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Summary 

  This thesis refers to the architecture of deep learning models . This is 

accomplished by using the deep learning models to classify tweets 

related to Covid-19 to three different categories. The first category as 

tweets which are in favor of vaccination, agree and implement methods 

of protection against the virus. The second category as tweets which are 

against the vaccination and promote conspiracy theories. The third 

category as tweets which they have a neutral stance.  

  Specifically, to solve the problem above they have been collected a 

number of tweets so we can train the two deep learning models we are 

using, a Bidirectional  LSTM and a Bert model. These models are going to 

be analyzed and explained through every step and at the same time we 

will emphasize some differences between those two models. 

 To train these models we have firstly to collect those tweets and 

categorize them, also during this step we had to find another collection 

method due to twitter policy changes. In addition, we will present the 

preparation of those tweets so that the models can accept them and use 

them to train as best as possible. 

The whole preparation and the process is described in detail later on and 

the results and any observations of the models at the end. 

 

Key words: AI ,machine learning model ,BiLSTM, Bert, transformers, 

tweets, dataset, covid, vaccine, Optimizers, data, training 
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Περίληψη 

 Αυτή η διπλωματική εργασία αναφέρεται στην αρχιτεκτονική των 

μοντέλων βαθιάς μάθησης. Αυτό επιτυγχάνεται με τη χρήση μοντέλων 

βαθιάς μάθησης για την ταξινόμηση των tweets που σχετίζονται με τον 

Covid-19 σε τρεις διαφορετικές κατηγορίες. Η πρώτη κατηγορία αφορά 

tweets που είναι υπέρ του εμβολιασμού, συμφωνούν και εφαρμόζουν 

μεθόδους προστασίας κατά του ιού. Η δεύτερη κατηγορία αφορά 

tweets που είναι κατά του εμβολιασμού και προωθούν θεωρίες 

συνωμοσίας. Η τρίτη κατηγορία αφορά tweets που έχουν ουδέτερη 

στάση. 

Συγκεκριμένα, για την επίλυση του παραπάνω προβλήματος, 

συλλέχθηκε ένας αριθμός tweets ώστε να εκπαιδεύσουμε τα δύο 

μοντέλα βαθιάς μάθησης που χρησιμοποιούμε, ένα Δικτυακό Μοντέλο 

Bidirectional LSTM και ένα μοντέλο Bert. Αυτά τα μοντέλα θα 

αναλυθούν και θα εξηγηθούν βήμα-βήμα, και ταυτόχρονα θα δοθεί 

έμφαση σε κάποιες διαφορές μεταξύ τους. 

Για να εκπαιδεύσουμε αυτά τα μοντέλα, έπρεπε πρώτα να συλλέξουμε 

και να κατηγοριοποιήσουμε τα tweets. Κατά τη διάρκεια αυτού του 

βήματος χρειάστηκε να βρούμε μια νέα μέθοδο συλλογής λόγω 

αλλαγών στην πολιτική του Twitter. Επιπλέον, θα παρουσιάσουμε την 

προετοιμασία αυτών των tweets ώστε τα μοντέλα να μπορούν να τα 

δεχθούν και να τα χρησιμοποιήσουν για εκπαίδευση με τον καλύτερο 

δυνατό τρόπο. 

Η όλη προετοιμασία και η διαδικασία περιγράφονται λεπτομερώς 

παρακάτω, ενώ στο τέλος παρουσιάζονται τα αποτελέσματα και οι 

παρατηρήσεις σχετικά με τα μοντέλα. 

 

Λέξεις-κλειδιά: AI , machine learning model,BiLSTM, Bert, transformers, 

tweets, dataset, covid, vaccine, Optimizers, data, training, model 
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Chapter 1 
 

1.1  Introduction to artificial intelligence 
 

      Our brain from the first stages of its development at a very young age 

begins to learn about the results something has on the environment and 

the environment on us. For example, even what we see with our optical 

system is a prediction of what we are looking to and it is not always 

precise. The precision of our predictions is increasing by having more 

examples in our life from stimuli we receive. 

   Neural networks work the same way, by receiving a set of data on 

which it is trained to perform some functions and predictions. 

Specifically, in most cases AI has the advantage to make predictions 

much faster than the human brain and sometimes even providing 

observations that may not have been apparent to the human brain.  

   Also, Artificial intelligence has the ability to be utilized under difficult 

and dangerous conditions to jobs like mining, deep-sea and space 

exploration, military and rescue operations and many more. In addition, 

AI is also used for repetitive and exhausting tasks in many fields. For 

example, if a company has to deal daily with an enormous volume of data 

it is much more convenient to use a neural network which can work 

faster, continuously and with better precision. Some of these tasks are 

financial and scientific analysis, marketing research, environmental 

monitoring, fraud detection, supply chain management and many more. 

   So far, we have analysed the term AI and its applications but that is just 

the surface. A subcategory of AI is Machine learning which is also divided 

into four main types based on the learning style and the nature of data 

it has to process. 
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A) Supervised Learning  
 

   It is the most commonly used types of machine learning. In 

supervised learning, the algorithm is trained on a labelled dataset, 

where input data is paired with corresponding output labels, then 

the algorithm learns a mapping from inputs to outputs based on 

the provided labelled examples. 

 

 

 
 

Supervised learning schema 
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B) Unsupervised Learning: 

 
In contrast to supervised learning, Unsupervised involves training 

on unlabelled data and the goal is to find patterns or structures. 

within the data and without explicit output labels

 
 

2. Unsupervised learning schema 
 

C) Reinforcement Learning: 

 
  Based on trial-and-error approach, reinforcement learning 

involves training an agent to make decisions by interacting with an 

environment, receiving feedback in the form of rewards or 

penalties, while always trying to minimize the wrong steps. 

Reinforcement learning can be usually found in trading and finance 

applications and in automation, robotics and gaming industries. 
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3. Reinforcement learning schema. 

 

 

 

D) Deep learning 

 

  A Deep neural network involves artificial neural networks with multiple 

layers, making it extremely powerful and that is why they are mostly 

used with large datasets and complex patterns. Specifically, deep 

learning is consisted by an input layer, hidden layers and an output layer. 
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4. Machine learning vs Deep learning schema 

 

 

 

1.2 Introduction and description of the problem 
 

    This bachelor’s thesis refers to the architecture of deep learning 

models. This is accomplished by using the deep learning models to 

classify tweets (Text Classification) related to Covid-19 to three different 

categories. The first category as tweets which are in favor of vaccination, 

agree and implement methods of protection against the virus. The 

second category as tweets which are against the vaccination and 

promote conspiracy theories. The third category as tweets which they 

have a neutral stance. 
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   Specifically, to solve the problem above they have been collected a 

number of tweets. The dataset we are using is consisted by tweets from 

various datasets and a number of tweets with the use of Twitter API, we 

will refer to both ways of collecting data later in more detail.  

   The categorization has been accomplished with the help of NLP, a 

subfield of artificial intelligence which makes possible the 

communication between human and computer. NLP algorithms aims to 

understand the meaning of a text by extracting information from it, some 

applications are Sentiment Analysis, Text Summarization, Named Entity 

Recognition and Text Classification which is the one we are going to 

analyse. 

