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Summary

This thesis refers to the architecture of deep learning models . This is
accomplished by using the deep learning models to classify tweets
related to Covid-19 to three different categories. The first category as
tweets which are in favor of vaccination, agree and implement methods
of protection against the virus. The second category as tweets which are
against the vaccination and promote conspiracy theories. The third
category as tweets which they have a neutral stance.

Specifically, to solve the problem above they have been collected a
number of tweets so we can train the two deep learning models we are
using, a Bidirectional LSTM and a Bert model. These models are going to
be analyzed and explained through every step and at the same time we
will emphasize some differences between those two models.

To train these models we have firstly to collect those tweets and
categorize them, also during this step we had to find another collection
method due to twitter policy changes. In addition, we will present the
preparation of those tweets so that the models can accept them and use
them to train as best as possible.

The whole preparation and the process is described in detail later on and
the results and any observations of the models at the end.

Key words: Al ,machine learning model ,BiLSTM, Bert, transformers,
tweets, dataset, covid, vaccine, Optimizers, data, training



Degree thesis Giannis Touloupis

MNepiAndin

Autl n SUTAWMATIK €pyacia avadpEPETAL OTNV APXLTEKTOVIK TWV
HOVTEAWV BabLdc pabnong. Auto EMITUYXAVETOL LE TN XPrON MOVIEAWVY
BaBLac pabnonc yla tnv tagvopnon twy tweets nov oxetilovral pe ToV
Covid-19 og tpelg SltadopeTIkEC Katnyoplec. H mpwtn katnyopia adopd
tweets mou eival umép tou epBoAlacpoul, cupdwvouyv Kal epapuolouy
neBodouc mpootaociag katd tou Lou. H deltepn katnyopia adopd
tweets mou elval katd tou epBoAlacpol Kal TpowBolv Bswplieg
cuvwpooiag. H tpitn katnyopia adopd tweets mou €xouv oudEtepn
otaon.

JUYKEKPLUEVA, Yla TNV €miluon Tou TapaAmMAvw TPOPAAMATOC,
OUANEXONKe €vac aplbpog tweets wote va eknaldevoouvpe ta SUO
HovTéEAa BabLdg pabnong mou xpnotpomoloU e, va Alktuako MovtéAo
Bidirectional LSTM kot éva povtéAo Bert. Autd ta povtéda Oa
avoAuBouv kat Ba eEnynbouv BrRua-Briua, kot tauvtoxpova Ba Sobel
gudaon o€ KQTIOLEC Stadopec HeTOEV TOUG.
Mo val eKTTolSEVCOUE QUTA TA LOVTEAQ, ETIPETIE TIPWTO VOL CUAAEEOU E
KOL VO Kotnyoplomoljooupe ta tweets. Kata tn dudpkela avtol Ttou
BApatog xpeldotnke va Ppoupe poe véa HEB0SO ocuAhoyng Adyw
aAAaywv otnv oAtk Tou Twitter. EmutA€ov, Ba MopoUCLACOUE TNV

TPOETOLacia auTwY Twv tweets WOTE Ta POVTEAQ va UTTOPOUV va Ta
SexBouv Kol va Ta XpNOLLOTIOL)O0UV VLo eKTtadeVon HE ToV KAAUTEPO
Sduvarto TPOTO.
H OAn mpostolpacia kot n Swadikacia meplypddoviol AEMTOUEPWCS
TIOPAKATW, EVW OTO TEAOC mapouctdlovial T ONOTEAECUATO KOl Ol
TLOPATNPAOELG OXETIKA LE TAL LOVTEAQL.

NEEerg-KAeWOLA: Al , machine learning model,BiLSTM, Bert, transformers,
tweets, dataset, covid, vaccine, Optimizers, data, training, model
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Chapter 1

1.1 Introduction to artificial intelligence

Our brain from the first stages of its development at a very young age
begins to learn about the results something has on the environment and
the environment on us. For example, even what we see with our optical
system is a prediction of what we are looking to and it is not always
precise. The precision of our predictions is increasing by having more
examples in our life from stimuli we receive.

Neural networks work the same way, by receiving a set of data on
which it is trained to perform some functions and predictions.
Specifically, in most cases Al has the advantage to make predictions
much faster than the human brain and sometimes even providing
observations that may not have been apparent to the human brain.

Also, Artificial intelligence has the ability to be utilized under difficult
and dangerous conditions to jobs like mining, deep-sea and space
exploration, military and rescue operations and many more. In addition,
Al is also used for repetitive and exhausting tasks in many fields. For
example, if a company has to deal daily with an enormous volume of data
it is much more convenient to use a neural network which can work
faster, continuously and with better precision. Some of these tasks are
financial and scientific analysis, marketing research, environmental
monitoring, fraud detection, supply chain management and many more.

So far, we have analysed the term Al and its applications but that is just
the surface. A subcategory of Al is Machine learning which is also divided
into four main types based on the learning style and the nature of data
it has to process.
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A)Supervised Learning

It is the most commonly used types of machine learning. In
supervised learning, the algorithm is trained on a labelled dataset,
where input data is paired with corresponding output labels, then
the algorithm learns a mapping from inputs to outputs based on
the provided labelled examples.

Labeled Data

O Prediction Jare
DD [ ] E Mo > L[]
A J ' ‘ _|_>
A /\ Triangle

Lables

Q |:| — Test Data

Hexagon Square
Triangle

Model Training

Supervised learning schema
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B) Unsupervised Learning:

In contrast to supervised learning, Unsupervised involves training
on unlabelled data and the goal is to find patterns or structures.
within the data and without explicit output Ilabels
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2. Unsupervised learning schema

C) Reinforcement Learning:

Based on trial-and-error approach, reinforcement learning
involves training an agent to make decisions by interacting with an
environment, receiving feedback in the form of rewards or
penalties, while always trying to minimize the wrong steps.
Reinforcement learning can be usually found in trading and finance
applications and in automation, robotics and gaming industries.

10
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3. Reinforcement learning schema.

D)Deep learning

Giannis Touloupis

action
AI

A Deep neural network involves artificial neural networks with multiple
layers, making it extremely powerful and that is why they are mostly
used with large datasets and complex patterns. Specifically, deep
learning is consisted by an input layer, hidden layers and an output layer.

11
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1.2 Introduction and description of the problem

Giannis Touloupis
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This bachelor’s thesis refers to the architecture of deep learning
models. This is accomplished by using the deep learning models to
classify tweets (Text Classification) related to Covid-19 to three different
categories. The first category as tweets which are in favor of vaccination,
agree and implement methods of protection against the virus. The
second category as tweets which are against the vaccination and
promote conspiracy theories. The third category as tweets which they
have a neutral stance.

12
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Specifically, to solve the problem above they have been collected a
number of tweets. The dataset we are using is consisted by tweets from
various datasets and a number of tweets with the use of Twitter API, we
will refer to both ways of collecting data later in more detail.

The categorization has been accomplished with the help of NLP, a
subfield of artificial intelligence which makes possible the
communication between human and computer. NLP algorithms aims to
understand the meaning of a text by extracting information from it, some
applications are Sentiment Analysis, Text Summarization, Named Entity
Recognition and Text Classification which is the one we are going to
analyse.

For the implementation of Text Classification we used a Bert and a
LSTM model. Bert stands for Bidirectional Encoder Representations from
Transformers and it is cutting edge natural processing model developed
by Google. Bert is a transformer pretrained using a combination of
masked language modelling objective and next sentence prediction on a
large corpus comprising the Toronto Book Corpus and Wikipedia.

The second model is a Bidirectional Long Short-Term Memory network
an extension of a traditional LSTM model. It follows the RNN architecture
by analysing data in both directions, from the beginning to the end and
from the end to the beginning. In this manner the model will not make
rush judgments.

