UNIVERSITY OF PIRAEUS - DEPARTMENT OF INFORMATICS
NANENIZTHMIO MEIPAIQY — TMHMA NMAHPO®OPIKHZ

MSc «Cybersecurity and Data Science»

NMMZ «KuBepvoao@dAeia kal ETTioTriun Asdopévwv»

MSc Thesis
MeTamTuyiakni AlaTpin

Thesis Title: Fact checking with large language models
TitAog AloTpIBAG: ‘EAEYX0G YEYOVOTWV HE TNV XPARoN HEYAAWY YAWOTIKWV
MOVTEAWV

Student’s name-surname: Koufopoulos loannis-Aris

Ovoparemwvupo PoitnTA: KougdTtrouhog lwdvvng-Apng

Father’s name: Emmanouil

Matpwvupuo: Eppavoui

Student’s ID No: MNKEA2214

Ap1Bu6S MnTpwoou:

Supervisor: Papastefanatos George, MSc Instructor
EmRAETTWV: MamraoTepavarog MNewpyiog, Aiddokwyv MM

June 2024 - louAiog 2024

MSc Thesis Koufopoulos loannis-Aris

3-Member Examination Committee
TpiyeAig E¢eTaoTikr) ETITpOTTA

Dr. George Papastefanatos Dimitrios Apostolou Dr. Stavros Maroulis
MSc Professor Professor MSc Professor
Ap. lewpylog AnunATplog ATTooToAou Ap. ZTaupog MapouAng
MamraoTepavaTog KaBnyntg Aiddokwyv MM

Aiddokwyv NMMZ

Fact checking with large language models

MSc Thesis Koufopoulos loannis-Aris
Abstract

The recently increased focus on misinformation has stimulated research in fact checking, the
task of assessing the truthfulness of a claim. While automated fact checking pipelines have
seen a growing interest over the past few years, the rapid development of technologies that can
be utilized to aid the automated pipeline, have paved the way for the revision of the current
methods and approaches. The swift advancements in the field of deep learning, along with the
emergence of the large language models (LLMs) have produced various techniques that can
successfully replace traditional natural language processing (NLP) approaches. Thus, for the
purposes of this thesis, we will employ an already established fact checking pipeline, and
replace most of its methods with modern architectures, such as text embedding models, that
are commonly found in LLMs. Furthermore, we will expand the dataset that was constructed for
the purpose of storing Greek language statements and replace the classification models that
were utilized to produce a verdict, with cutting-edge neural networks. The results of this
dissertation proved that our approach produces very promising results in many cases, often
reaching and surpassing the accuracy results produced by traditional NLP techniques.
Furthermore, our methodology allows for considerable opportunities for further enchantment,
since the final pipeline that we established is highly customisable and provides a breeding
ground for additional experimentation—either by further enlarging the dataset or by introducing
more effective text embedding models that may be produced in the future, and classification
models with different architectures that are more reliable in capturing patterns.

Keywords: Large language models, Automated Fact-Checking, Text embedding models, Greek
fact-checking dataset

Fact checking with large language models

MSc Thesis Koufopoulos loannis-Aris

MNepiAnyn

H mpéogatn augnuévn eEATTAWON TNG TTAPATTANPOPOPNONG £XEI BIEYEIPEl TNV €peuva yUpw aTTd
TOV TOMEQ TNG ETTAARBEUCNG YEYOVOTWY, O OTTOI0G TOMEAG opileTal WG N diadikagia agloAdynang
NG aARBeiag evog Ioxupiopou. Evw ol autopartoTroinuéveg d1adikaaieg TTAANBeUONG YEYOVOTWY
éxouv Oel aufavouevo evOla@épov Ta TeAeuTaia xpovia, n Taxeia aAvATITUEN TEXVOAOYIWV TTOU
MTTOpOUV Va xpnalpotroinBoulv yia Tnv utrofontnaon TnG autopaTng dIadIKaaiag, €XOuv avoitel
Tov OPOMO yia TNV avabewpnan Twv TPEXOUCWY PEBBdWY Kal TTpoacyyicgewyv. O1 Taxeieg e€eAitelg
aTov Topéa TnG PBabidg pddnong, gadi ue TNV €PPAVION TwV PEYGAWV YAWOOIKWY HOVTEAWV
(LLMs) €xouv TTapaydyel SIAQPOPES TEXVIKEG TTOU PTTOPOUV VA QVTIKATOOTHOOUV ETTITUXWS TIG
TTapadooiakéG TTpooeyyioelg emegepyaciag @uaoikAg yAwooag (NLP). Emopévwg, yia Toug
okotroUg auTAg Tng dIatpIfig, Oa xpnoigotroifjooupe pia ndn umapyxouca dladikagia
emaAfBeuong yeyovOoTwy Kal Ba avTIKATAOTACOUUE TIG TTEPICCOTEPEG aTTO TIG HEBSOOUG TNG UE
OUYXPOVEG APXITEKTOVIKEG OTTWG MOVTEAWV eVOWNATWONG KEIPEVou, TTou Bpiokovtal ouvhBwg
ota LLMs. EmimrAéov, Ba emekTeivoupe TO GUVOAO OedOpéVWwY TTOU OnuioupynBbnke yia Tnv
atmmoBAKEUaN 10XUPICPWY OTnv €AANVIKA YyAWOooa Kal Ba avTIKOTOOTAOOUUE Ta HOVTEAQ
Taglvounong TTou XPNCIYOTIoINBNKAaV yia TNV TrTapaywyr JIoG amdé@acng, UE HOVTEPVA VEUPWVIKA
OikTua. Ta atroTeAéopaTa authg TNG dIATPIBAG aTTédeIEav OTI N TTPOCEYYIOT Hag TTapdyel TTOAU
UTTOOXOMEVA QTTOTEAEOUATA O€ TTOAAEG TTEPITITWOEIG, TUXVA QTAVOVTAG, KAl EETTEPVWVTAG T
ATTOTEAECUATA TTOU apopoUV TNV akpifela kal TTou TTapdyovTal atrd TTapadociokEG TEXVIKEG NLP.
EmmAéov, n peBodoloyia pag TTapExel ONUAVTIKEG EUKAIPIES YIa TTEPAITEPW PBeATIWaON, KABWGS N
TeAIKA diadikaaia TTou KaBiepwaape gival 181aiTEpa TTPOCAPUOCIUN Kal TTapEXEl éva YOVIUO
£50@0OG yIa ETTITTALOV TTEIPAPATIOPO — €ITE PE TNV TTEPAITEPW BIEUPUVAN TOU OUVOAOU BedOUEVWV
€iTE PE TNV €10AYWYN TTI0 ATTOTEAECUOTIKWY POVTEAWY EVOWUATWONG KEIYEVOU TTOU WTTOPED va
TTapaxbouv aT1o PEAAOV, Kal HOVTEAWV TA&IvOUNoNG PE BIAPOPETIKEG APXITEKTOVIKEG TTOU Eival TTIO
agIOTMOTEG OTNV AViXVEUCT TTPOTUTTWV.

NEEEIG-KAEIB1A: MeydAa YAwooIkd povTéEAa, AutopaTtn eTTaAABeuon yeyovoTwy, MovTéAa
EVOWNPATWONG KeIPEVou, EAANVIKG oUvoAo dedopuévwy eTTAANBEUONG ITXUPIOUWYV

Fact checking with large language models

MSc Thesis Koufopoulos loannis-Aris
Acknowledgements

I would like to the University of Piraeus for providing the foundational knowledge and providing
me with the opportunity to attain my master’s degree in data science and cybersecurity.
Additionally, | want to express my sincere gratitude to the Athena research and innovation
center for offering the essential resources and assistance that allowed me to complete my
thesis.

My sincere appreciation goes out to my supervisors, Dr. George Papastefanatos,
Principal Researcher and Dimitris Katsiros, Research Associate, both from the ATHENA
Research Center for their assistance, direction, and inspiration during the course of this study.
Their helpful criticism and continuous availability enabled the completion of this thesis. Their
perseverance and commitment to supporting me in reaching my objectives are greatly
appreciated.

Lastly, | want to express my gratitude to my friends and family for their compassion and
support throughout this difficult path. Their love and support have been a source of courage for
me during this process.

Fact checking with large language models

MSc Thesis

Koufopoulos loannis-Aris

Table of Contents

F Y 011 = T TP TP TP POUPRPPPPPPPTNE 3
o) 71 1 o SR 4
ACKNOWIEAGEIMENLS ...ttt e e et e e skt e e s b b e e e e sabb e e e e sabbe e e e sbbeeeeabnneeeane 5
LIS o) 0 U] =T SRR 8
LISt OF TAIIES ...ttt 9
1 [oTo Vo3 o] o RO PP PP PTR PP 10
2 REIATEA WOTK ...ttt et e e e st et e e sabb e e e s bbe e e e sbreeeeanes 12
2.1 Automated fact checking pIPeline..........ooveviiiiiiiiii e 12
211 Claim AELECTIONeeiiiiiiie ettt e b e e anes 12
212 EVidence RetrEVal ... 13
2.1.3 VerdiCt PrediCtion ... 14
2.1.4 Justification ProdUCLIONcooiiiiiiiiiiiiee ettt 14
2.1.5 Examples of automated fact checking pipelines..................ccccco. 14
2.16 CheCkAFacts PIPEIINE.....ccoiuiiiii e 16
2.2 Language model-based fact verification..............ccccciii 18
221 Language models for general fact-checking subtasksccccccoviiiennnn. 19
2.2.2 LLMs for the claim-matching stage of fact-checking..................................... 20
223 LLMs in the justification stage of fact-checkingccccoccveeiniiiiiniieennnn, 21
224 LLMs as knowledge bases stage of fact-checking 21
225 SEIf-CRECKET ... 22
2.2.6 Hiss Prompting method...............cc 24
2.3 Language model-based claim detection on non-English language....................... 25
2.3.1 A case study using Norwegian Pre-Trained language models 25
2.4 Traditional text representation methodscoooiiii 26
24.1 Bag-0f-Wwords MOEISeeiiiiiiii e 26
242 Shallow Window-Based Methodsccccceeeiiiiiii i 27
243 Knowledge graphs ... 29
2.5 Text similarity metrics and techniqUes ..., 30
251 Cosine SIMIlArity MELIICveiiii i 30
252 Euclidean diStanCe MELIICcuvvieiiiiiee it 31
253 Jaccard coefficient MELICevii i 31
254 Manhattan diStanCe MEeLHiC..........vveiiiiieeiiie e 31
255 Hamming diStance MELriCcuviiiiiiiieiiiiee e 32
256 Distribution diStanCe METNCSccciiiiiieiiiiie e 32
2.6 LiNQUISLIC FEAtUIES N tEXLccoiiiiiieiiiie ettt 33
2.7 Deep learning approaches for text representation and modelingcccceeeneeee. 33
2.7.1 Convolutional neural NEtWOorks (CNNS)........cccuuiiiiiiie e 34
Fact checking with large language models 6

MSc Thesis Koufopoulos loannis-Aris

3

5
6

2.7.2 Recursive neural networks (RECNNS)........cccuvviiiieeiiiiiiiee e 35
2.7.3 AUENLION MOUEIS ...ooiiiiiiiii et 35
274 C-LSTM MOEL....ceeiiiiiiiiie ittt et are e e e ane 36
275 Text level graph neural network for text representation and classification ... 37
2.8 Datasets for fake claims deteCtion..........cocveiiiieiiiriie e 38
28.1 The FEVER GatASELcoiiiiiiiieiiiiie ittt 38
2.8.2 The LIAR TAASELcccveeiiieiieie et 39
2.8.3 The ClaimBuster datasetcocueiiiiiiiiieiiii e 40
2.8.4 The EmMergent datasetcccccceiiiciiieiiie et e e e e s s sstree e e e e e e e s ennraneea e e 40
2.8.5 ARichly Annotated SNOPES COMPUSeeeiiurreeiiiiiieeeitieeeesitieeeessireeeessireeee e 41
Data collection and AN@IYSISccoiuuiiiiiiiiie e
3.1 Greek fact checking dataset..........ccccoooiiiii 43
3.2 English claims to the Greek fact checking dataset.............cccoveviveiiiiiie e, 43
3.3 English claims translated to GreekK.........cccccoeeeiiiii 44
Description of the Core PIPEIINE..........ueii e
4.1 Searching and Harvesting STAQgES........uuuuuuiriirririiiieeereeereeeeereeerereeeeeresererererere——.. 46
41.1 URL ANAIYSIS ...ttt a7
4.2 Feature generation SLAQEuueeeeerererererereeeeereerrerereeerererererererererererr—————. 49
42.1 Finding the optimal number of relating web sourcescccocoeevviieeennne. 50
4.2.2 (@AY= £=F= V0]] 11 T PPN 54
4.3 ClasSifiCation StAGE.......ccoiiiiiiiiiiie e 55
43.1 Input vectors and feature reductionc 56
4.3.2 Classification taSKSccoiiiiiiiiiiie e 57
RESUIL BNAIYSISeeee ettt ettt et e e e st b e e e s bbe e e e sbreeeeane
(670] o] 1] T] o TP PPPPP PP
RETEIENCES ...ttt ettt e st e e e s bb e e e e s bbe e e e sbreeeeanes

Fact checking with large language models

MSc Thesis
List of fig
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Fact checking with large language models

Koufopoulos loannis-Aris

ures

Examples of check-worthy and non-check-worthy claims............cccoociinie i, 13
Example of fact checking PIPeIINEcooi i 15
Fact checking pipeline with differentiations.ccoceviiiiin e, 16
Fact checking pipeline with an intergated LLM..........cccovvviiee e 20
LLM made prompts for each fact checking stage.ccocvvreiiiiieiiiiiie e 20
lllustration of the usage of a LLM during claim matchingccccccceveeiiiiiiiieeee e, 21
lllustration of the Self-Checker pipelingocoiiiiii i 23
WOrd2VEC ArCHItECIUIEceveeieiee ettt e s 28
Berts Model arChitECIUIEoiuiiii e 29
- CNN @rCRITECIUIE ...t e s 34
. RECNN ArCITECIUIE ... e 35
. Attention model architeCIUIEoouiiii e 36
. C-LSTM mModel @rChit@CIUIEcocuiiieiieiie et 37
. Text-level graph neural NEtWOTKcooiiiiiiii e 38
. Random claims from the LIAR datasetccooveiiiriieiiiiieeee e 39
.Claim verification by Emergent example ... 41