    For the implementation of Text Classification we used a Bert and a 

LSTM model. Bert stands for Bidirectional Encoder Representations from 

Transformers and it is cutting edge natural processing model developed 

by Google. Bert is a transformer pretrained using a combination of 

masked language modelling objective and next sentence prediction on a 

large corpus comprising the Toronto Book Corpus and Wikipedia.  

    The second model is a Bidirectional Long Short-Term Memory network 

an extension of a traditional LSTM model. It follows the RNN architecture 

by analysing data in both directions, from the beginning to the end and 

from the end to the beginning. In this manner the model will not make 

rush judgments. 

    In the following chapters we will further discuss about the creation of 

the models that we used, the collection and preparation of the data, and 

observations we made. 

 

https://thinkingneuron.com/sentiment-analysis-of-tweets-using-bert/#DistilBERT
https://builtin.com/data-science/recurrent-neural-networks-and-lstm
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Chapter 2 
 

   AI as we already mention uses some types of models to make 

predictions, the most common of them are Naive Bayes, CNN, KNN, 

Random Forests, SVM, PCA, RNN and Transformers. The last two are the 

ones that we are going to analyze. 

   The history of transformers in the context of artificial intelligence (AI) 

is closely tied to the development of models like the Transformer 

architecture introduced by Vaswani et al. in the paper "Attention is All 

You Need," published in 2017. Transformers have since become a 

foundational technology in natural language processing (NLP) and other 

AI applications due to their ability to capture long-range dependencies 

and relationships in sequential data. Bert model is based on this 

technology. 

   Recurrent Neural Networks (RNNs) are a class of neural networks 

designed for sequence data. They maintain hidden states to capture 

sequential dependencies. RNNs are suitable for tasks involving 

sequential information, such as natural language processing and time 

series prediction. However, they face challenges like vanishing gradients, 

limiting their ability to capture long-term dependencies, that means that 

the model is not able to keep information for a long time. To solve the 

underperformances that arise from the above issues, two neural 

network approaches are suggested, the gated recurrent unit (GRU) and 

the LSTM. 

   Some of the differences between those two architectures are that 

RNNs process sequences sequentially, struggling with long-term 

dependencies, while Transformers use parallelized self-attention 

mechanisms for simultaneous input processing. Transformers, including 

BERT, are more effective in capturing extensive context, allowing for 

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762
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better representation of sequential data. They overcome the limitations 

of RNNs, offering enhanced scalability and performance in natural 

language processing and other sequential tasks.       

 

2.1 Bert model 
 

   The BERT model leverages transformer architecture for state-of-the-

art natural language processing (NLP). Unlike traditional models, BERT 

processes text bidirectionally, considering both left and right context for 

each word.  

    Transformers employ a self-attention mechanism, allowing the model 

to weigh different parts of the input sequence, capturing intricate 

dependencies. BERT's pre-training involves unsupervised tasks—Masked 

Language Model and Next Sentence Prediction—on a vast corpus, 

imparting a rich understanding of language. Fine-tuning on specific tasks 

follows pre-training.  

https://arxiv.org/abs/2103.11943
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5. Bert Model Diagram 
 

 

    Tokenization and embedding into high-dimensional vectors enable 

BERT to generate contextualized representations, crucial for tasks where 

word meaning depends on context, these functions are going to be 

explained in detail. Multiple transformer layers and attention heads 

contribute to capturing hierarchical relationships and various abstraction 

levels. The contextualized embeddings and transfer learning from pre-

training to downstream tasks empower BERT with a versatile 

understanding of language, resulting in remarkable performance across 

diverse NLP applications. The bidirectional and contextual nature of 

transformers in BERT represents a breakthrough, revolutionizing how 

models comprehend and process language for advanced NLP tasks. 

 

https://ojs.bonviewpress.com/index.php/JCCE/article/view/838
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2.2   Bidirectional LSTM 
 

   Bidirectional Long Short-Term Memory (BiLSTM) is a type of recurrent 

neural network (RNN) architecture designed to capture dependencies in 

sequential data more effectively. Unlike traditional LSTMs, which 

process data in a single direction, BiLSTM processes sequences in both 

forward and backward directions simultaneously. This bidirectional 

processing allows the network to capture context from both past and 

future inputs, enhancing its ability to understand and remember long 

range dependencies.  

 

 

6. Bidirectional LSTM model diagram 

 

    As evident from the provided architecture, there are two LSTM models 

incorporated—one operating in the forward direction, while the other 

functions in the reverse direction. In a BiLSTM layer, there are two 

hidden states for each time step-one computed in the forward direction 
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and the other in the backward direction. These hidden states are 

concatenated, providing a comprehensive representation of the input 

sequence. The bidirectional approach helps mitigate the vanishing 

gradient problem associated with standard LSTMs, enabling more 

efficient learning of long-term dependencies. 

 

2.3 Natural Language Processing 
 

     Sometimes we are finding difficult to fully understand what a person 

says through human language with his voice or by text and that is 

because we are missing metaphors, idioms, sarcasm and plenty other 

factors. When an employee has to deal with too much data and extract 

information from them it can be time consuming and exhausting, making 

it easier for mistakes to be made. In addition, the need to analyse so 

many flowing data on the internet and extract a meaning from them 

which can a lead to scientific, financial, marketing or even fraud 

discovery is getting closer to impossible day by day. 

    That is how Natural Language Processing (NLP) is born, which is a 

branch of machine learning that empowers computers to understand, 

manipulate, and make sense of human language. NLP is increasingly 

integral to corporate solutions aimed at enhancing operational 

efficiency, boosting employee productivity, and simplifying vital business 

procedures. This is done with the use of NLP techniques or a combination 

of them like those below. 
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2.4 Text translation with BiLSTM and Bert model and their 
differences 
 

   Language translation involves complex syntactic and semantic 

understanding, where BiLSTM and BERT transformers play distinct roles. 

Bidirectional Long Short-Term Memory networks (BiLSTM) are recurrent 

neural networks adept at capturing sequential dependencies by 

processing input sequences bidirectionally. Their ability to retain context 

information makes them suitable for shorter sentences with local 

dependencies. However, BiLSTM may struggle with long-range 

dependencies and might not effectively capture intricate structures in 

language.  

   BERT (Bidirectional Encoder Representations from Transformers) 

transformers, on the other hand, use self-attention mechanisms for 

parallel processing, capturing global context efficiently. Pretrained on 

extensive corpora, BERT exhibits versatility but requires fine-tuning for 

specific tasks. It excels in understanding complex structures and long-

range dependencies, making it well-suited for tasks involving nuanced 

language translation. 

   The choice between BiLSTM and BERT depends on the linguistic 

characteristics of the translation task. For simpler sentences with local 

dependencies, BiLSTM may suffice. In contrast, BERT transformers are 

preferred for tasks demanding a deeper comprehension of intricate 

linguistic structures and long-range dependencies. The decision hinges 

on the linguistic complexity and the nature of dependencies present in 

the data. 
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2.5 Text Summarization with BiLSTM and Bert model and their 
differences 

   
    The phrase “Time is gold”, is a very famous one but also a true one, 

especially when literally a business is losing money for the reason that it 

misses deadlines or even just because of underproductiveness. For 

example, employee to understand an undocumented project or an 

uncommented source code file is spending around 60% of his working 

time. Therefore, text summarization is coming to save the day.  

