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Abstracts 
Abstract in English 
The rapid growth of data in various fields has necessitated the development of advanced tools 
for effective data analysis. Clustering, a fundamental technique in machine learning, plays a 
crucial role in organizing and interpreting large datasets. However, selecting the most suitable 
clustering algorithm for specific data characteristics poses significant challenges, as it requires 
balancing computational speed and accuracy while considering the intricacies of dataset 
properties and algorithm parameters. This document presents EverCluster, a comprehensive, 
cloud-centric platform designed to streamline the clustering process. EverCluster automates 
the recommendation of optimal clustering algorithms by leveraging machine learning models 
that adapt to user preferences and dataset features. The architecture of EverCluster is 
detailed, featuring both high- and low-level descriptions supported by deployment and 
activity diagrams. Experimental findings highlight the platform's effectiveness, revealing a 
success rate of 65.5% for speed-based recommendations and an average of 81.1% for 
accuracy-based recommendations. The platform performs particularly well on datasets with 
fewer features and higher iteration numbers making the speed-based recommendations to 
reach success rates of 83.3%. By addressing the complexities involved in clustering algorithm 
selection and deployment, EverCluster aims to provide a valuable resource for data scientists 
and researchers, facilitating more efficient and accurate data analysis across diverse 
applications. 

Abstract in Greek 
Η ραγδαία αύξηση των δεδομένων σε διάφορους τομείς έχει καταστήσει αναγκαία την 
ανάπτυξη προηγμένων εργαλείων για την αποτελεσματική ανάλυση δεδομένων. Η 
συσταδοποίηση, μια θεμελιώδης τεχνική στη μηχανική μάθηση, διαδραματίζει κρίσιμο ρόλο 
στην οργάνωση και ερμηνεία μεγάλων συνόλων δεδομένων. Ωστόσο, η επιλογή του πιο 
κατάλληλου αλγορίθμου συσταδοποίησης για συγκεκριμένα χαρακτηριστικά δεδομένων 
θέτει σημαντικές προκλήσεις, καθώς απαιτεί τη διαχείριση της υπολογιστικής ταχύτητας και 
της ακρίβειας, λαμβάνοντας υπόψη τις πολυπλοκότητες των χαρακτηριστικών των 
δεδομένων και των παραμέτρων του αλγορίθμου. Αυτό το έγγραφο παρουσιάζει το 
EverCluster, μια ολοκληρωμένη, cloud-centric πλατφόρμα σχεδιασμένη για να απλοποιήσει 
τη διαδικασία συσταδοποίησης. Το EverCluster αυτοματοποιεί τη σύσταση βέλτιστων 
αλγορίθμων συσταδοποίησης, αξιοποιώντας μοντέλα μηχανικής μάθησης που 
προσαρμόζονται στις προτιμήσεις των χρηστών και τα χαρακτηριστικά των συνόλων 
δεδομένων. Η αρχιτεκτονική του EverCluster περιγράφεται λεπτομερώς, περιλαμβάνοντας 
τόσο υψηλού όσο και χαμηλού επιπέδου περιγραφές που υποστηρίζονται από διαγράμματα 
εγκατάστασης και διεργασιών. Τα πειραματικά ευρήματα αναδεικνύουν την 
αποτελεσματικότητα της πλατφόρμας, αποκαλύπτοντας ποσοστό επιτυχίας 65,5% για 
προτάσεις βασισμένες στην ταχύτητα και μέσο ποσοστό 81,1% για προτάσεις βασισμένες 
στην ακρίβεια. Η πλατφόρμα αποδίδει ιδιαίτερα καλά σε σύνολα δεδομένων με λιγότερα 
χαρακτηριστικά και υψηλότερους αριθμούς επαναλήψεων, καθιστώντας τις προτάσεις 
ταχύτητας να φτάνουν σε ποσοστά επιτυχίας 83,3%. Αντιμετωπίζοντας τις πολυπλοκότητες 
που εμπλέκονται στην επιλογή και την ανάπτυξη αλγορίθμων συσταδοποίησης, το 
EverCluster στοχεύει να παρέχει έναν πολύτιμο πόρο για επιστήμονες δεδομένων και 
ερευνητές, προσφέροντας την πιο αποτελεσματική και ακριβή ανάλυση δεδομένων σε 
διάφορες εφαρμογές. 
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1. Introduction 
1.1. Purpose of the Document 

As the volume of data generated across industries continues to grow exponentially [1], the 
need for efficient and scalable tools to manage and analyze this data becomes increasingly 
critical [2]. Clustering algorithms, which group similar data points into clusters, have emerged 
as one of the key techniques for uncovering patterns and insights from large datasets [3]. 
However, selecting the most suitable clustering algorithm for a given dataset is not a 
straightforward task, as it involves balancing trade-offs between factors like computational 
speed, accuracy, and resource availability. In this context, there is a growing demand for 
platforms that can automate and optimize this decision-making process. 

This document introduces EverCluster, a cloud-centric platform designed to simplify and 
streamline the clustering workflow. EverCluster allows users to upload datasets, configure 
clustering parameters, and receive algorithm recommendations based on their performance 
across various metrics. The platform leverages Machine Learning models to recommend 
clustering algorithms, tailored to user preferences for speed or accuracy. In addition to this, 
EverCluster is built to handle multiple deployment environments, offering flexibility in both 
single-node and multi-node setups. 

The architecture of EverCluster is thoroughly detailed, supported by both high- and low-level 
design descriptions. Through deployment and activity diagrams, the document explains the 
structural and functional flow of the platform. This allows readers not only to understand the 
platform’s technical design but also to replicate the experiments conducted in this research. 
The Machine Learning models that power EverCluster’s recommendations can be retrained or 
modified, providing opportunities for users to generate new or improved outcomes based on 
their own datasets or experimental setups. 

By deploying EverCluster in various environments, this document explores the challenges and 
insights gathered from experimentation, setting the stage for future research and 
developments. The platform’s ability to integrate and adapt to different clustering contexts 
makes it a valuable tool for data scientists, engineers, and researchers aiming to optimize their 
clustering processes across diverse datasets and infrastructures. 

 

 
Figure 1 – EverCluster Logo 
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1.2. Problem Statement 
The process of selecting the most appropriate clustering algorithm for a given dataset remains 
a challenging task, particularly in the context of large-scale data and distributed computing 
environments [3]. The decision to choose one algorithm over another often hinges on multiple 
factors, including the nature of the dataset, the computational resources available, and the 
desired balance between speed and accuracy. Without prior knowledge of how different 
algorithms will perform on a specific dataset, users are left with trial-and-error approaches, 
which can be time-consuming and resource-intensive. 

Moreover, the effectiveness of clustering algorithms can vary significantly depending on the 
configuration of their hyperparameters, such as the number of clusters or the maximum 
number of iterations. These parameters must be fine-tuned based on the characteristics of 
the dataset, which adds further complexity to the decision-making process. The need for 
specialized expertise in Machine Learning and data analysis presents a barrier for many users, 
particularly those who lack the technical background required to interpret and evaluate the 
performance of different algorithms. 

In addition to these challenges, the increasing use of distributed systems for data processing 
introduces another layer of complexity. Clustering in a distributed environment requires 
careful consideration of factors like infrastructure topology and computational load balancing. 
In many cases, users must rely on manual intervention to adapt the clustering algorithms to 
their infrastructure, leading to inefficiencies and suboptimal results. 

Given these issues, there is a clear need for a platform that can automatically recommend the 
most suitable clustering algorithm based on the characteristics of the dataset and the user’s 
preference for speed or accuracy, while accounting for the distributed nature of modern data 
processing environments. This platform must also be able to dynamically adapt its 
recommendations based on changing conditions, such as infrastructure adjustments or 
evolving clustering requirements. EverCluster aims to address these challenges by providing a 
robust, cloud-centric solution that simplifies the clustering algorithm selection process, 
improving both efficiency and accuracy for a wide range of users and applications. 

1.3. Document Structure 
This document is divided into nine main sections, each one divided, if necessary, into more 
subsections to provide a clear overview of the literature, developed architecture, 
experimentations and results performed. Each section is used as follows: 

• Section 1 – Introduction: The introduction section provides a concise overview to guide 
the reader within the context of the thesis. It summarizes the document by outlining 
the problem statement and the proposed solution approach. Furthermore, it 
introduces the set of tools utilized in the platform's development. 

• Section 2 – Background & Related Work: In this section an Extensive Analysis is 
provided, regarding the literature review that needed to be performed to find 
solutions as well as to understand better the problem statement. Different related 
works and research topics are also provided and explained.  
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• Section 3 – Implemented Tools & Methodologies: With this section, the document 
provides an overview of the different tools and methodologies that assisted in the 
creation of the platform. All the tools explained in this section are later being used by 
Section 4, to describe the platform’s architecture from high- and low-level 
perspectives. 

• Section 4 – Platform Implementation: In this section the objectives of EverCluster and 
its concerned end-users, with the complete architecture of the platform are analyzed. 
The section begins with the high-level figure of the architecture and continues by 
breaking the high-level image into low-level figures while analyzing the tools and 
connections shown. With the architecture the code of the platform is analyzed 
providing different deployment diagrams as well. This section provides a quick 
installation guide and a user manual to the reader for the experimentation that follows 
to be able to be replicated by different readers and interested parties. 

• Section 5 – Experimentation Methodology: This section is responsible for analyzing to 
the reader the Experimentation performed. The section begins with the 
experimentation methodology used on the developed platform. Continuing the 
methodology the different experiments performed are described in length, while 
giving references to the Datasets used and explaining the executed preprocessing 
procedures to apply the methodology that was analyzed. 

• Section 6 – Experimentation Results: Continuing the section regarding the 
methodology of the experimentation, this section is responsible to provide the 
extracted results. With the results, an evaluation of the platform is analyzed and a 
quick comparison with the literature work that was given in Section 2 is performed. 

• Section 7 – Discussion & Next Steps: In this section there is a discussion on the contents 
of the whole document. The Section’s purpose is to give a perspective of the results 
provided, as well as to find and explain possible difficulties in the creation of the 
platform, the methodologies performed as well as the experimentation infrastructure 
that was used. After the discussion, possible next steps on this work are provided with 
future guidance for the reader.  

• References: This section provides all the different referenced tools, methodologies, 
related work, research information and topics used by this document. 

• Appendices: This section offers additional information to help readers gain a deeper 
understanding of the topics discussed in the document. It provides supplementary 
material for further exploration and clarification. 
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2. Background & Related Work 
This section provides an in-depth analysis of the literature review conducted, aimed at 
identifying solutions and gaining a deeper understanding of the problem statement. The 
section is divided into subsections to describe related work on different concepts that are 
related to the Thesis analyzed in this document. The following subsections regard different 
Machine Learning techniques that exist, since some are being used by the developed platform. 
For experimentation purposes, there was a need to use Synthetic Data, thus this is a concept 
that regards this document heavily. EverCluster is a platform that follows the Controller – 
Worker model by the use of containerization. Finally, the platform itself is a recommendation 
system and it is using the infrastructure’s network to its advantage. By reading the following 
subsections, an understanding of similar and core concepts of the work that is described 
farther on can be achieved. 

2.1. Machine Learning 
A subfield of Artificial Intelligence (AI) called Machine Learning (ML) focuses on creating 
machines that can recognize patterns in data, learn from them, and make judgments with little 
to no help from humans. A thorough introduction of ML, including its fundamental ideas, 
important algorithms, and many applications, can be found in the survey that follows [4]. The 
salient features of the survey are enumerated here. 

Based on their preferred methods of learning, the various ML algorithms are grouped in the 
survey. The following are the various styles that are discussed: 

• Supervised Learning: Trains models with labeled data (e.g., Spam Detection [5]). 

• Unsupervised Learning: Identifies patterns in unlabeled data (e.g., Clustering [6]). 

• Semi-Supervised Learning: Combines labeled and unlabeled data [7]. 

• Reinforcement Learning (RL): Learns actions based on rewards (e.g., Game Strategies 
[8]).  

According to the survey, the goal of ML is to create algorithms that allow computers to learn 
from data and gradually become more efficient without the need for explicit programming. It 
is a fusion of statistics and computer science that uses data to categorize information, identify 
trends, and make predictions. Research Topics that are relevant to ML are the following: (i) 
using unlabeled data in Supervised Learning, (ii) transferring learning experience [9], (iii) 
linking different ML algorithms [4], (iv) privacy-preserving Data Mining [10] and (v) never-
ending learning [11]. 

Significant research interest is directed toward distributing ML tasks over clusters to handle 
large datasets and complex models [12]. While frameworks like Hadoop [13] offer simplified 
distributed programming, they often fail to achieve the performance of specialized ML 
implementations [12]. The Parameter Server (PS) paradigm [12] provides a middle ground, 
allowing the distribution of ML programs with asynchronous parameter updates through 
relaxed consistency models.  

2.1.1. Unsupervised Learning Algorithms 
The survey [4] explains Unsupervised Learning algorithms as procedures that take for input 
unlabeled data and output patterns or clusters of the given dataset. An ML task that is 
categorized as Unsupervised Learning is Clustering. Clustering algorithms are procedures that 
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are used to establish patterns in datasets and label the data appropriately in different clusters. 
Below are some of the Clustering Algorithms that regard this document: 

• K-Means [14]: Assigns each data point to exactly one cluster based on distance from 
the centroid. 

• Bisecting K-Means [15]: Recursively splits data into clusters starting from one large 
cluster. 

• Gaussian Mixture Model (GMM) [16]: Models data with multiple Gaussian 
distributions and assigns probabilities for membership in clusters. 

In Appendices I, II and III an explanation on each of the three algorithms is shown using 
pseudocodes. From the three algorithms, the most known is K-means and tends to be used as 
a starting example for Clustering ML tasks. In the research paper [3] a comparison between 
simple K-means and Bisecting K-means is performed. The conclusions of the paper are that (i) 
Bisecting K-means is more efficient than simple K-means especially for large datasets. This is 
because it breaks down the data into smaller clusters incrementally, whereas simple K-means 
requires multiple iterations to potentially achieve the same results. (ii) Bisecting K-means 
provides better quality clusters based on the similarity and dissimilarity measure of the cluster 
quality. This is likely because it refines the clusters throughout the splitting process. (iii) Both 
algorithms are susceptible to the initial selection of centroids. In other words, the final 
clustering results can vary depending on where the initial centroids are placed. 

K-means is also being compared to the GMM algorithm in the following research work [17]. 
The conclusions of the paper are that (i) K-means is a simpler and faster clustering method 
but may not capture the true heterogeneity [18] of cloud workloads. It assigns data points to 
the nearest cluster centroid based on distance, resulting in spherical clusters. (ii) GMM is a 
more complex probabilistic method that can better model the heterogeneity of cloud 
workloads by capturing complex patterns and grouping them into distinct clusters. It utilizes a 
statistical approach to represent clusters as Gaussian distributions, allowing for clusters with 
various shapes and sizes. (iii) GMM may require more computation time compared to K-
means. This is because it involves an iterative process to estimate the parameters of the 
Gaussian distributions for each cluster. 

2.1.2. Supervised Learning Algorithms 
The survey [4] explains that Supervised Learning algorithms use labeled data to train an 
algorithm to predict outcomes for new, unseen data. The model learns the relationship 
between input features and their corresponding labels. An ML task that is categorized as 
Unsupervised Learning is Classification. Thus, a classification algorithm is used to categorize 
data into predefined classes or labels. It analyzes input labelled data and assigns them to one 
of several possible discrete categories. In the review that was performed [19] the following 
classification algorithms are explained: 

• K-Nearest Neighbor (KNN): Assigns a class to a data point based on the majority class 
among its nearest neighbors in the feature space. 

• Support Vector Machine (SVM): Finds a hyperplane that best separates data points of 
different classes, maximizing the margin between them. 

• Random Forest (RF): Constructs multiple decision trees during training and outputs 
the mode of the classes (classification) or mean prediction (regression) from all the 
trees. 
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• Neural Network (NN): Simulates the human brain using layers of interconnected nodes 
(neurons). It learns patterns in data by adjusting the weights of these connections 
based on errors in predictions. 

In Appendices IV, V, VI and VII an explanation on each of the three algorithms is shown using 
pseudocodes. In conclusion, the review provides a comprehensive comparison of the 
classification algorithms that where explained. KNN, while simple and intuitive, can be 
computationally inefficient for large datasets due to its need to compare each data point to 
all others in the training set. SVM, known for its ability to handle high-dimensional data and 
its robustness to noise, can be computationally expensive to train, especially for complex 
problems. RF, an ensemble method that combines multiple decision trees, offers a good 
balance between accuracy and interpretability. However, its complexity can make it 
challenging to understand the underlying decision-making process. NNs, on the other hand, 
are highly flexible and can learn complex patterns in the data but require careful tuning of 
hyperparameters to avoid overfitting. The choice of the best algorithm for a particular task 
depends on factors such as the size of the dataset, the complexity of the problem, and the 
desired level of interpretability. 

2.2. Synthetic Data Generation 
Synthetic data generation has become a critical method in fields such as ML, data analysis, 
and privacy preservation [20]. It involves the creation of artificial datasets that mimic real-
world data distributions while addressing limitations in accessibility, scalability, or privacy 
concerns. The generation of synthetic data allows researchers and practitioners to train 
models, test algorithms, and conduct experiments without compromising sensitive 
information or violating ethical standards. Moreover, synthetic data provides flexibility in 
designing datasets that may not be available, allowing for controlled experiments and stress 
testing of ML models. Techniques such as noise injection [21] and deep generative models, 
such as Generative Adversarial Networks (GANs) [20], are widely used to create these 
datasets. The synthetic data often mirrors key properties of real-world datasets, making it a 
valuable tool in fields like healthcare [22], finance [23], and autonomous systems [20]. 

The use of synthetic data generation has gained significant traction as a means to address the 
challenges posed by data scarcity and privacy concerns. As highlighted in [22], synthetic data 
generation is particularly promising in healthcare, where the need for unbiased data and 
sufficient sample sizes is paramount. Their comprehensive review, focusing on diverse types 
of medical data, including tabular, imaging, radiomics, time-series, and omics data, 
emphasizes the growing importance of synthetic data in various applications within the 
medical field. Through a systematic analysis of studies retrieved from PubMed and Scopus, 
the authors of [22] categorize synthetic data generation techniques into statistical, 
probabilistic, ML, and deep learning methods. Particularly, the review [22] reveals that 72.6% 
of the studies examined utilize deep learning-based synthetic data generators, demonstrating 
the dominance of these methods in healthcare-related synthetic data generation. Python [24] 
emerged as the most commonly used programming language, with 75.3% of the generators 
being implemented in this environment. The findings indicate that synthetic data is primarily 
used to reduce the cost and time associated with clinical trials for rare diseases, enhance the 
predictive power of AI models in personalized medicine, and enable fair treatment 
recommendations across diverse patient populations. 
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In the financial domain, synthetic data generation has proven to be a valuable tool for 
improving the performance of ML models, particularly in asset price prediction systems. [23] 
explored various financial data synthesis methods, with a specific focus on augmented training 
data and its impact on ML models. Their work addresses the unique characteristics of asset 
price time sequences, which exhibit patterns in both the temporal and magnitude dimensions 
that typical statistical measures may fail to capture. One of the primary challenges in financial 
data synthesis, as noted by [23], is the need for high-fidelity synthetic data that preserves 
confidentiality while accurately replicating critical temporal patterns, such as financial bubbles 
or short-lived market changes. By generating augmented datasets that reflect these patterns, 
[23] demonstrated the potential for improving the predictive capabilities of ML models trained 
on such data. Their evaluation involved both quantitative and qualitative visual metrics, 
leading to the selection of SigCWGAN as the best-performing method in terms of fidelity. The 
financial time series data generated by SigCWGAN were used to train an ARIMA/RNN asset 
price prediction system, resulting in significant improvements in predictive accuracy, as 
measured by MAE, MSE, and MAPE metrics. This study highlights the importance of using 
synthetic data in financial prediction tasks, particularly when real-world data is scarce or 
sensitive. It also underscores the role of specialized GAN models, such as SigCWGAN, in 
generating realistic time-series data that enhance the performance of traditional ML models. 

The insights from [23] align with broader trends in the use of generative models for synthetic 
data creation. For example, [23] applied GANs to financial datasets to capture complex 
dependencies between features, while [22] demonstrated the utility of probabilistic models 
in generating healthcare datasets. The combination of deep learning techniques and domain-
specific knowledge, as illustrated in these studies, underscores the potential for synthetic data 
to improve predictive modeling across various fields. 

In the field of autonomous systems, synthetic data generation plays a critical role in testing 
and optimizing infrastructure frameworks. [10] presents CODECO, a novel container 
orchestration framework designed for next-generation Internet applications across a mobile, 
heterogeneous Edge-Cloud continuum. While the focus of this work is on orchestrating data, 
network, and computing resources, the underlying approach aligns with decentralized AI 
techniques, which are increasingly applied in synthetic data generation for autonomous 
systems. CODECO emphasizes the selection of infrastructure based on user-defined 
performance profiles, such as resilience and environmental efficiency ("greenness"), making 
it highly adaptable to the fluctuating environments of autonomous systems. Infrastructural 
challenges, such as intermittent connectivity and node failure, are addressed through AI-
driven orchestration, which ensures the optimal deployment of applications across the 
network. This dynamic orchestration method mirrors the challenges faced in autonomous 
systems, where synthetic data is often required to simulate unpredictable and complex 
environments, enabling robust AI model training and validation. 

To address this issue, [10] introduces a synthetic data generator as part of the CODECO 
orchestration framework. This generator mimics the cross-layer data collection process from 
key CODECO components. The CODECO Data Generator, generates synthetic Kubernetes (K8s) 
[25] infrastructure data based on the framework’s resource models and metrics monitoring 
architecture. By simulating the behavior of infrastructure components in a K8s environment, 
the Data Generator provides critical synthetic data that enables testing and evaluation of the 
CODECO orchestration framework before real-world deployment. This is especially useful in 
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scenarios where real data is scarce or unavailable. The Data Generator consists of two main 
components: the Data Generator Collector, which gathers predefined metrics from 
K8s/Prometheus, and the Data Generator Synthesizer, capable of handling more complex 
metrics that require synthesis. 

2.3. Containerization & Scaling 
Containerization has revolutionized the way applications are developed, deployed, and 
managed in modern computing environments. A system that is built as a single, unified unit, 
where all its components are interconnected and interdependent has the monolithic 
architecture [26]. This architecture makes scaling or updating individual part challenging. By 
encapsulating software and its dependencies into isolated units called containers, this 
technology enables applications to run consistently across various environments, from 
development to production. Unlike traditional Virtual Machines (VMs) [27], which virtualize 
entire Operating Systems, containers share the host system's kernel, making them lightweight 
and more efficient in terms of resource usage. The rise of containerization, driven by platforms 
like Docker [28] and K8s [25], has provided developers with greater flexibility, portability, and 
scalability. Containers allow for the seamless migration of applications between different 
cloud environments, on-premises data centers, and even edge computing infrastructures. This 
has been particularly beneficial for microservices architectures, where applications are broken 
down into smaller, independent services that can be deployed and scaled individually. 
Furthermore, containerization enhances Continuous Integration and Delivery (CI/CD) 
pipelines [29], improving the speed and reliability of software development and deployment. 
It also simplifies version control, security, and resource management, ensuring that each 
container is isolated and protected while sharing the host system efficiently. 

