

UNIVERSITY OF PIRAEUS

School of Information and Communication Technologies

Department of Informatics

Thesis

Thesis Title:

Τίτλος Διατριβής:

Natural Language Processing and Text

Classification with Bert & BiLSTM model

Επεξεργασία Φυσικής Γλώσσας και Ταξινόμηση

Κειμένων με Μοντέλο Bert & BiLSTM

Student’s name-

surname:
Giannis Touloupis

Father’s name: Andreas

Student’s ID No: P18217

Supervisor: Dionysios Sotiropoulos, Professor

September 2024/ Σεπτέμβριος 2024

Degree thesis Giannis Touloupis

2

Copyright ©

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η

πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν αποκλειστικά

τον συγγραφέα και δεν αντιπροσωπεύουν τις επίσημες θέσεις του Πανεπιστημίου Πειραιώς.

Ως συγγραφέας της παρούσας εργασίας δηλώνω πως η παρούσα εργασία δεν αποτελεί προϊόν

λογοκλοπής και δεν περιέχει υλικό από μη αναφερόμενες πηγές.

Copying, storing and distributing this work, in whole or in part, for commercial purposes is prohibited.
Reproduction, storage and distribution for a non-profit, educational or research purpose is permitted,

provided the source is acknowledged and this message is preserved.

The opinions and conclusions contained in this document are solely those of the author and do not

represent the official positions of the University of Piraeus.

As the author of this paper, I declare that this paper is not a product of plagiarism and does not contain

material from unmentioned sources.

Degree thesis Giannis Touloupis

3

Summary

 This thesis refers to the architecture of deep learning models . This is

accomplished by using the deep learning models to classify tweets

related to Covid-19 to three different categories. The first category as

tweets which are in favor of vaccination, agree and implement methods

of protection against the virus. The second category as tweets which are

against the vaccination and promote conspiracy theories. The third

category as tweets which they have a neutral stance.

 Specifically, to solve the problem above they have been collected a

number of tweets so we can train the two deep learning models we are

using, a Bidirectional LSTM and a Bert model. These models are going to

be analyzed and explained through every step and at the same time we

will emphasize some differences between those two models.

 To train these models we have firstly to collect those tweets and

categorize them, also during this step we had to find another collection

method due to twitter policy changes. In addition, we will present the

preparation of those tweets so that the models can accept them and use

them to train as best as possible.

The whole preparation and the process is described in detail later on and

the results and any observations of the models at the end.

Key words: AI ,machine learning model ,BiLSTM, Bert, transformers,

tweets, dataset, covid, vaccine, Optimizers, data, training

Degree thesis Giannis Touloupis

4

Περίληψη

 Αυτή η διπλωματική εργασία αναφέρεται στην αρχιτεκτονική των

μοντέλων βαθιάς μάθησης. Αυτό επιτυγχάνεται με τη χρήση μοντέλων

βαθιάς μάθησης για την ταξινόμηση των tweets που σχετίζονται με τον

Covid-19 σε τρεις διαφορετικές κατηγορίες. Η πρώτη κατηγορία αφορά

tweets που είναι υπέρ του εμβολιασμού, συμφωνούν και εφαρμόζουν

μεθόδους προστασίας κατά του ιού. Η δεύτερη κατηγορία αφορά

tweets που είναι κατά του εμβολιασμού και προωθούν θεωρίες

συνωμοσίας. Η τρίτη κατηγορία αφορά tweets που έχουν ουδέτερη

στάση.

Συγκεκριμένα, για την επίλυση του παραπάνω προβλήματος,

συλλέχθηκε ένας αριθμός tweets ώστε να εκπαιδεύσουμε τα δύο

μοντέλα βαθιάς μάθησης που χρησιμοποιούμε, ένα Δικτυακό Μοντέλο

Bidirectional LSTM και ένα μοντέλο Bert. Αυτά τα μοντέλα θα

αναλυθούν και θα εξηγηθούν βήμα-βήμα, και ταυτόχρονα θα δοθεί

έμφαση σε κάποιες διαφορές μεταξύ τους.

Για να εκπαιδεύσουμε αυτά τα μοντέλα, έπρεπε πρώτα να συλλέξουμε

και να κατηγοριοποιήσουμε τα tweets. Κατά τη διάρκεια αυτού του

βήματος χρειάστηκε να βρούμε μια νέα μέθοδο συλλογής λόγω

αλλαγών στην πολιτική του Twitter. Επιπλέον, θα παρουσιάσουμε την

προετοιμασία αυτών των tweets ώστε τα μοντέλα να μπορούν να τα

δεχθούν και να τα χρησιμοποιήσουν για εκπαίδευση με τον καλύτερο

δυνατό τρόπο.

Η όλη προετοιμασία και η διαδικασία περιγράφονται λεπτομερώς

παρακάτω, ενώ στο τέλος παρουσιάζονται τα αποτελέσματα και οι

παρατηρήσεις σχετικά με τα μοντέλα.

Λέξεις-κλειδιά: AI , machine learning model,BiLSTM, Bert, transformers,

tweets, dataset, covid, vaccine, Optimizers, data, training, model

Degree thesis Giannis Touloupis

5

Acknowledgement

 I would like to express my deepest gratitude advisor to my supervising

professor Mr. Dionysios Sotiropoulos, for his unwavering support, insightful

guidance, continuous encouragement and most importantly his patience and time

that he invested. His expertise and constructive feedback have been instrumental

in shaping the direction and quality of this research.

Table of Contents
Chapter 1 ... 8

1.1 Introduction to artificial intelligence ... 8

1.2 Introduction and description of the problem.. 12

Chapter 2 ... 14

2.1 Bert model .. 15

2.2 Bidirectional LSTM... 17

2.3 Natural Language Processing .. 18

2.4 Text translation with BiLSTM and Bert model and their differences.. 19

2.5 Text Summarization with BiLSTM and Bert model and their differences ... 20

2.6 Sentiment Analysis with BiLSTM and Bert model and their differences .. 21

2.7 Text Classification ... 22

Chapter 3 ... 25

3.1 The importance of a dataset ... 25

3.2 Dataset collection ... 26

3.3 Dataset preparation .. 28

3.4 Graphs and Charts ... 30

3.5 Dataset preparation for Bert Model ... 35

3.6 Dataset preparation for BiLSTM Model .. 38

Chapter 4 ... 41

4.1 Bert model creation .. 41

Degree thesis Giannis Touloupis

6

4.2 Bert model initializations .. 42

4.2 Bert model training ... 45

4.3 Bert model testing evaluation .. 53

Chapter 5 ... 56

5.1 BiLSTM model creation. .. 56

5.2 BiLSTM model initializations. .. 57

5.3 AdaDelta Optimizer. ... 58

5.4 The key differences between AdaDelta and AdamW. .. 60

5.5 BiLstm architecture. .. 62

5.6 BiLstm training. ... 67

Chapter 6 ... 70

6.1 Conclusions. ... 70

6.2 Improvements and Future work. ... 70

6.3 Bibliography. .. 71

Table of Images
1. Supervised learning schema .. 9

2. Unsupervised learning schema ... 10

3. Reinforcement learning schema. .. 11

4. Machine learning vs Deep learning schema ... 12

5. Bert Model Diagram .. 16

6. Bidirectional LSTM model diagram ... 17

7. Python script to extract tweets based on hashtags. ... 27

8. Preparation steps .. 27

9. Pandas import and dataset load ... 28

10. Dataset format .. 29

11. Cleaning data and checking for null values ... 30

12. Creating graphs and charts ... 31

13. Word Frequency for Pro-Vaxx Tweets .. 32

14. Word Frequency for Anti-Vaxx Tweets ... 32

15. Word Frequency for Neutral Tweets .. 33

Degree thesis Giannis Touloupis

7

16. Word Frequency for Pro-Vaxx Tweets with custom chart .. 33

17. Word Frequency for Anti-Vaxx Tweets with custom chart ... 34

18. Word Frequency for Neutral Tweets with custom chart .. 34

19. Dataset preparation for the Bert model 1.1 ... 35

20. Dataset preparation for the Bert model.1.2 ... 37

21. Dataset preparation for the BiLSTM model, ... 40

22. Installation of transformers, ... 42

23. Function importation for Bert model .. 43

24. Initializations for the Bert model. ... 44

25. Building of the Bert model 1.1 .. 46

26. Bert’s training early stopping .. 52

27. Bert’s training .. 53

28. Bert’s results ... 55

29. BiLstm Libraries ... 58

30. BiLstm Architecture ... 63

31. BiLstm Training .. 67

32. BiLstm Training Results ... 68

33. Creation of dummy data ... 68

34. Prediction results on the dummy data ... 69

Degree thesis Giannis Touloupis

8

Chapter 1

1.1 Introduction to artificial intelligence

 Our brain from the first stages of its development at a very young age

begins to learn about the results something has on the environment and

the environment on us. For example, even what we see with our optical

system is a prediction of what we are looking to and it is not always

precise. The precision of our predictions is increasing by having more

examples in our life from stimuli we receive.