    Bidirectional Long Short-Term Memory networks present advantages 

and disadvantages in text summarization. On the positive side, BiLSTM 

networks excel at summarizing shorter texts with clear structures, 

providing interpretability, and demonstrating training efficiency.   

However, their limitations become apparent in handling long-range 

dependencies, and they may struggle with capturing complex semantic 

relationships in text in comparison to Bert. Despite their efficiency for 

certain tasks, BiLSTMs may fall short when faced with more intricate 

language patterns. 

    Utilizing BERT for text summarization offers substantial benefits, 

including a sophisticated understanding of context, improved 

comprehension of complex language structures, and exceptional 

performance on diverse language tasks that is why they have more 

versatility. However, the resource-intensive nature of BERT may pose 

challenges in terms of computational requirements and speed. 

Additionally, the model's extensive architecture might lead to limitations 
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in real-time applications in which it is required a real-time quick 

response, for example in a chatbox situation. 

      

2.6 Sentiment Analysis with BiLSTM and Bert model and their 
differences 
 

    Sentiment Analysis with Bidirectional Long Short-Term Memory has 

several advantages, including its ability to capture contextual 

information, discern intricate language nuances, and provide accurate 

sentiment classification. It excels in handling longer text sequences, 

making it suitable for diverse applications. However, BiLSTM's drawbacks 

include the need for substantial computational resources, potential 

overfitting on smaller datasets, and challenges in interpreting the 

model's decision-making process due to its complex architecture. 

    On the other hand, Sentiment Analysis with BERT offers unparalleled 

contextual understanding, outperforming traditional methods. Its pre-

trained contextual embeddings capture intricate language nuances, 

enhancing sentiment interpretation. Additionally, BERT handles varying 

sentence lengths effectively. However, BERT's resource-intensive nature 

demands substantial computing power, limiting real-time applications. 

Its black-box nature poses challenges in model interpretability. Striking a 

balance between accuracy and computational efficiency is crucial when 

employing BERT. 
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2.7 Text Classification 
 

    Text classification is a natural language processing task that involves 

assigning predefined categories or labels to textual data. Without Text 

Classification some of the above NLP techniques could never work owing 

to the fact that it employs machine learning algorithms to autonomously 

assess and categorize text according to its content. 

    On top of that, Text classification is widely used in spam detection, 

sentiment analysis on social media, and document categorization. It 

brings automation to handle large volumes of text data, boosting 

efficiency in areas like customer support, content filtering, and 

information retrieval. 

 

    Based on Google developers, the Text Classification Workflow involves 

a systematic process to harness the power of machine learning for 

efficiently categorizing and analysing textual data : 

       

Step 1: Gather Data 

This initiates the process by collecting a diverse dataset representative 

of the problem at hand. For text classification, this would include a range 

of examples covering different classes or categories. 

 

Step 2: Explore Your Data and choose a Model 

Data exploration is crucial to understand patterns, distributions, and 

potential challenges within the dataset. Exploratory Data Analysis (EDA) 

aids in making informed decisions throughout subsequent steps. 

Selecting an appropriate model is a pivotal decision. For text 

https://huggingface.co/tasks/text-classification
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/3498123
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classification, models like Naive Bayes, Support Vector Machines (SVM), 

or deep learning architectures such as recurrent neural networks (RNNs) 

and transformers like BERT are common choices. 

 

Step 3: Prepare Your Data 

Data preparation involves cleaning, tokenization, and vectorization of 

text. It transforms raw text into a format suitable for machine learning 

algorithms, converting words into numerical representations. 

 

Step 4: Build, Train, and Evaluate Your Model 

This step involves constructing the chosen model, training it on the 

prepared dataset, and evaluating its performance using metrics like 

accuracy, precision, recall, and F1-score. 

 

Step 5: Tune Hyperparameters 

Fine-tuning hyperparameters is crucial for optimizing model 

performance. This step involves adjusting settings like learning rates or 

regularization parameters to enhance the model's efficacy. 

 

Step 6: Deploy Your Model 

Once satisfied with the model's performance, deployment brings it into 

practical use. This could involve integration into applications, websites, 

or systems to perform real-time text classification tasks. 

   

https://www.altexsoft.com/blog/preparing-your-dataset-for-machine-learning-8-basic-techniques-that-make-your-data-better/
https://towardsdatascience.com/6-ways-to-improve-your-ml-model-accuracy-ec5c9599c436
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  In essence, this workflow ensures a structured and iterative approach, 

emphasizing the importance of data quality, model selection, and 

continuous refinement to achieve robust text classification models. Ιn 

the following chapters we will take a look at these step with the help of 

BiLSTM and Bert. 
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Chapter 3 
 

3.1 The importance of a dataset 
 

    The foundation of a successful machine learning applications stands 

on a well-prepared collected dataset, so it can ensure that the models 

are trained on high-quality data, leading to better performances and 

enhanced reliability in real-world scenarios. Dataset types vary 

depending on the case, some of the most common are: 

 

Numerical Data: 

    Example: Daily temperature recordings in Celsius, ranging from 15 to 

30 degrees over a month, capturing variations in weather patterns. 

 

 

Categorical Data: 

    Example: Movie genres (Action, Drama, Comedy) categorizing films 

based on their content, aiding in personalized recommendation systems 

for viewers. 

 

 

Text Data: 

    Example: Customer reviews for a product, containing textual 

sentiments like "great," "average," or "poor," facilitating sentiment 

analysis for product feedback. 
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Image Data: 

    Example: Satellite images of urban areas, capturing visual patterns for 

land-use classification, assisting in urban planning and resource 

allocation. It is important to say that this type is also belonging to 

healthcare AI techniques, a very large area in which based on the 

patterns of medical images (e.g. X-rays) we can make diagnostics for 

patients. 

 

Temporal Data: 

    Example: Hourly energy consumption data, recording power usage 

fluctuations throughout a day and across seasons, enabling predictive 

modeling for energy demand and supply management. 

   These types of data are only some of the many and that is due machine 

learning continually evolves, introducing new types of datasets based on 

emerging technologies and research areas. 

 

3.2 Dataset collection 
 

    Our Dataset has 2 columns, the first one is called “Tweets” which is 

consisted of 5860 tweets. Each one is manually categorized on the 

second column called “Type” based on its content.  

   The 400 first tweets were collected totally manually by experimenting 

with Twitters search tools, so we can evolve a general idea around the 

content of the tweets, famous hashtags, trending words and social 

groups. Afterwords, the twitters API was used to collect around 2000 

more tweets by referring to the hashtag that we wanted a tweet to have. 
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7. Python script to extract tweets based on hashtags. 

 

    Sadly, after the acquisition of Twitter by Elon Musk on April 14, 2022, 

and concluded on October 27, 2022, the restricted free use of Twitter 

has been stopped. The need for more data leaded to search for covid 

related datasets on the internet, all of them are mentioned at the final 

chapter. 

 

 

8. Preparation steps 
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3.3 Dataset preparation 
 

    In this section we will describe in detail the google colab blocks of code 

that was used for the preparation of the dataset for Bert and BiLSTM. 

These two models have some common preparation steps but some other 

are different because of the different architecture. 