In the following chapters we will further discuss about the creation of
the models that we used, the collection and preparation of the data, and
observations we made.

13
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Chapter 2

Al as we already mention uses some types of models to make
predictions, the most common of them are Naive Bayes, CNN, KNN,
Random Forests, SVM, PCA, RNN and Transformers. The last two are the
ones that we are going to analyze.

The history of transformers in the context of artificial intelligence (Al)
is closely tied to the development of models like the Transformer
architecture introduced by Vaswani et al. in the paper "Attention is All
You Need," published in 2017. Transformers have since become a
foundational technology in natural language processing (NLP) and other
Al applications due to their ability to capture long-range dependencies
and relationships in sequential data. Bert model is based on this
technology.

Recurrent Neural Networks (RNNs) are a class of neural networks
designed for sequence data. They maintain hidden states to capture
sequential dependencies. RNNs are suitable for tasks involving
sequential information, such as natural language processing and time
series prediction. However, they face challenges like vanishing gradients,
limiting their ability to capture long-term dependencies, that means that
the model is not able to keep information for a long time. To solve the
underperformances that arise from the above issues, two neural
network approaches are suggested, the gated recurrent unit (GRU) and
the LSTM.

Some of the differences between those two architectures are that
RNNs process sequences sequentially, struggling with long-term
dependencies, while Transformers use parallelized self-attention
mechanisms for simultaneous input processing. Transformers, including
BERT, are more effective in capturing extensive context, allowing for

14
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better representation of sequential data. They overcome the limitations
of RNNs, offering enhanced scalability and performance in natural
language processing and other sequential tasks.

2.1 Bert model

The BERT model leverages transformer architecture for state-of-the-
art natural language processing (NLP). Unlike traditional models, BERT
processes text bidirectionally, considering both left and right context for
each word.

Transformers employ a self-attention mechanism, allowing the model
to weigh different parts of the input sequence, capturing intricate
dependencies. BERT's pre-training involves unsupervised tasks—Masked
Language Model and Next Sentence Prediction—on a vast corpus,
imparting a rich understanding of language. Fine-tuning on specific tasks
follows pre-training.

15
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5. Bert Model Diagram

Tokenization and embedding into high-dimensional vectors enable
BERT to generate contextualized representations, crucial for tasks where
word meaning depends on context, these functions are going to be
explained in detail. Multiple transformer layers and attention heads
contribute to capturing hierarchical relationships and various abstraction
levels. The contextualized embeddings and transfer learning from pre-
training to downstream tasks empower BERT with a versatile
understanding of language, resulting in remarkable performance across
diverse NLP applications. The bidirectional and contextual nature of
transformers in BERT represents a breakthrough, revolutionizing how
models comprehend and process language for advanced NLP tasks.

16


https://ojs.bonviewpress.com/index.php/JCCE/article/view/838

Degree thesis Giannis Touloupis

2.2 Bidirectional LSTM

Bidirectional Long Short-Term Memory (BiLSTM) is a type of recurrent
neural network (RNN) architecture designed to capture dependencies in
sequential data more effectively. Unlike traditional LSTMs, which
process data in a single direction, BiLSTM processes sequences in both
forward and backward directions simultaneously. This bidirectional
processing allows the network to capture context from both past and
future inputs, enhancing its ability to understand and remember long
range dependencies.

Outputs

Activation
Layer

Backward.g—-

Layer

Forward
Layer

G (.

o/ |

p

6. Bidirectional LSTM model diagram

As evident from the provided architecture, there are two LSTM models
incorporated—one operating in the forward direction, while the other
functions in the reverse direction. In a BiLSTM layer, there are two
hidden states for each time step-one computed in the forward direction

17



Degree thesis Giannis Touloupis

and the other in the backward direction. These hidden states are
concatenated, providing a comprehensive representation of the input
sequence. The bidirectional approach helps mitigate the vanishing
gradient problem associated with standard LSTMs, enabling more
efficient learning of long-term dependencies.

2.3 Natural Language Processing

Sometimes we are finding difficult to fully understand what a person
says through human language with his voice or by text and that is
because we are missing metaphors, idioms, sarcasm and plenty other
factors. When an employee has to deal with too much data and extract
information from them it can be time consuming and exhausting, making
it easier for mistakes to be made. In addition, the need to analyse so
many flowing data on the internet and extract a meaning from them
which can a lead to scientific, financial, marketing or even fraud
discovery is getting closer to impossible day by day.

That is how Natural Language Processing (NLP) is born, which is a
branch of machine learning that empowers computers to understand,
manipulate, and make sense of human language. NLP is increasingly
integral to corporate solutions aimed at enhancing operational
efficiency, boosting employee productivity, and simplifying vital business
procedures. This is done with the use of NLP techniques or a combination
of them like those below.

18
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2.4 Text translation with BiLSTM and Bert model and their
differences

Language translation involves complex syntactic and semantic
understanding, where BiLSTM and BERT transformers play distinct roles.
Bidirectional Long Short-Term Memory networks (BiLSTM) are recurrent
neural networks adept at capturing sequential dependencies by
processing input sequences bidirectionally. Their ability to retain context
information makes them suitable for shorter sentences with local
dependencies. However, BIiLSTM may struggle with long-range
dependencies and might not effectively capture intricate structures in
language.

BERT (Bidirectional Encoder Representations from Transformers)
transformers, on the other hand, use self-attention mechanisms for
parallel processing, capturing global context efficiently. Pretrained on
extensive corpora, BERT exhibits versatility but requires fine-tuning for
specific tasks. It excels in understanding complex structures and long-
range dependencies, making it well-suited for tasks involving nuanced
language translation.

The choice between BiLSTM and BERT depends on the linguistic
characteristics of the translation task. For simpler sentences with local
dependencies, BiLSTM may suffice. In contrast, BERT transformers are
preferred for tasks demanding a deeper comprehension of intricate
linguistic structures and long-range dependencies. The decision hinges
on the linguistic complexity and the nature of dependencies present in
the data.

19
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2.5 Text Summarization with BiLSTM and Bert model and their
differences

The phrase “Time is gold”, is a very famous one but also a true one,
especially when literally a business is losing money for the reason that it
misses deadlines or even just because of underproductiveness. For
example, employee to understand an undocumented project or an
uncommented source code file is spending around 60% of his working
time. Therefore, text summarization is coming to save the day.

Bidirectional Long Short-Term Memory networks present advantages
and disadvantages in text summarization. On the positive side, BiLSTM
networks excel at summarizing shorter texts with clear structures,
providing interpretability, and demonstrating training efficiency.
However, their limitations become apparent in handling long-range
dependencies, and they may struggle with capturing complex semantic
relationships in text in comparison to Bert. Despite their efficiency for
certain tasks, BiLSTMs may fall short when faced with more intricate
language patterns.

Utilizing BERT for text summarization offers substantial benefits,
including a sophisticated understanding of context, improved
comprehension of complex language structures, and exceptional
performance on diverse language tasks that is why they have more
versatility. However, the resource-intensive nature of BERT may pose
challenges in terms of computational requirements and speed.
Additionally, the model's extensive architecture might lead to limitations

20
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in real-time applications in which it is required a real-time quick
response, for example in a chatbox situation.

2.6 Sentiment Analysis with BiLSTM and Bert model and their
differences

Sentiment Analysis with Bidirectional Long Short-Term Memory has
several advantages, including its ability to capture contextual
information, discern intricate language nuances, and provide accurate
sentiment classification. It excels in handling longer text sequences,
making it suitable for diverse applications. However, BiLSTM's drawbacks
include the need for substantial computational resources, potential
overfitting on smaller datasets, and challenges in interpreting the
model's decision-making process due to its complex architecture.

