

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

 Πτυχιακή Εργασία

Τίτλος Πτυχιακής Εργασίας «Εργαλείο Διαχείρισης Ευπαθειών για Unix Συστήματα»

 «Vulnerability Assessment Tool for Unix Systems»

Ονοματεπώνυμο Φοιτητή Ηρακλής Δούσης

Πατρώνυμο Γεώργιος

Αριθμός Μητρώου Π/ 16181

Επιβλέπων Δέσποινα Πολέμη, Καθηγήτρια

Ημερομηνία Παράδοσης Σεπτέμβριος 2024

2

Copyright ©

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν αποκλειστικά

τον συγγραφέα και δεν αντιπροσωπεύουν τις επίσημες θέσεις του Πανεπιστημίου Πειραιώς.

Ως συγγραφέας της παρούσας εργασίας δηλώνω πως η παρούσα εργασία δεν αποτελεί προϊόν

λογοκλοπής και δεν περιέχει υλικό από μη αναφερόμενες πηγές.

3

Table of Contents

Abstract ... 5

Part I: Theoretical Background and Market Analysis .. 6

1. Introduction ... 6

1.1 Evolution of vulnerability assessment .. 6

1.2 Overview of Unix security challenges .. 8

2 Principles of vulnerability assessment .. 11

3. Review of Existing Vulnerability Assessment Tools .. 13

3.1 Evaluation of in-place market solutions ... 13

3.2 Strengths and weaknesses of current tools .. 15

3.3 Current Trends and Practices in Vulnerability Assessment .. 16

3.4 Latest developments and the use of AI in vulnerability assessment .. 16

Part II: Development and Analysis of simpleVAP .. 17

4. System Architecture and Design ... 17

4.1 Design Principles and Requirements .. 17

4.2 Methods of identifying Vulnerabilities ... 20

4.2.1 CVEs... 20

4.2.2 Misconfigurations and various other threats ... 21

4.3 Overview of the tools architecture ... 23

4.4 Services of simpleVAP .. 24

4.4.1 WebPanel ... 25

4.4.2 Scanning Service .. 26

4.4.3 Nmap, Nikto and SQLMap Tools Integration .. 27

4.4.4 Schedules Scanning and Automation ... 27

4.4.5 Reporting and Analytics ... 28

4

4.4.6 Modular Plugin System ... 28

4.5 Technologies to be used ... 31

5. Implementation and Testing ... 36

5.1 Code Structure Explained ... 36

5.2 Implementation Aspects ... 41

5.3 Test Cases .. 44

5.4 Testing Reports – screenshots ... 45

6. Evaluation ... 48

6.1 Evaluation methodology and metrics ... 48

6.2 Evaluation report ... 49

7. Conclusion and further research ... 50

7.1 Potential improvements.. 50

7.2 Suggestions for further research .. 53

8. References ... 54

5

Abstract

In the evolving landscape of cybersecurity, the effective identification and assessment of

vulnerabilities within IT infrastructures have become paramount. This bachelor thesis presents

the development of a Vulnerability Assessment Tool, designed to streamline the process of

detecting, categorizing, and prioritizing vulnerabilities in computer systems. While the tool's

primary focus is on Unix-based systems, its adaptable framework allows for potential expansion

to other operating systems, catering to a diverse range of IT environments and systems.

The tool aims to automate the process of vulnerability scanning, leveraging up-to-date

information from established vulnerability databases and common areas of exploitation. It is

designed to be user-friendly, enabling IT personnel to efficiently manage vulnerability

assessments across multiple systems. By offering features such comprehensive and centralized

reporting, real time risk scanning/handling, the tool serves as an asset for organizations seeking

to bolster their cybersecurity approach and current procedures.

The core part of this project is the ability to manage and help secure a large-scale IT

infrastructure with many systems through a management/web panel. The tool is developed with a

keen eye on the requirements of modern IT infrastructures, ensuring compatibility, scalability,

and ease of integration.

This thesis not only contributes a practical tool to the field of cybersecurity but also provides an

in-depth analysis of the current landscape of vulnerability assessment. Through this work, it aims

to enhance the understanding of vulnerability management processes and underscore the

importance of proactive security measures in the digital age.

6

Part I: Theoretical Background and Market Analysis

1. Introduction

1.1 Evolution of vulnerability assessment

• The Birth of Network Security

The origins of vulnerability assessment are linked with the early development of computer

networks in the 1960s and 1970s. During these initial stages, the emphasis was on establishing

connectivity and functionality, with security being a secondary concern. However, as these

networks began to expand beyond academic and military domains into the broader public sector,

the need for security mechanisms became evident.

• The Arrival of Automated Tools

The 1980s and 1990s saw the spread of personal computers and the internet, marking the

beginning of widespread network vulnerabilities. It was during this period that the concept of

automated vulnerability assessment began to take shape. Tools like SATAN (Security

Administrator Tool for Analyzing Networks), released in 1995, and its contemporary, Internet

Security Scanner (ISS), provided administrators with the means to automate the process of

scanning networks for known vulnerabilities. These tools were very basic by today's standards

but laid the groundwork for the development of more sophisticated VA technologies.

• Standardization and Regulation

The late 1990s and early 2000s were characterized by efforts to standardize vulnerability

assessment processes. The introduction of the Common Vulnerabilities and Exposures (CVE)

system in 1999 offered a unified index of known vulnerabilities, helping the sharing of

information and the comparison of security tools. This period also witnessed the implementation

of regulatory frameworks, such as the Sarbanes-Oxley Act of 2002, which mandated regular

security assessments for certain businesses, further embedding vulnerability assessment into the

fabric of network security. [1]

7

• Integration with Software Development

The adoption of Agile and DevOps methodologies in software development during the 2000s

and 2010s brought a model shift in vulnerability assessment. The concept of "shifting security

left," or integrating security measures early in the development lifecycle, gained traction. Tools

like OWASP ZAP and static application security testing (SAST) solutions became integral to the

development process, enabling developers to identify and remediate vulnerabilities before

deployment.

• The Era of Continuous Assessment

Today, the landscape of vulnerability assessment is dominated by continuous and integrated

approaches. The rise of cloud computing and CI/CD (Continuous Integration/Continuous

Deployment) pipelines has created the requirement of development of tools capable of

continuous monitoring and assessment. Platforms like Qualys and Tenable.io offer cloud-based

vulnerability management, allowing organizations to continuously track and address

vulnerabilities across their digital infrastructure.

• The Future: AI and Predictive Analytics

The future of vulnerability assessment lies in the integration of artificial intelligence and

machine learning technologies. Predictive analytics and AI-driven threat modeling are poised to

transform vulnerability assessment, enabling organizations to anticipate potential vulnerabilities

and proactively mitigate threats before they are exploited. [2] [3]

8

1.2 Overview of Unix security challenges

 Figure 1 Showing different aspects of cybersecurity [4]

The Unix operating system, known for its reliability and flexibility, supports much of the world’s

computing infrastructure. However, despite its robust architecture, Unix systems face several

security challenges, particularly in areas involving vulnerable packages, services, and outdated

software. These vulnerabilities, combined with the complexities of user permissions and network

exposure, make Unix systems prime targets for attackers. This chapter explores these challenges,

focusing on vulnerable software, services, and critical system misconfigurations that can be

exploited if left unchecked.

• Vulnerable Packages, Services, and Software

One of the most pressing challenges facing Unix systems is the presence of vulnerable packages

and services. Software components such as outdated libraries, unpatched services, and poorly

maintained applications can be exploited by attackers to gain unauthorized access or escalate

privileges. For example, widely-used services like OpenSSH, Apache HTTP Server, and MySQL

may contain known vulnerabilities if they are not regularly updated. Attackers often exploit these

9

vulnerabilities using automated tools, making it critical for system administrators to keep

packages up-to-date the manual way, or by use of an automated vulnerability scanning tool.

Legacy and outdated software present a similar challenge. Many Unix systems, especially those

used in enterprise environments, rely on older software components that are no longer

maintained or supported. This creates a significant risk, as attackers can exploit these outdated

components to bypass security measures. Moreover, when vulnerable software is left unpatched,

it provides a clear avenue for attackers to use publicly available exploits to gain control of the

system. Therefore, ensuring that all packages are regularly updated and maintaining a strict patch

management process are essential for maintaining system security. [5]

• Network Exposure and Services

Unix systems are often deployed in networked environments where they serve as the backbone

for web servers, databases, and communication services. This network exposure makes Unix

systems particularly vulnerable to network-based attacks. For instance, services such as SSH

(Secure Shell), FTP (File Transfer Protocol), and SMTP (Simple Mail Transfer Protocol) can

become attack vectors if they are misconfigured or outdated. Unpatched SSH services are often

vulnerable to brute force attacks, while FTP services with improper configuration can allow

unauthorized access to the system's file structure.

