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Abstract 

 

 

Cryptocurrencies have been growing in interest, among all sorts of people and mostly 

investors. Above all cryptocurrencies, Bitcoin shows the highest amount of price volatility, 

driven by numerous political and economic reasons that make the trajectory hard to 

predict. Therefore, this paper tries to find out the efficiency of an LSTM neural network 

pre-processed with some data in forecasting the next day closing prices of Bitcoin. From 

our results, this LSTM model was able to efficiently predict the prices of Bitcoin with a 

mean absolute percentage error of 0.07. Moreover, standardization and normalization 

were applied, elevating its predictive power for the model enormously. 

Keywords: forecasting, cryptocurrency, LSTM, neural networks, data preprocessing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

   

ΠΕΡΙΛΗΨΗ 

 

 

Τα κρυπτονομίσματα έχουν αυξήσει το ενδιαφέρον, μεταξύ όλων των ανθρώπων και 

κυρίως των επενδυτών. Περισσότερο από όλα τα υπόλοιπα κρυπτονομίσματα, το 

Bitcoin παρουσιάζει το υψηλότερο ποσοστό αστάθειας των τιμών, λόγω πολλών 

πολιτικών και οικονομικών λόγων που καθιστούν δύσκολη την πρόβλεψη της τροχιάς. 

Ως εκ τούτου, αυτή η έρευνα προσπαθεί να ανακαλύψει την αποτελεσματικότητα 

ενός νευρωνικού δικτύου LSTM που έχει υποστεί προεπεξεργασία με ορισμένα 

δεδομένα στην πρόβλεψη των τιμών κλεισίματος της επόμενης ημέρας του Bitcoin. 

Από τα αποτελέσματά μας, το μοντέλο LSTM ήταν σε θέση να προβλέψει 

αποτελεσματικά τις τιμές του Bitcoin με μέσο απόλυτο ποσοστό σφάλματος (MAPE) 

0,07. Επιπλέον, εφαρμόστηκαν τυποποίηση και κανονικοποίηση, αυξάνοντας την 

προγνωστική του ισχύ για το μοντέλο πάρα πολύ. 

Λέξεις-κλειδιά: πρόβλεψη, κρυπτονομίσματα, LSTM, νευρωνικά δίκτυα, 

προεπεξεργασία δεδομένων 
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1. Introduction 

 

In two decades of Bitcoin existence (Chiu & Keister, 2022), several thousands of digital 

coins and hundreds of exchanges have appeared. This has made digital currencies 

subjects of interest to investors, regulators and the public (Giudici et al., 2020). In no time, 

markets and activities around such currencies grew rapidly to include online trading 

platforms, crypto-based derivatives trading, and crypto lending platforms. Central banks 

are also piloting central bank digital currencies in some countries with a view of 

introducing them into the economy in future. But there are also market concerns about 

this phenomenon. 

Public debates on cryptocurrencies’ high volatility and lack of intrinsic worth have been 

the subject matter for researchers from various fields (Giudici et al., 2020). Concerns that 

these are bubble-like assets with no underlying value and facilitating tax evasion can 

prompt governments to take more stringent measures. This speculation complicates 

forecasting cryptocurrency prices thereby making it a crucial topic for research 

worldwide.  

Bitcoin is in the lead of cryptocurrency, with it’s market capitalization of over 

$1,343,883,308,328. Its value leverages blockchain technology for extensive digital 

circulation (Coinmarketcap, 2024). Researchers have historically used classical, 

statistical, and financial methods like autoregressive integrated moving average (ARIMA) 

and generalized autoregressive conditional heteroscedasticity (GARCH) to predict bitcoin 

prices (Gradojevic et al., 2021). 

The increased computational power and deep learning created with the aid of machine 

learning algorithms have given the ability to develop new models that predict the price of 

bitcoin. Algorithms such as artificial neural networks (ANN), convolutional neural 

networks (CNN), recurrent neural networks (RNN), and long short-term memory (LSTM) 

networks are suitable for forecasting bitcoin prices. 

The goal of this study is to find out if LSTM neural networks are efficient in bitcoin price 

predictions. We suggest that the bitcoin closing price for tomorrow be predicted by using 
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LSTM models. To do this, we obtained historical prices for BTC-USD, preprocessed it and 

trained an LSTM model on it. As well as that, different hyperparameters were also tried 

such as number of hidden layers, units per layer, batch size, optimizer, learning rate and 

dropout regularization to enhance the model’s predictive power. Lastly, we present the 

predictions which our model made with the real price of bitcoins so that we can measure 

its accuracy.  

The following is the systematic literature review on cryptocurrency forecasting which is 

followed by the Chapter 3 where methodologies of predicting the closing prices of Bitcoin 

with their performance metrics are discussed. Descriptive statistics of the data, findings, 

and results from experiments are found in Chapter 4 and consequently, in detail, Chapter 

5 explains the results and analyses.
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2. Literature review 

 

This section gives an overview of the literature review done. Our target was to analyze 

research that is currently being done on financial forecasting, more so on cryptocurrency. 

We have gone through several tools and methodologies; among them include statistical 

and time series analysis, deep learning, recurrent neural networks, ensemble machine 

learning techniques. 

2.1 Traditional time series methods 

This section will shortly discuss traditional research in the field of time series forecasting. 

Septiarini et al. (2020) proposed in their research a model that combined conventional 

statistical techniques with artificial intelligence methods in predicting Bitcoin prices. 

They used, among others, time series models such as Autoregressive Integrated Moving 

Average and Exponential Smoothing, along with some AI methods like Fuzzy Time Series 

and Adaptive Neuro-Fuzzy Inference System. Of course, the best performance was 

obtained with statistical methods, and AI methods were dominated by exponential 

smoothing, evidenced by the lowest (RMSE) and (MSE). 

Tan and Kashef (2019) have compared machine learning and deep learning techniques 

with ARIMA statistical methods to predict Bitcoin price. For each transaction, five inputs 

were used: open, high, low, close prices, and transaction volume. In this comparative 

study, some of the applied methods were Bayesian Regression, Auto Regression, Long 

Short-Term Memory, and Support Vector Machines. It was observed from the outcomes of 

this technique that the LSTM algorithm shows better utility than the rest, with SVM and 

ARIMA pacing afterward in terms of performance. 

