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Abstract 
 
Ontology Alignment is a crucial task in the field of knowledge management and semantic web, 
enabling the integration and interoperability of data from heterogeneous sources by matching 
concepts across different ontologies. Despite notable advances in this field, aligning accurately 
ontologies continues to present significant challenges. Many state-of-the-art systems often 
fall short in terms of efficiency and effectiveness, often consuming of a lot of computational 
power, while struggling to provide precise and reliable mapping.  
 
This thesis introduces the OntoLink system designed to address these challenges. Specifically, 
OntoLink uses the anonymous classes found in the input ontologies, with the help of the 
Manchester syntax, to discover new mappings. In addition, it employs a specific reasoning 
task, utilizing the HermiT reasoner, to uncover further mappings. OntoLink’s architecture has 
been designed to produce a set of precise output mappings, even when working with rich 
ontologies, that contain numerous classes and properties. 
 
Our system was rigorously tested on ontologies from the repository of BioPortal. The results 
of OntoLink have been compared to the mappings that BioPortal reports between ontologies. 
In this way, we ensured that the final results were reliable and thoroughly validated.  
 
The primary objective of this work is to introduce a newly developed system aimed at 
improving the efficiency and accuracy of ontology alignment tasks. OntoLink’s performance 
has been tested on experiments with the ontologies PSDO, STATO, NGBO, confirming that the 
system performs and discover mappings with high efficiency and accuracy. Overall, OntoLink 
shows promising results in improving ontology alignment task. 
  



 

Περίληψη 
 
Η Ενοποίηση Οντολογιών (Ontology Alignment) είναι ένα σημαντικό κομμάτι στον τομέα της 
διαχείρισης γνώσης και του σημασιολογικού ιστού, επιτρέποντας την ενσωμάτωση και 
διαλειτουργικότητα των δεδομένων από ετερογενείς πηγές με την αντιστοίχιση εννοιών 
(mapping) μεταξύ διαφορετικών οντολογιών. Παρά την πρόοδο σε αυτό το πεδίο, το ontology 
alignment, εξακολουθεί να παρουσιάζει προκλήσεις. Πολλά σύγχρονα εργαλεία συχνά 
αποτυγχάνουν ως προς την αποδοτικότητα και αποτελεσματικότητα, παρέχοντας έτσι 
ανακριβή mappings αλλά και δαπανώντας αρκετή υπολογιστική ισχύ. 
 
Η διατριβή αυτή παρουσιάζει το σύστημα OntoLink που σχεδιάστηκε για να αντιμετωπίσει 
αυτές τις προκλήσεις. Συγκεκριμένα το OntoLink, αξιοποιεί τις ανώνυμες κλάσεις που 
υπάρχουν στις οντολογίες, με τη βοήθεια του συντακτικού Μάντσεστερ, για την ανακάλυψη 
νέων mapping. Επιπλέον, γίνεται χρήση της συλλογιστικής (reasoning), εφαρμόζοντας τον 
HermiT reasoner, για τον εντοπισμό επιπλέον mapping. Η αρχιτεκτονική του OntoLink έχει 
σχεδιαστεί έτσι ώστε να παράγει ένα σύνολο από ακριβή mappings, ακόμα και όταν 
χρησιμοποιηθώ οντολογίες με μεγάλο πλήθος κλάσεων και ιδιοτήτων.  
 
Το σύστημα μας εφαρμόστηκε σύνολα οντολογίες από το αποθετήριο του BioPortal. Τα 
αποτελέσματα του OntoLink έχουν συγκριθεί με τα mappings που προσφέρονται από το 
BioPortal, μεταξύ διαφόρων οντολογιών. Με τον τρόπο αυτό, εξασφαλίσαμε πως τα τελικά 
αποτελέσματα ήταν αξιόπιστα. 
 
Ο κύριος σκοπός της εργασίας αυτής είναι η παρουσίαση ενός νέου συστήματος που έχει ως 
στόχο το αποτελεσματικό ontology alignment. Το OntoLink έχει δοκιμαστεί σε πειράματα με 
τις οντολογίες PSDO, STATO και NGBO επιβεβαιώνοντας ότι το εργαλείο λειτουργεί και 
ανακαλύπτει mappings με αποτελεσματικό τρόπο. Συνολικά, το OntoLink παρουσιάζει 
υποσχόμενα αποτελέσματα για τη βελτίωση των ontology alignment διεργασιών. 
 
  



 

1. Introduction 
 

1.1. Problem Statement 

 
Ontology alignment is a challenging and time-consuming computational task, essential for 
knowledge management and the semantic web. It enables the integration and interoperability 
of data from heterogeneous sources by aligning concepts across different ontologies. Despite 
advances in this field, the diversity and the complexity of the ontologies make the accurate 
alignment a persistent challenge. The time and computational resources needed to discover 
mappings often make the process inefficient and unreliable.  
 
Existing state-of-the-art systems and systems designed for ontology alignment often lack 
efficiency and effectiveness. These systems frequently miss easily computed mappings or 
discover incorrect mappings, leading to an inaccurate and incomplete alignment. Such errors 
reduce the quality of data integration and make applications that depend on these mappings 
less reliable. These ongoing issues highlight the need for improved tools and systems capable 
of improving the accuracy and completeness of ontology alignment tasks.  
 
Furthermore, many current approaches rely on inefficient methods to calculate mappings. 
These inefficiencies make the alignment process a challenging task, resulting in inaccuracies 
and low precision in mappings among ontologies. Therefore, there is a need for innovative 
methodologies and techniques that can optimize the process of calculating mappings. 
Enhancing the efficiency and effectiveness of the methods is essential for advancing the field 
of ontology alignment.  
 

1.2. Motivation 

 
With the rapid spread of information around the world, ontologies have become popular way 
to represent and extract knowledge. This has led to the development of many and large 
ontologies, making their integration a challenging task, sometimes demanding a lot of 
computational resources. Therefore, in order to align ontologies efficiently and accurately, 
systems and techniques need to consider that this process requires time and computational 
resources. 
 
In today’s world, data come from many different sources, each having its own structure and 
vocabulary. For example, one set containing weather data that can be in CSV format, while 
another is in JSON, both representing the same information, using different labels. In the CSV 
file, the columns about data about clouds might as "Clouds" whereas in the JSON file, it might 
be "cloud_cover". Even though both of the datasets cover the same topic, these differences 
can make their integration difficult. Ontology Alignment addresses this issue by making easier 
the integration and combination of data from different sources. 
 
Moreover, ontology alignment plays a key role for the Semantic Web, where data from various 
sources are linked and need to be processed by the machines. The Semantic Web provides 



 

information that is represented in machine interpretable format, so that machines can process 
an understand it. Ontology alignment, helps in this situation, by combining data and schemas 
from diverse sources, ensuring that the similar concepts are recognized across the different 
machines. 
 
Systems often need to communicate to understand each other’s data. In some cases, systems 
need to follow commonly agreed schema (international standard -ISO). Alternatively, they 
implement ad-hoc translators between systems (which often takes a lot of effort). However, 
these approaches are not always feasible, since no standard can cover every possible 
application domain, standards usually need some time for updates (e.g. system cannot hold 
their messages and wait for some update of the standard used, that adapts to new 
technologies or system features), systems may have different domains (or perspectives, goals, 
features, etc). Ontology alignment can bridge the gap between systems, by discovering 
mappings between the schemas used by the systems, without affecting the systems, and more 
importantly without constraining the systems on which schemas to use. Ontology alignment 
makes sure that the meaning of terms and relationships stays consistent across systems, 
allowing them to communicate easily. In addition, it helps organizations to share and reuse 
knowledge without having to reinvent the wheel, making is simpler to build and expand their 
knowledge base. 
 
Nevertheless, ontology alignment helps in solving the semantic heterogeneity, where various 
domains use different terms for the same concept or the same term for different concepts. 
For example, the word “balloon” can refer to a party balloon or a hot air balloon: they are the 
same word, but have a different meaning. Ontology alignment clarifies these differences, 
making the context easier to understand.  
 
In summary, ontology alignment plays a key role for sharing and understanding concepts 
across different domains and systems. It supports the Semantic Web, towards expanding 
Linked Open Data. 
 

1.3. Proposed Solution 

 
This thesis introduces OntoLink, a system designed for ontology alignment that leverages 
unique methods to discover accurate mappings between ontologies. OntoLink’s architecture 
is composed of components, each of which aims to uncover mappings effectively. It produces 
a precise set of mappings that helps the integration and interoperability of various ontologies.  
 
OntoLink employs a novel approach to extract mappings. Initially, OntoLink’s architecture 
integrates the indexing component of LogMap [1], extending it to store not only classes but 
also object properties. It also employs a similar iterative process to discover mappings. 
OntoLink then makes good use of the definition of classes provided in ontologies anonymous 
classes found in ontologies, with the help of the Manchester Syntax [2]. This method ensures 
that the set containing the mappings is expanded as the process progresses. In addition, 
OntoLink employs a reasoning task, applying the HermiT reasoner [3], to infer additional 
mappings if possible and detect any inconsistency that might occur.  
 



 

OntoLink’s architecture is designed to discover high-quality mappings that can align different 
ontologies accurately. It aims not only to uncover matches between named classes but also to 
identify matches between object properties within the ontologies. Overall, OntoLink enhances 
the data integration and improves the interoperability.   
 
Preliminary experimental results indicate that OntoLink outperforms state-of-the-art systems. 
Ontologies from the BioPortal repository showcase that OntoLink achieves higher precision 
and recall metrics compared to other systems, indicating its effectiveness in discovering 
mapping. It’s a system that accurately matches classes and object properties between diverse 
ontologies, producing a high-quality set of mappings. 
 
In conclusion, with this thesis, we aim to present OntoLink, a newly developed system that 
discovers mappings across diverse ontologies. Its architecture features new ways of finding 
that enhance the mapping discovery process. With the development of OntoLink, we aim to 
make a significant contribution to the field of ontology alignment. 
 