On the other hand, Sentiment Analysis with BERT offers unparalleled
contextual understanding, outperforming traditional methods. Its pre-
trained contextual embeddings capture intricate language nuances,
enhancing sentiment interpretation. Additionally, BERT handles varying
sentence lengths effectively. However, BERT's resource-intensive nature
demands substantial computing power, limiting real-time applications.
Its black-box nature poses challenges in model interpretability. Striking a
balance between accuracy and computational efficiency is crucial when
employing BERT.

21
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2.7 Text Classification

Text classification is a natural language processing task that involves
assigning predefined categories or labels to textual data. Without Text
Classification some of the above NLP techniques could never work owing
to the fact that it employs machine learning algorithms to autonomously
assess and categorize text according to its content.

On top of that, Text classification is widely used in spam detection,
sentiment analysis on social media, and document categorization. It
brings automation to handle large volumes of text data, boosting
efficiency in areas like customer support, content filtering, and
information retrieval.

Based on Google developers, the Text Classification Workflow involves
a systematic process to harness the power of machine learning for
efficiently categorizing and analysing textual data :

Step 1: Gather Data

This initiates the process by collecting a diverse dataset representative
of the problem at hand. For text classification, this would include a range
of examples covering different classes or categories.

Step 2: Explore Your Data and choose a Model

Data exploration is crucial to understand patterns, distributions, and
potential challenges within the dataset. Exploratory Data Analysis (EDA)
aids in making informed decisions throughout subsequent steps.
Selecting an appropriate model is a pivotal decision. For text
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classification, models like Naive Bayes, Support Vector Machines (SVM),
or deep learning architectures such as recurrent neural networks (RNNs)
and transformers like BERT are common choices.

Step 3: Prepare Your Data

Data preparation involves cleaning, tokenization, and vectorization of
text. It transforms raw text into a format suitable for machine learning
algorithms, converting words into numerical representations.

Step 4: Build, Train, and Evaluate Your Model

This step involves constructing the chosen model, training it on the
prepared dataset, and evaluating its performance using metrics like
accuracy, precision, recall, and F1-score.

Step 5: Tune Hyperparameters

Fine-tuning hyperparameters is crucial for optimizing model
performance. This step involves adjusting settings like learning rates or
regularization parameters to enhance the model's efficacy.

Step 6: Deploy Your Model

Once satisfied with the model's performance, deployment brings it into
practical use. This could involve integration into applications, websites,
or systems to perform real-time text classification tasks.
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In essence, this workflow ensures a structured and iterative approach,
emphasizing the importance of data quality, model selection, and
continuous refinement to achieve robust text classification models. In
the following chapters we will take a look at these step with the help of
BiLSTM and Bert.
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Chapter 3

3.1 The importance of a dataset

The foundation of a successful machine learning applications stands
on a well-prepared collected dataset, so it can ensure that the models
are trained on high-quality data, leading to better performances and
enhanced reliability in real-world scenarios. Dataset types vary
depending on the case, some of the most common are:

Numerical Data:

Example: Daily temperature recordings in Celsius, ranging from 15 to
30 degrees over a month, capturing variations in weather patterns.

Categorical Data:

Example: Movie genres (Action, Drama, Comedy) categorizing films
based on their content, aiding in personalized recommendation systems
for viewers.

Text Data:

Example: Customer reviews for a product, containing textual
sentiments like "great," "average," or "poor," facilitating sentiment
analysis for product feedback.
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Image Data:

Example: Satellite images of urban areas, capturing visual patterns for
land-use classification, assisting in urban planning and resource
allocation. It is important to say that this type is also belonging to
healthcare Al techniques, a very large area in which based on the
patterns of medical images (e.g. X-rays) we can make diagnostics for
patients.

Temporal Data:

Example: Hourly energy consumption data, recording power usage
fluctuations throughout a day and across seasons, enabling predictive
modeling for energy demand and supply management.

These types of data are only some of the many and that is due machine
learning continually evolves, introducing new types of datasets based on
emerging technologies and research areas.

3.2 Dataset collection

Our Dataset has 2 columns, the first one is called “Tweets” which is
consisted of 5860 tweets. Each one is manually categorized on the
second column called “Type” based on its content.

The 400 first tweets were collected totally manually by experimenting
with Twitters search tools, so we can evolve a general idea around the
content of the tweets, famous hashtags, trending words and social
groups. Afterwords, the twitters APl was used to collect around 2000
more tweets by referring to the hashtag that we wanted a tweet to have.
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import tweepy
import pandas as pd

bearer_token =

client = tweepy.Client(bearer_token=bearer_token)

hashtag = "CovidNotReal®

num_tweets = 500

query = "#CovidNotReal -is:retweet"'

for tweet in tweep or(client.search_recent_tweets, query=query,tweet_fields=['context_annotations', 'created_at'], max_results=100):
tweets list.app t_text])

tweets_df = pd.DataFrame(tweets_list, columns=['Text'])

tweets_df.to_csv("tweets_covid_not_real.csv", index=False)
7. Python script to extract tweets based on hashtags.

Sadly, after the acquisition of Twitter by Elon Musk on April 14, 2022,

and concluded on October 27, 2022, the restricted free use of Twitter
has been stopped. The need for more data leaded to search for covid
related datasets on the internet, all of them are mentioned at the final
chapter.
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3.3 Dataset preparation

In this section we will describe in detail the google colab blocks of code
that was used for the preparation of the dataset for Bert and BiLSTM.
These two models have some common preparation steps but some other
are different because of the different architecture.

First, we load the csv file which contains the tweets via a google drive
link with the help of pandas library. Pandas is a powerful data
manipulation and analysis library for Python. It provides data structures
like DataFrame for efficient data handling and analysis.

pandas pd

file id = "1LT7L

download link = I - L gle. id={file id}

data = pd.read_csvdownload link, encoding="1 n-1"; header=a)

9. Pandas import and dataset load

At the image below then we shuffle the rows but also keeping the type
of each tweet at the second column. The reason behind this is to ensure
that the training is not biased, especially during the split between
training and testing that we will discuss later on. We are keeping the
columns that we are going to need for the training, only the Tweets and
their Type.
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[13]
data = data|

data. head( )

Tweets Type  [5H

and three of us got our booster dose today! #g... 0 u
great to see investment in fmd preparedness an...
trust me, this #coronavirus bullshit will be o...
due to an older population demographic? why ...

because those vaccinated and received their bo...

Mext steps: View recommended plots

[28]

df_shuffled = data.sample(frac=1)

data = df shuffled.reset_index{drop=
print{data)

Tweets Type
explains dliberal brutal response to unvaxooed
just got fourth shot. Fteampfizer. Bsec
google &amp; facebook ban ads for face
evern 8 mild case of covid-19 is extremely
"if there is one space that all vulnerable peo...

[F. O R T R -]
k
.
SRR

viruses are constantly changing, creating new ...
rtkennedyjr accountability d justice is...

Ehuitiemergenc ymed @ ghamionens @jeremyfaust &...

govl must open up on coronavirus @dailynewszim
i started working from home full-time last mon...