 Neural networks work the same way, by receiving a set of data on

which it is trained to perform some functions and predictions.

Specifically, in most cases AI has the advantage to make predictions

much faster than the human brain and sometimes even providing

observations that may not have been apparent to the human brain.

 Also, Artificial intelligence has the ability to be utilized under difficult

and dangerous conditions to jobs like mining, deep-sea and space

exploration, military and rescue operations and many more. In addition,

AI is also used for repetitive and exhausting tasks in many fields. For

example, if a company has to deal daily with an enormous volume of data

it is much more convenient to use a neural network which can work

faster, continuously and with better precision. Some of these tasks are

financial and scientific analysis, marketing research, environmental

monitoring, fraud detection, supply chain management and many more.

 So far, we have analysed the term AI and its applications but that is just

the surface. A subcategory of AI is Machine learning which is also divided

into four main types based on the learning style and the nature of data

it has to process.

Degree thesis Giannis Touloupis

9

A) Supervised Learning

 It is the most commonly used types of machine learning. In

supervised learning, the algorithm is trained on a labelled dataset,

where input data is paired with corresponding output labels, then

the algorithm learns a mapping from inputs to outputs based on

the provided labelled examples.

Supervised learning schema

Degree thesis Giannis Touloupis

10

B) Unsupervised Learning:

In contrast to supervised learning, Unsupervised involves training

on unlabelled data and the goal is to find patterns or structures.

within the data and without explicit output labels

2. Unsupervised learning schema

C) Reinforcement Learning:

 Based on trial-and-error approach, reinforcement learning

involves training an agent to make decisions by interacting with an

environment, receiving feedback in the form of rewards or

penalties, while always trying to minimize the wrong steps.

Reinforcement learning can be usually found in trading and finance

applications and in automation, robotics and gaming industries.

Degree thesis Giannis Touloupis

11

3. Reinforcement learning schema.

D) Deep learning

 A Deep neural network involves artificial neural networks with multiple

layers, making it extremely powerful and that is why they are mostly

used with large datasets and complex patterns. Specifically, deep

learning is consisted by an input layer, hidden layers and an output layer.

Degree thesis Giannis Touloupis

12

4. Machine learning vs Deep learning schema

1.2 Introduction and description of the problem

 This bachelor’s thesis refers to the architecture of deep learning

models. This is accomplished by using the deep learning models to

classify tweets (Text Classification) related to Covid-19 to three different

categories. The first category as tweets which are in favor of vaccination,

agree and implement methods of protection against the virus. The

second category as tweets which are against the vaccination and

promote conspiracy theories. The third category as tweets which they

have a neutral stance.

Degree thesis Giannis Touloupis

13

 Specifically, to solve the problem above they have been collected a

number of tweets. The dataset we are using is consisted by tweets from

various datasets and a number of tweets with the use of Twitter API, we

will refer to both ways of collecting data later in more detail.

 The categorization has been accomplished with the help of NLP, a

subfield of artificial intelligence which makes possible the

communication between human and computer. NLP algorithms aims to

understand the meaning of a text by extracting information from it, some

applications are Sentiment Analysis, Text Summarization, Named Entity

Recognition and Text Classification which is the one we are going to

analyse.

 For the implementation of Text Classification we used a Bert and a

LSTM model. Bert stands for Bidirectional Encoder Representations from

Transformers and it is cutting edge natural processing model developed

by Google. Bert is a transformer pretrained using a combination of

masked language modelling objective and next sentence prediction on a

large corpus comprising the Toronto Book Corpus and Wikipedia.

 The second model is a Bidirectional Long Short-Term Memory network

an extension of a traditional LSTM model. It follows the RNN architecture

by analysing data in both directions, from the beginning to the end and

from the end to the beginning. In this manner the model will not make

rush judgments.

 In the following chapters we will further discuss about the creation of

the models that we used, the collection and preparation of the data, and

observations we made.

https://thinkingneuron.com/sentiment-analysis-of-tweets-using-bert/#DistilBERT
https://builtin.com/data-science/recurrent-neural-networks-and-lstm

Degree thesis Giannis Touloupis

14

Chapter 2

 AI as we already mention uses some types of models to make

predictions, the most common of them are Naive Bayes, CNN, KNN,

Random Forests, SVM, PCA, RNN and Transformers. The last two are the

ones that we are going to analyze.

 The history of transformers in the context of artificial intelligence (AI)

is closely tied to the development of models like the Transformer

architecture introduced by Vaswani et al. in the paper "Attention is All

You Need," published in 2017. Transformers have since become a

foundational technology in natural language processing (NLP) and other

AI applications due to their ability to capture long-range dependencies

and relationships in sequential data. Bert model is based on this

technology.

 Recurrent Neural Networks (RNNs) are a class of neural networks

designed for sequence data. They maintain hidden states to capture

sequential dependencies. RNNs are suitable for tasks involving

sequential information, such as natural language processing and time

series prediction. However, they face challenges like vanishing gradients,

limiting their ability to capture long-term dependencies, that means that

the model is not able to keep information for a long time. To solve the

underperformances that arise from the above issues, two neural

network approaches are suggested, the gated recurrent unit (GRU) and

the LSTM.

 Some of the differences between those two architectures are that

RNNs process sequences sequentially, struggling with long-term

dependencies, while Transformers use parallelized self-attention

mechanisms for simultaneous input processing. Transformers, including

BERT, are more effective in capturing extensive context, allowing for

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762

Degree thesis Giannis Touloupis

15

better representation of sequential data. They overcome the limitations

of RNNs, offering enhanced scalability and performance in natural

language processing and other sequential tasks.

2.1 Bert model

 The BERT model leverages transformer architecture for state-of-the-

art natural language processing (NLP). Unlike traditional models, BERT

processes text bidirectionally, considering both left and right context for

each word.

 Transformers employ a self-attention mechanism, allowing the model

to weigh different parts of the input sequence, capturing intricate

dependencies. BERT's pre-training involves unsupervised tasks—Masked

Language Model and Next Sentence Prediction—on a vast corpus,

imparting a rich understanding of language. Fine-tuning on specific tasks

follows pre-training.

https://arxiv.org/abs/2103.11943

Degree thesis Giannis Touloupis

16

5. Bert Model Diagram

 Tokenization and embedding into high-dimensional vectors enable

BERT to generate contextualized representations, crucial for tasks where

word meaning depends on context, these functions are going to be

explained in detail. Multiple transformer layers and attention heads

contribute to capturing hierarchical relationships and various abstraction

levels. The contextualized embeddings and transfer learning from pre-

training to downstream tasks empower BERT with a versatile

understanding of language, resulting in remarkable performance across

diverse NLP applications. The bidirectional and contextual nature of

transformers in BERT represents a breakthrough, revolutionizing how

models comprehend and process language for advanced NLP tasks.

https://ojs.bonviewpress.com/index.php/JCCE/article/view/838

Degree thesis Giannis Touloupis

17

2.2 Bidirectional LSTM

 Bidirectional Long Short-Term Memory (BiLSTM) is a type of recurrent

neural network (RNN) architecture designed to capture dependencies in

sequential data more effectively. Unlike traditional LSTMs, which

process data in a single direction, BiLSTM processes sequences in both

forward and backward directions simultaneously. This bidirectional

processing allows the network to capture context from both past and

future inputs, enhancing its ability to understand and remember long

range dependencies.

6. Bidirectional LSTM model diagram

 As evident from the provided architecture, there are two LSTM models

incorporated—one operating in the forward direction, while the other

functions in the reverse direction. In a BiLSTM layer, there are two

hidden states for each time step-one computed in the forward direction

Degree thesis Giannis Touloupis

18

and the other in the backward direction. These hidden states are

concatenated, providing a comprehensive representation of the input

sequence. The bidirectional approach helps mitigate the vanishing

gradient problem associated with standard LSTMs, enabling more

efficient learning of long-term dependencies.

2.3 Natural Language Processing

 Sometimes we are finding difficult to fully understand what a person

says through human language with his voice or by text and that is

because we are missing metaphors, idioms, sarcasm and plenty other

factors. When an employee has to deal with too much data and extract

information from them it can be time consuming and exhausting, making

it easier for mistakes to be made. In addition, the need to analyse so

many flowing data on the internet and extract a meaning from them

which can a lead to scientific, financial, marketing or even fraud

discovery is getting closer to impossible day by day.