Snopes fact checking eXampPleoovviiviiiiiiiiieieeeeeeeeeeeeeeeeee e 42
t-SNE visualization for False Claimscooiiiiiiiii e 45
t-Sne visualization for True ClAIMScuuviiiiiiiie e 45
The main fact checking PIPEIINE.eii i 46
Histogram of URL occurrence for the Greek dataset................cccccei, 48
Histogram of URL occurrence for the Cypriot dataset............occceeviiiieiiniiie e, 48
Histogram of URL occurrence for the Check4Facts datasetcccoooo. 49
Claim-Paragraph cosine distance score for N=1.........coovviiiiiieiieieiiieieieieieeeeeveseeeeesenenenns 51
Claim-Paragraph cosine distance SCore for N=2........cc.veiiiiiiiiiiiiee e 51
Claim-Paragraph cosine distance score for N=3...........ovviiiiiiiieiviieieieieieveeeveveveseeeeeaeeenes 52
Claim-Paragraph cosine distance SCore for N=4........cuvviiiiiiiiiiiiee e 52
Claim-Paragraph cosine distance score for N=5.........c.ovviiiiiiiiiiiiiiieiiieieieeeeeeveeveveaeaenns 53

Feature reduction flOWChart fOr N=1 . ..oveeiiieeee et e e e e 57

MSc Thesis Koufopoulos loannis-Aris

List of tables

Table 1. Number of claims in the dataset in respect to their label and their source 43
Table 2. Results between the sentences using the Euclidian distance metric and the cosine

[0 S] 7= L Lo =P T P PRRPR 44
Table 3. Total number of claims regarding the no. of web sources associated with them. 50
Table 4. Table of models and their parameters when utilizing n=1 web sources per claim 57
Table 5. Table of models and their parameters when utilizing n=2 web sources per claim 58
Table 6. Table of models and their parameters when utilizing n=3 web sources per claim........... 58
Table 7. First classification task using the “most similar paragraph” feature, with n=1................. 58
Table 8. First classification task using the “most similar paragraph” feature, with n=2. 59
Table 9. First classification task using the “most similar paragraph” feature, with n=3................ 59
Table 10. First classification task using the “most similar paragraph” and “most similar

SENtENCE” fRAtUIE, WIth Mo ..o e e e e e e et e e e e e e e eeraaes 59
Table 11. First classification task using the “most similar paragraph” and “most similar

sentence” feature, WIth N=2.. ... et 60
Table 12. First classification task using the “most similar paragraph” and “most similar

sentence” feature, WIth N=3t 60
Table 13. First classification task using the “most similar paragraph” , “most similar

sentence” and “title” feature, With NTT. ... e 60
Table 14. First classification task using the “most similar paragraph” , “most similar

sentence” and “title” feature, With NT2. e e e 61
Table 15. First classification task using the “most similar paragraph” , “most similar

sentence” and “title” feature, With N=3. ... e 61
Table 16. Second classification task using the “most similar paragraph” feature, with n=1.......... 61
Table 17. Second classification task using the “most similar paragraph” feature, with n=2. 62
Table 18. Second classification task using the “most similar paragraph” feature, with n=3.......... 62

Table 19. Second classification task using the “most similar paragraph” and “most similar
SENtENCE” FRAtUNE, WIth MT ..o et e e e e e e e e e e e e e e e eeeaaas 62

Table 20. Second classification task using the “most similar paragraph” and “most similar
sentence” feature, WIth NT2. ... e a e 63

Table 21. Second classification task using the “most similar paragraph” and “most similar
sentence” feature, WIth NT3.... e e e e 63

Table 22. Second classification task using the “most similar paragraph” ,”most similar
sentence” , and “title” feature, With NTT. ... e 63

Table 23. Second classification task using the “most similar paragraph” ,”most similar
sentence” , and “title” feature, With NT2.ooveei e 64

Table 24. Second classification task using the “most similar paragraph” ,”most similar
sentence” , and “title” feature, With NT3. ... e e 64

Fact checking with large language models 9

MSc Thesis Koufopoulos loannis-Aris
1 Introduction

Nowadays, the use of the web has become the main mean to obtain and share valuable
information throughout the globe. However, in the last years, there has been an increasing
number of false claims in news, social media, and various web sources. For this reason,
automated fact-checking processes have seen a growing interest throughout various scientific
communities, in domains such as public health, education, politics, business and finance etc.
The use of Al and data driven techniques have emerged and complement the manual task of
fact-checking. Thus, fact-checking organizations embrace those techniques in different ways,
with the promise of accuracy and speed.

In the context of this thesis, we will make use of the word embedding techniques
underlying in large language models (LLMs), for text classification, and thus replacing the
already known NLP approaches. LLMs in particular, have shown remarkable abilities in
comprehending and processing natural language tasks. They also exhibit fluency and
adaptability far beyond natural language processing systems. Therefore, our goal is to make
use of those technologies that are embedded into a large language model’s architecture, to
successfully classify Greek language claims in the form of text, which were harvested from
Greek speaking web sources.

More specifically, the main idea of this study is to utilize an already established pipeline,
which is integrated in the Check4Facts platform. Check4Facts is a fact-checking initiative based
in Greece, launched in June 2022. It was developed through the collaboration of several
institutions, including the National Center for Social Research, the National and Kapodistrian
University of Athens, and the Athena Research Institute, with funding from the Hellenic
Foundation of Research and Innovation. The site initially focuses on fact-checking claims
related to immigration and crime, health, and climate change. This platform’s machine learning
(ML) algorithm lies in gathering web resources (web articles and documents) on an examined
statement and extracting features that quantify the relation between the statement and its
resources, as well as their characteristics. These features serve as indicators upon which the
ML algorithm is trained for deciding whether a statement concerns a valid fact or not [1]. The
current algorithm that was implemented on those grounds and will be analyzed in the next
sections, differs by employing innovative state-of-the-art methods for feature extraction, model
training and classification tasks, as a mean of achieving overall better performance results. The
word embedding models that will be employed, are able to capture semantic relationships and
meanings of text input, by representing them as a vector in a high-dimensional space. Word
embedding models can also successfully surpass traditional NLP limitations such as the inability
to capture complex linguistic relationships and the relatively large quantity of features needed
for simple classification tasks.

Additionally, neural networks and deep learning processes will succeed the machine
learning models and algorithms that were used for classification and fell short in achieving
adequate results in terms of data variance and accuracy. Due to this, a new dataset is also
introduced in this thesis that consists of the claims already used in the Check4Facts pipeline,
with the addition of new claims gathered from Greek language websites. An extensive analysis
of this dataset will be made in the next sections.

The first section of this thesis will present relating research made in various fields of the
automated fact-checking domain, such the standard pipeline system and traditional text
representation methods that translate text into a format that can be later processed by machine
learning algorithms. We also present methods that extract linguistic features from textual
information. Moreover, we present text similarity metrics that measure the degree of relevance
between two pieces of text. Deep learning approaches for text representation are also
demonstrated, along with some benchmark datasets that are utilized to evaluate the
performance of the machine learning algorithms in fact-checking tasks. Finally, we present
research relevant to the integration of LLMs to the fact checking pipeline.

Section three illustrates the methodology that was employed to collect and assemble a
fact-checking dataset that will be utilized to assess the performance of the machine learning
models for text classification. Section four displays technical details and analysis about our fact

Fact checking with large language models

10

MSc Thesis Koufopoulos loannis-Aris

checking pipeline and the basis on which it was developed. It includes details about the
exploration and harvesting of web pages, the construction of textual embedding vectors, and
the utilization of neural networks, to classify the veracity of a claim.

Section five is dedicated to the analysis of the classification results. Different
classification tasks were constructed, aiming to compare the performance of distinct train-test-
validation splits of the final dataset, and with the use of varying feature combinations. Section
six constitutes the conclusion of our thesis, where we summarize our findings and present the
finding as well as the drawbacks that were met during this dissertation.

The primary objective of this thesis is to remodel an already assembled automated fact
checking pipeline, like the one that the Check4Facts platforms offers.

e Enrich the already existing dataset of claims with new ones, that encompass a
variety of subjects such as public health, immigration policies, politics,
entertainment etc.

e The collection of relevant evidence that support or refute a claim will utilize
modern methods and metrics that are usually found in LLMs

e Reorganize the feature generation process. Instead of utilizing traditional
natural language processing tools, we will employ LLM architectures that show
very promising result in capturing linguistic relationships and context.

¢ Introduce new classification models that are well-established in the field of deep
learning and have demonstrated significant success across various domains.
These models are widely recognized their effectiveness and are frequently
utilized in numerous applications due to their promising results and robust
performance.

e Execute various experimentation based on the above. We introduce different
classification task and additionally employ varying sets of features in order to
get a clear understanding of the performance of our models in terms of feature
sets, number of external sources utilized, and model architecture.

Fact checking with large language models

11

MSc Thesis Koufopoulos loannis-Aris
2 Related Work

This section presents related work on automated fact checking approaches with an emphasis
on large language models and machine learning techniques. Additionally, we present various
pipeline implementations on automated fact checking that have emerged in the recent years.
We also emphasize on text similarity metrics and traditional text representation methods, or text
representation with the utilization of deep learning models. The text similarity metrics undertake
the task of comparing pieces of text between them. The text representation methods are
responsible for translating text into a machine-readable format, to be utilized by machine
learning algorithms. Some popular linguistic features are also presented, which were usually
employed by natural language processing tasks in order to extract semantic meaning and
interpret textual information. Finally, we present some of the most common benchmark dataset
in the automated fact-checking domain.

2.1 Automated fact checking pipeline

In its essence, an automated fact checking pipeline includes a series of steps that are taken to
methodically confirm or reject the veracity of a claim that is stated in a form of speech or text.
On of the characteristics that make those pipeline so promising, is the variety of machine
learning and deep learning methods and techniques that are implemented, along with natural
language processing methods. The significant advancements in machine learning and artificial
intelligence, has given us the opportunity to re-evaluate the pipeline approaches on fact-
checking, in a manner that no human intervention would be necessary, and the results
regarding the authenticity of a statement would be satisfactory. In this section, we present the
most important parts in the fact checking pipeline, which are common in all different types of
pipelines.

2.1.1 Claim detection

The first stage in automated fact checking is the detection of arbitrary statements, which are
selected for verification. Detection relies on the concept of check-worthiness. Check-worthy
claims are defined as the claims for which the general public would be interested in knowing the
truth. For example, “over six million Americans had COVID-19 in January” would be check-
worthy, as opposed to “water is wet”. Claim detection can involve a binary decision for each
potential claim, or an importance-ranking of claims. The latter considered a standard practice in
journalistic fact-checking.

Another installation of claim detection is based on rumor detection. A rumor is defined
as an unverified theory or statement that circulated the web, typically on social media. Rumor
detection considers language subjectivity and growth of interest and readership through a social
network. Those rumors are usually found in a form of social media posts, and in the final stages
of this pipeline, a binary classifier determines the authenticity of each of those statements.
Metadata, such as the number of likes and re-posts, is often used as features.

Check worthiness can also be subjective in many cases. For example, the importance
of debunking information relating the COVID-19 pandemic, is not equally important to every
social group. The check worthiness also varies over time, as countering misinformation relating
current events are considered to be more important and is often prioritized over older arbitrary
claims. For example, misinformation about COVID-19 has a greater social impact back in 2021
over misinformation about the Spanish flu. In addition, older rumors may have already been
fact-checked by journalists, reducing their impact. Misinformation that is harmful to marginalized
communities may also considered to be less worthy of a check by the general public than
misinformation that targets the majority of the society. Claims originating from marginalized
groups may be subject to greater scrutiny than claims originating from the vast majority. These
kinds of biases might be reproduced in datasets that document the choices journalists make
regarding which claims to rank highest.

To counter this, [30] introduced a stricter definition of whether a claim is worth checking
or not. If a claim makes an assertion about the world that is verifiable with available evidence,

Fact checking with large language models

12

MSc Thesis Koufopoulos loannis-Aris

then the statement is check-worthy. Claims on the other hand, that are based on opinions or
experiences, are not.

In [35], the research addresses the fact checking sub task of claim check worthiness
detection as a , a text classification problem where, given a statement, one must predict if the
content of that statement makes “an assertion about the world that is checkable. Multiple
variations of this task, as stated above, are rumour detection, check-worthiness ranking in
political debates and speeches, and ‘citation needed’ detection on Wikipedia. Each of those
sub-categories is focused on discovering claims that require additional verification, which is a
common underlying issue. Figure 1 presents examples of check-worthy and non-check-worthy
statements from those three different domains.

- Reviewers described the book as "magisterial,” + ' =
"encyclopaedic,” and a “classic.” =
\ / S
As was pointed out above, Lenten traditicns have — %
developed over time.
+ 142 PEOPLE ON BOARD GERMANWINGS AIRBUS
A320 THAT CRASHED IN SOUTHERM FRANCE | E'
E
e Pray for #4U9525 http:/t.co/lITRIZ4fH -
He thinks that he knows more than our military +
because he claimed our armed forces are "a disaster.” E
5-.
We have to heal the divides in our country. -

L

Figure 1. Examples of check-worthy and non-check-worthy claims

2.1.2 Evidence Retrieval

Evidence retrieval’s main goal is to find information regarding claim, such as various texts,
tables, knowledge bases, images, relevant metadata etc. in order to aid the main fact-checking
objective, to determine a claim’s veracity. Earlier efforts did not make use of extra evidence
beyond the claim itself. Relying solely on the superficial claim patterns, without making any
extra consideration and without the utilization of any kind of features, those approaches failed to
identify well-stated misinformative statements including even machine generated claims. Recent
developments on the domain of natural language processing have aggravated this issue.
Machine generated text is sometimes considered to be more trustworthy than human written
text. In conclusion, evidence is necessary not only to allow for verification but also to produce
verdict explanations that persuade users of fact-checks applications.