Munim et al. (2019), using the ARIMA and the Neural Network Autoregression, attempted 

to predict the likely Bitcoin price on the following day as a univariate model. These models 

feature tests with re-estimation forecasts and without, two training sets, and two test sets 

for cross-validation. Their results showed that ARIMA models performed consistently 
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better than the NNAR models when testing forecasts. That the reasons for explaining the 

superior performance of ARIMA was to be a feedforward type, though the results could 

have been further enhanced with much backpropagation. Further, forecasts of ARIMA 

were the same whether model re-estimation is employed. 

This survey of classical time series forecast studies suggests methods such as ARIMA will 

be able to secure low prediction errors, and they might even more often outstrip deeper 

and more complicated learning models. This could be attributed to the sensitivity of the 

data and the effective process of data collection and preparation for algorithm operation. 

Sometimes, even the shallow and simple-sounding traditional methods outperform 

sophisticated deep learning techniques. Septiarini et al. (2020) add that modern times 

models of all the modern advancements cannot always guarantee the best forecasting 

results since in most cases the characteristics of each dataset are unique. 

2.2 Neural Networks Methods 

This section reviews the methods and algorithms of various research papers that relate 

to neural network forecasting. 

Radityo et al. (2018) conducted a comparison among some Artificial Neural Network 

techniques to forecast the closing price of Bitcoin for the next day. They considered BPNN, 

or backpropagation neural network; GANN, or genetic algorithm neural network; 

GABPNN, or genetic algorithm backpropagation neural network; and NEAT, or 

neuroevolution of augmenting topologies. The MAPE returned by GABPNN in the study 

was best at 1.88%. However, the training time for GABPNN was impractically long for 

application on larger datasets. In contrast, BPNN returned a MAPE of 1.98% but was three 

times faster. This research had contributed to the field by comparing several methods of 

ANNs and considering an important factor like training time. It suggested that slightly 

higher prediction errors could be tolerable, but they may be preferred if they lead to the 

development of algorithms that are less complex and require less time to run. 

In connection with model parameterization, another pertinent factor for performance, Jay 

et al. (2020) proposed a stochastic neural network model derived from random walk 

theory for the prediction of cryptocurrency prices. In their case, they used a multi-layer 

perceptron model in which they introduced randomness at layer-wise level into the 
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activation features of the network to simulate market volatility. It led to the conclusion 

that, overall, the stochastic models outperform the deterministic ones. In this regard, a 

study goes on to say that, although their technique worked well enough, there is still some 

room for enhancement that can be attained with even better tuning of the 

hyperparameters in a more precise manner. 

2.3 Single deep learning methods 

This section lays down the methods and algorithms applied in the respective studies 

chosen within the domain of single-deep-learning forecasting.  

Popular deep learning models for analyzing time sequences with varying lengths, seeking 

to make predictions, include Recurrent Neural Networks (RNNs), Convolutional Neural 

Networks (CNNs), and Long Short-Term Memory (LSTM) nets.   

Deep learning has been one of the most promising techniques in forecasting 

cryptocurrency prices. For an example, Ferdiansyah et al., 2019, developed an LSTM-

based model in predicting Bitcoin prices. The data that they used for training is four-year 

historical data and then tested on one-year data. Their promising model was able to give 

a prediction of next-day Bitcoin prices, though the author considered it to be not proper 

for making investments as the RMSE is high. 

Preparation of data and quality is the most important factor in the implementation of 

deep learning algorithms. Rizwan et al. (2019) developed a multivariate deep learning 

model series with both LSTM and Gated Recurrent Units. Such features included Bitcoin 

exchange rates, trading volumes, transaction fees, and average hash rates. The authors 

also claimed that exogenous variables for cryptocurrency prices could be indicators of the 

international economy. For example, from the results, only proper parameterization with 

high-quality data gave correct predictions for the model. 

Selecting useful variables from available data will also be key in the performance of deep 

learning. Lamothe-Fernandez et al. studied a comparison between the methods of 

prediction in the price of Bitcoin. It became known that new important variables' sets 

increase the performance of models, giving the model greater stability over time frames 
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of one and two years and best performance for the Dynamic Convolutional Neural 

Network. 

The recent literature on LSTM has dealt with problems of time series, and Lahmiri and 

Bekiros studied the ability of LSTM nets in detecting chaotic and self-similar patterns 

exhibited by the top three cryptocurrencies, namely Bitcoin, Ripple, and Digital Cash. 

They claimed that LSTM networks are suitable for both short and long-term predictions 

because of the ability to identify hidden patterns in nonlinear and chaotic data. 

There has been little research on real-time cryptocurrency price prediction. Zoumpekas 

et al. (2020) demonstrated a web-based real-time Ethereum price predictor using the 

LSTM model. Their system predicts in half-hour intervals on 30 minutes' worth of 

previous data, proving the LSTM and GRU models to be real-time-application-suited. 

GRU networks have fewer parameters, thus being less computationally expensive for 

training than LSTMs, and consequently, they take less training time and, in general, 

perform better. Phaladisailoed and Numnonda (2018) compared Huber Regression, 

LSTM, and GRU in modeling Bitcoin price forecasting. Their study showed that among the 

models tested, GRU had the best accuracy and convergence time but added that inclusion 

of more explanatory variables would further make it better with more performance. 

Public attention and macroeconomic factors also play a core part in the determination of 

cryptocurrency value. Public attention, cryptocurrency market factors, and 

macroeconomic indicators were integrated by Liu et al. (2021) using 40 determinants in 

an SDAE model. Their model works quite better than SVR and BPNN, and this great result 

is attached to the great variety of features that have been included. 

It is identified that sentiment analysis and public opinion are indispensable in changing 

the future forecasting models related to cryptocurrency. When social media comments 

are considered in forecasting models, the level of accuracy improves. In agreement, the 

research showed that even though LSTM is the most accurate, the addition of social 

sentiment features by participants made other models to be scored high. 

According to the literature, in general, methods that involve deep learning, such as LSTM 

and GRU, are effective approaches toward cryptocurrency price prediction. So it follows 

how important the data quality and choice of relevant variables is to the performance of 

models, including those economic and social sentiment variables. 
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2.4 Ensemble and Machine learning methods 

This section considers some of the techniques and algorithms used in many research 

papers dealing with ensemble and machine learning forecasting. 