 That is how Natural Language Processing (NLP) is born, which is a

branch of machine learning that empowers computers to understand,

manipulate, and make sense of human language. NLP is increasingly

integral to corporate solutions aimed at enhancing operational

efficiency, boosting employee productivity, and simplifying vital business

procedures. This is done with the use of NLP techniques or a combination

of them like those below.

Degree thesis Giannis Touloupis

19

2.4 Text translation with BiLSTM and Bert model and their
differences

 Language translation involves complex syntactic and semantic

understanding, where BiLSTM and BERT transformers play distinct roles.

Bidirectional Long Short-Term Memory networks (BiLSTM) are recurrent

neural networks adept at capturing sequential dependencies by

processing input sequences bidirectionally. Their ability to retain context

information makes them suitable for shorter sentences with local

dependencies. However, BiLSTM may struggle with long-range

dependencies and might not effectively capture intricate structures in

language.

 BERT (Bidirectional Encoder Representations from Transformers)

transformers, on the other hand, use self-attention mechanisms for

parallel processing, capturing global context efficiently. Pretrained on

extensive corpora, BERT exhibits versatility but requires fine-tuning for

specific tasks. It excels in understanding complex structures and long-

range dependencies, making it well-suited for tasks involving nuanced

language translation.

 The choice between BiLSTM and BERT depends on the linguistic

characteristics of the translation task. For simpler sentences with local

dependencies, BiLSTM may suffice. In contrast, BERT transformers are

preferred for tasks demanding a deeper comprehension of intricate

linguistic structures and long-range dependencies. The decision hinges

on the linguistic complexity and the nature of dependencies present in

the data.

Degree thesis Giannis Touloupis

20

2.5 Text Summarization with BiLSTM and Bert model and their
differences

 The phrase “Time is gold”, is a very famous one but also a true one,

especially when literally a business is losing money for the reason that it

misses deadlines or even just because of underproductiveness. For

example, employee to understand an undocumented project or an

uncommented source code file is spending around 60% of his working

time. Therefore, text summarization is coming to save the day.

 Bidirectional Long Short-Term Memory networks present advantages

and disadvantages in text summarization. On the positive side, BiLSTM

networks excel at summarizing shorter texts with clear structures,

providing interpretability, and demonstrating training efficiency.

However, their limitations become apparent in handling long-range

dependencies, and they may struggle with capturing complex semantic

relationships in text in comparison to Bert. Despite their efficiency for

certain tasks, BiLSTMs may fall short when faced with more intricate

language patterns.

 Utilizing BERT for text summarization offers substantial benefits,

including a sophisticated understanding of context, improved

comprehension of complex language structures, and exceptional

performance on diverse language tasks that is why they have more

versatility. However, the resource-intensive nature of BERT may pose

challenges in terms of computational requirements and speed.

Additionally, the model's extensive architecture might lead to limitations

Degree thesis Giannis Touloupis

21

in real-time applications in which it is required a real-time quick

response, for example in a chatbox situation.

2.6 Sentiment Analysis with BiLSTM and Bert model and their
differences

 Sentiment Analysis with Bidirectional Long Short-Term Memory has

several advantages, including its ability to capture contextual

information, discern intricate language nuances, and provide accurate

sentiment classification. It excels in handling longer text sequences,

making it suitable for diverse applications. However, BiLSTM's drawbacks

include the need for substantial computational resources, potential

overfitting on smaller datasets, and challenges in interpreting the

model's decision-making process due to its complex architecture.

 On the other hand, Sentiment Analysis with BERT offers unparalleled

contextual understanding, outperforming traditional methods. Its pre-

trained contextual embeddings capture intricate language nuances,

enhancing sentiment interpretation. Additionally, BERT handles varying

sentence lengths effectively. However, BERT's resource-intensive nature

demands substantial computing power, limiting real-time applications.

Its black-box nature poses challenges in model interpretability. Striking a

balance between accuracy and computational efficiency is crucial when

employing BERT.

Degree thesis Giannis Touloupis

22

2.7 Text Classification

 Text classification is a natural language processing task that involves

assigning predefined categories or labels to textual data. Without Text

Classification some of the above NLP techniques could never work owing

to the fact that it employs machine learning algorithms to autonomously

assess and categorize text according to its content.

 On top of that, Text classification is widely used in spam detection,

sentiment analysis on social media, and document categorization. It

brings automation to handle large volumes of text data, boosting

efficiency in areas like customer support, content filtering, and

information retrieval.

 Based on Google developers, the Text Classification Workflow involves

a systematic process to harness the power of machine learning for

efficiently categorizing and analysing textual data :

Step 1: Gather Data

This initiates the process by collecting a diverse dataset representative

of the problem at hand. For text classification, this would include a range

of examples covering different classes or categories.

Step 2: Explore Your Data and choose a Model

Data exploration is crucial to understand patterns, distributions, and

potential challenges within the dataset. Exploratory Data Analysis (EDA)

aids in making informed decisions throughout subsequent steps.

Selecting an appropriate model is a pivotal decision. For text

https://huggingface.co/tasks/text-classification
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/3498123

Degree thesis Giannis Touloupis

23

classification, models like Naive Bayes, Support Vector Machines (SVM),

or deep learning architectures such as recurrent neural networks (RNNs)

and transformers like BERT are common choices.

Step 3: Prepare Your Data

Data preparation involves cleaning, tokenization, and vectorization of

text. It transforms raw text into a format suitable for machine learning

algorithms, converting words into numerical representations.

Step 4: Build, Train, and Evaluate Your Model

This step involves constructing the chosen model, training it on the

prepared dataset, and evaluating its performance using metrics like

accuracy, precision, recall, and F1-score.

Step 5: Tune Hyperparameters

Fine-tuning hyperparameters is crucial for optimizing model

performance. This step involves adjusting settings like learning rates or

regularization parameters to enhance the model's efficacy.

Step 6: Deploy Your Model

Once satisfied with the model's performance, deployment brings it into

practical use. This could involve integration into applications, websites,

or systems to perform real-time text classification tasks.

https://www.altexsoft.com/blog/preparing-your-dataset-for-machine-learning-8-basic-techniques-that-make-your-data-better/
https://towardsdatascience.com/6-ways-to-improve-your-ml-model-accuracy-ec5c9599c436

Degree thesis Giannis Touloupis

24

 In essence, this workflow ensures a structured and iterative approach,

emphasizing the importance of data quality, model selection, and

continuous refinement to achieve robust text classification models. Ιn

the following chapters we will take a look at these step with the help of

BiLSTM and Bert.

Degree thesis Giannis Touloupis

25

Chapter 3

3.1 The importance of a dataset

 The foundation of a successful machine learning applications stands

on a well-prepared collected dataset, so it can ensure that the models

are trained on high-quality data, leading to better performances and

enhanced reliability in real-world scenarios. Dataset types vary

depending on the case, some of the most common are:

Numerical Data:

 Example: Daily temperature recordings in Celsius, ranging from 15 to

30 degrees over a month, capturing variations in weather patterns.

Categorical Data:

 Example: Movie genres (Action, Drama, Comedy) categorizing films

based on their content, aiding in personalized recommendation systems

for viewers.

Text Data:

 Example: Customer reviews for a product, containing textual

sentiments like "great," "average," or "poor," facilitating sentiment

analysis for product feedback.

Degree thesis Giannis Touloupis

26

Image Data:

 Example: Satellite images of urban areas, capturing visual patterns for

land-use classification, assisting in urban planning and resource

allocation. It is important to say that this type is also belonging to

healthcare AI techniques, a very large area in which based on the

patterns of medical images (e.g. X-rays) we can make diagnostics for

patients.

Temporal Data:

 Example: Hourly energy consumption data, recording power usage

fluctuations throughout a day and across seasons, enabling predictive

modeling for energy demand and supply management.

 These types of data are only some of the many and that is due machine

learning continually evolves, introducing new types of datasets based on

emerging technologies and research areas.

3.2 Dataset collection

 Our Dataset has 2 columns, the first one is called “Tweets” which is

consisted of 5860 tweets. Each one is manually categorized on the

second column called “Type” based on its content.

 The 400 first tweets were collected totally manually by experimenting

with Twitters search tools, so we can evolve a general idea around the

content of the tweets, famous hashtags, trending words and social

groups. Afterwords, the twitters API was used to collect around 2000

more tweets by referring to the hashtag that we wanted a tweet to have.