Stance detection can be viewed as an instantiation of evidence retrieval, which typically
assumes a more limited amount of potential evidence and predicts its stance towards a claim.
For example, some approaches like [31], used news articles stance as evidence to predict
whether the articles are supported, refuted, or merely reported a claim. Other approaches used
whole documents as evidence in the form of sentences. This, however, introduces a lot of noise
and redundant text data in the classification task, and thus, it is better to filter out sentences
from evidence documents that do not participate in the veracity of a claim.

Another issue is that not all evidence information can be considered trustworthy. Most
fact-checking pipelines collect evidence from trusted sources such as encyclopaedias like
Wikipedia, or results that are harvested from search engines. With this method, veracity is thus
defined as coherence with the evidence, and evidence as information that may be obtained
from this source. For real-world applications evidence must be passed through a human, or a
combination of a human checker, an automated mean, or a combination of both.

Fact checking with large language models

13

MSc Thesis Koufopoulos loannis-Aris
2.1.3 Verdict prediction

Given an unidentified claim as input, along with relating evidence retrieved, the stage of verdict
prediction attempts to determine the veracity of a claim. Binary classifications consist one of the
simplest and most used approaches, that labels a claim as true or false. When evidence is
employed to help in the assessment of a statement, it is preferable to use the labels
supported/refuted by evidence instead of the classic true/false label, since in many cased it has
been observed that the evidence itself are not evaluated by the systems.

Finer-grained classification techniques are used in several iterations of the task. A
straightforward modification would be to add a label indicating that there is insufficient data to
determine whether the claim is true. Moreover, some datasets and pipelines follow an approach
that was implemented for the first time by journalistic agencies, employing multi-class labels that
represent the degree of truthfulness a claim may have (e.g. True, Mostly-True, Partly-True etc.).

2.1.4 Justification Production

The production of justification on the veracity of a claim has always been an important stage in
the fact-checking pipeline. Fact-checkers and fact-checking automated systems need to
convince the reader of their interpretation of the evidence and the steps that were made in order
to reach a logical conclusion. Debunking claims by purely assigning a label to each claim, can
introduce a “backfire” effect where the belief in the false claim is reinforced. This need is most
important in automated fact-checking, where developers generate black-box components along
the pipeline, whose decision-making methods are difficult to comprehend at first glance.

Justification production for a claim verification typically relies on four main strategies.
First, attention weights can be utilized to highlight the noteworthy parts of the evidence. In cases
like this, justifications typically consist of scores for each evidence token. Secondly, decision
making processes can be designed to be comprehendible by human fact-checkers by relying on
logic-based systems like in [9] for example. In this instance, the argument for the claim's
truthfulness usually serves as the justification for its validity. The third strategy is to model the
task as a form of summarization, where systems generate textual explanations of their
decisions [32]. The fourth type consists of situations where certain the model's decision-
making process is self-explanatory. This can be found in large language models for instance.

The basic idea of the justification stage is to show which pieces of text participated in

the verdict of a statement’s validity. However, a justification must also examine how the
retrieved relevant evidence was used and explain any assumptions or commonsense facts
utilized. Finally, the logical process taken to reach a verdict, must be clear and easy to explain.
However, merely presenting the evidence returned by a retrieval system can be seen as a very
basic baseline for justification as it fails to explain the process used to reach a verdict.
Finally, the justification stage differs slightly from evaluation criteria. Robust evidence makes it
easier to produce an accurate verdict. On the other hand, a good justification system accurately
reflects the reasoning of the model through a readable and plausible explanation, regardless of
correctness of the verdict.

2.1.5 Examples of automated fact checking pipelines

For the purposes of this section, we are going to present some pipeline systems that are used
in automated fact-checking, to get a better grasp of how a claim is passed through various
stages of the pipeline, for the final classification model to assess its validity.

In figure 2 [33], we present an example of an NLP pipeline consisting of three stages.
The first one is claim detection, where claims are identified as appropriate for validation. The
second stage is the evidence retrieval stage, where the web is searched for relevant sources
supporting or refuting the claim. The third step is where a claim is assessed in terms of validity,
based on the evidence retrieved. Evidence retrieval and claim verification can sometimes be
considered as the same task. Claim verification can also be divided in two sub-tasks that can be
dealt with separately or jointly: verdict prediction where statements are given authenticity labels;

Fact checking with large language models

14

MSc Thesis Koufopoulos loannis-Aris

and justification production, which calls for the presentation of arguments that support the
model’s decision to assign the corresponding label.

P e e e T

/. O I
! © I
: S = I
O [] 5 o= Verdict Prediction
| — CYNg
1
L] al .
O » 24
1
: Claim Evidence
! Detection Retrieval

e e e o o e

Figure 2. Example of fact checking pipeline

Figure 3 [34] illustrates a comprehensive fact-checking pipeline with the components
mentioned above. It mainly consists of two parts: a claim detection component that searches for
claims that require verification and looks for matches between claims when they are related to
the same fact-check, and a claim validation component that retrieves documents and
justifications that can be used as proof to verify a claim and completes the verification task,
resulting in a verdict. The difference with traditional fact checking pipelines is firstly, the claim-
matching component in the pipeline, and secondly, the rationale detection system. A short
analysis for both is following below.

Claim matching, also referred as identifying previously fact-checked claims. When a
claim is spotted in the claim detection component, claim matching aids in determining whether
this claim exists in a database and secondly, whether it has been resolved in the past by a
previous fact-check. The task is formulated as follows: Firstly, a check-worthy claim is used as
input. Additionally, having a database that consist of already fact-checked claims, it consists in
determining if any of the claims in the database is related to the input. If this is the case, the
new claim would not need fact-checking again, as its validity has been already verified in the
past.

Claim matching is normally considered to be a ranking task, where claims that belong to
the database are ranked based on their similarity to the input claim. This task comes right after
the claim detection step, to determine if a claim has not been seen in the past and can help
avoid the need for a new pipeline implementation regarding a claim that has already been
authenticated.

Rationale selection is a selection method which is utilized in order to select relevant
sentences from the relevant documents retrieved, to get supporting evidence that participate in
the claim’s verification. Rationale selection consists of common natural language processing
technigues, such as keyword matching, sentence similarity scoring and supervised ranking.
Similar to document retrieval, this component of the pipeline attempts to use one of those
methods, or a combination of them, to get a ranking score and select the top-k sentences as
rationale. The parameter k is inserted manually by the user.

Fact checking with large language models

Justification Production

e

1

15

MSc Thesis Koufopoulos loannis-Aris

Claim Detection

: |Chcck—Worlhy Claim Delcctionl :

claims

unmatched

claim ¢

Claim Validation input
Document Retrieval

documents matched

Rationale Selection

rationales

Claim Verification

verdict v +———

Figure 3. Fact checking pipeline with differentiations.

2.1.6 Checkd4Facts pipeline

In this section we intent to present the pipeline used in the Check4Facts?! platform, along with a
brief analysis of various features and components used for the classification task. The
development of this framework established the foundations for the current thesis and thus it is
important to include the previous approach along with its methods in order to get a better
understanding of the methodology presented in the next sections of this study.

The solution to the fact-checking challenge, using Greek statements, include the basic
components presented below. The final goal is to come up with a trained classification model for
the fact-checking task.

e Search Engine: For each statement, Google is queried for relating sources
reporting the statement.

e Harvester: For each resource, the title, the body, the most similar paragraph, and
sentence (w.r.t. the claim) are harvested

e Feature extraction: Extract training features by encoding statements and relevant
harvested data as feature vectors.

e Model selection: Evaluate a series of classifiers in order to find the most accurate
one, as well as its best configuration.

e Model training: Train the best performing classifier using its optimal parameter
configuration on all available training data.

The models are then deployed following the training process, with the goal of
successfully classifying new unseen data. The subsequent part examines the deployment
phase, as:

1 https://check4facts.gr/
Fact checking with large language models 16

MSc Thesis Koufopoulos loannis-Aris

Search Engine: Google is queried for resources related to the test statement.
Harvester: Again. The title, body and the most similar paragraph and sentence of
each resource are harvested (w.r.t. the claim)

Feature extraction: Extract test features with the same manner as in the training
phase.

Classification: Utilize the trained model to get a prediction about the test statements
validity. Input its vector to the model and get a binary verdict.

In the check4facts pipeline, a sentence can be represented with the use of a series of
various features which are useful for the classification task. Those features are generated using
NLP techniques, such as sentiment analysis and pre-trained word vectors. The text inputs that
undergo this procedure are the main statement that will be refuted or validated, the titles of the
web resources, the bodies of the web resources and the most similar paragraph and sentence
found on the web. A web resource consists of the content that was harvested from the web,
when given a claim, that holds relevant information in order to determine a claim’s veracity.

Some of the NLP methods used to translate the text inputs into a format that is
comprehensible for the machine learning models, are presented below. We will not elaborate
extensively on this topic as this is not the purpose of this section.

Word embeddings: A model available on spaCy which is pretrained on the Greek
corpus offers embeddings of high quality. The acquired embeddings are of size
three hundred.

Similarity feature: A function is implemented that computes the semantic similarity
between an input sentence and a statement utilizing the corresponding spaCy
embeddings. This feature ranges from 0.0 to 1.0 denoting entirely dissimilar or
equivalent input pairs respectively.

Subjectivity score: This feature represents an overall subjectivity score for input
text, expressing how objective or subjective it is.

Objective terms: Represents the number of objective terms in the input text.

Subijective terms: This is symmetrical to the previous feature but w.r.t the subjective
terms.

Polarity score: This feature assigns an overall polarity score to input text,
expressing how positive or negative its sentiment is.

Negative terms: Represents the number of negative terms in the input text.

Positive terms: This is symmetrical to the previous feature but w.r.t the positive
terms.

Emotion scores: Information about a specific emotion as well as its intensity is
extracted with the use of a Greek lexicon. There is an intensity scale for a series of
basic emotions. These emotions include ‘Anger’, ‘Disgust’, ‘Fear’, ‘Happiness’,
‘Sadness’ and ‘Surprise’. Each term of the lexicon is annotated for each of those
emotions by four annotators, where annotations are integer values between 1 and
5, indicating the intensity of the emotion the term expresses. Emotion scores are a
series of minimum, average and maximum values, regarding each emotion, for a
specific text.

Emotion terms: This feature produces an integer value, which responds to the
number of input terms annotated of expressing an emotion e. Terms that count
towards this feature are matched inputs terms that have a mean emotion e score
greater than a defined threshold t, constituting a hyperparameter in our setting.

Fact checking with large language models

17

MSc Thesis Koufopoulos loannis-Aris

The classification algorithms are demonstrated below:

e Naive Bayes: The Naive Bayes classifier models the probabilistic relationship
between the training characteristics and each class by operating on top of the
posterior probabilities as outlined in the Bayes theorem. More specifically, the
algorithm determines which class has the maximum posterior among them by
computing the posterior probability for each accessible class given the attributes of
a new test sample.

e K-Nearest Neighbors: KNN is a non-parametric classifier that works by firstly
computing the distances between data point that is to be classified and all available
training data and identifying a specified number of data points (K) closest to it. The
term "nearest neighbours" refers to these data points. Next, among the class labels
of its neighbours, it assigns the sample to the most common class label.

e Logistic Regression (LR): A logistic function is used in the logistic regression (LR)
statistical model to represent a dependent variable that is binary. This is
accomplished by utilising maximum-likelihood estimation and learning the model's
coefficients from training examples. In terms of input, the LR model merely models
the probability of output. On the other hand, by selecting a threshold value and
categorising samples according to their matching probability value, it can be utilised
as a binary classifier.

e Support Vector Machines (SVM): The SVM classification technique maximises the
distance between examples that correspond to various class labels by mapping
training examples to data points in space. This is accomplished by identifying an
optimal discriminative surface during the algorithm's training phase. New test
examples are then mapped into the same space and their class label is predicted
this correspondence to this surface.

e Multi-layer Perceptron (MLP): MLP is considered the most common type of neural
network. It seeks to minimise the classification error by determining the weights
between its connected neurons so that the classification error is minimized. The
process of classifying a new test sample involves feeding its feature representation
into the perceptron's input, which is tasked with predicting its class label.

o Decision Trees (DT): DT is a classification technique that makes use of a decision
tree structure to predict a sample's label based on observations of it. Class labels
are represented by leaves in these tree structures, and feature conjunctions that
result in those class labels are represented by branches.

e Random Forests (RF): RF is a classification ensemble learning technique that
works by building a large number of decision trees during training. These decision
trees are applied to new test cases, each of which predicts a class label. New
samples are classified by the algorithm according to the majority class label among
the predictions of each individual tree. It is also known that the RF technique can
mitigate the overfitting predisposition of simpler decision tree algorithms.

e Extratrees (ET): The ET algorithm is a classification technique related to Random
Forests (RF). It operates by fitting multiple randomised decision trees (also known
as extra-trees) on different subsamples of the training instances. Averaging is used
to increase prediction accuracy and manage overfitting.

2.2 Language model-based fact verification

In the digital age, swiftly spreading misinformation necessitates not only the verification of
claims but also the provision of clear explanations for these verifications. Such explanations are

Fact checking with large language models

MSc Thesis Koufopoulos loannis-Aris

crucial for building trust within the audience, as lack of them often leads to distrust in fact-
checking results. For this reason, large language models have drawn significant attention due to
their outstanding reasoning capabilities and extensive knowledge repository, positioning them
as superior in handling various natural language processing tasks compared to other language
models. In previous sections, we covered the basis of fact-checking pipeline components. Here,
we aim to present related work in terms of integrating the LLM model into various stages of the
fact-check pipeline. This section presents research made in that direction.

2.2.1 Language models for general fact-checking subtasks

The study conducted in [44], aims to evaluate various large language models in tackling some
basic fact-checking subtasks. In general, experiments demonstrated that LLMs achieve superior
performance against pre-trained and state-of-the-art low-parameter models in most cases.
However, they encounter challenges in handling Chinse fact verification tasks and the
corresponding fact-checking pipeline due to language inconsistencies and hallucinations.

In order to examine the performance of LLMs on fact-checking tasks, LLMs were
utilized to solve the task of each component in the pipeline, and ultimately the whole pipeline.
The first step was the design and selection of proper prompts for each task both manually and
automatically. Data was then preprocessed to fit the prompts and to conduct the experiments.
The framework for the evaluation process is displayed in figure 4. Figure (a), (b), and (c) are
frameworks of our experiments in Check-worthiness Detection, Fact Verification, and
Explanation Generation tasks, respectively. Figure (d) denotes the pipeline Fact-Checking task
in detail.