1.4. Structure of Thesis  

 
This thesis is organized into five chapters. Chapter 2 (The Theoretical Background) lays the 
groundwork by discussing fundamental concepts, syntax and semantics of ontologies, 
reasoning tasks, and types of mappings used in ontology alignment. Chapter 3 (OntoLink) 
focuses on the structure and the components of the OntoLink system, detailing how each part 
functions. Chapter 4 (Experimental Evaluation) outlines the setup and results of the 
experiments conducted to evaluate OntoLink’s performance, summarizing key findings and 
their significance. Finally, in Chapter 5 (Concluding Remarks) we discuss OntoLink’s future and 
potential improvements.  



 

2. Theoretical Background 
 
In this chapter, we lay out the theoretical foundations, essential for understanding the concept 
of ontology alignment. We begin by diving into the ontologies, exploring their syntax and 
semantics. We also discuss the importance of consistency and satisfiability within an ontology. 
The chapter then, transitions into the specifics of ontology alignment, covering the different 
types of mappings and the challenges encountered in the alignment process. Additionally, we 
provide an overview of existing ontology alignment systems, comparing and analysing their 
strengths and weakness. With the presentation of this theoretical background, we provide a 
clearer understanding of the ontology alignment.  
 

2.1. Ontologies: Syntax and Semantics 

 

2.1.1. Definition of Ontology 

 
In recent years, ontologies have become a popular way to represent and share knowledge 
within a specific field. They provide a clearer understanding of concepts, which are groups of 
entities with common characteristics. For example, ontologies can help us grasp simple 
concepts like the structure of a book or more complex ones like a vessel's trajectory in an area 
of the sea. 
  
An ontology is the specific representation of a conceptualization from a domain of interest, 
describing the existing entities and how they are related. In simpler terms, it is a strictly 
description of a domain of knowledge, consisting of a set of terms and their semantic 
relationships [4]. An ontology provides a vocabulary as well as the definitions to capture the 
meaning of a concept, in a formal way that can be processed by the machines.  
 

 

Figure 1. Example of an ontology. 



 

 
Figure 1 showcases the concept of an aircraft's trajectory. In this example, the terms Airline, 
Aircraft, Trajectory, RawPosition, Geometry and TemporalEntity, represent the entities of the 
ontologies, while isOwnedBy, hasTrajectory, hasRawPosition, hasSpatialFeature and 
hasTemporalFeature show the relationships among these entities. 
 
Ontologies are used in many fields to help organize and manage information. They are 
important for technologies such as peer-to-peer information sharing or query answering. 
Moreover, they are commonly used in areas like healthcare, where they help doctors and 
systems share patient information accurately or in e-commerce, where they organize products 
and services. 
 

2.1.2. The Syntax 

 
Ontologies play a key role in the Semantic Web by helping to use and represent data, even 
from heterogeneous data sources. In the Semantic Web, the entities are treated as resources, 
each having a unique identifier for their distinction, called a Uniform Resource Identifier (URI) 
For example, a URI could like http://example.org/car could refer to a resource labeled as “car”. 
Additionally, they can have a literal, such as number, string, datetime.  
 
It's important to have a way to represent information about resources or entities. This is where 
the Resource Description Framework (RDF) is useful, as it provides a framework for describing 
the semantics of information about entities. It allows us to link data from different formats, 
like XML, JSON, and more. RDF offers a fundamental vocabulary to describe the resources. 
 
With the use of the RDF, we can represent information as a directed graph, where the nodes 
represent the resources and the edges represent the relationships between them. This creates 
what is called an RDF triple, which has the format of (subject – predicate – object). The subject 
and predicate, are nodes on the graph, while the predicate is the edge that connects them. 
The subject and predicate can be donated by a URI, while the object can have either a URI or 
a literal. 

http://example.org/car


 

 

Figure 2. Example of an RDF triple. 

 
Figure 2, depicts an example of an RDF triple. This triple is composed from the components: 
 

i. Subject - https://example.com/aircrafts/boeing_767 
In this example, the resource with the URI https://example.com/aircrafts/boeing_767 
is the subject, which is an instance of the class Aircraft. 

 
ii. Predicate - https://example.com/isOwnedBy 

The predicate specifies the relationship between the subject and the object. In this 
example, https://example.com/isOwnedBy is the predicate. 
 

iii. Object - https://example.com/airlines/united_airlines  
In the triple, the resource with the URI https://example.com/airlines/united_airlines is 
the object, which is an instance of the class Airline. 

 
In addition, the Resource Description Framework Schema (RDFS), it’s an extension of the RDF, 
that offers a richer vocabulary to describe resources and their relationships. RDFS offers terms 
that helps to define and model RDF data. Key terms provided by RDFS are: 
 

1. rdfs:Class 
Resources divided into groups are called classes. Classes represent sets resources within 
the ontology, that share common attributes or characteristics. For example, in Figure 1, 
Aircraft could be class, representing all the types of aircrafts. 
 
 
 
 



 

2. rdfs:Property 
Properties describe relationships between resources, specifically between a subject 
resource and an object resource. Properties themselves are also resources. For example, 
in Figure 1, isOwnedBy is a property that links the resources Aircraft and Airline, showing 
the relation between them. 

 
To create an ontology that describes precisely a specific domain of interest, we need a 
language capable of representing complex knowledge. For example, in the aviation domain, 
we might need to specify that an airplane has exactly two wings or that it can carry a maximum 
of 300 passengers. Therefore, the W3C OWL 2 Web Ontology Language (OWL) was designed 
to represent rich and complex knowledge. OWL2 is built upon RDF/S and is a more expressive 
language and enables the ontology engineer to build more detailed models of a domain. OWL2 
provide additional features to implement an ontology. Some key features are: 
 

1. Complex Class 
In order to express more complex knowledge, OWL provides logical constructors such 
as and, or and not. These allows to define more complex classes based on certain 
constraints or conditions. Using these constructors, we can combine classes with 
names into complex classes, creating more detailed classes. Below, is an example of 
complex class in OWL, that states the class Father consists of exactly those objects 
which are instances of both Man and Parent.  
 
 

 
 
 

 
 
2. Type of Property Restrictions  

A key aspect of defining complex classes in OWL is the use of property restrictions. 
These restrictions use constructors involving properties and are used to create more 
detailed, logic-based class definitions. OWL2 provides an extended set of these 
restrictions, including: 

 
i. owl:someValuesFrom 

This restriction defines a class as a set of all individuals that are connected by a 
specific property to another individual that belongs to a certain class.  For example, 
we can define that a class Parent is a Person who has some child Person. 
 

ii. owl:allValuesFrom 
This restriction specifies a class of individuals for which all related individuals must 
be instances of a given class. For example, a class Airplane can have only instances 
from class Wing as its wings. 
 

iii. owl:minQualifiedCardinality 
This operator sets the minimum number of values that a property can have. For 
instance, a class Child must have at least two instances from the Parent class. 

Class: Father 
  EquivalentTo:  
    Man and Parent 



 

 
iv. owl:maxQualifiedCardinality 

This operator sets the maximum number of values that a property can have. For 
example, a class Child can have at most two instances from the Parent class. 
 

v. owl:qualifiedCardinality 
This operator specifies an exact number of values that a property must have. For 
example, we can specify that the class ParentOfTwins consists of all individuals who 
have exactly two instances of the class Child 
 

2.1.3. The user-friendly Manchester Syntax 

 
The ontology engineering is a challenging task which becomes even harder defining concepts 
and relations using the RDF/S format. To address this, a simpler and more user-friendly syntax 
was needed. This led to the creation of the Manchester OWL Syntax [2]. 
 
The Manchester OWL Syntax is a user-friendly and compact syntax used to write OWL 
ontologies. It provides a more human-readable syntax to represent and manage knowledge 
expressed in OWL. The goal of creating it, was to provide a simple and compact syntax, 
avoiding complex symbols and terms. With its use, we can precisely define classes and 
properties within an ontology. Table 1 shows terms used in Manchester Syntax compared to 
those in OWL, with examples provided. We use 𝐶 and 𝐹 to represent classes, 𝑅 to represent 
a property, and 𝑛 to represent a numerical value. 
 

Table 1. The Manchester OWL Syntax. 

 
 



 

Based on Table 1, we can see that defining classes and properties for an ontology, is a simple 
and straightforward way using the Manchester Syntax. It allows us to create more complex 
ontologies easily. Figure 3 provides a more detailed example using Manchester Syntax. 
 

 

Figure 3. Example of Manchester syntax. 

 
This example defines the class Vessel with its characteristics and restrictions using Manchester 
Syntax. In details: 
 

➢ hasPart only (Engine or Hull or Deck or Sail) 
This restriction defines the set of individuals that are related with only Engine, Hull, 
Deck, or Sail instances, linked by the hasPart property.  
 

➢ hasPart min 1 Engine 
This restriction defines the set of instances that have at least one instance of the class 
Engine, linked by the hasPart property. 

 
➢ hasPart max 5 (Engine or Deck) 

This restriction defines the set of instances that have at maximum 5 instance either of 
the class Engine or Deck, linked by the hasPart property. 
 

➢ hasPart exactly 1 Hull 
This restriction defines the set of instances that have exactly one instance of the class 
Hull, linked by the hasPart property. 
 

➢ hasPart some Sail 
This restriction defines the set of instances that are linked to Sail by the hasPart 
property.  
 

➢ not (hasPart some Fuselage) 
This restriction defines the set of instances that are not linked to class Fuselage by the 
hasPart property. 

  



 

As shown in the example, the class Vessel is the Named Class or Atomic Class, while the 
constraints we described are the Complex Classes or Anonymous Classes. With these 
restrictions, we provided a more detailed description for the class Vessel. Manchester Syntax 
allows us to define the components of a vessel using simple and compact terms. Instead of 
using complex syntax, we can utilize a simple vocabulary that is easy for both humans and 
machines to understand. Moreover, it is widely supported by various ontology processing 
tools, such as Protégé and libraries like OWLAPI in Java. Figure 4, showcases how Manchester 
syntax is represented in Protégé [5]. 
 
 

 

Figure 4. Manchester syntax in Protégé. 

 
In summary, the Manchester Syntax, offers a user-friendly approach to construct ontologies.  
It simplifies their representation, by using terms like “some”, “values", and many more instead 
of complex symbols, which makes them easier to read. Manchester Syntax is widely used in 
ontology processing tools and libraries, helping users develop and design ontologies 
efficiently.  
 