Degree thesis Giannis Touloupis

27

7. Python script to extract tweets based on hashtags.

 Sadly, after the acquisition of Twitter by Elon Musk on April 14, 2022,

and concluded on October 27, 2022, the restricted free use of Twitter

has been stopped. The need for more data leaded to search for covid

related datasets on the internet, all of them are mentioned at the final

chapter.

8. Preparation steps

Degree thesis Giannis Touloupis

28

3.3 Dataset preparation

 In this section we will describe in detail the google colab blocks of code

that was used for the preparation of the dataset for Bert and BiLSTM.

These two models have some common preparation steps but some other

are different because of the different architecture.

 First, we load the csv file which contains the tweets via a google drive

link with the help of pandas library. Pandas is a powerful data

manipulation and analysis library for Python. It provides data structures

like DataFrame for efficient data handling and analysis.

9. Pandas import and dataset load

 At the image below then we shuffle the rows but also keeping the type

of each tweet at the second column. The reason behind this is to ensure

that the training is not biased, especially during the split between

training and testing that we will discuss later on. We are keeping the

columns that we are going to need for the training, only the Tweets and

their Type.

https://books.google.gr/books?hl=el&lr=&id=uAPuDwAAQBAJ&oi=fnd&pg=PP1&dq=data+preparation+for+machine+learning&ots=Cm2Kzg9NqR&sig=dk6XMEKU7kuCXORBKqrmATzNtKw&redir_esc=y#v=onepage&q=data%20preparation%20for%20machine%20learning&f=false

Degree thesis Giannis Touloupis

29

10. Dataset format

 In addition, a function is created which is used to remove any links

from the tweets that could confuse our two models, making them more

complex by thinking that every link is a different word. Also, we are

converting every upper-case letter to a lower case letter, so that a word

like “Deathshot” to be the same and have the same impact like the word

“deathshot”. At the end with the NLTK dataset some English stopwords

are excluded from the Tweets.

Degree thesis Giannis Touloupis

30

11. Cleaning data and checking for null values

3.4 Graphs and Charts

 Moreover, we are gaining some insights into the most frequently used

word within each category (pro-vaccine, anti-vaccine, or neutral) and

visualize them through word clouds and bar charts with the help of

Matplotlib, Counter and WorldCloud libraries.

Degree thesis Giannis Touloupis

31

12. Creating graphs and charts

 The block of code begins by defining a common set of English words to

exclude them from the analysis, so that they will not interfere to the

statistics. Afterwards, it uses the Counter dictionaries to store word

frequencies for each category, the text processing function

“preprocess_text” tokenizes and removes non-alphabetic characters.

Then through the loop the frequency of each word for each category is

Degree thesis Giannis Touloupis

32

being updated so that we can generate a cloud of the most used words

with WordCloud.

 The plot_word_frequencies function is designed to display word

frequencies in a visually appealing manner:

13. Word Frequency for Pro-Vaxx Tweets

14. Word Frequency for Anti-Vaxx Tweets

Degree thesis Giannis Touloupis

33

15. Word Frequency for Neutral Tweets

 Additionally, the script includes a function, plot_word_frequencies_bar

to create bar charts showing the top 10 most common words for each

category:

16. Word Frequency for Pro-Vaxx Tweets with custom chart

Degree thesis Giannis Touloupis

34

17. Word Frequency for Anti-Vaxx Tweets with custom chart

18. Word Frequency for Neutral Tweets with custom chart

 These visualizations are important to understand the content of a

dataset and valuable insights by extracting useful information like

patterns and biased words.

Degree thesis Giannis Touloupis

35

3.5 Dataset preparation for Bert Model

 Till now we are utilizing some cleaning techniques so we can be more

specific and less bewilder for what we want, having as an outcome to get

as much precise results as we can. Nevertheless, the data preparation

does not stop here, it is mandatory to change the form of the dataset

accordingly, so that each model can understand the human language as

we have previously said.

 For the Bert model, we must follow the following conventions:

19. Dataset preparation for the Bert model 1.1

Degree thesis Giannis Touloupis

36

 First of all, the columns “Tweets” and “Type” are moved to two lists

accordingly. Afterwards, torch library is imported which is the core

PyTorch library for tensor computations and deep learning. The

importation of Dataset from torch.utils.data is a data handling module,

it provides the ability to create custom datasets, which in our case it is

going to handle and change data efficiently for the training part of the

model.

 Next, we create a class which defines a custom dataset that inherits

from the Dataset class which is provided from the Pytorch library. Then

with the function “ __init__ “, we initialize and below we assing the

dataset with the provided texts, labels, a tokenizer and the maximum

length for the text encoding.

 The function “__len__” is used to return the text length of all the

tweets. With the “__getitem__” method we process a specific item in a

dataset, it takes an index and retrieves the corresponding text and label.

The text is tokenized using a tokenizer, ensuring a maximum length, and

adding special tokens. The resulting encoding includes input IDs and

attention mask tensors. The method returns a dictionary containing

flattened input IDs and attention mask, along with the label converted

to a PyTorch tensor with a long data type. This facilitates seamless

integration with PyTorch for natural language processing tasks, where

input data needs to be transformed into a format suitable for training

machine learning models.

Degree thesis Giannis Touloupis

37

 In addition, from the Hugging Face Transformers library we are

utilizing the BertTokenizer, it is used for tokenizing and preprocessing

text data for our Bert model, meaning that it will convert our tweets into

numerical tokens that will be inserted into our Bert model. At the next

lines, we use the libraries to load a pre-trained BERT model and its

associated tokenizer.

20. Dataset preparation for the Bert model.1.2

 The BertTokenizer.from_pretrained('bert-base-uncased') initializes

the tokenizer for the 'bert-base-uncased' model, which is trained on

uncased English text. Next, we are creating an instance of the

CustomDataset class, this line initializes the dataset using the following

parameters:

 texts: the collected tweets.

 labels: The corresponding labels for the text data.tokenizer

Degree thesis Giannis Touloupis

38

 max_length=128: A specified maximum length for the input

sequences. This parameter is used for padding or truncating the input

sequences to a consistent length.The CustomDataset class is expected to

handle the loading and preprocessing of the dataset based on these

parameters, making it suitable for training our Bert model.

 Later on, another important class we are importing from the PyTorch

library is Dataloader, it facilitates loading and batching of data during

training and testing. In our case we are setting the batch size at 32 size,

it means that 32 data samples are going to be processed in each iteration

during the training.

 Then we with the “train_size = int(0.85 * len(dataset))”, we indicate

that the size of the training set is 85% of the total dataset length. Right

after, we split the dataset into training and testing randomly to be sure

that both datasets have diversity.

 When all was said and done, the data preparation for the Bert model

ends by creating a dataloader for the training and test by loading their

corresponding datasets to them, the same batch size but enabling the

shuffling the data in each epoch only for the “train_dataloader”.

3.6 Dataset preparation for BiLSTM Model

 Just like Bert model, before the training of the BiLSTM model the data

have to be converted to the right form. In the realm of natural language

processing, the efficacy of deep learning models hinges on the quality of

their training datasets. Crafting an optimal dataset for a Bidirectional

Degree thesis Giannis Touloupis

39

Long Short-Term Memory (BiLSTM) model involves a delicate

orchestration of textual data preprocessing. We will dive into the

thorough steps taken to prepare a robust dataset, encompassing

tokenization, sequence padding, and the integration of pre-trained

GloVe embeddings. Each facet of this process, outlined in the

subsequent chapters, contributes to the foundation upon which the

BiLSTM model will embark on its journey to unravel the intricacies of

language and meaning.

 First of all, we are setting max_words to the total number of texts to

represent the maximum number of words considered during

tokenization.

 Then, just like Bert model we initialize the ‘Tokenizer’, which will be

used to vectorize text. num_words=max_words limits the tokenizer to

consider only the top max_words most frequent words in the dataset.

Afterwards, we create a dictionary of word indices based on word

frequency. It converts each word in the texts into a unique integer index.

At the exact next line, the transformation of text into sequences of

integers is followed, where each integer corresponds to the index of a

word in the tokenizer's dictionary. This makes the text data suitable for

input into machine learning models.

 Later, “max_len” is calculated and defined by the length of the longest

sequence in the sequences list. This value is used to pad all sequences to

the same length for uniform input size in a model. We also define a

variable (‘X’) ,which represents padded data of each sequence to ensure

that they all have the same length, defined by max_len.

 If a sequence is shorter than max_len, it is padded with zeros (or

another specified value) at the beginning or end, If it’s longer, it’s

truncated.