LLMs like ChatGPT were utilized to generate several prompts and templates for each
task. Figure 5 shows the some of the prompts designed for each task. To evaluate the
performance of LLMs on each subtask of fact-checking, three validation sets of fact-checking
benchmarks were employed.

The result of this research was that the LLMs are capable of effectively dealing with the
fact-checking subtasks effectively. They can comprehend the requirements of each task and
leverage their knowledge to solve them to some extent. Additionally, LLMs are able to retrieve
relevant and meaningful evidence by themselves to verify the truthfulness of claims to some
extent, and although there are still some challenges that are presented, such as hallucination.
The outputs of LLMs are not always in the expected format, which is a big challenge when it
comes to evaluating the results, especially for classification tasks. It has also been observed
that LLMs are better at dealing with English data, but the face challenged when it comes to
handling data in other languages, such as Chinese.

Fact checking with large language models

19

MSc Thesis

Check-worthiness Detection

Prompt: The claim is given in the
form 'Claim: [claim], Answer:
[Answer]'. You need to give an
answer in the [Answer] slot. There
are two available answers that you
can choose to fill the slot: Yes, or
Ne.
Examples:
Claim: [In a letter to Steve Jobs,
Sean Connery refused to appear in
an Apple commercial], Answer:
[Yes].

ere is the question:

Examples:

Answer: [Supported]

(b)

| T - - e e === === ===

Fact Verification

Prompt: The claim is given in the
A [form ' Claim: [claim], Evidence:
[evidence], Answer: [Answer]'.
... you can choose to fill the slot:
Supported, Refuted, Irrelevant.

Claim: [More than 225,000 people
dead, 225,000. The ...],
Evidence: [In the wake of the U.5.
response, 117,858 Americans ...],

re is the question:

Koufopoulos loannis-Aris

Explanation Generation

Prompt: The claim is given in the
form 'Claim: [claim], Evidence:
[evidence]," ... be consistent with
the given evidence

Examples:

Claim: [More than 225,000 people
dead, 225,000 ...],

Evidence: [In the wake of the

U.5. response, 117,858 ...],

Label: [Supported],

Justification: [It seems that

indeed the numbers are true]
re is the question:

(c)

Label

Check-worthiness
Detetion

Fact Verification

Explanation Generation

Claim

N

Evidence
(d)

Figure 4. Fact checking pipeline with an intergated LLM

Prompts for Check-worthiness Detection

Prompt 1: The claim is given in the form ‘Claim: [claim], Answer: [Answer]' You need to
answer in the Answer slot. There are two available answers that you can choose to fill the
slot: Yes or No

Prompt 2: The claim is given in the form 'Is [Claim] a verifiable statement? Answer:
[Answer]. You need to answer in the Answer slot. There are two available answers that
you can choose to fill the slot: Yes or No.

Prompt 3: The claim is given in the form 'Is the claim that [Claim] check-worthy? Answer.
[Answer]. You need to answer in the Answer slot. There are two available answers that
you can choose to fill the slot: Yes or No

Prompts for Fact Verification

Prompt 1: The claim is given in the form ‘Claim: [claim], Evidence: [evidence], Answer
[Answer]. You need to give an answer in the [Answer] slot. There are three available
answers that you can choose to fill the slot: Supported, Refuted, Irrelevant

Prompt 2: The claim is given in the form 'Is the provided evidence that [evidence]
supported or refuted or irrelevant to the given claim that [claim]? Answer: [Answer]'. You
need to give an answer in the [Answer] slot. There are three available answers that you
can choose to fill the slot: Supported, Refuted, Irrelevant.

Prompt 3: The claim is given in the form The given claim is [claim], and the provided
evidence is [evidence]. Is the claim supported or refuted by the evidence? Answer:
[Answer]. You need to give an answer in the [Answer] slot. There are three available
answers that you can choose to fill the slot: Supported, Refuted, Irrelevant

Prompts for Explanation Generation

Prompts for Pipeline Fact-checking

Evidence: [evidence], Label. [label], Justification: [justification]'. You need to give an
explanation about how the label is predicted by the given evidence in the [justification]
slot. The generated explanation should be ¢ with the given

Prompt 2: The claim, evidence, and their relation are given in the form that The given
claim that [claim] is [relation] to the evidence that [evidence]. Please generate a snippet of
justification to explain how the relation is extracted: [justification]' You need to give an
explanation about how the label is predicted by the given evidence in the [justification]
slot. The generated explanation should be consistent with the given evidence.

Prompt 1: The claim, evidence, and their relation are given in the form that 'Claim: [claim],

Prompt 1: Now you are a fact-checker to predict the verdict of the given claim by
retrieving evidence. You need to first give evidence to predict the label of the claim, then
predict the verdict of the claim, and finally give an explanation of why you made this
prediction. At the prediction stage, if the claim is supported by the evidence, please
answer 2; if the claim is refuted by the evidence, please answer 0; if you cannot find the
evidence, please answer 1. Here is the claim: Claim: [claim]

Figure 5. LLM made prompts for each fact checking stage.

Fact checking with large language models

2.2.2 LLMs for the claim-matching stage of fact-checking

In [47], the study explores the potential utilization of large language models to support the claim
matching stage in the fact-checking procedure. It further supports that when fine-tuned
appropriately, LLMs can effectively match claims. The framework that they proposed, called
FACT-GPT, could benefit fact-checkers by minimizing redundant verification, support online
platforms in content moderation, and assist researchers in the extensive analysis of
misinformation from a large corpus. In figure 6, we present an overview of the framework, aimed

20

MSc Thesis Koufopoulos loannis-Aris

at assisting the claim matching stage in the fact-checking pipeline.

O @ SYNTHETIC TRAINING DATA

H CLAIMS DEBUNKED BY FACT-CHECKERS
Vaccinated People Emit Bluetooth Signals B a m @ @
m 0@ 0@ 0O 0P 0/ 06 0O
1 e
° ° GENERATED POSTS BY GPT
crazy day, I'm fully vaccinated and now apparently I'm a walking |
@ 8luetooth signal! Get connected, folks! #vaccinesluetooth
A SMALLER

Which of FINE-TUNED GPT

the following

f \ best describes *
REAL-LIFE POSTS the relationship -
omg my dad got vaccinated yesterday between
and I just connected him to bluetooth , §3® s

Figure 6. lllustration of the usage of a LLM during claim matching

? &
il R4

As the above figure suggests, a small LLM was fined-tuned on synthetic training data
that are that are generated from LLMs, with the help of a dataset made of false debunked
claims by professional fact checkers, regarding the COVID-19 pandemic. The fine-tuned
model’s main purpose was to be evaluated in the textual entailment task, in a real-life dataset
consisting of twitter posts. Textual entailment involved categorizing relationships between pairs
of statements into three unique classes: Entailment, Neutral, and Contradiction. A pair is
classified as Entailment if the veracity of Statement A inherently implies the truth of Statement
B. The pair is labeled as Neutral if the truthfulness of statement A doesn’t affirm or deny
statement B’s truth. It's identified as Contradiction if Statement A’s truth infers that Statement B
is false.

In conclusion, the research demonstrated that LLMs have the capacity to comprehend
entailment relationships between social media posts and debunked claims. Small, fine-tuned
LLMs can also perform in the same levels as larger models can, thereby offering a more
accessible and cost-effective solution without decreasing the degree of quality. On the other
hand, the drawbacks reported in categorizing posts that contradict already debunked claims.

2.2.3 LLMs in the justification stage of fact-checking

While large language models excel in text generation, their capability for producing faithful
explanations in fact-checking remains underexamined. [46] investigates LLMs’ ability to
generate such explanations. They propose a method framework called Multi-Agent Debate
Refinement (MADR) which employs multiple LLMs as agents with diverse roles in a process
aimed at enhancing faithfulness in generated explanations.

MADR utilizes the debate for generating feedback to be employed in subsequent
refinement stages (debate methodology is defined as the process where multiple language
model instances or agents individually propose and jointly debate their responses and
reasoning processes to arrive at a single common answer).

The advantages of this method are the valid identification of errors, the generation of
accurate feedback, and lastly, the thorough analysis of explanations both with and without
knowledge of predefined error types, that produces an explicit rationale.

2.2.4 LLMs as knowledge bases stage of fact-checking

In this section, we are going to analyze the use of language models as knowledge bases in the
already established fact checking pipeline. Unlike previous knowledge, we describe language
models as a component that can be used in earlier pipeline steps. Until recently, traditional fact-
checking pipelines accessed additional knowledge needed for the determination of a claim
validity, via external knowledge bases (i.e., Wikipedia). They also made use of additional
modules such as document retrievers and evidence selectors for retrieving the appropriate

Fact checking with large language models

21

MSc Thesis Koufopoulos loannis-Aris

evidence and verification data that are then summarized in {claim, [evidences]} pairs and
predict a final verification label. In [7] , The proposed pipeline replaces external knowledge
bases as well as the use of additional modules with a pre-trained language model, named
BERT.

The main idea of this study is as follows:

e Mask a token from the claim depending on the component of the claim we wish to
verify. For example, the claim “Thomas Jefferson founded the University of Virginia
after retiring” becomes “Thomas Jefferson founded the University of [MASK] after
retiring.”

e Get the predicted token from the language model. In this case, the predicted token
was “Virginia.”

e If the predicted token matches the masked token, then the claim is supported.
Otherwise, it is not.

The pipeline steps of this method, comes across two limitations. Manual masking of
claims and naive validation of the predicted token that fails to deal with synonyms and other
semantic variants of the answer. To solve those, two pipeline steps were introduced:

e Automated masking: The last-named entity in the claim is masked, which is identified
using a Named-Entity-Recognition model (NER) from spaCy. The decision to mask
named entities is to ensure that the token masked utilizes the knowledge embedded in
language models.

e Verification Using Entailment: To advance through naively matching predicted and
masked tokens, a textual entailment model is employed to validate the LMs predictions
as the third step above suggests. Textual entailment models predict the directional truth
relation between a text pair (i.e., “sentence an entails b” if a human reading a would
infer that b most likely true).

Detailed steps for the end-to-end model are as follows:

e The last-named entity of the claim (which was retrieved by the NER model) is
masked.

e The language model produces the predicted token and fills the masked claim
accordingly to produce the “evidence” sentence.

e Using outputs from the final layer of the pretrained entailment model, entailment
features are extracted using the generated "evidence" phrase and the claim.

¢ Input the entailment features into a multi-layered perceptron (MLP) for final fact-
verification prediction.

The results reported in this study, suggest that masking techniques as the one
previously examined, provide better results for extracted encoded knowledge stored in LMs.
Another insight is that the way the claims should be masked is significantly determined by the
LMs' pre-training. Additionally, language models used as sources of information for fact-
checking, are as effective as standard baseline models. Although this experiment is not enough
to beat the state-of the-art traditional pipelines, this approach shows strong potential for
improvement and future work can explore stranger models for generating evidence or improving
the masking methods.

2.2.5 Self-Checker

In [45], a new plug-and-play framework was introduced named Self-Checker, which has the
ability to harness LLMs for efficient and rapid fact-checking in a few-shot manner. The results of
this study revealed promising result for the use of large language models in fact-checking.
When this framework is compared to state-of-the-art fine-tuned deep learning models, there is
still room for improvement. Nevertheless, adopting an LLM approach could be a step to the right
direction for the future of fact-checking research.

Fact checking with large language models

22

MSc Thesis Koufopoulos loannis-Aris

Self-Checker is a training-free framework and contains a set of plug-and play modules.
A claim processor, query generator, evidence seeker, and verdict counselor. The illustration of
Self-Checker is depicted in Figure 7. It is designed to assess the factuality of textual inputs and
employs a policy agent that makes decisions about future actions based on a set of choices.
Each of his modules is implemented by prompting an LLM through prompts that have been
constructed in detail for this purpose.

Self-Checker

LLM | :
Response Claim Query
Processor Generator
[Ceeemsmessmsoao i
! Knowledge fT, 1;
' Source] SN
' @ B e Policy Agent
1 2 = : [
[Web Dotabase ¢ J
) Verdict Evidence
Veracity Counselor Seeker
Result

Figure 7. lllustration of the Self-Checker pipeline

The frameworks components are shortly explained below:

e Policy agent: This module determines the future actions of the system, given a
set of predefined actions. These actions include: (1) calling the claim processor
to process the complex input, (2) requesting search queries from the query
generator, (3) retrieving relevant passages from a knowledge source based on
the generated search queries, (4) utilizing the evidence seeker to extract
evidence sentences for a claim from the retrieved passages, (5) requesting the
verdict counsellor to provide a verdict prediction based on the gathered
evidence, and (6) sending the final conclusion to the users.

e Claim Processor: This component is responsible for identifying claims for
verification from the input text. Making use of the text generation capabilities of
LLMs, we define the task of obtaining a set of claims to verify as a generation
task. Given a text t as in put, the claim processor generates a set of claims {c1,
c2, ..., cm} that are included in t and need to be verified. If a specific claim for
verification has been provided, the claim processor can also break it down into
a set of simpler claims. Every generated claim should represent the same
information as the original input, which needs to be confirmed.

e Query Generator: In order to verify a claim, it is essential to retrieve relevant
information from an external knowledge source. Given a claim c, the query
generator prompts an LLM to generate a set of search queries q = {q1, g2, ...,
gk} for the purpose of information retrieval. These generated queries are then
used to obtain relevant passages {pl, p2, ..., pk} from a knowledge source.

e Evidence Seeker: The evidence seeker aims to identify evidence sentences for
a given claim from the retrieved passages. Given a claim ¢ and the set of
retrieved passages {pl, p2, ..., pk}, the evidence seeker returns a set of
selected sentences {s1, s2, ..., sn} that indicate the veracity of the claim. Again,
for this task, an LLM is carefully prompted with task instructions, the claim, in-

Fact checking with large language models

MSc Thesis Koufopoulos loannis-Aris

context examples and retrieved passages.

e \Verdict Counselor: The primary objective of the verdict counselor is to analyse
the set of claims that are under examination, along with the corresponding
evidence sentences for each claim. This module is responsible for predicting
the veracity of the entire set of claims. By examining the relevant evidence per
claim, the verdict counselor determines the authenticity of each claim and
assigns a label, such as supported, partially supported, or refuted. The labels
are then aggregated to obtain the final result of the entire set. The veracity
labels used by the verdict counselor are predefined (supported/partially
supported/not supported/refuted). To accomplish this process, an LLM is
prompted with specific instructions.