   First, we load the csv file which contains the tweets via a google drive 

link with the help of pandas library. Pandas is a powerful data 

manipulation and analysis library for Python. It provides data structures 

like DataFrame for efficient data handling and analysis. 

 

 

9. Pandas import and dataset load 

 

    At the image below then we shuffle the rows but also keeping the type 

of each tweet at the second column. The reason behind this is to ensure 

that the training is not biased, especially during the split between 

training and testing that we will discuss later on. We are keeping the 

columns that we are going to need for the training, only the Tweets and 

their Type. 

 

https://books.google.gr/books?hl=el&lr=&id=uAPuDwAAQBAJ&oi=fnd&pg=PP1&dq=data+preparation+for+machine+learning&ots=Cm2Kzg9NqR&sig=dk6XMEKU7kuCXORBKqrmATzNtKw&redir_esc=y#v=onepage&q=data%20preparation%20for%20machine%20learning&f=false
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10. Dataset format 

 

    In addition, a function is created which is used to remove any links 

from the tweets that could confuse our two models, making them more 

complex by thinking that every link is a different word. Also, we are 

converting every upper-case letter to a lower case letter, so that a word 

like “Deathshot” to be the same and have the same impact like the word 

“deathshot”. At the end with the NLTK dataset some English stopwords 

are excluded from the Tweets. 
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11. Cleaning data and checking for null values 
 

3.4 Graphs and Charts 
 

    Moreover, we are gaining some insights into the most frequently used 

word within each category (pro-vaccine, anti-vaccine, or neutral) and 

visualize them through word clouds and bar charts with the help of 

Matplotlib, Counter and WorldCloud libraries. 
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12. Creating graphs and charts 
 

    The block of code begins by defining a common set of English words to 

exclude them from the analysis, so that they will not interfere to the 

statistics. Afterwards, it uses the Counter dictionaries to store word 

frequencies for each category, the text processing function 

“preprocess_text” tokenizes and removes non-alphabetic characters. 

Then through the loop the frequency of each word for each category is 



Degree thesis Giannis Touloupis 

 

32 
 

being updated so that we can generate a cloud of the most used words 

with WordCloud.  

 

 

    The plot_word_frequencies function is designed to display word 

frequencies in a visually appealing manner: 

 

 

 

 

 

 

 

 

13. Word Frequency for Pro-Vaxx Tweets 

 

 

14. Word Frequency for Anti-Vaxx Tweets 
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15. Word Frequency for Neutral Tweets 

 

 Additionally, the script includes a function, plot_word_frequencies_bar 

to create bar charts showing the top 10 most common words for each 

category:  

 

 

16. Word Frequency for Pro-Vaxx Tweets with custom chart 
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17. Word Frequency for Anti-Vaxx Tweets with custom chart 

 

 

18. Word Frequency for Neutral Tweets with custom chart 

 

       These visualizations are important to understand the content of a 

dataset and valuable insights by extracting useful information like 

patterns and biased words. 
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3.5 Dataset preparation for Bert Model 
 

    Till now we are utilizing some cleaning techniques so we can be more 

specific and less bewilder for what we want, having as an outcome to get 

as much precise results as we can. Nevertheless, the data preparation 

does not stop here, it is mandatory to change the form of the dataset 

accordingly, so that each model can understand the human language as 

we have previously said. 

    For the Bert model, we must follow the following conventions: 

 

 

19. Dataset preparation for the Bert model 1.1 
 



Degree thesis Giannis Touloupis 

 

36 
 

     First of all, the columns “Tweets” and “Type” are moved to two lists 

accordingly. Afterwards, torch library is imported which is the core 

PyTorch library for tensor computations and deep learning. The 

importation of Dataset from torch.utils.data is a data handling module, 

it provides the ability to create custom datasets, which in our case it is 

going to handle and change data efficiently for the training part of the 

model. 

 

    Next, we create a class which defines a custom dataset that inherits 

from the Dataset class which is provided from the Pytorch library. Then 

with the function “ __init__ “, we initialize and below we assing the 

dataset with the provided texts, labels, a tokenizer and the maximum 

length for the text encoding. 

 

    The function “__len__” is used to return the text length of all the 

tweets. With the “__getitem__” method we process a specific item in a 

dataset, it takes an index and retrieves the corresponding text and label. 

The text is tokenized using a tokenizer, ensuring a maximum length, and 

adding special tokens. The resulting encoding includes input IDs and 

attention mask tensors. The method returns a dictionary containing 

flattened input IDs and attention mask, along with the label converted 

to a PyTorch tensor with a long data type. This facilitates seamless 

integration with PyTorch for natural language processing tasks, where 

input data needs to be transformed into a format suitable for training 

machine learning models. 
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    In addition, from the Hugging Face Transformers library we are 

utilizing the BertTokenizer, it is used for tokenizing and preprocessing 

text data for our Bert model, meaning that it will convert our tweets into 

numerical tokens that will be inserted into our Bert model. At the next 

lines, we use the libraries to load a pre-trained BERT model and its 

associated tokenizer.  

    

 

20. Dataset preparation for the Bert model.1.2 

 

    The BertTokenizer.from_pretrained('bert-base-uncased') initializes 

the tokenizer for the 'bert-base-uncased' model, which is trained on 

uncased English text. Next, we are creating an instance of the 

CustomDataset class, this line initializes the dataset using the following 

parameters: 

     

 

    texts: the collected tweets.     

 

    labels: The corresponding labels for the text data.tokenizer 
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    max_length=128: A specified maximum length for the input 

sequences. This parameter is used for padding or truncating the input 

sequences to a consistent length.The CustomDataset class is expected to 

handle the loading and preprocessing of the dataset based on these 

parameters, making it suitable for training our Bert model. 

 

    Later on, another important class we are importing from the PyTorch 

library is Dataloader, it facilitates loading and batching of data during 

training and testing. In our case we are setting the batch size at 32 size, 

it means that 32 data samples are going to be processed in each iteration 

during the training.  

    Then we with the “train_size = int(0.85 * len(dataset))”, we indicate 

that the size of the training set is 85% of the total dataset length. Right 

after, we split the dataset into training and testing randomly to be sure 

that both datasets have diversity.  

    When all was said and done, the data preparation for the Bert model 

ends by creating a dataloader for the training and test by loading their 

corresponding datasets to them, the same batch size but enabling the 

shuffling the data in each epoch only for the “train_dataloader”. 

 

3.6 Dataset preparation for BiLSTM Model 
 

    Just like Bert model, before the training of the BiLSTM model the data 

have to be converted to the right form. In the realm of natural language 

processing, the efficacy of deep learning models hinges on the quality of 

their training datasets. Crafting an optimal dataset for a Bidirectional 
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Long Short-Term Memory (BiLSTM) model involves a delicate 

orchestration of textual data preprocessing. We will dive into the 

thorough steps taken to prepare a robust dataset, encompassing 

tokenization, sequence padding, and the integration of pre-trained 

GloVe embeddings. Each facet of this process, outlined in the 

subsequent chapters, contributes to the foundation upon which the 

BiLSTM model will embark on its journey to unravel the intricacies of 

language and meaning. 

    First of all, we are setting max_words to the total number of texts to 

represent the maximum number of words considered during 

tokenization.  

    Then, just like Bert model we initialize the ‘Tokenizer’, which will be 

used to vectorize text. num_words=max_words limits the tokenizer to 

consider only the top max_words most frequent words in the dataset. 