The growing adoption of containerization technologies has sparked significant research and 
development in both academia and industry, leading to numerous studies that highlight the 
benefits and challenges of container-based systems. In [30], the differences between 
hardware virtualization and Operating System-level virtualization are explored, with a 
particular focus on containers as a key Operating System (OS) virtualization technology. The 
study compares containers and traditional VMs in large data center environments along the 
dimensions of performance, manageability, and software development. The results show that 
while containers offer greater resource efficiency, particularly in multi-tenant environments, 
they are more susceptible to performance interference between co-located applications for 
certain workloads. The paper also evaluates management frameworks for both containers and 
VMs, highlighting the distinct capabilities each technology exposes for application 
deployment and orchestration. Additionally, the authors propose hybrid approaches that 
combine hardware and OS virtualization, showing promise for mitigating the performance 
trade-offs associated with containers. 

In a related study, [31] delves into the integration of microservices architectures with 
containerization technologies like Docker and K8s. The paper highlights the synergistic 
benefits of microservices—decoupled, independently deployable services—and 
containerization, which provides lightweight, isolated environments for deploying and 
managing these services. By breaking down monolithic applications into smaller, loosely 
coupled services encapsulated within containers, organizations can achieve increased 
scalability, flexibility, and resilience. Through case studies and real-world examples, the study 
demonstrates how this architectural paradigm shift enables faster development cycles, more 
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efficient resource utilization, and improved fault tolerance. This work emphasizes that the 
combination of microservices and containerization allows for more agile and scalable software 
development in dynamic and complex environments.  

Expanding on the above, [32] explores the role of containerization in the resource-constrained 
environments of edge computing. The study focuses on how edge computing moves 
computation closer to the data source, reducing network bandwidth usage, latency, and 
improving response times. In particular, the paper proposes a containerization-based 
architecture for deploying and managing deep learning models on edge devices, especially in 
smart home environments. The architecture allows deep learning models to be containerized, 
offering advantages such as minimal space requirements, device independence, and low 
latency. Experimental results demonstrate that the performance of the containerized deep 
learning models in terms of execution time and Central Processing Unit (CPU) load is 
comparable to native deployments, while providing significant benefits in terms of 
deployment ease and cross-platform compatibility. 

Furthering the discussion on containerization technologies, [33] compares two of the most 
widely used container engines, Docker and Podman [34]. The paper highlights the role of 
container engines in modern technological infrastructures, especially in enabling standardized 
execution runtimes and reducing costs through virtualization techniques. A series of 
benchmark tests are conducted using a custom-built tool to measure differences in 
performance between Docker and Podman. The results show a small but not insignificant 
performance difference in favor of Docker. Additionally, the paper compares real-world 
metrics and cloud pricing to demonstrate the potential cost differences in deploying these 
engines at scale, noting that Docker is slightly more cost-effective in cloud environments. 

Together, these works reflect the ongoing evolution of containerization and its broad 
applicability across cloud computing, microservices, edge computing, and container engines. 
They highlight the significant advantages of container-based systems, as well as the challenges 
related to performance, resource management, and cost-efficiency that continue to drive 
innovation in this space. 

2.4. Controller – Worker Architecture 
A significant advantage of containerization is how well it integrates with the Controller-Worker 
Architecture. In a containerized environment, the Controller can manage the orchestration of 
various Worker containers, ensuring optimal task distribution and resource utilization. 
Platforms like K8s [25] exemplify this by acting as a Controller, scheduling and distributing 
workloads across containers (Workers) based on available resources, while ensuring that each 
service runs in isolation and remains highly scalable. This synergy between containerization 
and the Controller-Worker architecture allows for the efficient scaling of services in cloud-
native applications, enabling automated scaling, fault tolerance, and resource management. 

The Controller-Worker architecture has become a fundamental model for distributed 
computing, enabling efficient task allocation and resource management in large-scale 
systems. This architecture is commonly used in systems where tasks need to be divided into 
smaller sub-tasks (handled by workers) and coordinated through a central controller that 
monitors and manages the execution. In recent years, research has focused on optimizing the 
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communication, scalability, and resilience of this architecture, especially in domains such as 
cloud computing [10][35], Big Data [35][36], and ML infrastructure [35][36]. 

One notable project using the Controller-Worker architecture in a cloud computing scenario 
is the CODECO framework introduced by [10]. CODECO adopts a decentralized AI-driven 
approach to manage tasks across a mobile, heterogeneous Edge-Cloud continuum. The 
framework relies on the Controller-Worker model to define the infrastructure for next-
generation Internet applications, where the controller dynamically orchestrates resources 
based on performance profiles like resilience and environmental efficiency. This system 
addresses infrastructural challenges, including intermittent connectivity and node failure, by 
utilizing AI to select the most suitable infrastructure for application deployment. CODECO’s 
reliance on decentralized intelligence is a key advancement in the flexibility of the Controller-
Worker architecture, allowing for real-time adaptation to changing conditions. 

The Controller-Worker architecture has found extensive applications in managing and 
processing Big Data. This architecture’s ability to efficiently allocate tasks and resources makes 
it well-suited for handling the complexities of large-scale data environments. In the domain of 
Big Data, [36] introduces EverAnalyzer, a self-adjustable Big Data management platform that 
leverages various frameworks such as Hadoop MapReduce, Mahout, Spark, and MLlib. 
EverAnalyzer utilizes a Controller-Worker model to manage data collection, processing, and 
analysis. The platform collects data in both streaming and batch modes and employs a 
Controller to analyze metadata from user processes to recommend the most suitable data 
processing framework. This recommendation system is particularly effective, achieving 
optimal framework selection in 80% of tested scenarios. The Controller-Worker architecture 
in EverAnalyzer allows for dynamic adjustment and optimization of data processing tasks, 
ensuring that the most appropriate framework is utilized based on real-time data and user 
needs. 

The project DIASTEMA [35] provides a single-entry point for both technical and non-technical 
users to process and analyze large datasets. The Controller in Diastema manages the 
orchestration of various components, facilitating horizontal scaling of processes across cloud 
environments and computing clusters. This approach not only improves time efficiency but 
also ensures energy efficiency by optimizing resource utilization. The Workers in this 
architecture handle specific tasks related to data processing, building analytical procedures, 
and visualizing results, demonstrating the architecture's ability to manage end-to-end Big 
Data scenarios effectively. This implementation of the Controller-Worker architecture in 
Diastema aligns with other applications of the model in Big Data environments. For example, 
the EverAnalyzer platform also employs a Controller-Worker approach to recommend optimal 
data processing frameworks based on metadata analysis, further illustrating the architecture’s 
flexibility and effectiveness. Additionally, in autonomous systems, frameworks like CODECO 
utilize the Controller-Worker model to handle resource orchestration and task management 
across distributed environments, showcasing its adaptability to various data-intensive 
applications. The advancements presented in Diastema highlight the ongoing evolution of the 
Controller-Worker architecture in addressing the complexities of Big Data analytics. By 
providing scalable, user-friendly solutions and optimizing resource utilization, Diastema 
contributes to the broader effort to democratize data analytics and enhance its applicability 
in rapidly growing data domains such as healthcare. 
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2.5. Network Topologies 
Network topologies are fundamental to the design and functionality of both physical [37] and 
virtual networks [37], influencing their efficiency, scalability, and resilience. The study of 
network topologies encompasses a range of structures and configurations. In this section, 
there is a quick overview of the different possible network configurations that can be 
achieved. 

In Meador Brett's survey [37], different network topologies designed to connect various 
network nodes are discussed. The survey explains that a network topology, which includes the 
different nodes, routers, and links used, is referred to as a Physical Network Topology. When 
the focus is not on the hardware used, but rather on representing the topology solely with its 
nodes and links, it is referred to as a Logical Network Topology (also known as Signal Topology). 
The survey describes various network topologies based on each one's Physical Topology. It 
provides an overview of how these topologies differ in their physical arrangements of nodes, 
routers, and links, and discusses their advantages and limitations in terms of connectivity, 
scalability, and fault tolerance. The analysis includes the following topologies: (i) bus, (ii) ring, 
(iii) star, (iv) tree, (v) tree-bus and (vi) mesh. By examining the physical layout of each topology, 
the survey helps to understand how the arrangement of components impacts overall network 
performance and reliability. 

The choice of network topology has significant implications for various domains, including 
telecommunications, computer networks, and distributed systems. Traditional topologies, 
such as star and ring, offer straightforward and manageable configurations but may lack the 
flexibility required for modern, high-performance systems. As network demands grow, newer 
and more sophisticated topologies, such as hypercubes [38], torus [39], and hierarchical 
structures [40], are being explored to meet the needs of large-scale and distributed 
environments. 

2.6. Network Focused Projects 
The following Research Projects focus on using Deep Reinforcement Learning (DRL) for 
network optimization, particularly in routing problems, but with different approaches and 
specific focuses. 

The work of Gyungmin, Yohan and Hyuk [41] explores how DRL can be applied to optimize 
routing in Software-Defined Networks (SDNs), focusing on reducing end-to-end delay and 
packet losses. The proposed solution uses a Deep Deterministic Policy Gradient (DDPG) 
algorithm combined with an M/M/1/K queue-based network model to overcome the long 
learning process of DRL and mitigate performance degradation during network topology 
changes. The agent is trained offline to generate an optimal routing policy, and simulations 
show that this DRL-based method outperforms conventional hop-count routing methods and 
traffic demand-based RL algorithms. The core contribution lies in the use of offline learning to 
avoid disrupting real network performance during training 

The paper of Paul et al. [42] addresses a major challenge in DRL-based networking: the lack of 
generalization across different network topologies. The authors propose integrating DRL with 
Graph Neural Networks (GNNs) to enable generalization to unseen network topologies. GNNs 
can handle graph-structured data like network topologies, which traditional NNs struggle 
with. The DRL+GNN agent was evaluated on various real-world and synthetic network 
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topologies, showing better generalization and performance compared to state-of-the-art DRL 
methods that do not incorporate GNNs 

Both projects aim to improve network routing using DRL but tackle different challenges: the 
first focuses on reducing training times and avoiding real-time network degradation, while the 
second addresses the issue of generalization across different topologies using GNNs. 
 

2.7. Recommendations Focused Projects 
Recommendation systems are a critical tool in modern data-driven environments, especially 
for optimizing analytics and personalizing user experiences across various domains. These 
systems analyze large datasets to provide tailored content, product suggestions, or actionable 
insights, enhancing decision-making and user satisfaction. As data continues to grow in 
volume and complexity, the importance of refining recommendation systems for efficiency 
and accuracy cannot be overstated. 

In collaborative filtering, one of the most widely used techniques, [43] revisits the 
effectiveness of traditional embedding-based models, focusing on how simple dot product 
operations can outperform more complex Neural Collaborative Filtering (NCF) approaches. 
The findings of this research suggest that, despite the rise of deep learning methods, 
optimizing fundamental operations like dot products can yield better performance, 
particularly in resource-constrained environments where retrieval efficiency is paramount. 

Similarly, [44] investigates the growing influence of deep learning in recommendation 
systems. This work highlights how deep learning models, which automatically learn feature 
representations, have revolutionized the field by significantly improving the ability to handle 
complex and vast datasets. The paper reviews the recent developments showing how deep 
learning models have become foundational in web-based recommendation systems, 
enhancing scalability, personalization, and real-time adaptability. 

Tackling the persistent challenge of data sparsity, [45] presents an in-depth review of methods 
designed to mitigate the impact of sparse datasets on recommendation accuracy. Various 
similarity measures, innovative approaches are explored, as well as the use of side information 
to address the issue, offering valuable insights into improving the robustness of 
recommendation systems when data is limited. The authors underscore the necessity of 
enhancing system performance in environments where user-item interactions are minimal. 

These contributions showcase the versatility and critical impact of recommendation systems, 
from optimizing traditional collaborative filtering models to integrating advanced deep 
learning techniques and addressing domain-specific challenges like data sparsity and 
healthcare personalization. 
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3. Implemented Tools & Methodologies 
This section provides a comprehensive overview of the diverse tools and methodologies 
employed in the development of the platform. The construction of EverCluster necessitated 
the seamless integration of various components, including multiple engines, databases, 
programming languages, frameworks, libraries, and analytical algorithms. The 
implementation of these elements was executed with meticulous precision to ensure the 
robustness and efficiency of the platform. For the sake of clarity and coherence, this section 
is structured into distinct subsections, each dedicated to a specific technical aspect essential 
for comprehending the platform's architecture. These technical intricacies are further 
elaborated upon in the subsequent "Platform Architecture Analysis" section. 

3.1. Engines 
3.1.1. Docker 

Docker [28] is an open-source platform designed to automate the deployment, scaling, and 
management of applications using containerization. Containers are lightweight, portable, and 
self-contained units that package an application’s code along with its dependencies, libraries, 
and environment settings. This allows applications to run consistently across different 
computing environments, whether it’s on a developer’s local machine, a test server, or in the 
cloud. Docker containers isolate applications from one another and from the underlying 
system, making them highly efficient in terms of resource utilization. This contrasts with 
traditional virtualization methods, where each application runs in its own VM with a full OS, 
leading to greater resource consumption. 

Key features of Docker [46]: 

• Portability: Docker containers can run consistently on different environments. 

• Isolation: Each container runs in its own isolated environment. 

• Efficiency: Containers are lightweight and require fewer resources compared to VMs. 

• Version Control: Docker images allow versioning and can be updated, rolled back, or 
shared. 

A native tool of Docker is Docker Swarm [47]. With Docker Swarm, orchestrating and managing 
a cluster of Docker containers is achieved. It allows scaling up applications by distributing 
containers across multiple machines, while maintaining centralized management. In Swarm 
mode, multiple Docker hosts can work together as a single virtual system, creating a more 
robust environment for deploying and managing containers. 

 
Figure 2 – Docker Architecture 
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Key features of Docker Swarm [48]: 

• Cluster management: Turns multiple Docker hosts into a single, unified cluster. 

• Scaling: Easily scale services up or down by adding or removing containers. 

• Load balancing: Distributes network traffic across different containers to ensure 
smooth performance. 

• Service discovery: Automatically detects and configures services running in the cluster. 

A notable mention that goes hand in hand with Docker Swarm, is K8s [25]. K8s is an open-
source platform for automating container orchestration, including deployment, scaling, and 
management of containerized applications. Developed by Google [49] and now maintained by 
the Cloud Native Computing Foundation [50], K8s is known for its robust features and ability 
to handle large-scale, complex environments. K8s organizes containers into groups called pods 
[51], which represent the smallest deployable units in the system. It manages the scheduling 
and lifecycle of these pods, ensuring that they are running smoothly, and automating tasks 
like scaling, failover, and rolling updates. 

Key features of K8s [52]: 

• Automated deployment and scaling: K8s automatically manages the desired state of 
an application, scaling it based on resource usage. 

• Self-healing: Automatically restarts failed containers, replaces them, and reschedules 
them to maintain the desired state. 

• Service discovery and load balancing: Manages networking between containers and 
distributes traffic for optimal performance. 

• Rolling updates and rollbacks: Updates applications without downtime and rolls back 
if something goes wrong.  

3.1.2. Spark 
Apache Spark [53] is an open-source, distributed computing system used for big data 
processing and analytics. It provides a fast and general-purpose engine that allows developers 
to process large datasets across a cluster of computers. Spark is designed to handle data 
processing tasks in a highly parallel and efficient manner, making it ideal for tasks such as data 
transformation, ML, and real-time stream processing. Spark’s ability to process data both in-
memory and on disk allows it to outperform traditional batch-processing systems like Hadoop 
MapReduce [54] by orders of magnitude, particularly for iterative tasks. It supports a variety 
of programming languages, including Java [55], Scala[56], Python [24], and R [57]. 

The core of Apache Spark [53] is handled by the Spark Engine and is responsible for executing 
the various tasks involved in distributed data processing. It abstracts away the complexity of 
parallelization, fault tolerance, and task distribution, making it easier for developers to write 
applications that can scale across multiple machines. The Spark Engine breaks down jobs into 
smaller tasks and distributes them across a cluster of machines for parallel execution. It 
manages the scheduling, execution, and coordination of these tasks. One of the key 
components of the Spark Engine is its ability to handle in-memory processing [58], which 
significantly speeds up iterative algorithms and interactive data analysis tasks. 

As described above, Spark Can be extended by using multiple machines at the same time, 
creating a Spark Cluster [59]. A Spark Cluster is a group of machines working together to 
execute Spark jobs in parallel. It typically consists of a master node and multiple worker nodes. 
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• Master Node: The master node is responsible for managing the cluster and 
coordinating the execution of Spark jobs. It breaks down the job into smaller tasks, 
distributes them to the worker nodes, and tracks the progress of these tasks. 

• Worker Nodes: The worker nodes execute the tasks assigned by the master node. Each 
worker node has its own set of resources (CPU, memory) and is capable of running 
multiple tasks in parallel. 

The communication between the master node and the worker nodes allows the cluster to 
process data in parallel, significantly speeding up data processing for large datasets. The 
cluster can be scaled by adding more worker nodes, making it suitable for handling massive 
data volumes in distributed environments. 

 
Figure 3 – Spark Architecture 

3.2. Databases & Object Storages 
The platform utilizes information provided by the end-user, alongside the supplied datasets 
and computed data, to facilitate its operational capabilities. To implement this functionality, 
the integration of various databases was required. This subsection offers an analysis of the 
Mongo [60] and MinIO [61] Database Management Systems (DBMSs). 

3.2.1. SQL & NoSQL 
A database is a structured collection of data that is stored electronically, managed, and 
accessed efficiently. Databases enable users and applications to store, retrieve, update, and 
manage large volumes of data. They play a crucial role in modern applications, ranging from 
personal use to enterprise-level systems. Databases are categorized based on how they 
structure data and how they manage access, with two broad types being relational (Structured 
Query Language – SQL) [62] and non-relational (Non-Structured Query Language – NoSQL) 
[62] databases. 

SQL databases are structured in a tabular form, where data is stored in rows and columns. 
They are based on a predefined schema, which enforces strict data integrity and relationships 
between data tables through foreign keys. Key aspects of an SQL Database are the following 
[62]: 

• Schema: SQL databases require a well-defined schema (structure) before data is 
entered. 

• ACID Compliance: SQL databases adhere to the Atomicity, Consistency, Isolation, 
Durability (ACID) properties, ensuring high data reliability and transactional integrity. 
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• Query Language: SQL (Structured Query Language) is the standard language used to 
query and manipulate relational databases. 

Some examples of such Databases are the following: MySQL [63], PostgreSQL [64], Oracle [65], 
and Microsoft SQL Server [66]. Appendix VIII showcases the pros and cons of using an SQL 
Database based on [62]. 

NoSQL databases break away from the rigid table structures of SQL and offer flexible, schema-
less storage [62]. These databases are designed to handle unstructured [62] or semi-
structured data [62] and scale horizontally easily [62]. Key aspects of an SQL Database are the 
following: 

• Schema: NoSQL databases can handle data without requiring a predefined schema. 

• BASE: These systems often follow the Basically Available, Soft state, Eventually 
consistent (BASE) model, which allows for flexibility but sacrifices immediate 
consistency for better scalability and availability. 

• Data Models: NoSQL databases use various models, including key-value pairs, 
document stores, column families, and graph structures. 

Some examples of NoSQL Databases are the following: MongoDB [60], Cassandra [67], Redis 
[68], Neo4j [69]. Appendix IX showcases the pros and cons of using a NoSQL Database based 
on [62]. For the development of the platform described in this document, the Mongo DBMS 
is being used to handle data in a NoSQL manner. 

3.2.2. Object Storages 
Object Storages [70] are Databases for managing and storing data as objects, as opposed to 
traditional file storage [71] (which organizes data in a hierarchical structure) or block storage 
[72] (which stores data in fixed-sized blocks). Each object consists of the data itself, metadata 
about the data, and a unique identifier. Object storage is ideal for handling large amounts of 
unstructured data such as multimedia files, backups, and large datasets. It is highly scalable 
and suited for cloud-native applications that require efficient management of vast quantities 
of data. For the development of the platform described in this document, MinIO [61] is being 
used as an Object Storage. 

Characteristics of Object Storage [73]: 

• Scalability: Object storage can scale to accommodate enormous amounts of data. 

• Metadata-Rich: Objects can have customizable metadata to provide context and make 
searching easier. 

• Flat Structure: Unlike traditional file systems, object storage uses a flat namespace 
without directories or hierarchies, which improves accessibility and scalability. 

3.3. APIs 
An Application Programming Interface (API) [74] is a set of rules and protocols that allows 
different software applications to communicate with each other. It defines how requests and 
responses should be structured, enabling programs to share data or functionality without 
needing to understand the internal workings of each other. Essentially, an API acts as a bridge 
between systems, allowing them to work together seamlessly. There are two common types 
of APIs: Representational State Transfer (REST) [75] and Simple Object Access Protocol (SOAP) 
[76]. APIs are a fundamental aspect of the intercommunication of modern Information 
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Systems. In the architecture of the developed platform, the usage of Spark APIs [77] and Flask 
APIs [78] are described in detail. 

3.3.1. REST 
REST [75] is an architectural style for designing networked applications. It relies on a stateless, 
client-server communication model where requests are made via standard HTTP methods like 
GET, POST, PUT, and DELETE. Key characteristics of REST APIs include: 

• Stateless: Each request from a client to a server must contain all the information 
needed to process the request. The server does not store the client's previous state. 

• Resource-based: REST APIs focus on resources (such as users, files, or posts), which are 
represented via Uniform Resource Locators (URLs)  
(e.g., https://api.example.com/users). 

• Lightweight: REST APIs commonly exchange data in JavaScript Object Notation (JSON) 
or Extensible Markup Language (XML) format, with JSON being more popular due to 
its simplicity and readability. 

• Scalability: REST is easy to scale due to its stateless nature, making it a preferred choice 
for web services and microservices. 

3.3.2. SOAP 
SOAP [76] is a protocol that defines how to communicate between different services over a 
network. It uses XML to encode its messages and relies on a more rigid and formal structure 
than REST. Key characteristics of SOAP APIs include: 

• Strict standards: SOAP uses standardized XML messaging and has built-in error 
handling, making it ideal for complex, enterprise-level applications. 

• Protocol-based: Unlike REST, which uses HTTP, SOAP can operate over different 
protocols like HTTP, SMTP, or TCP. 

• Security: SOAP has built-in standards for security (WS-Security) and transactions, 
which makes it a popular choice in applications requiring high security and reliability, 
such as banking and payment systems. 

• Stateful or stateless: SOAP can operate in both stateful and stateless modes, 
depending on the requirements of the interaction. 

3.4. Programming Languages 
For the development of the platform analyzed in this document, there are some programming 
languages that have been used in order to create the back-end and the front-end. The front-
end is the part of a website or app that users interact with directly, like buttons, text, and 
images. It's what the user sees on their screen and includes the design and layout. The back-
end is everything behind the scenes that powers the front-end. It handles the logic, database, 
and server, making sure data is processed and sent correctly to the front-end. In the back-end 
of the platform, Python and its Libraries are being exploited. In the front-end of the platform 
many common programming and structure languages are being used in other order to provide 
a User Interface (UI) to the end-users. In this section, the different Programming Languages 
are described to the reader. 

