendering. On the other hand, the
Business Process Controller routes requests that trigger business processes to the appropriate
logic to be executed.

Example Architecture — Opportunity Entity

Requests are received on the OpportunityController and routed.

Benchmarking Software Design Patterns in CRM Systems 42

MSc Thesis Emmanouil Prokakis

unityDTO

unityDTO ble String id){

.insertOpportun

Figure 3.1. Implementation of OpportunityController

The OpportunityService class encapsulates the operations that need to be performed. The Data
Access Layer (Repositories) is used for database operations like queries and the Insert Update
Trigger / Delete Trigger handle the entry saving and deletion process respectively.

Benchmarking Software Design Patterns in CRM Systems 43

MSc Thesis Emmanouil Prokakis

FindAL1();

ic Op (Opportunity s 0 tunity target, bool

target = Ob
target =

return target;

Figure 3.3. Handling an Opportunity entry inside the Insert Update Trigger

On the definition of an Entity there are the attributes-fields, constructors and functions that are
implemented from the present interfaces, which will be discussed later in detail.

Benchmarking Software Design Patterns in CRM Systems 44

MSc Thesis Emmanouil Prokakis

nts Sendable<OpportunityDTO>, DataEntity, ChildEntity, ParentEntity {

Figure 3.4. Declaration of the Opportunity Entity

Quality Characteristics

For the present implementation, emphasis was put into ensuring software quality so that the
implementation can be maintained and extended in a flexible manner. Its architecture is similar to
other Spring applications, utilizing patterns such as Repositories for abstracting the data
persistence layer, a Service Layer that encapsulates the core operations and Data Transfer
Objects (DTOs).

Reused Architecture patterns

The DAL is important for decoupling the database operations and queries from the rest of the
implementation and promoting the separation of concerns. JPA Repositories offer an abstraction
for interacting with the database, allowing for interchangeable data stores without the need for
rewriting parts of the implementation logic. By making use of the DAL we can avoid hard coded
queries into the business layer, which would tightly couple the application with the underlying data
store implementation.

The Service Layer acts as an intermediary between the DAL and Controllers. It encapsulates the
core business logic and operations, processing the incoming requests from the Controller layer

Benchmarking Software Design Patterns in CRM Systems 45

MSc Thesis Emmanouil Prokakis

and interacting with the DAL both directly and indirectly. The separation of concerns is promoted
because the Controller layer focus on handling the requests and routing, the Service Layer
handles the business logic and the DAL abstracts the database operations. It is important to note
that this “intermediary” role puts the Service Layer at the heart of the application architecture.

DTOs

DTOs are data classes that are used for transmitting data back to the API consumer. They
promote efficiency by collecting all requested data in a single data class, thus reducing the
number of API calls to obtain the requested information, and promoting loose coupling between
the data-model and the client application. In the scenario that an Entity was returned as is to the
client, the web app’s implementation would be reliant on the database tables and columns not
undergoing modifications in the future. Changes in the model of the back-end would entail
refactoring for the web app as well, which can be very high cost if there are many consumers of
the web service. Essentially, the DTOs abstract the underlying database schema of the API
service for the client application.

In our implementation, we utilize a hierarchy of DTO classes for each Entity. The simplest are the
Minimal DTOs, that contain only the static attributes of each entry, while missing the references
to parent entries and the lists that contain the children entries. The Simple DTOs include the static
attributes and the parent entry records, but lack the children related lists. Finally, Complete DTOs
include all static attributes, parent entries and lists of children entries. This hierarchy provides the
flexibility to use the appropriate DTO for each use-case. If we want to render the entry page for a
single record, it makes sense to use the Complete DTO, since we also want to include links to
parent entries and related children entries (and display their names). For retrieving a list of
records, the Simple DTO is more appropriate, since it includes parent entries (which can be
displayed in a table cell with the name of the parent) but does not include entire related lists of
children per entry. Lastly, if a Simple DTO contains a reference to a parent entry, we don’t want
to retrieve the parent’s parent entry, so we will use the Minimal DTO for the related entry of a
Simple DTO.

“Static” in this context doesn’t not refer to the lack of object instantiation, but to the “fixed” data
structure of the non-relationship fields. Static attributes include fields like Strings (Names,
Comments, Categories, Industries), Dates (Birthdates, Case Closed Date) and Booleans
(IsActive). Non static attributes refer to data-types that reference another CRM Entity (Account,
Contact, Task etc.). In the case of non-static attributes, the value of the field can be an Entity
object with varying state.

All Service Layer and, as a result, Controller Layer methods utilize a DTO supertype as a return
type. This is to add flexibility and promote loose coupling. For example, new fourth type of DTO
can potentially be added without the need for refactoring the existing functions of the Controller
and Service layer. Methods can be easily updated to return multiple types of DTOs without the
need for duplicated logic.

Benchmarking Software Design Patterns in CRM Systems 46

MSc Thesis Emmanouil Prokakis

(string id, boolear

untOptional = .findByld(id);

return accountOptional.get().toDTOSimple();

Figure 3.5. Different DTO based on the case
Entity Configuration

All CRM Entities implement the Sendable interface, which defines the methods to be implemented
for getting converted into a DTO.

Figure 3.7. Sendable interface implementation on Task

With all Entities sharing the Sendable interface and providing implementation for its defined
functions, we can create a generic function that converts a list of Entities to a list of EntityDTOs.
This is necessary for actions fetching a list of entries to populate a Tabular View, where each entry
needs to be converted into DTO to be sent over with an API response.

Benchmarking Software Design Patterns in CRM Systems 47

MSc Thesis Emmanouil Prokakis

public ListConverter {

public atic <E e s Sendable<D>, D> List<D> c tEnti)TO (List<E> entities, int conversionType) {
List<D> dtoList = new ArraylList<>();

for (E entity : entities) {
D dto;
(conversionType) {
Constants.DTO
dto = entity.toDTOMinimal();

> Constants.DTO.CONVERT_TO
dto = entity.toDTO0Simple();

break;
case Constants.DT0.C
dto = entity.toDTOComplete();
br H

default:

throw new IllegalArgumentException("Inv

}
dtoList.add(dto);

return dtolist;

Figure 3.8. List Converter Generic implementation

public List<VoiceCallDTO0> getAllVoiceCalls(){
List<VoiceCall> voiceCalllList = voiceCallRepository.findAll();

if(voiceCalllList.size() <= 0){

return new ArraylList<>();

return ListConverter.convertEntitiesToDTOList(voiceCallList, Constants.DTO.CONVERT_TO_DTO_SIMPLE);

yuntDTOComplete(String billingAddress, int clientRating, String companyName, String description, String id, String i

billingAddress, clientRating, companyName, description, id, industry, isActive, parent, relatedLead, revenue, type,

n = ListConverter.convertEntitiesToDTOList(accounts, Constants.DTO.(
ts = ListConverter.convertEntitiesToDTOList(contacts, Constants.DTO
istConverter.convertEntitiesToDTOList(cases, Constants.DTO
ListConverter.convertEntitiesToDTOList(calls, Constants.DTO
s = ListConverter.convertEntitiesToDTOList(opportunities, Constants.DTO.(

Figure 3.10. AccountDTOComplete making use of generic list conversion for related children

The CRM Entity classes define the attributes and relationships between Entities. They construct
the database schema, determining the tables, columns and relationships. An Entity’s class
structure includes the class declaration, the class field members, constructors, the interface
implemented methods and getters-setters. The table name of each CRM Entity is made up by the
entity name and the postfix “_ent”. All column names are explicitly defined and follow the snake
case format for their naming scheme. The names of tables and columns are explicitly specified in
order to decouple the database implementation for the Java classes of the web service.

Benchmarking Software Design Patterns in CRM Systems 48

MSc Thesis Emmanouil Prokakis

All Entities implement a couple of interfaces. The Sendable<T> interface defines all entities that
can be “sent over” to a different application, as part of an API response. The generic parameter
“T” refers to the DTO mapped to the object implementing the interface. For instance, in the case
of Account, the implementation would be “class Account implements Sendable<AccountDTO>".
The DataEntity interface defines no methods to be implemented -as of now- and is used to keep
a polymorphic reference to a list of different type of Entity entries. Lastly, the ParentEntity and
ChildEntity interfaces define methods for handling the updates to an Entity’s parent and children
relationships. An Entity can be both a ParentEntity and a ChildEntity and these interfaces are
necessary to handle the bidirectional reference updates in an agnostic and generic way. This
generic mechanism will be explored in more details below. Generic bidirectional updates allow for
great flexibility, extendibility and reduced duplicated logic.

= Dpportunity.class)q{

ityType, parent) {

((Lead) parent).getId();

tunity) parent;

((Opportunity) parent).getId();

Figure 3.11. ChildEntity implementation on Task

Benchmarking Software Design Patterns in CRM Systems 49

MSc Thesis Emmanouil Prokakis

childTy

if (childTy

Figure 3.12. ParentEntity implementation on Opportunity

Benchmarking Software Design Patterns in CRM Systems 50

MSc Thesis Emmanouil Prokakis

s ChildEntity>

if (newPa

rentId);

nt);
return childR itory childToB

Figure 3.13. Generic Handling of bidirectional reference updates

Insert Update Trigger

Benchmarking Software Design Patterns in CRM Systems 51

MSc Thesis Emmanouil Prokakis

The Service layer offers functions that support all the core operations. It breaks those actions into
smaller tasks and delegates these tasks to the appropriate module. Such is the case with the
Insert Update Trigger (IUT), who is responsible handling the data validation, static attribute
mapping and relationship mapping for an Entity entry before saving it to the database. The IUT
contains one function for each CRM Entity in order to handle its insert/update action.

@Autowired
e ValidationHandler validati
Account he ccountEntry(Account source, Account target) throws DataValidationException {
ionHandler.validate(source);
target = ObjectMapper.mapAccountFields(source, target);

target rele ipMapper.mapAccountParents(source, target);

target;

ry(Contact source, Contact target, boolean isInsert) throws DataValidationException {

.validate(source);

ObjectMapper.mapContactFields(source, target);
r.mapContactParents(source, target, isInsert);

Entry(Lead source, Lead target) thr DataValidationException {
idationHandler.validate(source);
target = ObjectMapper.mapLeadFields(source, target);

n target;

Figure 3.14. Insert Update Trigger implementation for Account, Contact and Lead

The first action of the IUT is to validate the data for the respective Entity entry. This method is
generic and agnostic to the Entity type of the entry provided. For this part of the implementation
(data validation) the Template Method design pattern was used. By making use of the Template
Method pattern, we can ensure the core structure of the algorithm remains the same, while we
defer the algorithm step implementation to subclasses. We can ensure that the data validation
method always runs before the beforeSave method and the inheriting classes can only provide
an implementation for those methods, but not change the order method calls or avoid their
execution.

ValidationTem

Figure 3.15. Validation Class supertype

Benchmarking Software Design Patterns in CRM Systems 52

MSc Thesis Emmanouil Prokakis

The ValidationTemplate class was made to be extended by the individual ValidationProcessor
classes. We decided to move forward with one ValidationProcessor class per Entity, so that the
logic will be separate for different entity types and, thus, easy to maintain and extend. Each of
these classes implements the ValidationTemplate interface and provides an implementation for
the “validate” function. Said function is declared protected so that overriding is possible. This is
contrast with the beforeSaveProcessing method, which is declared final for its implementation to
be unmodifiable. For the calling environment to interact with the ValidationHandler class should
be made, which offers a generic method for Entities that dynamically maps the proper
ValidationProcessor based on the class type key.

@Component

s ValidationHandler {
e final Map<Class<?>, ValidationTemplate<?>> validators 1ew HashMap<>();

\Handler() {

put(Account.c ew AccountValidationProcessor());

put(Contact w ContactValidationProcessor());

.put(Lead.c LeadValidationProcessor());

put(Task.c TaskValidationProcessor());

put(Opportunity ass, new OpportunityValidationProcessor());
s.put(VoiceCall new VoiceCallValidationProcessor());
s.put(Case.c ew CaseValidationProcessor());

lic <T> void validate(T entity) t DataValidationException {

ValidationTemplate<T> validator = (ValidationTemplate<T>) validators.get(entity.getClass());

if (validator != null) {
validator.beforeSaveProcessing(entity);
Felseq
throw new IllegalArgumentException("No validator found for " + entity.getClass().getSimpleName());

(StringUtil.

Figure 3.17. Implementation of the Account Validation

Benchmarking Software Design Patterns in CRM Systems 53

MSc Thesis Emmanouil Prokakis

dvalidation

Figure 3.18. Implementation of the Lead Validation

With this pattern, we achieve a positive impact for the implementation. For instance, modifications
on the criteria of data validations can me made directly to the Entity-specific classes without the
need for modifications to other Entities or the rest of the codebase. Actions before or after the
validation method, can be easily performed by updating the parent ValidationTemplate class with
new methods and providing default implementations for those methods. In addition, adding
validation logic for a new Entity can be done by creating a new ValidationProcessor class and
implementing the ValidationTemplate interface, without the need to modify existing validation logic
in existing classes. Setting aside the Entity-specific operations, an action can be forced on all
Entities by just updating the parent ValidationTemplate class and the beforeSaveProcessing
method. Overall, the application of this pattern boosts maintainability, flexibility and extendibility
in the IUT module.