   

2.1.4. The Semantics 

 
In our everyday life, we often encounter the same word used in different ways. For example, 
the word rock can refer to a stone you find in a forest or a music band you enjoy. I picked up 
a rock from the mountain is different from I like this rock band. This difference is based on the 
meaning each word has in a sentence, which is what semantics is about; explaining the 
meaning of the words. 
 
The main concern of the semantics is to clarify what the expressions of a language means. For 
instance, in an ontology, there might be a resource labelled “earth”. On its own, “earth” is just 



 

a string. But if the statement “earth isA Planet” is made, semantics add meaning by showing 
that “earth” is an instance, “Planet” is a class, and “earth” is an instance of the class “Planet”. 
In this way, semantics adds meaning to the symbols, ensuring that machines can understand 
and interpret them. 
 
Mathematical logic is applied to deduct inferences on the statements within an ontology. To 
do so, a function that maps RDF/S and OWL statements into set theory must be applied. The 
interpretation function 𝐼 maps each atomic class 𝐶𝑖 – i.e. class with name - to a set of elements, 
and each atomic property 𝑅𝑗 into pairs of elements. Every triple of the format 

(𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡) or (𝑠, 𝑝, 𝑜) is a statement. A triple can be represented with a 
vocabulary of URIs, blank nodes (bnodes) and literals. Formally they can be written as: 
(𝑠, 𝑝, 𝑜) ∈ (URI ∪ bnode) × URI × (URI ∪ bnode ∪ literal). An RDF graph is defined as a 
finite set of statements. Then, inference rules must be applied on the statements to give them 
a specific meaning.  
 
The inference rules are valid due to the notion of entailment. In simple terms, entailment is a 
semantic relation between RDF graphs - i.e. set of statements. Given a graph 𝐸, we say that 𝐼 
satisfy E, if 𝐼(𝐸) 𝑖𝑠 𝑡𝑟𝑢𝑒. The graph 𝐸 is satisfiable when there is an interpretation that 
satisfies it. Now given another graph 𝐺, we say that 𝐺 entails a graph 𝐸 if every interpretation 
that satisfies 𝐺 also satisfies 𝐸. Those entailments, can be viewed as rules that add the 
semantics to a graph, and therefore, to an ontology. Below, we show some key entailment 
rules, where 𝑥, 𝑦, 𝑧, 𝑤, 𝑎𝑛𝑑 𝑣  represent unique URIs. 
 
 



 

Table 2. Entailment Rules. 

 
 
Entailment rules are essential for defining an ontology. For example, in Figure 5, we have two 
ontologies that represent the same concept: a teacher assigning homework. The first ontology 
can be expressed as the triple (Teacher, gives, Homework), while the second can be expressed 
as (Professor, assigns, Schoolwork). To establish that both ontologies represent the same 
concepts, specific entailment rules must be defined. These rules are: 
 

▪ :Teacher owl:equivalentClass :Professor . 
▪ :Homework owl:equivalentClass :Schoolwork . 
▪ :gives owl:equivalentProperty :assigns  .  

 
 



 

 

Figure 5. Example of semantically same ontologies. 

 
By defining these rules, we assert that the class Teacher is equivalent to Professor, Homework 
is equivalent to Schoolwork, and the property gives is equivalent to assigns. This application 
of entailment rules ensures that the two ontologies have same terms, therefore are 
semantically same. Although they use different terms for the same classes and properties, 
they convey the same meaning. Without these definitions, we would struggle to define the 
resources and relations among them.  
 
s. Syntax and semantics are two distinct yet complementary aspects of an ontology. The 
sentence “Flying ship plays on the road” is syntactically correct but lacks its semantics. 
Similarly, a computer can correctly structure a sentence but must also understand its meaning 
to interpret it correctly. Therefore, both proper syntax and semantics must be defined to make 
an ontology machine-interpretable. Otherwise, it can lead to inconsistencies within the 
ontology.  Many tools and systems have been developed to detect inconsistencies. These 
systems are known as reasoners, and by applying entailment rules they can derive new 
statements. We will explore them further in the following chapter.  
 

2.1.5.  Reasoning Tasks 

 
As shown previous sections, it is crucial for an ontology to use both correct syntax and 
semantics. If these are not used properly, it can lead to problems and contradictions. This 
process of ensuring that knowledge is represented accurately is known as reasoning in 
ontology. Reasoning uses rules and constraints from Description Logic to infer new knowledge 
and check if the ontology is consistent.  
 
Reasoning tasks are essential for keeping an ontology consistent. They help ensure that 
knowledge is represented correctly within the ontology. Some key reasoning tasks are the 
following: 
 



 

1. Class Subsumption: Determines if one class is subclass of another class. It completes 
the class hierarchy with inferred subsumptions (including those involving Top or 
Bottom concepts   

 

 

Figure 6. Example of class subsumption. 

 
Figure 6 shows an example of class subsumption in Manchester syntax. Here, the class 
Vehicle subsumes the class Car because a car is a more specific concept within the 
broader concept of a Vehicle. In this way, we can organize the structure of the 
ontology. 

 
2. Satisfiability: Satisfiability refers to the ability of a class to have at least one instance 

without causing any logical contradictions in the ontology. An unsatisfiable class, on 
the other hand, refers to the class that cannot have any instances because of 
conflicting constraints. Figure 7 shows an example of an unsatisfiable class in 
Manchester syntax. The class HybridCar is unsatisfiable because it is defined as the 
intersection of GasCar and ElectricCar, which are disjoint classes. This makes HybridCar 
an empty class, so we cannot create any instances for it. 

 

 

Figure 7. Example of unsatisfiable class. 

 
3. Consistency Check: We say that an ontology is consistent if it doesn't have any 

instances that create logical conflicts. Thus, if there is an instance that causes logical 
conflicts, it makes what is known as an inconsistent ontology. It's important to ensure 
there is no conflicting information that would make it impossible to represent the 
knowledge correctly within the ontology. 

 



 

 

Figure 8. Example of inconsistency. 

 
Figure 8 shows an example of inconsistency in Manchester Syntax. In this example, the 
disjointness constraint states that GasCar and ElectricCar cannot overlap. Since HybridCar is 
defined as a subclass of both GasCar and ElectricCar, it should be an empty class. If we specify 
an individual, like Ford, as a HybridCar, it must be an instance of both GasCar and ElectricCar. 
However, because GasCar and ElectricCar are disjoint, this is impossible. Therefore, Ford 
cannot be both GasCar and ElectricCar at the same time. This leads to a contradiction, making 
the ontology inconsistent.  
 
Class subsumption, satisfiability, and consistency checks might be different tasks, however 
they are related to one another. Class subsumption sets up the hierarchy of classes, which 
impacts satisfiability by determining class relationships. Satisfiability checks if there are no 
instances that can cause conflicts. Consistency checks ensure that the entire ontology has no 
logical contradictions and that all instances come from classes that are not unsatisfiable.  
 
Reasoning tasks are essential for maintaining the coherence of ontologies. By performing task 
such as, class subsumption, satisfiability and consistency check, we ensure that ontologies 
manage and represent the knowledge correctly. To perform these tasks, tools have been 
developed called reasoners. Reasoners apply algorithms based on Description Logics [6] to 
handle various sizes and complexities of ontologies. Many reasoners, such as HermiT, Pellet 
and ELK [7, 8], have been developed to perform these tasks accurately and efficiently.   
 
HermiT is one of the most popular and highly-regarded reasoners due to its efficiency. Since 
it's available to the public for free, it's been widely used across various systems. Previously, 
reasoning with large and complex ontologies was time-consuming. However, HermiT handles 
these tasks efficiently and in a short period of time. Moreover, it can manage reasoning for 
ontologies that require significant computational power. This is why HermiT is used in this 
work.  
 
 
 



 

2.2.   Ontology Alignment 

 

2.2.1.  Ontology Mappings 

 
Ontology alignment plays a crucial role in ontologies and knowledge representation. However, 
it's important to understand some key concepts in more detail. In this section, we will define 
the terms relevant to our work for clearer understanding. 
 
Correspondence. Given two ontologies 𝑂1 and 𝑂2 , a correspondence between 𝑂1 and 𝑂2 is 
defined as the triple < 𝑒1, 𝑟, 𝑒2 >, where 
 

• 𝑒1𝜖𝑂1, 𝑒2𝜖𝑂2 represent entities from each ontology  
 

• 𝑟 is the relationship between these entities 𝑒1 and 𝑒2 
 
In our work, we focus mainly on correspondences between classes or between object 
properties in ontologies. For classes, we use the format < 𝑐1, 𝑟, 𝑐2 >, where 𝑐1𝜖𝑂1 and 𝑐2𝜖𝑂2 
and 𝑟 is the relationship between 𝑐1 and  𝑐2. For object properties, we use the format 
< 𝑝1, 𝑟, 𝑝2 >, where 𝑝1𝜖𝑂1 and 𝑝2𝜖𝑂2 and 𝑟 is the relationship between 𝑝1 and  𝑝2. For 
example, a correspondence from Figure 12 could be defined as < 𝐶𝑎𝑟, ≡, 𝐴𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 >. In 
some case, it can be formatted as < 𝑝1, 𝑟, 𝑝2, 𝑑 >, where 𝑑 ∈ [0,1] is the similarity (or 
condidence) degree. 
 
Mapping. Mapping refers to the set of correspondences found between two ontologies [34]. 
In our work, we focus on mappings between classes or between object properties. For 
example, in Figure 5, we can define the set of correspondences 𝑀 =  {< 𝑇𝑒𝑎𝑐ℎ𝑒𝑟, ≡
𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 >, < 𝐻𝑜𝑚𝑒𝑤𝑜𝑟𝑘, ≡ 𝑆𝑐ℎ𝑜𝑜𝑙𝑤𝑜𝑟𝑘 >, < 𝑔𝑖𝑣𝑒𝑠, ≡ 𝑎𝑠𝑠𝑖𝑔𝑛𝑠 >} , which is the 
mapping between the two ontologies. Essentially, a mapping represents an instance of a 
graph, and therefore, an instance of an ontology. 
 
Ontology Alignment. Ontology alignment, or ontology matchings, refers to the process of 
discovering correspondences between terms from different ontologies and generating a final 
mapping set. It takes as input a set of ontologies 𝑂 and produces a final set of correspondences 
𝑀.  
 