MR D@

[5B68 rows x 2 columns )

10. Dataset format

In addition, a function is created which is used to remove any links
from the tweets that could confuse our two models, making them more
complex by thinking that every link is a different word. Also, we are
converting every upper-case letter to a lower case letter, so that a word
like “Deathshot” to be the same and have the same impact like the word
“deathshot”. At the end with the NLTK dataset some English stopwords
are excluded from the Tweets.
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nltk.download
nltk.download

remove_links({text):
rn re.sub{r"http\s+', » text)
data[ ‘Tweets'] = data[ ' Tweets"].apply(remove_links).str.lower()

stop_words
for word in word token (¥} if word.lower() not in stop_words )

print{f"Null
print{“Null

Null values in
Null values inm "type": False

data.groupby (" Type" ) .nunique(}

Tweets @
@

11. Cleaning data and checking for null values

3.4 Graphs and Charts

Moreover, we are gaining some insights into the most frequently used
word within each category (pro-vaccine, anti-vaccine, or neutral) and
visualize them through word clouds and bar charts with the help of
Matplotlib, Counter and WorldCloud libraries.
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om_frequencies(word_counts )

12. Creating graphs and charts

The block of code begins by defining a common set of English words to
exclude them from the analysis, so that they will not interfere to the
statistics. Afterwards, it uses the Counter dictionaries to store word
frequencies for each category, the text processing function
“preprocess_text” tokenizes and removes non-alphabetic characters.
Then through the loop the frequency of each word for each category is
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being updated so that we can generate a cloud of the most used words
with WordCloud.

The plot_word frequencies function is designed to display word
frequencies in a visually appealing manner:
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13. Word Frequency for Pro-Vaxx Tweets

Anti-Vaxx Most Used Words
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14. Word Frequency for Anti-Vaxx Tweets
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Neutral Most Used Words
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15. Word Frequency for Neutral Tweets

Additionally, the script includes a function, plot_word_frequencies_bar
to create bar charts showing the top 10 most common words for each

category:
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17. Word Frequency for Anti-Vaxx Tweets with custom chart
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18. Word Frequency for Neutral Tweets with custom chart

These visualizations are important to understand the content of a
dataset and valuable insights by extracting useful information like
patterns and biased words.
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3.5 Dataset preparation for Bert Model

Till now we are utilizing some cleaning techniques so we can be more
specific and less bewilder for what we want, having as an outcome to get
as much precise results as we can. Nevertheless, the data preparation
does not stop here, it is mandatory to change the form of the dataset
accordingly, so that each model can understand the human language as
we have previously said.

For the Bert model, we must follow the following conventions:

[13] texts = data["T "].tolist()
labels = data[ 'Type'].tolist()

import Dataset
3ertTokenizer, BertForSequenceClassification

s, tokenizer, max_length):

bels = labels

s -max_length = max_length
self.tokenizer = tokenizer

_len_ (self):
return len(self.texts)

text = str(self.te d

label = self.label ex]

encoding = self.tokenizer.encode plus(
text,

| ncoding[ " at
torch.tensor(label, dtype=

19. Dataset preparation for the Bert model 1.1
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First of all, the columns “Tweets” and “Type” are moved to two lists
accordingly. Afterwards, torch library is imported which is the core
PyTorch library for tensor computations and deep learning. The
importation of Dataset from torch.utils.data is a data handling module,
it provides the ability to create custom datasets, which in our case it is
going to handle and change data efficiently for the training part of the
model.

Next, we create a class which defines a custom dataset that inherits
from the Dataset class which is provided from the Pytorch library. Then
with the function “ __init__ “, we initialize and below we assing the
dataset with the provided texts, labels, a tokenizer and the maximum
length for the text encoding.

o

o ”

The function “__len__” is used to return the text length of all the
tweets. With the “__getitem__” method we process a specific item in a
dataset, it takes an index and retrieves the corresponding text and label.
The text is tokenized using a tokenizer, ensuring a maximum length, and
adding special tokens. The resulting encoding includes input IDs and
attention mask tensors. The method returns a dictionary containing
flattened input IDs and attention mask, along with the label converted
to a PyTorch tensor with a long data type. This facilitates seamless
integration with PyTorch for natural language processing tasks, where
input data needs to be transformed into a format suitable for training
machine learning models.
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In addition, from the Hugging Face Transformers library we are
utilizing the BertTokenizer, it is used for tokenizing and preprocessing
text data for our Bert model, meaning that it will convert our tweets into
numerical tokens that will be inserted into our Bert model. At the next
lines, we use the libraries to load a pre-trained BERT model and its
associated tokenizer.

[15] from transformers import BertTokenizer, BertForSequenceClassification

tokenizer = BertTokenizer.from pretrained( bert-base

dataset = CustomDataset(texts, labels, tokenizer, max_length=128)

from torch.utils.data import DatalLoader

batch_size = 32
train_size = int(8.85 * len(dataset))
train_dataset, test dataset = torch.utils.data.random_split(dataset, [train_size, len/ dataset - train_size])

train_dataloader = Dataloader(train_dataset, batch_size=batch size, shuffle= )]
test_dataloader = Dataloader(test_dataset, batch_size=batch _size, shuffle= )

20. Dataset preparation for the Bert model.1.2

The BertTokenizer.from_pretrained('bert-base-uncased') initializes
the tokenizer for the 'bert-base-uncased' model, which is trained on
uncased English text. Next, we are creating an instance of the
CustomDataset class, this line initializes the dataset using the following
parameters:

texts: the collected tweets.

labels: The corresponding labels for the text data.tokenizer
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max_length=128: A specified maximum length for the input
sequences. This parameter is used for padding or truncating the input
sequences to a consistent length.The CustomDataset class is expected to
handle the loading and preprocessing of the dataset based on these
parameters, making it suitable for training our Bert model.

Later on, another important class we are importing from the PyTorch
library is Dataloader, it facilitates loading and batching of data during
training and testing. In our case we are setting the batch size at 32 size,
it means that 32 data samples are going to be processed in each iteration
during the training.

Then we with the “train_size = int(0.85 * len(dataset))”, we indicate
that the size of the training set is 85% of the total dataset length. Right
after, we split the dataset into training and testing randomly to be sure
that both datasets have diversity.

When all was said and done, the data preparation for the Bert model
ends by creating a dataloader for the training and test by loading their
corresponding datasets to them, the same batch size but enabling the
shuffling the data in each epoch only for the “train_dataloader”.

3.6 Dataset preparation for BiLSTM Model

Just like Bert model, before the training of the BiLSTM model the data
have to be converted to the right form. In the realm of natural language
processing, the efficacy of deep learning models hinges on the quality of
their training datasets. Crafting an optimal dataset for a Bidirectional
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Long Short-Term Memory (BiLSTM) model involves a delicate
orchestration of textual data preprocessing. We will dive into the
thorough steps taken to prepare a robust dataset, encompassing
tokenization, sequence padding, and the integration of pre-trained
GloVe embeddings. Each facet of this process, outlined in the
subsequent chapters, contributes to the foundation upon which the
BiLSTM model will embark on its journey to unravel the intricacies of
language and meaning.

First of all, we are setting max_words to the total number of texts to
represent the maximum number of words considered during
tokenization.

Then, just like Bert model we initialize the ‘Tokenizer’, which will be
used to vectorize text. num_words=max_words limits the tokenizer to
consider only the top max_words most frequent words in the dataset.
Afterwards, we create a dictionary of word indices based on word
frequency. It converts each word in the texts into a unique integer index.
At the exact next line, the transformation of text into sequences of
integers is followed, where each integer corresponds to the index of a
word in the tokenizer's dictionary. This makes the text data suitable for
input into machine learning models.

Later, “max_len” is calculated and defined by the length of the longest
sequence in the sequences list. This value is used to pad all sequences to
the same length for uniform input size in a model. We also define a
variable (‘X’) ,which represents padded data of each sequence to ensure
that they all have the same length, defined by max_ len.

If a sequence is shorter than max_len, it is padded with zeros (or
another specified value) at the beginning or end, If it’s longer, it’s
truncated.