Having processed the request entry for enforcing data criteria, the IUT moves on to mapping the
static attributes of the entry. The Object Mapper (OM) is a class that handles the mapping of the
static attributes between the entry provided in the request (source) to the entry already present in
the database (target). For inserting records, the target is an empty entry of that Entity which was
just instantiated. The OM offers a function for every Entity and makes use of the Builder design
pattern to properly construct the resulting Entity entry. The Builder pattern abstracts the
instantiation process from the calling environment, targeting the construction of complex objects
with varying state, while promoting the separation of concerns. With the use of Builder, we can
abstract the instance creation process from the calling environment code (Object Mapper in this
case) and avoid hard-coding certain logic. An example of hard-coding logic would be a null check
for an assignment that would otherwise throw an Exception as this was the case for Date fields.

Benchmarking Software Design Patterns in CRM Systems 54

MSc Thesis Emmanouil Prokakis

Figure 3.20. Contact Builder performing null check before assignment

All Builder classes share a common interface that defines the build method and each Entity has
its own Builder class.

EntityBuilder<T extends DataEntity>

Figure 3.21. The Entity Builder interface

Benchmarking Software Design Patterns in CRM Systems 55

MSc Thesis Emmanouil Prokakis

(Builder implements EntityBuilder<T

04

1ew Task();

(String name) {

Figure 3.22. Task Builder class fragment

Having concluded with the static attribute mappings, the IUT proceeds with the relationship
(dynamic) mappings which are handled by a module named Relationship Mapper (RM).

turn target;

Figure 3.23. Insert Update Trigger for Cases and VoiceCalls

The RM is responsible for handling the bidirectional references on an Entity entry and its parents.
RM provides a function for each Entity and inside the function the generic
handleParentChildRelationship method is called for every parent of the entry. A comparison is
made to see if the parentld field has been modified in comparison to what is currently present in
the database. If the parentld has changed (to null or another value) the generic
handleParentChildRelationship method is called for that parent and

request entry pair. This check is valuable before entering the method, since this is a query-heavy
part of the implementation.

Benchmarking Software Design Patterns in CRM Systems 56

MSc Thesis Emmanouil Prokakis

c Opportunity ma jortunityParents(Opportunity reqOppty, Opportunity opptyToBeUpdated, Boolean isInsert){
if(!StringUtil. strlngsAreEqual(rerppty getRelatedAccountId(), opptyToBeUpdated.getRelatedAccountId())){
opptyToBeUpdated = rel lerHe .handleParentChildRelationship(
reqOppty,
opptyToBeUpdated,

Opportunity
isInsert

return opptyToBeUpdated;

C k ts(Task reqTask, Task taskToBeUpdated, Boolean isInsert){ s
if(!StringUtil. srrlngsAreEqual(reqTask getRelatedLeadId(), taskToBeUpdated.getRelatedLeadId())){
taskToBeUpdated = relHandlerHelper.handleParentChildRelationship(
reqTask,
taskToBeU,

Task.cl
isInsert

if(!StringUtil. strlngsAreEuual(reqTask getRelatedOpportunityId(), taskToBeUpdated.getRelatedOpportunityId())){
taskToBeUpdated = relHandle .handleParentChildRelationship(
reqTask,
taskToBeUpdated

Opportunity
Task.class,
isInsert

return taskToBeUpdated;

Figure 3.24. The generic handleParentChildRelationship method is called for Opportunity and Task

This module (RM) does not use any of the 26 Gang of Four patterns. However, it utilizes a lot of
ideas that go into the design patterns for what makes a good implementation. The handling of the
parent-child bidirectional references is made generic in order to avoid duplicate logic. We are
going to see how that evolved in more detail on the version of the web service that doesn’t
implement the design pattern ideas and practices. (Section 3.3.3)

The method utilizes Generics, Bounded Types, class type keys and interfaces to be able to
manage complex bidirectional references between Entities with varying relationships. The method
parameter types, return types, arguments and body statements make heavy use of generics. This
are dynamically set data types of the variables, which are not known at compile-time. The
generics P(arent) and C(hild) are upper bounded by the interfaces ParentEntity and ChildEntity
respectively, which allows us to use their defined functions, since all subtypes of them will
implement them. The class type keys are used as function arguments so that they can be passed
down to the Entity methods that will handle them accordingly.

The logic of the function is the following: if the parent entry has changed and the old parent entry
existed, remove the references of the present entry from its children. If the new parent id is empty,
remove all references from the previous parent on the child and return out of the function.

Benchmarking Software Design Patterns in CRM Systems 57

MSc Thesis Emmanouil Prokakis

Alternatively, if a new parent is present, update both the new parent and the present entry to point
to each other.

childR

stri,

if (newPar

childTo

/. FindById(arentId);

hildToBe

Figure 3.25. Generic parent-child reference handling

Benchmarking Software Design Patterns in CRM Systems 58

MSc Thesis Emmanouil Prokakis

@0verride
public <C> List<C> getChildrenEntities(Class<C> childType) {

if (childType == Account.class) {

return (Li

(childType ==
return

(childType == Case.class) {

return (List<C>) cas

(childType == VoiceCall.class) {

return (Li

(childType == Opportunity.class) {
return i ities;

return new ArraylList<>();

Figure 3.26. ParentEntity method implemented for Account Entity

@0verride
public <P> void setParent(Class<P> entityType, P parent) {
if(entityType == Lead.class){
this.relatedLead = (Lead) parent;
if(parent !'= null)A
this.relatedlLeadId ((Lead) parent).getId();
Yelsed
this.relatedLeadId null;

if(entityType == Opportunity.class){

this.relatedOpportunity = (Opportunity) parent;
if(parent !'= null){

this.relatedOpportunityId ((Opportunity) parent).getId();
Yelsed

this.relatedOpportunityld null;

Figure 3.27. ChildEntity method implemented for Task

Benchmarking Software Design Patterns in CRM Systems 59

MSc Thesis Emmanouil Prokakis

In this manner, we are able to dynamically and generically handle the parent child bidirectional
references. This is a complex and logic-heavy part of the implementation that can be used by all
existing and future Entities of the CRM web service. This is great for flexibility, extendibility and
code reusability within the MSN CRM back-end.

Delete Trigger

The Service layer houses operations for entry deletions and delegates entry deletion logic to the
Delete Trigger (DT) module. For this first version of MNS CRM it was decided to not cascade the
delete operation to child entries. In essence, this means that deleting an Account entry will not
get rid of its children entities, but they will become orphan records from that point on. The job of
the Delete Trigger is to successfully remove all reference to the pending-to-be-deleted record, so
that the delete call of the JPARepository will not trigger a database exception. By removing all
references of an entry from other related database records, we can safely proceed with its
deletion.

public boolean deleteAccountById(String id){
Optional<Account> accountOptional = accountRepository.findById(id);

if(laccountOptional.isPresent()){

throw new ResponseStatusException(
HttpStatus.BAD_REQUEST,
ErrorMessagelUtility.getEntityNotFoundBySpecifier(
Constants.Entity.ACCOUNT,
Constants.Specifier.ID

Account accToDelete = accountOptional.get();
deleteTrigger.handleReferenceDeletion(accToDelete);
accountRepository.delete(accToDelete):

return true;

Figure 3.28. Service Layer delete method of Account

Benchmarking Software Design Patterns in CRM Systems 60

MSc Thesis Emmanouil Prokakis

public boolean deleteTaskById(String id){
Optional<Task> taskOptional = taskRepository.findById(id);

if(!taskOptional.isPresent()){
throw new ResponseStatusException(
HttpStatus.BAD_REQUEST,
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.TASK,
Constants.Specifier.ID

deleteTrigger.handleReferenceDeletion(taskOptional.get());
taskRepository.delete(taskOptional.get());

return true;

Figure 3.29. Service Layer delete method of Task

The Delete Trigger offers the handleReferenceDeletion method, which is generic and reusable
for all Entities. It manages to remove all active references of the entry-to-be-deleted from other
Entity entries. This functionality is made possible with the application of the Strategy design
pattern. The latter is great for encapsulating different behaviours in classes defined by a common
interface and dynamically utilizing each of them at runtime according to the context. The actual
implementation of the “strategy” is not known at compile-time and the Strategy pattern
accomplishes loose coupling between the implementation logic and the invoking class, making it
more modular and flexible. Each Entity has its own DeletionHandler class that implements the
DeletionHandler interface.

public interface DeletionHandler<T> {
T delete(T entity);
T handleParentReferences(T entity);

T handleChildReferences(T entity);

Figure 3.30. Deletion Handler Interface

Having separate concrete DeletionHandler classes for each Entity allows us to differentiate how
the cascading deletion works, if we decide to add it to the future. The delete method groups the
handleParentReferences and the handleChildReferences methods together. Method
handleParentReferences focuses on removing the present entry references from the related lists
of parent entries, while handleChildReferences will query all children where their parent id is equal
to the present entry id and clear that field.

Benchmarking Software Design Patterns in CRM Systems 61

MSc Thesis Emmanouil Prokakis
puverride
c Case hand ;(Case caseEntry){
if(!1StringUtil.stringIsEmpty0rNull(caseEntry.getRelatedAccountId())){
Optional<Account> accountOptional = accountR itory.findById(caseEntry.getRelatedAccountId());

if(laccountOptional.isPresent()){

throw new ResponseStatusException(
HttpStatus.BAD Q .
ErrorMessageUtility.getEntityNotFoundBySpecifier(

Constants.Entity./

Constants.Specifier.ID

accountOptional.get().getCases().remove(caseEntry);
ory.save(accountOptional.get());

if(!StringUtil.stringIsEmpty0OrNull(caseEntry.getRelatedContactId())){
Optional<Contact> contactOptional = contactRepository.findById(caseEntry.getRelatedContactId());

if(!contactOptional.i nt(){
hrow new ResponseStatusException(
HttpStatus.BAD
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.(T
Constants.Specifier.IL

contactOptional.get().getCases().remove(caseEntry);
F tory.save(contactOptional.get());

return caseEntry;

Figure 3.31. Implementation of handleParentReferences of Case

Benchmarking Software Design Patterns in CRM Systems 62

MSc Thesis Emmanouil Prokakis

@0verride
public Account handleChildReferences(Account account){
List<Account> accountList = accountRepository.findByParentId(account.getId());
for(Account acc : accountList){
acc.setParent(null);
acc.setParentId(null);
accountRepository.save(acc);

List<Contact> contactList = contactRepository.findByAccountId(account.getId());
for(Contact con : contactList){

con.setAccount(null);

con.setAccountId(null);

contactRepository.save(con);

List<Opportunity> opportunitylist = opportunityRepository.findByRelatedAccountId(account.getId());

for(Opportunity opp : opportunitylList){
opp.setRelatedAccount(null);
opp.setRelatedAccountId(null);
opportunityRepository.save(opp);

List<Case> caselList = caseRepository.findByRelatedAccountId(account.getId());
for(Case c : caselist){

c.setRelatedAccount(null);

c.setRelatedAccountId(null);

caseRepository.save(c);

return account;

Figure 3.32. Implementation of handleChildReferences of Account

All DeletionHandler classes are mapped by class type keys inside the DeletionHandlerConfig
class. The latter is annotated as @Configuration, so that Springboot will inject the appropriate
DeletionHandler class into the Context.

Benchmarking Software Design Patterns in CRM Systems 63

MSc Thesis Emmanouil Prokakis

@Configuration

class DeletionHandlerConfig {

©Bean

hlic Map<Class<?>, DeletionHandler<?>> le and1 (AccountDeletionHandler accountHandler,
ContactDeletionHandler contactHandler,
OpportunityDeletionHandler opportunityHandler,
LeadDeletionHandler leadHandler,
TaskDeletionHandler taskHandler,
CaseDeletionHandler caseHandler,
VoiceCallDeletionHandler voiceCallHandler

Map<Class<?>, DeletionHandler<?>> handlers = new HashMap<>();
handlers.put(Account.class, accountHandler);
handlers.put(Contact.class, contactHandler);

handlers.put(Opportunity.class, opportunityHandler);
handlers.put(Lead. , leadHandler);
handlers.put(Task.class, taskHandler);
handlers.put(Case.class, caseHandler);

handlers.put(VoiceCall.c s, voiceCallHandler);
return handlers;

Figure 3.33. Configuration provided by the DeletionHandlerConfig class

Thanks to this configuration and the flexibility provided by applying the Strategy design pattern,
the implementation of the DeleteTrigger class is simple. The handleReferenceDeletion method
accepts an Entity entry, gets the appropriate DeletionHandler class dynamically at runtime and,
after a null check, calls the interface method delete, whose implementation is decided at that
moment.