2.2.2.  Types of Mappings  

 
Mappings are crucial for ensuring integration and interoperability of data from heterogeneous 
sources. Each type of mapping has a specific purpose and shows how classes and properties 
relate to each other. In this section, we will explore the different types of mappings used in 
ontology alignment, explaining their relation. The types of mappings are: 
 

1. Equivalence (≡) 
Equivalence mappings between two classes 𝐶1 and 𝐶2 mean that the matched classes 
are the same or equivalent. This means both classes contain exactly the same set of 



 

individuals. Similarly, an equivalence mapping between two object properties, 𝑃1 and 
𝑃2 means that a class 𝑋 can be connected to class 𝑌 by both properties  𝑃1 and 𝑃2. In 
an RDF alignment file is denoted as =. 

 
2. Subsumption (⊑ ⊒⁄ ) 

Subsumption mappings indicate that one class or property is a more specific case of 
another. A class 𝐶1 is said to be a subclass of another class 𝐶2 if every instance of 𝐶1 is 
also an instance of 𝐶2. In this case, 𝐶1  is subsumed by 𝐶2 (𝐶1 ⊆ 𝐶2) . Similarly, a 
property  𝑃1  is said to be a sub-property of another property 𝑃2  if, whenever 𝑃1  holds 
between two classes, 𝑃2  also holds between those classes (𝑃1 ⊆ 𝑃2). In an RDF 
alignment file is denoted as  < or > . 
 

3. Disjointness (⊥) 
Disjointness indicates that two classes or properties are defined as disjoint, meaning 
that they do not share any common instances or values. A disjoint mapping refers to 
two classes and properties that are defined as disjoint from each other. Two classes 𝐶1 
and 𝐶2  are said to be disjoint if no individual can simultaneously be an instance of both 
classes. Similarly, two properties, 𝑃1 and 𝑃2 are said to be disjoint if there are no 
instances that can have both properties at the same time. In an RDF alignment file is 
denoted as %. 

 
There are different types of mappings, each representing a specific semantic relation. Many 
tools and systems have been created to identify these various types mappings. In our work, 
we focus only on equivalence mappings – i.e. the triples < 𝑐1, ≡, 𝑐2 > between classes and the 
triples < 𝑝1, ≡, 𝑝2 > between object properties. 
 

2.2.3. Definition of Ontology Alignment 

 
In ontology engineering, it’s a common approach to reuse or extend existing ontologies rather 
than creating new ones. Different domains may have overlapping concepts. For instance, an 
ontology about vehicle maintenance and an ontology about trajectories of moving object are 
likely to have common conceptualization. That is why, ontologies such are these can be 
combined to create a single and comprehensive ontology. This process is known as ontology 
alignment. The goal of ontology alignment is to detect terms that have the same meaning in a 
context – i.e. the interpretation function maps the corresponding symbols to the same 
elements of the domain. 
 
As previously mentioned, we can align two ontologies by finding correspondences between 
their entities, producing a final mapping. This process helps achieve semantic heterogeneity. 
In this work, we mainly focus on equivalence mappings between classes or between object 
properties. For example, consider the two ontologies, 𝑂1 and 𝑂2,   shown in Figures 9 and 10. 
Both represent the same concept: a car that is owned by someone and fixed by a mechanic. 
 



 

 

Figure 9. Ontology 𝑂1. 

 

Figure 10. Ontology 𝑂2. 

 
These two ontologies might use different names for classes and properties, yet they 
represent the same concept. Classes are shown in rectangles with round corner, and the 
properties are rectangles on the edges. Assume, that we want to create a database that 
stores data about this concept. In order to achieve that we must integrate 𝑂1 and 𝑂2,  and 
create a single comprehensive ontology. This requires identifying the correspondences 
between their terms. In this example, and in our work, we focus on equivalence 
correspondences, where terms can be merged into one. For instance, the classes Car and 
Automobile have different names but refer to the same set of physical objects, so they can 
be merged into a single class. Figure 11 shows all possible equivalences between the two 
ontologies, highlighted with blue edges. 
 

 

Figure 11. Mappings between ontologies 𝑂1 and 𝑂2 

 
As shown in Figure 11, there are equivalences between classes and between object properties. 
The final mapping that includes all the possible correspondences is the following:  
 

▪ < 𝑉𝑒ℎ𝑖𝑐𝑙𝑒, ≡, 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 > 
▪ < 𝐶𝑎𝑟, ≡, 𝐴𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 >  



 

▪ < 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐, ≡, 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛 > 
▪ < 𝑂𝑤𝑛𝑒𝑟, ≡, 𝐶𝑎𝑟𝑂𝑤𝑛𝑒𝑟 > 
▪ < 𝐸𝑛𝑔𝑖𝑛𝑒, ≡, 𝑀𝑜𝑡𝑜𝑟 > 
▪  < 𝑟𝑒𝑝𝑎𝑖𝑟𝑠, ≡, 𝑓𝑖𝑥𝑒𝑠 > 
▪ < ℎ𝑎𝑠𝑂𝑤𝑛𝑒𝑟, ≡, 𝑖𝑠𝑂𝑤𝑛𝑒𝑑𝐵𝑦 >  
▪  < ℎ𝑎𝑠𝐸𝑛𝑔𝑖𝑛𝑒, ≡, ℎ𝑎𝑠𝑀𝑜𝑡𝑜𝑟 > 

 
Discovering mappings between ontologies is crucial for managing ontologies effectively. 
Mappings establish semantic relationships between entities in different ontologies, finding a 
solution in the heterogeneity problem. They are also essential for the Semantic Web because 
they enable different systems to understand and use information, achieving semantic 
interoperability. In the following section, we will provide formal definitions of key concepts to 
help us understand ontology alignment in depth 
 

2.2.4. Challenges in Ontology Alignment 

 
While ontology alignment helps solve the problem of data heterogeneity, it does not come 
without challenges. These include managing and processing large ontologies, the time and 
computational resources required, and more. Understanding these challenges is important for 
improving the process and developing effective ontology alignment systems. Some key 
challenges that the ontology alignment process poses are: 
 
Complexity in the Alignment Process. Ontologies often vary in structure making it hard to find 
exact or even approximate structural matches between them. This challenge is becoming 
harder when dealing with large-scale ontologies that contain numerous classes, properties, 
and instances. Aligning them demands a lot of time and computational resources. Therefore, 
the process must handle these difficulties while keeping the mappings accurate and reliable 
[30]. 
 
High Memory Requirements. One major challenge in ontology alignment is the high memory 
demand. As ontologies become larger and more complex, more memory is needed to process 
and store them.  A simple approach is to compare each entity from one ontology with every 
entity from a second ontology. However, this becomes a problem when working with large 
ontologies, as it can cause out-of-memory errors, leading to failure. Efficient memory 
management is crucial to avoid these issues [31]. 
 
Execution Time of the Mapping Process. Increased execution time is a crucial challenge in the 
ontology alignment process. The algorithms used to find correspondences can be 
computationally intensive, especially with large ontologies. As ontologies grow in size and 
expressiveness the time needed for these algorithms can increase significantly, slowing down 
the process. To address this, strategies like parallel processing, efficient indexing, and 
heuristic-based approaches can help reduce execution time and improve performance [32]. 
 
Evaluation of the Alignment. Evaluating the final alignment process is an important task. In 
other words, it’s important to check if the discovered mappings are correct. When aligning 
two ontologies from different areas of interest, it’s essential to have a reference to verify if 
the mappings are correct. The OAEI campaigns [9] provide reference files created by experts 



 

for users to evaluate their results. Additionally, repositories like BioPortal offer potential 
mappings for their ontologies to assist users. Having a reliable reference is crucial to ensure 
that the mappings are accurate and reliable [33]. 
 
These challenges are major obstacles that alignment systems need to overcome for accurate 
and reliable ontology alignments. When developing a system for ontology alignment, it's 
important to keep these challenges in mind to ensure accurate mappings. In the next chapter, 
we will explore and compare state-of-the-art systems and systems for ontology alignment. 
 

2.3. Ontology Alignment Systems 

 

2.3.1.  Overview of State-of-the-Art Systems 

 
With technological advancements over the years, many systems have been developed to 
handle ontology alignment tasks. These systems are used in various fields like healthcare, 
agriculture, finance, and many more, making data integration and interoperability possible. 
There are many different ontology alignment systems available. 
 
Many systems use different methods to achieve ontology alignment. A common approach is 
using dictionaries such as UMLS or WordNet. The dictionaries along with indexing structures 
and matching algorithms aim to discover mappings accurately. Systems like LogMap and AML 
[10] are examples. On the other hand, many systems use machine learning models and 
algorithm, such as Neural Networks or Large Language Models (LLMs), to add intelligence to 
the process. Examples include LogMap-ML and Matcha [11]. Each system has its own way of 
finding mappings and achieving alignment. 
 
In this section, we give an overview of the latest ontology alignment systems. By looking at 
these systems, we aim to provide a better understanding of the current technologies in this 
field. The systems mentioned were also used in the 2022 OAEI, demonstrating their 
capabilities.  
 

1. LogMap 
 
Developed at the University of Oxford, LogMap is a highly scalable ontology 
matching system known for its advanced reasoning and diagnosis capabilities. It 
excels in detecting and repairing unsatisfiable classes., ensuring reliable ontology 
alignment. 
 
 



 

 

Figure 12. Architecture of LogMap [1]. 

 
LogMap has an architecture that consists of a multi-step process to achieve 
efficient and reliable mappings between ontologies. The first step involves lexical 
indexation, where the labels of classes and their lexical variations are indexed, 
using external lexicons like WordNet or UMLS. This is followed by structural 
indexation, where LogMap uses an interval labelling schema to represent the class 
hierarchies of the input ontologies. The system then computes initial mappings, 
called anchor, by intersecting the lexical indexes of the ontologies. The core 
process of LogMap involves an iterative cycle of mapping repair and discovery: the 
repair step uses a reasoning algorithm to detect and repair unsatisfiable classes, 
while the discovery step expands contexts for each anchor and matches classes 
using the ISUB tool [12]. This iterative process continues until no further context 
expansion occurs, resulting in a set of clean mappings that avoid logical errors. 
Finally, LogMap estimates the overlap between the input ontologies, providing a 
fragment that represents the shared content. This helps curators identify any 
additional mappings that might have been missed. 
 