Public-facing services, especially those running on open ports, present significant risk. If these

services are not secured or outdated, attackers can exploit them using known vulnerabilities or

configuration flaws. Ensuring that only essential services are running, combined with proper

firewall configuration and network segmentation, is crucial for minimizing the attack surface. [6]

• User and Group Permission Misconfigurations

Unix systems feature a detailed permissions model that manages access based on user, group,

and world categories. While this provides detailed control over system resources,

misconfigurations can introduce serious vulnerabilities. For example, files with improper

10

permissions may allow unauthorized users to read, write, or execute sensitive files. Files with the

setuid or setgid permission bits set allow programs to run with the privileges of the file owner or

group, and if such files are exploitable, they can lead to privilege escalation attacks. [7]

Similarly, world-writable files can pose significant risks, as they allow any user to modify

critical system files or scripts, potentially leading to privilege escalation or denial of service

attacks. Ensuring that file permissions are regularly audited and properly configured is essential

to reducing the risk of unauthorized access or privilege abuse. [8]

• Scripting and Command Injection Vulnerabilities

Unix systems often rely on shell scripts and command-line utilities to automate system tasks.

However, this flexibility introduces risks related to command injection and scripting

vulnerabilities. Insecure scripts that do not properly sanitize input can allow attackers to inject

malicious commands, which are then executed by the system with elevated privileges. This can

result in the unauthorized execution of commands, data leakage, or even full system

compromise.

Applications that interface with shell commands, such as web applications or network services,

are particularly vulnerable to command injection attacks. Proper input validation and the use of

secure coding practices are critical to mitigating these risks. Additionally, system administrators

should regularly audit scripts and utilities to ensure they do not introduce unnecessary security

risks. [9]

• Misconfigured Sudoers File

The sudoers file, which controls the delegation of administrative privileges in Unix systems, is

another common source of vulnerabilities. If misconfigured, the sudoers file can grant excessive

privileges to users or allow users to run dangerous commands without proper authorization. For

example, allowing a user to execute any command as root without requiring a password

significantly weakens system security.

11

Ensuring that the sudoers file is correctly configured—granting minimal necessary privileges and

restricting command execution to only trusted users—is essential. Regular audits of the sudoers

file, combined with the use of tools such as sudo -l to verify user privileges, can help prevent

unauthorized privilege escalation. [10]

• Firewall Misconfigurations and Network Services

Misconfigured firewalls represent another area where Unix systems can be exposed to external

threats. If firewall rules are overly permissive or incorrectly configured, attackers may be able to

bypass network protections and exploit vulnerabilities in publicly exposed services. For instance,

improperly secured firewalls can leave sensitive services, such as databases or administrative

interfaces, open to external access. Regularly reviewing firewall configurations, using tools like

UFW or iptables, and ensuring that only necessary ports are open can mitigate these risks. [11]

Addressing Unix Security Challenges

To address these security challenges, it is important to use a combination of regular vulnerability

assessments, good configuration practices, and following security best practices. Toolscan be

used to scan Unix systems for known vulnerabilities, outdated software, and misconfigurations in

services and file permissions. By dealing with these common vulnerabilities and prioritizing

security, Unix administrators can lower the risk of system compromise and protect their systems

from both internal and external threats.

2 Principles of vulnerability assessment

Vulnerability assessment is a critical process in managing the security of computer systems,

particularly in Unix environments. It involves several key principles aimed at identifying,

evaluating, and addressing potential vulnerabilities. While the process can be complex,

understanding its core principles is not.

12

• Inventory and Understanding the Assets

The first step in vulnerability assessment is to have a clear picture of what assets are available.

This means identifying all the components of the system, from the software applications to the

physical devices. It's akin to knowing every entry point to a building before you can effectively

secure it.

• Vulnerability Identification

Once we know what assets are available, the next step is to scan these assets for known

vulnerabilities. This is where specialized tools come into play, scanning the systems for

weaknesses just like a health check-up can reveal areas of concern that need attention.

• Risk Analysis

Not all vulnerabilities pose the same level of risk. Some may expose the systems to significant

danger, while others might be less critical. Risk Analysis involves evaluating the potential

impact of each vulnerability, helping prioritize which issues to address first based on their

potential to harm the system or data.

• Remediation Planning

Identifying and analyzing vulnerabilities is part of the process. The next critical step is planning

how to fix these issues. This might involve updating software, changing configurations, or

applying security patches. The goal is to mitigate risks without disrupting system operations

more than necessary.

• Continuous Monitoring and Reassessment

The digital landscape is constantly evolving, with new vulnerabilities emerging regularly.

Continuous monitoring of the systems for new risks is crucial. This ensures that newly

discovered vulnerabilities can be addressed promptly, keeping systems secure over time.

• Documentation and Reporting

13

Keeping detailed records of vulnerability assessments, including what vulnerabilities were found,

how they were prioritized, and the steps taken to address them, is essential. This documentation

is vital for tracking progress over time, proving compliance with security standards (i.e.

ISO27001), and guiding future security decisions. [12]

3. Review of Existing Vulnerability Assessment Tools

In this section, some of the most commonly used vulnerability assessment tools for Unix systems

are reviewed. These tools help organizations identify and address potential security issues,

ranging from software vulnerabilities to misconfigurations. The following tools will be

examined:

• OpenVAS (Open Vulnerability Assessment System)

• Nessus

• Nmap (Network Mapper)

• QualysGuard

3.1 Evaluation of in-place market solutions

• OpenVAS:

OpenVAS is an open-source vulnerability scanner primarily focused on network-based scanning.

It offers a vast range of tests that cover various protocols and services, helping administrators

detect vulnerabilities in Unix systems and beyond.

Use Case: It is ideal for enterprises looking for a comprehensive open-source tool for network

scanning and system vulnerabilities. Its strength lies in network protocols and identifying

misconfigurations in services like FTP, SSH, and more. [13]

14

• Nessus:

Nessus, developed by Tenable, is a widely used commercial vulnerability scanner. It offers

extensive plugin support for scanning vulnerabilities across different system types, including

Unix-based environments. The tool is also known for its ease of use and detailed reporting

features.

Use Case: Nessus is particularly effective for large environments where detailed vulnerability

scanning and in-depth reporting are essential. It scans operating systems, applications, and

network services, identifying both common and obscure vulnerabilities. [14]

• Nmap:

Nmap, while primarily a network scanner, has grown to include a range of vulnerability

detection capabilities through its powerful scripting engine (NSE). It’s widely used for port

scanning, network discovery, and detecting vulnerabilities in services that run on open ports.

Use Case: Nmap is often used in the initial stages of vulnerability assessments to detect open

ports and discover running services. It’s an invaluable tool for system administrators conducting

network-level assessments. [15]

• QualysGuard:

QualysGuard is a cloud-based vulnerability management solution, allowing continuous

vulnerability assessments through a web interface. It offers automated, cloud-based scanning for

a wide range of security issues, from system vulnerabilities to compliance checks.

Use Case: Best suited for organizations that need a scalable and automated solution for

continuous vulnerability monitoring across Unix and other environments. It is particularly

valuable for organizations with compliance needs, such as GDPR or PCI DSS.

15

3.2 Strengths and weaknesses of current tools

Tool Strengths Weaknesses

Nmap • Flexible and fast for

network discovery and

port scanning.

• Extensive scripting

engine (NSE) for

custom vulnerability

checks.

• Not a full-featured

vulnerability

assessment tool

(focused more on

network scanning).

• Requires advanced

scripting knowledge

for more complex

vulnerability

assessments.

OpenVAS • Open-source and

regularly updated.

• Comprehensive

network and service

vulnerability scanning.

• Resource-intensive;

complex setup.

• Not as user-friendly as

commercial tools.

Nessus • Easy to use with a

large plugin library for

detecting a wide range

of vulnerabilities

• Detailed reporting and

integration with

vulnerability

management tools.

• Expensive for full-

featured versions.

• Free version (Nessus

Essentials) has limited

features.

QualysGuard • Cloud-based, easy to

deploy and manage

without requiring on-

premise infrastructure.

• Subscription-based,

potentially costly for

smaller organizations.

16

• Continuous,

automated scanning

and compliance

reporting.

• Relies on continuous

internet connectivity

3.3 Current Trends and Practices in Vulnerability Assessment

One of the most significant trends in vulnerability assessment is the shift from periodic scanning

to continuous, automated assessments. With cyberattacks becoming more sophisticated and

frequent, organizations can no longer rely on occasional vulnerability scans. Automated tools

continuously scan systems, identifying vulnerabilities in real-time and alerting administrators to

critical issues as they arise. Continuous vulnerability assessment enables proactive detection of

new threats, allowing for rapid remediation before vulnerabilities can be exploited.