Benchmarking Software Design Patterns in CRM Systems 64

MSc Thesis Emmanouil Prokakis

@Component
public class DeleteTrigger {

private final Map<Class<?>, DeletionHandler<?>> handlers;

@Autowired
public DeleteTrigger(Map<Class<?>, DeletionHandler<?>> handlers) {
this.handlers = handlers;

@SuppressWarnings("unchecked")
public <T> void handleReferenceDeletion(T entity) {
DeletionHandler<T> handler = (DeletionHandler<T>) handlers.get(entity.getClass());
if (handler != null) {
handler.delete(entity);
} else {
throw new IllegalArgumentException(
"No handler found for Entity: " + entity.getClass().getName()
)i

Figure 3.34. Implementation of DeleteTrigger

Business Processes

Having covered the way our Java application handles the Entity database operations, it's time to
move on to the Business Processes. A Business Process Controller class is exposed to the client
application for handling the routing of requests to the Business Process Service layer, which
houses the core process operations.

@RestController
@RequestMapping(®-~"/api/process")
public class BusinessProcessController {

@Autowired

private BusinessProcessService businessProcessService;

@PostMapping (@®v"/lead-conversion/{leadId}")
public List<EntityDT0> convertlLead(@PathVariable String leadId){
return businessProcessService.convertlLead(leadId);

@GetMapping (®-v"/discount")
public ProcessOutputDT0 clientDiscount(@ERequestParam String accountld, @RequestParam double amount){

return businessProcessService.getClientDiscount(accountId, amount);

Figure 3.35. Business Process Controller implementation

Benchmarking Software Design Patterns in CRM Systems 65

MSc Thesis Emmanouil Prokakis

@Service
public class BusinessProcessService {

@Autowired
private BusinessProcess businessProcess;

public List<EntityDTO0> convertLead(String leadId){
return businessProcess.leadConversion(leadId);

public ProcessOutputDTO getClientDiscount(String accountId, double amount){

return businessProcess.clientDiscount(accountId, amount);

Figure 3.36. Business Process Service implementation

The business logic specifics regarding the exposed processes are handled by the Business
Process (BP) module, which encapsulates the business logic implementation. Our web service
currently supports two business process, with more to come in the future: Lead Conversion and
Discount Calculation.

The Lead Conversion is the process of converting a potential customer into an Account, a Contact
and an Opportunity entry. By leading leads through the Sales Funnel and successfully reaching
the end of the Lead status lifecycle, the potential customer can be modeled as its own Account
Entity in the CRM, with staff becoming Contacts and the sales attempt becoming an Opportunity.
Converting a Lead signifies the transition of an external party from someone that has heard about
the company and might be interested in buying a product to someone who is actively interested
and is waiting to receive an offer.

The implementation of the Lead Conversion process is handled by the leadConversion method.
By breaking down the problem to smaller actions, in order to convert a Lead, we need to check if
the lead exists, create the three individual entries with their static attributes mapped, related the
created entries with the parent Lead and map the relationships between them. After creating all
the new entries, a list of their DTOs will be returned to the Service Layer, the Controller Layer
and, eventually, the client.

Benchmarking Software Design Patterns in CRM Systems 66

MSc Thesis Emmanouil Prokakis

@Trans ional
public List<EntityDT0> leadC ion(String leadId) {

Optional<lLead> leadOptional = leadR itory.findById(leadId);

if(!leadOptional.i t())4
throw new ResponseStatusException(
HttpStatus.BAL T,
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.LEAD,
Constants.Specifier.ID

Lead inputlLead = leadOptional.get();

Account acc Account();

Contact con T Contact();
Opportunity opp = new Opportunity();

LeadConversionInvoker invoker = new LeadConversionInvoker();

invoker,addCommand(new CreateAccountCommand(inputLead, acc));

invoker.addCommand(n reateContactCommand(inputLead, con));

invoker.addCommand(new CreateOpportunityCommand(inputLead, opp));

invoker.addCommand(n fapLeadToChildrenCommand(inputLead, acc, con, opp, rela ber, accountRep

invoker.addCommand(new MapLeadConversionChildrenRelationships(acc,

con, opp,

)i

invoker.executeCommands();

return Arrays.aslList(acc.toDT0Simple(), con.toDT0Simple(), opp.teDT0Simple());

Figure 3.37. Lead Conversion method implementation

The implementation of lead conversion steps is materialized with the use of the Command design
pattern. Through the Command pattern, we achieve decoupling the calling environment (in this
case the BP module) from the actual implementation of each step. All Command objects share a
common interface that defines an execute method and encapsulate a request. Existing command-
step implementation can be easily performed without the need for altering the BP module and
new commands can be added by creating new classes and implementing the Command interface.
This allows for great modularity, maintainability and extendibility.

public interface Command {
void execute();

Figure 3.38. The Command interface

Benchmarking Software Design Patterns in CRM Systems 67

MSc Thesis Emmanouil Prokakis

public class CreateAccountCommand implements Command{
private Account account;
public CreateAccountCommand(Lead lead, Account account)d{

this.lead = lead;
this.account = account;

@0verride

public void execute() {

account = ObjectMapper.maplLeadToAccount(lead, account);

private Opportunity opportunity;

public CreateOpportunityCommand(Lead lead, Opportunity opportunity){
this.lead = lead;
this.opportunity = opportunity;

@0verride
public void execute() {
opportunity = ObjectMapper.maplLeadToOpportunity(lead, opportunity);

Figure 3.40. Create Opportunity Command implementation

Benchmarking Software Design Patterns in CRM Systems 68

MSc Thesis Emmanouil Prokakis

public class MaplLeadConversionChildrenRelationships implements Command{
private Account a
private Contact
private

private
private
private

public MapLeadConversionChildrenRelationships(Account account,

Contact contact,
Opportunity opportunity,
RelationshipMapper relationshipMapper,
ContactRepository contactRepository,
OpportunityRepository opportunityRepository){

.account = account;

.contact = contact;

.opportunity = opportunity;

.relationshipMapper = relationshipMapper;

.contactRepository = contactRepository;

.opportunityRepository = opportunityRepository;

@0verride
public void execute() {

relationshipMapper.mapLeadConversionChildrenRelationships(account, contact, opportunity);

contactRepository.save(contact);
opportunityRepository.save(opportunity);

Figure 3.41. Map Lead Conversion Children Relationships implementation

After defining all “steps” of the Lead Conversion process as classes that implement the Command
interface and encapsulate the business logic in the implementation of the execute method, we
can proceed with creating the Command invoker class. Said class is responsible for grouping all
commands to be executed. It acts as an intermediary between the calling environment and the
Command interface implementing classes.

Benchmarking Software Design Patterns in CRM Systems 69

MSc Thesis Emmanouil Prokakis

public class LeadConversionInvoker {

private List<Command> commands = new ArraylList<>();

public void addCommand(Command command) {
commands.add(command) ;

public void executeCommands() {
for (Command command : commands) {
command .execute();

Figure 3.42. Lead Conversion invoker implementation

Inside the leadConversion method of the BP module, we can utilize the invoker to dynamically
add the steps for the conversion and execute them all at the end.

LeadConversionInvoker invoker = new LeadConversionInvoker();

invoker.addCommand(new CreateAccountCommand(inputLead, acc));

invoker.addCommand CreateContactCommand(inputLead, con));

invoker.addCommand(new CreateOpportunityCommand(inputLead, opp));

invoker.addCommand MapLeadToChildrenCommand(inputLead, acc, con, opp, relations pper, accountRepository))
invoker.addCommand(new MapLeadConversionChildrenRelationships(acc,

con, opp,

v

invoker.executeCommands() ;

Figure 3.43 Code segment from the leadConversion method of Business Process class

The defined-at-runtime and loosely coupled implementation of the Lead Conversion algorithm
allows us to support, extend, modify and maintain the implementation of this core business
process with ease.

The other currently supported business process is that of Discount Calculation. An incoming
request follows the architecture of Business Process Controller -> Business Process Service and
reaches the BP module. We want to implement a logic of offering different discounts based on
specific Account criteria. Aiming to offer different discounts that can be used interchangeably, we
can make use of the Strategy design pattern. We will define the DiscountStrategy interface that
will be implemented by the concrete Discount strategies that will contain the business logic.

Benchmarking Software Design Patterns in CRM Systems 70

MSc Thesis Emmanouil Prokakis

public interface DiscountStrategy {

double getDiscountPercentage(Account account);

Figure 3.44. Discount Strategy interface

public class IndustryDiscount implements DiscountStrategy {

private final static Set<String> TARGET_INDUSTRIES = Set.of("IT", "Insurance");

@0verride
public double getDiscountPercentage(Account account) {
if (TARGET_INDUSTRIES.contains(account.getIndustry())) {
return 0.04;
}

return 0.0;

Figure 3.45. Industry Discount implementation

public class LoyaltyDiscount implements DiscountStrategy {

@0verride
public double getDiscountPercentage(Account account) {

return account.getClientRating() >= 9 ? 0.03 : 0.0;

Figure 3.46. Loyalty Discount Implementation

For the calling environment to interact with our different discount strategies, we can declare the
DiscountContext class, which acts as a wrapper that delegates the operation to the strategy
through dependency injection and object composition.

Benchmarking Software Design Patterns in CRM Systems 71

MSc Thesis Emmanouil Prokakis

public class DiscountContext {

private DiscountStrategy strategy;

public void setStrategy(DiscountStrategy strategy) {

this.strategy = strategy;

public double executeStrategy(Account account) {
return strategy.getDiscountPercentage(account);

Figure 3.47. DiscountContext class implementation

Lastly, we can implement a strategy factory to decouple the strategy selection mechanism from
the calling environment.

@Component 2 usages
public class DiscountStrategyFactory {

public DiscountStrategy getStrategy(Account account) {
if (StringUtil.stringsAreEqual(account.getIndustry(), "IT") ||
StringUtil.stringsAreEqual(account.getIndustry(), "Insurance")) {
return new IndustryDiscount();

if (account.getRevenue() < 200_800) {
return new RevenueDiscount();

return new LoyaltyDiscount();

Figure 3.48. DiscountStrategyFactory implementation

Through applying the described patterns, we promote loose coupling between the BP module and
the implementation of the business logic. When the executeStrategy method is called, the
executed strategy and its getDiscountPercentage implementation is dynamically set at runtime.

Benchmarking Software Design Patterns in CRM Systems 72

MSc Thesis Emmanouil Prokakis

public ProcessOutputDTO clientDiscount(String accountId, double amount){
Optional<Account> accountOptional = accountRepository.findById(accountId);

throw new ResponseStatusException(
HttpStatus.BAD_REQUEST,
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.ACCOUNT,
Constants.Specifier.ID

Account account = accountOptional.get();
DiscountContext discountContext = new DiscountContext();
DiscountStrategy selectedDiscountStrategy = discountStrategyFactory.getStrategy(account);

discountContext.setStrategy(selectedDiscountStrategy);
double discountPercentage = discountContext.executeStrategy(accountOptional.get());

return new ProcessOutputDTO(
"totalAmount",
"discountProcess",
String.valueOf((1 - discountPercentage) * amount)

Figure 3.49. Complete implementation of clientDiscount in the BP module

Seeing how the clientDiscount method is implemented, it is easy to modify the strategies involved
and their specific business logic without the need for modifications in the BP module. Through the
use of design patterns, we once again achieve loose coupling between application components
and avoid hard-wiring business logic.

3.3.3 Non Design Pattern Implementation Presentation

In the above section we analyzed the Springboot application that made use of software design
patterns to improve the overall quality of the implementation. In the present section, we will review
how the parts of the implementation that utilized the patterns would look like if no design patterns
were used. The rest of the implementation will be identical to the one described in 3.3.2, so we
will not focus on their similarities, but their differences only.

In the 3.3.2 implementation, we identified 7 areas were design patterns or design pattern ideas
were implemented in order to make a difference in the implementation quality. These are:

Template Method pattern for data validation
Command pattern on Lead Conversion
Builder pattern for Object Mapper

Strategy pattern for Delete Trigger

Strategy pattern for Discount Calculation
Generic Handling of bidirectional references
Generic List Conversion

Benchmarking Software Design Patterns in CRM Systems 73

MSc Thesis Emmanouil Prokakis

Implementing data validation layer without Template method pattern

Without putting design patterns into the equation, the simplest way we can implement a
DataValidationProcessor class would be to create a class that contains a data validation method
for each Entity available.