Afterwards, we create a dictionary of word indices based on word 

frequency. It converts each word in the texts into a unique integer index. 

At the exact next line, the transformation of text into sequences of 

integers is followed, where each integer corresponds to the index of a 

word in the tokenizer's dictionary. This makes the text data suitable for 

input into machine learning models. 

    Later, “max_len” is calculated and defined by the length of the longest 

sequence in the sequences list. This value is used to pad all sequences to 

the same length for uniform input size in a model. We also define a 

variable (‘X’) ,which represents  padded data of each sequence to ensure 

that they all have the same length, defined by max_len. 

    If a sequence is shorter than max_len, it is padded with zeros (or 

another specified value) at the beginning or end, If it’s longer, it’s 

truncated.  

    In another variable (‘y’) we also define the list of our labels into a 

Numpy array, so they can be used in our machine learning framework. 
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    For the crucial step of the dataset splitting, we use the 

‘train_test_split’ function, which is imported from scikit-learn, enabling 

the convenient division of a dataset into training and testing sets for 

machine learning model development. More specifically, X and y are 

divided such that 85% of the data goes into the training set (X_train, 

y_train) and 15% goes into the testing set (X_test, y_test), as specified by 

test_size=0.15. Last but not least we set a random_state to 42, which 

ensures reproducibility by seeding the random number generator, so the 

split is the same each time the code is run. 

 

 

21. Dataset preparation for the BiLSTM model, 
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Chapter 4 
 

4.1 Bert model creation 
 

In the journey toward building a powerful sentiment analysis 

model, we now embark on the creation of a BERT model. The data, 

meticulously prepared in the earlier phase, lays the foundation for our 

BERT model. This transformer-based architecture, pre-trained on vast 

corpora, brings unparalleled proficiency in capturing intricate patterns 

and nuances of language. As we delve into model construction, the 

utilization of fine-tuning on natural language analysis, allows BERT to 

adapt and excel in our domain. Our arsenal includes the AdamW 

optimizer, a variant of Adam designed for BERT fine-tuning, and the 

indispensable learning rate scheduler to optimize training efficiency. We 

embrace the flexibility of dropout layers to prevent overfitting, 

enhancing the model's generalization capabilities. In this journey, each 

line of code becomes a keystroke in orchestrating the symphony of 

machine learning. The model evolves through epochs, refining its 

comprehension of sentiment nuances with every iteration. As we 

navigate this intricate path, the convergence of data preparation and 

BERT model creation promises a sentiment analysis model that 

transcends boundaries, unlocking the profound subtleties embedded in 

language.  

 

 

https://dl.acm.org/doi/abs/10.1145/3409334.3452074
https://dl.acm.org/doi/abs/10.1145/3409334.3452074
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We start by installing to our environment the transformers, the pip 

install transformers command is crucial for training BERT (Bidirectional 

Encoder Representations from Transformers) models as it installs the 

"transformers" library, a key dependency for working with transformer-

based models like BERT. This library provides pre-trained transformer 

models, including BERT, and enables efficient implementation, fine-

tuning, and utilization of these models for various natural language 

processing tasks. By installing this package, users gain access to a wealth 

of pre-trained models, tokenizers, and utilities, streamlining the 

development and training of BERT-based models for our corresponding 

task. 

 

 

22. Installation of transformers, 
 

4.2 Bert model initializations 
 

    Then we are importing the required functions for the operation of the 

training. Firstly we import from the transformers library the 

“BertForSequenceClassification”, which is a fine-tuned pre-trained Bert 

model for sequence classification tasks and then the 

“get_linear_schedule_with_warmup” function, it’s purpose is to 

schedule the learning rate during training, crucial for fine-tuning pre-

https://onlinelibrary.wiley.com/doi/full/10.1155/2022/3498123
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trained models like BERT, ensuring effective optimization. 

    Afterwards, we import “optim” from torch library which provides 

optimization algorithms, AdamW, a variant of Adam with weight decay, 

suitable for BERT fine-tuning. From the same library we continue by 

importing the “Dropout” function, responsible for the regularization of 

our model, by randomly setting a fraction of input units to zero during 

training, preventing overfitting. 

 

 

23. Function importation for Bert model 
 

 

    Next, from “sklearn” library we import three functions. The first is the 

“train_test_split”, which splits data into training and testing sets, 

facilitating model evaluation on unseen data for robustness assessment. 

Then, from “sklearn.metrics” we  import the “accuracy_score” function 

which calculates the accuracy of model predictions, comparing them to 

true labels and the “confusion_matrix” function, which constructs a 

confusion matrix to evaluate the performance of a classification 

algorithm by visualizing true positives.             

    At the end, we import the “tqdm” for visual needs, which provides a 

progress bar during the training. The last is the “csv”  function, which 

allows us to handle csv files during training. 
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    The building of the model is starting by initializing the model with 

BertForSequenceClassification.from_pretrained ('bert-base-uncased', 

num_labels=3) loads the BERT model for sequence classification with 

three output labels. These pre-trained components facilitate efficient 

natural language processing tasks, with the model specifically configured 

for multi-class classification tasks with three possible labels. Additionally, 

we set the model to use a GPU ('cuda') if available, otherwise, it uses the 

CPU . 

 

 

24. Initializations for the Bert model. 

 

    After the initialization we added a freezing method for the embedding 

layers, the reason behind that is to prevent the parameters of the Bert 

model from being updated during fine tuning, as the often contain rich 

pretrained contextual information. 

 

    The next very important initialization is the implementation of the 

AdamW optimizer for updating the model parameters during training, 

with a learning rate of 2e-5. Specifically, AdamW is an optimization 
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algorithm derived from Adam, designed to improve weight decay 

handling in neural network training. Introduced by Loshchilov and Hutter 

in 2017, AdamW decouples weight decay from the optimization step, 

mitigating its negative impact on adaptive learning rates. This 

modification enhances training stability and performance. For more 

details, you can refer to the original paper titled "Fixing Weight Decay 

Regularization in Adam" by I. Loshchilov and F. Hutter. 

 

  Furthermore, the number of epochs we are going to use are set to 7, 

that declares number of times the model will be trained on the entire 

training dataset. Also, we superinduce a learning rate scheduler which 

adjusts the learning rate during training to optimize convergence. Its 

purpose is to dynamically adapt the learning rate based on the model's 

performance, enhancing training stability, speeding up convergence in 

the initial phases, and ensuring accurate parameter updates as training 

progresses. 

 

4.2 Bert model training 
 

    After the above initializations, now it is the time to implement them in 

the iteration of the training part. We begin by declaring three variables, 

the “best_loss” which Initializes the best loss to positive infinity for 

comparison during early stopping, the “patience” which determines the 

number of epochs to wait for accuracy improvement before stopping 

and the “counter” which is the one which calculates the unimproved 

iterated epochs. 

 

https://arxiv.org/pdf/1711.05101v2/1000.pdf
https://arxiv.org/pdf/1711.05101v2/1000.pdf
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    First of all, we create a loop based on the number of declared epochs 

and we start by setting the model to training mode with “model.train() 

and our counters for training metrics. Then we create a batch loop which 

iterates through batches in the training data and displays a progress bar. 