Moreover, automation has made it easier to scale vulnerability assessments across large, complex

networks, ensuring that all assets—including those in cloud and hybrid environments—are

monitored effectively. [16] [17]

3.4 Latest developments and the use of AI in vulnerability assessment

In recent years, the field of vulnerability assessment has undergone significant transformations,

driven primarily by advancements in artificial intelligence (AI) and machine learning (ML).

These technologies have enabled faster and more accurate identification, prioritization, and

remediation of vulnerabilities in increasingly complex IT environments. Below are some of the

latest developments and the role AI plays in enhancing vulnerability assessment:

• AI-Driven Vulnerability Detection

AI has improved the process of detecting vulnerabilities by automating and enhancing traditional

methods. AI algorithms analyze large amounts of data in real-time to detect patterns that signify

potential vulnerabilities. For example, tools like Google’s Sec-PaLM use generative AI to

automatically scan and analyze code, providing detailed insights into vulnerabilities that may

17

have been missed by manual inspections. [18] AI can also detect zero-day vulnerabilities by

identifying new patterns that don't match known signatures, a capability that traditional tools

struggle with.

This AI-driven approach enhances the speed and accuracy of vulnerability detection, reducing

the chances of human error and helping organizations react quickly to new threats [19]

• AI-Powered Remediation

Once vulnerabilities are detected, AI also plays a crucial role in guiding the remediation process.

AI-based tools provide step-by-step remediation suggestions tailored to the specific environment,

helping security teams patch vulnerabilities more efficiently. For instance, solutions like

Tenable's AI capabilities automate risk prioritization and offer context-aware remediation,

allowing teams to focus on fixing the most critical issues first, rather than being overwhelmed by

a long list of vulnerabilities. [20]

Part II: Development and Analysis of simpleVAP

4. System Architecture and Design

4.1 Design Principles and Requirements

The design of simpleVAP (Simple Vulnerability Assessment Platform) is based on core

principles that ensure scalability, security, and user-friendliness. Given the critical role of

vulnerability assessments in modern Unix environments, simpleVAP was designed to meet the

needs of system administrators by offering automated, scalable, and reliable vulnerability

detection, coupled with a flexible user interface and management system. The following

principles and requirements formed the development of simpleVAP:

1. Security by Design

Security is very important in simpleVAP. Given that the tool deals with sensitive data such as

system configurations, CVEs, user credentials, and machine information, it was crucial to design

the platform with security-first principles.

18

Encrypted Communication: All communication between the central server and systems is

handled via secure protocols such as SSH (using paramiko for Python [21]) to ensure

confidentiality and integrity.

Token-Based Authentication: Each machine added to the platform is assigned a unique token,

which ensures that only authorized systems can communicate with the central server (securely

generated with python secrets library [22]).

Data Encryption: Sensitive data, including system credentials and tokens, are securely stored in

an encrypted format within the SQLite database to prevent unauthorized access.

2. User-Focused Interface

The platform's front-end design, developed using Flask [23] with Bootstrap 5.3 [24], was built to

provide an intuitive and user-friendly interface for system administrators. Some key design

choices include:

Simple Navigation: The user management system and dashboard allow administrators to easily

add systems, view machine statuses, and monitor vulnerabilities.

Customizable Scan Options: Administrators can perform vulnerability scans on specific systems

or all systems at once, with the ability to schedule scans or run them manually based on real-time

needs.

Detailed Reporting: Scan results are presented clearly, with high-priority vulnerabilities

prominently displayed to help prioritize remediation efforts.

3. Scalability

simpleVAP was designed with scalability in mind, enabling administrators to manage a large

pool of machines without experiencing performance bottlenecks.

Cron-Based Status Updates: Each machine regularly "pings" the server using a cron job,

reporting its current status and internal IP address. This method of decentralized updates ensures

that the central server isn’t overloaded by frequent communication from multiple machines.

19

Efficient Storage with Pickled Data: To optimize lookup times for vulnerability information,

simpleVAP stores the NVD/NIST database in a serialized format (Pickle), allowing for faster

queries when matching packages to CPEs (Common Platform Enumerations).

4. Extensibility

simpleVAP was built with flexibility in mind, allowing for future feature expansion and

integrations. For example:

Modular Tools: The platform includes built-in tools like Nmap, Nikto, and SQLMap, which can

be run against selected systems. These tools are modular, so additional tools or scanning engines

can be easily integrated into the platform in the future.

Custom Scan Scripts: The two main scanning scripts (checks.sh and remote_script.py) can be

modified or expanded as new vulnerabilities or security concerns arise, ensuring that the system

remains up-to-date with evolving security standards.

6. Automation and Efficiency

Automated Dependency Installation: The platform's checks.sh script automatically verifies

whether Python and necessary libraries are installed on target machines, reducing the burden on

system administrators to prepare each machine for vulnerability scans.

• Core Requirements

1. Usability

The platform must be easy to use, even for administrators who may not be familiar with

advanced vulnerability scanning tools. As such, all features—including adding systems, initiating

scans, and reviewing results—are accessed through a clean web interface.

2. Performance

20

Performance was another key requirement. The platform must be able to handle multiple scans

simultaneously without excessive latency or server load. To achieve this, simpleVAP efficiently

manages communication with systems using SSH, and threading, and relies on asynchronous

methods to perform vulnerability lookups against the NVD/NIST database.

3. Accuracy

The platform must provide accurate vulnerability assessments by using the latest security data

from the NVD/NIST database. This is achieved through regular updates to the CPE dictionary

and CVE matching algorithms, ensuring that system administrators receive up-to-date

information on vulnerabilities affecting their systems.

4.2 Methods of identifying Vulnerabilities

Identifying vulnerabilities is a core function that helps system administrators maintain a secure

and updated environment. The process of identifying vulnerabilities in Unix systems can be

broken down into two main methods: detecting known vulnerabilities through Common

Vulnerabilities and Exposures (CVEs) and identifying security risks related to system

misconfigurations or other potential threats.

4.2.1 CVEs

CVEs are standardized identifiers for known security vulnerabilities [25] in software and

systems. Each CVE is assigned a unique identifier, followed by detailed information on the

nature of the vulnerability, including its impact and how it can be exploited (CVSS – Common

Vulnerability Scoring System). The CVE system is maintained by the MITRE Corporation and is

used worldwide as a reference for identifying and managing security issues. CVEs are a

fundamental aspect of vulnerability management in simpleVAP, as they provide a reliable and

standardized way to track vulnerabilities in software packages and services.

In simpleVAP, after a vulnerability scan is performed on an systen, the gathered package names

and versions are converted into CPE (Common Platform Enumeration) format, which allows for

accurate matching with known CVEs. The tool then queries the National Vulnerability Database

(NVD) using the CPE identifiers to retrieve relevant CVEs associated with each package [26].

21

This automated process enables administrators to quickly identify if their systems are vulnerable

to any known security issues.

For example, if a system is running an outdated version of OpenSSH, simpleVAP will identify

the associated CVE (e.g., CVE-2020-15778 [27]) and provide the details of the vulnerability,

including the severity and potential impact. The platform then compiles this information into a

report, allowing system administrators to prioritize remediation efforts based on the severity of

the CVE, using its CVSS.

4.2.2 Misconfigurations and various other threats

Beyond identifying vulnerabilities through CVEs, simpleVAP also performs checks for

misconfigurations and other potential threats that may expose a system to risk. Misconfigurations

are a common cause of security breaches, as they often leave systems unintentionally exposed to

attackers. simpleVAP uses a combination of shell scripts and Python to detect several types of

misconfigurations, focusing on key areas like file permissions, running services, network

settings, and software configurations.

1. File and Directory Permissions:

Unix systems use a detailed permissions model to manage access to files and directories.

However, improper permissions can lead to privilege escalation or unauthorized access to

sensitive files. For example, files with world-writable permissions (777) can be modified by any

user on the system, which is a significant security risk. Similarly, files with the setuid or setgid

bit set can be exploited to execute commands with elevated privileges. simpleVAP scans for

these insecure configurations and highlights them in the report, allowing administrators to

correct them promptly [28].

2. SUID/SGID Files:

22

Files with SUID (Set User ID) or SGID (Set Group ID) permissions allow users to execute files

with the privileges of the file’s owner or group. If these files are not properly secured, attackers

can exploit them to gain unauthorized access or escalate privileges. simpleVAP checks for any

SUID or SGID files and flags them if they pose a risk to the system. [29]

3. Outdated Software and Packages:

Another area of concern is outdated software packages. Many vulnerabilities exist simply

because software is not kept up to date with the latest security patches. For instance, old versions

of OpenSSH or Apache may have known vulnerabilities that can be easily exploited [30].

simpleVAP compares installed package versions against the latest known versions and flags any

that are outdated, encouraging administrators to apply the necessary updates. [31] [32]

4. Network Services and Open Ports:

simpleVAP also checks for unnecessary or vulnerable services running on open ports. Open ports

expose services to external access, and if these services are not properly secured, attackers can

exploit them to gain unauthorized entry to the system. For instance, services like FTP and Telnet

are known for their lack of encryption and should be replaced with more secure alternatives like

SFTP or SSH [33]. simpleVAP scans the network configuration and reports on potentially

insecure services running on open ports.