55 DataValidation {

public d idate tD (Account account) throws DataValidationException {
if(StringUtil.stringIsEmpty0rNull(account.getC nyName()) || StringUtil.stringIsEmpty0rNull(account.getVat())){
" w DataValidationException("Please provide Company Name and VAT");

eContac (Contact contact) thr DataValidationException {
il.stringIsEmpty0rNull(contact.getFirstName()) || StringUtil.stringIsEmpty0OrNull(contact.getLastName())){
w DataValidationException("Please provide first name and last name fc ntact");

public voic Le ta(Lead lead) t DataValidationException
if(StringUtil.stringIsEmpty0OrNull(lead.getCompanyName())){
t ew DataValidationException("Pl provide Company Name

Figure 4.1. DataValidation with no patterns implementation segment

yublic Account handleAccountEntry(Account source, Account target) throws DataValidationException {
dataValidation.validateAccountData(source);
target ObjectMapper.mapAccountFields(source, target);
target relations r.mapAccountParents(source, target);

Contact | ileCont Entry(Contact source, Contact target, boolean isInsert) throws DataValidationException {
1lidat validateContactData(source);
= ObjectMapper.mapContactFields(source, target);

r.mapContactParents(source, target, isInsert);

ry(Lead source, Lead target) throws DataValidationException {

tion.validatelLeadData(source);

target = ObjectMapper.mapLeadFields(source, target);

return target;

Figure 4.2. Calling DataValidation class from Insert Update Trigger

Modifying the validation logic behind each Entity entails navigating to the DataValidation class
and changing the appropriate method. Adding new Entities in the CRM means creating a new
method in the DataValidation class for each new Entity. It is important to note that having methods
for different Entities in a single class violates the Single Responsibility principle and increases

Benchmarking Software Design Patterns in CRM Systems 74

MSc Thesis Emmanouil Prokakis

coupling between the validation logic and the Entities. Having to directly modify the class for
changing validation logic or adding a new Entity validations decreases flexibility and can cause
problems in regard to maintainability and scaling. For instance, to add a common validation step
to all Entities, the engineer would have to manually update each Entity method, which can be
cumbersome and error prone. Additionally, if the number of Entities increased significantly, the
monolithic DataValidation class would become too large in size and refactoring would be
necessary.

idationHandler {

>, ValidationTempl

nt

+ entity.get getSimpleN

Figure 4.3. Validation with Template Method design pattern

ull(entry.getVat()

Figure 4.4. Extension of ValidationTemplate class for Account

Benchmarking Software Design Patterns in CRM Systems 75

MSc Thesis Emmanouil Prokakis

s DataVa

Figure 4.5. Calling design-pattern ValidationHandler from Insert Update Trigger

With the application of the Template Method pattern, are able to tackle this issues and improve
implementation quality. Centralized logic can easily be implemented in the supertype of all
ValidationProcessor classes, which adhere to the Single Responsible Principle an refer to a single
Entity each. If an Entity requires custom data validation logic, a new class can be created to
extend the ValidationTemplate class and provide the appropriate implementation, without the
need to modify existing classes that include validation logic.

Benchmarking Software Design Patterns in CRM Systems 76

MSc Thesis Emmanouil Prokakis

Implementing the Lead Conversion algorithm without Command pattern.

Ignoring design patterns, we can implement Lead Conversion by performing all the algorithm
steps in the proper order.

@Transactional
public List<EntityDTO> leadConversion(String leadId) {

Optional<Lead> leadOptional = leadRepository.findById(leadId);

throw new ResponseStatusException(
HttpStatus.BAD_REQUEST,
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.LEAD,
Constants.Specifier.ID

Lead inputLead = leadOptional.get();

Account acc = new Account();

acc = ObjectMapper.maplLeadToAccount(inputLead, acc);

Contact con = new Contact();

con = ObjectMapper.maplLeadToContact(inputLead, con);
Opportunity opp = new Opportunity();

opp = ObjectMapper.maplLeadToOpportunity(inputLead, opp);
relationshipMapper.mapLeadToChildren(acc, con, opp, inputlLead);
acc = accountRepository.save(acc);

relationshipMapper.mapLeadConversionChildrenRelationships(acc, con, opp);

contactRepository.save(con);

opportunityRepository.save(opp);

return Arrays.asList(acc.toDT0Simple(), con.toDTO0Simple(), opp.toDTO0Simple());

Figure 4.6. No design pattern implementation of Lead Conversion algorithm

The first thing we notice between the two implementations is that the non design pattern version
contains the entire implementation of the algorithm steps. In this manner, modifications in the lead
conversion algorithm steps will require changes directly in the leadConversion method of the BP
module. This can lead to reduced maintainability, tight coupling and less modularity. Altering or
extending the algorithm logic sets the stage for a monolithic and complex method, with a negative
impact on maintainability. Additionally, the leadConversion method does a lot of things by itself,
such as creating the new entries, mapping the entry fields, mapping their relationships with the

Benchmarking Software Design Patterns in CRM Systems 77

MSc Thesis Emmanouil Prokakis

parent lead and mapping the relationships among them. This can be viewed as a deviation from
the Single Responsibility principle.

(String

eadOptional = .findById

Q;

rtunity();

r invoker = new sionInvok

, opp,

, opp,

invoker.e

Simple(), con.toD 2(), opp.toDTOSimple());

Figure 4.7. Command pattern implementation of Lead Conversion algorithm

On the other hand, the command pattern version abstracts away the implementation logic of each
algorithm step. Each command is a self-contained logic unit and modifications in the step
implementation are confined in the respective command class. In this way, we avoid hard-wiring
and coupling the BP module with the specific business logic of the lead conversion steps. Adding
new steps can be easily done by creating a new class and implementing the Command interface.
New steps will only require one line of code in the leadConversion method (adding the new
command to the invoker underlying command arraylist). The Command pattern architecture
allows to easily maintain, extend, and modify the behaviour of the algorithm, while promoting
loose coupling and the principle of Single Responsibility.

Implementing the Object Mapper without the Builder pattern

In the design pattern version of the Java back-end, we made use of the Builder design pattern to
construct the entry for insertion / updating in the Object Mapper of the Insert Update Trigger
module. If we skipped the design pattern application, a simple way to accomplish the same
functionality would be to manually create an object and populate its attributes with the use of
setter methods.

Benchmarking Software Design Patterns in CRM Systems 78

MSc Thesis Emmanouil Prokakis

Lead targ

nity (0 it g tunity target){
= target;

Figure 4.8. No design pattern setter method implementation

By explicitly setting each field through setter methods, the mapping method and the object
structure become coupled. Future changes in the Entity class will require direct intervention in the
mapping method. More attributes and more complex construction logic can negatively affect the
mapping function by increasing its complexity.

Benchmarking Software Design Patterns in CRM Systems 79

MSc Thesis Emmanouil Prokakis

‘tunity target){

Figure 4.9. Builder design pattern implementation

On the contrary, the application of the Builder pattern allows for better scaling of the object
construction process. Conditional logic, null checks and default values can easily be implemented
inside the concrete Builder class, without cluttering the calling environment. Direct mapping of the
fields with setter methods might be fine for simple projects, but in the case of a CRM application
that is expected to expand and evolve with the business requirements of its users, the flexibility,
maintainability and scalability the Builder pattern offers make it the more appealing choice.

Implementing the Delete Trigger without Strategy pattern

Without using any design patterns, we can implement the DeleteTrigger as a class that provides
a function for each entity. Every entity function will make calls to a helper class that will house all
handleEntityParents and handleEntityChildren methods. As a result, our no-design-pattern Delete
Trigger implementation will consist of two classes, one that will group parent-child reference
modifications and is exposed to the calling environment (DeleteTrigger) and one that implements
the parent and children reference handling for each Entity (DeleteTriggerHelper).

Benchmarking Software Design Patterns in CRM Systems 80

MSc Thesis Emmanouil Prokakis

@Component
public class DeleteTrigger {

@Autowired

DeleteTriggerHelper deleteTriggerHelper;

public Account handleAccountDelete(Account account){
account = deleteTriggerHelper.handleAccountParentReferences(account);
account = deleteTriggerHelper.handleAccountChildrenReferences(account);

return account;

public Case handleCaseDelete(Case caseEntry){
caseEntry deleteTriggerHelper.handleCaseParentReferences(caseEntry);
caseEntry = deleteTriggerHelper.handleCaseChildrenReferences(caseEntry);
return caseEntry;

public Contact h: ‘e (Contact contact){
contact = deleteTriggerHelper.handleContactParentReferences(contact);

contact = deleteTriggerHelper.handleContactChildrenReferences(contact);

return contact;

e(Task task){
task = deleteTriggerHelper.handleTaskParentReferences(task);
task = deleteTriggerHelper.handleTaskChildrenReferences(task);

return task;

Figure 4.10. Segment of no-design-patterns DeleteTrigger

Benchmarking Software Design Patterns in CRM Systems 81

MSc Thesis Emmanouil Prokakis

ic Task handleTa hildr s(Task task){
return task;

Opportunity handleOpportunityParentRe s(Opportunity opportunity){
if(!StringUtil.stringIsEmpty0OrNull(opportunity.getRelatedAccountId())){
Optional<Account> accountOptional = accountRepository.findById(opportunity.getRelatedAccountId());

if(laccountOptional.isPresent()){

throw new ResponseStatusException(
HttpStatus.BAl T
ErrorMessageUtility.getEntityNotFoundBySpecifier(

Constants.Entity.A

Constants.Specifier.ID

accountOptional.get().getOpportunities().remove(opportunity);
tory.save(accountOptional.get());

return opportunity;

c Opportunity handleOpportunityChildre (Opportunity opportunity)d{

List<Task> tasklList = taskRepository.findByRelatedOpportunityId(opportunity.getId());
for(Task task : taskList){

task.setRelatedOpportunity(null);

task.setRelatedOpportunityId(null);

tory.save(task);

return opportunity;

Figure 4.11. Segment of no-design-patterns DeleteTriggerHelper

Having a single class offer utilities for different Entities violates the Single Responsibility principle
and leads to a large, monolithic class that becomes harder to maintain as the number of Entities
increases. Centralizing operations for all Entities in one class can make it more cluttered and error
prone, since adding or altering delete-operations will entail modifying the class directly. A
monolithic class is more complex to understand and maintain and can face difficulty with scaling,
making refactoring necessary for the future evolution of the software. In addition, this structure
violates the Open & Closed principle, since modifications cannot be made by just extending the
existing implementation, but they must be made by changing the original class directly.

public interface DeletionHandler<T> {
T delete(T entity);
T handleParentReferences(T entity);

T handleChildReferences(T entity);

Figure 4.12. Strategy Pattern DeletionHandler Interface
Benchmarking Software Design Patterns in CRM Systems 82

MSc Thesis Emmanouil Prokakis

@0verride
c Case delete(Case caseEntry) {
caseEntry = handleParentReferences(caseEntry);
caseEntry = handleChildReferences(caseEntry);
return caseEntry;

@0verride
ic Case handleParen Case caseEntry){
if(!StringUtil.stringIsEmpty0rNull(caseEntry.getRelatedAccountId())){
Optional<Account> accountOptional = ntRepository.findById(caseEntry.getRelatedAccountId());

if(!accountOptional.isPresent()){

tt new ResponseStatusException(
HttpStatus
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity

accountOptional.get().getCases().remove(caseEntry);
y.save(accountOptional.get());

if(!StringUtil.stringIsEmptyOrNull(caseEntry.getRelatedContactId())){

Figure 4.13. Strategy Pattern DeletionHandler Implementation Segment for Case

Benchmarking Software Design Patterns in CRM Systems 83

MSc Thesis Emmanouil Prokakis

@Component
) public class DeleteTrigger {

private final Map<Class<?>, DeletionHandler<?>> handlers;
@Autowired

public DeleteTrigger(Map<Class<?>, DeletionHandler<?>> handlers) {
this.handlers = handlers;

@SuppressWarnings("unchecked")

public <T> void handleReferenceDeletion(T entity) {
DeletionHandler<T> handler = (DeletionHandler<T>) handlers.get(entity.getClass());
if (handler != null) {
handler.delete(entity);
} else {
throw new IllegalArgumentException(
"No handler found for Entity: " + entity.getClass().getName()

)8

Figure 4.14. Strategy Pattern Generic Delete Trigger

In contrast to the non-design pattern implementation, with the Strategy pattern the deletion logic
for each Entity is encapsulated in its own class which implements the DeletionHandler interface.
Adding deletion logic for a new Entity can be achieved with creating a new class and implementing
the DeletionHandler interface, ensuring no impact to the rest of the implementation. Modifying
existing deletion logic requires modifications only to the appropriate Entity-specific class, making
the codebase changes less error prone since each class focuses on a sole, focused responsibility.
Flexibility and maintainability improve due to adhering to both the Single Responsibility and the
Open & Closed principle. We can also note that with the Strategy implementation we achieve
looser coupling between the Delete Trigger and its calling environment (Service Layer), since the
shared interface implementation allows us to use an agnostic-to-the-entity method for invocation.