Inside the loop we begin by transferring the data of each batch to the 

device. 

 

 

25. Building of the Bert model 1.1 
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• batch['input_ids']: 

    Refers to a sequence of numerical tokens representing a batch 

of input text data. In natural language processing, these input IDs 

are often indices corresponding to words in a vocabulary. These 

tokenized input IDs serve as the model's input, enabling it to 

process and learn patterns within the text data. 

 

• batch['attention_mask']: 

     An attention mask in the context of neural networks, particularly 

in natural language processing tasks, is a binary matrix indicating 

which tokens in a sequence should be attended to and which 

should be ignored. It helps our model to focus on relevant parts of 

input sequences during processing. In the Transformer 

architecture, attention masks are used to prevent attending to 

padding tokens, ensuring that the model considers only actual 

tokens for information processing, allowing for more effective and 

efficient learning of contextual relationships in the input data. 

 

• batch['label'] : 

 

     Represents the ground truth labels associated with a batch of 

input data in supervised learning tasks. In our natural language 

processing, are numerical indices indicating the correct category 

for each corresponding input sample (0 , 1 or 3). During training, 

the model compares its predictions to these labels, and the 

discrepancy guides parameter updates through backpropagation. 

Accurate labels are essential for the model to learn and generalize 

effectively, enabling it to make meaningful predictions on unseen 

data. 
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• optimizer.zero_grad(): 

 

    Before computing the gradients for the model parameters, this 

line clears any previously accumulated gradients. 

 

 

• outputs = model(input_ids, attention_mask=attention_mask, 

labels=labels):   

 

    This line of code signifies a crucial step in the training process of 

a BERT-based model for sequence classification. This line conducts 

a forward pass through the neural network, where the model 

processes input sequences and generates predictions. Additionally, 

‘outputs’ variable capture and enfold the results of the forward 

pass, including the computed loss and raw logits. These logits 

represent the unnormalized scores assigned to each class, serving 

as the basis for subsequent steps such as backpropagation and 

parameter updates during the training iteration. In a few words, it 

transforms input sequences into meaningful predictions while 

facilitating the optimization process through the computation of a 

training loss. 

 

• loss = outputs.loss: 
 

     Extracts the loss from the model's output. For sequence 

classification tasks, the model's output includes a loss attribute, 

representing the difference between the predicted logits and the 

true labels. This loss is a measure of how well the model is 

performing on the given batch. 
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• logits = outputs.logits:  

 

    Retrieves the raw logits from the model's output. Logits are the 

unnormalized predictions before applying a softmax function. They 

represent the model's confidence scores for each class. These logits 

can later be used to compute probabilities or make predictions 

based on a chosen threshold. 

 

• loss.backward():  

 

    This line computes the gradients of the model's parameters with 

respect to the training loss. These gradients represent the direction 

and magnitude of the steepest ascent in the loss landscape. They 

quantify how much each parameter contributed to the error, 

providing crucial information for adjusting the model's weights. 

 

• optimizer.step(): After computing the gradients, this line updates 

the model's parameters using the optimization algorithm (AdamW, 

in this case). The optimizer adjusts the weights to minimize the loss, 

employing the computed gradients and the learning rate. This step 

is essential for iteratively improving the model's performance. 

 

• scheduler.step():  

 

    Inside the loop it adjusts the learning rate for each optimization 

step. The learning rate scheduler (scheduler) adjusts the learning 

rate during training. Here, it's utilizing a linear schedule with warm-

up. It ensures a gradual increase in the learning rate during the 

initial training steps, followed by a linear decay. Dynamic learning 
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rate adjustments contribute to stable and efficient model 

convergence. 

 

• total_loss += loss.item(): 

 

    This line accumulates the current batch's loss to the running total 

loss. It is a running sum that represents the cumulative training loss 

over all batches processed during the current epoch. This value is 

later used to calculate the average loss for the epoch. 

 

 

• _, predicted_labels = torch.max(logits, 1): 

 

    The torch.max(logits, 1) operation is used to predict the class 

labels for each input sequence in the batch. The model's raw logits, 

representing class scores, are passed through a softmax function 

internally, and torch.max returns the predicted class indices. The 

variable predicted_labels holds these predicted class labels. 

 

 

• correct_predictions += (predicted_labels == labels).sum().item():  

 

    This line calculates the number of correct predictions within the 

batch. It compares the predicted labels (predicted_labels) with the 

true labels (labels) and sums up the cases where they match. The 

resulting count is added to the running total of correct predictions. 
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• total_predictions += labels.size(0):  

 

    The variable total_predictions keeps track of the total number of 

predictions made during the current epoch. It increments by the 

batch size (labels.size(0)) on each iteration, representing the 

cumulative count of predictions made across all batches in the 

epoch. 

 

    After the batch loop we calculate and print the progress of our 

training in every epoch. 

 

 

• accuracy = correct_predictions / total_predictions: 

 

    This line calculates the accuracy for the current epoch. The 

correct_predictions variable holds the total number of correctly 

predicted instances, and total_predictions represents the total 

number of predictions made by the model during the epoch. 

Dividing the number of correct predictions by the total predictions 

yields accuracy, indicating the proportion of correctly classified 

instances. 

  

 

• average_loss = total_loss / len(train_dataloader):  

 

     Computes the average training loss for the epoch. The total_loss 

variable accumulates the sum of losses across all batches during 

the epoch, and dividing this sum by the total number of batches 

(len(train_dataloader)) provides the average loss. This metric helps 
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assess the overall performance of the model on the training data, 

providing insights into its ability to minimize the error across 

different batches. 

 

• scheduler.step():  

 

after the loop allows for a final adjustment of the learning rate at 

the end of each epoch. This step ensures that the learning rate is 

appropriately updated for the next epoch. 

 

    At the end of each epoch iteration in this early stopping check we 

monitor the trend of the average training loss. If the loss does not 

improve for a certain number of consecutive epochs (determined by the 

patience parameter), the training loop is terminated to prevent 

overfitting and save computation resources. 

 

 

26. Bert’s training early stopping 
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4.3 Bert model testing evaluation 
 

    To begin with, in PyTorch, model.eval() is employed during evaluation 

to set the model in a state that deactivates training-specific operations 

like dropout and batch normalization. This ensures consistent inference 

results by maintaining fixed parameters. During evaluation, gradients are 

unnecessary, and these operations can introduce randomness.  

 

 

27. Bert’s training 
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By invoking model.eval(), the model behaves deterministically, 

guaranteeing reproducibility and preventing overfitting to the training 

set. This is essential for reliable assessments of a model's performance 

on unseen data, such as when calculating accuracy and loss during 

testing, as it avoids discrepancies introduced by training-specific 

mechanisms and contributes to robust model evaluation. Moreover, 

“all_labels “and “all_predictions” are Lists to store true labels and 

predicted labels for later use in the confusion matrix. 

 

    Next, we create our evaluation loop, generally this loop follows the 

training loop logic, so we are going to describe mostly it’s differences. 

 

torch.no_grad(): This function initializes the loop which Inside this 

block, PyTorch disables gradient computation. This is done to save 

memory and processing power since during evaluation, you don't 

need to calculate gradients for backpropagation. It speeds up the 

inference process and reduces memory consumption. we initialize it 

with the “with torch.no_grad()”, inside this block, PyTorch disables 

gradient computation. This is done to save memory and processing 

power since during evaluation, you don't need to calculate gradients 

for backpropagation. It speeds up the inference process and reduces 

memory consumption. 