5. Insecure SSH Configurations:

SSH is a common protocol used for remote access to Unix systems, but if it is misconfigured, it

can be an easy target for attackers. For example, allowing root login via SSH or using weak

encryption algorithms can expose a system to brute force or man-in-the-middle attacks.

simpleVAP checks the SSH configuration for insecure settings, such as allowing

PermitRootLogin or using deprecated ciphers, and recommends changes to improve security.

[34] [35]

23

6. World-Writable Directories:

World-writable directories allow any user to create or modify files within them, which could lead

to malicious scripts or files being executed with elevated privileges. simpleVAP identifies such

directories and flags them as high-risk areas, enabling system administrators to tighten

permissions where necessary. [36]

7. Misconfigured Firewalls:

Firewalls play a critical role in protecting Unix systems from external threats. However, a misconfigured

firewall can leave sensitive services exposed to external attacks. simpleVAP reviews firewall

configurations and checks for overly permissive rules that may allow unauthorized access to important

services like databases, administrative interfaces, or web servers. [37] [38]

4.3 Overview of the tools architecture

Figure 2 Deployment Diagram

24

Figure 3 Component Diagram

Figure 4 Sequence Diagram

4.4 Services of simpleVAP

The core services of simpleVAP provide system administrators with a wide array of tools to

monitor, scan, and assess the security posture of Unix-based systems. These services, accessible

through a web-based interface, allow administrators to manage systems, execute scans, retrieve

reports, and perform additional security tasks. The platform's modularity allows for future

extensibility through a plugin system where users can add their custom scripts to the scanning

process.

25

4.4.1 WebPanel

The WebPanel is the main interface for interacting with simpleVAP, built using Flask as the

backend and Bootstrap 5.3 for the front-end design. It provides an intuitive user experience with

simple navigation, allowing system administrators to easily perform the following tasks:

• User Authentication and Management: Users log in with credentials, and the platform

supports multiple administrator accounts. Role-based access can be implemented to

assign permissions to different users based on their responsibilities.

• Dashboard: The dashboard provides a quick overview of all the systems, their statuses,

and the most critical vulnerabilities found during the last scan. Administrators can easily

see which machines need urgent attention.

• System Management: Administrators can add new machines to the platform through the

WebPanel by specifying their details (name, IP, port, username, password, or SSH

certificate). The WebPanel handles storing this information securely in the database and

allows administrators to assign machines to specific users for better management.

• Scan Management: Administrators can initiate manual scans, schedule scans, or trigger a

scan across multiple systems through the WebPanel.

• Scan Results Reporting: Results of scans, including detailed CVEs, system

misconfigurations, and open ports, are displayed in organized containers and tables.

Administrators can dive deeper into each machine’s details to view scan results and

download the complete report.

26

• Security and Permissions: All interactions with the WebPanel are secured through

HTTPS, ensuring secure communication between users and the server. Additionally,

sessions are used to limit access to unauthorized users.

4.4.2 Scanning Service

The Scanning Service is the core functionality of simpleVAP, allowing for a detailed

vulnerability assessment of each systen added to the platform. The scanning service is

responsible for the following tasks:

• SSH-Based Scanning: For each system, the scanning service establishes an SSH

connection (via the paramiko library [21]) to remotely upload and execute the scanning

scripts. This includes the bash script checks.sh for dependency checks and the Python

script remote_script.py to collect system information and detect vulnerabilities.

• Package and Service Enumeration: The scanning script gathers a comprehensive list of

installed packages, running services, and system configurations. The service identifies

potential vulnerabilities related to outdated packages, misconfigured services, and

security risks associated with open ports and weak user configurations.

• CPE and CVE Matching: Collected package names and versions are converted to CPE

(Common Platform Enumeration) format using a locally stored dictionary (Pickle-

based for fast lookup). The matched CPEs are then used to query the NVD (National

Vulnerability Database) for relevant CVEs, which are returned to the server and

organized in the scan report.

27

4.4.3 Nmap, Nikto and SQLMap Tools Integration

simpleVAP includes built-in tools like Nmap, Nikto, and SQLMap to perform additional network

and vulnerability scans. These tools are integrated into the platform and can be configured

through the WebPanel:

• Nmap Integration: Administrators can run Nmap scans to detect open ports and

services and perform basic network mapping. The results are displayed in the

WebPanel, providing insights into which services are exposed to potential attackers.

Administrators can also configure specific Nmap scan options, such as performing a

stealth scan or aggressive scanning mode. [15]

• Nikto Integration: Nikto is a web server vulnerability scanner that checks for common

issues such as outdated server software, insecure configurations, and the presence of

default files that could be exploited by attackers. Administrators can target specific

systems and run Nikto scans to assess the security of web servers running on their

Unix systems. [39]

• SQLMap Integration: SQLMap is a tool designed to detect and exploit SQL injection

vulnerabilities in web applications. In simpleVAP, administrators can use the WebPanel

to run SQLMap against web-facing services on their systems. The results include any

detected SQL injection vulnerabilities and options to further probe for possible

database compromise. [40]

4.4.4 Schedules Scanning and Automation

To reduce manual intervention, simpleVAP allows administrators to schedule scans at regular

intervals. This is done using the python library Flask-APScheduler [41].This service ensures that

the system remains vigilant and performs assessments at predefined times:

28

• Scheduled Scans: Administrators can set up scheduled scans for specific machines or

groups of machines. This ensures that regular vulnerability assessments are conducted

without manual triggering.

• Automation of Scan Reporting: Once a scheduled scan completes, the system generates

a report automatically and updates the json file that contains the report of each system

in the WebPanel.

4.4.5 Reporting and Analytics

simpleVAP provides detailed reporting and analytics for every scan that is performed. These

reports offer insights into the vulnerabilities discovered, potential misconfigurations, and

recommended fixes. Features of the reporting system include:

• Detailed JSON Reports: After each scan, a report is generated in JSON format,

containing all the gathered information from the system. The report lists the

vulnerabilities, services, installed packages, and CVEs detected during the scan.

• Visual Analytics: The WebPanel includes visualizations such as charts that allow

administrators to quickly identify the most critical issues across their systems. High-

priority vulnerabilities are highlighted in the dashboard, helping administrators prioritize

their remediation efforts.

• Downloadable Reports: Administrators can download reports in multiple formats,

including JSON and Excek, making it easier to share findings with managers or keep

records for auditing purposes.

4.4.6 Modular Plugin System

The Modular Plugin System is an integral feature of simpleVAP, allowing administrators and

advanced users to extend the functionality of the platform by uploading custom Python scripts.

29

This system empowers users to tailor vulnerability assessments to their specific needs by adding

new security checks, scanning for proprietary software vulnerabilities, or automating particular

security procedures that aren't covered by the core scanning scripts.

• Plugin Upload and Management:

o Administrators can easily upload Python scripts via the WebPanel.

o The WebPanel provides a management interface for enabling, disabling, or

removing plugins.

• Integration with Core Scanning Process:

o When a vulnerability scan is initiated on an system, any active plugins are

executed in sequence after the core scripts (checks.sh and remote_script.py).

These plugins receive the same environment variables and system access,

allowing them to run specific commands or checks on the target machine.

o The results of each plugin’s execution are collected and merged with the main

scan results, ensuring that all custom checks are included in the final report.

• Customizable Checks:

o Custom Configuration Checks: Users can create Python scripts to check for

specific system configurations that are unique to their environment. For

example, checking for compliance with internal security policies or verifying

proprietary configurations.

o Proprietary Software Vulnerability Scanning: For enterprises using custom-

built or proprietary software, plugins can be used to detect vulnerabilities or

weaknesses that are not covered by public vulnerability databases like

NVD/NIST.

o Automation of Unique Tasks: Plugins can automate repetitive security tasks,

such as cleaning up temporary files, auditing log files for specific patterns, or

running custom security scripts regularly.

30

• Security and Execution Control:

o The execution of plugins is controlled through a permissions system, ensuring

that only authorized administrators can upload, modify, or execute plugins.

• Reporting and Feedback:

o The results of each plugin’s execution are returned to the central server, and the

findings are integrated into the final scan report. Administrators can review the

output of each plugin separately.

o If a plugin detects a new vulnerability or configuration issue, it is flagged in the

scan results alongside standard CVEs and misconfigurations.