LogMap has two additional variations: LogMapLt, which uses simple string 
matching, and LogMapBio, which uses BioPortal to find ontologies instead of using 
preselected ones. 
 
2. AgreementMakerLight (AML) 

 

 

Figure 13. Ontology Loading Module of AML. 
 



 

The AgreementMakerLight, developed in Java, consists of two core modules: the 
ontology loading module and the ontology matching module. The loading module 
handles input ontologies and external knowledge sources, while the matching 
module aligns ontology objects using various matching algorithms. Key data 
structures include the Lexicon, which stores lexical information, the 
RelationshipMap, which stores structural information, and the Alignment, which 
stores mappings between ontologies. AML is designed for f lexibility and 
extensibility, supporting the inclusion of different matching algorithms.  

 

 

Figure 14.Ontology Matching Module of AML [10]. 

 
 
3. Matcha 

 
Matcha is an underdevelopment ontology matching system designed to address 
challenges like complex ontology matching, as well as machine-learning-based 
matching. It builds on the AML system, enhancing its modularity and flexibility. 
Matcha includes several matching methods; the Instance-based Class Matcher 
uses overlapping individuals to match classes, the Lexical Matcher finds full name 
matches, the LLM Matcher calculates similarity between embeddings, the 
Mediating XRef Matcher relies on cross-references, the String Matcher measures 
string similarity, and the Word Matcher checks word similarity using a weighted 
index. For instance matching, it has the Attribute Matcher for literal matches, the 
Attribute String Matcher using the ISUB metric, and the Attribute to Lexicon 
Matcher for comparing lexicon entries. Additionally, Matcha introduces a neural-
based multilingual translation module that employs an Encoder-Decoder LSTM 
[13] architecture to translate ontology labels, adding them to the original lexicons. 
Some features, such as alignment repair and interactive matching, are still under 
development. 
 



 

  
4. LSMatch - Large Scale Ontology Matching System  
 
LSMatch (Large Scale Ontology Matching System) [14] is designed to find 
correspondences between ontologies based on their lexical properties. The latest 
version can handle both monolingual and multilingual alignments. It accepts input in 
any format and loads schemas as RDF graphs. After extracting classes, properties, and 
instances, it processes the data by stemming, removing stopwords, and normalizing 
characters. 
 
 

 

Figure 15. Architecture of LSMatch [14]. 

 

 LSMatch has several key modules: 
 

• Levenshtein Matcher: Measures the minimum changes needed to transform 
one string into another. 
 

• Background Knowledge: Uses a synonym matcher that fetches synonyms from 
WordNet via Python’s NLTK library [15]. 

 

• Synonym Matcher: Checks for synonyms during execution and retrieves them 
on the spot if not pre-fetched. 

 

• Translations: Utilizes MyMemory’s translation memory [16] for reliable and 
free translations. 

 
For storing alignments, LSMatch uses a dictionary of hashed <key, value> pairs for 
efficient updates. It keeps alignments with a combined score (from Levenshtein 
and Synonym matching) of 0.5 or higher, with a final selection threshold of 0.95.  
 



 

5. ATMatcher 
 

ATMatcher, also known as ATBox, is a system for matching knowledge graphs and 
aligning ontologies and instances. It includes the alignment repair filter from 
LogMap, but the matching component isn't fully integrated yet due to time 
limitations. The system has different processing pipelines for Tbox and Abox 
matching, which are combined for the final alignment. In the Tbox matching 
process, the system retrieves classes and properties using Jena methods and 
removes unnecessary stopwords from labels. It also extracts synonyms from the 
English Wiktionary through DBnary [17]. A new feature called bounded path 
matching finds classes within a hierarchy that are already matched, helping to 
identify potential new correspondences with an average confidence score.  The 
instance matching component remains unchanged, and all correspondences are 
finalized with a cardinality filter to ensure one-to-one alignment based on the 
confidence score. 
 

 

Figure 16. Overview of the ATMatcher [18]. 

 
 

2.3.2.  Evaluation Metrics 

 
Each state-of-the-art system has its own way of finding mappings, ranging from using lexicons 
to applying machine learning techniques. However, it's important to evaluate how efficient 
each system is. To do this, we need to define key metrics to assess their performance. These 
metrics are: 
 
Precision. A measure of the ratio of correctly identified correspondences to the total number 
of found correspondences, as shown in Equation 1. Precision is used to check the degree of 
correctness of the ontology matching algorithm: 



 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒𝑠
 

 
For example, based on Figure 12, if our system identified the mappings  {𝑉𝑒ℎ𝑖𝑐𝑙𝑒, ≡
, 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 >, 𝐶𝑎𝑟, ≡, 𝐴𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 > , 𝐸𝑛𝑔𝑖𝑛𝑒, ≡, 𝑀𝑜𝑡𝑜𝑟 >, 𝑟𝑒𝑝𝑎𝑖𝑟𝑠, ≡, 𝑓𝑖𝑥𝑒𝑠 > 
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐, ≡, 𝐶𝑎𝑟𝑂𝑤𝑛𝑒𝑟 > } and the mapping 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐, ≡, 𝐶𝑎𝑟𝑂𝑤𝑛𝑒𝑟 >  is incorrect, then 
the precision would be: 

   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
4

6
= 0.667 

 
Recall. It measures the number of accurately identified correspondences relative to the total 
number of expected correspondences, as depicted in Equation 2. Recall serves as a metric to 
assess how effectively an ontology matching algorithm identifies relevant mappings. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒𝑠

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒𝑠
 

 
For example, based on Figure 11, if our system identified the mappings  {< 𝑉𝑒ℎ𝑖𝑐𝑙𝑒, ≡
, 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 >, < 𝐶𝑎𝑟, ≡, 𝐴𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 > , < 𝐸𝑛𝑔𝑖𝑛𝑒, ≡, 𝑀𝑜𝑡𝑜𝑟 >, < 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐, ≡
, 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛 >, < 𝑂𝑤𝑛𝑒𝑟, ≡, 𝐶𝑎𝑟𝑂𝑤𝑛𝑒𝑟 >, < 𝑟𝑒𝑝𝑎𝑖𝑟𝑠, ≡, 𝑓𝑖𝑥𝑒𝑠 >, , ℎ𝑎𝑠𝐸𝑛𝑔𝑖𝑛𝑒, ≡
, ℎ𝑎𝑠𝑀𝑜𝑡𝑜𝑟 >},   and the expected mappings are eight(8) , then the recall would be: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
7

8
= 0.875 

 
F-Measure. It is a metric used to evaluate the accuracy. It combines both precision and recall 
into a single measure, providing a balance between the two. The F-measure, as shown in 
Equation 3, reaches its best value at 1 (perfect precision and recall) and worst at 0 (either 
precision or recall is zero). 
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 
Using the recall and precision from the previous examples, the F-measure would be: 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
0.667 × 0.875

0.667 + 0.875
≈ 0.76 

 
Total Execution Time. Total execution time is the amount of time a system takes to complete 
the entire mapping discovery process.  
 

2.3.3.  Comparison and Analysis of Alignment Systems 

 
Now that we've explained the metrics, we can analyze and compare the systems: LogMap 
(including its variations LogMap-Lite and LogMap-Bio), AgreementMakerLight, LSMatch, and 

(1) 

(2) 

(3) 



 

Matcha. For this comparison, we used the anatomy set from OAEI 2022, which includes two 
ontologies: the Adult Mouse Anatomy ontology and the NCI Thesaurus ontology [19]. The 
results will focus specifically on the Mouse-NCI pair. The tests were run on a machine with an 
AMD Ryzen 5 2600 Six-Core Processor (3.40 GHz), 16 GB of RAM, and Ubuntu 24.04.1 LTS. 
Table 2 presents these results. 
 

Table 3. Performance Metrics of Ontology Alignment Systems. 

 Runtime (s) Size Precision Recall F-measure 

LogMap 6 1402 0.915 0.848 0.880 

LogMap-Lite 2 1147 0.962 0.728 0.828 

LogMap-Bio 1194 1596 0.873 0.919 0.895 

AML 29 1471 0.956 0.927 0.941 

Matcha 22 1482 0.951 0.930 0.941 

LSMatch 17 1009 0.952 0.634 0.761 

ATMatcher 151 1037 0.978 0.669 0.794 

 
Among the various ontology alignment systems evaluated, LogMap-Lite stands out for its 
runtime efficiency, completing its task in just 2 seconds, making it the fastest among the 
systems. LogMap also demonstrates impressive speed with a runtime of 6 seconds. Matcha 
and LSMatch offer relatively quick runtimes of 22 and 17 seconds respectively. AML is slower 
at 29 seconds but offers high accuracy and recall. ATMatcher follows with a runtime of 151 
seconds. In contrast, LogMap-Bio is the slowest among the systems, taking a total of 1194 
seconds.  
 
In terms of mappings found, LogMap-Bio has the highest number of mapping found, with 
1,596. However, while LogMap-Bio finds the most, it takes significantly more time compared 
to the rest systems. Matcha follows with 1,482 correspondences found, while AML has 1,471. 
LogMap identifies 1,404 correspondences, performing well with its short execution time 
LogMap-Lite and ATMatcher find 1,147 and 1,037 mappings, respectively. LSMatch has the 
smallest number with 1009 found. 
 
The results indicate that ATMatcher achieves the highest precision at 0.978, followed by 
LogMap-Lite at 0.962. AML achieves precision at 0.956 and LSMatch at 0.952. Matcha 
demonstrates a strong precision of 0.951, while LogMap and LogMap-Bio exhibit slightly lower 
values at 0.915 and 0.873, respectively. Overall, all systems demonstrate high precision, 
indicating their effectiveness. 
 