Ensemble machine learning is only one type of learning that allows systems to make 

predictions from very varying models to improve general accuracy. Generally, it is a 

technique combining variable predictions or the different model outputs for coming up 

with better results than what the model would have performed alone. Derbentsev et al. 

(2021) conducted a comparative study on the performance of ensemble machine learning 

algorithms for cryptocurrency price prediction. They used random forests and a 

stochastic gradient boosting machine to predict the prices for Bitcoin, Ethereum, and 

Ripple. The results are rather promising: in reality, for the three cryptocurrencies, SGBM 

and RF achieved MAPEs between 0.92% and 2.61%. In more detail, SGBM worked well 

for the prediction of Bitcoin and Ripple, while RF did so for that of Ethereum. 

Mallqui and Fernandes performed a further performance-based experiment on Artificial 

Neural Networks and Support Vector Machines in regard to price prediction for Bitcoins. 

Experimental results have also noticed an algorithm that gives the most accurate, by 

which MAPE for each and every prediction were equated to be 1.58% related to the 

Support Vector Machine. 

Another study concerning the prices of cryptocurrencies is that by Saad et al., 2020, 

through variable correlation analysis. This paper has evaluated transaction rates, hash 

rates, numbers of users, total bitcoins, and their correlations with prices. The done run 

analysis has shown the results of its dynamics in the cryptocurrency, guiding it directly to 

machine learning models: LR, RF, and GB. It was doing better than any former study using 

exclusively data of historical prices. 

In other words, it is an excellent quality variable going into the making of a prediction 

model. From the discussion, it appears quite apparent that almost all the researchers 

confirm the primacy of first-class data quality in making a correct forecast for 

cryptocurrency pricing. 
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2.5 Hybrid machine and deep learning Methods 

This section outlines some techniques and algorithms from the chosen research papers 

on hybrid machine and deep learning techniques that are used in the time-series 

forecasting application. 

Hybrid models have been found to give great improvements in forecasting cryptocurrency 

prices. Patel et al. (2020) proposed an LSTM-GRU hybrid model that was put to use in 

predicting prices over different periods: one, three, and seven days for Litecoin and 

Monero. Their findings showed that the hybrid model outperformed the single LSTM 

method significantly. The best that could be realized was 2.06% MAPE in the three-day 

leading window ahead for Litecoin. 

Livieris et al. (2021) developed a CNN-LSTM model in which features were taken from 

Bitcoin, Ethereum, and Ripple. Data for each cryptocurrency was given for processing 

separately in the model to avoid overfitting, and useful information was abstracted. In 

other words, the CNN-LSTM model was computationally more efficient compared to using 

a single CNN network. 

Kristjanpoller and Minutolo (2018) proposed an ANN-GARCH model in dealing with 

Bitcoin price forecasting. The authors developed and tested twelve various models based 

on a mix of techniques and inputs. They found the optimal model to perform the best with 

a 1.64% mean absolute percentage error Exponential Generalized Autoregressive 

Conditional Heteroskedasticity model. 

Altan et al. (2019) presented a hybrid model that combined the LSTM neural network 

with Empirical Wavelet Transform (EWT) decomposition and the Cuckoo Search (CS) 

algorithm. In comparison with a standalone LSTM, or the EWT-LSTM models, the EWT-

LSTM-CS hybrid model delivered superior performance in forecasting prices of the 

Bitcoin, Litecoin, Digital Cash, and Ripple. The model effectively captured the non-linear 

characteristics of crypto-currencies. 

The different hybrid models reviewed in this section have been found to be quite 

promising in enhancing cryptocurrency price forecasting. There are immense 

opportunities opened for future researchers on the topic, as the number of possible 

combinations of models and variables becomes huge. 
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2.6 Literature review summary 

Various factors are influencing the performance of the forecasting models, and these shall 

be put into consideration while developing them. Among the most important aspects to 

be put into consideration is data quality. It is not all about applying high-level methods 

and techniques to be good at making predictions with regard to cryptocurrency. Accurate 

collection of data that will include variables impacting fluctuations in prices relating to 

cryptocurrency should be considered. As can be seen from the literatures reviewed, in the 

future, more researchers will consider macroeconomic factors and public sentiment to 

improve the model's performance. In 2020, Wang and Chen identified that the inclusion 

of variables representing public sentiment increases the performance of the models 

considerably. Nevertheless, the sentiment and opinion analysis techniques seem to be an 

area that has not yet been adopted by many studies. 

Legislative uncertainty can also primarily influence the volatility in cryptocurrency. 

Sentiment and opinion analysis around proposed regulatory changes would possibly 

signal a price swing. The laws vary among countries, but influentially economic 

powerhouse countries like the United States would greatly affect cryptocurrency prices. 

Ferdiansyah et al. (2019) identify that the stock market—including cryptocurrencies—is 

under heavy influence from a lot of uncertainties and political factors. 

Future studies should therefore consider hybrid models that integrate macroeconomic 

variables with sentiment analysis and public opinion, particularly those of countries with 

some appreciable influence on world economic matters. 

 

 

 

 



 

10 
 

3. Methodology 

 

3.1 Methodology Strategy 

Our methodology follows the deep learning system architecture as presented in figure 

3.1. Deep learning represents a subfield of machine learning, aiming to imitate how 

humans gain a particular type of knowledge through experiences. The term 'Deep' 

represents using a neural network with more than three layers of depth. The network 

depth creates deep hierarchical representation learning where layers are stacked on top 

of each other. It is a multistage information distillation process where information is 

purified passing through several filters. The network learns data representation from the 

multi-stage sequence process. 

As shown in figure 3.1, methodology was structured following a sequence of processes. 

First, bitcoin prices were collected using the yfinance library. Second, data preprocessing 

was done, which involved loading of data, dropping all irrelevant columns, splitting data 

into input features and target variables, and normalizing the data using both 

MinMaxScaler and StandardScaler. The dataset was then split into a training set and a test 

set, where the training set contained 90% of the total data, and another 10% remained in 

the test set. This information was then transformed into 3D tensors in a view to prepare 

it for the LSTM neural network. 
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Figure 3.1: Deep learning System architecture 

 

The selection of the right architecture in deep learning systems is paramount. In the 

conducted research study, a Long Short-term Memory neural network was used. This is 

an RNN type that is ideal for the processing of time series one at a time. The defined LSTM 

network, with specified layers and hidden states, was to handle the sequence data 

effectively. 