• Example Use Cases

o Proprietary Software Checks: A company using a custom web application may

develop a plugin that checks for known security issues specific to their software

stack. This plugin can be uploaded to simpleVAP and executed during every scan

to ensure the custom application remains secure.

o Compliance Audits: A plugin can be developed to verify compliance with internal

security policies, such as checking if all machines have encrypted disks or if

sensitive configuration files have proper access control settings.

o Log File Audits: Administrators can upload a plugin that searches system log files

for patterns indicating potential attacks or misconfigurations. For example, a

plugin can scan for repeated failed login attempts and report suspicious activity

directly into the scan results.

31

4.5 Technologies to be used

The development of simpleVAP integrates several modern technologies, each serving a distinct

purpose in the platform's architecture. These technologies are selected based on their reliability,

flexibility, and scalability to ensure a secure and efficient vulnerability assessment system for

Unix environments.

1. Python

a. Role:

i. Python is the core programming language used for building the backend of

simpleVAP. Its extensive free-to-use and open source libraries, easy syntax,

and community support make it a great choice for implementing security-

related tasks and handling complex data structures.

b. Use Cases:

i. Core scanning logic, handling SSH connections, file transfers, and

vulnerability detection.

ii. Interaction with third-party APIs (NVD/NIST) for CVE retrieval.

iii. Building custom plugins for additional scanning functionality.

2. Flask

a. Role:

i. Flask is a lightweight web framework used for developing the WebPanel. Its

simplicity and flexibility make it suitable for creating small to medium-sized

web applications, while still providing the necessary components for handling

user requests, managing sessions, and interacting with databases. [23]

b. Use Cases:

i. Managing user sessions, handling authentication, and presenting scan results.

ii. Providing an interface for administrators to manage systems, trigger scans,

and view vulnerability reports.

iii. Handling plugin uploads and integrations via the web interface.

32

3. SQLite3

a. Role:

i. SQLite3 is a lightweight, serverless database engine used for storing critical

information about systems, scan results, users, and tokens. It is highly suitable

for the project due to its simplicity and low overhead, making it ideal for

environments where a full-fledged database system may not be necessary. [42]

b. Use Cases:

i. Storing system information, user credentials, authentication tokens, and scan

schedules.

ii. Recording scan results and providing fast access to data for the WebPanel.

4. Paramiko (SSH):

a. Role:

i. Paramiko is a Python library for handling SSH connections, which are used to

securely communicate with Unix systems. It allows simpleVAP to establish

connections to remote machines, execute commands, and transfer files

securely. [21]

b. Use Cases:

i. Establishing SSH connections to remote systems.

ii. Executing scripts (e.g., checks.sh, remote_script.py) on the target machines

for system scanning.

iii. Handling secure file transfers via SFTP for scanning scripts and scan results.

5. Bootstrap 5.3

a. Role:

i. Bootstrap is a front-end framework used to design the user interface for the

WebPanel. It provides a responsive and mobile-friendly layout with pre-built

components, making the UI visually appealing and easy to navigate. [43]

b. Use Cases:

33

i. Creating a responsive, user-friendly interface that works across different

devices.

ii. Providing customizable UI components like tables, forms, and modals for

managing scans and displaying results.

6. Pickle (for CPE Matching)

a. Role:

i. The Pickle module in Python is used to serialize and store the CPE dictionary.

This enables faster lookups of Common Platform Enumerations (CPE) during

the vulnerability assessment process, improving the performance of the CPE-

to-CVE matching workflow.

b. Use Cases:

i. Storing a preprocessed CPE dictionary in a serialized format for quick access

during scans.

ii. Loading the dictionary into memory when needed for fast CPE matching and

minimizing disk read times.

7. NVD API (National Vulnerability Database)

a. Role:

i. The NVD API is used to query the National Vulnerability Database for the

latest CVE data based on the CPE identifiers obtained during the scan. This

integration allows simpleVAP to provide administrators with up-to-date

vulnerability information for each package or service found on the system.

b. Use Cases:

i. Fetching relevant CVEs for matched CPEs during scans.

ii. Regularly querying the NVD with found CPEs to ensure that the platform is

aware of newly published vulnerabilities.

8. Nmap, Nikto, and SQLMap

34

a. Role:

i. These open-source security tools are integrated into simpleVAP to provide

additional scanning capabilities. Each tool targets a specific aspect of system

or network security, giving administrators the ability to run more specialized

tests alongside the core vulnerability assessments.

b. Nmap: Used for network discovery and identifying open ports, services, and OS

detection. [15]

c. Nikto: A web server scanner that checks for outdated software, default files, and other

web-based vulnerabilities. [39]

d. SQLMap: Detects and exploits SQL injection vulnerabilities in web applications. [40]

9. Cron (Linux Scheduling)

a. Role:

i. Cron is a Unix-based job scheduler used to automate regular tasks. In

simpleVAP, cron is used to schedule scans and ensure that machines regularly

ping the server to report their status and IP addresses. [44]

b. Use Cases:

i. Running regular system pings to maintain an updated machine list.

ii. Scheduling vulnerability scans at predefined intervals without requiring

manual intervention.

10. JavaScript and jQuery (for Interactive UI)

a. Role:

i. JavaScript and jQuery are used to enhance the interactivity of the WebPanel,

allowing users to interact with the UI seamlessly. jQuery simplifies DOM

manipulation and event handling, making the front-end more dynamic and

responsive. [45] [46]

b. Use Cases:

i. Handling asynchronous actions in the WebPanel, such as starting a scan

without reloading the page.

35

11. Shell Scripting (.sh Scripts)

a. Role:

i. The use of bash scripts in simpleVAP allows for platform-independent

execution of various system checks and dependency installation tasks. [47]

b. Use Cases:

i. checks.sh: This script is uploaded to remote machines to verify whether

Python and other required dependencies are installed. If dependencies are

missing, the script installs them automatically, ensuring the system is prepared

for the main vulnerability scan.

ii. Automation of basic tasks: Automates initial system setup and preparation,

reducing the need for manual configuration on each machine before a scan can

be performed.

36

5. Implementation and Testing

5.1 Code Structure Explained

• app.py

The app.py file is the central controller of

the simpleVAP platform, built with Flask

for managing web routes, user

authentication, and interactions between

the web interface and backend. It

orchestrates various functionalities:

1. Routing: Defines endpoints like

/login, /home, and /upload_plugin,

directing requests to appropriate

functions and ensuring access control

through decorators (login_required,

admin_only).

2. User Management: Handles session-

based login and admin authentication,

ensuring secure access to the platform’s

functions.

3. Real-Time Communication: Uses SocketIO to provide live updates during vulnerability

scans, pushing data to the client without page refresh.

4. Plugin Management: Allows for the dynamic uploading and execution of custom Python

plugins during scans, giving the platform extensibility.

5. Vulnerability Scanning: Coordinates the initiation of remote scans on systems using

various tools and modules (e.g., scan.py, nmap_scan.py) and integrates results into the

system.

Figure 5 Snippet of app.py code

37

• db_handler.py

The db_handler.py file manages all database

interactions in the simpleVAP platform. It uses

SQLite to store and retrieve essential information

such as user credentials, machine details, plugin

metadata, and scan history. It establishes

connections to the database and executes SQL

queries to perform various operations.

This file handles:

• User Management: Registering and

authenticating users, storing their credentials

securely, and managing user access to machines.

• Machine and Scan Management: Storing

information about the machines being scanned,

their SSH credentials, and updating the status of

each machine after scans are completed.

• Plugin Management: Adding, updating, and deleting plugins uploaded by

administrators, as well as retrieving plugin details for use during scans.

Figure 6 Snippet of db_handler.py code

38

• cpe.py and cve.py

The cpe.py and cve.py files work together to identify

vulnerabilities on a system by leveraging the Common

Platform Enumeration (CPE) and Common Vulnerabilities

and Exposures (CVE) standards.

• cpe.py: This file processes the CPE dictionary and

matches software packages and services on a target

machine to their respective CPE entries. It handles

downloading, parsing, and storing CPE data for

quick lookup, enabling the system to link installed

packages to known vulnerabilities.

• cve.py: Once CPEs are matched to the installed

software, cve.py uses the NVD API to retrieve

CVEs related to the matched CPEs. It fetches detailed vulnerability information, such as

CVE IDs and severity scores, which help in assessing the risk level of each software

component.

• helper.py

The helper.py file serves as a

utility module for the simpleVAP

platform, assisting with critical

tasks such as vulnerability

extraction, plugin management,

and report generation.