2.2.6 Hiss Prompting method

Previous approaches regarding fact verification with the use of language models (PLMs), have
made use of pretrained language models in fake news related tasks. For example, in [2] there is
a direct use of the PLM’s internal knowledge for fact verification. The knowledge base is stored
as a parameter inside the model. In [3], the authors implement a retrieval-augmented support to
endow language models with document retrieval capability, which applies for selecting relevant
evidence in fact extraction and verification. Other approaches as presented in [4] utilize LLMs
and their few-shot capability to assess the claim’s factuality based on the perplexity of evidence-
conditioned claim generation. The main limitations of claim verification with the use of LLMs, are
the omission of necessary thoughts and fact hallucination. For these reasons, the authors in [5]
propose a Hierarchical Step-by-Step prompting method. The main idea behind this is to direct
the LLM to separate a claim into several subclaims and then verify each of them via multiple
guestions answering steps progressively.

In order for the limitations mentioned above to be exceeded, this method prompts LLMs
to thoroughly generate all explicit and implicit points that are check-worthy given a certain claim.
Moreover, hallucinations are also addressed that way, by providing relevant and up-to-date
contextual information to LLM as external knowledge, assuming that hallucinations are most
likely a result from the lack of knowledge on the necessary context.

The first stage if HiSS, is to focus on instructing the model to capture all the explicit
points in the original claim and decompose them into subclaims. Specifically, LLM is prompted
with various verification examples, to illustrate the entire verification process, followed by the
test claim to be checked. The demonstration examples exhibit to LLM hot to break down a claim
into a series of subclaims, that cover all check-worthy points expressed. The demonstration
examples vary in their complexity, with some claims undergoing deep decomposition and more
complex claims being decomposed into a few more subclaims. The LLM follows the
demonstrated decomposition approach in accordance with the complexity of the input claim.
Therefore, the total number of subclaims is determined by the LLM automatically.

In the second stage, the model verifies each subclaim that was generated from the
previous step. In particular, the model produces a series of probing questions corresponding to
an implicit point in a subclaim. The number of the probing questions is also determined by the
LLM in accordance with the demonstration example. To generate the questions, a progressive
approach is implemented, in order to adjust the subsequent question generation based on the
answers to previous questions and the newly acquired information. As these questions get more
focused and in-depth, the probing inquiries make it easier to analyse the subclaims thoroughly.

The next stage after creating a question is to get the relevant response from LLM. To
mitigate fact hallucination, LLM is asked whether or not it possesses the required confidence to
answer a question. The answer can be positive or negative. In case of a negative answer,
relevant external information is gathered from the web. The model will cease to further generate
an answer for a question and wait for the user to input the necessary information that was
acquired from external sources. If the answer is positive, the model does not pause and
proceeds to generate an answer to a question.

Fact checking with large language models

24

MSc Thesis Koufopoulos loannis-Aris

Following the verification of each subclaim, the LLM is able to provide a final estimate.
At this point, it outputs a claim label, classifying the latter with a corresponding label from a
corresponding dataset.

2.3 Language model-based claim detection on non-English language

This section investigates to what extent pre-trained language models can be used for
automated claim detection for fact checking in a low resource setting, which is a very common
scenario for non-English fact-checking domains. Although [6] does not cite fact checking
classification methods and tools, to assess the veracity of a claim, it is important to delve
deeper into foreign language domains, to get a clearer understanding of a language model’s
comprehensive ability to classify claims in languages other than English.

Other attempts of claim detection in languages other than English have also been
conducted. ClaimRank for example, is a claim detection system that supports both Arabic and
English. In previous sections, we concluded that LLMs often struggle in managing data written
in languages other than English, like Chinese.

2.3.1 A case study using Norwegian Pre-Trained language models

The purpose of this study is to conclude that large language models could be successfully
employed to solve the automated claim detection problem. The choice of the model is
dependent on the desired end-goal, but the overall analysis shows that the language models
are less sensitive to changes in claim length than the SVM model.

The first stage of the pipeline is to fine-tune a series of models on a small dataset from
a Norwegian non-profit fact-checking organization. The claims of the dataset consist of claims
manually annotated with labels reflecting their check-worthiness. Following a preprocessing
stage, the final dataset includes 4116 claims, across six different labels. These labels are
produced during a fact-checking procedure. For a claim to be considered for fact-checking, it
must be supported by corresponding information; it should not contain any kind of normative
statement or prediction about the future. A claim should also be relevant to the majority of
people and controversial to some extent.

Moving forward from this point, a binary classification is defined, with the labels

“Discarded” and “Upheld”. “Discarded” class refers to claims that have been rejected and there
is no further need to investigate its validity. The “Upheld” class on the other hand, refers to
claims that have been deemed suitable for a fact-checking procedure. The first class has 2810
claims, whereas the second class contains 1306.
As mentioned above, for the classification purposes, a series of models were fine-tuned using a
TensorFlow-based model for sequence classification from the HuggingFace transformers
library. The baseline model is a SVM classifier with tf-idf features implemented using Scikit-learn
library.

Results from this study suggest that all the language models were superior to the
baseline system in terms of F1 score. For the case of precision, the baseline system
outperforms the LMs, but recall and F1 are extremely poor. Another significant reflection of the
result the performance of the NorBERT2 model in terms of recall. Overall, the LMs surpass the
SVM model in terms of performance. The study also suggests that choosing the right language
model depends on the specified task. For example, having different priorities like high recall
score or overall performance, may lead one to select an alternative model.

Lastly, this research comes with certain limitations. The behaviour of the models for
instance, might be affected by the skewed distribution of classes in the dataset, where the
majority class exceeds the minority class by more than twice its number. Future work is needed
in terms of reproducing the results and conducting further analysis, but nonetheless, the
findings of this experiment were encouraging and showed promising results for the future
endeavours.

Fact checking with large language models

25

MSc Thesis Koufopoulos loannis-Aris
2.4 Traditional text representation methods

Previous work regarding text representation methods have been implemented with the use of
external sources from the web. In [13], the text representation is built from a claim and the
corresponding relevant snippets and web pages. After calculating three similarities between the
claim and the snippet or claim and the web page. The embeddings of the text are then
calculated based on the average of the embeddings of its words, with the use of pre-trained
embeddings.

Other, more limited approaches include subject-predicate-object triples obtained by
information extraction [10]. The most common example is (Obama, born in, Kenya) where
“Kenya” is the critical value. The assumption of such a structure is particularly important to
identify alternative values for the slot in question (e.g., “Hawaii”, “America”). However, these
approaches cannot manage many sorts of claims, which are often in the form of long sentences

or entire paragraphs.

Another approach is the use of knowledge graphs, which provide a collection of
structured canonical information about the world, in a machine-readable format. The main idea
is to identify and retrieve the element in the graph that provides the information supporting or
refuting the claim at question. Once the relevant triplet is found, the classification label is
computed through a rule-based approach that considers the error between the claimed values
and the retrieved values from the graph. However, the assumption that the true facts relevant to
the claim are present in those graphs, is not always the case [16]. One alternative approach is
to consider the graph topology in order to predict how likely a claim that is expressed as an
edge to a graph is to be true [11].

Recent studies, like [1] made use of word embeddings with the intention of representing
text in an n-dimensional space that modifies human language into a machine comprehensible
vector. This numerical valued vector that is generated, is able to capture the text's morphology
and syntax and semantic information about the text.

In this section, we will examine some of the most common and traditional methods that
translate text into a series of numerical features that can be calculated directly.

2.4.1 Bag-of-words models

The basic idea of the bag-of-words model that were implemented in relating research, is to
represent text as a series of words without considering the order in which those words appear
on the text. Those method include BOW (bag of words), TF-IDF (term frequency-inverse
document frequency), LSA (latent semantic analysis) and more. The most popular model among
them, are presented below:

BOW: In simple terms, bag of words utilizes a technique known as count vectorization.
In its essence, with this method we are able to represent pieces of text by counting the number
of words that appear on this text, regarding a vocabulary, which encompasses a vast collection
of unique words. Despite its limitations, such as the model's negligence for the word ordering,
high dimensionality issues and the sparsity of the vectors produced, bag of words is a
foundational technique that serves as a baseline for more advanced methods in text analysis.

TF-IDF: TF-IDF is able to resolve the limitations that are immersed from the bag of
words model. It is an extension of the previous model that weights the terms based on their
importance across the entire corpus. Calculation of the TF-IDF score (or weight) for each word
in the document is as follows:

tf_idf(w,d,D) = tf(w,d) x idf (w,D)
where:
tf (w,d) = Freq(w,d)

D]

idf (w,D) = log Nw)

Fact checking with large language models

26

MSc Thesis Koufopoulos loannis-Aris

Freq(w,d) is a function that counts the frequency of a word in a document, |D|
indicates the total number of documents, and N(w) represents the total number of documents
that the word w appears in. There is a TF-IDF representation for all the words in the document,
and the number of words is equal to the number of words represented by TF-IDF.

2.4.2 Shallow Window-Based Methods

The shallow window-based methods differ from the bag of word model approaches in an
important way. The bag of word models fails to capture the semantic distance between words.
By generating word vectors via shallow window-based methods, we initialize a fixed-size
"window" of words around each target word, capturing local context. Its features are based on
co-occurrences of words within these windows, capturing more semantic information about how
words are used in relation to one another. Shallow window-based approaches can solve the
issue of dimensionality limitations and lack of semantics caused by the bag of words techniques
because of the independence that is introduced with each word. In this section we are going to
present the most popular implementations of this approach.

Word2Vec: Word2Vec consists of a combination of two related model architectures that
are used to produce word embeddings. The first one is named CBOW architecture, and predicts
the current word based on the context. The second one is named the Skip-gram architecture,
and it predicts surrounding words given a current word. These embeddings generated by this
method are dense vector representations of words in a continuous vector space, where
semantically similar words are mapped to nearby points.

The first architecture is called CBOW (Continuous bag of words model). With the use of
CBOW, all words get projected into the same position (their vectors are averaged). This
architecture is called bag of words, as the order of the words does not influence the projection.
In addition, this model also utilizes words from the future. This model is also named continuous,
because unlike standard bag-of-words models, it uses continuous distributed representation of
the context [27]. In simple terms, the CBOW takes as input (when given a window size) a
collection of words surrounding the target word. This collection is then one-hot encoded and
averaged in the hidden layer, to form a single vector representation.

In terms of output, there is a layer that consists of a softmax function, that predicts the
probability distribution over the entire vocabulary. The word with the highest probability is the
model's prediction for the target word. The model is trained to minimize the cross-entropy loss
between the predicted probability distribution and the actual one-hot encoded target word.

The Skip-gram model is similar to CBOW, but instead of predicting the current word
based on its context, it tries to maximize the classification of a word based on another word in
the same sentence. Specifically, this model takes advantage of each current word as an input to
a log-linear classifier with a continuous projection layer and predicts words within a certain
range (equal to the window size) before and after the current word. As the window size
increments, it leads to an improvement in the quality of the resulting word vectors, but it also
increases the computational complexity. Since the more distant words are usually less related to
the current word that the ones closer to it, this model assigns a smaller amount of weight to
distant words by sampling less of those words during training.

In figure 8, we present the two model’s architectures. As already stated, the continuous
bag of words (CBOW) architecture predicts the current word based on the context, and the skip-
gram predicts surrounding words given the current word.

Fact checking with large language models

27

MSc Thesis Koufopoulos loannis-Aris

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2) w(t-2)

w(t-1) wit-1)
\SUM
/‘)—r w(t) w(t) ’—»

w(t+1) wit+1)

w(t+2) w(t+2)

CBOW Skip-gram

Figure 8. Word2Vec architecture

GloVe: All unsupervised methods for learning word representations rely on the statistics
of word occurrences in a corpus as their primary source of information. While many relevant
methods are currently in use, it is still unclear how meaning is derived from these statistics and
how the resulting word vectors might represent that meaning. That was the main reason that a
different model for word representation is introduced, which is called GloVe. GloVe stands for
Global Vectors, because the global corpus statistics are captured directly by the model [28].

The basis of GloVe stems from the domain of global word frequency statistics, which
explains the semantic information of words by modeling the contextual relationship of words. Its
core idea is that words with similar meanings often appear in similar contexts. It takes
advantage of co-occurrence matrices A ,where each element 4;; in this matrix represents how
often aword j appears in the context of a word i.

In simple words, the main goal of GloVe is to learn word vectors in a manner that their
dot product will eventually equal the logarithm of the words' probability of co-occurrence. This is

achieved by minimizing the following cost function:
14

i,j=1

Where w; and w; are the word vectors for the target and context words, b; and B; are the
bias terms, and f(Xl-]-) is a weighing function that mitigates the influence of rare and frequent

co-occurrences. The weighing function is presented below, where X,..and a are
hyperparameters.

Xmax
1, otherwise

BERT: Bidirectional encoder representation from transformers or BERT, is a state-of-
the-art natural language processing model. One of its primary uses is to generate rich,
contextualized representations of text that can be used for a variety of natural language
processing tasks. Its main innovative technique is based on the pre-training approach which
includes masked language modeling (MLM) and next sentence prediction (NSP) which can
capture a text’s expression and predict the next sentence of a text, respectively. With MLM, the
goal is to mask some words in a sentence and let the model to learn how to predict these
masked words. With NSP on the other hand, the model learns to predict if a given sentence pair
is consecutive.

Fact checking with large language models

28

MSc Thesis Koufopoulos loannis-Aris

Unlike traditional models, that read text sequentially, BERT is bidirectional in nature.
This means that BERT has the ability to read the entire sequence of words simultaneously from
both directions, allowing it to capture a richer context for each word, improving the modules
comprehension abilities of language and relationships between words.