In another variable (‘y’) we also define the list of our labels into a
Numpy array, so they can be used in our machine learning framework.
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For the crucial step of the dataset splitting, we use the
‘train_test_split’ function, which is imported from scikit-learn, enabling
the convenient division of a dataset into training and testing sets for
machine learning model development. More specifically, X and y are
divided such that 85% of the data goes into the training set (X_train,
y_train) and 15% goes into the testing set (X_test, y_test), as specified by
test_size=0.15. Last but not least we set a random_state to 42, which
ensures reproducibility by seeding the random number generator, so the
split is the same each time the code is run.

rt nmumpy as np
klearn.model selection import train test split
Tokenizer
import pad_sequences

max_words = len{texts)

tokenizer = Tokenlzer (num words—max_words)
tokenize on_texts(texts)

sequences = tokenlzer.texts to sequences(texts)

max_len = max({len(seq) for seq in sequences)

pad_sequences(sequences, maxlen=max_lem)
np.array({labels)

¥_train, X_test, vy train, yv_test = train_test split{x, v, test sire-8.15, random state=42)

21. Dataset preparation for the BiLSTM model,
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Chapter 4

4.1 Bert model creation

In the journey toward building a powerful sentiment analysis
model, we now embark on the creation of a BERT model. The data,
meticulously prepared in the earlier phase, lays the foundation for our
BERT model. This transformer-based architecture, pre-trained on vast
corpora, brings unparalleled proficiency in capturing intricate patterns
and nuances of language. As we delve into model construction, the
utilization of fine-tuning on natural language analysis, allows BERT to
adapt and excel in our domain. Our arsenal includes the AdamW
optimizer, a variant of Adam designed for BERT fine-tuning, and the
indispensable learning rate scheduler to optimize training efficiency. We
embrace the flexibility of dropout layers to prevent overfitting,
enhancing the model's generalization capabilities. In this journey, each
line of code becomes a keystroke in orchestrating the symphony of
machine learning. The model evolves through epochs, refining its
comprehension of sentiment nuances with every iteration. As we
navigate this intricate path, the convergence of data preparation and
BERT model creation promises a sentiment analysis model that
transcends boundaries, unlocking the profound subtleties embedded in
language.
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We start by installing to our environment the transformers, the pip
install transformers command is crucial for training BERT (Bidirectional
Encoder Representations from Transformers) models as it installs the
"transformers" library, a key dependency for working with transformer-
based models like BERT. This library provides pre-trained transformer
models, including BERT, and enables efficient implementation, fine-
tuning, and utilization of these models for various natural language
processing tasks. By installing this package, users gain access to a wealth
of pre-trained models, tokenizers, and utilities, streamlining the
development and training of BERT-based models for our corresponding
task.

[18] pip install transformers

Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement alread
Requirement already satisfied:

22. Installation of transformers,

4.2 Bert model initializations

Then we are importing the required functions for the operation of the
training. Firstly we import from the transformers library the
“BertForSequenceClassification”, which is a fine-tuned pre-trained Bert
model for sequence classification tasks and then the
“get_linear_schedule_with_warmup” function, it's purpose is to
schedule the learning rate during training, crucial for fine-tuning pre-
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trained models like BERT, ensuring effective optimization.

Afterwards, we import “optim” from torch library which provides
optimization algorithms, AdamW, a variant of Adam with weight decay,
suitable for BERT fine-tuning. From the same library we continue by
importing the “Dropout” function, responsible for the regularization of
our model, by randomly setting a fraction of input units to zero during
training, preventing overfitting.

~om transformers import get linear_schedule with_warmup,BertForSequenceClassification
~t torch.optim as optim
torch.nn import Dropout

sklearn.model selection import train_test split
sklearn.metrics import accuracy score, confusion_matrix
tqdm import tgdm

import cswv

23. Function importation for Bert model

Next, from “sklearn” library we import three functions. The first is the
“train_test_split”, which splits data into training and testing sets,
facilitating model evaluation on unseen data for robustness assessment.
Then, from “sklearn.metrics” we import the “accuracy_score” function
which calculates the accuracy of model predictions, comparing them to
true labels and the “confusion_matrix” function, which constructs a
confusion matrix to evaluate the performance of a classification
algorithm by visualizing true positives.

At the end, we import the “tqdm” for visual needs, which provides a
progress bar during the training. The last is the “csv” function, which
allows us to handle csv files during training.
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The building of the model is starting by initializing the model with
BertForSequenceClassification.from_pretrained  ('bert-base-uncased’,
num_labels=3) loads the BERT model for sequence classification with
three output labels. These pre-trained components facilitate efficient
natural language processing tasks, with the model specifically configured
for multi-class classification tasks with three possible labels. Additionally,
we set the model to use a GPU ('cuda’) if available, otherwise, it uses the
CPU.

model = BertrorsequenceClassification.from pretrained('bert-base-uncased’, num_labels=3)

device = torch.device('cuda® if torch.cuda.is_available
model. to{device)

for param in model.bert.embeddings.parameters():
param.requires_grad =

optimizer = optim.Adamsl(model.parameters(), lr=2e-5)
num_epochs = 7
num_warmup_steps = @

num_training steps = num_epochs * len(train_dataloader)
scheduler = get linear schedule with_warmup(optimizer, num_warmup_steps=num warmup_steps, num training steps-mum_training steps)

24. Initializations for the Bert model.

After the initialization we added a freezing method for the embedding
layers, the reason behind that is to prevent the parameters of the Bert
model from being updated during fine tuning, as the often contain rich
pretrained contextual information.

The next very important initialization is the implementation of the
AdamW optimizer for updating the model parameters during training,
with a learning rate of 2e-5. Specifically, AdamW is an optimization
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algorithm derived from Adam, designed to improve weight decay
handling in neural network training. Introduced by Loshchilov and Hutter
in 2017, AdamW decouples weight decay from the optimization step,
mitigating its negative impact on adaptive learning rates. This
modification enhances training stability and performance. For more
details, you can refer to the original paper titled "Fixing Weight Decay
Regularization in Adam" by I. Loshchilov and F. Hutter.

Furthermore, the number of epochs we are going to use are set to 7,
that declares number of times the model will be trained on the entire
training dataset. Also, we superinduce a learning rate scheduler which
adjusts the learning rate during training to optimize convergence. Its
purpose is to dynamically adapt the learning rate based on the model's
performance, enhancing training stability, speeding up convergence in
the initial phases, and ensuring accurate parameter updates as training
progresses.

4.2 Bert model training

After the above initializations, now it is the time to implement them in
the iteration of the training part. We begin by declaring three variables,
the “best_loss” which Initializes the best loss to positive infinity for
comparison during early stopping, the “patience” which determines the
number of epochs to wait for accuracy improvement before stopping
and the “counter” which is the one which calculates the unimproved
iterated epochs.
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First of all, we create a loop based on the number of declared epochs
and we start by setting the model to training mode with “model.train()
and our counters for training metrics. Then we create a batch loop which
iterates through batches in the training data and displays a progress bar.
Inside the loop we begin by transferring the data of each batch to the
device.

best_loss = float('inf"')
patience
counter = @

for epoch in range(num_epochs):
model.train()
total_loss = @
correct_predictions
total_predictions =

=]

-]

for batch in tgqdm(trai alo: o {epoch+1}/{num_epochs}"):
input_ids = batc i o{device}
attention_mask mask'].to{device}
labels = batch[ label’].to(dev

optimizer.zero _grad()

outputs = model{input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss

logits = outputs.logits

loss.backward()
optimizer.step()
scheduler.step()

total_loss += loss.item()

_, predicted_labe = torch.max(logits, 1)

correct_predictions += (predicted labels == labels).sum().item(}
total predictions += labels.size(8)

accuracy = correct predictions / total predictions
average_loss = total_loss / len(train_dataloader)

print( epoch+ um_epochs}:")
print( rain accuracy:.4f1"}
print(f” {average loss:.4f}™)

scheduler. step()

if average_loss < best_loss:
best lo average loss
counter = @

counter +=
if counter patience
a el training halted.")