Figure 7 Snippet of cpe.py code

Figure 8 Snippet of helper.py code

39

Figure 9 Snippet of scan.py code

• scan.py

The scan.py file is the core component responsible for managing remote script execution on

systems in simpleVAP. It uses Paramiko to establish SSH connections, securely transfer scanning

scripts to remote machines, and execute them. The file also checks for sudo privileges on the

remote system, ensuring that the necessary commands run with appropriate access levels.

By automating the deployment and execution of scripts across multiple systems, scan.py

organizes the scanning process. It also integrates plugins into the scanning scripts, allowing for

customizable vulnerability checks. This file plays an important role in gathering system data and

executing the vulnerability assessment remotely on each machine.

40

• remote_script.py

The remote_script.py file is designed to be

executed on the remote system, gathering system

information, checking for security vulnerabilities,

and sending the results back to the central server.

It performs various checks on system

configurations, installed packages, network

services, and user accounts, providing both

informational and security-related data.

• Collects Information: It retrieves system

details like the hostname, IP addresses

(both internal and external), users, and

security configurations (e.g., SELinux,

AppArmor).

• Performs Security Checks: It checks for

open ports, firewall configurations,

vulnerable network services, world-

writable files, SUID/SGID files, and root

login permissions.

• Runs Vulnerability Assessments: The

script checks for outdated packages,

unauthorized users, insecure web server

configurations, and public scripts.

• Sends Data to Server: After collecting all relevant information and performing

assessments, the script compiles the data into a structured format and sends it back to the

server for further analysis and reporting.

Figure 10 Snippet of remote_script.py code

41

5.2 Implementation Aspects

The implementation of simpleVAP involved making a series of decisions that ensured the

platform’s performance in achieving its goals of providing a simple, flexible, and secure

vulnerability assessment tool. Each aspect of the development process was considered, from

choosing the right technologies to making the platform extensible and efficient. The key aspects

of the implementation and the reasoning behind choices are as follows.

• NVD as the CPE and CVE Database Source

The National Vulnerability Database (NVD) [25] was selected as the primary source for both

CPE (Common Platform Enumeration) matching and CVE (Common Vulnerabilities and

Exposures) retrieval. Several factors made NVD the ideal choice:

Comprehensive and Widely Recognized: The NVD is the most comprehensive and widely

accepted database for tracking security vulnerabilities. It is continuously updated with the latest

vulnerabilities, ensuring that administrators receive the most up-to-date information when

scanning their systems. [48]

Standardization of CPE: NVD's adherence to CPE standards ensures that package names and

versions are mapped to known software vulnerabilities. This made it easier for simpleVAP to

automate the process of matching installed software/services to CPE entries.

API Accessibility: The NVD provides a public API for querying CVEs based on CPE data,

which allowed for seamless integration into simpleVAP’s scanning process. By leveraging this

API, simpleVAP ensures that administrators can always retrieve the most relevant CVEs for the

software running on their systems. [26]

Alternative databases were considered, but none offered the same level of comprehensive

coverage, consistent updates, and ease of access as NVD.

• Using Pickle for the CPE Dictionary

When it came to storing and accessing the CPE dictionary for package matching, Pickle was

chosen over other formats like JSON for its speed and efficiency in handling large data sets.

42

Serialization Speed: Pickle is a Python-native serialization format, meaning it is much faster

when it comes to loading and saving data in Python-based applications. Since the CPE dictionary

contains large numbers of entries, speed was important to ensure that scan times remained low

even when scanning systems with many installed packages.

Efficient Lookups: Unlike JSON, which is more suited for human-readable data, Pickle is

optimized for machine-readability. By storing the CPE dictionary in Pickle format, simpleVAP

could quickly deserialize the data into Python objects, significantly speeding up CPE lookups

during scans. [49]

Lower Overhead: Pickle avoids the need for string parsing and conversion (which is required

when working with JSON), reducing overhead and improving the platform’s performance,

especially during the CPE matching phase.

• SSH with Paramiko vs. Manual Upload of Scripts

One of the major implementation decisions was using Paramiko for SSH connections rather than

having users manually upload scanning scripts to each system.

Automation and Efficiency: Automating the script upload and execution process via SSH with

Paramiko ensures that administrators do not need to manually interact with each system. This

significantly reduces human effort, especially in environments with a large number of machines.

Automating these interactions not only saves time but also reduces the chance of errors in

configuration or execution.

Security: Using Paramiko’s secure SSH communication ensures that all file transfers and

command executions are encrypted, minimizing the risk of eavesdropping or tampering. In

contrast, manual uploading could introduce security risks, as it would rely on non-automated,

potentially less secure methods of file transfer.

Error Handling: Paramiko allows simpleVAP to handle errors gracefully. If a connection fails or

the script encounters an issue, the system can log the error, alert the administrator, and retry if

necessary. This level of automation and control is difficult to achieve with manual uploads.

43

Consistency Across Machines: With SSH and Paramiko, the same scripts are automatically

deployed and executed on each machine in a consistent manner. This consistency ensures that

each system is scanned under the same conditions, reducing the risk of configuration drift or

human error. [50]

• Developing the Plugin System

The plugin system was one of the more challenging aspects of simpleVAP’s implementation, as

it poses certain security risks.

Plugin Management via WebPanel: The WebPanel was extended to allow Administrators to

upload Python scripts that could be executed during the scanning process. Plugins are integrated

into the scanning pipeline and can be managed (enabled, disabled, or removed) through the web

interface.

Customizability: The plugin system provides an open-ended way for administrators to extend

simpleVAP’s functionality without altering the core scanning scripts. This allows for custom

security checks and vulnerability detection tailored to the specific environment in which

simpleVAP is deployed.

• Error Handling and Logging

Throughout the implementation, error handling was integrated at multiple levels of the system to

ensure smooth operation and easier debugging.

Logging: Detailed logs are generated for SSH connections, script executions, plugin activity, and

API calls to NVD. These logs allow administrators to troubleshoot any issues that arise during

scans or interactions with remote systems.

Retry Mechanisms: In case of errors, such as a loss of SSH connectivity or an API timeout when

querying NVD, the system is designed to retry operations, ensuring that temporary issues don’t

result in failed scans.

44

5.3 Test Cases

During the implementation and development phase of simpleVAP, various test cases were

executed to ensure the robustness and useability of the platform in performing vulnerability

assessments. These tests were done across multiple Linux distributions, including both

consumer-grade and server-grade systems, to cover a wide spectrum of environments:

Linux Distributions Used for Testing:

• Debian: Tested for stability and long-term support capabilities, focusing on server

environments. [51]

• Ubuntu Desktop: Used to test consumer-grade systems, particularly focusing on systems

with graphical user interfaces. [52]

• Ubuntu Server: Tested server-grade installations, ensuring compatibility with headless

environments. [53]

• CentOS 6: Verified legacy server-grade systems with older software versions to ensure

backward compatibility. [54]

• MX Linux: A lightweight consumer-grade system, tested for performance on lower-

resource hardware. [55]

• Kali Linux: Tested specifically for compatibility with security-focused environments

where penetration testing tools are frequently used. [56]

Types of Test Cases:

1. Basic Functionality Tests:

a. Verified the ability to add machines and SSH into systems.

b. Confirmed the correct execution of remote scripts on various distributions.

c. Tested the web interface’s ability to process and display CVEs for each machine.

2. Vulnerability Detection Tests:

45

a. Checked that the tool correctly identified vulnerable packages and services based

on installed software versions.

b. Tested the accuracy of CVE retrieval by matching CPEs from the NVD database.

3. Plugin Integration:

a. Tested the dynamic plugin system to ensure that user-uploaded plugins could be

seamlessly integrated into the remote script and executed during scans.

b. Verified that plugin results were correctly displayed in the vulnerability report.

4. System Performance:

a. Ensured that system performance was not significantly impacted during scans on

lightweight distros like MX Linux and resource-intensive scans on server-grade

distros like Ubuntu Server.

b. Verified the proper execution of scripts without causing system crashes or

interruptions.

5. Error Handling:

a. Tested edge cases, such as missing dependencies on target machines or failed SSH

connections, ensuring the system handled these gracefully with error messages

and retry options.

5.4 Testing Reports – screenshots

Figure 11 Adding new systems and executing a remote scan

46

Figure 12 Viewing details of a specific system scan

Figure 13 Upon login the user is presented with his assigned systems, and a sorted list (high to low CVSS) of CVES

Figure 14 System Administrators can use tools like nmap to further evaluate a system

47

Figure 15 An admin of the platform can start an CPE database update

Figure 16 Users are registered through and already existing admin of the platform, who can also assign systems for them

Figure 17 In the plugin page custom python scripts can be uploaded to the platform to be executed along the standard

scan

48

6. Evaluation

6.1 Evaluation methodology and metrics

The evaluation of simpleVAP was based on how effectively the platform performed vulnerability

assessments across various Linux distributions, focusing on its accuracy, performance, and

usability. To assess the tool, several things were considered:

• Vulnerability Detection: The accuracy of the platform was assessed by comparing its scan

results to known vulnerabilities in installed software on test systems. The ability to

correctly identify and retrieve relevant CVEs (Common Vulnerabilities and Exposures)

was a central aspect of the evaluation.