It involved the observation and labeling of a large number of inputs, which were then 

matched to a deep sequence of data transformations, known as layers. The 

transformation executed on the inputs was done by the layer weights, also referred to as 

layer parameters. The learning process therefore entailed finding the layer weight values 
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that enabled the network to map correctly the inputs and their associated labels. The 

reason why it is difficult to find the correct value for all weights is simply that a network 

can have many layers. 

Making the LSTM network output the desired result, this algorithm first needs to observe 

and measure how far such output was from the real value. This measurement was done 

through a specially defined function, one that makes a comparison of distances between 

the forecasts and the real value, so-called loss score. It used the loss score for the response 

signal to be able to adjust the weights values in such a manner that the algorithm will 

strive towards reducing the loss score. An optimizer operating with a gradient-descent 

algorithm was applied to make these adjustments. The gradient of the loss concerning 

model parameters is computed to find the downhill direction, and then the weights are 

moved in small steps in the opposite direction from the gradient, letting the loss reduce a 

little each iteration. 

 

Figure 3.2: Weights optimizer 

 

The optimizer works by randomly initializing the weights and repetitively adjusting them 

with small steps until it converges to a value close to the global minimum. This is attained 

using the gradient of loss and the learning rate hyperparameter. The learning rate is what 

dictates how fast gradient descent happens, thus the importance of having a sensible 

value for this hyperparameter. If the learning rate is too small, then it will need to go 

through many iterations, and there is a danger that the loss value will get stuck in a local 

minimum. If the learning rate is too large, the loss value may overshoot the global 

minimum and jump to completely random locations on the loss curve. The gradient 

descent algorithm measures the local gradient of the loss value with respect to the 
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weights, and then it follows that very direction to get a greater gradient descent. If the 

gradient equals zero, it means that the minimum has already been reached. The gradient 

describes how much the loss value changes when the weights are tipped a little. The 

process is repeated until the minimum has been found. 

There are several hyper-parameters in the LSTM network that were tuned in order to 

enhance the performance of the algorithm's predictions. Such response signal was taken 

from the model validation error, while the LSTM hyper-parameters were adjusted in a 

manual fine-tuning strategy in a way that lets the algorithm minimize the validation error. 

3.2 Data Collection 

Our methodology follows the deep learning system architecture as presented in the 

figure. Deep learning represents a subfield of machine learning that aims to imitate how 

humans gain specific knowledge from experiences. Now, the term 'Deep' represents using 

a neural network with more than three layers of depth. It is the depth of the network that 

thus creates deep hierarchical representation learning where the layers are stacked on 

top of each other. It is a multistage information distillation process whereby information 

is purified through the passing of several filters. The network learns data representation 

from the multi-stage sequence process. Analysis of variables majorly used by articles 

included in the literature review drove the data collection process. Yfinance was the 

Python application program interface used to download data from the website Yahoo 

Finance. We retrieved the prices for Bitcoin -USD and Ethereum - USD from March 3rd, 

2023, to March 3rd, 2024.  

3.3 Features Description 

Perhaps the most important factor in deriving optimal performance from any deep 

learning prediction algorithm is data quality. Thus, feature selection was informed 

through the literature, which had noted that macroeconomic variables contribute 

immensely to model prediction performances. The features used within this research 

study are described in Table 3.1. 
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Figure 3.1: Features Description 

 

3.4 Feature Selection 

In this work, 4 different features are collected to be initially used as input to deep learning 

models. In the feature selection process, it retrieves an optimal subset from the feature 

set to increase model performance. It was implemented by using a wrapper forward 

selection method that basically starts with one feature, and iteratively adds more features 

to the current set as long as improvement in the model's performance exists. After 

applying this method, it was found that the models predicting the future prices of Bitcoin 

with the closing price alone as the input feature are less noisy, computationally less 

expensive, and have lower forecasting errors. Thus, based on these findings, the final 

models used only the Bitcoin closing price as the input feature. 

3.5 Train/Test Data 

The dataset was then split: 90% for training and 10% for testing. Data from April 24th, 

2023, to March 24th, 2024, was used for training, and from March 25th, 2024, to April 

24th, 2024, data was set aside for testing. Annexed are the visualizations. This is to train 

and test the model on unseen data. These split percentages were chosen after some 

testing to ensure the model works fine, so the lowest test prediction error indicated the 

optimal performance. 
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Figure 3.3: Train and test bitcoin closing price (USD per bitcoin) 

 

 

3.6 Data Pre-processing 

This section details all the operations done in the phase for data pre-processing. First, 

Bitcoin's data was gathered using the yfinance library. After that, the dataset was split into 

a training subset with 90% and another testing subset with 10%. Finally, data 

normalization is done using MinMaxScaler to make sure that all values are on the same 

scale. Finally, data was structured into a 3D tensor format that would feed into an LSTM 

neural network input. More precisely, it created sequences of 10 time steps as input and 

1 time step as the label. 

3.6.1. Feature Scaling 

Feature scaling is among the most important data transformations, to be done, as deep 

learning algorithms normally do not work well when features of the system have scales 

that differ from one another. In that regard, the Min-Max normalization technique is 

applied for scaling the data within the range of 0 and 1. Result is the subtraction of each 
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observed value and division by the result of the minimum value from the range against 

the range, which is the difference between minimum and maximum values, so that each 

value remains common in the dataset. 

3.6.2. Data Representation of Neural Networks 

We utilized a rank-3 tensor for preparing data for deep learning algorithms. People can 

think of this visually like a cube with compartments; its axes denote samples, the number 

of time steps, and features. Tensors are basic data structures by which deep learning 

systems use and generalize matrices—rank-2 tensors—to handle an arbitrary number of 

dimensions. They are designed for somewhat like a container to hold and manipulate data 

in a system. 