3.4.1. HTML 
HyperText Markup Language (HTML) [79] is the foundational markup language used for 
creating the structure of web pages. It serves as the backbone of all websites, allowing 
developers to define and organize content into various elements such as headings, 
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paragraphs, images, links, and more. HTML utilizes a system of tags to indicate different 
content types, such as <h1> for headings or <p> for paragraphs, with attributes often used to 
provide additional context or functionality. While HTML structures the content, it does not 
dictate its appearance or behavior, making it essential to pair with other technologies like CSS 
and JavaScript (JS) for a complete web experience as explained in the following subsections. 

3.4.2. CSS 
Cascading Style Sheets (CSS) [80] is the language used to control the visual appearance and 
layout of web pages. By applying styles to the HTML structure, CSS allows developers to define 
how elements such as text, images, and containers are displayed. Through properties like 
colors, fonts, spacing, and positioning, CSS helps create visually appealing websites. 
Additionally, CSS is responsible for responsive design, enabling web pages to adapt to various 
screen sizes and devices. It can be included directly within an HTML document or linked as an 
external stylesheet, making it a flexible tool for maintaining consistent design across multiple 
pages. 

3.4.3. JS 
JS [81] is a scripting language primarily used to add interactivity and dynamic behavior to 
websites. Unlike HTML and CSS, which focus on structure and design, JS enables developers 
to make web pages interactive by responding to user inputs, manipulating the Document 
Object Model (DOM), and handling events like mouse clicks or form submissions. JS also 
supports asynchronous operations, allowing web applications to load data in the background 
without requiring a page refresh. While originally developed for client-side execution in web 
browsers. 

3.4.4. Python 
Python is a high-level, general-purpose programming language known for its simplicity and 
versatility. It’s clear, readable syntax makes it a popular choice for beginners and experienced 
developers alike. Python is widely used in fields such as web development [82], data science 
[83], AI [83], automation [10], and more. It supports multiple programming paradigms, 
including object-oriented [84], procedural [84], and functional programming [84], and has an 
extensive standard library as well as third-party packages that extend its functionality. 
Python’s adaptability makes it suitable for a broad range of applications, from small scripts to 
complex ML systems. 

3.5. Frameworks & Libraries 
To implement the architecture detailed in the next section, a variety of frameworks and 
libraries were employed to enhance code readability and leverage their built-in functionalities. 
This section provides an overview of the most significant frameworks and libraries utilized in 
the development of EverCluster. 

3.5.1. jQuery 
jQuery [85] is a JS library designed to simplify the process of scripting HTML documents, 
handling events, and creating animations. JQuery aims to reduce the amount of code 
developers need to write and manage, making it easier to achieve complex interactions and 
effects with fewer lines of code. One of jQuery’s most notable features is its ability to handle 
DOM manipulation effortlessly. Developers can select elements from a web page, modify their 
content, and apply styles with concise and readable code. Additionally, jQuery provides a 
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straightforward API for handling events, such as user clicks or keyboard inputs, and supports 
animations like fading and sliding. 

jQuery is also known for its cross-browser compatibility, meaning it addresses inconsistencies 
between different web browsers, ensuring that code runs smoothly across various platforms. 
Despite the rise of modern JS frameworks, jQuery remains popular for its simplicity and ease 
of use, particularly in legacy projects and for developers seeking a lightweight solution. 

3.5.2. Bootstrap 
Bootstrap [86] is an open-source front-end framework. Bootstrap provides a comprehensive 
set of design templates and components that facilitate the creation of responsive and visually 
appealing web interfaces. Bootstrap’s core feature is its responsive grid system, which allows 
developers to create layouts that automatically adjust to different screen sizes and device 
orientations. This grid system is complemented by a variety of pre-designed components, 
including navigation bars, buttons, forms, and modals, which streamline the development 
process and ensure consistency in design. 

In addition to its grid and component library, Bootstrap includes a set of customizable CSS and 
JS utilities for styling and interactivity. The framework supports modern web standards and is 
designed to be easily extendable and adaptable to various design needs. 

3.5.3. Flask 
Flask [78] is a micro web framework for Python. It is designed to be lightweight and flexible, 
providing developers with the core tools needed to build web applications without imposing 
a lot of constraints or requiring a predefined project structure. Flask’s minimalist approach 
means it does not include built-in components like database abstraction layers or form 
validation, allowing developers to choose and integrate their preferred tools and libraries. 
Despite its simplicity, Flask is highly extensible and supports various extensions that can add 
functionality such as authentication, database integration, and form handling. 

One of Flask’s key features is its built-in development server and debugger, which makes it 
easy to test and debug applications during development. Flask uses Jinja2 [87] as its 
templating engine and Werkzeug [88] as its Web Server Gateway Interface (WSGI) toolkit, 
providing a solid foundation for creating dynamic web applications. Its straightforward design 
and ease of use make it a popular choice for both beginners and experienced developers 
working on small to medium-sized projects. 

3.5.4. PySpark 
PySpark [89] is the Python API for Apache Spark. With PySpark, users can perform data 
transformations, run complex queries, and build ML models on large datasets distributed 
across a cluster of machines. PySpark provides DataFrame and Resilient Distributed Dataset 
(RDD) APIs, which enable efficient data manipulation and querying. The DataFrame API offers 
a high-level abstraction for working with structured data [62], while the RDD API provides 
more control over low-level data operations. 

PySpark integrates with various data sources, including Hadoop Distributed File System (HDFS) 
[13], Amazon Simple Storage Service (S3) [90], and various databases, making it a versatile 
tool for data engineering and data science. It also includes a ML library called MLlib [91], which 
provides algorithms for classification, regression and clustering. 
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3.5.5. Pandas 
Pandas [92] is a powerful and flexible data manipulation library for Python. It provides two 
primary data structures—Series and DataFrame—that are designed for working with 
structured data in a tabular format [93]. The Series data structure represents one-dimensional 
labeled arrays, while the DataFrame is a two-dimensional table with labeled axes (rows and 
columns). These structures enable efficient data manipulation, including operations such as 
filtering, grouping, merging, and reshaping. Pandas also offers a range of functions for reading 
from and writing to various data formats, including Comma-Separated Value (CSV) files, Excel, 
SQL databases, and more. 

3.5.6. Scikit-learn 
Scikit-learn [94] is a robust ML library for Python. It is built on top of NumPy [95], SciPy [96], 
and Matplotlib [97], providing a consistent and easy-to-use interface for various ML 
algorithms and techniques. Scikit-learn includes a comprehensive collection of tools for data 
preprocessing, model selection, and evaluation. It supports a wide range of algorithms for 
classification, regression and clustering.  

One of the key strengths of Scikit-learn is its emphasis on user-friendly APIs and clear 
documentation, which makes it accessible for both beginners and experienced practitioners. 
Its integration with other scientific libraries in Python, such as NumPy and Pandas, allows for 
seamless data manipulation and analysis. 

3.6. ML Algorithms Used 
In this subsection, a comprehensive description of the ML algorithms employed in the 
development of EverCluster is presented. These algorithms were essential to the platform's 
evolution and functionality. Furthermore, the clustering algorithms detailed are made 
available to the end-users of the platform, allowing them to leverage these tools for their own 
analytical needs. 

3.6.1. Random Forest Classification 
As described in Section 2, the RF classification algorithm is a supervised ML algorithm. To 
create a RF Classifier and predict the class of a specific instance (record or dataset) there is a 
need of training dataset. The algorithm of this classification method is also shown as 
pseudocode in Appendix VI. To make this process understood by the reader, below is an 
example of this classification method with figures. 

As explained, the algorithm needs a Training Dataset, like the one shown in Table 1. The 
training dataset must be annotated, meaning that the class of each row mast be noted 
beforehand (Class). For each row the row is presented with a different color for better 
explainability regarding the next step. In this example four (4) trees are selected to be created 
and used to perform the RF. The first step of the algorithm is to create four (4) bootstrapped 
datasets. Bootstrapping [98] is a statistical technique that involves creating multiple samples 
from a single dataset. Each sample is generated by randomly selecting data points from the 
original dataset with replacement. This means that some data points may appear multiple 
times in a sample, while others may not appear at all. After creating the four (4) samples, a 
decision tree [99] is created for each one. In Figure 4, the above process is shown. After 
creating the decision trees the classifier is ready to be used. On a new instance (a new 
unlabeled row or rows) all the different decision trees output a class. Depending on the Use 
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Case and in the parameters that the algorithm is using, the classifier may choose to make to 
answer as the instance’s label, the one with the most votes by the decision trees or using some 
other kind of statistical formula. The process for the decision on a new instance is shown in 
Figure 5. 

Table 1 – RF Training Dataset 

Class Feature A Feature B Feature C 

1 a1 b1 c1 

2 a2 b2 c2 

2 a3 b3 c3 

1 a4 b4 c4 

2 a5 b5 c5 

 

 
Figure 4 – Decision Trees 

 
Figure 5 – RF Decision 

3.6.2. K-means Clustering 
As already mentioned, K-means clustering is used to partition a dataset into K distinct, non-
overlapping groups or clusters. The goal is to group data points such that points within the 
same cluster are more similar to each other than to those in other clusters. The algorithm of 
this clustering method is also shown as pseudocode in Appendix I. To make this process 
understood by the reader, below is an example of this method with figures. 

In Table 2 a dataset of five (5) two dimensional points are shown. These points are also 
represented in Figure 6. The color of each point is represented both in the table and the figure.  
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Table 2 – Example Clustering Dataset 

ID X Y 

0 0,0 0,0 

1 1,0 1,0 

2 9,0 8,0 

3 8,0 9,0 

4 0,5 0,5 

 

 
Figure 6 – Example Clustering Dataset 

The K-means algorithm begins with K initial centroids. These centroids can be either two new 
spots, or two preexisting spots from the dataset. These two centroids could also be random 
or not, depending on the use case that the K-means algorithm is performed. For simplicity, 
the spots with the identifications (IDs) 1 and 3 are chosen. Then, the distance of each spot in 
the dataset from the centroids is calculated (Table 3) using Euclidian distance [100]. The spots 
nearest to each centroid are described as being a cluster. Thus, the first cluster is going to be 
the identifications (IDs): 0,1,4 and the second on the IDs: 2, 3. The current clusters and 
centroids can be seen in Figure 7a.  

Table 3 – K-means Centroid Distances 

Spot ID \ Centroid Distance Centroid 1 (1, 0) Centroid 3 (8, 9) 

0 1.4 12.04 

1 0 10.63 

2 10.63 1.41 

3 10.63 0 

4 1.18 12.04 

 
The current centroids will now be updated with new X and Y values for each cluster. The two 
(2) new centroids will have features equal to the mean of the corresponding features of the 
spots being in their cluster. Thus, the new centroid values will be the following: 

𝑐1 = (𝑥𝑐1, 𝑦𝑐1) = (
𝑥0 + 𝑥1 + 𝑥4

3
,
𝑦0 + 𝑦1 + 𝑦4

3
) = (0.5, 0.5)  

𝑐2 = (𝑥𝑐2, 𝑦𝑐2) = (
𝑥2 + 𝑥3

2
,
𝑦2 + 𝑦3

2
) = (8.5, 8.5) 
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The new centroids with their current clusters can be seen in Figure 7b. After the creation of 
the new centroids, the process of measuring the distances of each spot from the centroids 
begins again, until either no changes are made in the clusters, or any other terminating 
condition is met.  

One metric to describe if a clustering algorithm performed well, is the Within-Cluster Sum of 
Squares (WCSS). If this metric is low, the algorithm did its job. In the other hand, if this metric 
is high, the algorithm performed badly. In this example the algorithm performed well, but this 
does not mean that if we run the algorithm again, then we are going to have the same result. 

  
(a) (b) 

Figure 7 – K-means Clustering Process 

3.6.3. Bisecting K-means Clustering 
Bisecting K-Means is a hybrid clustering algorithm that combines elements of K-Means and 
hierarchical clustering [101]. Unlike traditional K-Means, which randomly initializes centroids 
and iteratively assigns data points to the nearest cluster, Bisecting K-Means adopts a top-down 
approach, starting with a single cluster and progressively dividing it into smaller, more refined 
clusters. The algorithm of this clustering method is also shown as pseudocode in Appendix II. 
To make this process understood by the reader, below is an example of this clustering method 
with figures. 

For this example, the same dataset already shown in Table 2 will be used. Bisecting K-means, 
performs the clustering procedure in a hierarchical way. This means that the algorithm begins 
theorizing that all the dataset belongs in one cluster (Figure 8a). The algorithm finds two (2) 
clusters using K-means or any other needed method that is described from the user (Figure 
8b). If the user gave the parameter K as more than two (2), then the algorithm does the same 
procedure to the cluster with the highest WCSS (Figure 8c). The algorithm will stop when the 
number K is achieved or if any other terminating condition is raised. 
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(a) (b) (c) 

Figure 8 – Bisecting K-means Clustering 

3.6.4. Gaussian Mixture Model Clustering 
GMM Clustering is a probabilistic clustering algorithm that models the data as a mixture of 
several Gaussian distributions. Unlike K-Means, which assigns each data point to a single 
cluster based on the nearest centroid, GMM uses a probabilistic approach to assign data 
points to clusters with varying degrees of membership. Each cluster is represented by a 
Gaussian distribution, characterized by its mean and covariance. The algorithm of this 
clustering method is also shown as pseudocode in Appendix III. 

The algorithm begins by initializing the parameters of the Gaussian distributions [102], such 
as their means, covariances, and mixture weights. It then iterates through two main steps: 
Expectation (E-step) and Maximization (M-step). In the E-step, the algorithm calculates the 
probability of each data point belonging to each Gaussian distribution. In the M-step, it 
updates the parameters of the Gaussian distributions based on these probabilities to 
maximize the likelihood of the observed data. 

To illustrate this process, a single dimension dataset is being used in Figure 9. GMM starts by 
initializing Gaussian distributions (Figure 10). During the E-step, it calculates the probabilities 
of data points belonging to each Gaussian distribution. In the M-step, the parameters of the 
Gaussian distributions are updated based on these probabilities to fit the data better. This 
iterative process continues until convergence, where the changes in the likelihood of the data 
become minimal. In a dataset with more dimensions, the same process is performed, using all 
the different features of each data point. 

 
Figure 9 – Example GMM Dataset 

 
Figure 10 – Gaussian Mixture Model Clustering 
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4. Platform Implementation 
This section presents an in-depth analysis of the platform's implementation, reflecting its 
objectives and identifying the various end-user groups with a vested interest in EverCluster. 
Continuing the objectives and the concerned user-groups, the architecture of the platform is 
analyzed in detail. The application of the tools and methodologies outlined in Section 3 is 
illustrated through figures and elaborated upon in the subsequent subsections. The analysis 
begins with an overview of the EverCluster architecture at a high level, followed by detailed 
representations of the lower-level architectural components. After the architecture is 
explained in detail, deployment diagrams are shown to represent the different environments 
that the platform can be function on. Continuing the deployment diagrams of the platform, 
the code of the platform is explained and analyzed in detail using different Sequence and Class 
Diagrams. The section comes to close by providing an execution manual as well as a user 
manual to achieve reproducibility from the readers. 

4.1. Objectives & End-Users 
In order for EverCluster to have added value to its end-users and give a solution to the problem 
statement of this document as well, there is a need for the following six (6) objectives to be 
achieved: 

1. Dataset Management: This objective concerns the implementation of a way to handle 
user defined datasets in the platform. The end-user should be able to upload and 
handle files of data from their local environment to EverCluster. Also, the platform 
must be able to gather metadata for these datasets to give an easy way to the end-
user to understand the datasets that they have already uploaded. Finally, the end-user 
should be able to download again their dataset from the platform in case that their 
data got lost from their local environment. 

2. Dataset Clustering: This objective regards the functionality of EverCluster to perform 
clustering algorithms with parameters defined by the end-user. A set of ready to be 
used algorithms should be given to the end-user. These algorithms must be able to 
have as input the datasets that the end-user have already uploaded. 

3. Results Management: The results of the clustering procedures should be available to 
the end-users. The predicted clustering results should be able to be downloaded from 
the platform’s User Interface. Also, the results should be able to be removed from the 
platform in case the end-user wants to recreate them. 

4. Authentication System: In a platform such as EverCluster, it is essential that numerous 
end-users consistently have access to the system. Consequently, the platform must 
support account management through a robust authentication system. 

5. Scalable Architecture: EverCluster must be capable of scaling in response to end-user 
demands and account requirements. crucial is also considered the platform's ability to 
dynamically scale horizontally by integrating additional resources through container 
orchestration systems such as Docker Swarm, K8s, or similar engines. This parallel 
utilization of multiple resources ensures enhanced efficiency by accelerating the 
execution of procedures. 

6. Algorithm Recommendation: In the rest of the objectives, the necessity for a platform 
capable of managing datasets and results, executing clustering operations, and 
offering scalable solutions is outlined. This objective entails developing a system that 
can provide recommendations reflecting the most suitable algorithm from those 
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available to the end-user. This recommendation should consider the metadata from 
the dataset that the end-user intends to handle as well as the already existing 
resources that the platform can utilize. 

A platform designed with the outlined objectives primarily caters to groups of end-users in 
the ML domain. On one hand, academia, including students, can utilize the platform to 
experiment with clustering algorithms for educational purposes or to complete various 
projects, enhancing their understanding of ML techniques. Moreover, this group also includes 
researchers who can conduct experiments on a platform with the architecture described in 
subsequent sections. On the other hand, professionals such as data scientists and data 
engineers can leverage the platform to quickly generate results or replicate the architecture 
to incorporate self-adaptability into their own systems. 

4.2. EverCluster High-Level Architecture 
Figure 11 illustrates the High-Level Architecture of EverCluster. EverCluster consists of four 
main components: (i) Server, (ii) User Interface, (iii) Data Management and (iv) Spark Cluster. 
Each of the components are an important part of the platform and they are orchestrated in 
order to provide a seamless platform to the end-user than can provide all the needed 
functionalities that were described in previous sections. The responsibility of each component 
is the following: 

• Server: This component is responsible for being the centre of the functionality of 
EverCluster. It comprises a Python Flask REST API server, which is further divided into 
several subcomponents. This component can provide the User Interface component 
with all the needed information that must be presented to the end-users as well as 
handle the information that is stored in using the Mongo DBMS and the MinIO Object 
Storage. Except from the above, this component is the one that handles the 
recommendation processes of EverCluster, using the scikit-learn Python library. Finally, 
this component is the one that contacts the Spark Cluster for execution, using the 
Spark REST API. This component is also divided into the following subcomponents: 

o Cluster Information Scraper: This subcomponent is used to gather information 
by the Spark Master’s Dashboard. 

o Authenticator: The Authenticator is used to handle the credentials of the end-
users of the platform. 

o Dataset Handler: This subcomponent is used in order to access the end-user’s 
datasets as well as to co-operate with the Validity Controller in order to manage 
the uploaded files in a seamless manner. 

o Validity Controller: The Validity Controller is used in order to verify validity of 
end-user uploaded files. 

o Spark Handler: This subcomponent is the one responsible to contact the Spark 
Cluster component explained below. It is the one that can submit analytic 
works for execution. 

o Recommendator: This is the component responsible for making 
recommendations to the end-users based on the clustering algorithms that 
they should probably use in order to achieve the best performance regarding 
on accuracy or speed. 

• User Interface: The User Interface is a series of jinja2 Templates used by the Server 
component. The User Interface has direct communication with the Server component 
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only, and it is responsible to provide responsive and understandable interfaces to the 
end-users. In this component, the use of Bootstrap and jQuery provides a visibly 
appealing interface. 

• Data Management: In this component the NoSQL database of EverCluster handled by 
the Mongo DBMS exists. Also, the buckets for the upload of end-user datasets and the 
storing and downloading of the clustering results is handle in this component by MinIO 
Object Storage. The two tools that are used, are both cloud-centric in nature, making 
them easily scalable in containerised environments. 

• Spark Cluster: The Spark Cluster component of EverCluster resides at the bottom of its 
architecture and is the most important scaling aspect of the platform. In this 
component the Spark Master and many Spark Workers reside. All the different Spark 
nodes are coming with PySpark and Pandas preinstalled in order to handle Spark ML 
procedures in a distributed manner. 

The figure of the Paltform’s high-level architecture illustrates clearly the utilization of 
Docker containers across all components. The containerization of the entire system 
enables the seamless deployment of EverCluster in any environment that supports Docker 
container initialization. 

 
Figure 11 – High-Level Architecture 

4.3. EverCluster Low-Level Architecture 
The current subsection is divided into two subsections, each one responsible for analyzing the 
lower levels of EverCluster’s architecture explained in the high-level figure that was presented. 
The lower-level architecture of EverCluster showcased though the inner communications 
performed on the Server, User Interface & Data Management components as well as the inner 
communications between the Spark Cluster and the Data Management components. The 
Spark Cluster and the Server components are seen communicating between the two following 
subsections. The Data Management component does not have a low-level communication 
figure since it consists only by the Mongo DBMS and the MinIO Storage containers. 
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4.3.1. Server & User Interface 
In this subsection, low-level architecture figures are used to present the communication of 
the different components and their inner functionalities.  

Starting with Figure 12, three of the platform’s components are represented. This figure 
illustrates how the platform continuously tracks the number of nodes being utilized by the 
Spark Cluster. The Server is responsible for scraping information from the Spark Master’s 
dashboard. By doing so, it can detect though the HTML elements of the dashboard the number 
of online nodes and if the master node is also alive. Following the information scraping, it 
collects this information, the Server provides it as an input to the interfaces of the User 
Interface component. 

 
Figure 12 – Cluster Information Scraper 

In Figure 13, the way that the authentication of the platform is handled is visualized. Also, the 
functionality of the platform’s dataset handling is presented. The process begins with the 
authentication mechanism, where the end-user interacts with the User Interface component 
to transmit information to the server. The server is responsible to exploit the Data 
Management component and validate the information given by the end-user. Once validation 
is completed, the server responds with either a confirmation or a rejection of the end-user's 
credentials. In the same figure the Server can be seen using the Dataset Handler and Validity 
Controller subcomponents. These subcomponents are needed to handle the datasets that the 
end-user is uploading on the platform. When an end-user is uploading a dataset from a 
Dataset Interface, the label of the dataset, the dataset itself and different metadata of it are 
transmitted to the Server component. The Server uses the Dataset Handler in combination 
with the Validity Controller to check for mistakes in the given dataset and raise any meaningful 
warning to the end-user about their file. If the file is valid and the provided label is unique to 
the end-user's datasets, the server notifies the object storage and the EverCluster database 
about the new dataset in the end-user's collection and storage bucket.  

One more functionality that can be seen, is that when an end-user is uploading a dataset 
successfully, a download link is created by MinIO and passed through the flow to the 
EverCluster database. In this way when the Dataset Handler passes all the datasets of the end-
user to the Dataset Interfaces, the download link is provided as well. This functionality gives 
to the end-user the ability to download dataset right from the platform, by contacting the 
MinIO object storage directly using their browser.  

Lasty, the end-user can delete an uploaded dataset from the platform. With all the provided 
datasets passed to the User Interface component, the end-user can select a dataset by its 
label, passing it back to the Dataset Handler subcomponent and triggering the deletion of the 
dataset and its metadata from the platform’s Data Management component. 

In case of an error occurrence, like mismatched passwords during registration, the server 
manages the issue by sending helpful information to the User Interface component. The User 
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Interface component then uses this information to display a user-friendly warning message to 
the end-user. 