• System Compatibility: Tests were performed on multiple Linux distributions, ranging

from consumer-grade systems (like Ubuntu Desktop) to server-grade systems (like

Ubuntu Server and CentOS 6). The platform's ability to consistently execute scans and

generate reports across different environments was an important metric.

• Performance: The speed of vulnerability scans and resource consumption (CPU, memory,

and network) during the scans were monitored. This helped ensure that the tool operates

efficiently without overloading the target systems or the server hosting the platform.

• Scalability: The platform was evaluated for its ability to handle multiple system

simultaneously without affecting performance or accuracy. This was important for

environments where large-scale vulnerability assessments are required.

• Security of the Web Panel: The security of the web interface was a vital part of the

evaluation. Access to the web panel was secured through user authentication, and session

49

management ensured that sensitive operations, such as vulnerability scans and plugin

uploads, were only accessible to authenticated users. The platform was also evaluated for

protection against common web vulnerabilities, such as unauthorized access and injection

attacks.

• Ease of Use: The usability of the web interface, including how easily users can navigate

between functionalities, upload plugins, view results, and manage systems, was evaluated

through user feedback.

6.2 Evaluation report

The evaluation showed that simpleVAP performs reliably across all tested Linux distributions,

offering both accuracy in detecting vulnerabilities and scalability in handling multiple systems.

• Vulnerability Detection: The tool successfully detected relevant CVEs on all systems,

along with identifying outdated packages and misconfigurations. The CPE matching was

accurate and manual cross referencing was done. CVE retrieval from the NVD API

worked as it should, providing administrators with comprehensive reports.

• System Compatibility: The platform worked across a wide range of Linux distributions

with differing pre-installed software and package managers. This should ensure that

platform can continue its operation indefinitely with small adjustments to the code.

• Performance: Scans were performed fast enough across all systems, with minimal

resource usage observed. Even when scanning multiple systems consecutively, the

platform maintained its performance, showing scalability and efficiency in handling

significant numbers of systems.

50

• Security of the Web Panel: While the entire platform is not meant to be exposed to the

internet it still proved to be secure, with proper user authentication and session

management ensuring that only authorized users could perform critical tasks. During

testing, the platform showed resistance to common web vulnerabilities, such as

unauthorized access and injection attempts, ensuring data protection and secure

operations.

• Ease of Use: The process of adding machines, scheduling scans, and viewing CVEs was

straightforward, and the ability to upload custom plugins provided additional flexibility.

In addition, the use of the Bootstrap framework, allows the panel to be usable on mobile

devices.

7. Conclusion and further research

7.1 Potential improvements

Although simpleVAP being a comprehensive tool, there are several areas for future enhancement

to further improve the platform’s functionality, security, and ease of use. These potential

improvements would provide even greater value for system administrators and security

professionals.

1. Forced Two-Factor Authentication (2FA) for Admin Users

To increase the security of the web panel, a mandatory 2FA [57] for all admin users would be an

essential improvement. Given the sensitive nature of the vulnerability data and the elevated

permissions of admin users, implementing a second authentication layer (such as TOTP or

hardware-based keys) would help mitigate the risk of unauthorized access to the system. This

51

would significantly improve the overall security of the web platform, especially in environments

dealing with highly sensitive data.

2. More Sandboxed and Smarter Handling of Plugins

The current plugin system allows administrators to upload custom Python code to extend the

platform’s scanning capabilities. However, to enhance security and stability, a more sandboxed

approach should be adopted. Plugins should be executed in isolated environments where they

cannot interfere with the core system or cause potential security risks.

Additionally, introducing a smarter plugin management system that can validate plugin code for

potential issues (e.g., performance bottlenecks) before execution would prevent poorly written

plugins from slowing down the system. Enhanced error reporting and rollback mechanisms could

also be introduced to ensure that any faulty plugin does not affect ongoing scans or the integrity

of the system.

3. Risk Analysis for Each System

Currently, the platform focuses primarily on identifying vulnerabilities. However, introducing

risk analysis functionality for each system could offer more comprehensive insights into the

overall security. By combining CVSS scores with additional factors—such as the criticality of

the system, the exposure to external networks, and the presence of mitigations—the platform

could offer a clearer overview of the actual risk each system poses. This feature would enable

administrators to prioritize their responses more effectively, focusing on high-risk systems first.

4. Integration of AI and Machine Learning

AI could significantly improve simpleVAP's ability to detect vulnerabilities and predict potential

risks. By incorporating machine learning models that analyze historical data, the system could

offer proactive security recommendations based on emerging trends. AI could also be integrated

to dynamically prioritize vulnerabilities by learning which CVEs are most commonly exploited

and offering tailored recommendations to administrators.

52

5. Enhanced Reporting and Visualization

While the platform currently displays vulnerabilities and CVEs, enhancing the reporting and

visualization capabilities would make it easier for administrators to interpret scan results.

Introducing interactive charts, graphs, and heat maps that represent the overall vulnerability

landscape for all systems could provide a more intuitive overview of the platform’s findings.

This improvement would also help in tracking the progress of security over time, as the platform

could visualize the reduction in risks as systems are patched.

6. Improved System Resource Monitoring

Adding system resource monitoring during scans would allow the platform to track CPU,

memory, and network usage on each system during vulnerability assessments. This would

provide administrators with feedback on whether scans are impacting the system’s performance

and could help them adjust scheduling to minimize disruption to production environments.

7. Cross-Platform Support Beyond Unix Systems

The platform is currently focused on Unix-based systems, but extending support for Windows-

based systems would make simpleVAP more versatile. This could be accomplished by

developing Windows-compatible scripts for remote scans and vulnerability assessments,

allowing administrators to manage both Unix and Windows environments from a single

dashboard.

8. 8. Offline Scanning Capabilities

An offline scanning mode could be introduced, allowing administrators to run scans on isolated

systems that do not have direct access to the platform’s web server. By enabling users to export

scan data manually (e.g., through USB drives) and import the results back into the platform for

analysis, simpleVAP could become more flexible for use in environments with stringent network

restrictions.

53

7.2 Suggestions for further research

As the development of simpleVAP is continued, there are several avenues for further research

that can expand the platform's capabilities. These areas of research explore advancements in

automation, security, and intelligence integration, offering opportunities to enhance the

effectiveness and efficiency of vulnerability detection and risk management.

• AI-Driven Vulnerability Prediction

While integrating AI for vulnerability detection has been proposed as an immediate

improvement, further research could explore predictive models to forecast potential

vulnerabilities before they are publicly disclosed. By analyzing historical data on vulnerabilities

and attack patterns, machine learning algorithms could potentially predict which software

components are likely to become vulnerable, allowing administrators to take proactive security

measures. [58]

• Behavioral-Based Threat Detection

Traditional vulnerability assessment tools focus on identifying known vulnerabilities in software

and configurations. However, combining behavioral analysis with traditional scanning

techniques could provide deeper insights into potential threats. Research could focus on

integrating behavioral monitoring to detect anomalous or suspicious activities within the system,

complementing the CVE-based vulnerability detection methods. [59]

• Cross-Platform Vulnerability Assessment

While simpleVAP focuses on Unix-based systems, further research into cross-platform

compatibility could provide a unified solution for both Unix and Windows systems. Investigating

the differences in vulnerability assessment techniques between different operating systems and

integrating those findings into a cohesive platform would greatly enhance the versatility of tools

like simpleVAP.

• Vulnerability Remediation Automation

Future research could explore automation of remediation steps in addition to detection.

Developing a system that not only identifies vulnerabilities but also applies patches or

reconfigures systems automatically (with admin approval) could save significant time and reduce

54

the risk of human error. This would involve extensive research into automation frameworks and

secure patching techniques that ensure minimal disruption to live systems.

• Human Factor in Vulnerability Management

Another important area of research is the impact of the human factor in vulnerability

management. This includes how system administrators prioritize vulnerabilities, manage

patching schedules, and interact with the tools they use. Research into improving the usability of

vulnerability management platforms, combined with behavioral studies on how administrators

react to security advisories, could result in the development of more user-centric and effective

tools. [60]

8. References

[1] NIST, "Security Automation and Vulnerability Management," [Online]. Available:

https://csrc.nist.gov/nist-cyber-history/automation-metrics/chapter.

[2] P.-D. O. A. S.-O. PAQUETTE, "Leveraging Machine Learning to Modernize Vulnerability

Management," [Online]. Available: https://www.secureworks.com/blog/leveraging-ai-to-

modernize-vulnerability-management-and-remediation.