 

Figure 3.4: Rank-3 timeseries data tensor 

 

Consider our approach: a 10 time-step sequence where each step is the closing price of 

bitcoin for a day. Such structure allowed us to build a rolling window, turning the dataset 

into a supervised learning problem with an input and label. More specifically, the last 10 

days' prices of bitcoin served as input to predict the closing price of bitcoin for the next 

day, which would be the label. 
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Figure 3.4: Supervised learning rolling window 

3.7 Modelling 

This section presents the LSTM and algorithm and the architecture of the final model’s 

implementation. 

3.7.1. LSTM network 

Most deep learning neural networks have no built-in capability for memory and thus all 

time steps of input are processed as one chunk of data. This strategy maps inputs to labels 

without modeling temporal patterns that exist in the sequences. RNNs were developed to 

take care of this limitation by processing time dependencies in a better way. Although 

RNNs do quite well on the handling of short-term dependencies, they don't do as well on 

handling long-term dependencies. This limitation led Hochreiter and Schmidhuber to 

develop, in 1997, Long Short-Term Memory networks. Actually, LSTMs are designed 

especially for learning short-term and long-term dependencies. Consequently, they are 

particularly efficient with sequential data, hence for time series analysis. As seen in Figure 

3.6, an LSTM network includes chain modules which repeat, each corresponding to a time 

step in the sequence. 
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Figure 3.6: LSTM chain modules 

 

Probably the most important characteristic feature of the LSTM network is the cell state 

(Ct), a vector flowing through the complete chain of cell modules, as illustrated by Figure 

3.7. The long-term information and patterns are held in this cell state, whereby minimal 

linear interactions are involved in their storing and handling dependencies. 

 

 

Figure 3.7: LSTM cell state 

 

In the LSTM network module, there are three gates, and every gate is an instantiated 

sigmoid neural network layer. These three kinds of filters that the gates implement 

control what information should be added to or removed from cell state (Ct) (as shown in 

Figure 3.8). 
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Figure 3.8: LSTM gates 

 

The first operation in an LSTM cell is to decide what parts of the information stored in the 

previous time step's cell state, (Ct-1), are to be thrown away. This is done by utilizing 

what's called a forget gate — that is, a sigmoid layer — as part of the process. The forget 

gate takes the concatenated input of the current time step, (xt), and hidden vector of the 

previous time step, (ht-1), multiply these two with the weight matrix, (Wf), and adds the 

bias term, (bf). It then applies the sigmoid function as shown in Figure 3.9, Equation 3.4. 

It produces an output, value per component of the cell state, thus between 0 and 1, so that 

1 for (Ct−1) means "keep all information," and 0 means "dump all information". 

 

Figure 3.9: LSTM forget gate 

 

                                                      𝑓𝑡 = 𝜎(𝑊𝑓.[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑓)                            (3.4) 
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The second step of an LSTM cell is to decide what new information is added into 

the cell state (Ct). This operation is completed by a two-stage process. First, it 

contains the “input gate”, (it), which is a sigmoid layer conditioning and thus 

selecting the values to update. In this case, the input gate consolidates the current 

time step's input data (xt), concatenated with the last time step's hidden vector 

(ht-1), using a learned weight matrix with an added bias term before applying the 

sigmoid(bi) (equation 3.5). In the second part, a hyperbolic tangent layer (tanh), 

produces a vector of candidate values (C′t) to the cell state (Ct). In particular, this 

is accomplished by concatenating the input data for the current time step, (xt), 

with the hidden vector from the prior time step, (ht−1), multiplying by the weight 

matrix, (Wc), adding the bias term, (bc) and taking the hyperbolic tangent function, 

(tanh), of this expression (equation 3.6) (figure 3.10). 

 

Figure 3.10: LSTM input gate 

 

                                       𝑖𝑡 = 𝜎(𝑊𝑖 .[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖)                                                (3.5)  

                                   𝐶′𝑡 = tanh (𝑊𝑐 .[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐)                                         (3.6) 

 

The third step involves incorporating the results from these two stages in 

determining which information has to be brought forward to the current cell state 

(Ct). This is accomplished through the multiplication of the candidate vector of 
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values, (C′t), with the input gate, (it), which filters out information and makes 

decisions regarding which elements from the input data of the current time step, 

(𝑥t), and the previous hidden vector, (ht−1), should be important and integrated 

into the new cell state (Ct). The process is illustrated in Figure 3.11. 

 

Figure 3.11: LSTM input gate 

 

The fourth step updates the cell state (Ct) with the forget gate (𝑓𝑡)and the input 

gate (𝑖𝑡). This is simply a matter of adding, separately, the information to be 

forgotten from the previous time step, (𝐶𝑡 * 𝑓𝑡), with the new information to be 

added, (𝐶𝑡 * 𝑖𝑡). This sum then updates the old cell state, (𝐶𝑡−1), to the new cell 

state, (𝐶𝑡) as shown in figure 3.12 and in equations 3.7 and 3.8. 

 

Figure 3.12: Update LSTM cell state 
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𝐶𝑡 = 𝐶𝑡
𝑓
+ 𝐶𝑡

𝑖                                                                       (3.7) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶′𝑡                                                                  (3.8) 

 

The last step a cell does is to determine the output for this current time step. An 

output gate, (𝑜𝑡), decides the output through a sigmoid layer that filters the output 

and the hidden state for this current time step (ℎ𝑡). The output gate, (o𝑡) can be 

obtained by applying the sigmoid function on the concatenation of the current 

time step input data, (𝑥𝑡) with the previous time step's hidden state, (ℎ𝑡−1), by 

multiplying it with the weight matrix (𝑊𝑜), which is added to the bias term  (bo) 

as shown in equation 3.9. The current cell state, (𝐶𝑡) , is passed through the 

hyperbolic tangent, (tanh), function and multiplied by the output gate, (𝑜𝑡). This 

result forms the hidden state for the current time step, (ℎt) , and the output to be 

passed to the dense layer for prediction by the LSTM network as shown in figure 

3.13 and described in equation 3.10. 

 

Figure 3.13: LSTM output gate 

 

 

𝑜𝑡 = 𝜎(𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜)                                                           (3.9)  

              ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)                                                                        (3.10) 
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3.7.2. Final models Implementation 

This section presents the implementation of the final developed LSTM model in 

detail. 