 
Figure 13 – Authentication & Dataset Management 

Following the low-level architecture analysis of the dataset handling, the execution flow for 
the clustering algorithms by the end-user is shown in Figure 14. In this figure the end-user is 
seen interacting with the Analytics Interface, passing their dataset information and their 
preferred execution information to the Spark Handler on the Server’s side. The Spark Handler 
is using the number of current working Spark Nodes by the scraper that has been explained 
above, the clustering that the end-user wants to perform and the dataset they wish to use to 
perform a clustering procedure. More specifically the Spark Handler communicates with the 
Recommendator subcomponent with the following parameters as input: (i) the max clustering 
iteration number from the end-user, (ii) the amount of different clusters that the end-user 
wants to find in the dataset, (iii) the number of online Spark Workers, (iv) the byte size of the 
dataset that the end-user wants to analyze, (v) the amount of records existing in the dataset 
that the end-user wants to analyze and (vi) the amount of different features that are going to 
be used on the clustering. The parameters are provided to two classifiers: one selects the best 
algorithm based on analysis speed, while the other focuses on accuracy. The creation of these 
classifiers is detailed in the Experimentation Methodology section, as they can be replicated 
and improved for different environments using various classification methods. After the Spark 
Handler gathers the two proposals, the subcomponents return them to the Analytics 
Interface, allowing the end-user to choose one of the suggested options or their original 
preference.  

When the final execution choice has been selected the Spark Handler is responsible to submit 
the clustering job to the Spark Master using the Spark API. This API returns the job’s status, 
and the Server component performs HTTP polling to be notified when the job is completed. 
The clustering execution and distribution is handled completely by the Spark Master. 
Appendixes X, XI and XII are showing the PySpark code that was developed to perform the 
three clustering procedures. The Spark Master is also responsible for communicating with the 
Data Management in order to get the end-user’s dataset for analysis, leave metadata 
information in the EverCluster database as well as, leave the results in the object storage. In 
the next subsection the communication with the Data Management component is shown in a 
more detailed manner. 
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Figure 14 – Clustering Execution & Recommendation 

The last low-level architecture figure for the Server and User Interface components is shown 
in Figure 15. In this figure, the way that the results are handled is shown. The end-user is 
contacting the User Interface component by the Results Interfaces. The Server can be seen 
already providing all the results of the end-user. The end-user can perform downloading of 
the results by a download link that has been saved previously by the Spark Master in the 
EverCluster database and is shown with the results on the interface. Also, the end-user can 
delete results by using their label like the dataset deletion functionality previously explained. 
 

 
Figure 15 – Results Management 

4.3.2. Spark Cluster Communication 
In this subsection the low-level architecture of the Spark Cluster Communication with the Data 
Management components is analyzed. This architecture can be seen in Figure 16. The figure 
continues the low-level architecture described in Figure 14, having as inputs the job 
submission and Job Status of the end-user’s execution. As it is shown, the Spark API is 
responsible of creating a Spark Driver in the Spark Master node. This Spark Driver itself is then 
creating one Spark Executor on each Spark Worker node of the Spark cluster, distributing the 
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execution of the analytics workflow. By contacting the Spark Executors, the Driver is also 
passing metadata information by the EverCluster database and the dataset’s information by 
the object storage. Once the clustering procedure is complete, the Spark Driver recontacts the 
EverCluster database to store the results metadata and also reaches out to the object storage 
to save the actual results. 
 

 
Figure 16 – Spark Cluster Communication 

4.4. Deployment Diagrams 
Continuing the architecture high- and low-level figures of EverCluster, this section is providing 
to the reader possible deployment methods for the platform. As shown in the high-level, all 
the components of the platform are containerized. This means that the platform can be 
deployed in environments that support containerized applications. This feature makes 
EverCluster scalable in environments using Docker Swarm, K8s and other related engines. The 
development and testing of this project was performed using the first deployment shown 
below (Single Node Deployment) by exploiting the capabilities of a docker-compose [103] file. 
Using this file simplifies the installation process and ensures it can be easily replicated across 
any environment utilizing the aforementioned engines. In the case of the deployment of the 
platform in a K8s environment, the use of the kompose [104] tool is heavily advised on the 
docker-compose file. In Appendixes XIII – XIX, all the versions of the tools used to develop and 
deploy EverCluster are named. 
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4.4.1. Single Node Deployment 
The fastest and easiest way to deploy EverCluster, is using its single node deployment. In 
Figure 17, a deployment diagram of the platform being deployed on a single node 
environment is showcased. The environment depicted represents a laptop having the Docker 
Engine installed. By using Docker, six (6) containers are shown to be running. The Data 
Management component is seen to be using two containers to separate the Mongo DBMS 
and the MinIO object storage. Also, in one container the User Interface component and the 
Server component can be seen interacting directly with each other as shown in the high-level 
view of the platform’s architecture. These two components are the only ones that can’t be 
separated from each other due to their way that they have been developed. Also, at the base 
of the deployment, the Spark Cluster component can be seen with each Spark node in a 
different container. 
 

 
Figure 17 – Single Node Deployment 
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4.4.2. Two-Node Deployment 
This subsection outlines a deployment diagram featuring two nodes. This approach allows for 
a step-by-step analysis of the platform's scalability by breaking it down into additional devices. 
In Figure 18, EverCluster is visualized having its workflow shared into two personal computers. 
This deployment is achieved in the figure conceptually by using Docker Swarm. The first 
computer is shown with three deployed components: the Data Management, the User 
Interface and the Server. The second computer is shown with the Spark Cluster deployed on 
it, being the analytics dedicated resource of the cluster. 

 
Figure 18 – Two-Node Deployment 

 

 

 

 

 



Page: 41 
 

4.4.3. Multi-Node Deployment 
Continuing the rest of the deployment diagrams. This subsection showcases a scenario better 
explaining EverCluster’s distribution ability. In Figure 19, a multi-node deployment is shown. 
It can be seen that the same number of containers with the rest of the above deployment 
diagrams are being used, but this time five (5) different personal computers are being 
exploited. The components Server and User Interface are both deployed in the first computer 
since they cannot be separated. The Data Management component is visualized in the second 
computer. The Spark Cluster component is represented scaling itself across three different 
computers, with each one executing one Spark Worker. It is important to mention that the 
Data Management component itself can be partitioned into two computers. Having the MinIO 
object storage in one computer and the Mongo DBMS in the other. 
 

 
Figure 19 – Multi-Node Deployment 
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4.5. Activity Diagrams 
To assist the architecture described in the previous subsections, different activity diagrams are 
provided below, showcasing a high-level view of the decision making of EverCluster. For each 
of the activity diagrams provided, the processes of the end-user and the platform’s automated 
actions are described. The following activity diagrams are also representing each of the main 
User Interface functionalities of EverCluster. 

4.5.1. Authentication 
The first activity diagram in Figure 20 illustrates the information flow related to the end-user 
authentication process. It begins with user login and registration. During registration process, 
the end-user provides new credentials, which are stored in the database. For the login, the 
end-user enters their credentials, and the system verifies their validity, as shown in the 
corresponding low-level architecture diagram. If the login attempt is successful, the end-user 
is redirected to the EverCluster home page. Throughout the process, as well as in other activity 
diagrams, the system generates warnings for the end-user in cases of invalid data or 
unsuccessful action attempts. 

 
Figure 20 – Authentication Activity Diagram 

4.5.2. Cluster Information Gathering 
The activity diagram presented in Figure 21, is visualizing the procedure of the platform’s 
system for gathering the Spark Cluster Information. When the end-user is logged in, the 
system performs the scraping of the needed information by the Spark Dashboard and formats 
it for the end-user’s interfaces. 

 
Figure 21 – Cluster Information Gathering Activity Diagram 
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4.5.3. Dataset Handling 
Figure 22 visualizes all the different procedures that an end-user can perform within the 
Dataset Interface. First, the end-user can see their uploaded datasets. By doing so, the system 
is gathering all the needed metadata information by the EverCluster database and then 
presents it to them. Another ability that is given to the end-user is to delete an already 
uploaded dataset by the dataset’s label. By doing so, the system is removing all the existing 
information labeled below the given dataset and then this process is terminated. The last 
ability that is given to the end-user is to upload a dataset, in this procedure, the end-user is 
providing a label and a file as their dataset. The system is responsible for validating the 
uniqueness of the given label across the rest of the uploaded datasets of the end-user, as well 
as to check for possible errors in the file. If there are no errors, the file and its metadata are 
saved in the database and the object storage. Before the dataset uploading is complete, the 
metadata of the dataset are updated with a download link for the uploaded file. It is important 
to note that by viewing a dataset, an end-user can also download it, without performing any 
task in the system. This is done by the download link provided as metadata from the system 
to the User Interface component. 

 
Figure 22 – Dataset Handling Activity Diagram 

4.5.4. Clustering Execution 
The most important aspect of the platform is presented in Figure 23. In the mentioned figure, 
the end-user can request a clustering on one of the uploaded datasets. Next, the system 
gathers all the necessary information to recommend potentially better algorithms, as detailed 
in the corresponding low-level architecture figure. Then the system is requesting for the most 
suitable algorithm for the current clustering procedure in terms of speed and accuracy. 
Following to that the end-user makes a choice between three algorithms that are presented 
on their interface. By making a choice the system submitted the end-user’s job to the Spark 
cluster continuously checking if the job is finished. When the job is completed, the end-user 
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can proceed into viewing their results. Also, at the finishing execution steps of the job, the 
results and their useful metadata are saved in the EverCluster’s saving systems.  

 
Figure 23 – Clustering Execution Activity Diagram 

4.5.5. Results Handling 
At any point, by interacting the Results Interfaces of EverCluster, the end-user can view the 
clustering results as shown in Figure 24. For the end-user to view their results of any analytic 
procedure, the system is getting all the saved results metadata from the EverCluster database. 
Then the metadata are formatted and presented on the User Interface component. If the end-
user has results available for viewing, they can delete them. In such a scenario, the end-user 
requests the deletion of results based on their label, and the system removes them in the 
same manner as it does for an end-user’s dataset. It’s important to report that by viewing a 
dataset, the end-user can also download it without needing to take any further action in the 
system. This is achieved by a download link provided as metadata from the system to the User 
Interface component. 

 
Figure 24 – Results Handling Activity Diagram 
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4.6. EverCluster Manuals 
The above subsections have described explicitly all the functionalities, the deployment 
methods and how the platform's system interacts between its components to offer a seamless 
experience for the end-user. This platform is capable to handle uploading and removal of 
datasets, execute clustering procedures, recommend algorithms as well as remove unwanted 
results or download them by the User Interface. This subsection is focused on how the end-
user can use this platform. To explain the way that an end-user and any concerned party can 
use EverCluster two guides are given in the following subsections. Firstly, an Installation Guide 
is described and secondly a User Manual is given visualizing the platform’s interfaces and 
explaining in a simple manner their usage. 

4.6.1. Installation Guide 
In this subsection the way to install and execute EverCluster is described. In order to do this, 
the concerned party who is going to deploy EverCluster must have one device the following 
tools installed: (i) Docker, (ii) docker-compose, (iii) Git [105]. In the following example a single-
node deployment is performed. By making changes and using Docker Swarm or K8s and 
kompose the rest of the deployment methods can be achieved as well. 

Download the Code Repository 
In a directory that is preferred open a terminal and type the following command to download 
the code repository of EverCluster: 

git clone https://github.com/karamolegkos/EverCluster.git 
cd EverCluster 

 

Download Images & Execute EverCluster 
After verifying that Docker Deamon is running in the system, the following command must be 
executed in the same terminal: 

docker-compose up -d 

 
After the above command, all the needed images will start to download into the system’s 
storage and then Docker containers will be executed. After some time, the following 
containers will be running: 

• 1 MinIO Object Storage Container 

• 1 Mongo DBMS Container 

• 1 Flask Server Container 

• 1 Spark Master Container 

• 5 Spark Worker Containers 

In Appendix XX, the docker-compose.yml file is given. If needed a concerned party can adjust 
this file to install more, or less, Spark Worker containers. 

Download Images & Execute EverCluster 
To access the platform, a preferred browser can be opened to access the following URL: 

localhost:5000 
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Download Images & Execute EverCluster 
In the case of needing to remove the platform from the system the following command must 
be execute from the same directory: 

docker-compose down 

 

4.6.2. User Manual  
Following the execution guide, this subsection provides the user manual of the platform. 
Below, different screenshots can be found after the above execution is performed. Each 
screenshot showcases a different interface and explains functionalities that are visible to the 
end-user. 

Log In Interface 
Starting with the User Manual, the log in Interface is presented in Figure 25a. This interface is 
accessible by any browser in the URL: localhost:5000. In this interface, an already registered 
end-user can Sign in by providing their username and password. In the case of wrong 
credentials, it can be seen in Figure 25b that the interface is providing a warning to the end-
user, informing them about their mistake. 

By clicking on the “or Sign up…” link the end-user will be redirected to the Registration 
Interface. 

 

 
(a) (b) 

Figure 25 – Log in Interface 

Registration Interface 
When an end-user is in the Registration Interface (Figure 26a), they can use a unique 
username to create an account. In the case of a mismatch in the password and its verification, 
or in the case of the usage of an already existing username, a user-friendly warning will pop 
up, as shown in Figure 26b. 

By clicking on the “or Sign in…” link the end-user will be redirected to the Log in Interface. 
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(a) (b) 
Figure 26 – Registration Interface 

Home Page Interface 
By logging in, or registering, the system will redirect the end-user to EverCluster’s Home Page 
(Figure 27). From this page the Logo of the platform is visible, with information on the nodes 
of the Spark Cluster. In the screenshot that is provided, it can be seen that currently 
EverCluster is using one Spark Master and five (5) Spark Workers. Also, from this page and 
every page following one, the end-user has access to the “Upload Dataset Interface”, the 
“Clustering Interface” and the “Results Interface”. Also, the “Log out” button is now an option. 

 

Figure 27 – EverCluster Home Page Interface 

Upload Dataset Interface 
By pressing the button “Upload Data” an end-user will be able to view the interface presented 
in Figure 28. In this figure, a label can be given to upload a dataset with its corresponding file 
from the local environment. When this is done, the end-user can view their datasets by 
clicking on the “Uploaded Datasets” button. Figure 29 shows two uploaded datasets together. 
For any uploaded dataset its metadata can be viewed. This metadata consists of: its label, 
number of records, upload date, byte size and headers. Also, the end-user can use the red 
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button to delete the dataset from the platform, or the black button to download it again from 
the platform’s object storage. 

 

Figure 28 – Upload Dataset Interface 

 

Figure 29 – Uploaded Dataset Example 

Clustering Interface 
By pressing the button “Clustering” an end-user will be able to view the form presented in 
Figure 30. In this interface, the end-user can give as input to the platform: the label for a 
clustering job, the dataset to be used (here the “irisdataset” is chose), the headers to be used 
for the clustering as features (the selected ones are green), the number of clusters to be found, 
the max iteration number for the algorithm and the clustering algorithm to be used. All the 
information is presented using listed items except of the clustering label. If the end-user 
changes the dataset for the clustering, the headers are updated with the ones of the new 
dataset. The system is handling in this interface as well any warning related scenario, such as 
the end-user trying to find more clusters than the records of the datasets, the usage of an 
already existing clustering label and more. 



Page: 49 
 

By pressing the “Proceed with Clustering” button, the end-user can view for a last time the 
clustering that is going to be performed (Figure 31). This time, two recommendations are also 
shown in the bottom of the form. The first recommendation regards the best algorithm in 
speed for this clustering procedure and the second recommendation regards the best 
algorithm for accuracy. For example, in the same figure, the end-user chose to execute the 
Gaussian Mixture algorithm, but the system recommends that for both cases the K-means 
algorithm is better. 

By pressing any of the three buttons we select the algorithm that is written on it. Then the 
execution begins in the Spark Cluster component. From here we can view the progress of the 
job in the Results Interface. 

 

Figure 30 – Clustering Interface 

 

Figure 31 – Clustering Recommendation 
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Results Interface 
By selecting the button “Results” the interface that shows the results of the clustering 
procedures of an end-user can be accessed. Continuing the previous interface, in Figure 32, a 
running job is shown in the webpage of the end-user. On the fields of this job, metadata are 
shown regarding: the clustering label, the used dataset’s label, the job’s status, the features 
used, the number of clusters found, the max iteration used and the algorithm that was 
performed. The more clustering procedures the end-user is performing, the more results are 
shown in this interface. After refreshing the page for a couple of seconds the end-user will 
result in the Figure 33. In this figure, it is visible that the job was completed with results based 
on its execution speed and accuracy.  The end-user can now remove completely from the 
platform the result if needed or download the results locally as well. 

In the case that the end-user wants to view this page before they execute any clustering 
procedure, the message visualized in Figure 34 shown. 

 

Figure 32 – Results Interface 

 

Figure 33 – Results Example 

 

Figure 34 – No Results Example 
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5. Experimentation Methodology 
This section provides a comprehensive analysis of the steps followed to conduct experiments 
on EverCluster. The experimentation use case is outlined as well as the reasoning behind it. 
The resources used for experimentation are outlined, giving to the readers a clear 
understanding of the environment used for experimentation. It’s important to note that 
readers can replicate these experiments by following the deployment diagrams discussed in 
the previous section. This ensures that the experiments are reproducible, while also allowing 
interested parties to adapt the analysis to other deployment methods and design their own 
experiments. 

Following the description of resources, the structure of the datasets used in the experiments 
is analyzed. The experimentation procedure is then detailed, beginning with the 
synthesization of datasets used to train two classifiers, as explained in the platform’s 
architecture. The training process for these classifiers is also discussed, with code provided to 
offer transparency. Finally, the preprocessing steps for the datasets and their application 
within the platform are demonstrated. 

5.1. Experimentation Use Case 
The experimentation performed on EverCluster tries to validate the ability of the platform to 
make clustering recommendations to its end-users, by combining knowledge from the dataset 
given and the infrastructure that the platform is deployed upon. For this to be achieved, 
different datasets were normalized, partitioned and then used in the platform. Each time the 
clustering procedure was created in the platform, its recommendations were noted. By doing 
so, the end-user could verify if EverCluster was correct in its recommendation or not. 

5.2. Experimentation Resources 
To perform the experiment that are analyzed in the following subsection, the single-node 
deployment method was performed using Docker, and the resources described in Table 4 were 
given to each container of the Spark Cluster. The containers for the MinIO, Mongo and Flask 
Server containers had Docker’s default values. In the other hand, all the Spark Cluster’s 
containers were given exactly one (1) Gigabyte of Random-Access Memory (RAM) and one (1) 
CPU core. 

Table 4 – Experimentation Resources 

Spark Node \ Resources RAM CPU 

Spark Master 1024 mb (1 gb) 1 core 

Spark Worker 1 1024 mb (1 gb) 1 core 

Spark Worker 2 1024 mb (1 gb) 1 core 

Spark Worker 3 1024 mb (1 gb) 1 core 

Spark Worker 4 1024 mb (1 gb) 1 core 

Spark Worker 5 1024 mb (1 gb) 1 core 

 

5.3. Experimentation Datasets 
To limit the bias aspect from the experimentation results, five (5) different datasets have been 
found on Kaggle [106]. Each dataset regards a different field in the industry. Table 5 presents 
all the information of the aforementioned datasets. In the following subsections, each dataset 



Page: 52 
 

is explained, by providing their different features, as well as any needed measurements 
provided by their Kaggle users. 

Table 5 – Experimentation Datasets 

Dataset ID Topic Bitesize Records Amount Features Amount 

DS1 Breast Cancer 125141 bytes 569 32 

DS2 Covid 19 Cases 18083 bytes 225 10 

DS3 Credit Cards 16483 bytes 660 7 

DS4 Iris 3858 bytes 150 5 

DS5 Mall Customers 3981 bytes 200 5 

 

5.3.1. Breast Cancer Dataset 
The dataset provided in [107] regards the Breast Cancer domain, providing the following 
features: id, diagnosis, radius_mean, texture_mean, perimeter_mean, area_mean, 
smoothness_mean, compactness_mean, concavity_mean, concave_points_mean, 
symmetry_mean, fractal_dimension_mean, radius_se, texture_se, perimeter_se, area_se, 
smoothness_se, compactness_se, concavity_se, concave_points_se, symmetry_se, 
fractal_dimension_se, radius_worst, texture_worst, perimeter_worst, area_worst, 
smoothness_worst, compactness_worst, concavity_worst, concave_points_worst, 
symmetry_worst, fractal_dimension_worst. 

As described by the user who uploaded the dataset, the values of the above features were 
created Synthetically in order to be studied and create good classification paradigms regarding 
predictions of Breast Cancer on patients. Appendix XXI shows three random records of this 
dataset in order for any concerned reader to have a clear view of the raw dataset’s form. 

5.3.2. Covid 19 Cases Dataset 
The dataset provided in [108] regards the Covid-19 pandemic that happened few years before 
the release of this document. It regards mortality rates based on different countries. The 
features of this dataset are the following: Country, Other names, ISO 3166-1 alpha-3 CODE, 
Population, Continent, Total Cases, Total Deaths, Tot Cases/1M pop, Tot Deaths/1M pop, 
Death percentage 

For this dataset to be used, there was a need for a preprocessing procedure. The dataset 
contained the comma character in some values that EverCluster was able to understand and 
not allow the dataset to be uploaded. To resolve the mentioned issue, the comma characters 
that existed between two quotation marks where removed. Appendix XXII shows three 
random records of this dataset in order for any concerned reader to have a clear view of the 
preprocessed dataset’s form. 

5.3.3. Credit Cards Dataset 
The dataset provided in [109] concerns information that was gathered by credit card users in 
order to identify Loyal Customers, Customer Segmentation, Targeted Marketing and other 
such use cases in the Marketing Industry. The features of this dataset are the following: Sl_No, 
Customer Key, Avg_Credit_Limit, Total_Credit_Cards, Total_visits_bank, Total_visits_online, 
Total_calls_made. Appendix XXIII shows three random records of this dataset in order for any 
concerned reader to have a clear view of the raw dataset’s form. 
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5.3.4. Iris Dataset 
The Iris dataset [110] is a well-known dataset in ML and statistics. It contains one hundred and 
fifty (150) samples of iris flowers from three species: Iris setosa, Iris versicolor, and Iris 
virginica. The features of the dataset are the following: sepal_length, sepal_width, 
petal_length, petal_width, species. Appendix XXIV shows three random records of this dataset 
in order for any concerned reader to have a clear view of the raw dataset’s form. 

5.3.5. Mall Customers Dataset 
Dataset [111] is centered around customer segmentation for a supermarket mall, where the 
goal is to analyze customer data to identify different customer groups. The data is gathered 
from membership cards, and it contains the following features: CustomerID, Gender, Age, 
Annual Income (k$), Spending Score (1-100). 

In essence, this dataset enables a supermarket to better understand its customer base and 
create more effective marketing campaigns by identifying key customer segments. Appendix 
XXV shows three random records of this dataset in order for any concerned reader to have a 
clear view of the raw dataset’s form. 

5.4. Experimentation Procedure 
Having described the different datasets that were used, in the following procedure, the 
analysis of this process can now begin. In the following subsections, the experimentation 
procedure is broken down to four (4) steps. The steps are: (i) Synthetic Generation, (ii) Speed 
& Accuracy Classifiers, (iii) Dataset Normalization & Partitioning and (iv) Experimentation on 
EverCluster. By reading the aforementioned subsections, the understanding of the 
experimentation procedure is achieved. The results of the following experimentation steps 
are presented in the next section of the document. 