     

for batch in test_dataloader:  Just like the train batch loop, the test batch 

loop it Iterates through batches in the test dataloader. The test 

dataloader provides batches of data for evaluating the model on unseen 

examples. The only difference inside this loop is the “model.to(device)”  

line, which ensures the model and data are on the same device (CPU or 

GPU). This is necessary for proper computation, and it's especially 

important when using GPUs for acceleration. 
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    Later on, we print the testing and average loss from the evaluation 

loop, we call model.eval() again to ensure that the model is in evaluation 

mode after the evaluation loop . 

    In summary, this evaluation loop is designed to rigorously assess the 

performance of the BERT model on the test data. It calculates accuracy 

and loss, crucial metrics for evaluating the model's effectiveness in 

making predictions on unseen examples. The model.eval() and 

torch.no_grad() ensure that the evaluation process is consistent, 

efficient, and does not interfere with the model's parameters or memory 

usage. 

    At the end we save the checkpoint of the epoch with the best accuracy 

in a dictionary which contains the entire state of the model, It includes 

all the learnable parameters and their current values. 

 

 

 

28. Bert’s results 
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Chapter 5 

5.1 BiLSTM model creation. 
 

     After analyzing the Bert model, now it is time for the BiLSTM model. 

In natural language processing and text classification tasks, Bidirectional 

Long Short-Term Memory (BiLSTM) networks have proven to be highly 

effective. By incorporating information from both past and future states 

of a sequence, BiLSTMs excel at capturing contextual dependencies in 

text data. To create a BiLSTM model, we leverage libraries such as 

TensorFlow and Keras. Using the Tokenizer and pad_sequences 

functions from TensorFlow, we preprocess the text data, converting it 

into sequences of numerical tokens and ensuring uniform length.  

     With the Sequential model from Keras, we define our neural network 

architecture layer by layer, including an Embedding layer to generate 

word embeddings, Bidirectional LSTM layers for sequence processing, 

and a Dense layer for classification. Finally, we compile the model with 

an optimizer like Adam and train it on labeled data, achieving high 

accuracy in classifying text into predefined categories. 

 

 

 

 

 

 

 

 

https://towardsdatascience.com/sentence-classification-using-bi-lstm-b74151ffa565
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5.2 BiLSTM model initializations. 
 

More specifically, we start by importing the libraries that we are going to 

use: 

• Sequential: Sequential model for linear stack of layers, used for 

building deep learning models layer by layer. 

 

• load_model: Loads a saved Keras model from a file for further use 

or evaluation. 

 

• Embedding: Converts integer indices to dense vectors of fixed size, 

representing word embeddings. 

 

• Bidirectional: Wrapper for creating bidirectional recurrent neural 

networks, which process input sequences in both forward and 

backward directions. 

 

• LSTM: Long Short-Term Memory layer, a type of recurrent neural 

network layer capable of learning long-term dependencies in 

sequential data. 

• Dense: Fully connected layer where each neuron is connected to 

every neuron in the previous and next layers. 

evaluation and validation. 

• ModelCheckpoint: Saves the model weights during training at 

specified checkpoints. 

 

• EarlyStopping: Stops training when a monitored metric stops 

improving. 
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• LearningRateScheduler: Adjusts learning rate dynamically during 

training. 

 

 

29. BiLstm Libraries 

 

 

5.3  AdaDelta Optimizer. 
 

    AdaDelta is a popular adaptive learning rate optimization algorithm 

designed for training neural networks. It was introduced by Matthew D. 

Zeiler in 2012 with a paper name  <<  ADADELTA: AN ADAPTIVE 

LEARNING RATE METHOD  >> , as an extension of the Adagrad algorithm. 

AdadDelta addresses some of the limitations of Adagrad, particularly its 

monotonically decreasing learning rate. 

 

    Unlike traditional optimization algorithms that use a fixed learning rate 

for all parameters, AdadDelta adapts the learning rate for each 

parameter in the model based on the magnitude of recent gradients. This 

adaptivity allows AdadDelta to perform well across a wide range of tasks 

and architectures without requiring manual tuning of the learning rate. 

 

https://towardsdatascience.com/how-to-decide-on-learning-rate-6b6996510c98
https://www.researchgate.net/figure/Results-of-five-optimizers-applied-to-Bi-LSTM-CRF_tbl3_344375190
https://arxiv.org/pdf/1212.5701
https://arxiv.org/pdf/1212.5701
https://deepdatascience.wordpress.com/2016/11/18/which-lstm-optimizer-to-use/
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    One of the key features of AdadDelta is its ability to maintain a moving 

average of parameter updates and gradients, which are used to compute 

the learning rate adjustments. By incorporating this historical 

information, AdadDelta can adaptively adjust the learning rates to 

different scales of parameters and gradients, making it robust to noisy 

gradients and sparse data. 

 

    AdadDelta also introduces the concept of an "adapting window" or 

"running average" of gradients and parameter updates. This window 

controls the memory of past gradients and updates, allowing AdadDelta 

to adaptively adjust the learning rates over time and handle non-

stationary optimization problems effectively. 

 

    Another important aspect of AdadDelta is its computational efficiency. 

Unlike Adagrad, which requires storing the entire history of gradients, 

AdadDelta only stores a fixed-size window of past gradients and updates. 

This makes AdadDelta more memory-efficient and suitable for training 

large-scale neural networks. 

 

    Moreover, AdadDelta addresses the issue of the monotonically 

decreasing learning rate in Adagrad by using a moving average of 

squared parameter updates in the denominator of the learning rate 

computation. This helps stabilize the learning process and prevents the 

learning rate from becoming too small, which can hinder convergence. 

 

    Overall, AdadDelta is a powerful optimization algorithm for training 

neural networks, offering adaptive learning rates, robustness to noisy 
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gradients, computational efficiency, and stability during training. Its 

simplicity and effectiveness make it a popular choice. 

 

5.4 The key differences between AdaDelta and AdamW. 
 

1. Update Rule: 

AdaDelta: uses the root mean square (RMS) of parameter updates scaled 

by the root mean square of recent gradients to adapt the learning rate. 

AdamW: (Weight Decay with Adam) is a variant of Adam that 

incorporates weight decay directly into the update step, making it 

compatible with modern weight decay techniques. 

 

2. Parameter Update: 

AdaDelta: uses only the gradient information to update the parameters. 

AdamW: incorporates both gradient information and weight decay 

directly into the parameter update step. 

 

3. Adaptivity: 

AdaDelta: adapts the learning rate independently for each parameter 

based on the history of gradients for that parameter. 

AdamW: uses adaptive learning rates for each parameter, but also 

incorporates the effect of weight decay regularization into the 

parameter update, which can improve generalization. 

 



Degree thesis Giannis Touloupis 

 

61 
 

4. Learning Rate Adjustment: 

AdaDelta: dynamically adjusts the learning rates for each parameter 

based on the moving average of previous gradients and updates. 

AdamW: adjusts the learning rates for each parameter based on the 

estimation of first and second moments of gradients, but it also 

incorporates weight decay directly into the update, which helps in 

stabilizing the training process. 