Benchmarking Software Design Patterns in CRM Systems 84

MSc Thesis Emmanouil Prokakis

public boolean deleteContactById(String id){
Optional<Contact> contactOptional = contactRepository.findById(id);

if(!contactOptional.i t()){
throw new ResponseStatusException(
HttpStatus.BAD_REQUEST,
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.CONTACT,
Constants.Specifier.ID

)
}
deleteTrigger.handleContactDelete(contactOptional.get());
contactRepository.delete(contactOptional.get());

return true;

Figure 4.15. Non-design pattern calling environment for Delete Trigger

public boolean deleteContactById(String id){
Optional<Contact> contactOptional = contactRepository.findById(id);

throw new ResponseStatusException(
HttpStatus.BAD_REQUEST,
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.CONTACT,
Constants.Specifier.ID

)z

}
deleteTrigger.handleReferenceDeletion(contactOptional.get());
contactRepository.delete(contactOptional.get());

return true;

Figure 4.16. Strategy pattern calling environment for Delete Trigger

Benchmarking Software Design Patterns in CRM Systems 85

MSc Thesis Emmanouil Prokakis

Implementing the Discount Calculation without the Strategy pattern

In the design-pattern version of the back-end implementation, we utilized the Strategy design
pattern to calculate the discount for a specific customer, which is the core functionality of this
business process. If we removed design patterns from our approach, we could model the
business logic by a simple if-else statement that assigned the value to the discountPercentage
local variable.

public ProcessOutputDTO clientDiscount(String accountId, double amount){
Optional<Account> accountOptional = accountRepository.findById(accountId);

nt)4
throw new ResponseStatusException(
HttpStatus.BAD_REQUEST,
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.ACCOUNT,
Constants.Specifier.ID

Account account = accountOptional.get();

double discountPercentage =

if (StringUtil.stringsAreEqual(account.getIndustry(), "IT") ||

StringUtil.stringsAreEqual(account.getIndustry(), "Insurance")) {
discountPercentage = 0.04;
} else if (account.getRevenue() < 200_000) {
discountPercentage = 0.05;
} else {
discountPercentage = 0.03;

return new ProcessOutputDTO(
"totalAmount",
"discountProcess",
String.value0f((1 - discountPercentage) * amount)

Figure 4.17. No design pattern implementation of clientDiscount

As we can see, without the use of the Strategy pattern, the business logic is hardcoded inside the
BP module, requiring direct modifications in the BusinessProcess class to support changes in the
business logic. This implementation violates the Open & Closed principle, since changes have to
be made directly in the class and not through extending and creating new classes. It
encompasses tightly coupled business logic that depends on many different components for
alternate discounts. In addition, refactoring the code may be necessary in the future, because, as
the complexity and the number of conditions increases, the clientDiscount method will become
large, complex and hard to maintain and understand. Seeing how the method now focuses on
both the calculation of the discount and the definition of the discountPercentage, one can claim

Benchmarking Software Design Patterns in CRM Systems 86

MSc Thesis Emmanouil Prokakis

that it breaches the principle of Single Responsibility, since deciding on the discountPercentage
value can be considered as a level of abstraction below the calculation formula. This can lead to
cluttered, coupled and harder-to-maintain code. Lastly, we can make a point about the
implementation lacking in terms of code reusability. Thanks to the discount logic being hardcoded
inside the BP module, it cannot be reused by other parts of the application that might require
access to discount calculation in the future. As a result, refactoring will be necessary in order to
avoid code duplication.

public ProcessOutputDTO clientDiscount(String accountId, double amount){
Optional<Account> accountOptional = accountRepository.findById(accountId);

resent ())4
throw new ResponseStatusException(
HttpStatus.BAD_REQUEST,
ErrorMessageUtility.getEntityNotFoundBySpecifier(
Constants.Entity.ACCOUNT,
Constants.Specifier.ID

Account account = accountOptional.get();
DiscountContext discountContext = new DiscountContext();
DiscountStrategy selectedDiscountStrategy = discountStrategyFactory.getStrategy(account);

discountContext.setStrategy(selectedDiscountStrategy);
double discountPercentage = discountContext.executeStrategy(accountOptional.get());

return new ProcessOutputDTO(
"totalAmount",
"discountProcess",
String.value0f((1 - discountPercentage) * amount)

Figure 4.18. Strategy pattern implementation of clientDiscount

Instead of directly including the business logic in flow control statements, the Strategy pattern
implementation delegates the discountPercentage calculation to the classes implementing the
DiscountStrategy interface. A DiscountStrategyFactory is also used, to provide the appropriate
Strategy based on the use-case. Modifications can be made by creating or altering the Strategy-
interface-implementing classes without touching the BP module and, thus, adhering the Open &
Closed principle. The application can scale with new business rules more easily, due to loose
coupling and the delegation of responsibilities out of the clientDiscount method. The Single
Responsibility of the clientDiscount method is respected and the discountPercentage calculation
is encapsulated inside the Strategy classes. Lastly, Discount Strategies can be reused outside of
the BP module, setting the stage for reusable code across the entire CRM application, wherever
calculating discounts might be needed.

Implementing Handling of bidirectional references without design pattern ideas

In the 3.3.2 implementation, we presented the handleParentChildRelationship method which can
dynamically handle the bidectional references updates on all CRM Entities. The method doesn’t
make use of a specific design patterns per se, but combines influences and “good ideas” from

Benchmarking Software Design Patterns in CRM Systems 87

MSc Thesis Emmanouil Prokakis

many design patterns to produce flexible and reusable code. It utilizes generics, bounded types,
class type keys and interfaces to be able to manage complex bidirectional references between
Entities with varying relationships.

Before we dive into how the handleParentChildRelationship was inspired by design pattern
practices, we’ll demonstrate how the implementation would look like without those ideas.

Since we will have no common interface for interacting with the Entity relationships and each
Entity has different parent and children relationships, we have to handle the bidirectional
references of each Entity seperately. The RelationshipMapperHelper class will contain a method
for each Entity-Parent Entity pair, that handles the bidirectional reference updates of a record and
its parent.

arentAccountId, new

.findById(r

Figure 4.19. Case with parent Account bidirectional references handling method

Benchmarking Software Design Patterns in CRM Systems 88

MSc Thesis Emmanouil Prokakis

Methods like getRelatedCaseld, getRelatedAccountld, getCalls, getCases are specific to certain
Entities and are the reason behind the many functions needed to handle all the bidirectional
references.

Figure 4.20. VoiceCall with parent Case bidirectional references handling method

Itis clear that this approach is worse than the one utilizing design pattern practices. Firstly, adding
a new Entity into the CRM entails creating multiple new methods on the
RelationshipHandlerHelper class. A new method is required for every relationship with a parent
or a child record of the new Entity. Secondly, all bidirectional reference handling methods include
duplicated logic, which causes problems with maintenance and error-proness. For example, a
modification in the reference handling logic would have to be replicated across every single
method of the class. Additionally, we can see the Single Responsibility principle not being
respected, since the RelationHandlerHelper class will offer business logic for all CRM Entities,
utilizing duplicate and inflexible code.

Benchmarking Software Design Patterns in CRM Systems 89

MSc Thesis Emmanouil Prokakis

nds ChildEntit

tring> parentR
tring> childRe

parently
> childType,

an isI

nt(parentType
:(childTo

rentId);
ntOptiona
N P.“

Updated) ;

Figure 4.21. Generic Implementation of bidirectional reference handling

Benchmarking Software Design Patterns in CRM Systems 90

MSc Thesis Emmanouil Prokakis

With the generic implementation all of the above mentioned issues get addressed. The result is
a dynamic method that will accommodate all existing and future MNS CRM Entities and
relationships. It provides better scaling while reducing a class with 500 lines of code down to 100
lines.

Even though we haven’'t implemented the Template Method pattern directly, the
handleParentChildRelationship method works like a “template” by defining the bidirectional
reference handling algorithm steps and deferring specifics to the implementations of the
supertype function parameters. The steps of the algorithm are shared between different entities
and skipping a step or altering the order of steps is not possible with the current implementation.
In contrast to the general structure, which is rigid, the specifics are handled by the
implementations of methods defined by the abstract parameter types, such as what children /
parents to get (ParentEntity & ChildEntity method implementations of Entities), or how to find and
update a record (JPA repositories).

As with many design patterns, interfaces are utilized as polymorphic supertype references to
objects used in the algorithm logic. In order to produce generic, reusable components, interfaces
are used to decouple the business logic from the specific implementation of objects and instead
focus only on their abstractions (interfaces and their defined methods).

What is more, the use of Java Generics is prevelant across the handleParentChildRelationship
method. With Generics, we can achieve great flexibility and reusability, allowing the code to
operate on instances with different data-types. The data-type of the object is not known at compile
time and is only defined dynamically at runtime. We can make use of bounded-types to ensure
our generic parameter provides an implementation for a specific method and use that method in
our generic-oriented logic implementation.

The resulting product is a generic, reusable, flexible and scalable implementation that can handle
bidirectional references updates for all existing and future Entities of MNS CRM.

Implementing List DTO Conversion without design pattern ideas

The ListConverter in the 3.3.2. implementation is drawing inspiration from design pattern ideas
and practices. It utilizes interfaces and generics to provide a single function that can convert a list
of any Entity records to a list of their DTO counterpart.

If we ignore the use of generics and interfaces for using polymorphic references to objects, we
would have to keep a separated method for the conversion of each Entity. This means that
whenever we add a new Entity to the CRM, we would have to create a new conversion method
for that specific Entity in the ListConverter class. A modification on the conversion logic, which
could for example be a new fourth DTO type, would have to be implemented across all methods
of the class due to the duplicated — not reusable — code. This has negative repercussions for
maintainability because of the duplicated code is inflexible and can lead to a complex, monolithic
class.

Rather than following through with this implementation, we can make use of generics, bounded
types and interfaces to create a generic function that is agnostic to the Entity data-type and can
accommodate all CRM Entities. All the MNS CRM Entities implement the “Sendable” interface,
that defines functions for converting an Entity class to its DTO counterpart. We can utilize this to
ensure that all entities that function as the method input implement the Sendable interface and,
thus, provide implementations for the DTO conversion methods. We can generically go through
each Entity, convert it to DTO and add it to the resulting list, that is also the return type of the
method.

Benchmarking Software Design Patterns in CRM Systems 91

MSc Thesis Emmanouil Prokakis

arsionType) {

)TOMinimal();

0Simple();

Figure 4.22. Generic implementation of List converter

With this generic implementation, we are using interfaces to define structure, while deferring the
implementation to subtype concretes. Even though we don’t directly use design patterns, we draw
inspiration from their ideas in order to provide a generic function that can accommodate all
existing and future CRM Entities. By not having to create other functions for list conversion
operations and having to modify just a single method in order to extend functionality, we achieve
flexibility, maintainability and scalability for the whole implementation.

4. Benchmarking

4.1 Establishing a framework for Benchmarking Design Patterns

In this section we will define the different metrics that will be used to quantify the effects of applying
design patterns to promote software quality. Our goal is to utilize Software Quality Metrics (SQMs)
to evaluate the impact of design patterns on flexibility, maintainability and extendibility in a
quantitative manner.

Both in sections 3.3.2 and 3.3.3, we analyzed how the application of design patterns promoted
loose coupling, reduced code duplication, allowed for modifications in accordance with the Open
& Closed principle and the realized the Single Responsibility principle. We provided examples on
how the software could potentially be extended in both scenarios — with the presence of design
patterns or not - and we practically displayed the positive consequences they bring.

However, in this present section, we will focus on utilizing documented SQMs to benchmark the
two back-end implementations and see how they compare in regard to these metrics. A custom
java metrics project will be created, tasked with the goal of traversing the MNS CRM project
directories and parsing each java source file. The Javaparser library will be used to handle the
tokens of the java code and properly analyze them. Our custom benchmarking program will
calculate a set of metrics for each back-end application and, after running the metrics-collector
for both implementations, we will focus on discussing the results.

Benchmarking Software Design Patterns in CRM Systems 92

MSc Thesis Emmanouil Prokakis

For the benchmarking process, we will use a total of 7 metrics, these being:

Number of classes (NOC)

Lines of Code (LOC)

Halstead Volume (HV)

Cyclomatic Complexity (CC)
Maintainability Index (MI)

Coupling Between Objects (CBO)

Lack of Coherence in Methods (LCOM)

The Number of Classes (NOC) counts the number of classes in the source files of the application.
It can be used to estimate the size of a system and, therefore, its complexity. Lines of Code (LOC)
also target the estimation of a program’s size, while ignoring blank lines and comments. The latter
is one of the oldest metrics still used today, as it was introduced back in the 1970s (Molnar, 2020).
For evaluating a system’s complexity, we can also use the Halstead Volume (HV), one of the
metrics introduced by Maurice Halstead in 1977. HV quantifies the effort needed to understand
the software by dealing with the total and unique number of operators and operands of the
codebase. The formula is defined as the sum of the total number of operators and operands times
the base 2 logarithm of the sum of the number of unique operators and operands.