5.4.1. Synthetic Generation 
For EverCluster to function, two classifiers need to be trained and be used as input in the 
Recommendator component that was analyzed in the architecture of the platform. In this 
scenario, the two classifiers were created using the RF Classification algorithm. For this to be 
achieved, there is a need for a training dataset. In one hand, there are many ways of finding 
datasets in places like Kaggle and generally the internet. In the other hand, for this 
experimentation a synthetic dataset was created. This decision was taken in order to use a 
dataset that regards specifically the infrastructure used and described in the Experimentation 
Resources subsection. In Appendix XXVI the code for the synthetic data creation is shown. 

In this subsection, the way that the synthetic dataset was created is explained. Figure 35 
visualizes, by the use of an activity diagram, the process of extracting the synthetic dataset. 
As it is shown in the figure, the Python code in the above Appendix is executed five (5) times, 
each time for a different amount of Spark Workers being online in the Spark Cluster 
component. More specifically the synthetic dataset is distributed across five (5) different CSV 
files. In the activity diagram, it is shown that for each execution of the aforementioned code, 
first of all, the script gets as an argument the number of online workers by the Spark Cluster. 
Then, the script goes over a loop for different datasets. Each dataset has a different 
combination of its number of features and records used. For this experimentation the features 
could be the following amounts: three, five, ten or twenty-five (3, 5, 10 or 25) and the records 
could be the following amounts: ten, twenty-five, one hundred, five hundred, one thousand 
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or four thousand (10, 25, 100, 500, 1000 or 4000). The values in the datasets are generated 
randomly using the uniform [112] and the gaussian distributions trying to randomize values 
from zero to one, for the dataset to be normalized. After a dataset is created the script is 
executing a new loop that regards different clustering procedures on the same dataset. For 
each dataset, twenty sever (27) different clustering procedures are performed. More 
specifically for every generated dataset a clustering is being created with a number of clusters 
to be found in the span of two, three or five (2, 3 or 5) and the maximum iteration number is 
set in the span of ten, twenty-five, or fifty (10, 25, 50).For each clustering setup and for every 
dataset the setup is being executed three times, once with the k-means algorithm, once with 
the bisecting k-means algorithm and once with the GMM algorithm. 

As an example, the first time the script is going to create a dataset with three (3) features 
and ten (10) records. From this information, the script will also create an average amount of 
bitesize for such a dataset. Then, it’s going to create a clustering setup with two (2) clusters to 
be found and a max iteration number of ten (10). For this dataset, the script is going to execute 
this setup with all the three algorithms. After the three clustering procedures are performed, 
the speed and accuracy results are saved in the CSV dataset for the current number of 
workers. Then, the clustering setup will be updated to two (2) clusters with a max iteration 
number of twenty-five (25) and execute again the inner loop until the end. After all the 
clustering setups are executed for this dataset, the dataset will be updated with a new 
generated random dataset of five (5) features and twenty-five (25) records. The process 
explained will end when there are no more datasets or clustering setup combinations to 
execute. As previously mentioned, the file must be executed with a different number of 
workers. For this experimentation procedure it was executed five (5) times. An example of the 
values generated and written in one of the files can be found in Appendix XXVII. 

 

Figure 35 – Synthetic Dataset Extraction 
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5.4.2. Speed & Accuracy Experimentation Models 
As explained in the previous subsection, five CSV files are synthetically generated in order to 
create the two models for the EverCluster’s Recommendator component. The procedure of 
the production of the experimentation models is visualized in Figure 36. As it is shown the 
creation of the models starts by combining the information of the different CSV files into one 
dataset. After the creation of the combined dataset, this is broken into the speed and accuracy 
datasets. The speed dataset has as information all the clustering executions performed in the 
previous step with the features: maxIteration, Clusters, Workers, ByteSize, RecordCount, 
FeaturesCount, BestBySpeed. From the other hand, the accuracy dataset has as information 
all the clustering executions performed in the previous step with the features: maxIteration, 
Clusters, Workers, ByteSize, RecordCount, FeaturesCount, BestByAccuracy. These datasets use 
their last feature to perform the RF Classification technics. A split was done in the two datasets 
with 80% (eighty present) of each being a training dataset and the rest the test dataset. 
Continuing the training procedure, the datasets were evaluated based on their WCSS metric, 
and their performance was 80.2% (eighty and two tenths precent) each. Appendix XXVIII 
presents the Python code used to create the two models, following the procedures explained 
in this subsection. After the creation of the two models, they were saved as Pickle (PKL) files. 
Finally, the mentioned files were given as input to the Recommendator component of the 
platform, making it able to function with its newly found “brain”. 

 

Figure 36 – Speed & Accuracy Models Creation 

5.4.3. Dataset Normalization & Partitioning 
As mentioned in the previous subsection, for the means of this experimentation EverCluster 
is exploiting two models that were trained on normalized data from zero (0) up to one (1). To 
ensure the meaningfulness of the results, the datasets obtained from Kaggle, which were 
utilized in the subsequent recommendation experimentation process, required normalization 
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to be performed uniformly across all datasets. Appendix XXIX presents the code that was used 
in order to create the new normalized datasets. The numerical values of the datasets where 
normalized using the following function: 

𝑛𝑒𝑤_𝑣𝑎𝑙𝑢𝑒 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 −  𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒

max_malue −  𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒
  

Additionally, the string values were standardized by assigning a unique numerical value to 
each distinct string. Following this transformation, the mathematical formula presented 
before was applied to these values as well. As a result, all dataset values were normalized and 
prepared for processing in clustering procedures using EverCluster. An example of the 
normalized datasets can be found in Appendices XXX - XXXIV. 

5.4.4. Experimentation on EverCluster 
In this step of the experimentation procedure, EverCluster can generate recommendations 
based on its Recommendator component and there are five (5) different datasets to perform 
the clustering algorithms. To test the accuracy of EverCluster’s recommendation ability, all the 
datasets were uploaded on the platform. For each of the datasets three clustering processes 
with all the supported clustering algorithms, that are provided, were executed. By doing so, 
the recommended algorithms for speed and accuracy from EverCluster were noted. All the 
three algorithms were used multiple times for each dataset to generate results. 

More specifically, two hundred and seventy (270) different clustering procedures were 
performed on EverCluster as experiments. Each clustering procedure was named in the 
following manner: 

DS<dataset_number>a<algorithm_number>c<clusters_found>m<max_iteration>w<nodes> 
 
The above naming rule provides detail about the clustering that was performed. The 
parameters of each clustering procedure are shown in Table 6. As an example, the label 
“DS1a1c2m10w2” means that the DS1 dataset was used by exploiting the K-means algorithm, 
found two (2) clusters with a max iteration number of ten (10) and the number of nodes used 
in the Spark Cluster was two (2). The results of the experimentation that was described are 
analyzed in detail in the next section. 

Table 6 – Experimentation Parameter Values 

Parameter Description Values 

Dataset The dataset used for the clustering. DS1, DS2, DS3, DS4, DS5 

Algorithm The algorithm used for the clustering. 1) K-means 
2) Gaussian Mixture 
3) Bisecting K-means 

Clusters The number of clusters that were searched 
for in the dataset. 

2, 3, 5 

Max Iteration The max iteration number for the clustering 
procedure.  

10, 20, 50 

Workers The Spark Workers used for the clustering. 2, 5 
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6. Experimentation Results 
Building upon the Experimentation Methodology outlined in the previous section, this section 
presents a comprehensive analysis of the results and insights gathered from the 
experimentation process. It focuses on the accuracy of EverCluster’s recommendations and 
includes key metrics for the three algorithms utilized. Detailed results of the experimentation 
can be found in Appendices XXXV – LII. 

These appendices display the outcomes of each execution, with tables categorized by speed 
and accuracy. For each clustering combination, EverCluster's recommendations are noted in 
the right column, while the speed and accuracy metrics for each algorithm are presented in 
the remaining columns. To enhance clarity, correct recommendations are highlighted in green, 
while incorrect ones are indicated in orange. Additionally, the tables identify the best-
performing algorithm for each case in green and the least effective one in orange. 

6.1. Recommendation Performance 
This subsection addresses the recommendations generated by EverCluster, outlining the 
platform's advantages and disadvantages. This information is provided by summarizing the 
information of showcased in the tables of the appendix. To enhance clarity for the reader, the 
results are divided into two subsections: the first focuses on recommendations related to the 
platform’s processing speed, whereas the second addresses recommendations concerning the 
accuracy. 

6.1.1. Speed Recommendations Performance 
As mentioned, in this subsection the information of the results provided in the appendices of 
this document is summarized. The summarization is being done based on: workers used, 
dataset used, clusters found and the max iteration number limitation that was set. The 
following information that is presented in Tables 7 – 10 regards only the speed 
recommendations. 

Based on the conducted experiments, it was reported that the speed ML model, created using 
the generated synthetic data, achieved an accuracy of 80%. As shown in Table 7, in the 
experimentation done, the performance of the speed recommendations was 65.5%.  It is 
evident that this result falls significantly short of the model's accuracy percentage. To identify 
the core cause, it is necessary to perform an examination to the remaining result tables 
explicitly. 

Table 7 presents the speed recommendations summary based on the nodes used in the Spark 
Cluster. The table presents, with the labels “Correct” and “Wrong”, two (2) rows, counting the 
correct and wrong recommendations of EverCluster. In this way, the accuracy percentage 
based on the nodes used is calculated in the final column. It is apparent that the accuracy 
across the nodes ranged between 60% and 70%. 

Table 7 – Speed Recommendations Summary based on Nodes 

Worker Amount Correct Wrong Total Percentage 

2 Nodes 32 13 45 71.1 % 

5 Nodes 27 18 45 60.0 % 

Total 59 31 90 65.5 % 
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Table 8 represents the same evaluation metrics as described above based on the dataset that 
were used. By cross validating this table with Table 5, the platform recommends the correct 
algorithm mostly on datasets with a small number of features, having a high failure rate on 
the dataset DS1. On Table 9 the speed recommendation success rate is shown based on the 
number of clusters that were searched for. It is apparent that on two clusters, has a high-
performance rate, but as the clusters to be found are increasing the performance is slowly 
dropping. Table 10 reveals a low-performance rate of the platform with lower maximum 
iteration numbers but demonstrates a high-performance rate (96.6%) as the maximum 
iteration count increases to fifty percent (50 %). 

Table 8 – Speed Recommendations Summary based on Datasets 

Dataset Name Correct Wrong Total Percentage 

DS1 8 10 18 44.4 % 

DS2 12 6 18 66.6 % 

DS3 13 5 18 72.2 % 

DS4 13 5 18 72.2 % 

DS5 13 5 18 72.2 % 

Total 59 31 90 65.5 % 

 
Table 9 – Speed Recommendations Summary based on Clusters Found 

Clusters Found Correct Wrong Total Percentage 

2 Clusters 25 5 30 83.3 % 

3 Clusters 18 12 30 60.0 % 

5 Clusters 16 14 30 53.3 % 

Total 59 31 90 65.5 % 

 
Table 10 – Speed Recommendations Summary based on Max Iteration 

Max Iteration Correct Wrong Total Percentage 

10 Iterations 9 21 30 30.0 % 

20 Iterations 21 9 30 70.0 % 

50 Iterations 29 1 30 96.6 % 

Total 59 31 90 65.5 % 

 
The most crucial part of the speed related tables is that, as mentioned above, the trained 
accuracy of the speed recommendation model was 80%, but the performance of the platform 
was 65.5%. These values show significant statistical disparity.  By examining in detail, the 
results of the tables, on Table 7, there are a total of thirty-one (31) wrong recommendations 
throughout the experimentation. A significant portion of the failed recommendations is 
recorded in Table 6.1.1-4, with twenty-one (21) incorrect recommendations resulting when 
the maximum iteration number was set to ten (10). According to the data, 67.7% of the 
incorrect recommendations were due to the low iteration count. A low iteration number, such 
as ten, makes the results highly susceptible to interference from background system 
processes. Furthermore, it is evident that the accuracy of the speed recommendations 
improves as the maximum iteration number increases. 

An alternative option to express the total accuracy of EverCluster based on its speed 
recommendations, is removing the experiments of a max iteration number equal to the value 
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of ten (10), as outliers due to the reasoning that was referred in the previous paragraph. By 
doing so, the new speed recommendation performance is equal to fifty correct 
recommendations out of sixty (50 out of 60), bringing the new speed recommendation 
performance as high as 83.3%, being much closer to the accuracy found in the ML model that 
was created for the corresponding classifier. 

6.1.2. Accuracy Recommendations Performance 
As mentioned, in this subsection the information of the results provided in the appendices of 
this document is summarized. The summarization is being done based on workers used, 
dataset used, clusters found and the max iteration number limitation that was set. The 
following information that is presented in Tables 11 – 14 regards only the accuracy 
recommendations. 

As presented in Table 11, the experimentation demonstrated an accuracy performance of 
81.1% for the recommendations. This percentage aligns with the accuracy of the trained 
model implemented in the Recommendator component. 

Table 11 presents the accuracy recommendations summary based on the nodes used in the 
Spark Cluster. The table counts two (2) rows, counting the correct and wrong 
recommendations of EverCluster. In this way, the accuracy percentage based on the nodes 
used is calculated in the final column. It is evident that the accuracy across the nodes ranged 
between 70% and 90%. 

Table 11 – Accuracy Recommendations Summary based on Nodes 

Worker Amount Correct Wrong Total Percentage 

2 Nodes 33 12 45 73.3 % 

5 Nodes 40 5 45 88.8 % 

Total 73 17 90 81.1 % 

 
Table 12 represents the same calculations based on the dataset that were used. By cross 
validating this table with Table 5, the platform recommends the correct algorithm most of the 
times with a higher success rate on datasets with a small number of features. On Table 13 the 
accuracy recommendation success rate is shown based on the number of clusters that were 
searched for. It can also be seen that on two clusters there is a high-performance rate, but as 
the clusters to be found are increasing the performance is slowly dropping. Table 14 
showcases in the same way with the above tables the results based on the max iteration 
limitation that was provided for each clustering procedure. In the last table, there seems to 
be a success rate of above 70% on all the cases with an indication of the success rate to be 
dropping as the max iteration number is increasing. 

Table 12 – Accuracy Recommendations Summary based on Datasets 

Dataset Name Correct Wrong Total Percentage 

DS1 12 6 18 66.6 % 

DS2 13 5 18 72.2 % 

DS3 17 1 18 94.4 % 

DS4 17 1 18 94.4 % 

DS5 14 4 18 77.7 % 

Total 73 17 90 81.1 % 
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Table 13 – Accuracy Recommendations Summary based on Clusters Found 

Clusters Found Correct Wrong Total Percentage 

2 Clusters 29 1 30 96.6 % 

3 Clusters 26 4 30 86.6 % 

5 Clusters 18 12 30 60.0 % 

Total 73 17 90 81.1 % 

 
Table 14 – Accuracy Recommendations Summary based on Max Iteration 

Max Iteration Correct Wrong Total Percentage 

10 Iterations 25 5 30 83.3 % 

20 Iterations 25 5 30 83.3 % 

50 Iterations 23 7 30 76.6% 

Total 73 17 90 81.1 % 

 
The accuracy related tables, seem to be consistent across all the parameters. An interesting 
aspect of the above results could be that on the lower number of clusters, max iteration 
number and features used of the exploited dataset the platform’s recommendation ability 
creates a statistical peak. 

6.2. Algorithm Performances 
This section corresponds to the results found as a comparison to the exploited algorithms 
from EverCluster. In the clustering experimentations the usage of K-means algorithm was most 
of the times the best algorithm to be used in the datasets that were exploited. In this section, 
K-means’ performance is shown. This algorithm is also compared with the other two 
algorithms used. K-means algorithm is examined across the experimentation that was 
performed on EverCluster. To achieve this, Tables 15 – 18 present the number of times that K-
means was the best and the worst algorithm for the executed clustering procedure based on 
speed and accuracy. Similar tables can be found in Appendices LII – LV for the Gaussian 
Mixture algorithm and in Appendices LVI – LIX for the Bisecting K-means algorithm. 

In their structure, all the aforementioned tables have the same structure with the rest that 
were provided for the platform’s performance analysis. In Table 15 K-means outperforms in 
comparison with the rest of the algorithms in the two deployment setups. Also, Table 16 
provides measurements that correspond to the mentioned algorithm’s usage per dataset. In 
both speed and accuracy measurements, the algorithm appears to perform optimally when 
applied to datasets with fewer features, while also avoiding being the worst choice among the 
algorithms used in each case. 

Furthermore, K-means’ simpler approach on the clustering appears to make it a preferable 
choice over the other algorithms in terms of speed as the number of clusters to be identified 
increases (Table 17). In the other hand, K-means is losing each accuracy while the rest of the 
cluster to be found are increasing. Lastly, Table 18 shows that the different limitations on the 
number of iterations does not have a notable impact on its speed or accuracy.  
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Table 15 – K-means Summary based on Nodes 

K-means Speed Summary based on Nodes 

Worker Amount Best Worst None Total Percentage (Best) 

2 Nodes 37 0 8 45 82.2 % 

5 Nodes 36 1 8 45 80.0 % 

Total 73 1 16 90 81.1 % 

K-means Accuracy Summary based on Nodes 

Worker Amount Best Worst None Total Percentage (Best) 

2 Nodes 41 1 3 45 91.1 % 

5 Nodes 40 0 5 45 88.8 % 

Total 81 1 8 90 90.0 % 

 
Table 16 – K-means Summary based on Datasets 

K-means Speed Summary based on Datasets 

Dataset Name Best Worst None Total Percentage (Best) 

DS1 13 0 5 18 72.2 % 

DS2 14 0 4 18 77.7 % 

DS3 15 0 3 18 83.3 % 

DS4 15 1 2 18 83.3 % 

DS5 16 0 2 18 88.8 % 

Total 73 1 16 90 81.1 % 

K-means Accuracy Summary based on Datasets 

Dataset Name Best Worst None Total Percentage (Best) 

DS1 12 0 6 18 66.6 % 

DS2 18 0 0 18 100 % 

DS3 18 0 0 18 100 % 

DS4 18 0 0 18 100 % 

DS5 15 1 2 18 83.3 % 

Total 81 1 8 90 90.0 % 

 
Table 17 – K-means Summary based on Clusters Found 

K-means Speed Summary based on Clusters Found 

Clusters Found Correct Worst None Total Percentage (Best) 

2 Clusters 21 0 9 30 70.0 % 

3 Clusters 25 0 5 30 83.3 % 

5 Clusters 27 1 2 30 90.0 % 

Total 73 1 16 90 81.1 % 

K-means Accuracy Summary based on Clusters Found 

Clusters Found Correct Worst None Total Percentage (Best) 

2 Clusters 29 1 0 30 96.6 % 

3 Clusters 28 0 2 30 93.3 % 

5 Clusters 24 0 6 30 80.0 % 

Total 81 1 8 90 90.0 % 
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Table 18 – K-means Summary based on Max Iteration 

K-means Speed Summary based on Max Iterations 

Max Iteration Correct Worst None Total Percentage (Best) 

10 Iterations 15 0 15 30 50 % 

20 Iterations 29 1 0 30 96.6% 

50 Iterations 29 0 1 30 96.6 % 

Total 73 1 16 90 81.1 % 

K-means Accuracy Summary based on Max Iterations 

Max Iteration Correct Worst None Total Percentage (Best) 

10 Iterations 27 0 3 30 90.0 % 

20 Iterations 27 1 2 30 90.0 % 

50 Iterations 27 0 3 30 90.0 % 

Total 81 1 8 90 90.0 % 
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7. Discussion & Next Steps 
In this concluding section, the document is reviewed in its entirety, with emphasis placed on 
summarizing the experimental findings, addressing challenges encountered during the 
research process, and offering guidance for future investigations in related areas. 

This document introduces EverCluster, a comprehensive platform designed to manage dataset 
uploads, metadata organization, execution of clustering procedures, and the provision of 
results to end-users. The platform's architecture is examined in detail, incorporating both 
high- and low-level descriptions, supported by deployment diagrams and activity diagrams 
that elucidate the architectural flow. 

As outlined in prior sections, the experiments conducted are reproducible, and it is strongly 
recommended that readers attempt to replicate them. This will facilitate the verification of 
results or offer opportunities for critical analysis by other researchers and relevant 
stakeholders. Furthermore, the ML models developed can be reconstructed by users and 
utilized within the EverCluster recommendation subcomponent, thereby generating new or 
potentially more accurate results. 

The platform is cloud-centric in design, allowing for seamless deployment across a variety of 
container orchestration systems. This versatility enables EverCluster to be employed not only 
for experimental purposes, as previously discussed, but also for broader applications by 
interested parties. 

7.1. Conclusions 
The experimental results showcase several important findings regarding the performance and 
accuracy of the recommendations provided by EverCluster. The following insights have been 
observed concerning its ability to recommend optimal algorithms: 

• The platform’s recommendations for the best algorithm based on speed exhibit an 
overall success rate of 65.5%. This success rate improves as the algorithm is allotted 
more time to form clusters, reaching a success rate of 83.3% with a higher number of 
iterations. 

• Additionally, the platform demonstrates a consistent success rate in its accuracy-based 
recommendations, maintaining an average of 81.1% across various scenarios. 

Further analysis shows that EverCluster performs more effectively on datasets with fewer 
features, resulting in increased success rates for both speed and accuracy recommendations. 
However, as the maximum iteration limit is extended, the success rate for speed-based 
recommendations improves, while the success rate for accuracy-based recommendations 
declines. These observations suggest that EverCluster excels in providing high success rates 
for speed recommendations, particularly when applied to datasets with a limited number of 
features but involving clustering procedures with numerous iterations. 

Another notable conclusion drawn from the experimentation pertains to the consistently high 
success rates of the K-means algorithm compared to Bisecting K-means and Gaussian Mixture 
models. It appears that the synthetic data provided to the Recommendator models may have 
significantly influenced the platform’s frequent recommendation of the K-means algorithm. 
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Nonetheless, even accounting for this potential bias, K-means was most often identified as 
the best-performing algorithm across the majority of experiments. 

7.2. Difficulties Faced 
This subsection is used in order to provide to the reader the difficulties that have been faced 
in the deployment and experimentation described in this document. 

The following were the difficulties that any concerned party that wants to recreate the 
experimentation performed or in general wants to deploy EverCluster needs to know about: 

• Single-Node Deployment: The platform’s architecture includes three deployment 
diagrams that demonstrate EverCluster’s capability to be deployed in a multi-node 
environment. However, due to resource constraints, this setup could not be 
implemented for experimentation within this document, which was instead conducted 
using a single-node deployment. A multi-node deployment is feasible with EverCluster, 
and readers with access to the necessary resources are encouraged to perform such a 
deployment and generate additional results. 

• Training Datasets: As it was expressed in the architecture analysis of the platform, the 
Recommendator component needs to ML models in order to achieve its 
recommendation abilities. For the models to be created training datasets are needed. 
In this document, the training datasets proposed are synthesized based on logic given 
in the appendices. 

7.3. Future Work 
In this subsection, points are given to the concerned readers as next steps for the current work 
that was performed in this document. 

• Synthetic to real data for modes: As mentioned, the Recommendator subcomponent 
that was analyzed in this document is trained on synthetic data. These data try to 
simulate the real data on different clustering scenarios. One next step of this work 
would be to get more results like the ones provided in the appendices for two and five 
Spark Workers. In that manner, a real dataset of such execution results xan be 
generated and combined to train more accurate classifiers for the aforementioned 
component. 