Recall measures how well a system finds relevant correspondences. AML and Matcha have 
high recall scores of 0.927 and 0.93, respectively. LogMapio-Bio is next with 0.919, followed 
by LogMap at 0.848. LogMap-Lite has a lower score of 0.728, while ATMatcher has a score of 
0.669. LSMatch has the lowest recall score at 0.634 
 
 
The F-measure combines precision and recall. AML and Matcha both have the highest F-
measure of 0.941. LogMap-Bio follows with 0.895, while LogMap has 0.880. LogMap-Lite also 



 

performs well with a score of 0.828. ATMatcher has F-measure at 0.794, while LSMatch has 
the lowest F-measure at 0.761. 
 
All the systems mentioned have good results. Some systems, like LogMap-Bio, trade speed for 
higher accuracy, while others, like Matcha, balance speed and performance. All systems have 
good accuracy, scoring above 82%. In terms of recall, some systems show high recall, meaning 
they identify mappings correctly, while others have lower recall, indicating difficulties in 
discovering them. High precision is important, but having a good recall value is also crucial. 
Most systems achieve a high F-measure, with scores above 75%. Overall, each system 
performs well, using its own methods to uncover mappings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

3. OntoLink 
 
Ontology alignment remains a challenging and demanding task that many systems aim to 
optimize it by providing different approaches. In this chapter, we introduce OntoLink, a new 
system designed for ontology alignment. OntoLink can handle both small and large ontologies 
to produce accurate mappings. Its architecture is designed to not only find reliable mappings 
but also resolve issues such as inconsistency and unsatisfiability. It has been developed using 
Java. 
 
In its architecture, OntoLink has employed some components from LogMap, that help in the 
alignment process. Specifically, it utilized LogMap’s string matching that is used to discover 
mappings. Additionally, the structures where classes, properties and mappings are stored are 
put in use. Moreover, OntoLink adopts LogMap’s iterative process where new mappings are 
found, and the respective structures are updated. These features from LogMap help shape 
OntoLink's architecture. 
 
OntoLink uses Manchester syntax to find additional mappings, by evaluating the definitions of 
complex classes, under the scope of previously detected correspondences. Furthermore, 
OntoLink, integrates the HermiT reasoner in its architecture, to infer new correspondences 
and detect inconsistencies triggered by false correspondences. HermiT helps find equivalent 
classes and resolve inconsistencies or unsatisfiable classes. These processes will be explained 
in more detail in the following sections 
 
In the next sections, we will first explain the algorithm used in OntoLink, showing the steps it 
takes to discover mappings. Then, we will look at the architecture of OntoLink and how its 
components work together to achieve its goals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

3.1 The Algorithm  

 
OntoLink's algorithm is designed to enhance the ontology alignment process. It follows a series 
of structured steps to identify mappings. Figure 17 shows the algorithm 
 

 

Figure 17. OntoLink's algorithm 
 

OntoLink begins its process by having as input two ontologies, 𝑂1 and 𝑂2, and aims to produce 
the set of mappings 𝑀. The initial step of the algorithm, involves applying the function 
detectMappingFromImportedTerms(O1,O2). This function is straightforward, and is 
presented in Figure 18. 



 

 

Figure 18. detectMappingFromImportedTerms() function. 
 

Many ontologies reuse classes and properties from other ontologies. This means that two 
ontologies might share the same imported classes or properties from a third ontology. That is 
why, this function works by comparing the URIs of classes and object properties in the input 
ontologies. If the URIs match, are the same, it considers this an equivalence correspondence. 
The set 𝑀 then is updated with the found mappings. Although this may seem simple, it plays 
a significant role in discovering additional mappings later on. Many existing systems struggle 
to identify these mappings because they rely on label comparison. This approach ensures that 
the same resources are recognized across ontologies. It is also efficient, since it does not 
require a lot of time and computational power. 

 

Next, OntoLink uses features from LogMap. Specifically, LogMap contains an iterative process 
in its architecture, where new mappings are discovered through string matching using the 
UMLS lexicon. During each iteration, OntoLink checks if the discovered correspondences are 
already in the set 𝑀. If not, it adds them to 𝑀. Moreover, OntoLink also uses LogMap's 
structures that store mappings, classes, and properties. 

 
Following, our system uses Manchester syntax to find more mappings. With the use of it, we 
can represent ontology axioms and restrictions in simple terms. By utilizing the EquivalentTo 
axiom, we can uncover additional mappings. Specifically, if we have two classes to compare, 
and their corresponding anonymous classes are equivalent, then that means that those two 
named classes are also equivalent. In this case, we identify them as an equivalent 
correspondence. For example, consider the two EquivalentTo axioms below: 
 

• Ontology 𝑂1: 'molecular label' EquivalentTo 'molecular entity' and ('has role' some 
'molecular label role') 

• Ontology 𝑂2: 'individual molecular label' EquivalentTo 'molecular body' and ('has a 
role' some 'molecular label role') 

 
If we only keep the anonymous classes (the ones that follow EquivalentTo) we have: 



 

 

• Ontology 𝑂1: 'molecular entity' and ('has role' some 'molecular label role') 

• Ontology 𝑂2: 'molecular body' and ('has a role' some 'molecular label role') 
 
As mentioned earlier, the set M holds all discovered correspondence, meaning it represents 
the mappings. OntoLink then, with the use of the set 𝑀, compares each term from the 
anonymous classes in 𝑂1 with those in 𝑂2. If the two comparing terms are contained in 𝑀, 
meaning they are a mapped, the comparison is valid. Else if they are not contained in 𝑀,  
meaning they are not a mapped, the comparison is invalid. Only when all terms in the two 
anonymous classes are found in 𝑀 then both the anonymous classes are considered 
equivalent. If the anonymous classes are equivalent, their named classes are also considered 
equivalent. Therefore, we have a mapping. 
 

 

Figure 19. Comparison of Anonymous Classes. 
 

In our example, OntoLink compares two anonymous classes, as shown in Figure 19, to check 
if each term is a match. It looks at whether molecular entity and molecular body are a 
correspondence, as well as has role and molecular label role, using a set 𝑀. Therefore, 
molecular entity and molecular body are considered correspondence since they are in M. 
Logical operators like and and some, which are fundamental terms for ontologies, are treated 
with a string matching. This process continues until all terms are checked. In the end, OntoLink 
identifies that the two anonymous classes as equivalent. The named classes molecular label 
and individual molecular label are then considered equivalent, resulting in a mapping. This 
method systematically helps us to discover additional mappings. 
 
In the next step, our system initializes an empty ontology referred to as mergedOntology. It 
processes the axioms from 𝑂1 and 𝑂2 by applying a substitution rule, which creates new 
axioms. Figure 20 shows how this substitution rule works. 



 

 

Figure 20. Substitution rule. 

This algorithm for the substitution rule is straightforward.  For every known class mapping, 
such as  𝑂1: 𝐶1 = 𝑂2: 𝐶2, the system stores them in mergedOntology as 𝐶𝐶𝑖, where 𝑖 presents 
a unique identification. Similarly, for every know object property mapping, such as 𝑂1: 𝑅1 =
𝑂2: 𝑅2, it stores them in mergedOntology as 𝑅𝑅𝑗 where 𝑗 presents a unique identification as 

well. In this way, we treat a mapping between two classes or properties as new, single class or 
property. For example, the class mapping from Figure 19 would be renamed and stored with 
the label CC_224 and a URI like http://purl.obolibrary.org/CC_224.  Any axiom involving 
molecular entity and molecular body will have those terms replaced with CC_224. It's clear 
that the original URIs will also be replaced. In this way, we have created a new ontology that 
we can use and process. 
 
We can use HermiT with the mergedOntology to find any inconsistencies and unsatisfiable 
classes. HermiT helps us identify and fix these issues, and it can also discover new equivalent 
classes, leading to additional mappings. We take advantage of the explanations provided by 
HermiT.  Here’s how this approach works: for each inconsistency in the mergedOntology, if 
either 𝐶𝐶𝑖 or 𝑅𝑅𝑗 is involved, it removes them and the related axioms from the ontology. 

Therefore, it has discarded a mapping. OntoLink then stores the removed mapping in a 
structure, called Freq as shown in the algorithm in line 22, having entries that are formatted 
as < 𝑀𝑎𝑝𝑝𝑖𝑛𝑔, 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 >. The mapping is stored as the key, and the number of times it 
occurred is stored as the value, representing its frequency. After removing all the involved, we 
run HermiT again. If new inconsistencies arise, we remove those as well and update the 
frequency set. This process continues until there are no more inconsistencies in the 
mergedOntology. With this approach, we aim not only to resolve inconsistencies and 
unsatisfiable classes but also to help HermiT find new equivalences and mappings. 
 
In summary, this approach aims to find additional mappings and resolve the inconsistencies in 
the ontologies. For an alignment task, it is important to first check for inconsistencies and then 
look for unsatisfiable classes. Additionally, we effectively use the discovered object property 
mappings. We have implemented a sound approach that uncovers more mappings 
 
After completing the reasoning task, OntoLink starts over to find new mappings. It’s important 
to note that any mappings that caused problems in the mergedOntology are removed from 



 

the set 𝑀 in the next round. This helps minimize the inconsistencies. The algorithm ends when 
no new mappings are found during the iterative process, meaning that all correspondences 
between the input ontologies have been examined. Finally, a set of mappings is produced. 
 

3.2. The Architecture of OntoLink 

 
Now that we've explained the OntoLink algorithm, it's important to describe its structure. In 
this chapter, we will break down OntoLink's architecture, explaining its components, their 
roles, and how they work together to find mappings for ontology alignment. This analysis is 
essential for a better understanding of our system. Figure 21 shows an overview of OntoLink. 
 

 

Figure 21. Overview of OntoLink. 

 
Following, we will give an overview of the main steps OntoLink performs, as shown in Figure 
21.  
 
1. Compute Mappings from Imported Terms. After parsing the two input ontologies, 𝑂1 and 

𝑂2, the first step is to identify mappings from imported terms. Many ontologies reuse 
terms from other ontologies, so there is a possibility that 𝑂1 and 𝑂2 share the same terms 
from a third ontology. Identifying these mappings is simple: we just check if the URIs of 
classes and object properties from both ontologies are the same, meaning they refer to 
same resource. This is the detectMappingFromImportedTerms(), as shown in Figure 18. 
The mappings are then stored in a set structure used from LogMap’s architecture.  
 