 

5. Implementation: 

AdaDelta: typically requires fewer hyperparameters to tune compared 

to AdamW. 

AdamW: requires tuning of hyperparameters such as learning rate, 

beta1, beta2, and weight decay parameter. 

 

6. Memory Usage: 

AdaDelta: maintains a history of gradients and parameter updates for 

each parameter, which can consume memory. 

AdamW: also maintains a history of gradients and parameter updates, 

but the incorporation of weight decay might influence memory usage 

differently compared to AdaDelta. 

 

    In summary, while both AdaDelta and AdamW are adaptive 

optimization algorithms for training neural networks, AdamW is 

specifically designed to incorporate weight decay regularization directly 

into the update step, potentially leading to better generalization and 

stability during training, especially in the presence of large learning rates. 
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However, the choice between them often depends on factors like the 

specific problem, available computational resources, and empirical 

performance on the task at hand. 

 

 

5.5 BiLstm architecture. 
 

    In the case of the creation of BiLstm model, it includes buidling the 

architecture of it, by defining the density of the neural network to 3 

dense layers of 64 density, until the final layer of the 3 outputs. Later we 

set the optimizer that we are going to use followed by the compiling of 

the model for our multi-class classification. Let’s take a deeper dive by 

explaining the preparation of the training process in more detail. 

https://www.researchgate.net/publication/328333982_A_Deep_Recurrent_Neural_Network_with_BiLSTM_model_for_Sentiment_Classification
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30. BiLstm Architecture 
 

1. model = Sequential 

 

    This line initializes a Sequential model, which allows for the linear 

stacking of layers. The Sequential model is simple and straightforward, 

ideal for building plain stacks of layers where each layer has exactly one 

input tensor and one output tensor. 
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2. Embedding(input_dim=max_words,output_dim=128, 

input_length=max_len), 

 

    The Embedding layer turns positive integers (indexes) into dense 

vectors of fixed size. It is commonly used as the first layer in a model to 

handle text data by converting words into vectors. 

 

3. Bidirectional(LSTM(64, return_sequences=False)), 

 

    This wrapper allows the LSTM layer to process the input sequence in 

both forward and backward directions, capturing dependencies from 

both past and future contexts. LSTM(64): This specifies a Long Short-

Term Memory (LSTM) layer with 64 units (neurons).  

 

    When return_sequences=False, the LSTM layer will return only the 

output of the last time step. This means that the layer outputs a single 

vector for each input sequence, which is typically the final hidden state 

of the LSTM after processing the entire sequence. This setting is used 

when the subsequent layers (such as dense layers) require a fixed-size 

input, rather than a sequence of outputs from each time step. 

 

4. Dense(64, activation='relu'), 

 

    This Dense layer has 64 units and uses the ReLU activation function. 

The ReLU activation introduces non-linearity, which helps the network 

to learn complex patterns by adding the capacity to the model. 
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5. Dropout(0.2), 

 

    Dropout is a regularization technique where a fraction (0.2 or 20% in 

this case) of the input units are randomly set to 0 at each update during 

training time, which helps prevent overfitting. 

 

 

6. Dense(3, activation='softmax') 

 

    The final Dense layer with 3 units and softmax activation function. The 

softmax function outputs a probability distribution over 3 classes, 

making it suitable for multi-class classification tasks. 

 

7. optimizer = Adadelta() 

 

   As we have already said on the previous detailed of the AdaDelta 

optimizer. AdaDelta is an optimization algorithm that adapts learning 

rates based on a moving window of gradient updates, making it robust 

and well-suited for problems with sparse gradients or noisy data, 

making it most suitable on our case in which we have a small amount 

of data. 

 

8. model.compile(optimizer=optimizer, 

loss='sparse_categorical_crossentropy', metrics=['accuracy']) 

 

    This line compiles the model with the Adadelta optimizer, using 

sparse categorical crossentropy as the loss function, which is 



Degree thesis Giannis Touloupis 

 

66 
 

appropriate for integer-labeled multi-class classification tasks. The 

accuracy metric is used to evaluate the model’s performance. 

 

9. model_checkpoint_callback = ModelCheckpoint( 

 

    ModelCheckpoint is a callback function that saves the model after 

every epoch. This callback is useful to ensure that the best performing 

model on the validation set is saved during training. 

 

 

10. early_stopping_callback = EarlyStopping( 

 

    Also an EarlyStopping function is used so the training it can be 

stopped automatically when a monitored metric ('val_loss') has 

stopped improving. This is useful to prevent overfitting and to save 

training time by stopping early if the model performance is getting 

worse, in our training if the performance is not improved after 8 

epochs the training stops . 

 

11. def lr_schedule(epoch): 

    Defines a function to adjust the learning rate based on the epoch 

number. This custom learning rate scheduler helps improve our model 

convergence by reducing the learning rate as training progresses. In 

our learning rate scheduler we define an initial leaning rate to 1.0 and 

after training on 2 epochs we starting reducing the leaning rate by 0.1 

in every epoch. 
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12. lr_scheduler = LearningRateScheduler(lr_schedule): 

    Initializes the LearningRateScheduler callback with the defined 

learning rate schedule function. This callback dynamically adjusts the 

learning rate according to the schedule during training. 

 

5.6 BiLstm training. 
 

    For the training procedure, we set the number of epochs to be 20 

and our batch size to be 6, a small but a good option for our small 

dataset. In addition, we set the validation split to 0.1, that means that 

an amount of 10% is going to be kept from the training data for 

validation purposes. Furthermore, at the end of the model.fit 

function, we also call our callbacks which we mentioned previously. 

 

31. BiLstm Training 
 

    After the training we evaluate our model on the test data and then we 

save the best training step of our training procedure. The results of the 

training can be seen below. 
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32. BiLstm Training Results 
 

 

    We also used some random data that are not included in our dataset 

to check out the predictions of our model: 

 

33. Creation of dummy data 
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34. Prediction results on the dummy data 

 

 

 

 

 

 

 

 

 

 

 



Degree thesis Giannis Touloupis 

 

70 
 

Chapter 6 

6.1 Conclusions. 
 

    This thesis covered in detail the topic of text classification using a BERT 

and a BiLSTM model to classify tweets related to COVID-19. First, we 

provided a general description of the technologies and techniques used 

in neural network models. Next, we detailed the code used, starting with 

data preparation for the two models and outlining the differences and 

similarities between BERT and BiLSTM.  

 

    We also created graphs to represent the data statistics, allowing us to 

observe the state and content of the data. Subsequently, we analyzed 

the libraries, optimizers, and other techniques employed. Additionally, 

almost every line of the models was explained, including the rationale 

for their use, and compared to the other model. 

6.2  Improvements and Future work. 
    First of all, it is widely known that COVID-19 was a very delicate 

situation, and so were the opinions that everyone developed. Alongside 

this, scientific discoveries and laws kept changing and still do, making it 

difficult in some cases to classify an opinion with just a number from 0 to 

1. 

   With this in mind, the specific dataset can be improved and maintained 

in the future. Also, if the Twitter (X) API remains accessible and free, it 

will be extremely beneficial for the improvement of the dataset by 

adding more training data, making it more precise and covering more 

COVID-19 topics. With that said, some changes and tuning could be done 

again if the dataset is changed. 
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