25. Building of the Bert model 1.1
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e batch['input_ids']:

Refers to a sequence of numerical tokens representing a batch
of input text data. In natural language processing, these input IDs
are often indices corresponding to words in a vocabulary. These
tokenized input IDs serve as the model's input, enabling it to
process and learn patterns within the text data.

batch['attention_mask']:

An attention mask in the context of neural networks, particularly
in natural language processing tasks, is a binary matrix indicating
which tokens in a sequence should be attended to and which
should be ignored. It helps our model to focus on relevant parts of
input sequences during processing. In the Transformer
architecture, attention masks are used to prevent attending to
padding tokens, ensuring that the model considers only actual
tokens for information processing, allowing for more effective and
efficient learning of contextual relationships in the input data.

batch['label'] :

Represents the ground truth labels associated with a batch of
input data in supervised learning tasks. In our natural language
processing, are numerical indices indicating the correct category
for each corresponding input sample (0, 1 or 3). During training,
the model compares its predictions to these labels, and the
discrepancy guides parameter updates through backpropagation.
Accurate labels are essential for the model to learn and generalize
effectively, enabling it to make meaningful predictions on unseen
data.
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e optimizer.zero_grad():

Before computing the gradients for the model parameters, this
line clears any previously accumulated gradients.

outputs = model(input_ids, attention_mask=attention_mask,
labels=labels):

This line of code signifies a crucial step in the training process of
a BERT-based model for sequence classification. This line conducts
a forward pass through the neural network, where the model
processes input sequences and generates predictions. Additionally,
‘outputs’ variable capture and enfold the results of the forward
pass, including the computed loss and raw logits. These logits
represent the unnormalized scores assigned to each class, serving
as the basis for subsequent steps such as backpropagation and
parameter updates during the training iteration. In a few words, it
transforms input sequences into meaningful predictions while
facilitating the optimization process through the computation of a
training loss.

loss = outputs.loss:

Extracts the loss from the model's output. For sequence
classification tasks, the model's output includes a loss attribute,
representing the difference between the predicted logits and the
true labels. This loss is a measure of how well the model is
performing on the given batch.
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e |ogits = outputs.logits:

Retrieves the raw logits from the model's output. Logits are the
unnormalized predictions before applying a softmax function. They
represent the model's confidence scores for each class. These logits
can later be used to compute probabilities or make predictions
based on a chosen threshold.

loss.backward():

This line computes the gradients of the model's parameters with
respect to the training loss. These gradients represent the direction
and magnitude of the steepest ascent in the loss landscape. They
quantify how much each parameter contributed to the error,
providing crucial information for adjusting the model's weights.

optimizer.step(): After computing the gradients, this line updates
the model's parameters using the optimization algorithm (AdamW,
in this case). The optimizer adjusts the weights to minimize the loss,
employing the computed gradients and the learning rate. This step
is essential for iteratively improving the model's performance.

scheduler.step():

Inside the loop it adjusts the learning rate for each optimization
step. The learning rate scheduler (scheduler) adjusts the learning
rate during training. Here, it's utilizing a linear schedule with warm-
up. It ensures a gradual increase in the learning rate during the
initial training steps, followed by a linear decay. Dynamic learning
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rate adjustments contribute to stable and efficient model
convergence.

total_loss += loss.item():

This line accumulates the current batch's loss to the running total
loss. It is a running sum that represents the cumulative training loss
over all batches processed during the current epoch. This value is
later used to calculate the average loss for the epoch.

_, predicted_labels = torch.max(logits, 1):

The torch.max(logits, 1) operation is used to predict the class
labels for each input sequence in the batch. The model's raw logits,
representing class scores, are passed through a softmax function
internally, and torch.max returns the predicted class indices. The
variable predicted _labels holds these predicted class labels.

correct_predictions += (predicted_labels == labels).sum().item():

This line calculates the number of correct predictions within the
batch. It compares the predicted labels (predicted_labels) with the
true labels (labels) and sums up the cases where they match. The
resulting count is added to the running total of correct predictions.
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e total_predictions += labels.size(0):

The variable total_predictions keeps track of the total number of
predictions made during the current epoch. It increments by the
batch size (labels.size(0)) on each iteration, representing the
cumulative count of predictions made across all batches in the
epoch.

After the batch loop we calculate and print the progress of our
training in every epoch.

accuracy = correct_predictions / total_predictions:

This line calculates the accuracy for the current epoch. The
correct_predictions variable holds the total number of correctly
predicted instances, and total_predictions represents the total
number of predictions made by the model during the epoch.
Dividing the number of correct predictions by the total predictions
yields accuracy, indicating the proportion of correctly classified
instances.

average_loss = total_loss / len(train_dataloader):

Computes the average training loss for the epoch. The total_loss
variable accumulates the sum of losses across all batches during
the epoch, and dividing this sum by the total number of batches
(len(train_dataloader)) provides the average loss. This metric helps
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assess the overall performance of the model on the training data,
providing insights into its ability to minimize the error across
different batches.

e scheduler.step():

after the loop allows for a final adjustment of the learning rate at
the end of each epoch. This step ensures that the learning rate is
appropriately updated for the next epoch.

At the end of each epoch iteration in this early stopping check we
monitor the trend of the average training loss. If the loss does not
improve for a certain number of consecutive epochs (determined by the
patience parameter), the training loop is terminated to prevent
overfitting and save computation resources.

if average loss < best loss:
best loss = average loss
counter =
else:
counter 4= 1
if counter »>= patience:
print(“Early stopping. Model training

break

8

26. Bert’s training early stopping
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4.3 Bert model testing evaluation

To begin with, in PyTorch, model.eval() is employed during evaluation
to set the model in a state that deactivates training-specific operations
like dropout and batch normalization. This ensures consistent inference
results by maintaining fixed parameters. During evaluation, gradients are
unnecessary, and these operations can introduce randomness.

model.eval()
all labels = []
all predictions

with torch.no_grad():
total loss = @
correct_predictions = @
total predictions = @

for batch in test_dataloader:
input_ids = batch[in .to(device)
attention mask = b ion_mask"].to(device)
labels = batch['label’].to(device)

model . to{device)

outputs = model(input_ids, attention_mask-attention mask, labels=labels)
loss = outputs.loss
logits = outputs.logits

total loss += loss.item()

_, predicted labels = torch.max(logits, 1)

correct_predictions += (predicted labels == labels).sum().item()
total_predictions += labels.size(8)

accuracy = correct_predictions / total predictions
average_loss = total loss / len(test_dataloader)

print(f"
print(f"

model.eval()

torch.save(model.state _dict(), 'bert_sentiment model.pth')

27. Bert’s training
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By invoking model.eval(), the model behaves deterministically,
guaranteeing reproducibility and preventing overfitting to the training
set. This is essential for reliable assessments of a model's performance
on unseen data, such as when calculating accuracy and loss during
testing, as it avoids discrepancies introduced by training-specific
mechanisms and contributes to robust model evaluation. Moreover,
“all_labels “and “all_predictions” are Lists to store true labels and
predicted labels for later wuse in the confusion matrix.