 In another variable (‘y’) we also define the list of our labels into a

Numpy array, so they can be used in our machine learning framework.

Degree thesis Giannis Touloupis

40

 For the crucial step of the dataset splitting, we use the

‘train_test_split’ function, which is imported from scikit-learn, enabling

the convenient division of a dataset into training and testing sets for

machine learning model development. More specifically, X and y are

divided such that 85% of the data goes into the training set (X_train,

y_train) and 15% goes into the testing set (X_test, y_test), as specified by

test_size=0.15. Last but not least we set a random_state to 42, which

ensures reproducibility by seeding the random number generator, so the

split is the same each time the code is run.

21. Dataset preparation for the BiLSTM model,

Degree thesis Giannis Touloupis

41

Chapter 4

4.1 Bert model creation

In the journey toward building a powerful sentiment analysis

model, we now embark on the creation of a BERT model. The data,

meticulously prepared in the earlier phase, lays the foundation for our

BERT model. This transformer-based architecture, pre-trained on vast

corpora, brings unparalleled proficiency in capturing intricate patterns

and nuances of language. As we delve into model construction, the

utilization of fine-tuning on natural language analysis, allows BERT to

adapt and excel in our domain. Our arsenal includes the AdamW

optimizer, a variant of Adam designed for BERT fine-tuning, and the

indispensable learning rate scheduler to optimize training efficiency. We

embrace the flexibility of dropout layers to prevent overfitting,

enhancing the model's generalization capabilities. In this journey, each

line of code becomes a keystroke in orchestrating the symphony of

machine learning. The model evolves through epochs, refining its

comprehension of sentiment nuances with every iteration. As we

navigate this intricate path, the convergence of data preparation and

BERT model creation promises a sentiment analysis model that

transcends boundaries, unlocking the profound subtleties embedded in

language.

https://dl.acm.org/doi/abs/10.1145/3409334.3452074
https://dl.acm.org/doi/abs/10.1145/3409334.3452074

Degree thesis Giannis Touloupis

42

We start by installing to our environment the transformers, the pip

install transformers command is crucial for training BERT (Bidirectional

Encoder Representations from Transformers) models as it installs the

"transformers" library, a key dependency for working with transformer-

based models like BERT. This library provides pre-trained transformer

models, including BERT, and enables efficient implementation, fine-

tuning, and utilization of these models for various natural language

processing tasks. By installing this package, users gain access to a wealth

of pre-trained models, tokenizers, and utilities, streamlining the

development and training of BERT-based models for our corresponding

task.

22. Installation of transformers,

4.2 Bert model initializations

 Then we are importing the required functions for the operation of the

training. Firstly we import from the transformers library the

“BertForSequenceClassification”, which is a fine-tuned pre-trained Bert

model for sequence classification tasks and then the

“get_linear_schedule_with_warmup” function, it’s purpose is to

schedule the learning rate during training, crucial for fine-tuning pre-

https://onlinelibrary.wiley.com/doi/full/10.1155/2022/3498123

Degree thesis Giannis Touloupis

43

trained models like BERT, ensuring effective optimization.

 Afterwards, we import “optim” from torch library which provides

optimization algorithms, AdamW, a variant of Adam with weight decay,

suitable for BERT fine-tuning. From the same library we continue by

importing the “Dropout” function, responsible for the regularization of

our model, by randomly setting a fraction of input units to zero during

training, preventing overfitting.

23. Function importation for Bert model

 Next, from “sklearn” library we import three functions. The first is the

“train_test_split”, which splits data into training and testing sets,

facilitating model evaluation on unseen data for robustness assessment.

Then, from “sklearn.metrics” we import the “accuracy_score” function

which calculates the accuracy of model predictions, comparing them to

true labels and the “confusion_matrix” function, which constructs a

confusion matrix to evaluate the performance of a classification

algorithm by visualizing true positives.

 At the end, we import the “tqdm” for visual needs, which provides a

progress bar during the training. The last is the “csv” function, which

allows us to handle csv files during training.

Degree thesis Giannis Touloupis

44

 The building of the model is starting by initializing the model with

BertForSequenceClassification.from_pretrained ('bert-base-uncased',

num_labels=3) loads the BERT model for sequence classification with

three output labels. These pre-trained components facilitate efficient

natural language processing tasks, with the model specifically configured

for multi-class classification tasks with three possible labels. Additionally,

we set the model to use a GPU ('cuda') if available, otherwise, it uses the

CPU .

24. Initializations for the Bert model.

 After the initialization we added a freezing method for the embedding

layers, the reason behind that is to prevent the parameters of the Bert

model from being updated during fine tuning, as the often contain rich

pretrained contextual information.

 The next very important initialization is the implementation of the

AdamW optimizer for updating the model parameters during training,

with a learning rate of 2e-5. Specifically, AdamW is an optimization

Degree thesis Giannis Touloupis

45

algorithm derived from Adam, designed to improve weight decay

handling in neural network training. Introduced by Loshchilov and Hutter

in 2017, AdamW decouples weight decay from the optimization step,

mitigating its negative impact on adaptive learning rates. This

modification enhances training stability and performance. For more

details, you can refer to the original paper titled "Fixing Weight Decay

Regularization in Adam" by I. Loshchilov and F. Hutter.

 Furthermore, the number of epochs we are going to use are set to 7,

that declares number of times the model will be trained on the entire

training dataset. Also, we superinduce a learning rate scheduler which

adjusts the learning rate during training to optimize convergence. Its

purpose is to dynamically adapt the learning rate based on the model's

performance, enhancing training stability, speeding up convergence in

the initial phases, and ensuring accurate parameter updates as training

progresses.

4.2 Bert model training

 After the above initializations, now it is the time to implement them in

the iteration of the training part. We begin by declaring three variables,

the “best_loss” which Initializes the best loss to positive infinity for

comparison during early stopping, the “patience” which determines the

number of epochs to wait for accuracy improvement before stopping

and the “counter” which is the one which calculates the unimproved

iterated epochs.

https://arxiv.org/pdf/1711.05101v2/1000.pdf
https://arxiv.org/pdf/1711.05101v2/1000.pdf

Degree thesis Giannis Touloupis

46

 First of all, we create a loop based on the number of declared epochs

and we start by setting the model to training mode with “model.train()

and our counters for training metrics. Then we create a batch loop which

iterates through batches in the training data and displays a progress bar.

Inside the loop we begin by transferring the data of each batch to the

device.

25. Building of the Bert model 1.1

Degree thesis Giannis Touloupis

47

• batch['input_ids']:

 Refers to a sequence of numerical tokens representing a batch

of input text data. In natural language processing, these input IDs

are often indices corresponding to words in a vocabulary. These

tokenized input IDs serve as the model's input, enabling it to

process and learn patterns within the text data.

• batch['attention_mask']:

 An attention mask in the context of neural networks, particularly

in natural language processing tasks, is a binary matrix indicating

which tokens in a sequence should be attended to and which

should be ignored. It helps our model to focus on relevant parts of

input sequences during processing. In the Transformer

architecture, attention masks are used to prevent attending to

padding tokens, ensuring that the model considers only actual

tokens for information processing, allowing for more effective and

efficient learning of contextual relationships in the input data.

• batch['label'] :

 Represents the ground truth labels associated with a batch of

input data in supervised learning tasks. In our natural language

processing, are numerical indices indicating the correct category

for each corresponding input sample (0 , 1 or 3). During training,

the model compares its predictions to these labels, and the

discrepancy guides parameter updates through backpropagation.

Accurate labels are essential for the model to learn and generalize

effectively, enabling it to make meaningful predictions on unseen

data.

Degree thesis Giannis Touloupis

48

• optimizer.zero_grad():

 Before computing the gradients for the model parameters, this

line clears any previously accumulated gradients.

• outputs = model(input_ids, attention_mask=attention_mask,

labels=labels):

 This line of code signifies a crucial step in the training process of

a BERT-based model for sequence classification. This line conducts

a forward pass through the neural network, where the model

processes input sequences and generates predictions. Additionally,

‘outputs’ variable capture and enfold the results of the forward

pass, including the computed loss and raw logits. These logits

represent the unnormalized scores assigned to each class, serving

as the basis for subsequent steps such as backpropagation and

parameter updates during the training iteration. In a few words, it

transforms input sequences into meaningful predictions while

facilitating the optimization process through the computation of a

training loss.

• loss = outputs.loss:

 Extracts the loss from the model's output. For sequence

classification tasks, the model's output includes a loss attribute,

representing the difference between the predicted logits and the

true labels. This loss is a measure of how well the model is

performing on the given batch.