• Deploy EverCluster on Multi-Node Deployment: In this research, EverCluster was 
deployed as a single-node installation. Future work for this document would be to 
deploy the platform on a multi-node infrastructure and collecting again the results by 
performing once more the experimentation of this document. 

• Expand the range of clustering parameters as recommendation metrics: Incorporating 
additional clustering parameters, such as the number of clusters and maximum 
iterations, into the recommendation process of EverClusters is essential to ensure 
results are tailored to the specific context of each clustering execution. A potential 
future enhancement to this work would involve refactoring the Recommendator 
subcomponent to accommodate a broader set of parameters, tailored to the unique 
characteristics of the various algorithms supported by the platform. 
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• Experiment additional classification algorithms for the Recommendator classifiers: In 
this research, the usage of RF Classification algorithm is being utilized to create ML 
models for the recommendation purposes of the platform. This algorithm can be 
changed and by doing so the accuracy of the mentioned models will change as well. A 
comparison study on these algorithms on the EverCluster’s recommendations would 
be another interesting next step. 

• Research on non-star-shaped networks: The installation explained and the deployment 
diagrams that have been provided, regard a star-shaped network. One next step of this 
document would be to have a comparison study on the use of such non-star-shaped 
networks for the deployment of the platform. 

• Dynamic recommendations based on infrastructure: More future work can be found 
on the dynamic adaptability of such systems. More specifically, EverCluster can present 
the best algorithms based on the cluster’s number of nodes. It would be of value to 
find out if something similar can be achieved based on the topology of the 
infrastructure nodes. 

• Dynamic algorithm adaptation on clustering execution: One of the most challenging 
and compelling next steps for this work involves enhancing the platform's decision-
making capabilities. Currently, the platform provides algorithm recommendations, 
allowing users to choose whether to follow them. The proposed advancement would 
enable the platform to automatically identify the optimal algorithm for any ongoing 
clustering procedure. In this scenario, the platform should be capable of adjusting its 
recommendation if changes occur in the infrastructure topology, such as the addition 
or removal of nodes. Crucially, this dynamic adjustment would allow the platform to 
switch the clustering algorithm without losing the progress of the ongoing process. 
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Appendices 
 
Appendix I – K-means Algorithm 

1. Initialization: Choose k initial cluster centroids (randomly or by another method). 
2. Assignment: Assign each data point to the nearest centroid, based on the distance 
(typically Euclidean distance). 
3. Update: Recalculate the centroid of each cluster based on the mean of all data points 
assigned to that cluster. 
4. Repeat: Repeat the Assignment (2) and Update (3) steps until the centroids no longer 
change or until a predefined number of iterations is reached. 

 
Appendix II – Bisecting K-means Algorithm 

1. Initialization: Start with all data points in a single cluster. 
2. Bisect: Split the cluster into two sub-clusters using the K-Means algorithm (Appendix I) 
with k=2. 
3. Repeat: Select the cluster with the highest variance or highest Sum of Squared Errors 
(SSE) and bisect (2) it again using K-Means. Stop when the desired number of clusters is 
reached. 

 
Appendix III – Gaussian Mixture Model Algorithm (GMM) 

1. Initialization: Initialize the parameters (mean, variance, and mixing coefficients) for k 
Gaussian distributions (clusters). 
2. Expectation Step (E-Step): Calculate the probability that each data point belongs to each 
Gaussian cluster using the current parameters. 
3. Maximization Step (M-Step): Update the parameters (mean, variance, and mixing 
coefficients) of the Gaussian distributions to maximize the likelihood of the observed data. 
4. Repeat: Repeat the E-Step (2) and M-Step (3) until convergence (the change in 
parameters between iterations becomes small). 

 
Appendix IV – K-Nearest Neighbor (KNN) 

1. Determine the value of k (number of neighbors). 
2. For each data point in the test set: 
   a. Calculate the distance between the test point and all data points in the training set. 
   b. Find the k nearest neighbors to the test point. 
   c. Assign the test point to the class that is most common among its k neighbors. 

 
Appendix V – Support Vector Machine (SVM) 

1. Choose a kernel function (linear, polynomial, radial basis function, etc.). 
2. Find the hyperplane that maximizes the margin between the two classes in the training 
set. 
3. For each data point in the test set: 
   a. Calculate the distance between the test point and the hyperplane. 
   b. Assign the test point to the class based on its distance from the hyperplane. 
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Appendix VI – Random Forest (RM) 

1. Determine the number of trees in the forest. 
2. For each tree in the forest: 
   a. Create a bootstrap sample of the training data. 
   b. Build a decision tree on the bootstrap sample. 
   c. Prune the decision tree to prevent overfitting. 
3. For each data point in the test set: 
   a. Let each tree in the forest make a prediction. 
   b. Assign the test point to the class that is most common among the predictions. 

 
Appendix VII – Neural Network (NN) 

1. Initialize the weights and biases of the neural network randomly. 
2. For each epoch: 
   a. For each data point in the training set: 
      i. Forward propagate the data point through the network to calculate the predicted 
output. 
      ii. Calculate the error between the predicted output and the actual output. 
      iii. Backpropagate the error to update the weights and biases. 
3. Repeat step 2 until the error converges or a maximum number of epochs is reached. 
4. For each data point in the test set: 
   a. Forward propagate the data point through the trained network to calculate the 
predicted output. 
   b. Assign the test point to the class with the highest predicted probability. 

 
Appendix VIII – Pros & Cons of SQL Databases 

Pros Cons 

Strong consistency and data integrity. Scaling SQL databases horizontally (across 
multiple servers) can be difficult. 

Ideal for structured data with complex 
relationships. 

Schema rigidity makes it less flexible for 
dynamic or unstructured data. 

Well-suited for transactional applications, 
such as financial systems. 

 

 
Appendix IX – Pros & Cons of NoSQL Databases 

Pros Cons 

Horizontal scaling capabilities make them 
excellent for large-scale data applications. 

Lack of strict ACID compliance may result in 
eventual consistency, which can be unsuitable 
for all use cases. 

Highly flexible for storing diverse and 
unstructured data. 

May require more complex data modelling for 
certain applications. 

Suitable for high-velocity, high-volume, and 
high-variability data (e.g., IoT, real-time 
applications). 
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Appendix X – K-means Clustering Code 
import sys 
 
# Get the arguments 
args = sys.argv[1:] 
 
arguments = {} 
for arg in args: 
    key, value = arg.split("=") 
    arguments[key] = value 
 
# Parse the arguments 
MONGO_HOST_PORT = arguments["MONGO_HOST_PORT"] 
MINIO_HOST_PORT = arguments["MINIO_HOST_PORT"] 
MINIO_USER = arguments["MINIO_USER"] 
MINIO_PASS = arguments["MINIO_PASS"] 
MINIO_BUCKET = arguments["MINIO_BUCKET"] 
DATASET_PATH = arguments["DATASET_PATH"] 
RESULT_PATH = arguments["RESULT_PATH"] 
FEATURES = arguments["FEATURES"] 
K = int(arguments["K"]) 
MAX_ITER = int(arguments["MAX_ITER"]) 
MONGO_DATABASE = arguments["MONGO_DATABASE"] 
CLUSTER_LABEL = arguments["CLUSTER_LABEL"] 
 
from pyspark.sql import SparkSession 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.clustering import KMeans 
from pyspark.ml.evaluation import ClusteringEvaluator 
from pymongo import MongoClient 
from minio import Minio 
import pandas as pd 
from io import BytesIO 
import time 
 
""" Minio Initializations """ 
minio_host = MINIO_HOST_PORT 
client = Minio( 
    minio_host, 
    access_key=MINIO_USER, 
    secret_key=MINIO_PASS, 
    secure=False 
) 
 
response = client.get_object(MINIO_BUCKET, DATASET_PATH) 
 
# Load the data into a Pandas DataFrame 
df = pd.read_csv(BytesIO(response.data)) 
 
""" Spark Code """ 
# Initialize a Spark session 
spark = SparkSession.builder \ 
    .appName("K-Means Application")  \ 
    .master("spark://spark-master:7077")   \ 
    .getOrCreate() 
 
# Create an RDD from the Pandas DataFrame 
df = spark.createDataFrame(df) 
 
# Print the DataFrame schema 
df.printSchema() 
 
# Print the first 5 rows 
df.show(5) 
 
# Clustering Example 
feature_columns = FEATURES.split(",") 
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features") 
assembled_df = assembler.transform(df) 
 
# Train a KMeans model 
# kmeans = KMeans().setK(K).setMaxIter(MAX_ITER).setSeed(1) # Seed for reproducibility 
kmeans = KMeans().setK(K).setMaxIter(MAX_ITER) 
start_time = time.time()    # Start the timer 
model = kmeans.fit(assembled_df) 
total_seconds = time.time() - start_time    # Calculate the time taken to cluster 
 
# Make predictions 
predictions = model.transform(assembled_df) 
 
# Evaluate clustering by computing Within Set Sum of Squared Errors 
evaluator = ClusteringEvaluator() 
silhouette = evaluator.evaluate(predictions) 
print(f"Silhouette with squared euclidean distance = {silhouette}") 
 
# Show the results (excluding the 'features' column) 
# predictions.select('id', 'feature1', 'feature2', 'prediction').show() 
columns_to_show = [col for col in predictions.columns if col != 'features'] 
predictions.select(columns_to_show).show() 
 
# Removed the 'features' column from the predictions DataFrame 
predictions = predictions.drop('features') 
 
# Make predictions RDD back to Pandas DataFrame 
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predictions = predictions.toPandas() 
 
# Print the first 5 rows 
# predictions.show(5) 
 
# Write the resulting DataFrame with predictions to a new CSV file in Minio 
csv_bytes = predictions.to_csv().encode('utf-8') 
csv_buffer = BytesIO(csv_bytes) 
 
client.put_object(MINIO_BUCKET, 
                RESULT_PATH, 
                data=csv_buffer, 
                length=len(csv_bytes), 
                content_type='application/csv') 
 
# Update MongoDB with the clustering results 
mongoClient = MongoClient('mongodb://'+MONGO_HOST_PORT+'/') 
db = mongoClient[MONGO_DATABASE] 
collection = db['users'] 
# Update the user's clustering results with the time taken to cluster and the accuracy 
# collection.update_one({"username": MINIO_BUCKET}, {"$set": {"clustering_results."+CLUSTER_LABEL: {"time_taken": total_seconds, "accuracy": silhouette}}}) 
collection.update_one({"username": MINIO_BUCKET}, {"$set": {"clustering_results."+CLUSTER_LABEL+".time_taken": total_seconds}}) 
collection.update_one({"username": MINIO_BUCKET}, {"$set": {"clustering_results."+CLUSTER_LABEL+".accuracy": silhouette}}) 
 
# Stop the Spark session 
spark.stop() 

 
Appendix XI – Bisecting K-means Clustering Code 

import sys 
 
# Get the arguments 
args = sys.argv[1:] 
 
arguments = {} 
for arg in args: 
    key, value = arg.split("=") 
    arguments[key] = value 
 
# Parse the arguments 
MONGO_HOST_PORT = arguments["MONGO_HOST_PORT"] 
MINIO_HOST_PORT = arguments["MINIO_HOST_PORT"] 
MINIO_USER = arguments["MINIO_USER"] 
MINIO_PASS = arguments["MINIO_PASS"] 
MINIO_BUCKET = arguments["MINIO_BUCKET"] 
DATASET_PATH = arguments["DATASET_PATH"] 
RESULT_PATH = arguments["RESULT_PATH"] 
FEATURES = arguments["FEATURES"] 
K = int(arguments["K"]) 
MAX_ITER = int(arguments["MAX_ITER"]) 
MONGO_DATABASE = arguments["MONGO_DATABASE"] 
CLUSTER_LABEL = arguments["CLUSTER_LABEL"] 
 
from pyspark.sql import SparkSession 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.clustering import BisectingKMeans 
from pyspark.ml.evaluation import ClusteringEvaluator 
from pymongo import MongoClient 
from minio import Minio 
import pandas as pd 
from io import BytesIO 
import time 
 
""" Minio Initializations """ 
minio_host = MINIO_HOST_PORT 
client = Minio( 
    minio_host, 
    access_key=MINIO_USER, 
    secret_key=MINIO_PASS, 
    secure=False 
) 
 
response = client.get_object(MINIO_BUCKET, DATASET_PATH) 
 
# Load the data into a Pandas DataFrame 
df = pd.read_csv(BytesIO(response.data)) 
 
""" Spark Code """ 
# Initialize a Spark session 
spark = SparkSession.builder \ 
    .appName("Bisecting K-Means Application")  \ 
    .master("spark://spark-master:7077")   \ 
    .getOrCreate() 
 
# Create an RDD from the Pandas DataFrame 
df = spark.createDataFrame(df) 
 
# Print the DataFrame schema 
df.printSchema() 
 
# Print the first 5 rows 
df.show(5) 
 
# Clustering Example 
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feature_columns = FEATURES.split(",") 
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features") 
assembled_df = assembler.transform(df) 
 
# Train a BisectingKMeans model 
# bisecting_kmeans = BisectingKMeans().setK(K).setMaxIter(MAX_ITER).setSeed(1)  # Seed for reproducibility 
bisecting_kmeans = BisectingKMeans().setK(K).setMaxIter(MAX_ITER) 
start_time = time.time()    # Start the timer 
model = bisecting_kmeans.fit(assembled_df) 
total_seconds = time.time() - start_time    # Calculate the time taken to cluster 
 
# Make predictions 
predictions = model.transform(assembled_df) 
 
# Evaluate clustering by computing Silhouette Score with the squared Euclidean distance 
evaluator = ClusteringEvaluator(metricName="silhouette", distanceMeasure="squaredEuclidean") 
silhouette = evaluator.evaluate(predictions) 
print(f"Silhouette with squared euclidean distance = {silhouette}") 
 
# Show the results (excluding the 'features' column) 
columns_to_show = [col for col in predictions.columns if col != 'features'] 
predictions.select(columns_to_show).show() 
 
# Remove the 'features' column from the predictions DataFrame 
predictions = predictions.drop('features') 
 
# Convert predictions RDD back to Pandas DataFrame 
predictions = predictions.toPandas() 
 
# Write the resulting DataFrame with predictions to a new CSV file in Minio 
csv_bytes = predictions.to_csv().encode('utf-8') 
csv_buffer = BytesIO(csv_bytes) 
 
client.put_object(MINIO_BUCKET, 
                RESULT_PATH, 
                data=csv_buffer, 
                length=len(csv_bytes), 
                content_type='application/csv') 
 
# Update MongoDB with the clustering results 
mongoClient = MongoClient('mongodb://'+MONGO_HOST_PORT+'/') 
db = mongoClient[MONGO_DATABASE] 
collection = db['users'] 
# Update the user's clustering results with the time taken to cluster and the accuracy 
collection.update_one({"username": MINIO_BUCKET}, {"$set": {"clustering_results."+CLUSTER_LABEL+".time_taken": total_seconds}}) 
collection.update_one({"username": MINIO_BUCKET}, {"$set": {"clustering_results."+CLUSTER_LABEL+".accuracy": silhouette}}) 
 
# Stop the Spark session 
spark.stop() 

 
Appendix XII – Gaussian Mixture Model Clustering Code 

import sys 
 
# Get the arguments 
args = sys.argv[1:] 
 
arguments = {} 
for arg in args: 
    key, value = arg.split("=") 
    arguments[key] = value 
 
# Parse the arguments 
MONGO_HOST_PORT = arguments["MONGO_HOST_PORT"] 
MINIO_HOST_PORT = arguments["MINIO_HOST_PORT"] 
MINIO_USER = arguments["MINIO_USER"] 
MINIO_PASS = arguments["MINIO_PASS"] 
MINIO_BUCKET = arguments["MINIO_BUCKET"] 
DATASET_PATH = arguments["DATASET_PATH"] 
RESULT_PATH = arguments["RESULT_PATH"] 
FEATURES = arguments["FEATURES"] 
K = int(arguments["K"]) 
MAX_ITER = int(arguments["MAX_ITER"]) 
MONGO_DATABASE = arguments["MONGO_DATABASE"] 
CLUSTER_LABEL = arguments["CLUSTER_LABEL"] 
 
from pyspark.sql import SparkSession 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.clustering import GaussianMixture   
from pyspark.ml.evaluation import ClusteringEvaluator 
from pymongo import MongoClient 
from minio import Minio 
import pandas as pd 
from io import BytesIO 
import time 
 
""" Minio Initializations """ 
minio_host = MINIO_HOST_PORT 
client = Minio( 
    minio_host, 
    access_key=MINIO_USER, 
    secret_key=MINIO_PASS, 
    secure=False 
) 
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response = client.get_object(MINIO_BUCKET, DATASET_PATH) 
 
# Load the data into a Pandas DataFrame 
df = pd.read_csv(BytesIO(response.data)) 
 
""" Spark Code """ 
# Initialize a Spark session 
spark = SparkSession.builder \ 
    .appName("Gaussian Mixture Application")  \ 
    .master("spark://spark-master:7077")   \ 
    .getOrCreate() 
 
# Create an RDD from the Pandas DataFrame 
df = spark.createDataFrame(df) 
 
# Print the DataFrame schema 
df.printSchema() 
 
# Print the first 5 rows 
df.show(5) 
 
# Clustering Example 
feature_columns = FEATURES.split(",") 
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features") 
assembled_df = assembler.transform(df) 
 
# Train a GaussianMixture model 
# gmm = GaussianMixture().setK(K).setMaxIter(MAX_ITER).setSeed(1) # Seed for reproducibility 
gmm = GaussianMixture().setK(K).setMaxIter(MAX_ITER) 
start_time = time.time()    # Start the timer 
model = gmm.fit(assembled_df) 
total_seconds = time.time() - start_time    # Calculate the time taken to cluster 
 
# Make predictions 
predictions = model.transform(assembled_df) 
 
# Evaluate clustering by computing Silhouette Score with the squared Euclidean distance 
evaluator = ClusteringEvaluator(metricName="silhouette", distanceMeasure="squaredEuclidean") 
silhouette = evaluator.evaluate(predictions) 
print(f"Silhouette with squared euclidean distance = {silhouette}") 
 
# Show the results (excluding the 'features' column) 
columns_to_show = [col for col in predictions.columns if col != 'features'] 
predictions.select(columns_to_show).show() 
 
# Remove the 'features' column from the predictions DataFrame 
predictions = predictions.drop('features') 
 
# Convert predictions RDD back to Pandas DataFrame 
predictions = predictions.toPandas() 
 
# Write the resulting DataFrame with predictions to a new CSV file in Minio 
csv_bytes = predictions.to_csv().encode('utf-8') 
csv_buffer = BytesIO(csv_bytes) 
 
client.put_object(MINIO_BUCKET, 
                RESULT_PATH, 
                data=csv_buffer, 
                length=len(csv_bytes), 
                content_type='application/csv') 
 
# Update MongoDB with the clustering results 
mongoClient = MongoClient('mongodb://'+MONGO_HOST_PORT+'/') 
db = mongoClient[MONGO_DATABASE] 
collection = db['users'] 
# Update the user's clustering results with the time taken to cluster and the accuracy 
collection.update_one({"username": MINIO_BUCKET}, {"$set": {"clustering_results."+CLUSTER_LABEL+".time_taken": total_seconds}}) 
collection.update_one({"username": MINIO_BUCKET}, {"$set": {"clustering_results."+CLUSTER_LABEL+".accuracy": silhouette}}) 
 
# Stop the Spark session 
spark.stop() 

 
Appendix XIII – Server Deployment Version 

argon2-cffi==23.1.0 
argon2-cffi-bindings==21.2.0 
blinker==1.8.2 
certifi==2024.7.4 
cffi==1.17.0 
charset-normalizer==3.3.2 
click==8.1.7 
colorama==0.4.6 
dnspython==2.6.1 
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Flask==3.0.3 
idna==3.8 
itsdangerous==2.2.0 
Jinja2==3.1.4 
joblib==1.4.2 
MarkupSafe==2.1.5 
minio==7.2.7 
numpy==2.1.1 
pandas==2.2.2 
pycparser==2.22 
pycryptodome==3.20.0 
pymongo==4.8.0 
python-dateutil==2.9.0.post0 
pytz==2024.1 
requests==2.32.3 
scikit-learn==1.5.1 
scipy==1.14.1 
six==1.16.0 
threadpoolctl==3.5.0 
typing_extensions==4.12.2 
tzdata==2024.1 
urllib3==2.2.2 
Werkzeug==3.0.3 

 
Appendix XIV – Engines Deployment Version 

Docker Engine: 20.10.24 
Spark Engine: 3.5.2 

 
Appendix XV – PySpark Libraries Deployment Version 

numpy==2.1.1 
pandas==2.2.2 
minio==7.2.7 
pymongo==4.8.0 

 
Appendix XVI – Data Management Databases Deployment Version 

MinIO: RELEASE.2024-08-03T04-33-23Z 
Mongo: 7.0.9 

 
Appendix XVII – User Interface Deployment Version 

HTML: HTML5 
Javascript: ES2023 
CSS: CSS3 
Bootstrap: 5.0.2 
jQuery: 1.11.0 
Jinja2: 3.1.4 
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Appendix XVIII – Docker Images Deployment Version 

EverCluster Server Component: sonem/cluster-flask-app:1.0.0 
Spark Node: sonem/cluster-apache-spark:3.5.2-v4 
MinIO: quay.io/minio/minio:RELEASE.2024-08-03T04-33-23Z 
MongoDB: mongo:7.0.9 

 
Appendix XIX – Classification Versions 

joblib==1.4.2 
numpy==2.1.1 
pandas==2.2.2 
python-dateutil==2.9.0.post0 
pytz==2024.1 
scikit-learn==1.5.1 
scipy==1.14.1 
six==1.16.0 
threadpoolctl==3.5.0 
tzdata==2024.1 

 
Appendix XX 

version: "3.3" 
services: 
  # Spark Master 
  spark-master: 
    # build: 
    #   context: ./spark-code/. 
    image: sonem/cluster-apache-spark:3.5.2-v4 
    container_name: master 
    ports: 
      - "9090:8080" 
      - "7077:7077" 
      - "6066:6066" 
    # volumes: 
    #    - ./spark-code/apps:/opt/spark-apps 
    #    - ./spark-code/data:/opt/spark-data 
    environment: 
      - SPARK_LOCAL_IP=spark-master 
      - SPARK_WORKLOAD=master 
 
  # Spark Worker A 
  spark-worker-a: 
    # build: 
    #   context: ./spark-code/. 
    image: sonem/cluster-apache-spark:3.5.2-v4 
    container_name: worker-a 
    ports: 
      - "9091:8080" 
      - "7001:7000" 
    depends_on: 
      - spark-master 
    environment: 
      - SPARK_MASTER=spark://spark-master:7077 
      - SPARK_WORKER_CORES=1 
      - SPARK_WORKER_MEMORY=1G 
      - SPARK_DRIVER_MEMORY=1G 
      - SPARK_EXECUTOR_MEMORY=1G 
      - SPARK_WORKLOAD=worker 
      - SPARK_LOCAL_IP=spark-worker-a 
    # volumes: 
    #    - ./spark-code/apps:/opt/spark-apps 
    #    - ./spark-code/data:/opt/spark-data 
   