Next, we create our evaluation loop, generally this loop follows the
training loop logic, so we are going to describe mostly it’s differences.

torch.no_grad(): This function initializes the loop which Inside this
block, PyTorch disables gradient computation. This is done to save
memory and processing power since during evaluation, you don't
need to calculate gradients for backpropagation. It speeds up the
inference process and reduces memory consumption. we initialize it
with the “with torch.no_grad()”, inside this block, PyTorch disables
gradient computation. This is done to save memory and processing
power since during evaluation, you don't need to calculate gradients
for backpropagation. It speeds up the inference process and reduces
memory consumption.

for batchin test _dataloader: Just like the train batch loop, the test batch
loop it Iterates through batches in the test dataloader. The test
dataloader provides batches of data for evaluating the model on unseen
examples. The only difference inside this loop is the “model.to(device)”
line, which ensures the model and data are on the same device (CPU or
GPU). This is necessary for proper computation, and it's especially
important when using GPUs for acceleration.

54



Degree thesis Giannis Touloupis

Later on, we print the testing and average loss from the evaluation
loop, we call model.eval() again to ensure that the model is in evaluation
mode after the evaluation loop .

In summary, this evaluation loop is designed to rigorously assess the
performance of the BERT model on the test data. It calculates accuracy
and loss, crucial metrics for evaluating the model's effectiveness in
making predictions on unseen examples. The model.eval() and
torch.no_grad() ensure that the evaluation process is consistent,
efficient, and does not interfere with the model's parameters or memory
usage.

At the end we save the checkpoint of the epoch with the best accuracy
in a dictionary which contains the entire state of the model, It includes
all the learnable parameters and their current values.

28. Bert’s results
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Chapter 5

5.1 BiLSTM model creation.

After analyzing the Bert model, now it is time for the BiLSTM model.
In natural language processing and text classification tasks, Bidirectional
Long Short-Term Memory (BiLSTM) networks have proven to be highly
effective. By incorporating information from both past and future states
of a sequence, BiLSTMs excel at capturing contextual dependencies in
text data. To create a BiLSTM model, we leverage libraries such as
TensorFlow and Keras. Using the Tokenizer and pad_sequences
functions from TensorFlow, we preprocess the text data, converting it
into sequences of numerical tokens and ensuring uniform length.

With the Sequential model from Keras, we define our neural network
architecture layer by layer, including an Embedding layer to generate
word embeddings, Bidirectional LSTM layers for sequence processing,
and a Dense layer for classification. Finally, we compile the model with
an optimizer like Adam and train it on labeled data, achieving high
accuracy in classifying text into predefined categories.
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5.2 BiLSTM model initializations.

More specifically, we start by importing the libraries that we are going to
use:

e Sequential: Sequential model for linear stack of layers, used for
building deep learning models layer by layer.

e |oad_model: Loads a saved Keras model from a file for further use
or evaluation.

e Embedding: Converts integer indices to dense vectors of fixed size,
representing word embeddings.

e Bidirectional: Wrapper for creating bidirectional recurrent neural
networks, which process input sequences in both forward and
backward directions.

e LSTM: Long Short-Term Memory layer, a type of recurrent neural
network layer capable of learning long-term dependencies in
sequential data.

e Dense: Fully connected layer where each neuron is connected to
every neuron in the previous and next layers.
evaluation and validation.

e ModelCheckpoint: Saves the model weights during training at
specified checkpoints.

e EarlyStopping: Stops training when a monitored metric stops
improving.
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e LearningRateScheduler: Adjusts learning rate dynamically during
training.

n tensorflow.keras.models import Sequentlal, load model
ot Embedding, Bidirectional, LSTM, Dense, Dropout
s import Adadelta
import ModelCheckpoimt, EarlyStopping
iport LearningRatescheduler

29. BiLstm Libraries

5.3 AdaDelta Optimizer.

AdaDelta is a popular adaptive learning rate optimization algorithm
designed for training neural networks. It was introduced by Matthew D.
Zeiler in 2012 with a paper name << ADADELTA: AN ADAPTIVE
LEARNING RATE METHOD >>, as an extension of the Adagrad algorithm.
AdadDelta addresses some of the limitations of Adagrad, particularly its
monotonically decreasing learning rate.

Unlike traditional optimization algorithms that use a fixed learning rate
for all parameters, AdadDelta adapts the learning rate for each
parameter in the model based on the magnitude of recent gradients. This
adaptivity allows AdadDelta to perform well across a wide range of tasks
and architectures without requiring manual tuning of the learning rate.
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One of the key features of AdadDelta is its ability to maintain a moving
average of parameter updates and gradients, which are used to compute
the learning rate adjustments. By incorporating this historical
information, AdadDelta can adaptively adjust the learning rates to
different scales of parameters and gradients, making it robust to noisy
gradients and sparse data.

AdadDelta also introduces the concept of an "adapting window" or
"running average" of gradients and parameter updates. This window
controls the memory of past gradients and updates, allowing AdadDelta
to adaptively adjust the learning rates over time and handle non-
stationary optimization problems effectively.

Another important aspect of AdadDelta is its computational efficiency.
Unlike Adagrad, which requires storing the entire history of gradients,
AdadDelta only stores a fixed-size window of past gradients and updates.
This makes AdadDelta more memory-efficient and suitable for training
large-scale neural networks.

Moreover, AdadDelta addresses the issue of the monotonically
decreasing learning rate in Adagrad by using a moving average of
squared parameter updates in the denominator of the learning rate
computation. This helps stabilize the learning process and prevents the
learning rate from becoming too small, which can hinder convergence.

Overall, AdadDelta is a powerful optimization algorithm for training
neural networks, offering adaptive learning rates, robustness to noisy
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gradients, computational efficiency, and stability during training. Its
simplicity and effectiveness make it a popular choice.

5.4 The key differences between AdaDelta and AdamW.

1. Update Rule:

AdaDelta: uses the root mean square (RMS) of parameter updates scaled
by the root mean square of recent gradients to adapt the learning rate.

AdamW: (Weight Decay with Adam) is a variant of Adam that
incorporates weight decay directly into the update step, making it
compatible with modern weight decay techniques.

2. Parameter Update:
AdaDelta: uses only the gradient information to update the parameters.

AdamW: incorporates both gradient information and weight decay
directly into the parameter update step.

3. Adaptivity:

AdaDelta: adapts the learning rate independently for each parameter
based on the history of gradients for that parameter.

AdamW: uses adaptive learning rates for each parameter, but also
incorporates the effect of weight decay regularization into the
parameter update, which can improve generalization.
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4. Learning Rate Adjustment:

AdaDelta: dynamically adjusts the learning rates for each parameter
based on the moving average of previous gradients and updates.

AdamW: adjusts the learning rates for each parameter based on the
estimation of first and second moments of gradients, but it also
incorporates weight decay directly into the update, which helps in
stabilizing the training process.

5. Implementation:

AdaDelta: typically requires fewer hyperparameters to tune compared
to AdamW.

AdamW: requires tuning of hyperparameters such as learning rate,
betal, beta2, and weight decay parameter.

6. Memory Usage:

AdaDelta: maintains a history of gradients and parameter updates for
each parameter, which can consume memory.

AdamW: also maintains a history of gradients and parameter updates,
but the incorporation of weight decay might influence memory usage
differently compared to AdaDelta.

In summary, while both AdaDelta and AdamW are adaptive
optimization algorithms for training neural networks, AdamW is
specifically designed to incorporate weight decay regularization directly
into the update step, potentially leading to better generalization and
stability during training, especially in the presence of large learning rates.
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However, the choice between them often depends on factors like the
specific problem, available computational resources, and empirical
performance on the task at hand.