Degree thesis Giannis Touloupis

49

• logits = outputs.logits:

 Retrieves the raw logits from the model's output. Logits are the

unnormalized predictions before applying a softmax function. They

represent the model's confidence scores for each class. These logits

can later be used to compute probabilities or make predictions

based on a chosen threshold.

• loss.backward():

 This line computes the gradients of the model's parameters with

respect to the training loss. These gradients represent the direction

and magnitude of the steepest ascent in the loss landscape. They

quantify how much each parameter contributed to the error,

providing crucial information for adjusting the model's weights.

• optimizer.step(): After computing the gradients, this line updates

the model's parameters using the optimization algorithm (AdamW,

in this case). The optimizer adjusts the weights to minimize the loss,

employing the computed gradients and the learning rate. This step

is essential for iteratively improving the model's performance.

• scheduler.step():

 Inside the loop it adjusts the learning rate for each optimization

step. The learning rate scheduler (scheduler) adjusts the learning

rate during training. Here, it's utilizing a linear schedule with warm-

up. It ensures a gradual increase in the learning rate during the

initial training steps, followed by a linear decay. Dynamic learning

Degree thesis Giannis Touloupis

50

rate adjustments contribute to stable and efficient model

convergence.

• total_loss += loss.item():

 This line accumulates the current batch's loss to the running total

loss. It is a running sum that represents the cumulative training loss

over all batches processed during the current epoch. This value is

later used to calculate the average loss for the epoch.

• _, predicted_labels = torch.max(logits, 1):

 The torch.max(logits, 1) operation is used to predict the class

labels for each input sequence in the batch. The model's raw logits,

representing class scores, are passed through a softmax function

internally, and torch.max returns the predicted class indices. The

variable predicted_labels holds these predicted class labels.

• correct_predictions += (predicted_labels == labels).sum().item():

 This line calculates the number of correct predictions within the

batch. It compares the predicted labels (predicted_labels) with the

true labels (labels) and sums up the cases where they match. The

resulting count is added to the running total of correct predictions.

Degree thesis Giannis Touloupis

51

• total_predictions += labels.size(0):

 The variable total_predictions keeps track of the total number of

predictions made during the current epoch. It increments by the

batch size (labels.size(0)) on each iteration, representing the

cumulative count of predictions made across all batches in the

epoch.

 After the batch loop we calculate and print the progress of our

training in every epoch.

• accuracy = correct_predictions / total_predictions:

 This line calculates the accuracy for the current epoch. The

correct_predictions variable holds the total number of correctly

predicted instances, and total_predictions represents the total

number of predictions made by the model during the epoch.

Dividing the number of correct predictions by the total predictions

yields accuracy, indicating the proportion of correctly classified

instances.

• average_loss = total_loss / len(train_dataloader):

 Computes the average training loss for the epoch. The total_loss

variable accumulates the sum of losses across all batches during

the epoch, and dividing this sum by the total number of batches

(len(train_dataloader)) provides the average loss. This metric helps

Degree thesis Giannis Touloupis

52

assess the overall performance of the model on the training data,

providing insights into its ability to minimize the error across

different batches.

• scheduler.step():

after the loop allows for a final adjustment of the learning rate at

the end of each epoch. This step ensures that the learning rate is

appropriately updated for the next epoch.

 At the end of each epoch iteration in this early stopping check we

monitor the trend of the average training loss. If the loss does not

improve for a certain number of consecutive epochs (determined by the

patience parameter), the training loop is terminated to prevent

overfitting and save computation resources.

26. Bert’s training early stopping

Degree thesis Giannis Touloupis

53

4.3 Bert model testing evaluation

 To begin with, in PyTorch, model.eval() is employed during evaluation

to set the model in a state that deactivates training-specific operations

like dropout and batch normalization. This ensures consistent inference

results by maintaining fixed parameters. During evaluation, gradients are

unnecessary, and these operations can introduce randomness.

27. Bert’s training

Degree thesis Giannis Touloupis

54

By invoking model.eval(), the model behaves deterministically,

guaranteeing reproducibility and preventing overfitting to the training

set. This is essential for reliable assessments of a model's performance

on unseen data, such as when calculating accuracy and loss during

testing, as it avoids discrepancies introduced by training-specific

mechanisms and contributes to robust model evaluation. Moreover,

“all_labels “and “all_predictions” are Lists to store true labels and

predicted labels for later use in the confusion matrix.

 Next, we create our evaluation loop, generally this loop follows the

training loop logic, so we are going to describe mostly it’s differences.

torch.no_grad(): This function initializes the loop which Inside this

block, PyTorch disables gradient computation. This is done to save

memory and processing power since during evaluation, you don't

need to calculate gradients for backpropagation. It speeds up the

inference process and reduces memory consumption. we initialize it

with the “with torch.no_grad()”, inside this block, PyTorch disables

gradient computation. This is done to save memory and processing

power since during evaluation, you don't need to calculate gradients

for backpropagation. It speeds up the inference process and reduces

memory consumption.

for batch in test_dataloader: Just like the train batch loop, the test batch

loop it Iterates through batches in the test dataloader. The test

dataloader provides batches of data for evaluating the model on unseen

examples. The only difference inside this loop is the “model.to(device)”

line, which ensures the model and data are on the same device (CPU or

GPU). This is necessary for proper computation, and it's especially

important when using GPUs for acceleration.

Degree thesis Giannis Touloupis

55

 Later on, we print the testing and average loss from the evaluation

loop, we call model.eval() again to ensure that the model is in evaluation

mode after the evaluation loop .

 In summary, this evaluation loop is designed to rigorously assess the

performance of the BERT model on the test data. It calculates accuracy

and loss, crucial metrics for evaluating the model's effectiveness in

making predictions on unseen examples. The model.eval() and

torch.no_grad() ensure that the evaluation process is consistent,

efficient, and does not interfere with the model's parameters or memory

usage.

 At the end we save the checkpoint of the epoch with the best accuracy

in a dictionary which contains the entire state of the model, It includes

all the learnable parameters and their current values.

28. Bert’s results

Degree thesis Giannis Touloupis

56

Chapter 5

5.1 BiLSTM model creation.

 After analyzing the Bert model, now it is time for the BiLSTM model.

In natural language processing and text classification tasks, Bidirectional

Long Short-Term Memory (BiLSTM) networks have proven to be highly

effective. By incorporating information from both past and future states

of a sequence, BiLSTMs excel at capturing contextual dependencies in

text data. To create a BiLSTM model, we leverage libraries such as

TensorFlow and Keras. Using the Tokenizer and pad_sequences

functions from TensorFlow, we preprocess the text data, converting it

into sequences of numerical tokens and ensuring uniform length.

 With the Sequential model from Keras, we define our neural network

architecture layer by layer, including an Embedding layer to generate

word embeddings, Bidirectional LSTM layers for sequence processing,

and a Dense layer for classification. Finally, we compile the model with

an optimizer like Adam and train it on labeled data, achieving high

accuracy in classifying text into predefined categories.

https://towardsdatascience.com/sentence-classification-using-bi-lstm-b74151ffa565

Degree thesis Giannis Touloupis

57

5.2 BiLSTM model initializations.

More specifically, we start by importing the libraries that we are going to

use:

• Sequential: Sequential model for linear stack of layers, used for

building deep learning models layer by layer.

• load_model: Loads a saved Keras model from a file for further use

or evaluation.

• Embedding: Converts integer indices to dense vectors of fixed size,

representing word embeddings.

• Bidirectional: Wrapper for creating bidirectional recurrent neural

networks, which process input sequences in both forward and

backward directions.

• LSTM: Long Short-Term Memory layer, a type of recurrent neural

network layer capable of learning long-term dependencies in

sequential data.

• Dense: Fully connected layer where each neuron is connected to

every neuron in the previous and next layers.

evaluation and validation.

• ModelCheckpoint: Saves the model weights during training at

specified checkpoints.

• EarlyStopping: Stops training when a monitored metric stops

improving.

Degree thesis Giannis Touloupis

58

• LearningRateScheduler: Adjusts learning rate dynamically during

training.

29. BiLstm Libraries

5.3 AdaDelta Optimizer.

 AdaDelta is a popular adaptive learning rate optimization algorithm

designed for training neural networks. It was introduced by Matthew D.

Zeiler in 2012 with a paper name << ADADELTA: AN ADAPTIVE

LEARNING RATE METHOD >> , as an extension of the Adagrad algorithm.

AdadDelta addresses some of the limitations of Adagrad, particularly its

monotonically decreasing learning rate.