HV = (N1+N2) x log2(n1+n2)

The metric of Cyclomatic Complexity (CC) was introduced by McCabe in 1976 and is influenced
by ideas from Graph Theory. It refers to the number of independent paths through a codebase
and counts the number of decision elements in a program, adding 1 plus the number of conditions
and the number of decisions (Singh et al, 2011; Lee, 2014). Essentially, CC quantifies the
complexity of a system’s control flow.

The Maintainability Index (MI) was introduced in the early 1990s as a composite metric for
quantifying software complexity (Oman & Hagemeister, 1991). Ml makes use of other metrics like
LOC, CC and HV to estimate an applications complexity. The calculation formula includes
adjusted weights to properly reflect the complexity of the software. The higher the value of the M,
the more maintainable the software is.

Ml = 171 = 5.2 x log2(HV) - 0.23 x CC - 16.2 x log2(LOC)

Coupling Between Objects (CBO) and Lack of Coherence in Methods (LCOM) were introduced
by Chidamber and Kemerer (1994) as parts of their CK SQM suite. CBO refers to the number of
coupled classes of a class which is valid when access to another class’s method and members
takes place. Tight coupling between modules can appear problematic in terms of maintenance
and flexibility, due to having to make modifications in one part of a system because of changes
elsewhere. Lower values of CBO indicate a more loosely coupled system. LCOM indicates the
dissimilarity between methods based on the attributes accessed by said methods. It can help
establish if a class adheres to the Single Responsibility principle by determining how many of its
methods access the same members. A lower LCOM value signals more cohesive classes.

Metrics like NOC, LOC, HV and CC will be summed for the whole application, while Ml, CBO and
LCOM will be calculated using averages.

To calculate the above mentioned metrics for our Springboot applications, we will utilize a custom
metrics java program. We will make use of recursive traversal of project directories to retrieve all
the source files and parse them.

Benchmarking Software Design Patterns in CRM Systems 93

MSc Thesis Emmanouil Prokakis

public class DirectoryTraversal {

public static void findJavaFiles(File directory, List<File> javaFiles) {
File[] files = directory.listFiles();

if (files != null) {
for (File file : files) {
if (file.isDirectory()) {
findJavaFiles(file, javaFiles);
} else if (file.getName().endsWith(".java")) {
javaFiles.add(file);

Figure 5.1. Recursive Directory Traversal

Once all source files have been collected, we can proceed with parsing each java file separately.
Metrics will also be aggregated / averaged and displayed for the complete implementation at the
end of execution.

i main(String[] args) {
anabilityMetricsPerClass calculator = new MaintanabilityMetricsPerClass();

List<File> javaFiles = new ArraylList<>();
boolean goodImplementation = fa

String directoryPath = goodIm

15/
DirectoryTraversal.findJavaFiles(new File(directoryPath), javaFiles);

for (File javaFile : javaFiles) {
try {
calculator.calculateMetricsForFile(javaFile);

h (I0Exception e) {

System ytal numbe)f classes: + calculator
System T 1 : " + calculator

System .println(3 + calculator.t
System .printf("Tot alstea me: %. \n", calculator.to

.printf("/ 2f \n", (calc 2 i LlityIndex / calculator.totalClasses));

.printf("Avera CBO: %.2f ", ((double) calculator. LC yling / calculator.totalCle));

.printf("Aver: L %.: n", (calculator.totallac n / calculator.totalCla UpE

Figure 5.2. The main method traverses the proper directory and parses each java file

Benchmarking Software Design Patterns in CRM Systems 94

MSc Thesis Emmanouil Prokakis

javaFile) thr I0Exception {

FileInputStream in ile ream(javaFile);

JavaParser parser =

CompilationUnit cu = parser.parse(in).getResult().orElseThrow(() I0Exceptiol

1ew BufferedReader(new InputStreamRe:
(int) alllLines.stream()
.filter(line -> !line.trim().isEmpty())
filter(line ine.trim() .startsWith(
.filter(line line.trim() rtsWith(
.filter(line -> !line.tri dsWith(
.filter(line -> !line.trim().startsWith("*

.count();

cu.findAlLl(ClassOrInterfaceDeclaration.cla .forEach(classDefinition -> {

Figure 5.3. calculateMetricsForFile implementation

Lines of Code are calculated per source file and Number of Classes is defined per class
declaration

The calculateMetricsForClass method is the core metric-computation point of the metrics
calculation implementation. Constructors and methods of each class are parsed to compute the
CC, HV, CBO, LCOM and M.

L (ClassOrInterfaceDeclaration classDefinition, int linesOfCode) {

classTotalOperands = ©;
Set<String> classDistinctOperators = n HashSet<
Set<Strinc DistinctOperands = HashSet

* (MethodDeclaration method : classDefinition.getMethods()) {
classCyclomaticComplexity += calculateCyclomaticComplexity(method);

classTotalOperators += calculateHalsteadOperators(method, classDistinctOperators)
classTotalOperands calculateHalsteadOperands(method, classD nctOperands)

* (ConstructorDeclaration constr classDefinition.getConstructors()) {

classCyclomaticComplexity += ¢ lateCyclomaticComplexity(constr);

classTotalOperators += calculateHalsteadOperators(constr, classDistinctOperators);
classTotalOperands += calculateHalsteadOperands(constr, stinctOperands);

alculateCBO(classDefinition);
e lcom = calculateLCOM(classDefinition

halsteadVolume = Formula.calculateHalsteadVol assDistinctOperators DistinctOperands.size(), classTotall
maintainabilityIndex = Formula.calculateMaintain lityIndex(halsteadVolume, class LomaticCompl ty, linesOfCode);

println("Clas + classDefinition.getN AsString() + t " + linesOfCode);
println("Cycl tic Col X assCyclomaticCompl

printf("Halstead e: halsteadVolu

printf("Maintainabili dex: %.2f \n", maintainabilityIndex)

println("Coupl W Objects () + cbo);

println(k of Cohesion o ethods + Llcom);
println();

Figure 5.4. The calculateMetricsForClass method implementation

Benchmarking Software Design Patterns in CRM Systems 95

MSc Thesis Emmanouil Prokakis

The MI and HV follow specific formulas for their calculation and the implementation of which is
encapsulated inside the Formula class.

ss Formula {

double calculat abilit yuble halsteadVolume, int cyclomaticComplexity, int linesOfCode) {

2 *x Math.log(halsteadVolume) - 5 % cyclomaticComplexity - 2 % Math.log(linesOfCode)

e(int nl1, int n2, int N1, int N2) {

urn (N1 + N2) x (Math.log(nl + n2) / Math.log(2));

Figure 5.5. Formula class implementation

For the calculation of CC, all statements of the class are retrieved and, through filtering-lamdas,
the total of flow control and loop statements is computed.

int calculateCyclomaticComplexity(Node method) {

turn (int) method.findAll(com.github.javaparser.ast.stmt.Statement.class).stream()

filter(stmt -> stmt.isIfStmt() || stmt.isForStmt() || stmt.isWhileStmt() || stmt.isSwitchStmt() || stmt.isDoStmt())

.count() + 1;

Figure 5.6. Method for calculating CC implementation

For HV calculation, unique and total operators and operands are calculated by maintaining Sets
for the distinct nodes and Integers for the total nodes.

Benchmarking Software Design Patterns in CRM Systems 96

MSc Thesis Emmanouil Prokakis

private int calculateHalsteadOperands(Node method, Set<String> distinctOperands) {
AtomicInteger totalOperands = new AtomicInteger();

method.findAl1(NameExpr.class).forEach(expr -> {
distinctOperands.add(expr.getNameAsString());
totalOperands.getAndIncrement();

B;

method.findAl1(NameExpr.class).forEach(expr -> {
distinctOperands.add(expr.getNameAsString());
totalOperands.getAndIncrement();

1)

method.findAll(LiteralExpr.class).forEach(expr -> {
distinctOperands.add(expr.toString());
totalOperands.getAndIncrement();

12)7

method.findAll(VariableDeclarator.class).forEach(decl -> {
distinctOperands.add(decl.getNameAsString());
totalOperands.getAndIncrement();

i

return totalOperands.get();

Figure 5.7. Operands parsing logic

It is important to note that method calls and constructor calls (either explicit or supertype
constructor invocations) are considered as operators when calculating HV. Additionally, the use
of an Atomiclnteger is necessary due to lamdas being closures and demanding all variables inside
to be effectively final. Atomiclntegers provide a mutable int that can be used inside lamda
functions. The use of a simple int would result in a compile-time error.

Benchmarking Software Design Patterns in CRM Systems 97

MSc Thesis Emmanouil Prokakis

ate int calcul sad0pe s(Node method, Set<String> distinctOperators) {
AtomicInteger totalOperators = new AtomicInteger();

method.findAll(BinaryExpr.class).forEach(expr -> {
tors.add(expr.getOperator().asString());
rs.getAndIncrement();

method.findAll(UnaryExpr.c s).forEach(expr -> {
d tOperators.add(expr.getOperator().asString());
s.getAndIncrement();
B;

method.findAlL(AssignExpr.) .forEach(expr -> {
distinc 's.add(expr.getOperator().asString());
s.getAndIncrement();
};

method.findAl1l(MethodCallExpr.c ;) .forEach(expr -> {
distinctOper ;.add(expr.getNameAsString());
talOperators.getAndIncrement();

B

method.findAlL(ExplicitConstructorInvocationStmt.class).forEach(expr -> {
inct rs.add(expr.toString());
s.getAndIncrement();

B;
method.findAll(ConditionalExpr.class).forEach(expr -> {

d e geadd@ %)
s.getAndIncrement();

1 totalOperators.get();

Figure 5.8. Operators parsing logic

For calculating CBO, all method calls, accessed attributes and object instantiations are
processed, with their scope being added to a Set of unique Strings. The scope of a member is
the class that is responsible for its existence. Following this collection process, the class itself is
excluded from the Set so that only external classes are considered in the coupling calculation.

Benchmarking Software Design Patterns in CRM Systems 98

MSc Thesis Emmanouil Prokakis

forEach(method ->

String r
- (isClas

urnType));

ame -» o

method

EXTrac

Figure 5.9. CBO implementation fragment

On the calculcateLCOM method, all fields declared in the class are collected and a Set of the
fields used by each method is maintained on a List. A 2-dimensional loop traverses all possible
method pairs and, for each pair where common fields are used (intersection of the Sets), the
methodPairsWithSharedFields counter is incremented. The ratio of methods sharing fields
compared to all methods of the class signifies the LCOM rating.

Benchmarking Software Design Patterns in CRM Systems 99

MSc Thesis Emmanouil Prokakis

private double calculatelLCOM(ClassOrInterfaceDeclaration classDefinition) {
List<Set<String>> fieldsUsedPerMethod = new ArrayList<>();
Set<String> allFieldsUsed = new HashSet<>();

classDefinition.findAll(VariableDeclarator.class).forEach(variable ->
allFieldsUsed.add(variable.getNameAsString());
};

for (MethodDeclaration method : classDefinition.getMethods()) {
Set<String> accessedFields = new HashSet<>();
method.findAll(NameExpr.class).forEach(nameExpr -> {
if (allFieldsUsed.contains(nameExpr.getNameAsString())) {
accessedFields.add(nameExpr.getNameAsString());

};
fieldsUsedPerMethod.add(accessedFields);

int methodPairs = 0;
int methodPairsWithSharedFields = 0;

for (int i = 0; i < fieldsUsedPerMethod.size(); i++) {
for (int j = 1 + 1; j < fieldsUsedPerMethod.size(); j++) {
methodPairs++;

Set<String> intersection = new HashSet<>(fieldsUsedPerMethod.get(i));
intersection.retainAll(fieldsUsedPerMethod.get(j));

if (intersection.isEmpty()) {

continue;

methodPairsWithSharedFields++;

return methodPairs == 0 ? 0.0 : 1 - (double) methodPairsWithSharedFields / methodPairs;

Figure 5.10. LCOM calculation logic

After defining the metrics and the tool to be used in the benchmarking, we can proceed with
applying it to our two separate Springboot applications.

4.2 Application to MNS CRM Implementation

In the present section we will display the results of running our metrics-calculation program for
our two different back-end implementations. We will demonstrate the aggregated / averaged
results per codebase and analyze them. Following this, we will focus on the metrics of the
modules where the implementations differ, considering that differences come from the application

Benchmarking Software Design Patterns in CRM Systems 100

MSc Thesis Emmanouil Prokakis

or not of design patterns. We will henceforth refer to the implementation without design patterns
as “A” and the implementation with design patterns will be called “B”.