 

3.7.2.1. LSTM architecture 

We implemented an LSTM model in Python using its PyTorch library. On the first 

input layer, it took a prepared rank-3 tensor during the data preprocessing phase, 

of the shape : 

[{batch size} = 32, {time steps} = 10, {number of features} = 4 ] 

These 32 batches enabled us to work out the prediction error at each iteration and 

hence update the weights of this LSTM architecture to reduce such an error. As 

mentioned earlier, we used 10 time steps, which refers to ten days as an input for 

the prediction of the closing price of the following day for Bitcoin. 

The second layer of the LSTM architecture consisted of 2 hidden units. In the 

output layer for predicting the next day's closing price of Bitcoin, there was a dense 

layer of 1 unit, corresponding to a 1-day forecast. The model was trained using 

90% of the data and tested on the remaining 10%. 

For preprocessing, MinMaxScaler will be used to normalize the close price of 

Bitcoin within a range of 0 and 1. Afterwards, this data will be prepared where 

sequences of 10 time steps are created for the input and 1 time step for the output. 

Then, training and test sets will be created by splitting this normalized data in the 

ratio 90% for training and 10% for testing. 

For regularization purposes, the LSTM model architecture includes a Dropout 

layer. This was set so that, during training, dropout would randomly exclude 20% 

of the layer's output features. This will avoid overfitting of the model to the 

training data and hence make it based on the validation and testing data. This 

regularization will lead to a more general model with a smoother prediction curve 

and better performance. 
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The model trained for more than 1000 epochs. A system of early stopping ensured 

that the process stops if validation loss does not improve for more than 30 epochs, 

so that the best model obtained during training is saved. This helped stop training 

as soon as possible when the model started overfitting. 

The mean squared error loss function provided the response signal, which was 

then used in tuning the value of the weights to ensure a low loss score. This 

adjustment in weights was done through the Adam optimizer, working by 

modifying the weights in the direction that minimizes the prediction error. The 

Adam algorithm – Kingma & Ba, 2014 – is based on the stochastic gradient descent 

method. 

The learning curves were plotted for the training and validation loss during the 

training process. The validation and training losses decreased until the curves 

were very flat and maintained a minimum gap between the two, hence a good 

model fit with respect to the training and validation data. 

 

3.7.2.2. Hyper-parameters tuning and regularization 

One of the most critical tasks in the building and refinement of the LSTM model 

was that of hyperparameter tuning. This was for the achievement of good 

predictive performance. The goal was to develop a model with high generalization 

capability so that it performed well not only on training data but also on unseen 

validation data. In doing this, various configurations were tried out with special 

emphasis on the following hyperparameters: 

• Number of Layers 

• Number of Units per Layer 

• Batch Size 

• Optimizer and Learning Rate 

• Regularization (Dropout) 

The final model was achieved by continuously adjusting the number of units, the 

learning rate, the optimizer, and the dropout percentage, and by rigorously 

validating the model at each step. In each step by iteration, comprehensive model 
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validation has been done to make sure that the model developed realizes the best 

performance for the task at hand. 

3.8 Evaluation of deep learning models 

To ensure that this model performed well, its results must be compared with the 

baseline model represented by the 20-day moving average and with those from 

other studies within the review. To this effect, the LSTM model was trained using 

the dataset; that is, testing involved making some predictions using the test data. 

These would then be converted back to the original dollar scale to put them at par 

with the observed values. 

In total, only one performance metric was used, which helped to observe the 

model's performance holistically. Mean Absolute Percentage Error is a measure for 

which calculation was done for the prediction accuracy. These evaluations show 

how well the model would work in forecasting as compared to the 20-day moving 

average, a much simpler model—thereby showing potential improvements of an 

LSTM capturing the trends and making more accurate predictions. 

3.8.1. Mean Absolute Percentage Error 

The model performance metric chosen was the Mean Absolute Percentage Error 

(MAPE), which describes the accuracy of a prediction in percentage terms over its 

actual. It gives a benchmark criterion through which one can compare and contrast 

the effectiveness of the model. Perception therefore is very good from this value 

because the magnitude of the percentage is small. Therefore, this metric indicates 

to what extent the values of the model predictions are apart from the observed 

ones; thus, a smaller magnitude of the percentage is better. 

 

 𝑀𝐴𝑃𝐸 =
100

𝑛
 ∑𝑡=1

𝑛 |
𝑦𝑡−𝑦̂𝑡

𝑦𝑡
|                                                                         (3.11) 
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Where n is the number of observations used for testing, y is the observed value, y  

is the predicted value and t is the time step. 

4. Data and Results 

This is where the data analysis, the basic descriptive statistics, and the findings 

from the experiment conducted for feature selection, hyper-parameter tuning, and 

dropout regularization are discussed. All experiments were trained on the dataset 

for training and tested on the test dataset. The configurations of the LSTM 

architecture used are as described in the methodology. 

 

4.1 Descriptive statistics 

The median Bitcoin closing price, within the range of collected data, was 

approximately 30,171.23 USD per Bitcoin. This value is somewhat below the mean, 

which stands at 35,878.65 USD per Bitcoin. The difference is thus in the fact that 

while prices for Bitcoin have generally been high, times have occurred where 

prices were lower to drag down the median from the mean. 

The data collected on the close price of Bitcoin showed large dispersion. In the 

statistical analysis, it is observed that there is a huge difference between the 

minimum and maximum levels, at 25,124.68 USD and 73,083.50 USD, respectively, 

against a standard deviation of 11,561.68 USD, portraying an extreme change in 

the value of Bitcoin within the period under consideration.  

 

Table 4.1: Statistics 
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In the visual analysis below, excluded here for brevity, one can trace the trends in 

Bitcoin's price over the period. For example, there could be periods of rapid 

increases or decreases, like those identified in the history of the cryptocurrency 

market. 

 

Figure 4.1: Evolution of Bitcoin closing price (USD per Bitcoin) 
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4.2 Feature Selection 

Models developed on a single feature, the closing price of Bitcoin, are associated 

with less noise, reduced forecast errors, and minimized complexity and execution 

times. Tables 4.3 and 4.4 indicate experiments performed by various combinations 

of input features, such as the closing price, opening price, and the highest price of 

the day, to feed LSTM-based deep learning models. 

Multiple-feature experiments using closing, opening, and the highest price of 

Bitcoin in a day created models of higher accuracy measured by forecast errors. 