Although this step seems simple, it's important for our system. Many existing tools miss 
these types of mappings because they rely only on string matching between labels. This 
process doesn't slow down our system, as it takes a short period of time to compare URIs. 
These mappings are the first ones discovered by OntoLink and will be used as input for the 
next steps of the system. 

 



 

2. Mapping Discovery. For the next step, we utilized some parts of LogMap. LogMap has an 
iterative process to discover mappings. It begins by finding anchor mappings, which are 
the first mappings it has identified. We boost this process by giving as input the mappings 
we found in the earlier step, making the discovery of anchor mappings more effective. This 
helps us find more mappings. Once the discovery has finished, we check if new mappings 
are found. If there are, we store them in the structure that holds the mappings, and will 
be used in the next step of OntoLink. 

 
3. Filter Restrictions. In this step, we compare the terms in anonymous class to find more 

mappings, as mentioned earlier. It's important to use the mappings we’ve already found. 
We convert the EquivalentTo axioms in simpler format using the Manchester syntax. The 
named class appears on the left side and the anonymous class on the right. In more 
technical aspect, we store the axioms in an array. In the first position we store the named 
classes and in the second the anonymous classes. We used an array for an easier access 
and performance. Then, we compare the terms of the anonymous classes using our 
mapping structure, as shown in lines 8-12 in OntoLink’s algorithm. This helps us discover 
more mappings or mappings that need several iterations to be found. In the end, we get 
an enriched set of mappings for the next step of OntoLink. 

 

 

Figure 22. The structure of the array. 

 

4. Apply Substitution Rule. Having a rich and larger set of mappings helps in this step. As 
shown in the algorithm, we use substitution rules in our process. All the discovered 
mappings between classes and properties are given new unique URIs and labels. As shown 
in the algorithm of Figure 17, we now treat these mappings as a single class or property. v 

This allows us to create a new ontology, called mergedOntology. Figure 23 shows part of 
the mergedOntology in Protege. 

 



 

 

Figure 23. Part of the mergedOntology. 

 
In this ontology we can apply reasoning tasks to uncover more information. We can find out 
more equivalences among classes and object properties, or identify inconsistencies that may 
occur. 
 
5. Apply HermiT & Remove Axioms. Once we create a new ontology, we can apply a reasoner 

to it. We chose the HermiT reasoner because it is widely used and can handle ontologies 
of any size efficiently. When we run HermiT on the mergedOntology, we aim to find any 
inconsistencies, unsatisfiable classes, or new equivalences between classes and object 
properties. If HermiT finds equivalences, we treat them as new mappings. We check if 
these mappings are already in our set. If they’re not, we add them and we identify them 
as new mappings 
 
If HermiT finds inconsistencies or unsatisfiable classes, it provides explanations showing in 
which axioms the issue has occurred. We then check if any 𝐶𝐶 or 𝑅𝑅 , meaning our 
mappings, is involved. If there are, we make the assumption that they might be causing 
the issue. The axiom, in which 𝐶𝐶 or 𝑅𝑅 are involved, are removed from the 
mergedOntology, and the mappings are stored in a map structure. The key is the mapping 
itself and the value is how many times it has appeared causing an issue (frequency). For 
example, in Figure 24 we can see correspondences removed because they create 
inconsistency problems. We can see the class CC_137 has a frequency of 3, meaning it 
participates in three (3) different conflicts. This process continues until no more 
inconsistencies or unsatisfiable classes are found. 

 



 

 

Figure 24. Removed mapping. 

 
Finally, OntoLink checks if new mappings are discovered. If it finds any, it goes through 
another iteration, repeating all the previous steps. If no new mappings are found, OntoLink 
finishes its process and produces a final mapping. 
 
This is the architecture of OntoLink. While it may seem straightforward, OntoLink is 
designed to improve the ontology alignment process. Its components work together 
effectively, allowing it to handle both large and small ontologies and generate a 
comprehensive set of mappings.  
 

 

3.3. Application of OntoLink 

 
After explaining the algorithm and architecture of OntoLink, it’s important to demonstrate its 
application. This will help make its usage clearer for users. In this section, we will showcase 
how OntoLink works using a pair of ontologies. 
 
We chose to demonstrate OntoLink’s application using two ontologies. The first ontology is 
the Ontology for Biobanking (OBIB) [20], designed to represent and model information about 
biobank repositories and biobanking administration. The second is the Ontology of Minimum 
Information About Biobank data Sharing (OMIABIS) [21], which is used to describe biobanks, 
research on samples and associated data. We will show how OntoLink works using the OBIB-
OMIABIS pair. Therefore, the first step in OntoLink’s process is to gain information about the 
characteristics of the input ontologies. 



 

 

Figure 25. Attributes of the input ontologies. 
 

As shown in Figure 25, OntoLink has extracted key information from both input ontologies. It 
found that OBIB contains 17,807 axioms and 1,804 classes, while OMIABIS has 5,093 axioms 
and 427 classes. Additionally, OntoLink identified the number of EquivalentTo axioms in each 
ontology, with OBIB having 190 and SLSO having 93. This step is important for OntoLink’s 
process, as it gives users a better understanding for the mapping discover process. For 
instance, if both ontologies have many EquivalentTo axioms, OntoLink can identify a large 
number of mappings by utilizing these axioms. 
 
Next, OntoLink checks if any mappings between imported terms are missing. In our case, no 
mappings of this type were missing, so OntoLink spent almost no time on this step. Afterward, 
OntoLink attempts to find mappings using the EquivalentTo axioms and with the help of 
Manchester syntax, as explained earlier. By leveraging these axioms, OntoLink identified 124 
correspondences. Some were between the same terms, while others involved different terms. 
Out of these, 54 were missing from its storage structure, so it added 54 new mappings. Figure 
26 shows the output from this process as displayed in the console. 
 

 

Figure 26. Mappings found. 

 



 

Next, OntoLink uses the substitution rule (as shown in Figure 20) to create the 
mergedOntology. It stores the discovered mappings in the mergedOntology. In Figure 29, we 
can see the creation of the mergedOntology as displayed in the console. Since it is formed by 
merging the two input ontologies, the mergedOntology has attributes like classes and axioms 
from both ontologies. At this stage, the user can access both the mappings and the 
mergedOntology, which are stored locally. 
 

 

Figure 27. The mergedOntology. 
 

After creating the mergedOntology, we can discover additional mappings and check the 
consistency using the HermiT reasoner. By applying HermiT to the mergedOntology, we 
identify equivalences between classes and object properties. OntoLink found a total of 1385 
equivalences, which are considered equivalent correspondences. Some of these may have 
been found earlier, however all new correspondences are displayed in the console. In Figure 
28, we found new equivalences. 
 

 

Figure 28. Discovery of new mappings. 

 
At the same time, we check the consistency of the mergedOntology. If it is inconsistent, 
HermiT will alert us, and a warning message will appear in the console. In our case example, 
HermiT detected inconsistencies. Using the explanation provided by HermiT, we can find the 
axioms the inconsistency occurred and check if a mapping (𝐶𝐶𝑖 and 𝑅𝑅𝑗) is involved. If there 

are mappings involved, we discard them and the axioms that are involved and run HermiT 
again. An example of this process is shown in Figure 26, where mappings are removed. This 
process continues until no more inconsistencies are found. 



 

 
Once the reasoning task is complete, OntoLink starts over to identify more mappings. It's 
important to note that any mappings that caused issues are removed from the structure 
where all the mappings are stored.  Therefore, OntoLink will try to find additional mappings 
by repeating the same steps. If no new mappings are found, the process terminates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

4. Experimental Evaluation 
 
In this chapter, we will showcase OntoLink by aligning two pairs of ontologies: NGBO-STATO 
and PSDO-STATO. First, we will present the setup used for its application and then we will 
compare and evaluate OntoLink’s performance against other existing systems. Through this 
evaluation, we aim to show OntoLink’s efficiency and effectiveness. 
 

4.1. System Evaluation Setup 

  
Evaluating the performance of an ontology alignment system is crucial. Campaigns like OAEI 
provide reference alignments, and there are also repositories with that offer mappings among 
ontologies that can be used for evaluation. In this section, we will explain the setup used to 
evaluate OntoLink’s performance, which includes using specific pair of ontologies and a 
repository for testing the results. 
 
To evaluate OntoLink's performance, we used publicly available ontologies. Specifically, we 
worked with the Performance Summary Display Ontology (PSDO), the Statistics Ontology 
(STATO), and Next Generation Biobanking Ontology (NGBO) [22, 23, 24]. The pairs we tested 
in our system were NGBO-PSDO and STATO-PSDO. Below are the details of the ontologies we 
used: 
 
1. Performance Summary Display Ontology - PSDO 
The PSDO is a lightweight ontology commonly used in healthcare domain. Its purpose is to 
manage and explain visualizations of clinical performance and their outcomes in healthcare 
quality improvement settings. The PSDO has the following characteristics: 
 

- 424 Axioms 
- 96 Classes 
- 10 Properties 

10 Object Properties 
- 0 Data Properties 
- 0 Individuals 
- 6 EquivalentTo Axioms 
- 0 Disjoint Classes 

 
Additionally, PSDO uses ALC expressivity [25], a fundamental logic that supports conjunction, 
disjunction and negation, along with quantifiers such as some and only. ALC provides the 
foundational means to express basic relationships and constraints within an ontology 
 
 
 
 
 
 
 



 

2. Statistics Ontology - STATO 
STATO is a general-purpose ontology that provides a vocabulary with statistical terms. It 
includes classes like mean, average value, and many more. Its goal is to help users describe 
situations where statistics are needed. STATO has the following features: 
 

- 11,678 Axioms 
- 889 Classes 
- 71 Properties 
- 64 Object Properties 
- 7 Data Properties 
- 14 Individuals 
- 104 EquivalentTo Axioms 
- 9 Disjoint Classes 

 
STATO has SROIQ(D) expressivity [26], meaning it combines features from the SROIQ language 
with the ability to include data values, like integers and strings. This allows to represent 
complex concepts in ontologies, including class hierarchies, relationships between properties, 
and rules that involve both individuals and data values. 
 