Fine-tuning is straightforward since the self-attention mechanism in the Transformer
allows BERT to model many downstream tasks— whether they involve single text or text
pairs—by swapping out the appropriate inputs and outputs.

BERT comes in different sizes, primarily BERT-Base and BERT-Large. BERT-Base has
12 layers, 768 hidden units, and 110 million parameters. BERT-Large has 24 layers, 1024
hidden units, and 340 million parameters.

In figure 9 we present the model’'s architecture. BERT representations are jointly
conditioned on both left and right context in all layers [29].

T1 T2 TN

Figure 9. Berts model architecture

2.4.3 Knowledge graphs

Knowledge graphs representation has one main function. To project entities and relationships in
the knowledge graph into continuous low-dimensional vector spaces through machine learning
technology, while maintaining the basic structure and properties of the original knowledge
graph. Moreover, the learning process takes under consideration the knowledge graph’s global
and local properties. In simple terms, the resulting entity and relation vector is a representation
that carries semantic features, which can express semantic information efficiently.

A knowledge graph consists of entities, relationships, and triples. Entities are the nodes
of the graph, which compose the network. They represent real-world objects, concepts, or
things (e.g., "Barack Obama," "USA President"). Relationships are the edges of the graph which
demonstrate the connections between entities (e.g., "Barack Obama" is the "President of" the
"USA"). Triples are (subject, predicate, object) collections, also known as SPO triples. For
example, ("Barack Obama", "was born in", "Hawaii"). Finally, an ontology specifies the kinds of
interactions that can exist in a graph, defining the schema or structure of the knowledge

network.

Knowledge graphs were very popular when they first emerged. They made the task of
extracting structured data from unstructured data simpler, they provided a better comprehension
of the links and context found in the data and had scalability potentials. Nowadays, its high
maintenance and scalability costs, along with entity disambiguation shortcomings, resulted in
the employment of alternative approaches other than knowledge graphs.

Fact checking with large language models

29

MSc Thesis Koufopoulos loannis-Aris
2.5 Text similarity metrics and techniques

In this section, we are going to present the most popular similarity techniques that are utilized to
measure the relevancy between two pieces of text. It is crucial to choose a metric that is robust
to high dimensional text embedding vectors, and also cost-effective, since this metric is going to
be used multiple times, considering the fact that we have to deal with hundreds of claims.

In general, similarity is defined as the commonness between two text snippets. The
greater the commonness, the higher the similarity and vice versa. Text similarity is an essential
tool in many natural language processing tasks. Various measures of text similarity techniques
have been proposed over the years. Most researchers divide text similarity measurement
methods on the basis of statistics or corpus and knowledge bases, such as Wikipedia [25]. This
categorization ignores the text distance calculation method, and only considers the
representation of the text. In the recent years, the development of neural networks, have paved
the way for other approaches such as semantic matching methods and graph methods. Text
similarity not only accounts for the semantic similarity between texts but also captures the
shared semantic properties of two words. For example, the words ‘King’ and ‘man’ may be
related closely to one another, but they do not share semantic similarities. The words ‘King’ and
‘Queen’ on the other hand do. Thus, when we observe sematic similarity between words, we
can safely assume that those words are related semantically. The semantic relationship
including similarity is measured in terms of semantic distance, which is inversely proportional to
the relationship.

2.5.1 Cosine similarity metric

In the field of vector space modeling, Cosine is widely used to measure the similarity between
two vectors. Its calculation is very efficient, especially for sparce vectors, as only the non-zero
dimensions need to be considered. As a fundamental component, cosine similarity has been
applied in solving different text mining problems, such as text classification, text summarization,
information retrieval, question answering and so on. In search engine cases, similarity between
the user’s query and relating documents are sorted from the highest to the lowest one. The
higher the similarity score between the document’s vector and the query’s vector, the higher the
relevance between those two.

More specifically, cosine similarity (or dot product in relating literature), models a text
document as a vector of terms. By this model, the similarity between two documents can be
derived by calculating the cosine value between to document’s term vectors. This metric can be
used with any form of text such a simple sentence, a paragraph, or even a whole document.
Although it is considered one of the most popular techniques of measurement it does not come
without drawbacks.

Cosine similarity, regardless of its advantages and the popularity that it meets, is still
unable to fully capture a text’s semantic meaning. In many recorded cases, implementing the
cosine similarity measurement between two vectors containing text embeddings, produces
unreliable results. Syntax matching and semantic meaning are not always correlated, and that
differences is often disregarded by this metric. In other domains, such as information retrieval
systems, it may produce false results and cause a decline in performance.

Despite its flaws, cosine similarity remains highly effective measurement technique,
mostly due to its normalization properties, its suitability for high-dimensional and sparse vectors,
and adaptability in many applications. Ultimately, its effectiveness in capturing the similarity of
content while also being computational efficient makes it one of the most widely used metrics in
the natural language processing domain.

In document-query cases, a document can be represented as a term vector that the
vector’'s dimensions refer to the terms available in the document [23]. A document can be
described as a vector form:

5
d = (Wao, Wa1, - Wak)

Fact checking with large language models

30

MSc Thesis Koufopoulos loannis-Aris

Likewise, the query term can be described as a vector form as:

= (Wg0, Wg1s - Wqk)

Qy

where wy; and wy; (0 < i < k) are float numbers indicating the frequency of each term inside a
document, while each vector’s dimension corresponds to a term that is found in the document.
Finally, given two arrays that contain text embeddings, the relevance between those two, can be
defined by the formula below:

t
— 2 w Xw,
g Zk:1 qkXWdk
q

\/Z;zl(qu)z'\/Z;:l(qu)z

Similarity(,d) = I “;

2.5.2 Euclidean distance metric

Euclidean distance is a standard metric mainly employed for geometrical problems. It is the
ordinary distance between two points and can be easily calculated in two and three-dimensional
space. Euclidian distance is widely known for its clustering problem, including text clustering,
but is also used as a text similarity metric. In computer science, it is utilized for the
implementation of the k-means algorithm.

Euclidean distance is measured by calculating the square root of the sum of squared
differences between the two vectors elements.

dosc @)= [(=)

Where d and d are the two text embeddings vectors and d;, q; are the i-th element of the
vectors.

2.5.3 Jaccard coefficient metric

The Jaccard coefficient, which is sometimes referred to as the Tanimoto coefficient, measures
similarity as the intersection divided by the union of the objects, and in our case the embedding
vectors. Jaccard is to solve the similarity through the set; when the text is relatively long, the
similarity will be smaller. Therefore, when Jaccard is used to calculate similarity between two
pieces of text, it is usually normalized at first.

The formula calculating the Jaccard coefficient is listed below:
ld nq]
Jd,q) =
Y lauq
Where |d n q| is the number of elements in the intersection of sets d and q and |d U q| is the
number of elements in the union of sets d and q.

2.5.4 Manhattan distance metric

The Manhattan distance can also be used to measure the distance between two real-valued
vectors. Manhattan distance is calculated as the sum of the absolute differences between the
two vectors which generally works only if the points are arranged in the form of a grid and the
problem that we are working on gives priority to the distance between the points only along the
grids, not the geometric distance. The similarity of two documents is obtained through
Manhattan distance after one-hot encoding. The Manhattan formula is as follows:

n
DManhattan(d,q) = Z lldi - qil
iz

Fact checking with large language models

31

MSc Thesis Koufopoulos loannis-Aris
2.5.5 Hamming distance metric

Hamming distance is a metric for comparing the two binary data strings. While comparing two
strings of such kind and equal length, Hamming distance is equal to the number of bit positions
in which the two bits are different. The Hamming distance between two strings, a and b, is
denoted as d(a, b). It is used for error detection or error correction when data is transmitted over
computer networks. It is also used in coding theory for comparing equal length data words. For
binary strings A and B, this is equal to the number of times “1” occurs in binary strings.

2.5.6 Distribution distance metrics

Making use of a vector multidimensional position to calculate its length with another vector is a
very efficient technique as we have seen in the above examples. However, those approaches
do not come without limitations. On an overall basis, when we utilize length distance to calculate
similarity, we come across two fundamental issues. Firstly, is suitable for symmetrical problems
such as Sim(A,B) = Sim(B,A), but if we are operating in a question-answer basis, the
corresponding similarity is not symmetrical. Secondly, there is a risk in using length and
distance to judge similarity without knowing the statistical characteristics of the data.

In order to assess how similar two documents are to one another based on distribution;
the distribution distance is employed to compare whether the documents are from the same
distribution. JS and KL divergence are the most often used techniques to look at distribution
distance.

Jensen-Shannon divergence is a method to measure the similarity between two
probability distributions. It is also known as the information radius (IRAD) or the total divergence
to the average. This metric is often used in combination with LDA (latent Dirichlet allocation) to
compare the topic distribution of the new documents, with the already existing documents in the
corpus and to determine which of them present similarities regarding their distribution. This is
achieved through comparing the differences in distribution between the new and the old
documents. Jensen-Shannon’s distance gets smaller, the more similar the distribution is
between two documents. Assuming that the two documents are following different distributions,
the Jensen-Shannon divergence formula is as follows:

Py +P,
2

P1+P;

JS(PLIIP,) =5 KL(P [P222) + 2 KL(P, || 2272

The KL() function in above, refers to the Kullback-Leibler divergence which is also
known as relative entropy. It is a measure of different degrees of a probability distribution and a
second reference probability distribution. Let p(x) and g(x) be two probability distributions with
values of X, then the relative entropy of p to q is:

n

_ p(x)
d(pllq) = Z p(x) logﬁ

i=1

Finally, the word mover’s distance, based on the concept of Optimal Transport, utilizes
word embeddings to quantify the distance between words in the documents. It measures the
minimum distance required for a word in one text to reach a word in another text in the semantic
space, to minimize the cost of transporting text 1 to text 2. The main goal of this algorithm is to
find the minimum cost required to transform one document into another by moving word
distributions, where the cost is the distance between word embeddings.

Given two documents, D, and D,, we define w, as the embedding of the i-th word in the
document. The distance d(vT/’i,vT/’j) between words i and jis usually the Euclidean distance
between their embeddings.

Fact checking with large language models

32

MSc Thesis Koufopoulos loannis-Aris

The first step is to compute the cost C;; = d(w;,w;) for all word pairs (i j) where w; belongs to
D, and w; to D, accordingly.

After the costs are calculated, the next step is to calculate the optimal transport
problem, that deals with finding the most efficient way to minimizing the transportation cost from
one text to another.

e LetT be the transport matrix where T;; denotes how much of word i in D, should be
transported to word j in D,

e The main goal is to minimize the total transportation cost:
WMD(D;, D,) = min > T C;
Lj

Which is subject to:
Z]TU = pi* Vl

zi Tl} = qjv v]
Where p; and g; are the normalized word frequencies of D;and D, respectively.

2.6 Linguistic features in text

Extensive work has been made with the goal of creating features that are capable of providing
enough evidence to support or refute a claim, in the fact-checking pipeline. Some of the most
standard methodologies include linguistic features that try to capture the linguistic style of
relevant to the claim articles. This is achieved with the use of language features, which is
essentially a set of assertive and factive verbs, hedges, report verbs, subjective and biased
words etc. [14]. The stance of the relating article is also considered as a feature in many cases.
Whether the article reporting the claim is supporting it or not can make a claim more credible or
less trustworthy. The reliability of a web source can also be considered a principal factor in
assessing the credibility of a claim [15].

The latest feature extraction technique in terms of NLP related methodology is
sentiment analysis of a text. Also known as opinion mining, it is a subdivision of data mining,
and it refers to the practice of applying text analysis and natural language processing for the
purpose of identifying, extracting, and analysing subjective information from textual sources. SA
focuses on the challenge of classifying a given input text based on the polarity of its sentiment
(positive, negative, or neutral). More advanced SA techniques look at whether the textual
sources have any connections with emotional states such as fear, anger, happiness, and
sadness. Another metric associated with sentiment analysis techniques is the subjectivity of a
text. Instead of classifying text as being either positive, negative, or neutral, the text could be
associated with a number on a pre-defined scale (e.g.,0 to 1) [12].

2.7 Deep learning approaches for text representation and modeling

Deep learning based neural network models have known considerable success in many NLP
tasks, including learning distributed word, sentence and document representation, parsing,
statistical machine translation sentiment analysis etc. The process of encoding text into
continuous vectors in a high-dimensional space, also known as distributed text representation,
along with the utilization of neural networks models, can reach satisfactory results in related
tasks like sentiment classification and text categorization. Unlike traditional text representation

Fact checking with large language models

33

MSc Thesis Koufopoulos loannis-Aris

methods such as one-hot encoding, distributed representations using deep learning techniques
can capture semantic and syntactic information in detail.

In many recent studies relating sentence representation learning, neural network
models are constructed upon either the input word sequences or the transformed syntactic
parse tree. Among them, convolutional neural network (CNN) and recurrent neural network
(RNN) are two popular ones. Convolutional neural networks show very promising capabilities in
capturing local correlations along with extracting higher-level correlations through pooling. This
empowers the CNN to model sentences naturally from consecutive context windows.

As for the RNN model, its nature as a sequence model, makes it capable of dealing with
variable-high input sequences and discover long-term dependencies. Moreover, with their ability
to modelling time-series data in a clear and detailed manner, RNNs are being increasingly
applied to sentence modeling. For example, studies have concluded that adjusting the standard
LSTM to tree-structured topologies can lead to more accurate results over a sequential LSTM
on related tasks. In this section, we are going to analyse the architectures of various types of
neural networks that are produced in order to generate high-level vectors that represent textual
information.

2.7.1 Convolutional neural networks (CNNs)

Convolutional models where originally constructed for two-dimensional data and thus, they need
to be modified for the processing of textual data. Convolutional model had shown great
performance in tasks including visual data (images and videos), but they can also be used for
other purposes such as text representation. CNNs greatest asset is their ability to learn from
abstract input data through multiple convolutional levels and detect specific patterns on each
level (e.g., textures of borders of objects in images, syllables, or word n-grams in text). CNNs
that targeted text representation tasks, were initially classification models but they were later
combined with other architectures. Such architectures will be analysed in later sections. In
figure 10 we present the architecture of a simple convolutional neural network.

this -
is ||

the |
input - H
of
this -

neural -
network

Figure 10. CNN architecture

The notable difference between convolutional neural networks made for image processing
and text patterns, is the dimensionality of convolutions. Convolutions for images are two
dimensional whereas convolutions for text pattern processing are mostly one-dimensional. In
the above figure, we present a CNN made for the latter task. The convolution of this architecture
is composed of four filters. Each filter has a kernel (a matrix of weights) that is trained to detect
patterns of great importance to the task at hand. The kernel then slides over the values from the
previous layer, the input values in this example, and outputs an activation that corresponds to
how much that region of text fits the patterns.