  # Spark Worker B 
  spark-worker-b: 
    # build: 
    #   context: ./spark-code/. 
    image: sonem/cluster-apache-spark:3.5.2-v4 
    container_name: worker-b 
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    ports: 
      - "9092:8080" 
      - "7002:7000" 
    depends_on: 
      - spark-master 
    environment: 
      - SPARK_MASTER=spark://spark-master:7077 
      - SPARK_WORKER_CORES=1 
      - SPARK_WORKER_MEMORY=1G 
      - SPARK_DRIVER_MEMORY=1G 
      - SPARK_EXECUTOR_MEMORY=1G 
      - SPARK_WORKLOAD=worker 
      - SPARK_LOCAL_IP=spark-worker-b 
    # volumes: 
    #    - ./spark-code/apps:/opt/spark-apps 
    #    - ./spark-code/data:/opt/spark-data 
   
  # Spark Worker C 
  spark-worker-c: 
    # build: 
    #   context: ./spark-code/. 
    image: sonem/cluster-apache-spark:3.5.2-v4 
    container_name: worker-c 
    ports: 
      - "9093:8080" 
      - "7003:7000" 
    depends_on: 
      - spark-master 
    environment: 
      - SPARK_MASTER=spark://spark-master:7077 
      - SPARK_WORKER_CORES=1 
      - SPARK_WORKER_MEMORY=1G 
      - SPARK_DRIVER_MEMORY=1G 
      - SPARK_EXECUTOR_MEMORY=1G 
      - SPARK_WORKLOAD=worker 
      - SPARK_LOCAL_IP=spark-worker-c 
    # volumes: 
    #    - ./spark-code/apps:/opt/spark-apps 
    #    - ./spark-code/data:/opt/spark-data 
   
  # Spark Worker D 
  spark-worker-d: 
    # build: 
    #   context: ./spark-code/. 
    image: sonem/cluster-apache-spark:3.5.2-v4 
    container_name: worker-d 
    ports: 
      - "9094:8080" 
      - "7004:7000" 
    depends_on: 
      - spark-master 
    environment: 
      - SPARK_MASTER=spark://spark-master:7077 
      - SPARK_WORKER_CORES=1 
      - SPARK_WORKER_MEMORY=1G 
      - SPARK_DRIVER_MEMORY=1G 
      - SPARK_EXECUTOR_MEMORY=1G 
      - SPARK_WORKLOAD=worker 
      - SPARK_LOCAL_IP=spark-worker-d 
    # volumes: 
    #    - ./spark-code/apps:/opt/spark-apps 
    #    - ./spark-code/data:/opt/spark-data 
   
  # Spark Worker E 
  spark-worker-e: 
    # build: 
    #   context: ./spark-code/. 
    image: sonem/cluster-apache-spark:3.5.2-v4 
    container_name: worker-e 
    ports: 
      - "9095:8080" 
      - "7005:7000" 
    depends_on: 
      - spark-master 
    environment: 
      - SPARK_MASTER=spark://spark-master:7077 
      - SPARK_WORKER_CORES=1 
      - SPARK_WORKER_MEMORY=1G 
      - SPARK_DRIVER_MEMORY=1G 
      - SPARK_EXECUTOR_MEMORY=1G 
      - SPARK_WORKLOAD=worker 
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      - SPARK_LOCAL_IP=spark-worker-e 
    # volumes: 
    #    - ./spark-code/apps:/opt/spark-apps 
    #    - ./spark-code/data:/opt/spark-data 
   
  # Mongo DBMS 
  mongo: 
    image: mongo:7.0.9 
    container_name: mongo-dbms 
    # volumes: 
    #   - ./data:/data/db 
    ports: 
      - "27017:27017" 
 
  # MinIO Storage 
  minio: 
    image: quay.io/minio/minio:RELEASE.2024-08-03T04-33-23Z 
    container_name: minio-storage 
    # volumes: 
    #   - ./data:/data 
    ports: 
      - 9000:9000 
      - 9001:9001 
    environment: 
      MINIO_ROOT_USER: 'admin12345' 
      MINIO_ROOT_PASSWORD: 'admin12345' 
      MINIO_ADDRESS: ':9000' 
      MINIO_CONSOLE_ADDRESS: ':9001' 
    command: minio server /data 
 
  # Main Flask Application 
  flask-app: 
    # build: 
    #   context: ./flask-server/. 
    image: sonem/cluster-flask-app:1.0.0 
    container_name: server 
    ports: 
      - "5000:5000" 
    depends_on: 
      - mongo 
      - minio 
      - spark-master 
    # volumes: 
    #   - ./flask-server:/app 
    environment: 
      APP_HOST: '0.0.0.0' 
      APP_PORT: 5000 
      MONGO_HOST: mongo 
      MONGO_PORT: 27017 
      MONGO_DATABASE: "EverCluster" 
      MINIO_HOST: minio 
      MINIO_PORT: 9000 
      MINIO_SERVER_PORT: 9001 
      MINIO_USER: "admin12345" 
      MINIO_PASS: "admin12345" 
      SPARK_HOST: spark-master 
      SPARK_PORT: 6066 

 
Appendix XXI – Breast Cancer Dataset / Example Records 

Feature Record 1 Record 2 Record 3 

id 842302 842517 858477 

diagnosis M M B 

radius_mean 17.99 20.57 8.618 

texture_mean 10.38 17.77 11.79 

perimeter_mean 122.8 132.9 54.34 

area_mean 1001 1326 224.5 

smoothness_mean 0.1184 0.08474 0.09752 

compactness_mean 0.2776 0.07864 0.05272 

concavity_mean 0.3001 0.0869 0.02061 

concave_points_mean 0.1471 0.07017 0.007799 
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symmetry_mean 0.2419 0.1812 0.1683 

fractal_dimension_mean 0.07871 0.05667 0.07187 

radius_se 1.095 0.5435 0.1559 

texture_se 0.9053 0.7339 0.5796 

perimeter_se 8.589 3.398 1.046 

area_se 153.4 74.08 8.322 

smoothness_se 0.006399 0.005225 0.01011 

compactness_se 0.04904 0.01308 0.01055 

concavity_se 0.05373 0.0186 0.01981 

concave_points_se 0.01587 0.0134 0.005742 

symmetry_se 0.03003 0.01389 0.0209 

fractal_dimension_se 0.006193 0.003532 0.002788 

radius_worst 25.38 24.99 9.507 

texture_worst 17.33 23.41 15.4 

perimeter_worst 184.6 158.8 59.9 

area_worst 2019 1956 274.9 

smoothness_worst 0.1622 0.1238 0.1733 

compactness_worst 0.6656 0.1866 0.1239 

concavity_worst 0.7119 0.2416 0.1168 

concave_points_worst 0.2654 0.186 0.04419 

symmetry_worst 0.4601 0.275 0.322 

fractal_dimension_worst 0.1189 0.08902 0.09026 

 
Appendix XXII – Covid 19 Cases Dataset / Example Records 

Feature Record 1 Record 2 Record 3 

Country Afghanistan Greece Lithuania 

Othernames Afghanistan Greece Lithuania 

ISO3166-1alpha-3CODE AFG GRC LTU 

Population 40462186 10333930 2655811 

Continent Asia Europe Europe 

TotalCases 177827 3077711 1030966 

TotalDeaths 7671 27684 8907 

TotCases//1Mpop 4395 297826 388193 

TotDeaths/1Mpop 190 2679 3354 

Deathpercentage 4.313743132 0.899499661 0.863947017 

 
Appendix XXIII – Credit Cards Dataset / Example Records 

Feature Record 1 Record 2 Record 3 

Sl_No 1 186 533 

CustomerKey 87073 98969 47848 

Avg_Credit_Limit 100000 18000 48000 

Total_Credit_Cards 2 3 4 

Total_visits_bank 1 0 3 

Total_visits_online 1 4 2 

Total_calls_made 0 4 2 
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Appendix XXIV – Iris Dataset Example / Records 

Feature Record 1 Record 2 Record 3 

sepal_length 5.1 5.5 5.6 

sepal_width 3.5 2.3 2.8 

petal_length 1.4 4.0 4.9 

petal_width 0.2 1.3 2.0 

species setosa versicolor virginica 

 
Appendix XXV – Mall Customers Dataset / Example Records 

Feature Record 1 Record 2 Record 3 

CustomerID 4 130 159 

Gender Female Male Male 

Age 23 38 34 

AnnualIncome(k$) 16 71 78 

SpendingScore(1-100) 77 75 1 

 
Appendix XXVI – Synthetic Dataset Extraction 

# /opt/spark/bin/spark-submit --master spark://spark-master:7077 /opt/spark-apps/clustering_datasets.py WORKERS=1 DATASET_NUMBER_DONE=0 
from pyspark.sql import SparkSession 
from pyspark.ml.clustering import KMeans, BisectingKMeans, GaussianMixture 
from pyspark.ml.feature import VectorAssembler 
from pyspark.sql.functions import rand, randn, expr, min, max, col 
import time, sys, random 
 
# Get the WORKERS from the arguments 
args = sys.argv[1:] 
arguments = {} 
for arg in args: 
    key, value = arg.split("=") 
    arguments[key] = value 
WORKERS = int(arguments["WORKERS"]) 
DATASET_NUMBER_DONE = int(arguments["DATASET_NUMBER_DONE"]) 
 
# Workaround to execute the job many times and collect the results 
if DATASET_NUMBER_DONE == 0: 
    file_path = "/opt/spark-data/"+"workers-"+str(WORKERS)+".csv" 
    f = open(file_path, "w") 
    f.write("maxIteration,Clusters,Workers,ByteSize,RecordCount,FeaturesCount,ExecutionSpeed,Accuracy,Algorithm\n") 
    f.close() 
 
# Initialize Spark session 
spark = SparkSession.builder.appName("Clustering Datasets Creator").getOrCreate() 
spark.sparkContext.setLogLevel("ERROR") 
 
def generate_dataset(num_rows, num_features): 
    df = spark.range(0, num_rows) 
     
    for i in range(num_features): 
        # Choose a random distribution type 
        distribution_type = random.choice([0, 1, 2]) 
         
        if distribution_type == 0: 
            # Uniform distribution 
            df = df.withColumn(f'feature_{i}', rand()) 
        elif distribution_type == 1: 
            # Normal distribution 
            df = df.withColumn(f'feature_{i}', randn()) 
        else: 
            # Exponential distribution (by taking the log of a uniform distribution)  
            df = df.withColumn(f'feature_{i}', -expr("log(rand())")) 
 
        # Normalize the column to be between 0 and 1 
        col_name = f'feature_{i}' 
        min_val = df.agg(min(col(col_name))).first()[0] 
        max_val = df.agg(max(col(col_name))).first()[0] 
        df = df.withColumn(col_name, (col(col_name) - min_val) / (max_val - min_val)) 
 
    return df 
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def run_clustering_algorithms(dataset, k, maxIter): 
    print("APPLICATION LOG: Dataset is being processed in kmeans, bisecting kmeans, and gaussian mixture algorithms")  
    # dataset.show() 
    results = [] 
 
    # Assemble features into a single column 
    feature_columns = [col for col in dataset.columns if col != "id"]  # Assuming 'id' is not a feature 
    assembler = VectorAssembler(inputCols=feature_columns, outputCol="features") 
    dataset = assembler.transform(dataset) 
 
    # KMeans v3 
    kmeans = KMeans().setK(k).setMaxIter(maxIter).setFeaturesCol("features") 
    start_time = time.time() 
    kmeans_model = kmeans.fit(dataset) 
    kmeans_time = time.time() - start_time 
    kmeans_wssse = kmeans_model.summary.trainingCost 
    results.append(('KMeans', kmeans_time, kmeans_wssse)) 
 
    # Bisecting KMeans 
    bisecting_kmeans = BisectingKMeans().setK(k).setMaxIter(maxIter) 
    start_time = time.time() 
    bisecting_kmeans_model = bisecting_kmeans.fit(dataset) 
    bisecting_kmeans_time = time.time() - start_time 
    bisecting_kmeans_wssse = bisecting_kmeans_model.computeCost(dataset) 
    results.append(('BisectingKMeans', bisecting_kmeans_time, bisecting_kmeans_wssse)) 
 
    # Gaussian Mixture 
    gaussian_mixture = GaussianMixture().setK(k).setMaxIter(maxIter) 
    start_time = time.time() 
    gaussian_mixture_model = gaussian_mixture.fit(dataset) 
    gaussian_mixture_time = time.time() - start_time 
    gaussian_mixture_logLikelihood = gaussian_mixture_model.summary.logLikelihood 
    results.append(('GaussianMixture', gaussian_mixture_time, gaussian_mixture_logLikelihood)) 
 
    return results 
 
# loop for multiple datasets 
print("APPLICATION LOG: Loop for multiple datasets and configurations (Synthetic Generation & Clustering)")  
training_data = [] 
 
dataset_to_check = 1 
# for num_rows in [4000, 1000, 500, 100, 25, 10]: 
for num_rows in [10, 25, 100, 500, 1000, 4000]: 
    # for num_features in [25, 10, 5, 3]: 
    for num_features in [3, 5, 10, 25]: 
        # Scip if the dataset has already been processed 
        if dataset_to_check <= DATASET_NUMBER_DONE - 9: 
            print("APPLICATION LOG: Datasets already processed. Skipping 9...") 
            dataset_to_check += 9 
            continue 
        dataset = generate_dataset(num_rows, num_features) 
        # for k in [5, 3, 2]: 
        for k in [2, 3, 5]: 
            # for maxIter in [50, 25, 10]: 
            for maxIter in [10, 25, 50]: 
                print(f"APPLICATION LOG: ---> dataset with {num_rows} rows, {num_features} features, {k} clusters, and {maxIter} maxIter (Workers: {WORKERS})") 
 
                # Checking if this dataset has already been processed 
                if dataset_to_check <= DATASET_NUMBER_DONE: 
                    print("APPLICATION LOG: Dataset already processed. Skipping...") 
                    dataset_to_check += 1 
                    continue 
                dataset_to_check += 1 
 
                results = run_clustering_algorithms(dataset, k=k, maxIter=maxIter) 
                byte_size = dataset.count() * len(dataset.columns) * 8  # Rough estimate 
                record_count = dataset.count() 
                for result in results: 
                    file_path = "/opt/spark-data/"+"workers-"+str(WORKERS)+".csv" 
                    f = open(file_path, "a") 
                    f.write(f"{maxIter},{k},{WORKERS},{byte_size},{record_count},{num_features},{result[1]},{result[2]},{result[0]}\n") 
                    f.close() 
                # Increment the dataset number to avoid overwriting the results 
                print(f"APPLICATION LOG: DATASETS DONE: {DATASET_NUMBER_DONE + 1}") 
                DATASET_NUMBER_DONE += 1 
print("APPLICATION LOG: End of Clustering (Synthetic Generation & Clustering)") 
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Appendix XXVII – CSV Experimentation File Example 

Feature Record 1 Record 2 Record 3 

maxIteration 10 25 50 

Clusters 2 3 5 

Workers 1 1 1 

ByteSize 320 2200 16000 

RecordCount 10 25 500 

FeaturesCount 3 10 3 

ExecutionSpeed 4.0894 0.819 2.8598 

Accuracy 2.4466 2.446 1.997 

Algorithm KMeans BisectingKMeans GaussianMixture 

 
Appendix XXVIII – Random Forest Model Creation 

# pip install scikit-learn 
# pip install pandas 
import pandas as pd 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
import joblib 
 
# Load the datasets 
df_training_1 = pd.read_csv("./workers-1.csv") 
df_training_2 = pd.read_csv("./workers-2.csv") 
df_training_3 = pd.read_csv("./workers-3.csv") 
df_training_4 = pd.read_csv("./workers-4.csv") 
df_training_5 = pd.read_csv("./workers-5.csv") 
 
# Concatenate the datasets 
df_training = pd.concat([df_training_1, df_training_2, df_training_3, df_training_4, df_training_5]) 
# print(df_training) 
 
# Create empty Dataset to store the values of the best algorithm per three rows 
df_clean_training = pd.DataFrame(columns=["maxIteration", "Clusters", "Workers", "ByteSize", "RecordCount", "FeaturesCount"]) 
# Create empty Dataset to store the best algorithm per three rows 
df_best_execSpeed = pd.DataFrame(columns=["BestBySpeed"]) 
df_best_execAccuracy = pd.DataFrame(columns=["BestByAccuracy"]) 
 
# Loop the df_training per three rows and print the algorithm feature 
for i in range(0, len(df_training), 3): 
    alg_1 = df_training.iloc[i]["Algorithm"] 
    alg_2 = df_training.iloc[i+1]["Algorithm"] 
    alg_3 = df_training.iloc[i+2]["Algorithm"] 
 
    # Find the algorithm with the best speed 
    if df_training.iloc[i]["ExecutionSpeed"] < df_training.iloc[i+1]["ExecutionSpeed"] and df_training.iloc[i]["ExecutionSpeed"] < df_training.iloc[i+2]["ExecutionSpeed"]: 
        best_speed = alg_1 
    elif df_training.iloc[i+1]["ExecutionSpeed"] < df_training.iloc[i]["ExecutionSpeed"] and df_training.iloc[i+1]["ExecutionSpeed"] < df_training.iloc[i+2]["ExecutionSpeed"]: 
        best_speed = alg_2 
    else: 
        best_speed = alg_3 
 
    # Find the algorithm with the best accuracy 
    if df_training.iloc[i]["Accuracy"] < df_training.iloc[i+1]["Accuracy"] and df_training.iloc[i]["Accuracy"] < df_training.iloc[i+2]["Accuracy"]: 
        best_accuracy = alg_1 
    elif df_training.iloc[i+1]["Accuracy"] < df_training.iloc[i]["Accuracy"] and df_training.iloc[i+1]["Accuracy"] < df_training.iloc[i+2]["Accuracy"]: 
        best_accuracy = alg_2 
    else: 
        best_accuracy = alg_3 
 
    # Append the best algorithm to the df_best_execSpeed and df_best_execAccuracy 
    # df_best_execSpeed = df_best_execSpeed.append({"BestBySpeed": best_speed}, ignore_index=True) 
    df_best_execSpeed.loc[len(df_best_execSpeed.index)] = [best_speed] 
    # df_best_execAccuracy = df_best_execAccuracy.append({"BestByAccuracy": best_accuracy}, ignore_index=True) 
    df_best_execAccuracy.loc[len(df_best_execAccuracy.index)] = [best_accuracy] 
 
    # Append the features of the three algorithms to the df_clean_training (They are the same for the three algorithms) 
    # df_clean_training = df_clean_training.append(df_training.iloc[i][["maxIteration", "Clusters", "Workers", "ByteSize", "RecordCount", "FeaturesCount"]], ignore_index=True) 
    df_clean_training.loc[len(df_clean_training.index)] = df_training.iloc[i][["maxIteration", "Clusters", "Workers", "ByteSize", "RecordCount", "FeaturesCount"]] 
         
 
 
# Prepare features and labels 
X = df_clean_training[["maxIteration", "Clusters", "Workers", "ByteSize", "RecordCount", "FeaturesCount"]] 
y_speed = df_best_execSpeed["BestBySpeed"] 
y_accuracy = df_best_execAccuracy["BestByAccuracy"] 
 
 
# Split the data into training and testing sets 
X_train, X_test, y_speed_train, y_speed_test = train_test_split(X, y_speed, test_size=0.2, random_state=42) 
_, _, y_accuracy_train, y_accuracy_test = train_test_split(X, y_accuracy, test_size=0.2, random_state=42)   # The same random state so the split is the same 
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# Train the Speed Classifier 
speed_classifier = RandomForestClassifier() 
speed_classifier.fit(X_train, y_speed_train) 
 
# Train the Accuracy Classifier 
accuracy_classifier = RandomForestClassifier() 
accuracy_classifier.fit(X_train, y_accuracy_train) 
 
# Evaluate Speed Classifier 
y_speed_pred = speed_classifier.predict(X_test) 
speed_accuracy = accuracy_score(y_speed_test, y_speed_pred) 
print(f"Speed Classifier Accuracy: {speed_accuracy:.2f}") 
 
# Evaluate Accuracy Classifier 
y_accuracy_pred = accuracy_classifier.predict(X_test) 
accuracy_accuracy = accuracy_score(y_accuracy_test, y_accuracy_pred) 
print(f"Accuracy Classifier Accuracy: {accuracy_accuracy:.2f}") 
 
""" Saving of the Models """ 
# Save the models 
joblib.dump(speed_classifier, "speed_classifier.pkl")        # Save the model to PKL file (serialized Python object) 
joblib.dump(accuracy_classifier, "accuracy_classifier.pkl")  # Save the model to PKL file (serialized Python object) 
 
# To load the models 
# speed_classifier = joblib.load("speed_classifier.pkl") 
# accuracy_classifier = joblib.load("accuracy_classifier.pkl") 
 
""" 
# Example new data 
new_data = pd.DataFrame({ 
    "maxIteration": [25], 
    "Clusters": [3], 
    "Workers": [6], 
    "ByteSize": [5000], 
    "RecordCount": [1000], 
    "FeaturesCount": [8] 
}) 
 
# Predict the best algorithm for speed 
best_by_speed = speed_classifier.predict(new_data) 
print(f"Recommended Algorithm for Speed: {best_by_speed[0]}") 
 
# Predict the best algorithm for accuracy 
best_by_accuracy = accuracy_classifier.predict(new_data) 
print(f"Recommended Algorithm for Accuracy: {best_by_accuracy[0]}") 
""" 

 
Appendix XXIX – Experimentation Normalization 

import pandas as pd 
from sklearn.preprocessing import MinMaxScaler, LabelEncoder 
 
# Function to scale all columns, including strings 
def scale_csv(input_file, output_file): 
    df = pd.read_csv(input_file) 
 
    # Create a copy of the DataFrame to store encoded string columns 
    encoded_df = df.copy() 
 
    # Initialize label encoder 
    label_encoders = {} 
 
    # Apply Label Encoding to string columns 
    for col in encoded_df.select_dtypes(include=['object']).columns: 
        le = LabelEncoder() 
        encoded_df[col] = le.fit_transform(encoded_df[col]) 
        label_encoders[col] = le  
 
    # Apply MinMax scaling to all columns 
    scaler = MinMaxScaler() 
    scaled_df = pd.DataFrame(scaler.fit_transform(encoded_df), columns=encoded_df.columns) 
 
    # Save the scaled data to a new CSV file 
    scaled_df.to_csv(output_file, index=False) 
    print(f"File saved: {output_file}") 



Page: 85 
 

 
# Scale and save each CSV 
scale_csv('Breast_Cancer_Dataset.csv', 'Breast_Cancer_Dataset_scaled_all.csv') 
scale_csv('COVID-19_Coronavirus.csv', 'COVID-19_Coronavirus_scaled_all.csv') 
scale_csv('Credit_Card_Customer_Data.csv', 'Credit_Card_Customer_Data_scaled_all.csv') 
scale_csv('Iris_dataset.csv', 'Iris_dataset_scaled_all.csv') 
scale_csv('Mall_Customer_Segmentation_Data.csv', 'Mall_Customer_Segmentation_Data_scaled_all.csv') 