5.5 BiLstm architecture.

In the case of the creation of BiLstm model, it includes buidling the
architecture of it, by defining the density of the neural network to 3
dense layers of 64 density, until the final layer of the 3 outputs. Later we
set the optimizer that we are going to use followed by the compiling of
the model for our multi-class classification. Let’s take a deeper dive by
explaining the preparation of the training process in more detail.
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model = Sequential([

Embedding| input_dim=max_words, ocutput dim=12%, input_length=max_len),

Bidirectional LSTM(&4, return sequences=
pense| &4, activation='relu'),
Dropout(@.2),

Dense &4, activation='relu'),
Dropout(e.2),

pense( 2, activation='softmax

optimizer = Adadelta()

model.compile(optimizer-optimizer, loss="sparse_categorical_crossentro

checkpoimt_filepath = "be del.hs

model_checkpoint_callba delCheckpoint(
filepath-checkpoint_filepath,
save_weight

early_stopping_callback = EarlyStopping(

patience=8,
restore_best_weights=
3
£

Lr_schedule{epoch):

initial_1r

if epoch
turn initial 1r

return Initial 1r * (8.9 ** {epoch - 2})

Ir_scheduler = LearningRatescheduler{lr schedule)

Giannis Touloupis

py ", metrics=['accuracy'])

30. BiLstm Architecture

1. model = Sequential

This line initializes a Sequential model, which allows for the linear
stacking of layers. The Sequential model is simple and straightforward,
ideal for building plain stacks of layers where each layer has exactly one

input tensor and one output tensor.
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2. Embedding(input_dim=max_words,output_dim=128,
input_length=max_len),

The Embedding layer turns positive integers (indexes) into dense
vectors of fixed size. It is commonly used as the first layer in a model to
handle text data by converting words into vectors.

3. Bidirectional(LSTM(64, return_sequences=False)),

This wrapper allows the LSTM layer to process the input sequence in
both forward and backward directions, capturing dependencies from
both past and future contexts. LSTM(64): This specifies a Long Short-
Term Memory (LSTM) layer with 64 units (neurons).

When return_sequences=False, the LSTM layer will return only the
output of the last time step. This means that the layer outputs a single
vector for each input sequence, which is typically the final hidden state
of the LSTM after processing the entire sequence. This setting is used
when the subsequent layers (such as dense layers) require a fixed-size
input, rather than a sequence of outputs from each time step.

4. Dense(64, activation="relu'),
This Dense layer has 64 units and uses the RelLU activation function.

The RelU activation introduces non-linearity, which helps the network
to learn complex patterns by adding the capacity to the model.
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5. Dropout(0.2),

Dropout is a regularization technique where a fraction (0.2 or 20% in
this case) of the input units are randomly set to 0 at each update during
training time, which helps prevent overfitting.

6. Dense(3, activation="'softmax')

The final Dense layer with 3 units and softmax activation function. The
softmax function outputs a probability distribution over 3 classes,
making it suitable for multi-class classification tasks.

7. optimizer = Adadelta()

As we have already said on the previous detailed of the AdaDelta
optimizer. AdaDelta is an optimization algorithm that adapts learning
rates based on a moving window of gradient updates, making it robust
and well-suited for problems with sparse gradients or noisy data,
making it most suitable on our case in which we have a small amount
of data.

8. model.compile(optimizer=optimizer,
loss='sparse_categorical_crossentropy', metrics=['accuracy'])

This line compiles the model with the Adadelta optimizer, using
sparse categorical crossentropy as the loss function, which is
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appropriate for integer-labeled multi-class classification tasks. The
accuracy metric is used to evaluate the model’s performance.

9. model_checkpoint_callback = ModelCheckpoint(

ModelCheckpoint is a callback function that saves the model after
every epoch. This callback is useful to ensure that the best performing
model on the validation set is saved during training.

10. early_stopping_callback = EarlyStopping(

Also an EarlyStopping function is used so the training it can be
stopped automatically when a monitored metric ('val _loss') has
stopped improving. This is useful to prevent overfitting and to save
training time by stopping early if the model performance is getting
worse, in our training if the performance is not improved after 8
epochs the training stops .

11. defiIr_schedule(epoch):

Defines a function to adjust the learning rate based on the epoch
number. This custom learning rate scheduler helps improve our model
convergence by reducing the learning rate as training progresses. In
our learning rate scheduler we define an initial leaning rate to 1.0 and
after training on 2 epochs we starting reducing the leaning rate by 0.1
in every epoch.
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12. Ir_scheduler = LearningRateScheduler(lr_schedule):

Initializes the LearningRateScheduler callback with the defined
learning rate schedule function. This callback dynamically adjusts the
learning rate according to the schedule during training.

5.6 BiLstm training.

For the training procedure, we set the number of epochs to be 20
and our batch size to be 6, a small but a good option for our small
dataset. In addition, we set the validation split to 0.1, that means that
an amount of 10% is going to be kept from the training data for
validation purposes. Furthermore, at the end of the model.fit
function, we also call our callbacks which we mentioned previously.

history = model.fit(
X_train, y_train,
epoChs=2a,
batch_size-5,
validation split=0.1,
callbacks=[model checkpoint callback, early stopping callback, 1r_scheduler]

accuracy = model.evaluate(X test, y _test)
" est loss)
"y test_acouracy)

saved model = load_model{checkpolimt filepath)

31. BilLstm Training
After the training we evaluate our model on the test data and then we

save the best training step of our training procedure. The results of the
training can be seen below.
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9.3514 - val _accuracy: @.8477 - 1lr: 1.8e88

r model as an HDFS file via “model.save() . This file format is consider:
118ms/step accura 8.2728 - val_accuracy: Ir: 1.8608
111ms/step accura 3 a8 val_accuracy: 1r: 1.8608
accura: A 8.2257 - val_accurac 0.9008

116ms/ accura: 3592 a .25 val_accur ©.8108

112ms/step accuras 1 8.2793 - val_accur 2.993

accura: A 8.2986 - val_accur 8.90858

: 8.8599 - accura: val_los: 83 - val accuracy: ©.9973

2.8481 - accura 985 al_loss: val_accuracy: 8.9138

126ms/step 2.8439 - accura 3 3 val_accurac ©.9118
119ms/step 9.8398 - accura val_ 8.4420 - val accur 8.9878

126ms/step 2.9335 - accuracy 1 8.42128 - val_accur 8.9118
2 - accuracy: @

32. BiLstm Training Results

We also used some random data that are not included in our dataset
to check out the predictions of our model:

print( ex i pred 1: {actual lsbel

redi

pramt(" [ d predict) 1)
print(+"

33. Creation of dummy data
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and I won't b
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effective i n o yourself and

your mas| help curb the sprea
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34. Prediction results on the dummy data
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Chapter 6

6.1 Conclusions.

This thesis covered in detail the topic of text classification using a BERT
and a BiLSTM model to classify tweets related to COVID-19. First, we
provided a general description of the technologies and techniques used
in neural network models. Next, we detailed the code used, starting with
data preparation for the two models and outlining the differences and
similarities between BERT and BiLSTM.

We also created graphs to represent the data statistics, allowing us to
observe the state and content of the data. Subsequently, we analyzed
the libraries, optimizers, and other techniques employed. Additionally,
almost every line of the models was explained, including the rationale
for their use, and compared to the other model.

6.2 Improvements and Future work.

First of all, it is widely known that COVID-19 was a very delicate
situation, and so were the opinions that everyone developed. Alongside
this, scientific discoveries and laws kept changing and still do, making it
difficult in some cases to classify an opinion with just a number from 0 to
1.

With this in mind, the specific dataset can be improved and maintained
in the future. Also, if the Twitter (X) APl remains accessible and free, it
will be extremely beneficial for the improvement of the dataset by
adding more training data, making it more precise and covering more
COVID-19 topics. With that said, some changes and tuning could be done
again if the dataset is changed.
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