3. Next Generation Biobanking Ontology – NGBO  
The NGBO is commonly used in the biomedical field. Its purpose is to represent and manage 
information about omics digital assets in biobanks. The NGBO consists of the following 
characteristics: 
 

- 11,814 Axioms 
- 1,516 Classes 
- 133 Properties 
- 129 Object Properties 
- 4 Data Properties 
- 0 Individuals 
- 6 EquivalentTo Axioms 
- 25 Disjoint Classes 

 
Moreover, NGBO uses SRIQ expressivity [27], which means it can represent complex 
relationships in ontologies. It includes features like inverse properties, cardinality restrictions, 
and transitive roles, allowing for more detailed and structured knowledge representation. 
 
To provide a strong basis for our evaluations, we used BioPortal, one of the largest and most 
used ontology repositories available today. BioPortal provides mappings between different 
ontologies, including those we used in our study. By using these established mappings as our 
reference point, we could accurately present and evaluate OntoLink's performance. In this 
way, we can calculate important metrics like precision, recall, and F-score, giving us a solid 
standard for comparison. 
 



 

 

Figure 29. Mappings from BioPortal. 

 

With this setup, we will demonstrate OntoLink's capabilities. We will showcase its 
performance in identifying mappings and compare it to current ontology alignment systems 
 
 

4.2. Experimental Results 

 
In this section, we will demonstrate how OntoLink performs compared to other state-of-the-
art systems. We will evaluate its performance against LogMap, LogMap-Lite, LogMap-Bio, 
LSMatch, Match, and ATMatcher, which were introduced in section 2.2.1. For this evaluation, 
we will use the pairs of ontologies PSDO-STATO and NGBO-STATO and assess the results based 
on the mappings provided by the BioPortal repository. 
 
We will focus on key metrics such as precision, recall, and F-measure to analyze our system in 
detail. These metrics are described in section 2.3.2. We will also focus in size of alignment 
produced by the systems. We hope that this analysis will provide valuable insights into 
OntoLink's effectiveness and reliability in uncovering mappings. 
 
 
 
 
 



 

Table 4. Results PSDO - STATO. 
 

 Execution 
Time (s) 

Size Precision Recall F-measure 

LogMap 6.56 25 1.000 0.142 0.250 

LogMap-Lite 3.5 18 1.000 0.125 0.223 

LogMap-Bio 58 0 0.000 0.000 0.000 

AML 7 17 1.000 0.125 0.223 

LSMatch 5 7 0.000 0.000 0.000 

Matcha 31 2 0.000 0.000 0.000 

ATMatcher 21 9 0.110 0.125 0.118 

OntoLink 61.5 38 1.000 0.714 0.834 

 
Table 4 shows the results of the state-of-the-art systems using the pair of ontologies PSDO-
STATO. LogMap-Lite had the fastest execution time at 3.5 seconds, followed by LSMatch at 5 
seconds. LogMap completed in 6.56 seconds, and AML was close behind at 7 seconds. 
ATMatcher and Matcha took longer, at 21 seconds and 31 seconds, respectively. LogMap-Bio 
finished in 58 seconds, while OntoLink was slightly slower at 61.5 seconds. 
 
In terms of the number of mappings found, OntoLink discovered the most, with 38 in total. 
LogMap followed with a set of 25 found, and LogMap-Lite found 18. AML identified 17 
correspondences and ATMatcher produced. Matcha found only 2 correspondences between 
the two ontologies, and LogMap-Bio produced an empty set of mappings. 
 
Precision measures the correct mappings found compared to the total mappings retrieved by 
the systems. Most systems, including OntoLink, LogMap, LogMap-Lite, and AML, achieved a 
perfect precision of 1.000, meaning all their retrieved mappings were correct.  ATMatcher had 
a lower precision of 0.110. LogMap-Bio, LSMatch, and Matcha had a precision of 0.000. 
 
Recall measures the correctly found mappings over the total number of expected mappings. 
OntoLink had the highest recall at 0.714. Next was LogMap with 0.142. LogMap-Lite, AML, and 
ATMatcher followed with 0.125. LogMap-Bio, LSMatch, and Matcha had the lowest recall, with 
a value of 0.000. 
 
In terms of F-measure, OntoLink achieved the highest F-measure of 0.834, followed by LogMap 
at 0.250. LogMap-Lite, AML, and ATMatcher all had an F-measure of 0.223. LogMap-Bio, 
LSMatch, and Matcha had the lowest F-measure, each with a score of 0.000. 
 
In the pair of ontologies PSDO-STATO, OntoLink took the longest time to complete, taking 
nearly one minute. However, this extra time allowed it to discover the mappings among 
existing ontology alignment systems, and achieve the highest evaluation metrics. The 
additional processing time helped the system perform better. 
  
 



 

Table 5. Results NGBO - STATO. 

 Execution 
Time (s) 

Size Precision Recall F-measure 

LogMap 59 183 0.110 0.250 0.150 

LogMap-Lite 7 19 0.157 1.000 0.270 

LogMap-Bio 392 0 0.000 0.000 0.000 

AML 12  5 0.200 0.200 0.250 

LSMatch 9 203 0.375 1.000 0.545 

Matcha 35 13 0.000 0.000 0.000 

ATMatcher 56   147 0.125 0.334 0.182 

OntoLink 252 195 0.538 1.000 0.700 

 
Table 5 shows the evaluating results of existing ontology alignment systems using the pair of 
ontologies NGBO - STATO. LogMap-Lite had the fastest time at 7 seconds, followed by LSMatch 
at 9 seconds. AML finished in 12 seconds. Matcha took 35 seconds, while ATMatcher took 56 
seconds. LogMap needed 59 seconds. OntoLink took 252 seconds to complete, and LogMap-
Bio had the longest time at 392 seconds. 
 
Among the systems, LSMatch produced the largest size of mapping, with 203 correspondences 
in total. OntoLink followed closely with 195 correspondences found, and LogMap found 183. 
ATMatcher produced a set of 147. LogMap-Lite and Matcha found 19 and 13, respectively. 
AML discovered 5 correspondences between the two ontologies, while LogMap-Bio produced 
an empty set of mappings. 
 
In terms of precision, OntoLink had the highest precision valued at 0.538. Following was 
LSMatch at 0.375. AML had a precision of 0.200, and LogMap-Lite had 0.157. ATMatcher 
followed with 0.125, while LogMap had 0.110. Both LogMap-Bio and Matcha had a precision 
of 0. 
 
Several systems achieved a perfect recall of 1.000. OntoLink, LSMatch and LogMap-Lite were 
the systems that achieved a recall of 1.000. ATMatcher followed with a recall of 0.334. Next, 
LogMap had a value of 0.250, while AML had a recall of 0.200.  Both LogMap-Bio and Matcha 
had a recall of 0.000. 
 
The F-measure gives us a better understanding of the evaluation results. OntoLink had the 
highest F-measure at 0.700. Next was LSMatch at 0.545. LogMap-Lite achieved 0.270, with 
AML coming close at 0.250. ATMatcher had a score of 0.182, and LogMap had 0.150. Both 
LogMap-Bio and Matcha had an F-measure of 0.000. 
 
In the pair of ontologies NGBO-STATO, OntoLink took over 200 seconds to complete the 
alignment. However, this additional time allowed it to achieve the highest precision, recall, 
and F-measure among all the systems. The longer processing time helped OntoLink to achieve 
a better overall performance. 
 



 

5. Concluding Remarks 
 

5.1. Findings 

 
In this work, we introduced OntoLink, a newly developed system for ontology alignment. 
OntoLink was designed to improve the discovery of mappings between ontologies. s 
application was demonstrated on the PSDO-STATO and NGBO-STATO ontology pairs and 
compared against other state-of-the-art systems. 
 
It was necessary for us to understand why the development of OntoLink was important how 
it could contribute to the research field. After examining existing ontology alignment systems 
and methods used to discover mappings, we found some limitations. For example, many 
systems overlooked mappings between imported terms from external ontologies, even 
though these terms refer to the same resource. This simple step is crucial, as discussed in 
Chapter 3. Additionally, we found out that many systems do not check for ontology 
consistency, leading to mappings between inconsistent ontologies. We also wanted OntoLink 
to handle mappings between object properties, which is often overlooked. Addressing these 
gaps was key in creating OntoLink. 
 
To address these challenges, we developed OntoLink. However, to fully build the system, we 
incorporated key components from LogMap’s architecture to assist us. After properly 
integrating these elements, we enhanced the system’s structure. Using Manchester syntax, 
we worked with anonymous classes in the ontologies to uncover additional mappings. As 
explained in Chapter 3, we compared the terms of anonymous classes to find mappings 
between named classes. 
 
Next, we used reasoning tasks to discover more mappings. By applying a substitution rule and 
the HermiT reasoner, we were able to find additional mappings. HermiT was chosen among 
existing reasoners because it is the most efficient and fastest at checking for inconsistencies 
and unsatisfiable classes in ontologies. HermiT helped us check if the mappings found are 
correct and provided us a sound approach for identifying them. 
 
After developing OntoLink, it was important to demonstrate its application. We tested it on 
the PSDO-STATO and NGBO-STATO ontology pairs. While OntoLink took some extra time to 
produce the final set of mappings, this additional time helped it identify more mappings and 
create a richer, larger alignment set. This led to higher precision, recall, and F-measure, which 
are key metrics for evaluating a system's performance. 
 
Overall, OntoLink is a newly developed system designed to perform ontology alignment. Its 
architecture consists of components that work together to discover and identify mappings. 
OntoLink uncovers mappings in an effective and reliable way. 
 
 



 

5.2. Future Work 

 
The creation of OntoLink, presented in this work, is a new contribution in the field of 
ontologies. However, there are several potential avenues for future research and 
improvement on the system. Key areas for improvement could be the following: 
 

- Since OntoLink uses HermiT as its reasoner, it would be interesting to explore the use 
of other reasoners in its architecture. There are many available options, such as FaCT++ 
or Openllet [28, 29], which could be tested for their effectiveness and compatibility 
with our system. 
 

- Using a different lexicon in our system could be an interesting task. Currently, OntoLink 
uses UMLS or WordNet, depending on user needs. Replacing the existing lexicon with 
an alternative could provide insights about the performance of OntoLink. 
 

- Additionally, developing a simple user interface could significantly enhance the user 
experience. This would make OntoLink more accessible and easier to use without 
complicating the process for users. 
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