[3] "chatgpt," [Online]. Available: https://chatgpt.com.

[4] "image," no. https://www.technologysolutions.net/wp-content/uploads/2023/09/pros-and-

cons-scaled-2560x1280.jpeg.

[5] owasp.org, "A06:2021 – Vulnerable and Outdated Components," [Online]. Available:

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/.

[6] R. Timalsina, "Securing Linux Networks: A Checklist for IT Security Teams," [Online]. Available:

https://tuxcare.com/blog/securing-linux-networks-a-checklist-for-it-security-teams/.

[7] MITRE, "Abuse Elevation Control Mechanism: Setuid and Setgid," [Online]. Available:

https://attack.mitre.org/techniques/T1548/001/.

55

[8] MITRE, "Privilege Escalation," [Online]. Available: https://attack.mitre.org/tactics/TA0004/.

[9] OWASP, "Command Injection," [Online]. Available: https://owasp.org/www-

community/attacks/Command_Injection.

[10] "Linux Security: The Role of sudo Command and the Significance of /etc/sudoers File,"

[Online]. Available: https://medium.com/@The_Anshuman/linux-security-the-role-of-sudo-

command-and-the-significance-of-etc-sudoers-file-0a8402bd63f6.

[11] "Guidelines on Firewalls and Firewall Policy," no. https://doi.org/10.6028/NIST.SP.800-41r1 ,

2009 .

[12] hackerone, "What Is Vulnerability Assessment? Benefits, Tools, and Process," [Online].

Available: https://www.hackerone.com/knowledge-center/what-vulnerability-assessment-

benefits-tools-and-process.

[13] Greenbone, "Greenbone OpenVAS," [Online]. Available: https://www.openvas.org/.

[14] tenable, "Tenable Nessus," [Online]. Available: https://www.tenable.com/products/nessus.

[15] nmap, "Nmap Reference Guide," [Online]. Available: https://nmap.org/book/man.html.

[16] A. Williams, "Modernizing Vulnerability Management: Beyond Scanning to Continuous

Exposure," [Online]. Available: https://www.cpomagazine.com/cyber-security/modernizing-

vulnerability-management-beyond-scanning-to-continuous-exposure/.

[17] "What is Vulnerability Scanning?," [Online]. Available:

https://jfrog.com/learn/devsecops/vulnerability-scanning/.

[18] google, "Supercharging security with generative AI," [Online]. Available:

https://cloud.google.com/blog/products/identity-security/rsa-google-cloud-security-ai-

workbench-generative-ai.

[19] "AI in Cybersecurity: How It’s Used + 8 Latest Developments," [Online]. Available:

https://secureframe.com/blog/ai-in-cybersecurity.

56

[20] "Tenable Integrates Generative AI Capabilities Across Cybersecurity Platform With Launch of

ExposureAI," [Online]. Available: https://www.tenable.com/press-releases/tenable-integrates-

generative-ai-capabilities-across-cybersecurity-platform-with-exposure-ai.

[21] paramiko, "paramiko," [Online]. Available: https://www.paramiko.org/.

[22] "secrets — Generate secure random numbers for managing secrets," [Online]. Available:

https://docs.python.org/3/library/secrets.html.

[23] "Flask," [Online]. Available: https://flask.palletsprojects.com/en/3.0.x/.

[24] "bootstrap 5.3," [Online]. Available: https://getbootstrap.com/docs/5.3/getting-

started/introduction/.

[25] NIST, "Vulnerabilities," [Online]. Available: https://nvd.nist.gov/vuln.

[26] "CVE API," [Online]. Available: https://nvd.nist.gov/developers/vulnerabilities.

[27] "CVE-2020-15778 Detail," [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2020-

15778.

[28] LinuxSecurity, "Monitoring Files with Special Permissions," [Online]. Available:

https://linuxsecurity.com/howtos/learn-tips-and-tricks/monitoring-files-with-special-

permissions.

[29] redcanary, "Setuid and Setgid," [Online]. Available: https://redcanary.com/threat-detection-

report/techniques/setuid-setgid/.

[30] cisa.gov, "Apache Releases Security Update for HTTP Server," [Online]. Available:

https://www.cisa.gov/news-events/alerts/2021/12/22/apache-releases-security-update-http-

server.

[31] owasp, "INT01:2023 – Outdated Software," [Online]. Available: https://owasp.org/www-

project-top-10-insider-threats/docs/2023/INT01_2023-Outdated_Software.

57

[32] websitesecuritystore.com, "Outdated Software Vulnerability: Meaning, Risks, and Updating

Methods," [Online]. Available: https://websitesecuritystore.com/blog/security-risks-of-

outdated-software/.

[33] specops, "TCP port 21 FTP vulnerabilities," [Online]. Available:

https://specopssoft.com/blog/tcp-port-21-ftp-vulnerabilities/.

[34] securityboulevard, "9 SSH Key Management Best Practices You Need to Know," [Online].

Available: https://securityboulevard.com/2024/03/9-ssh-key-management-best-practices-

you-need-to-know/.

[35] cyrisk, "Mitigation Instructions for OpenSSH," [Online]. Available:

https://cyrisk.com/security/openssh.

[36] A. I. Nagori, "Why Is chmod -R 777 / Destructive?," [Online]. Available:

https://www.baeldung.com/linux/fully-open-directories.

[37] algosec.com, "How to fix misconfigured firewalls (and prevent firewall breaches)," [Online].

Available: https://www.algosec.com/blog/five-common-firewall-configuration-mistakes-and-

how-to-avoid-them.

[38] zenarmor, "What are the Top Firewall Vulnerabilities and Threats?," [Online]. Available:

https://www.zenarmor.com/docs/network-security-tutorials/what-are-the-top-firewall-

vulnerabilities-and-threats.

[39] cisa.gov, "Nikto," [Online]. Available: https://www.cisa.gov/resources-tools/services/nikto.

[40] "sqlmap," [Online]. Available: https://sqlmap.org/.

[41] "Flask APScheduler," [Online]. Available: https://viniciuschiele.github.io/flask-apscheduler/.

[42] sqlite, "What Is SQLite?," [Online]. Available: https://www.sqlite.org/.

[43] "bootstrap," [Online]. Available: https://getbootstrap.com/.

[44] ubuntu, "Cron How To," [Online]. Available: https://help.ubuntu.com/community/CronHowto.

58

[45] Mozilla, "Javascript," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript.

[46] dev.to, "jQuery's Role in Modern Web Development: Beginnings, 2024, and Beyond," [Online].

Available: https://dev.to/wendyver/jquerys-role-in-modern-web-development-beginnings-

2024-and-beyond-1223.

[47] "Shell Scripting Tutorial: How to Create Shell Script in Linux/Unix," [Online]. Available:

https://www.guru99.com/introduction-to-shell-scripting.html.

[48] gbhackers.com, "7 Best Vulnerability Database Sources to Trace New Vulnerabilities,"

[Online]. Available: https://gbhackers.com/sources-trace-new-vulnerabilities/.

[49] M. Rana, "Data Serialization in Python: JSON vs. Pickle," [Online]. Available:

https://www.inexture.com/data-serialization-in-python-json-vs-pickle/.

[50] "Network Automation with Python and Paramiko," [Online]. Available:

https://dev.to/julianalmanzar/network-automation-with-python-and-paramiko-4iof.

[51] Debian, "Debian Operating System," [Online]. Available: https://www.debian.org/.

[52] Ubuntu, "Ubuntu Desktop," [Online]. Available: https://ubuntu.com/download/desktop.

[53] Ubuntu, "Ubuntu Server," [Online]. Available: https://ubuntu.com/download/server.

[54] Centos, "Centos Operating System," [Online]. Available: https://www.centos.org/download/.

[55] M. Linux, "MX Linux Operating System," [Online]. Available: https://mxlinux.org/.

[56] Kali, "Kali Linux Operating System," [Online]. Available: https://www.kali.org/.

[57] techtarget, "two-factor authentication (2FA)," [Online]. Available:

https://www.techtarget.com/searchsecurity/definition/two-factor-authentication.

[58] G. R. S. A. W. e. a. Jabeen, "https://doi.org/10.1007/s10489-022-03350-5," Machine learning

techniques for software vulnerability prediction: a comparative study. Appl Intell 52, 17614–

17635 (2022).

59

[59] L. Stanham, "What is AI-Powered Behavioral Analysis in Cybersecurity," no.

https://www.crowdstrike.com/cybersecurity-101/secops/ai-powered-behavioral-analysis/.

[60] oryxalign, "The Human Factor in the vulnerability management process," no.

https://www.oryxalign.com/blog/vulnerability-management-process-human-factor.