Next, the convolution layer is connected to the fully connected layer. Whereas recurrent
and recursive models have the ability of recognising inputs of various length, convolutional
models need pooling layers to process inputs of different sizes. The pooling layer lowers the
previous layer’s dimensionality by forwarding (pooling) the maximum or average of each region.

Fact checking with large language models

34

MSc Thesis Koufopoulos loannis-Aris
2.7.2 Recursive neural networks (RecNNs)

Recursive neural networks (RecNNs), have the ability to process inputs in a recursive fashion
through a tree structure. Each node in a tree represents a word a phrase, a sentence or even a
larger textual input. Most of the recursive neural networks utilized for text representation are
autoencoding or classification models. The representation of each node can be learned either
by an autoencoding method, or through a classification task. In figure 11, we present such a tree
structure, that predicts word sentiment classes. The input tokens are represented as leaf nodes,
and all the other nodes are representations of combinations of the child nodes. The root node
represents the entire input text.

+

+/ \+
+/ \+ _/ \o
o/ \+ o/ \+ -/ \+
A +/ \0 that wonderfully o/ \o 0/ \-
el bl - NG, N
KN /\ AN
0 0 B 860e

0 0

a / \ in 1873 murderous rage in 2002
- 0

murderous event

Figure 11. RecNN architecture

Recursive neural networks are generalized forms of recurrent neural networks.
Recursive neural networks read input in any hierarchical structure, in contrast to recurrent
neural networks, which read information in a linear chain. Representations are merged in a
recursive manner throughout the tree structure, where two or more nodes from a lower level are
combined into one higher level node. With this method the learning method of recursive neural
network enables combining nodes of granular linguistic meaning like words, into larger linguistic
units like sentences, paragraphs, or documents. The merging process is repeated recursively
until the root node is reached. Finally, the tree structure can be given along with the input, can
be learned from labeled texts (texts paired with their parse trees), or they can be generated by a
neural network with no supervision (latent trees).

2.7.3 Attention models

Attention neural network models, particularly transformers, have become a cornerstone in
modern text representation tasks in natural language processing. The neural attention
mechanism was created to capture long-range dependencies and was inspired by how humans
read and understand longer texts. Long-range dependencies exceed the dependencies
captured within he limited boundaries of context windows as used in shallow models.

Attention models can focus on parts of a text that is more essential for the task at hand,
and thus leading to a better performance regarding long text inputs. As attention models can be
implemented in a wide range of architectures, the ones that benefit the most out of the attention
mechanism are mostly autoencoding or autoregressive models.

Fact checking with large language models

35

MSc Thesis Koufopoulos loannis-Aris

In figure 12, we can observe a self-attention head on a sentence. The visualization
showed relations that are learned by the head, between words that the self-attention head has
also learned. Each head determines a different kind of relation between the words.

The / The
state = state
will will
never never
be - be
perfect perfect
but but
its its
direction direction
should should
be be
correct correct
this this
is s
what what
we _—we
are — are
missing missing
in _—in
this - JL === this
discussion < discussion
<EOS> <EOS>
<pad> =———— <pad>

Figure 12. Attention model architecture

The attention mechanism detects the parts of the input vector that are important for
each part of the output vector. For example, when translating a sentence from one language to
another, each output word has a greater dependency on specific parts of the input word. Thus, it
is easy to conclude that it is important to pay great attention to those specific parts of the
sentence, when deciding what the next output will be.

Self-attention mechanism works the same with a slight difference. It learns the
dependencies as well, while parsing words in the input rather than the input and the output. For
example, when self-attention tries to predict the next word of the sentence “I am eating a
green”, it makes sense to pay more attention to words “eating” and “green” to predict the next
word “apple”. The attention mechanism has multiple heads, which are similar to filters in
convolutions. Each head learns to pay attention in different ways. One head can learn to attend
to words that help decide the tense of the next word, whereas another head can learn to attend
to entity names.

2.7.4 C-LSTM model

The C-LSTM model was developed for sentence representation and text classification. In order
to obtain the sentence representation, a long short-term memory recurrent neural network
(LSTM) is fed a series of higher-level phrase representations that C-LSTM extracts using CNN.
C-LSTM is able to capture both local features of phrases as well as global and temporal
sentence semantics [36].

In figure 13, we display the architecture of C-LSTM. Blocks of the same colour in the
feature map layer and window feature sequence layer corresponds to features for the same
window. The dashed lines connect the feature of a window with the source feature map. The
final layer of the C-LSTM model is the last hidden unit of LSTM.

Fact checking with large language models

36

MSc Thesis Koufopoulos loannis-Aris

» ¥
P, S)
/ [N - -
Y, L .
’ v
// . S
The I I N RN ST l
movie P 8 A
P v,
s hi&ﬁ
AWES0Mme M j]
i “, ol
! AN "] - v
C=d AN miy Ny l
. N] -
iput x \ Iy _ .
\\ . e | A).W
| .
h |

window feature sequence

feature maps LSTM

Figure 13. C-LSTM model architecture

2.7.5 Text level graph neural network for text representation and
classification

This approach tries to address the problems faced when classifying text using traditional graph
neural networks (GNNSs), such as high memory consumption, due to the numerous edges, and
the limitation in the expressive ability of the edges, due to the single-graph instantiation
technigue for a whole corpus. It is also challenging for graph neural networks to have a high
degree of variance. This is mainly due to the fact that the structure and parameters of the graph
are dependent on the corpus and cannot be modified after training.

To address the above limitations, [37] proposes a new GNN based method for text
classification. Instead of building a single corpus level graph, they produced a text level graph
for each input text. In the text level graph, the word nodes are connected within a small window
in the text rather than connecting all the word nodes. It excludes a significant number of
redundant words that are far away in the text and have little meaning with the current word and
thus reducing the total number of edges. The representations of the same nodes and weights of
edges are shared globally and can be updated via a method called message passing
mechanism. In this method, a node receives information from neighbouring nodes to update its
representation and get precise meaning in specific context.

In figure 14, we present the structure of the graph for a single text “he is proud of you”.
For the convenience of the display in the figure, the p value is set to two (p denotes the number
of adjacent words connected to each word in the graph) for the node “very” and p=1 for the rest
of the nodes that are blue coloured. All the parameters in the graph derive from the global
shared representation matrix, which is shown at the bottom of the figure.

Fact checking with large language models

37

MSc Thesis Koufopoulos loannis-Aris

=]
.. .l,.l" "___--"' e . L ‘i i I-\.
and r L ., and '
o ANEEEEEEEESAEN .y “
st e
« HNEEEEEFEEEEEEN of =
VIxd IVIx|V]

Figure 14. Text-level graph neural network

2.8 Datasets for fake claims detection

In this section, we are going to present some of the most famous benchmark datasets that are
used in the automated fact-checking pipeline. Having a dataset that is well-annotated and large,
can help in developing robust fact-checking models that perform well in newly emerging check-
worthy claims. A well-rounded dataset is also essential in evaluating the overall performance of
the pipeline. They provide a mean to evaluate the model's accuracy, and it also helps in fine-
tuning the model as well. Additionally, datasets offer insights on how the claims are structured,
disseminated, and verified through their semantic meaning, their emotional features, and their
linguistic structure. They also ensure that the fact-checking models will be exposed to several
types of claims and context from a diverse collection of sources, in order for the latter to
efficiently operate in various applications.

2.8.1 The FEVER dataset

FEVER dataset stands for Fact Extraction and Verification. It consists of 185,445 claims
generated by altering sequences extracted from Wikipedia and subsequently verified without
knowledge of the sentence’s derivation. The claims are classified as SUPPORTED, REFUTED
and NOT ENOUGH INFO, by human annotators. For the first two classes, the annotators also
recorded the sentence(s) forming the necessary evidence for their judgment.

The dataset was constructed in two stages. The first one, called “Claim Generation”, is
responsible for extracting information from Wikipedia and generating claims from it. The second
stage is named “Claim labeling”, and its function is to classify a claim. If a claim is supported or
refuted by Wikipedia, the relevant documents are collected. If there is not enough information
for the claim, then this method decides that there is not enough material to reach a conclusion
regarding the claim’s validity.

Given the complexity of the second task, three forms of data validation were conducted
to ensure the data’s integrity: 5-way inter-annotator agreement, agreement against super-
annotators, and manual validation by the authors.

e 5-way Agreement: Random selection of 4% of claims (7506 claims in total), to
be annotated by 5 annotators.

Fact checking with large language models

38

MSc Thesis Koufopoulos loannis-Aris

e Agreement against super-annotators: 1% of the data was randomly selected
to be annotated by super-annotators. Super-annotators are expert annotators
with no suggested time restrictions. Their task is to provide as much coverage
of evidence as possible. They were also instructed to search over the Wikipedia
website for every possible piece of textual information that could be used as
evidence.

e Validation by the authors: 227 claims were chosen randomly and were
examined regarding their label accuracy. It was found that 91.2% of the claims
were annotated correctly.

2.8.2 The LIAR dataset

LIAR is a publicly available dataset created for the purpose of fake-news detection. It consists of
approximately 12.800 claims, that were manually labeled, and present in a form of short
statements in various contexts from POLITIFACT.COM?2. This dataset can be utilized for fact-
checking research and benchmarking as well. The data of LIAR, are harvested from a natural
context, such as such as political debates, TV ads, Facebook posts, tweets, interview, news
release, etc. In each case, the annotator provides a lengthy analysis report to support each
judgment. Moreover, the links to all relevant documents are also provided. The claims of this
dataset are labeled for truthfulness, subject, context/venue, speaker, state, party, and prior
history.

In figure 15, we present some of the random claims that the LIAR dataset consists of.

Statement: “The last quarter, it was just
announced, our gross domestic product
was below zera. Who ever heard of this?
Its never below zero.”

Speaker: Donald Trump

Context: presidential announcement
speech

Label: Pants on Fire

Justification: According to Bureau of
Economic Analysis and National Bu-
reau of Economic Research, the growth
in the gross domestic product has been
below zero 42 times over 68 years. Thats
a lot more than “never.” We rate his
claim Pants on Fire!

Statement: “Newly Elected Republican
Senators Sign Pledge to Eliminate Food
Stamp Program in 2015."

Speaker: Facebook posts

Context: social media posting

Label: Pants on Fire

Justification: More than 115,000 so-
cial media users passed along a story
headlined, “Newly Elected Republican
Senators Sign Pledge to Eliminate Food
Stamp Program in 2015." But they failed
to do due diligence and were snook-
ered, since the story came from a pub-
lication that bills itself (quietly) as a
“satirical, parody website.” We rate the
claim Pants on Fire.

Figure 15. Random claims from the LIAR dataset

Statement: “Under the health care law,
everybody will have lower rates, better
guality care and better access.”

Speaker: Nancy Pelosi

Context: on "Meet the Press’

Label: False

Justification: Even the study that
Pelosi's staff cited as the source of that
statement suggested that some people
would pay more for health insurance.
Analysis at the state level found the
same thing. The general understanding
of the word “everybody™ is every per-
son. The predictions dont back that up.
We rule this statement False.

LIAR dataset has set a 6-label mapping technique for the truthfulness ratings: pants-
fire, false, barely true, half-true, mostly-true, and true. The distribution of labels in the LIAR
dataset is relatively well-balanced: except for 1,050 pants-fire cases, the instances for all other
labels range from 2,063 to 2,638. In order to examine the dataset’s validity, as with the FEVER
dataset, various verification techniques were employed.

Finally, to ensure that the dataset covers a significant variety of topics, there is also a
diverse set of subjects that the claim cover. The top 10 subjects in the dataset are: economy,
healthcare, taxes, federal-budget, education, jobs, state-budget, candidates-biography,
elections, and immigration.

Compared to prior datasets, LIAR is the biggest in size, which enables the development
of statistical and computational approaches to fake news detection. LIAR's real-world,
trustworthy short claims that cover a variety of circumstances, make it feasible to conduct
research on constructing a widely reaching false news detector.

2 https://www.politifact.com/
Fact checking with large language models

39

MSc Thesis Koufopoulos loannis-Aris
2.8.3 The ClaimBuster dataset

ClaimBuster, is a well-known fact-checking platform, that utilizes natural language processing
and supervised learning to detect important factual claims in political conversations. The
ClaimBuster model is based on a human-labeled dataset of check-worthy claims from the
United States general election debate transcripts.

This labeled dataset is composed of spoken sentences made by presidential candidates
during past presidential debates. Each sentence of the three following labels: “not-factual
claim”, “unimportant factual claim” and “important factual claim”. For the development of ground-
truth label for each statement, a data collection website was constructed. Its sole purpose was
to present its visitors (participants to the experiment) with a collection of unseen statements.
Their task was to assign one of the three possible labels mentioned above. We present below a

small analysis on each label.

e Non-Factual Sentence (NFS): Subjective sentences (opinions, beliefs,
declarations) and many questions fall under this category. These sentences
do not contain any factual claim. Below are two such examples.

o But I think it's time to talk about the future.

o You remember the last time you said that?

e Unimportant Factual Sentence (UFS): These are factual claims but not
check-worthy. The present low public interest into resolving its label. Some
examples are as follows.

o Next Tuesday is Election Day.

o Two days ago, we ate lunch at a restaurant.

e Check-worthy Factual Sentence (CFS): They contain factual claims, and
the general public will be interested in knowing whether the claims are true.
Some examples are:

o He voted against the first Gulf War

o Over a million and a quarter Americans are HIV-positive

For the purpose of quality assurance, a small subgroup of claims was selected from the
ClaimBuster dataset for screening purposes. The participant was presented with the screening
sentence and would annotate it. Three experts would examine the participant's decision on the
labeling and would then quantify the participant's quality of answers with a score metric.
Participants with a low score would be eventually penalized.