On the aggregate / average metrics of the complete implementation comparison, we can see that
version B of the back-end application performs better on almost all metrics.

Metric / Implementation

Number of Classes / Interfaces (NOC) 91 129 +38 41,75%
Lines of Code (LOC) 5259 5941 +682 12,96%
Halstead Volume 42.577,91 34.463,48 -8114,43 21,06%
Maintainability Index 91,15 94 44 +3,29 3,54%
Cyclomatic Complexity 960 1008 +48 4.87%
Coupling Between Objects (CBO) 4,46 3,82 -0,64 14,34%
Lack of Coherence of Methods (LCOM) 0,29 0,27 -0,02 6,89%

Figure 6.1. Aggregate / Average comparison of the two Springboot implementations

For NOC, we can see that implementation B includes 38 more classes than implementation A,
which constitutes an increase of 41.75%. The LOC (excluding blank lines and comments) display
a difference of 682 more lines in version B which corresponds to a 12,96% increase in lines of
code. These increases in code and classes can possibly be attributed to the extra classes (like
concrete Builders, concrete Discount Strategies, concrete Entity-specific Deletion Handlers etc.)
needed for the design pattern implementations to take form.

Since the number of classes didn’t increase linearly with the LOC (41,75% to 12,96%), we can
expect the average length of each class to have decreased. Considering both systems provide
the same functionality and business logic, we consider more classes to be a positive
characteristic, since the same business logic will be spread across more, smaller and easier-to-
understand classes. Metrics agree with the described explanation since the average LOC per
class are 46,05 lines for implementation B compared to the 57.79 lines of code in implementation
A. This translates to a 25.49% reduction in average class size.

The HV of implementation B (34.464,48) is 21,06% lower than the HV of implementation A
(42.577,91). It is important to note that, even though the codebase of implementation B is larger,
the HV value is lower, signaling that the code is easier to understand and digest.

CC is the only metric where implementation A seems to have the upper edge against the design
pattern implementation. More specifically, CC of implementation B (1008) is 4,87% larger than
implementation A’'s (960). This difference isn’t by a lot and can possibly be explained by the
additional control flow some design patterns bring. For example, both the Strategy pattern (used
twice) and the Factory pattern (used once) can include decision points and control flow
statements.

When it comes to CBO, implementation B demonstrates a lower coupling between classes.
Implementation A has a CBO of 4,46 and implementation B has 3,82. Both applications reflect a
low coupling ratio with implementation B having 14,34% looser coupling. As described in the
design pattern consequence examples in 3.3.2, we initially expected the gap between the two
implementations to be higher, but we can at least see that there is a difference, validated by the
CK CBO metric. We will explore how the design pattern implementation sections of the codebase
compare to the non-design pattern segments in more detail later.

Both implementations seem to have highly cohesive classes with the implementation B scoring
slightly higher cohesion than implementation A. The former (0,27) appears 6.89% more cohesive
compared to the latter (0,29). We can also note that since LCOM is calculated as a ratio of the
class methods that share the same attributes compared to the total methods of the class, the

Benchmarking Software Design Patterns in CRM Systems 101

MSc Thesis Emmanouil Prokakis

cohesion of both implementations is in fact lower than demonstrated in this present LCOM
calculation. This is due to CRM Entity and DTO classes that contain a lot of getters / setters. Since
each getter / setter deals only with one member, these classes rank low in cohesion. Because
this influences equally both implementations’ LCOM score, we do not consider it as interference
with our benchmarking analysis.

Having reviewed the total / average metrics for the complete implementations, we can review how
the two implementations differ in their metrics in the parts where design patterns where
implemented.

Template Method pattern for data validation

When using Template Method to offer the data validation functionality and by collecting the metrics
for the individual classes involved, we can see that implementation B scores better in almost all
SQMs.

Data Validation without Design
patterns

InsertUpdateTrigger 56 908,18 68,76 7 10 0 1
DataValidation 43 612,11 73,48 14 9 1 1
Total/AVG 99 1.520,29 71,12 21 9,50 0,50 2

Figure 6.2. Implementation A Data Validation module metrics

Data Validation with Design
patterns

InsertUpdateTrigger 58 838,93 68,6 7 10 0 1
ValidationHandler 29 154,15 89,56 3 9 0 1
ValidationTemplate 12 9,51 118,34 3 0 1 1
AccountValidationProcessor 15 39,3 107,58 2 3 0 1
ContactValidationProcessor 16 39,3 106,53 2 3 0 1
CaseValidationProcessor 15 88,76 103,34 2 3 0 1
LeadValidationProcessor 16 16,25 111,12 2 3 0 1
TaskValidationProcessor 17 63 103,1 2 3 0 1
OpportunityValidationProcessor 16 63 104,08 2 3 0 1
VoiceCallValidationProcessor 16 16,25 111,12 2 3 0 1
Total/ AVG 210 1.328,45 102,34 27 4,00 0,10 10

Figure 6.3. Implementation B Data Validation module metrics

Even though the LOC are more than doubled in the case of implementation B, these lines are
spread through a lot more, smaller classes. In spite of the more code, the HV value is 13,46%
lower for implementation B compared to implementation A, signaling lower effort needed to
understand the code.

However, we can see that CC is 25% higher for the design pattern implementation. We believe
that this is because of the many classes involved with implementing the Template Method design
pattern. The average CC per class is significantly smaller (2,7 for implementation B and 10,5 for
implementation A), but a lot of classes make it add up in the summary. When it comes to M,
implementation B appears as 35,99% more maintainable. This large difference can be explained
by the newly added design pattern classes, that each displays a high Ml value and influences the
total implementation average.

Lastly, implementation B performs fundamentally better regarding CBO (81,48% less coupling)
and LCOM (80% more method cohesion). We can explain that performance difference by the

Benchmarking Software Design Patterns in CRM Systems 102

MSc Thesis Emmanouil Prokakis

design pattern related classes, that display healthy CBO and LCOM values, influencing the total
implementation average.

Command pattern on Lead Conversion and Strategy, Factory for Discount Calculation

We focused our efforts in collecting data for the specific classes involved in the Business Process
module in both implementations. The BusinessProcess class includes functionality for both the
Lead Conversion and Client Discount processes, so we handle them as one comparison unit. The
Command, Strategy and Factory patterns are utilized in this context inside implementation B.

In the comparison results we can see that the design pattern version doesn’t score very well in
this instance. Let’'s go through the specific metrics and we will discuss possible reasons at the
end of the section for the present use case.

Business Processes without Design patterns LOC HV Mi CcC CBO LCOM NOC

BusinessProcess 90 1011,74 60,74 6 18 0

Figure 6.4. Implementation A Lead Conversion module metrics

Business Processes with Design patterns LoC HV Mi CC CBO LCOM NOC
BusinessProcess 98 797,66 61,06 4 24 0 1
DiscountStrategyFactory 20 66.44 99,96 3 6 0 1
DiscountStrategy 5 1 144,7 1 1 0 1
DiscountContext 11 16 117,28 2 2 0 1
IndustryDiscount 14 20,68 112,04 2 3 0 1
LoyaltyDiscount 11 22,46 115,74 1 1 0 1
RevenueDiscount 12 18,09 115,23 2 1 0 1
LeadConversioninvoker 14 22 111,71 2 2 0 1
Command 4 1 148,31 1 0 0 1
CreateAccountCommand 16 37,15 106,83 2 1 0 1
CreateContactCommand 16 37,15 106,83 2 1 0 1
CreateOpportunityCommand 16 37,15 106,83 2 1 0 1
MapLeadToChildrenCommand 31 121,89 89,93 2 0 0 1
MapLeadConversionChildrenRelationships 36 117,29 87,71 2 0 0 1
Total/ AVG 304 1.249,52 108,87 28 3,07 0,00 14

Figure 6.5. Implementation B Lead Conversion module metrics

We again notice that even though the design pattern version includes more than triple the lines
of code of implementation A, these lines are separated across more smaller-sized classes.
However, the size different here is much larger than the Template Method implementation
analyzed in the previous segment.

Because of the much larger implementation B, the latter displays a 23,5% higher HV value, which
can be attributed to the added complexity. Implementation B still manages to achieve a better M,
which occurs due to the addition of many new classes with healthy Ml stats. CC is 366.66% higher
in the design pattern version and this can be attributed to implementation B having 14 times more
classes and 3 times the code to achieve the same behaviour.

The difference between CBO averages can be explained by the many more classes involved in
the implementation B, that lower the average metric for CBO. The BusinessProcess class itself,
displays higher coupling (28,57%) in the case of design pattern application. This is because the
BusinessProcess class continues to maintain references to the objects it did back in
implementation A and also adds references to new objects related to the design pattern

Benchmarking Software Design Patterns in CRM Systems 103

MSc Thesis Emmanouil Prokakis

application (e.g. LeadConversioninvoker, DiscountContext, DiscountStrategyFactory). Both
implementations appear equally cohesive in terms of LCOM.

From the above analysis, we can see that the design pattern version appears to have the upper
edge only in terms of MI. It seems that for this specific application of design patterns, the results
aren’t so clear when it comes to the quantititative metrics. This could be for a couple of reasons
such as overengineering and improper application of patterns. By overengineering, we mean
using overkill methods to solve a simple problem in the degree that uneccessary complexity is
introduced. The improper application of patterns in this scenario refers to the design pattern
classes abstracting just the process steps and not also being responsible for encapsulating the
creation of the objects they use, instead relying on receiving them from the calling environment
(BusinessProcess class). In an alternate scenario, we could have seen lower LOC, CBO and HV
for the BusinessProcess class itself and, as a result, for the whole implementation B’s Business
Process module.

Lead inputlLead = leadOptional.get();
Account();
Contact con Contact();
Opportunity opp = new Opportunity();

Account acc

LeadConversionInvoker invoker = new LeadConversionInvoker();

invoker.
invoker.
invoker.
invoker.

invoker.

addCommand (new

addCommand (r
addCommand (
addCommand (r
addCommand (r

CreateAccountCommand (inputLead, acc));
reateContactCommand(inputLead, con));

i CreateOpportunityCommand(inputLead, opp));
apLeadToChildrenCommand (inputLead, acc, con, opp,

re

v MapLeadConversionChildrenRelationships(acc,

invoker.executeCommands() ;

Figure 6.6. Implementation B: objects being created in BusinessProcess and passed to design
pattern classes

The positive effects we documented in 3.3.2 (Lead conversion steps are properly encapsulated,
identifying the discount percentage is abstracted etc.) still apply, However the metrics tell us that,
even though certain quality characteristics have been achieved, a lot of complexity was introduced
and the module is a candidate for refactoring.

Builder pattern for Object Mapper

The Object Mapper class is responsible for setting the field values of objects to be inserted /
updated. The application of Builder pattern has been used in implementation B to abstract the
object instantiation process. Even though we described the benefits of this design decision back
in 3.3.2, the metrics present a different picture.

Object Mapper
without Design LOC HV Mi cc CBO LCOM NOC
patterns
ObjectMapper 137 3818,38 44,96 15 11 0 1

Figure 6.7. Implementation A Object Mapper module metrics

Benchmarking Software Design Patterns in CRM Systems 104

MSc Thesis

Emmanouil Prokakis

ObjectMapperwith |- 5a HV MI cc CBO LCOM NOC
Design patterns
ObjectMapper 138 2814,18 46,66 14 17 0 1
AccountBuilder 63 313,82 70,54 15 1 0 1
ContactBuilder 67 330,34 69,04 16 2 0,15 1
LeadBuilder 56 253,32 74,02 13 1 0 1
CaseBuilder 48 195,4 78,33 11 1 0 1
OpportunityBuilder 39 140,65 83,86 9 1 0 1
TaskBuilder 36 111,13 86,61 8 1 0 1
VoiceCallBuilder 36 111,13 86,61 6 1 0 1
Total/ AVG 483 4.269,97 74,46 92 3,13 0,02 8

Figure 6.8. Implementation B Object Mapper module metrics

Implementation B demonstrates 252,55% more code and 8 times the classes to achieve the same
result. This large gap in implementation size is reflected in HV where implementation B (4269,97)
has a 11.16% higher score compared to implementation A (3818,38).

The Ml is better (65,61% to be exact) for the design pattern version due to the average being
influenced by the new “builder” classes, where higher Ml values can be found. On the contrary,
CC is far worse showing a spike from 15 to 92 for implementation B. This is because each method
increments CC by 1 and this applies for every builder for every field in the object-to-be-
constructed. With the addition of all new builder classes and the handling of every Entity’s field,
the total CC value is raised drastically. The average CBO is better for implementation B, although
the ObjectMapper class itself displays higher coupling (54,54%). We can explain this by the
ObjectMapper class continuing to reference the Entities directly (as function arguments and
method return types), while also adding references to the new builder classes. Finally, LCOM is
very slightly worse for implementation B, but this can be solely attributed to a single method of
the ContactBuilder class that doesn’t make use of the respective Contact member field.