Using only the closing price as the input feature created a less noisy, simpler, and 

faster model to run, as shown in Figure 4.2. 

 

 

 

 

 

Table 4.3: LSTM models performance with different set of features 
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Figure 4.2: Actual and LSTM predicted bitcoin closing price with different set of input features 

4.3 Hyper-parameters tuning 

This chapter gives the result of hyperparameter tuning by grid search in the 

models for predicting the close price of Bitcoin with LSTMs. As this is one source 

through which other researchers will be able to deduce effective approaches 

toward attaining optimal hyperparameters, the commitment shall be toward 

ensuring that highly accurate levels are obtained. Also, the prediction errors in the 

subsequent sections originate from implemented experiments and analyses on the 

LSTM models, as earlier explained in the methodology of this work. 

4.3.1. Number of hidden layers 

The best performance to predict the closing price of Bitcoin belonged to a single 

LSTM layer. As presented in Table 4.5, although the lowest prediction error for 

LSTM model came out with a 3-layer model, the single-layer configuration 

generalizes better to new data. This provided a more stable and smoother forecast, 

with reduced noise, as evidenced by clearer and more consistent lines of forecasts 

in  Figure 4.3. 

 

Table 4.5: LSTM models performance with different number of layers 
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Figure 4.3: Actual and LSTM predicted bitcoin closing price with different set of layers 

4.3.2. Number of units in the LSTM hidden layer 

The number of units was a critical factor for building an appropriate Bitcoin close 

price model. Table 4.6 shows experiments regarding various numbers of units in 

the LSTM hidden layers. In results, the models with 2 and 256 units performed 

remarkably better that the others. Furthermore, based on the conducted analysis, 

it was able to be found that while the number of units was going up, the training 

process turned out to be slower. 

 

Table 4.4: LSTM models performance with different number of units 
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4.3.3. Learning rate 

The learning rate was very critical to good forecasting performance. Table 4.9 

shows the validation performance of LSTM model when different learning rates 

are used with the Adam optimizer. From the results, the prediction accuracy was 

best when the model had a learning rate of 0.01. The learning rate of 0.0001 

extremely degraded the outcome with the LSTM model. Specifically, 0.0001 

learning rate was too low. Then, the 0.1 learning rate, was too large; therefore, the 

loss value overshot and shook around the global minimum in an erratic manner. 

 

 

 

Table 4.5: LSTM models performance with different learning rates 
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4.4 Dropout regularization  

Dropout regularization assisted us to get a more regular, simplified, and 

generalized model with a smoother prediction curve and performance 

improvement on the validation data. Table 4.6 and Figure 4.10 illustrate 

experiments with and without dropout where the layer output features during 

training were excluded from 20% to 60%. The visualizations show that in case of 

a lower prediction error when not using the dropout; however, applying the 20% 

dropout rate will result in a more regular, simpler, smoother, and generalized 

prediction of the Bitcoin closing price. 

 

Table 4.6: LSTM models performance with different dropout percentage 
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Figure 4.4: Actual and LSTM predicted bitcoin closing price with 20% and 60% dropout percentage 

 

4.5 Final LSTM model evaluation 

This part shows the final result from the evaluation executed by the LSTM model 

for the test dataset. The entire process of training and testing of the model is run 

many times for informative statistics on performance. This is done only when a 

model has been fine-tuned and validated with validation data. As such, the 

prediction errors discussed here are a result of the final LSTM model configuration 

described within the methodology. The LSTM model performed very well in 

predicting the closing price of Bitcoin, returning an MAPE of 0.07%. In addition, 

the training phase of this LSTM model was very efficient and required far less time 

to complete than other traditional ways of training. 

The dropout regularization tested at 0%, 10%, 20%, and 60% showed that in case 

of no use of dropout, this resulted in a lower prediction error. Also, the use of a 

20% dropout resulted in a more regular and smoother generic prediction curve. 

This proves that dropout regularization is very important for generalization in a 

model and obviously comes with a smoother prediction curve at 20% dropout. 
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Table 4.7: Final LSTM models performance 

 

 

 

In figure 4.5 the plot presents the actual and predicted bitcoin closing prices for 

LSTM. The orange line is the result of the bitcoin closing price prediction, and the 

blue line is the actual bitcoin closing prices from the test data. 

 

 

 

Table 4.5: Actual and predicted LSTM bitcoin closing price 
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Table 4.6: Next-day LSTM bitcoin closing price prediction 
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5. Discussion 

 

5.1 Key Findings 

This dissertation presents works that provide evidence that LSTM models are 

efficient ways to predict Bitcoin closing prices. Besides, we could confirm that the 

use of dropout regularization is very effective to improve the models' 

performance. There was no evidence found to say the use of micro and 

macroeconomic variables bettered the performance. 

 

5.2 Study Limitations 

Like every other study, the current study also carries some limitations. Mostly, it 

was noticed that the economic variables collected for this research have very little 

significance or close to insignificance, hence making the signal more noisy that 

increases the prediction errors and enhances complexity with longer execution 

time; therefore, the final models were built only by using Bitcoin closing prices. 

With respect to the analysis of public sentiment on cryptocurrency investment, 

this aspect has been removed from the scope of this dissertation for the master's 

program due to time limitations. 

 

5.3 Limitations from studies 

Several limitations emerged from the studies reviewed. One major issue is that 

most of the studies only focus on enhancing performance by using more complex 

models and techniques and do not necessarily stress the collection of appropriate 

information to improve model accuracy. It was also realized that most studies did 

not handle the complexity and non-stationarity aspects in cryptocurrency time 
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series data very well. Few of them used methods of differentiation or filtering to 

smooth the high volatility of prices of cryptocurrencies; this would have benefited 

both statistical and deep learning methods. Moreover, public sentiment and 

policies and regulations related to digital currencies were also ignored by the 

majority of the studies. 

 

5.4 Strengths 

Even though research had its limitations, it remained important due to some of 

these following key reasons. These were one of the pioneering efforts that used 

dropout regularization together with the LSTM models while predicting the prices 

of Bitcoin. Dropout was used so that overfit could be avoided in the predictions 

from the models; otherwise, the overfitting of the models might be on the higher 

side, and generalization too could be improved. The models developed in this 

research achieved a low prediction error, relatively of the order of the studies 

reviewed, on test data. These models could predict quite accurately the price and 

trend of Bitcoin, without major noise, and with really smooth forecast lines. It is 

therefore conclusive that the applied strategy in this methodology, through deep 

description of the deep learning architecture, serves as a contribution towards 

further research. 