 
Appendix XXΧ – Normalized Breast Cancer Dataset / Example Records 

Feature Record 1 Record 2 Record 3 

id 0.000914 0.000936 0.000938 

diagnosis 1.0 0.0 0.0 

radius_mean 0.521037 0.382365 0.167021 

texture_mean 0.022658 0.342238 0.354413 

perimeter_mean 0.545988 0.390505 0.171722 

area_mean 0.363732 0.238430 0.080890 

smoothness_mean 0.593752 0.462850 0.537780 

compactness_mean 0.792037 0.416906 0.340224 

concavity_mean 0.703139 0.398313 0.151733 

concave_points_mean 0.731113 0.438121 0.152485 

symmetry_mean 0.686363 0.401515 0.435353 

fractal_dimension_mean 0.605518 0.271272 0.586773 

radius_se 0.356147 0.132283 0.080427 

texture_se 0.120469 0.133530 0.331462 

perimeter_se 0.369033 0.138953 0.060500 

area_se 0.273811 0.075342 0.024482 

smoothness_se 0.159295 0.256212 0.345616 

compactness_se 0.351398 0.262099 0.264502 

concavity_se 0.135681 0.122904 0.115934 

concave_points_se 0.300625 0.350634 0.292479 

symmetry_se 0.311645 0.099876 0.210896 

fractal_dimension_se 0.183042 0.090695 0.203736 

radius_worst 0.620775 0.366417 0.114905 

texture_worst 0.141524 0.325426 0.285980 

perimeter_worst 0.668310 0.364012 0.110613 

area_worst 0.450697 0.206399 0.046500 

smoothness_worst 0.601135 0.554249 0.388496 

compactness_worst 0.619291 0.381300 0.172318 

concavity_worst 0.568610 0.415575 0.103434 

concave_points_worst 0.912027 0.726804 0.210859 

symmetry_worst 0.598462 0.250147 0.161245 

fractal_dimension_worst 0.418863 0.179063 0.231011 
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Appendix XXΧI – Normalized Covid 19 Cases Dataset / Example Records 

Feature Record 1 Record 2 Record 3 

Country 0.026785 0.575892 0.683035 

Othernames 0.044642 0.580357 0.674107 

ISO3166-1alpha-3CODE 0.040178 0.651785 0.723214 

Population 6.846482 0.000196 1.211680 

Continent 0.600000 0.0 1.0 

TotalCases 9.154553 0.000450 4.937740 

TotalDeaths 0.000133 0.000185 5.951070 

TotCases//1Mpop 0.108346 0.186395 0.318275 

TotDeaths/1Mpop 0.216194 0.104677 0.052338 

Deathpercentage 0.099256 0.027925 0.008177 

 
Appendix XXΧII – Normalized Credit Cards Dataset / Example Records 

Feature Record 1 Record 2 Record 3 

Sl_No 0.004552 0.127465 0.309559 

CustomerKey 0.330002 0.772528 0.248955 

Avg_Credit_Limit 0.137055 0.030456 0.071065 

Total_Credit_Cards 0.444444 0.222222 0.111111 

Total_visits_bank 0.2 0.4 0.4 

Total_visits_online 0.066666 0.266666 0.333333 

Total_calls_made 0.4 0.5 0.5 

 
Appendix XXΧIII – Normalized Iris Dataset Example / Records 

Feature Record 1 Record 2 Record 3 

sepal_length 0.194444 0.222222 0.166666 

sepal_width 0.666666 0.208333 0.208333 

petal_length 0.067796 0.338983 0.593220 

petal_width 0.041666 0.416666 0.666666 

species 0.0 0.5 1.0 

 
Appendix XXΧIV – Normalized Mall Customers Dataset / Example Records 

Feature Record 1 Record 2 Record 3 

CustomerID 0.030150 0.402010 0.396984 

Gender 0.0 1.0 0.0 

Age 0.326923 0.750000 0.596153 

AnnualIncome(k$) 0.024590 0.319672 0.319672 

SpendingScore(1-100) 0.051020 0.510204 0.418367 
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Appendix XXΧV – Experimentation Results for labels DS*a*c2m10w2 

Labels: DS*a*c2m10w2 

Speed Recommendation Results for labels ending with: c2m10w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 5.04 8.54 4.81 Bisecting K-means 

DS2 5.65 7.72 4.65 Bisecting K-means 

DS3 5.36 8.09 4.94 Bisecting K-means 

DS4 5.06 7.9 4.66 Bisecting K-means 

DS5 4.96 7.8 4.85 Bisecting K-means 

Accuracy Recommendation Results for labels ending with: c2m10w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 70.11 52.45 70.11 K-means 

DS2 50.06 10.55 50.06 K-means 

DS3 57.91 27.79 57.91 Bisecting K-means 

DS4 81.01 62.9 81.01 K-means 

DS5 65.55 24.35 65.55 K-means 

 
Appendix XXΧVI – Experimentation Results for labels DS*a*c2m20w2 

Labels: DS*a*c2m20w2 

Speed Recommendation Results for labels ending with: c2m20w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 5.22 9.35 5.76 Bisecting K-means 

DS2 5.69 8.68 5.71 K-means 

DS3 5.33 8.77 5.76 K-means 

DS4 4.94 8.88 5.71 K-means 

DS5 4.89 8.89 5.72 K-means 

Accuracy Recommendation Results for labels ending with: c2m20w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 70.11 58.62 70.11 Bisecting K-means 

DS2 50.06 10.55 50.06 Bisecting K-means 

DS3 57.91 34.21 57.91 Bisecting K-means 

DS4 81.01 81.01 81.01 K-means 

DS5 65.55 81.01 65.55 K-means 
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Appendix XXΧVII – Experimentation Results for labels DS*a*c2m50w2 

Labels: DS*a*c2m50w2 

Speed Recommendation Results for labels ending with: c2m50w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 5.28 10.2 7.71 K-means 

DS2 5.59 8.27 7.68 K-means 

DS3 5.14 8.95 7.75 K-means 

DS4 4.95 8.85 7.69 K-means 

DS5 4.89 11.09 7.96 K-means 

Accuracy Recommendation Results for labels ending with: c2m50w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 70.11 61.3 70.11 Bisecting K-means 

DS2 50.06 10.55 50.06 Bisecting K-means 

DS3 57.91 34.21 57.91 Bisecting K-means 

DS4 81.01 81.01 81.01 K-means 

DS5 65.55 20.15 65.55 K-means 

 
Appendix XXΧVIII – Experimentation Results for labels DS*a*c3m10w2 

Labels: DS*a*c3m10w2 

Speed Recommendation Results for labels ending with: c3m10w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 6.16 8.16 5.65 Gaussian Mixture 

DS2 5.89 7.78 5.53 Gaussian Mixture 

DS3 5.12 7.94 5.8 Gaussian Mixture 

DS4 5.07 7.99 5.73 Gaussian Mixture 

DS5 6.12 7.78 5.84 Gaussian Mixture 

Accuracy Recommendation Results for labels ending with: c3m10w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 41.05 37.49 41.05 K-means 

DS2 43.66 0.92 42.65 Bisecting K-means 

DS3 66.2 33.56 66.2 K-means 

DS4 81.49 41.19 81.49 K-means 

DS5 55.26 17.88 52.64 K-means 
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Appendix XXΧIX – Experimentation Results for labels DS*a*c3m20w2 

Labels: DS*a*c3m20w2 

Speed Recommendation Results for labels ending with: c3m20w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 6.15 9.31 7.02 Gaussian Mixture 

DS2 5.68 8.93 7.1 K-means 

DS3 5.12 9.07 7.05 K-means 

DS4 4.86 8.83 6.95 K-means 

DS5 6.18 8.66 7.12 K-means 

Accuracy Recommendation Results for labels ending with: c3m20w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 41.05 39.39 41.05 K-means 

DS2 43.66 0.61 42.65 Bisecting K-means 

DS3 66.2 32.41 66.2 K-means 

DS4 81.49 42 81.49 K-means 

DS5 55.26 18.01 52.64 K-means 

 
Appendix XL – Experimentation Results for labels DS*a*c3m50w2 

Labels: DS*a*c3m50w2 

Speed Recommendation Results for labels ending with: c3m50w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 5.95 10.61 10.57 K-means 

DS2 5.84 8.74 10.72 K-means 

DS3 5.24 8.54 10.46 K-means 

DS4 5.04 9.84 10.76 K-means 

DS5 6.08 8.28 10.87 K-means 

Accuracy Recommendation Results for labels ending with: c3m50w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 41.05 40.35 41.05 K-means 

DS2 43.66 0.61 42.65 K-means 

DS3 66.2 32.41 66.2 K-means 

DS4 81.49 41.71 81.49 K-means 

DS5 55.26 18.01 52.64 K-means 
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Appendix XLI – Experimentation Results for labels DS*a*c5m10w2 

Labels: DS*a*c5m10w2 

Speed Recommendation Results for labels ending with: c5m10w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 6.3 8.43 6.55 Gaussian Mixture 

DS2 5.33 7.94 6.29 Gaussian Mixture 

DS3 5.55 8.1 6.45 Gaussian Mixture 

DS4 5.21 7.89 6.28 Gaussian Mixture 

DS5 5.05 7.63 6.48 Gaussian Mixture 

Accuracy Recommendation Results for labels ending with: c5m10w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 32.34 34.71 23.98 K-means 

DS2 40.44 -0.16 35.81 Bisecting K-means 

DS3 44.8 16.45 44.77 K-means 

DS4 62.61 43.61 60.81 K-means 

DS5 60.2 37.31 40.73 K-means 

 
Appendix XLII – Experimentation Results for labels DS*a*c5m20w2 

Labels: DS*a*c5m20w2 

Speed Recommendation Results for labels ending with: c5m20w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 6.69 9.34 8.39 Gaussian Mixture 

DS2 5.5 8.78 8.2 K-means 

DS3 5.51 8.78 8.31 K-means 

DS4 5.3 8.63 8.27 K-means 

DS5 5.31 8.89 8.39 K-means 

Accuracy Recommendation Results for labels ending with: c5m20w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 32.65 35.18 23.98 K-means 

DS2 40.44 0.12 35.81 Bisecting K-means 

DS3 44.8 16.83 44.77 K-means 

DS4 62.61 28.27 60.81 K-means 

DS5 60.2 1.2 40.73 K-means 
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Appendix XLIII – Experimentation Results for labels DS*a*c5m50w2 

Labels: DS*a*c5m50w2 

Speed Recommendation Results for labels ending with: c5m50w2 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 6.77 11.01 13.57 K-means 

DS2 5.47 9.01 13.08 K-means 

DS3 5.6 11.5 13.43 K-means 

DS4 5.01 11.18 13.32 K-means 

DS5 5.48 10.13 13.1 K-means 

Accuracy Recommendation Results for labels ending with: c5m50w2 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 32.65 35.71 23.98 K-means 

DS2 40.44 0.12 35.81 Bisecting K-means 

DS3 44.8 27.84 44.77 K-means 

DS4 62.61 46.01 60.81 K-means 

DS5 60.2 2.65 40.73 Bisecting K-means 

 
Appendix XLIV – Experimentation Results for labels DS*a*c2m10w5 

Labels: DS*a*c2m10w5 

Speed Recommendation Results for labels ending with: c2m10w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 10.16 13.81 9.3 Bisecting K-means 

DS2 10.16 13.19 9.97 Bisecting K-means 

DS3 9.28 12.98 7.57 Bisecting K-means 

DS4 7.41 10.14 5.99 Bisecting K-means 

DS5 6.37 9.8 9.91 Bisecting K-means 

Accuracy Recommendation Results for labels ending with: c2m10w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 70.11 52.45 70.11 K-means 

DS2 50.06 10.55 50.06 K-means 

DS3 57.91 27.79 57.91 K-means 

DS4 81.01 62.9 81.01 K-means 

DS5 65.55 24.35 65.55 K-means 
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Appendix XLV – Experimentation Results for labels DS*a*c2m20w5 

Labels: DS*a*c2m20w5 

Speed Recommendation Results for labels ending with: c2m20w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 9.68 16.06 11.04 Bisecting K-means 

DS2 10.09 14.09 10.84 Gaussian Mixture 

DS3 9.38 15.01 11.3 Bisecting K-means 

DS4 7.6 9.53 8.41 K-means 

DS5 8.76 11.14 9.87 K-means 

Accuracy Recommendation Results for labels ending with: c2m20w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 70.11 58.62 70.11 K-means 

DS2 50.06 10.55 50.06 K-means 

DS3 57.91 34.21 57.91 K-means 

DS4 81.01 81.01 81.01 K-means 

DS5 65.55 22.84 65.55 K-means 

 
Appendix XLVI – Experimentation Results for labels DS*a*c2m50w5 

Labels: DS*a*c2m50w5 

Speed Recommendation Results for labels ending with: c2m50w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 9.53 17.05 12.91 K-means 

DS2 10.69 14.33 12.91 K-means 

DS3 8.36 15.27 11.84 K-means 

DS4 5.13 9.74 9.93 K-means 

DS5 4.88 16.55 13.03 K-means 

Accuracy Recommendation Results for labels ending with: c2m50w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 70.11 61.3 70.11 K-means 

DS2 50.06 10.55 50.06 K-means 

DS3 57.91 34.21 57.91 K-means 

DS4 81.01 81.01 81.01 K-means 

DS5 65.55 20.15 65.55 K-means 
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Appendix XLVII – Experimentation Results for labels DS*a*c3m10w5 

Labels: DS*a*c3m10w5 

Speed Recommendation Results for labels ending with: c3m10w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 12.18 13.95 11.31 Gaussian Mixture 

DS2 10.7 13.08 10.99 Gaussian Mixture 

DS3 9.73 10.58 9.12 Gaussian Mixture 

DS4 5.72 8.43 8.59 Gaussian Mixture 

DS5 6.21 12.77 9.85 Gaussian Mixture 

Accuracy Recommendation Results for labels ending with: c3m10w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 41.05 37.49 41.05 K-means 

DS2 43.66 0.92 42.65 K-means 

DS3 66.2 33.56 66.2 K-means 

DS4 81.49 41.19 81.49 K-means 

DS5 55.26 17.88 52.64 K-means 

 
Appendix XLVIII – Experimentation Results for labels DS*a*c3m20w5 

Labels: DS*a*c3m20w5 

Speed Recommendation Results for labels ending with: c3m20w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 11.59 15.39 13.22 Gaussian Mixture 

DS2 11.23 11.9 12.51 K-means 

DS3 6.99 11.29 8.54 K-means 

DS4 5.45 9.29 7.23 K-means 

DS5 7.7 13.41 12.65 K-means 

Accuracy Recommendation Results for labels ending with: c3m20w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 41.05 39.39 41.05 K-means 

DS2 43.66 0.61 42.65 K-means 

DS3 66.2 32.41 66.2 K-means 

DS4 81.49 42 81.49 K-means 

DS5 55.26 18.01 52.64 K-means 
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Appendix XLIX – Experimentation Results for labels DS*a*c3m50w5 

Labels: DS*a*c3m50w5 

Speed Recommendation Results for labels ending with: c3m50w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 10.51 15.94 15.38 K-means 

DS2 9.7 12.08 11.54 K-means 

DS3 7.28 13.44 17.2 K-means 

DS4 11.18 12.04 14.39 K-means 

DS5 8.23 10.44 17.46 K-means 

Accuracy Recommendation Results for labels ending with: c3m50w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 41.05 40.35 41.05 K-means 

DS2 43.66 0.61 42.65 K-means 

DS3 66.2 32.41 66.2 K-means 

DS4 81.49 41.71 81.49 K-means 

DS5 55.26 18.01 52.64 K-means 

 
Appendix L – Experimentation Results for labels DS*a*c5m10w5 

Labels: DS*a*c5m10w5 

Speed Recommendation Results for labels ending with: c5m10w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 13.24 14.62 10.97 Gaussian Mixture 

DS2 9.88 10.88 12.19 Gaussian Mixture 

DS3 8.17 10.08 9.85 Gaussian Mixture 

DS4 6.42 8.15 6.88 Gaussian Mixture 

DS5 7.1 10 12.9 Gaussian Mixture 

Accuracy Recommendation Results for labels ending with: c5m10w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 32.34 34.71 23.98 K-means 

DS2 40.44 -0.16 35.81 K-means 

DS3 44.8 16.45 44.77 K-means 

DS4 62.61 43.61 60.81 K-means 

DS5 60.2 37.31 40.73 K-means 
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Appendix LI – Experimentation Results for labels DS*a*c5m20w5 

Labels: DS*a*c5m20w5 

Speed Recommendation Results for labels ending with: c5m20w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 13.53 15.42 14.41 Gaussian Mixture 

DS2 9.44 14.41 11.8 K-means 

DS3 6 10.2 9.21 K-means 

DS4 11.41 11.26 11.3 K-means 

DS5 7.85 14.78 15.03 K-means 

Accuracy Recommendation Results for labels ending with: c5m20w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 32.65 35.18 23.98 K-means 

DS2 40.44 0.12 35.81 K-means 

DS3 44.8 16.83 44.77 K-means 

DS4 62.61 28.27 60.81 K-means 

DS5 60.2 1.2 40.73 K-means 

 
Appendix LII – Experimentation Results for labels DS*a*c5m50w5 

Labels: DS*a*c5m50w5 

Speed Recommendation Results for labels ending with: c5m50w5 (in sec) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 12.83 16.64 20.77 K-means 

DS2 11.35 11 19.67 K-means 

DS3 11.05 17.75 17.37 K-means 

DS4 7.39 16.8 17.65 K-means 

DS5 9.26 16.09 17.22 K-means 

Accuracy Recommendation Results for labels ending with: c5m50w5 (in %) 

Dataset K-means Gaussian Mixture Bisecting K-means Recommendation 

DS1 32.65 35.71 23.98 K-means 

DS2 40.44 0.12 35.81 K-means 

DS3 44.8 27.84 44.77 K-means 

DS4 62.61 46.01 46.01 K-means 

DS5 60.2 2.65 40.73 K-means 

 
Appendix LII – Gaussian Mixture Summary based on Nodes 

Gaussian Mixture Speed Summary based on Nodes 

Worker Amount Best Worst None Total Percentage (Best) 

2 Nodes 0 36 9 45 00.0 % 

5 Nodes 2 30 13 45 04.4 % 

Total 2 66 22 90 02.2 % 

Gaussian Mixture Accuracy Summary based on Nodes 

Worker Amount Best Worst None Total Percentage (Best) 

2 Nodes 6 39 0 45 13.3 % 

5 Nodes 5 40 0 45 11.1 % 

Total 11 79 0 90 12.2 % 
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Appendix LIII – Gaussian Mixture Summary based on Datasets 

Gaussian Mixture Speed Summary based on Datasets 

Dataset Name Best Worst None Total Percentage (Best) 

DS1 0 16 2 18 00.0 % 

DS2 1 13 4 18 05.5 % 

DS3 0 15 3 18 00.0 % 

DS4 1 11 6 18 05.5 % 

DS5 0 11 7 18 00.0 % 

Total 2 66 22 90 02.0 % 

Gaussian Mixture Accuracy Summary based on Datasets 

Dataset Name Best Worst None Total Percentage (Best) 

DS1 6 12 0 18 33.3 % 

DS2 0 18 0 18 00.0 % 

DS3 0 18 0 18 00.0 % 

DS4 4 14 0 18 22.2 % 

DS5 1 17 0 18 05.5 % 

Total 11 79 0 90 12.2 % 

 
Appendix LIV – Gaussian Mixture Summary based Clusters Found 

Gaussian Mixture Speed Summary based on Clusters Found 

Clusters Found Correct Worst None Total Percentage (Best) 

2 Clusters 0 28 2 30 00.0 % 

3 Clusters 0 21 9 30 00.0 % 

5 Clusters 2 17 11 30 06.6 % 

Total 2 66 22 90 02.2 % 

Gaussian Mixture Accuracy Summary based on Clusters Found 

Clusters Found Correct Worst None Total Percentage (Best) 

2 Clusters 5 25 0 30 16.6 % 

3 Clusters 0 30 0 30 00.0 % 

5 Clusters 6 24 0 30 20.0 % 

Total 11 79 0 90 12.2 % 

 
Appendix LV – Gaussian Mixture Summary based Max Iteration 

Gaussian Mixture Speed Summary based on Max Iterations 

Max Iteration Correct Worst None Total Percentage (Best) 

10 Iterations 0 26 4 30 00.0 % 

20 Iterations 1 27 2 30 03.3 % 

50 Iterations 1 13 16 30 03.3 % 

Total 2 66 22 90 02.0 % 

Gaussian Mixture Accuracy Summary based on Max Iterations 

Max Iteration Correct Worst None Total Percentage (Best) 

10 Iterations 2 28 0 30 06.6 % 

20 Iterations 5 25 0 30 16.6 % 

50 Iterations 4 26 0 30 13.3 % 

Total 11 79 0 90 12.2 % 
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Appendix LVI – Bisecting K-means Summary based on Nodes 

Bisecting K-means Speed Summary based on Nodes 

Worker Amount Best Worst None Total Percentage (Best) 

2 Nodes 8 9 28 45 17.7 % 

5 Nodes 7 14 24 45 15.5 % 

Total 15 23 52 90 16.6 % 

Bisecting K-means Accuracy Summary based on Nodes 

Worker Amount Best Worst None Total Percentage (Best) 

2 Nodes 23 4 18 45 51.1 % 

5 Nodes 26 4 15 45 57.7 % 

Total 49 8 33 90 54.4 % 

 
Appendix LVII – Bisecting K-means Summary based on Datasets 

Bisecting K-means Speed Summary based on Datasets 

Dataset Name Best Worst None Total Percentage (Best) 

DS1 5 2 11 18 27.7 % 

DS2 3 5 10 18 16.6 % 

DS3 3 3 12 18 16.6 % 

DS4 2 6 10 18 11.1 % 

DS5 2 7 9 18 11.1 % 

Total 15 23 52 90 16.6 % 

Bisecting K-means Accuracy Summary based on Datasets 

Dataset Name Best Worst None Total Percentage (Best) 

DS1 12 6 0 18 66.6 % 

DS2 6 0 12 18 33.3 % 

DS3 12 6 0 18 66.6 % 

DS4 12 1 5 18 66.6 % 

DS5 7 1 10 18 38.8 % 

Total 49 8 33 90 54.4 % 

 
Appendix LVIII – Bisecting K-means Summary based Clusters Found 

Bisecting K-means Speed Summary based on Clusters Found 

Clusters Found Correct Worst None Total Percentage (Best) 

2 Clusters 9 2 19 30 30.0 % 

3 Clusters 5 9 16 30 16.6 % 

5 Clusters 1 12 17 30 03.3 % 

Total 15 23 52 90 16.6 % 

Bisecting K-means Accuracy Summary based on Clusters Found 

Clusters Found Correct Worst None Total Percentage (Best) 

2 Clusters 29 1 0 30 96.6 % 

3 Clusters 20 0 10 30 66.6 % 

5 Clusters 0 7 23 30 0.00 % 

Total 49 8 33 90 54.4 % 
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Appendix LIX – Bisecting K-means Summary based Max Iteration 

Bisecting K-means Speed Summary based on Max Iterations 

Max Iteration Correct Worst None Total Percentage (Best) 

10 Iterations 15 4 11 30 50.0 % 

20 Iterations 0 2 28 30 00.0 % 

50 Iterations 0 17 13 30 00.0 % 

Total 15 23 52 90 16.6 % 

Bisecting K-means Accuracy Summary based on Max Iterations 

Max Iteration Correct Worst None Total Percentage (Best) 

10 Iterations 17 2 11 30 56.6 % 

20 Iterations 15 3 12 30 50.0 % 

50 Iterations 17 3 10 30 56.6 % 

Total 49 8 33 90 54.4 % 

 
 
 