 Unlike traditional optimization algorithms that use a fixed learning rate

for all parameters, AdadDelta adapts the learning rate for each

parameter in the model based on the magnitude of recent gradients. This

adaptivity allows AdadDelta to perform well across a wide range of tasks

and architectures without requiring manual tuning of the learning rate.

https://towardsdatascience.com/how-to-decide-on-learning-rate-6b6996510c98
https://www.researchgate.net/figure/Results-of-five-optimizers-applied-to-Bi-LSTM-CRF_tbl3_344375190
https://arxiv.org/pdf/1212.5701
https://arxiv.org/pdf/1212.5701
https://deepdatascience.wordpress.com/2016/11/18/which-lstm-optimizer-to-use/

Degree thesis Giannis Touloupis

59

 One of the key features of AdadDelta is its ability to maintain a moving

average of parameter updates and gradients, which are used to compute

the learning rate adjustments. By incorporating this historical

information, AdadDelta can adaptively adjust the learning rates to

different scales of parameters and gradients, making it robust to noisy

gradients and sparse data.

 AdadDelta also introduces the concept of an "adapting window" or

"running average" of gradients and parameter updates. This window

controls the memory of past gradients and updates, allowing AdadDelta

to adaptively adjust the learning rates over time and handle non-

stationary optimization problems effectively.

 Another important aspect of AdadDelta is its computational efficiency.

Unlike Adagrad, which requires storing the entire history of gradients,

AdadDelta only stores a fixed-size window of past gradients and updates.

This makes AdadDelta more memory-efficient and suitable for training

large-scale neural networks.

 Moreover, AdadDelta addresses the issue of the monotonically

decreasing learning rate in Adagrad by using a moving average of

squared parameter updates in the denominator of the learning rate

computation. This helps stabilize the learning process and prevents the

learning rate from becoming too small, which can hinder convergence.

 Overall, AdadDelta is a powerful optimization algorithm for training

neural networks, offering adaptive learning rates, robustness to noisy

Degree thesis Giannis Touloupis

60

gradients, computational efficiency, and stability during training. Its

simplicity and effectiveness make it a popular choice.

5.4 The key differences between AdaDelta and AdamW.

1. Update Rule:

AdaDelta: uses the root mean square (RMS) of parameter updates scaled

by the root mean square of recent gradients to adapt the learning rate.

AdamW: (Weight Decay with Adam) is a variant of Adam that

incorporates weight decay directly into the update step, making it

compatible with modern weight decay techniques.

2. Parameter Update:

AdaDelta: uses only the gradient information to update the parameters.

AdamW: incorporates both gradient information and weight decay

directly into the parameter update step.

3. Adaptivity:

AdaDelta: adapts the learning rate independently for each parameter

based on the history of gradients for that parameter.

AdamW: uses adaptive learning rates for each parameter, but also

incorporates the effect of weight decay regularization into the

parameter update, which can improve generalization.

Degree thesis Giannis Touloupis

61

4. Learning Rate Adjustment:

AdaDelta: dynamically adjusts the learning rates for each parameter

based on the moving average of previous gradients and updates.

AdamW: adjusts the learning rates for each parameter based on the

estimation of first and second moments of gradients, but it also

incorporates weight decay directly into the update, which helps in

stabilizing the training process.

5. Implementation:

AdaDelta: typically requires fewer hyperparameters to tune compared

to AdamW.

AdamW: requires tuning of hyperparameters such as learning rate,

beta1, beta2, and weight decay parameter.

6. Memory Usage:

AdaDelta: maintains a history of gradients and parameter updates for

each parameter, which can consume memory.

AdamW: also maintains a history of gradients and parameter updates,

but the incorporation of weight decay might influence memory usage

differently compared to AdaDelta.

 In summary, while both AdaDelta and AdamW are adaptive

optimization algorithms for training neural networks, AdamW is

specifically designed to incorporate weight decay regularization directly

into the update step, potentially leading to better generalization and

stability during training, especially in the presence of large learning rates.

Degree thesis Giannis Touloupis

62

However, the choice between them often depends on factors like the

specific problem, available computational resources, and empirical

performance on the task at hand.

5.5 BiLstm architecture.

 In the case of the creation of BiLstm model, it includes buidling the

architecture of it, by defining the density of the neural network to 3

dense layers of 64 density, until the final layer of the 3 outputs. Later we

set the optimizer that we are going to use followed by the compiling of

the model for our multi-class classification. Let’s take a deeper dive by

explaining the preparation of the training process in more detail.

https://www.researchgate.net/publication/328333982_A_Deep_Recurrent_Neural_Network_with_BiLSTM_model_for_Sentiment_Classification

Degree thesis Giannis Touloupis

63

30. BiLstm Architecture

1. model = Sequential

 This line initializes a Sequential model, which allows for the linear

stacking of layers. The Sequential model is simple and straightforward,

ideal for building plain stacks of layers where each layer has exactly one

input tensor and one output tensor.

Degree thesis Giannis Touloupis

64

2. Embedding(input_dim=max_words,output_dim=128,

input_length=max_len),

 The Embedding layer turns positive integers (indexes) into dense

vectors of fixed size. It is commonly used as the first layer in a model to

handle text data by converting words into vectors.

3. Bidirectional(LSTM(64, return_sequences=False)),

 This wrapper allows the LSTM layer to process the input sequence in

both forward and backward directions, capturing dependencies from

both past and future contexts. LSTM(64): This specifies a Long Short-

Term Memory (LSTM) layer with 64 units (neurons).

 When return_sequences=False, the LSTM layer will return only the

output of the last time step. This means that the layer outputs a single

vector for each input sequence, which is typically the final hidden state

of the LSTM after processing the entire sequence. This setting is used

when the subsequent layers (such as dense layers) require a fixed-size

input, rather than a sequence of outputs from each time step.

4. Dense(64, activation='relu'),

 This Dense layer has 64 units and uses the ReLU activation function.

The ReLU activation introduces non-linearity, which helps the network

to learn complex patterns by adding the capacity to the model.

Degree thesis Giannis Touloupis

65

5. Dropout(0.2),

 Dropout is a regularization technique where a fraction (0.2 or 20% in

this case) of the input units are randomly set to 0 at each update during

training time, which helps prevent overfitting.

6. Dense(3, activation='softmax')

 The final Dense layer with 3 units and softmax activation function. The

softmax function outputs a probability distribution over 3 classes,

making it suitable for multi-class classification tasks.

7. optimizer = Adadelta()

 As we have already said on the previous detailed of the AdaDelta

optimizer. AdaDelta is an optimization algorithm that adapts learning

rates based on a moving window of gradient updates, making it robust

and well-suited for problems with sparse gradients or noisy data,

making it most suitable on our case in which we have a small amount

of data.

8. model.compile(optimizer=optimizer,

loss='sparse_categorical_crossentropy', metrics=['accuracy'])

 This line compiles the model with the Adadelta optimizer, using

sparse categorical crossentropy as the loss function, which is

Degree thesis Giannis Touloupis

66

appropriate for integer-labeled multi-class classification tasks. The

accuracy metric is used to evaluate the model’s performance.

9. model_checkpoint_callback = ModelCheckpoint(

 ModelCheckpoint is a callback function that saves the model after

every epoch. This callback is useful to ensure that the best performing

model on the validation set is saved during training.

10. early_stopping_callback = EarlyStopping(

 Also an EarlyStopping function is used so the training it can be

stopped automatically when a monitored metric ('val_loss') has

stopped improving. This is useful to prevent overfitting and to save

training time by stopping early if the model performance is getting

worse, in our training if the performance is not improved after 8

epochs the training stops .

11. def lr_schedule(epoch):

 Defines a function to adjust the learning rate based on the epoch

number. This custom learning rate scheduler helps improve our model

convergence by reducing the learning rate as training progresses. In

our learning rate scheduler we define an initial leaning rate to 1.0 and

after training on 2 epochs we starting reducing the leaning rate by 0.1

in every epoch.

Degree thesis Giannis Touloupis

67

12. lr_scheduler = LearningRateScheduler(lr_schedule):

 Initializes the LearningRateScheduler callback with the defined

learning rate schedule function. This callback dynamically adjusts the

learning rate according to the schedule during training.

5.6 BiLstm training.

 For the training procedure, we set the number of epochs to be 20

and our batch size to be 6, a small but a good option for our small

dataset. In addition, we set the validation split to 0.1, that means that

an amount of 10% is going to be kept from the training data for

validation purposes. Furthermore, at the end of the model.fit

function, we also call our callbacks which we mentioned previously.

31. BiLstm Training

 After the training we evaluate our model on the test data and then we

save the best training step of our training procedure. The results of the

training can be seen below.