5.5 Incidental observation 

Although an exploration in that direction lay beyond the scope of the current work, 

some side observations were beginning to emerge. It was observed that correct 

parameterization had a very big part to play in a correctly well-performing model. 

The number of hidden layers, number of units per layer, batch size, the choice of 

optimizer, learning rates, etc., play highly important roles in the accuracy 

pertaining to the predictive models. The best model-scaling technique for 

underfitting and overfitting at the edge is possibly that of applying dropout as 

regularization, which proved very good at predicting Bitcoin close prices. It was 
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very exhaustive and time-consuming, but this is what hyperparameter tuning is all 

about. Models will be put together based on heuristics that will give strong results. 

 

5.6 Comparison with deep learning models included in 

the review 

Table 5.1 compares the models developed in this study with other next-day Bitcoin 

deep learning models included in the review. 

From the entire studies in the review, the models predicted in this study got best 

for LSTM single models and the best among all deep learning studies when 

regarding MAPE. For a Bitcoin investor, how the price will trend in the future is 

more valuable than knowing the exact price in the future. Several studies predicted 

Bitcoin prices within a very close correlation to the price until the last day and 

ultimately resulted in high noise predictions. The research solved this issue by 

using dropout regularization and careful parameterization for avoiding 

overfitting, thus obtaining a smoother predicted line with much less noise and 

lower prediction errors. 

Radityo et al. (2018) developed the two deep learning models that scored the 

lowest in terms of the MAPE under review and had scored the MAPE of 1.88% and 

1.998% by using the genetic algorithm backpropagation neural network and the 

backpropagation neural network, respectively. The essence in the development of 

these models was the strong driving of the Exponential Moving Averages, 12-day 

Rolling Window, Volume, High, Low, and Close Prices in the prediction of Bitcoins. 

The results for the ANN and RNN models developed by Mallqui and Fernandes 

(2019) were 3.06% and 3.36%, respectively—very good compared to most of the 

deep learning models reviewed. Their success is related to something called 

Correlation-based Feature Subset selection, which estimates the worth of variable 

subsets based on the predictive power of each attribute and the level of 

redundancy that exists between them.  

As can be seen from Table 5.1, though algorithm selection is quite important, there 

are other aspects comprising the predictive performance of the built algorithm. 
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These include data processing, feature selection, feature generation, and 

optimization of hyper-parameters. 

 

 

 

Table 5.1: Deep learning models’ errors included in the review 

 

 

 

 

 

 

 

 

 

 

 

5.7 Future research 

These results point to some promising future research, first, the data-smoothing 

methodologies addition, for example, moving average filters in hybrid models, is 

entirely relevant and may be developed further by the addition of cryptocurrency 

prices and also by sentiment analysis of public perception. Second, establishment 

in future studies of which economic factors can explain significant variation in 

pricing is called for. Thirdly, the transfer learning area is a very young one within 

machine learning, and maybe in some time when, for example, new 

cryptocurrencies will be forecasted at their price, and the history information 

about them is short. Existing data of already established cryptocurrencies can 
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already be used to help make better predictions for newer ones. There is also 

supposed to be much focus on the implementation of automation methodologies 

for the optimization of hyper-parameters, in order to find optimal sets of hyper-

parameters. Other volatile factors which may affect Bitcoin Price and return can 

also be considered, which shall be prioritized in future studies. 

 

6. Conclusion 

 

This work is focused on an assessment of the applicability of LSTM neural 

networks in predicting Bitcoin close prices using historical price data. The dataset 

used for training and testing contained data related to daily prices of Bitcoin in 

USD from April 24, 2023, up to April 24, 2024. Preprocessing was done on the data 

by scaling the features using Min-Max normalization to ensure all the features 

were in one scale. It took the past 10 days of Bitcoin prices and additional features 

as input to predict the next day of Bitcoin closing prices. In addition, the dataset 

was split into a training and test set, where 90% is used for training and the 

remaining 10% for testing. 

This LSTM model has been designed with an input rank-3 tensor: samples, 10-time 

steps, and 4 features. One added an LSTM layer with 2 hidden units, followed by a 

dropout layer to prevent overfitting at a rate of 20%. It also consisted of fully 

connected layers, where the last output layer would project the next day’s price of 

Bitcoin. The model was trained for 1000 epochs using the Adam optimizer, setting 

the learning rate to 0.001, and the Mean Squared Error as the loss function in its 

optimization. Then, during training, the model was tracked on both the training 

and test losses, evaluated at intervals. 

The mean absolute percentage error was then computed to clearly express the 

model predictive performance. From a simple comparison of the actual and 

predicted values, an LSTM model seems quite effective at capturing the trend of 

Bitcoin prices. 



 

41 
 

It reinforces the fact that good preprocessing of the data is enormously important, 

along with the choice of the structure of the model. How the hyper-parameter 

tuning involved the best performance of the model with the number of hidden 

units and learning rate further to know on dropouts. In essence, it contributed a 

measure that may validate the suitability of the Min-Max scaling method in the 

normalization of data to derive better convergence while training. 

However, there were a couple of limitations during the process. First, in this study, 

only price data was considered for Bitcoin, without the inclusion of any other 

economic or financial variable that could give better context to the predictions. 

Second, the study assessed a relatively short period of time, which may further 

limit generality across different time frames. This did not include, for example, 

more advanced techniques that could be applied-sentiment analysis or transfer 

learning-to help in developing a better prediction accuracy. 

Further research in predicting the future price of Bitcoin can be done by 

incorporating more economic indicators or sentiment analysis and coupling them 

with the model for better efficiency. The technique used can be Automated 

Hyperparameter Tuning. It works to find a combination of hyperparameters such 

that the most effective model configuration arises. This could be further 

investigated by considering even more complex and hybrid architectures using 

transfer learning to provide even better improvements in the accuracy of the 

predictions. This would be even more complete if it were to involve some volatility 

and return analyses with respect to the price dynamics of Bitcoin. 
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