The achieved benefits of abstracting the object instantiation process from the Object Mapper that
were established in 3.3.2 are still true. However, the metrics suggest that refactoring might be
necessary for the Object Mapper module.

Strategy pattern for Delete Trigger

The Strategy pattern was used to create a dynamic Deletion Trigger, that handles removing the
references of the record-to-be-deleted from other Entity entries. As in the first example analyzed,
the positive influence of the design patterns can be validated using the described metrics.

Delete Trigger without Design LOC HY MI ce CBO LCOM NOC
patterns

DeleteTrigger 44 569,97 75,09 7 8 0 1

DeleteTriggerHelper 231 3234,77 33,45 32 18 0,75 1

Total/AVG 275 3.804,74 54,27 39 13,00 0,38 2

Figure 6.9. Implementation A Delete Trigger module

Benchmarking Software Design Patterns in CRM Systems 105

MSc Thesis Emmanouil Prokakis

Delete Trigger with Design
patterns
DeleteTrigger 37 96,21 88,07 3 1 0 1
DeletionHandler 6 1 141,28 3 0 1 1
DeletionHandlerConfig 29 120,46 91,31 1 11 0 1
AccountDeletionHandler 82 808,85 63,64 5 10 0,67 1
ContactDeletionHandler 47 250,67 78,75 5 7 1 1
CaseDeletionHandler 68 449,33 69,27 7 8 1 1
LeadDeletionHandler 44 151,72 82,89 3 2 1 1
OpportunityDeletionHandler 57 389,4 73,34 5 8 1 1
TaskDeletionHandler 66 443,31 69,83 7 8 1 1
VoiceCallDeletionHandler 68 443,31 69,34 7 8 1 1
Total/ AVG 504 3.154,26 82,77 46 6,30 0,77 10

Figure 6.10. Implementation B Delete Trigger module

The design pattern version uses 5 times the classes and almost double the lines of code to
achieve the same functionality. It is important to note that this LOC difference between the two
codebases’ implementations (83,27% increase) appears healthier than the previous two
examples analyzed. This is also visible in the MI, where implementation B scores better, with a
18,69% lower MI value. Additionally, even though the number of classes is larger in
implementation B, the CC value hasn’t risen as much, being just 17,94% higher for the design
pattern version.

CBO is also a metric where implementation B performs better, showing a 69,53% difference
compared to implementation A. It is also nice to see that the very high coupling (18) of
implementation A's DeleteTriggerHelper is broken down in more, less coupled classes for
implementation B. In this present case, the only metric where implementation B doesn’t have the
upper hand is LCOM, where implementation A scores significantly better. The worse LCOM score
can be attributed to every Entity-specific “DeletionHandler” class having an LCOM rating of 1.
This occurs because the members of these classes are not used by all their methods, since each
class has a method for handling parent references and a method for handling children references.
It is unlikely that an Entity will have the same Entity Type both as a parent and a child, making it
impossible to encounter two methods that make use of the same “repository” member in the same
DeletionHandler class.

In contrast to the two previous scenarios, the benefits of design pattens are clearly reflected in
the SQMs for this module.

Generic Handling of bidirectional references

For this and the following case, implementation B doesn’t make use of design patterns directly to
solve a problem, but instead takes inspiration from them and applies it in order to create reusable
generic code. The metrics agree with the described positive effects in section 3.3.2 and
implementation B performs better.

Non - Generic Bidirectional
References

RelationshipMapper 67 1353,47 61,25 18 11 0 1
RelationshipHandlerHelper 397 8116,36 12,3 65 22 0,74 1
Total/AVG 464 9.469,83 36,78 83 16,50 0,37 2

Figure 6.11. Implementation A bidirectional references handling

Benchmarking Software Design Patterns in CRM Systems 106

MSc Thesis Emmanouil Prokakis

Generic Bidirectional
References

RelationshipMapper 155 1410,31 47,68 17 18 0 1
RelationshipHandlerHelper 77 1033,22 62,47 9 12 1 1
Total/AVG 232 2.443,53 55,08 26 15,00 0,50 2

Figure 6.12. Implementation B bidirectional references handling

The goal of reducing code duplication by using design pattern ideas is achieved, with
implementation B having half the code of implementation A to support the same business logic.
HV is greatly smaller for the former, demonstrating a drop of 74,19% from implementation A to
implementation B.

Ml is 49,75% higher in implementation B, with implementation A's RelationshipHandlerHelper
class bad MI score improving drastically. The design pattern inspired version also manages to
score slightly better in CBO. However, LCOM displays a higher value for implementation B, which
is due to less cohesion for the RelationshipHandlerHelper class.

In this use case, we can see that implementation B is clearly performing better in all metrics except
LCOM.

Generic List Conversion

For list conversion, implementation B takes inspiration from design patterns to reduce code
duplication and create more scalable and maintainable code. The positive impact described in
section 3.3.2 is validated by the use of SQMs.

Non Generic List Conversion

ListConverter 113 1186,21 54,39 14 17 0 1

Figure 6.13. Implementation A list conversion

Generic List Conversion
ListConverter 31 139.81 89.22 2 4 0 1

Figure 6.14. Implementation B list conversion

By applying design pattern characteristics to our ListConverter utility, we are able to reduce LOC
by 72,56%. The drop in HV (82.2%) is even more impressive with implementation A's HV value
being 1186,21 compared to 139,81 of implementation B. The latter also scores better in terms of
MI, appearing as 61,03% more maintainable. Both CC and CBO follow in the same pattern, with
CC decreasing by 85,71% and CBO decreasing by 76,47%. We observe no impact in LCOM
caused by the application of design pattern ideas.

4.3 Results and Observations

In section 4.2 we analyzed both back-end implementations’ performance in regard to SQMs. We
initially fixed our attention on the per implementation total / average metrics and then proceeded
with the comparison of the two implementations in the parts where they differ, which are no other
than the design pattern applications themselves.

Benchmarking Software Design Patterns in CRM Systems 107

MSc Thesis Emmanouil Prokakis

Regarding the application total / average metrics, we can see implementation B appears to
perform better across all metrics except CC. We attribute the higher CC to the additional logic,
methods and control flow statements brought by the design pattern introduction. Even though the
design pattern version appears to have a larger number of classes and more lines of code, we
consider this to be a positive characteristic, since the same functionality is provided by dividing
code into smaller, easier to maintain classes. The average class size has decreased, and the
more lines of code are a product of introducing new classes for the design pattern application.

No matter the higher line count, the HV appears to have dropped significantly for implementation
B, signaling that the latter is less complex and easier to comprehend. CC, HV and LOC contribute
to the calculation of the MI metric, in which implementation B performs better. The latter also
manages to succeed both in terms of CBO and LCOM, demonstrating looser coupling and more
coherent classes that better adhere to the Single Responsibility principle.

It is important to note that both implementations scored well on all metrics, showing that both
implementations comply with certain quality standards.

Following the total / average analysis, we analyzed the effects of design pattern application to
materialize certain functionality. Across the different case studies, we identified cases where the
positive impact of design patterns was visible across the metrics used in this present paper, with
the exception of course of CC. In this group, we include the Template Method for Data Validation,
Strategy pattern for Delete Trigger, Generic Bidirectional Reference Handling and Generic List
Conversion. There were also scenarios where the design pattern version performed worse than
implementation A in many metrics, as was the case with Strategy, Command pattern and Factory
pattern for Business Process and Builder pattern for Object Mapper.

CBO was the metric that implementation B had the upper hand in every specific use case of
design pattern introduction. For HV and MI, implementation B scored better in four out of the six
use cases. In CC, implementation A had the upper hand, with implementation B only performing
better in the case of Generic Bidirectional References and Generic List Conversion, which
corresponds to two out of the six scenarios. Lastly, for LCOM, implementation B performed better
only in the case of Template Method for Data validation, with implementation A outperforming the
latter three times and tying each other twice.

Conclusions

In this present paper, we focused on Software Design patterns and how their positive impact can
be reflected in Software Quality Metrics. A CRM Springboot application was developed twice, with
and without the use of design patterns, in an attempt to practically assess the impact of the latter
in a quantitative manner. A set of literature - derived Software Quality metrics was defined and
used to benchmark the effects of design pattern application in our two separate back-end
implementations.

In application-wide metrics, the design pattern version of the CRM app performed better in all
utilized SQMs, apart from Cyclomatic Complexity. This can possibly be attributed to the larger
number of classes, methods and control flow statements that come with the design pattern
introduction. We also compared metrics that referred to specific application modules, with one
implementation making use of design patterns and the other not. We identified use-cases where
design patterns had a positive impact in all metrics (except CC), but there were also scenarios
where the design pattern version showed worse results in regard to our metrics suite. Possible
explanations for this behavior could be faulty application of design patterns and overengineering.

Benchmarking Software Design Patterns in CRM Systems 108

MSc Thesis Emmanouil Prokakis

Alesson that can be drawn from the above stated is that design patterns have a positive influence
in software quality and structure, as long as they are used in a proper manner and don’t introduce
unnecessary complexity and overhead. More research will of course be required to investigate
further the correlation of SQM values and design pattern application.

Bibliography

Ampatzoglou, A., Chalarampidou, S., & Stamelos, I. (2013). Research State of the Art on GoF
Design Patterns: A Mapping Study. Journal of Systems and Software, Volume 86, Issue 7, Pages
1945-1964.

Aratchige, R., Gunaratne, M., Kariyawasam, K., & Weerasinghe, P. (2022). An Overview of
Structural Design Patterns in Object-Oriented Software Engineering. SW Modelling Cl Wk.

Aversano, L., Cerulo, L., Canfora, G., & Di Penta, M. (2007). An Empirical Study on the Evolution
of Design Patterns. Conference Paper, DOI: 10.1145/1287624.1287680.

B. Eckel. Thinking in Patterns with Java.

https://archive.org/details/Bruce Eckel Thinking in Patterns with Java

Chidamber, S., & Kemerer, C. (1994). A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 476—493.

De Laurentis, L. (2019). From Monolithic Architecture To Microservices Architecture. 2019 IEEE

International Symposium on Software Reliability Engineering Workshops.

Drouin, N., Badri, M., & Toure, F. (2013). Analyzing Software Quality Evolution Using Metrics: An
Empirical Study On Open Source Software. Journal of Software, 8(10).

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design Patterns: Abstraction and
Reuse of Object-Oriented Design. ECOOP '93 Conference Proceedings, Springer-Verlag Lecture

Notes in Computer Science.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, Mass: Addison-Wesley.

Harmes, R., & Diaz, D. (2008). Pro JavaScript Design Patterns. USA: Apress.

Benchmarking Software Design Patterns in CRM Systems 109

https://archive.org/details/Bruce_Eckel__Thinking_in_Patterns_with_Java

MSc Thesis Emmanouil Prokakis

Henry, S., & Kafura, D. (1984). The Evaluation of Software Systems’ Structure Using Qualitative

Software Metrics. Software- Practice and Experience, 14(6).

Lee, M. (2014). Software Quality Factors and Software Quality Metrics To Enhance Software
Quality Assurance. British Journal of Applied Science & Technology, 4(21).

McCabe, T. (1976). A Complexity Measure. IEEE Transactions On Software Engineering, SE-2(4).

Mohammed, M., & Elish, M. (2013). A Comparative Literature Survey of Design Patterns Impact
on Software Quality. Conference Paper, DOI: 10.1109/ICISA.2013.6579460.

Molnar, A. (2020). Evaluation of Software Product Quality Metrics. In Damiani, E., Spanoudakis,
G., & Leszek, M. (eds) (2020). Evaluation of Novel Approaches to Software Engineering.

Switzerland: Springer.

O’Connor, R., Elger, P., & Clarke, P. (2017). Continuous Software Engineering: A Microservices

Architecture Perspective. Wiley Journal of Software: Evolution and Process, €1866.

Oman, P., & Hagemeister, J. (1992). Metrics for Assessing a Software System’s Maintainability.

Proceedings of the Conference on Software Maintenance, IEEE, pp. 337-344.

Singh, G, Singh, V., & Singh, D. (2011). A Study of Software Metrics. IJCEM International Journal

of Computational Engineering & Management, 11.

Tichy, W. (1998). A Catalogue of General-Purpose Software Design Patterns. U/UC PATTERNS
GROUP VERSION Karlsruhe Institute of Technology, DOI: 10.1109/TOOLS.1997.65474.

Trivedi, P., & Kumar, R. (2012). Software Metrics To Estimate Software Quality Using Software

Component Reusability. IJCSI International Journal of Computer Science Issues, 9(2).

Welker, K. (2001). The Software Maintainability Index Revisited. The Journal of Defense Software
Engineering, August 2021.

Benchmarking Software Design Patterns in CRM Systems 110