Degree thesis Giannis Touloupis

68

32. BiLstm Training Results

 We also used some random data that are not included in our dataset

to check out the predictions of our model:

33. Creation of dummy data

Degree thesis Giannis Touloupis

69

34. Prediction results on the dummy data

Degree thesis Giannis Touloupis

70

Chapter 6

6.1 Conclusions.

 This thesis covered in detail the topic of text classification using a BERT

and a BiLSTM model to classify tweets related to COVID-19. First, we

provided a general description of the technologies and techniques used

in neural network models. Next, we detailed the code used, starting with

data preparation for the two models and outlining the differences and

similarities between BERT and BiLSTM.

 We also created graphs to represent the data statistics, allowing us to

observe the state and content of the data. Subsequently, we analyzed

the libraries, optimizers, and other techniques employed. Additionally,

almost every line of the models was explained, including the rationale

for their use, and compared to the other model.

6.2 Improvements and Future work.
 First of all, it is widely known that COVID-19 was a very delicate

situation, and so were the opinions that everyone developed. Alongside

this, scientific discoveries and laws kept changing and still do, making it

difficult in some cases to classify an opinion with just a number from 0 to

1.

 With this in mind, the specific dataset can be improved and maintained

in the future. Also, if the Twitter (X) API remains accessible and free, it

will be extremely beneficial for the improvement of the dataset by

adding more training data, making it more precise and covering more

COVID-19 topics. With that said, some changes and tuning could be done

again if the dataset is changed.

Degree thesis Giannis Touloupis

71

6.3 Bibliography.

1. https://huggingface.co/tasks/text-classification

2. https://builtin.com/data-science/recurrent-neural-networks-and-lstm

3. https://thinkingneuron.com/sentiment-analysis-of-tweets-using-

bert/#DistilBERT

4. http://arxiv.org/pdf/1711.05101v2/1000

5. https://github.com/AminHasibul/ConspiracyAgaintstCovidVaccines/tree/main

6. https://www.altexsoft.com/blog/preparing-your-dataset-for-machine-

learning-8-basic-techniques-that-make-your-data-better/

7. https://www.analyticsvidhya.com/blog/2021/12/fine-tune-bert-model-for-

sentiment-analysis-in-google-colab/

8. ADADELTA: AN ADAPTIVE LEARNING RATE METHOD

9. Attention Is All You Need

10. https://towardsdatascience.com/sentence-classification-using-bi-lstm-

b74151ffa565

11. https://www.researchgate.net/figure/Results-of-five-optimizers-applied-to-

Bi-LSTM-CRF_tbl3_344375190

12. https://www.researchgate.net/publication/328333982_A_Deep_Recurrent_N

eural_Network_with_BiLSTM_model_for_Sentiment_Classification

13. https://deepdatascience.wordpress.com/2016/11/18/which-lstm-optimizer-

to-use/

14. https://towardsdatascience.com/6-ways-to-improve-your-ml-model-accuracy-

ec5c9599c436

15. https://towardsdatascience.com/how-to-decide-on-learning-rate-

6b6996510c98

16. https://www.sciencedirect.com/science/article/pii/S0957417422017353

17. https://www.nature.com/articles/s41598-022-21604-7

18. https://content.iospress.com/articles/intelligent-decision-

technologies/idt210058

19. https://onlinelibrary.wiley.com/doi/full/10.1155/2021/4321131

20. https://ojs.bonviewpress.com/index.php/JCCE/article/view/838

21. https://arxiv.org/abs/2103.11943

22. https://www.nature.com/articles/s41598-022-21604-7

https://huggingface.co/tasks/text-classification
https://builtin.com/data-science/recurrent-neural-networks-and-lstm
https://thinkingneuron.com/sentiment-analysis-of-tweets-using-bert/#DistilBERT
https://thinkingneuron.com/sentiment-analysis-of-tweets-using-bert/#DistilBERT
http://arxiv.org/pdf/1711.05101v2/1000
https://github.com/AminHasibul/ConspiracyAgaintstCovidVaccines/tree/main
https://www.altexsoft.com/blog/preparing-your-dataset-for-machine-learning-8-basic-techniques-that-make-your-data-better/
https://www.altexsoft.com/blog/preparing-your-dataset-for-machine-learning-8-basic-techniques-that-make-your-data-better/
https://www.analyticsvidhya.com/blog/2021/12/fine-tune-bert-model-for-sentiment-analysis-in-google-colab/
https://www.analyticsvidhya.com/blog/2021/12/fine-tune-bert-model-for-sentiment-analysis-in-google-colab/
https://arxiv.org/pdf/1212.5701
https://arxiv.org/pdf/1706.03762
https://towardsdatascience.com/sentence-classification-using-bi-lstm-b74151ffa565
https://towardsdatascience.com/sentence-classification-using-bi-lstm-b74151ffa565
https://www.researchgate.net/figure/Results-of-five-optimizers-applied-to-Bi-LSTM-CRF_tbl3_344375190
https://www.researchgate.net/figure/Results-of-five-optimizers-applied-to-Bi-LSTM-CRF_tbl3_344375190
https://www.researchgate.net/publication/328333982_A_Deep_Recurrent_Neural_Network_with_BiLSTM_model_for_Sentiment_Classification
https://www.researchgate.net/publication/328333982_A_Deep_Recurrent_Neural_Network_with_BiLSTM_model_for_Sentiment_Classification
https://deepdatascience.wordpress.com/2016/11/18/which-lstm-optimizer-to-use/
https://deepdatascience.wordpress.com/2016/11/18/which-lstm-optimizer-to-use/
https://towardsdatascience.com/6-ways-to-improve-your-ml-model-accuracy-ec5c9599c436
https://towardsdatascience.com/6-ways-to-improve-your-ml-model-accuracy-ec5c9599c436
https://towardsdatascience.com/how-to-decide-on-learning-rate-6b6996510c98
https://towardsdatascience.com/how-to-decide-on-learning-rate-6b6996510c98
https://www.sciencedirect.com/science/article/pii/S0957417422017353
https://www.nature.com/articles/s41598-022-21604-7
https://content.iospress.com/articles/intelligent-decision-technologies/idt210058
https://content.iospress.com/articles/intelligent-decision-technologies/idt210058
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/4321131
https://ojs.bonviewpress.com/index.php/JCCE/article/view/838
https://arxiv.org/abs/2103.11943
https://www.nature.com/articles/s41598-022-21604-7

Degree thesis Giannis Touloupis

72

23. https://dl.acm.org/doi/abs/10.1145/3409334.3452074

24. https://onlinelibrary.wiley.com/doi/full/10.1155/2022/3498123

25. https://books.google.gr/books?hl=el&lr=&id=uAPuDwAAQBAJ&oi=fnd&pg=PP

1&dq=data+preparation+for+machine+learning&ots=Cm2Kzg9NqR&sig=dk6X

MEKU7kuCXORBKqrmATzNtKw&redir_esc=y#v=onepage&q=data%20preparati

on%20for%20machine%20learning&f=false

https://dl.acm.org/doi/abs/10.1145/3409334.3452074
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/3498123
https://books.google.gr/books?hl=el&lr=&id=uAPuDwAAQBAJ&oi=fnd&pg=PP1&dq=data+preparation+for+machine+learning&ots=Cm2Kzg9NqR&sig=dk6XMEKU7kuCXORBKqrmATzNtKw&redir_esc=y%23v=onepage&q=data%20preparation%20for%20machine%20learning&f=false
https://books.google.gr/books?hl=el&lr=&id=uAPuDwAAQBAJ&oi=fnd&pg=PP1&dq=data+preparation+for+machine+learning&ots=Cm2Kzg9NqR&sig=dk6XMEKU7kuCXORBKqrmATzNtKw&redir_esc=y%23v=onepage&q=data%20preparation%20for%20machine%20learning&f=false
https://books.google.gr/books?hl=el&lr=&id=uAPuDwAAQBAJ&oi=fnd&pg=PP1&dq=data+preparation+for+machine+learning&ots=Cm2Kzg9NqR&sig=dk6XMEKU7kuCXORBKqrmATzNtKw&redir_esc=y%23v=onepage&q=data%20preparation%20for%20machine%20learning&f=false
https://books.google.gr/books?hl=el&lr=&id=uAPuDwAAQBAJ&oi=fnd&pg=PP1&dq=data+preparation+for+machine+learning&ots=Cm2Kzg9NqR&sig=dk6XMEKU7kuCXORBKqrmATzNtKw&redir_esc=y%23v=onepage&q=data%20preparation%20for%20machine%20learning&f=false