2.8.4 The Emergent dataset

Emergent dataset is derived from a digital journalism project whose task was to debunk false
claims. The dataset contains 300 rumours claims and approximately 2,600 associated new
articles, collected and labeled by journalists with an attached label (true, false, unverified). Each
associated article is summarized into a headline and labeled to indicate whether its stance is
for, against, or observing the claim, where observing indicates that the article merely repeats the
claim. In general, Emergent provides a real-world data source for a variety of natural language
processing tasks in the domain of fact-checking.

The subjects of the claims that were collected include a variety of topics such as world
and national news in the United States, along with technology related subjects. Once a claim is

Fact checking with large language models

40

MSc Thesis Koufopoulos loannis-Aris

identified, the journalist searches for articles that mention the claim and decides on the stance
of each such article.

e For: The article states that the claim is true.

e against: The article states that the claim is false.

e observing: The claim is reported in the article, but without assessment of its
veracity.

The journalist also summarizes the article into a headline. Besides the article-level
stance detection, conclusions are also reached in a claim-level judgement as more articles are
examined, that are relevant with the initial statement. When a journalist assumes that enough
evidence for a claim is collected, the claim is either labeled true or false. If not enough evidence
is collected, the claim remains unverified. In figure 16, we present a claim that has been verified
on Emergent.

[Claim: Robert Plant ripped up an $800 million
contract offer to reunite Led Zeppelin

Source: mirror.co.uk (shares: 39,140)

Headline: Led Zeppelin's Robert Plant turns
down £500MILLION to reform supergroup
Stance: for

Source: usnews.com (shares: 850)

Headline: No, Robert Plant Didn’t Rip Up an $800
Million Contract

Stance: against

Source: forbes.com (shares: 3,360)

Headline: Robert Plant Reportedly Tears Up $800
Million Led Zeppelin Reunion Contract

Stance: observing

Veracity: False

Figure 16.Claim verification by Emergent example

2.8.5 A Richly Annotated Snopes Corpus

In order to address drawbacks of existing datasets, [43] introduced a new corpus based on the
Snopes3 fact-checking website. The corpus consists of 6,422 validated claims with
comprehensive annotations based on the data collected by Snopes fact-checkers. This
collection covers a considerable number of domains such as discussion blogs, news, and social
media, which are often found responsible for the creation and distribution of unreliable
information. In addition to the claims, the corpus also consists of 14k documents annotated with
evidence on two granularity levels and with the stance of the evidence with respect to the
claims. The dataset allows training machine learning models for the four steps of the automated
fact-checking process: document retrieval, evidence extraction, stance detection, and claim
validation. An example of a fact-checking claim from Snopes is presented in figure 17. At the top
of the page, the claim and the verdict are given.

8 https://www.snopes.com/
Fact checking with large language models

41

MSc Thesis Koufopoulos loannis-Aris

CLAIM

A federal appeals court has ordered that Barack Obama repay S400 million to the American people

[RATING |
@ FALSE
| ORIGIN

On 10 March 2018, the Daily World Update web site published an ggicle reporting that a federal
appeals court had ordered former President Barack Obama to repay $400 million to the American
people for funds that were supposedly “lost” during a transaction with Iran:

The West Texas Federal Appeals Court, operating out of the 33rd District, has ordered that
Barack Obama repay $400 Milkon to the Amencan people for funds he says were “lost” during
an illegal transaction with Iranian hard-liners, Judge Gary Jones and Judge Amanda Perry
stood 1ogether to overrule Judge Kris Weinshenker in a spiit decision

There was no truth to this report, which originated with the Daily World Update, a site that is part of a
petwork of fake news sites dedicated 1o inflammatory chckbaiting and polstical trolling under the

guise of producing “satire.”

Figure 17. Snopes fact checking example

The site also provides additional information per claim, such as its origin, and evidence
in the resolution of the statement are marked in a yellow bar. Additional hyperlinks that lead to
documents that provide the forementioned evidence are also provided. This research collects all
those information, providing a dataset enriched in contextual information.

3 Data collection and analysis

In this section, we will analyze the dataset that was used for the fact-checking pipeline and
examine some of its characteristic with the use of feasible techniques and examine relevant
metrics of comparison that are used for text comparison. Generally speaking, the selection of a
dataset, along with the preprocessing methods that are applied on it, plays a vital role in the
machine learning training process. High quality training datasets lead to more accurate model
training, faster convergence, and additionally, it is the main deciding factor on model’s fairness
and unbiased behavior too. For those reasons, we aim to create a dataset with sufficient size,
good distribution, superior quality, complexity, and relevance.

In previous approaches, datasets were generated by collecting claims from social
media such as twitter, and manually annotating the claims label. Other studies used Wikipedia
to collect a list of proven hoaxes* and fictitious people®, or collect claims from popular fact-
checking websites such as snopes.com®, and PolitiFact’. Manual examination of the datasets
was another common approach. Various annotators where employed, to label a claim based on
the intensity of a certain emotion, or to input a True or False label to the statement itself.
Typically, every dataset developed in earlier research, come across its own advantages and
restrictions. There is plenty of room for experimentation, depending on the fact-checking domain
(e.g., debunking political claims or verifying the accuracy of news articles) and the adopted
methods such as text classification or speaker profiling.

4 https://en.wikipedia.org/wiki/List_of hoaxes
5 https://en.wikipedia.org/wiki/List_of fictitious_people
6 https://www.snopes.com/

7 https://www.politifact.com/factchecks/
Fact checking with large language models

42

MSc Thesis Koufopoulos loannis-Aris

3.1 Greek fact checking dataset

To further enhance the performance of our pipeline, the first step is to amplify the already
existing dataset with new, unseen claims. This will aid our goal of achieving better classification
results and thus creating a model that will be able to differentiate between genuine and
fraudulent statements. The claims were collected from various Greek-speaking fact-checking
websites, from Greece and Cyprus, along with some metadata such as the title of the article, its
body, the date the claim was harvested and the author. More information on the features
entailed on each separate statement will be analyzed in later sections.

The websites from which we extracted the claims are the Greek Hoaxes® website, the
Greek AFP Fact check®, and the Fact Check Cyprus website 10.Additionally, we include the
existing check4facts dataset, which was originally composed of a limited amount of 33
statements. Through time, the database containing the above dataset was enriched in size,
consisting of 145 claims. More information about each claim’s source and its labeling, is
presented on the tables below:

. Claims labeled Claims labeled Claims labeled
Data source Total no. of claims o . o ” 7 o
True False Unverified

Greek Hoaxes 219 0 219 0

Greek AFP Fact 307 307 0 0
check

Fact Check 123 82 a1 0
Cyprus

Check4Facts 145 70 66 9
dataset

Table 1. Number of claims in the dataset in respect to their label and their source

3.2 English claims to the Greek fact checking dataset

The main idea of this approach was to further enhance the size of the dataset by adding English
claims to the Greek fact checking dataset. To conclude whether this approach would prove to be
beneficial to the classification task, we conducted the following experiment. Firstly, we created
some dummy sentences, one in Greek and the corresponding translated one in English. We
then proceed to use each of sentences as input to OPEN Al’'s text embedding model called
“text-embedding-ada-002”. For each sentence, the model generates as output a 1536-sized
vector containing the embeddings of each sentence. In order to measure how close two
sentences are in terms of semantical meaning, we utilized two text similarity metrics. The dot
product, also known as cosine distance, and the Euclidean distance, as we saw in previous
section. Both metrics take as input two vectors and produce a humber associated with the the
degree to which the pointing directions of two vectors line up. When two sentences are close
together, the dot product converges to 1, while the Euclidean distance converges to zero. The
sentences that will be used to conduct the experimentation, are listed below:

+ Sentence 1: ‘| like eating apples.’

» Sentence 2: ‘Mou apéoel va Tpww PAAa.’

» Sentence 3: ‘My favourite fruit is an apple.’

+ Sentence 4: ‘To ayatmrnuévo You pouTo ival To uAAo.’

8 https://www.ellinikahoaxes.gr/
9 https://factcheckgreek.afp.com/list
10 https://factcheckcyprus.org/

Fact checking with large language models

43

MSc Thesis Koufopoulos loannis-Aris

Sentence 1 and sentence 2 have the same meaning but they are presented in different
languages. Likewise with sentence 3 and sentence 4. Moreover, sentence 1 and sentence 3 are
stated in the same language but the semantic meaning varies slightly, as does sentence 2 and
sentence 4. The result of the analysis is listed in the table below:

Pair of sentences as input | Euclidian distance Cosine distance
Sentence 1 - Sentence 3 0.4084 0.9165
Sentence 2 - Sentence 4 0.4750 0.8871
Sentence 1 - Sentence 2 0.8188 0.6019
Sentence 3 - Sentence 4 0.7962 0.6384

Table 2. Results between the sentences using the Euclidian distance metric and the cosine
distance.

Judging from the results above, we can observe that neither cosine distance nor
Euclidian distance can capture the linguistic interpretation of between a pair of sentences that
are identical in content yet written in different languages. Cosine distance is very low with a
score of 0.6 for the sentence 1 and sentence 2 pair and 0.63 for the sentence 3 - sentence 4
pair. This led us to conclude that two sentences written in different languages do not share the
same behaviour in terms of text embedding in the multidimensional space. On the other hand,
two sentences written in the same language but with slight differentiation regarding the
statement, can achieve better scores (0.91 for the English language and 0.83 for the Greek
language).

The Euclidian distance, although more sensitive to large vectors, shares the same
principal. We can easily deduct that two same sentences written in different languages are not
close together. To summarise, this fundamental experiment gave us some insight about
incorporating English claims to a Greek fact checking dataset. It would prove to be detrimental
to the fact-checking pipeline, and thus, they will not be added to the following procedures.

3.3 English claims translated to Greek

The next approach is to pass the English claims through a Greek translation mechanism and
add those statements to the dataset. To achieve this, we utilize Text Blob’s translation library*.
For this purpose, we collected various claims from English speaking fact-checking websites. A
label for each of those claims was manually annotated judging from the articles content. The
websites that were harvested were Snopes, Full fact'?, and Reuters fact check website!3.

Every claim that originates from a non-Greek source and thus, it is written in English, is passed
through the translator. The Greek claims stay as is. Finally, we merge the two types of
statements into one dataset and conduct a t-SNE analysis to examine the behaviour of the
vector in the multi-dimensional space, with respect to each statements label. The results are
presented in the figures below. More information on how the t-SNE analysis works, is presented
in later sections.

Figure 18 shows the claims that have been marked as “False”. It is evident that the
majority of the Greek claims are somewhat clustered towards the centre of the plot (ranging on
a [-20,20] scale on both dimensions), while the English claims which are translated into Greek,
create various small clusters all along the area of the plot. Overall, there is a significant
difference in the space occupied by each group of claims, regarding its origin (i.e. whether it has
been translated or not).

In figure 19, where we examine the claims labelled as true, we can also observe slight
distinctions between the Greek statements and the English ones. The latter occupies space

11 https://textblob.readthedocs.io/en/dev/
12 https://fullfact.org/

13 https://www.reuters.com/fact-check/
Fact checking with large language models

44

MSc Thesis Koufopoulos loannis-Aris

roughly between a [-20,40] range on dimension 1 and [0,35] on dimension 2. The Greek claim’s
values on the other hand, range primarily between a [-40,-20] range on dimension 1 and a [-
40,20] range on dimension 2. This leads us to conclude that once again, the claims behaviour
on the t-SNE plot vary depending on whether they originate from Greek speaking web sources
or from foreign ones.

t-SNE Visualization for False claims

e english
® greek
40 4
~ 201
[=]
=
w
=
@
E
a 0
w
=
n
_20
—40 1

T
—60

t-SNE Dimension 1

Figure 18. t-SNE visualization for False claims

t-SNE Visualization for True claims

40 . @ english
®® o ® greek
N [
0 | o' Jogm o0 ~
-.5 % E'.E. .-.“: g.f:%!“’ Te
O 7 T N T R
20 1 el se b &
oL 020 ‘-':".“. e o :“v‘ ".‘.-:d;- -
oo 80gtis s BT e 0 00 LT e e
~ 10 Y- '-w-'.:{?:‘:.-'" sel i o PR .
g ' ‘..51;.:05.=.'¢ 5;'.. .a.h. .'.p.:- o veres <
k<) . . i.m., ':‘3'58 & on %o %’o
@ 1 $, % * g S ey @ Co0% *
0 ¢ 28 ae o e e e, tYee Wi 300 @
E c-i..I.‘B l,l.,'g'ﬁ'"".‘ . S L
8 O fe o".i.'- '.'n..'?:-.o.-'b?':i o8 e HE o °
A I T L O T P
Z AN A O T IO SR
% o gv.q.. * %. 0y %, LN 4 ¢ o
201 * % '.l.uf .p."-. -’.; “;5:.’" ‘
- .
A ‘ug".,‘.".:-%-_-g‘_ o
L]
_30 4 '.,'3: wWiE s, .q,.!. 51$= ':..'.
o AL od & e
% e, W P, 73
ooy e o
—40 a .
_210 —é(] 6 2I0 4b

t-SNE Dimension 1

Figure 19. t-Sne visualization for True claims

Fact checking with large language models

45

MSc Thesis Koufopoulos loannis-Aris
4 Description of the core pipeline

In this section, we will focus on the fact-checking pipeline that takes place in this thesis. Having
a dataset that consist of Greek statements, the first step after selecting a claim for analysis, is to
search the web, with the intent of gathering material from web pages that aid the process of
supporting or refuting a claim. After the web pages have been collected, we begin with
harvesting information from each one of them. This information is in textual form, and consists
of the web page’s title, paragraphs relevant to the claim, URL etc. More details about the
method of harvesting will be discussed in the corresponding section.

The next step is related to the feature extraction processes that are utilized in order to
generate features enriched with valuable information, capable of aiding the classification stage
of the pipeline. The features that are extracted are in the form of word embedding vectors
produced from the information that was harvested from claim-associated web pages. This
subsection further examines the type of features used for the classification, the number of them,
as well as their usefulness further down the pipeline.

Finally, after selecting the necessary features, we proceed implement deep learning
models able to produce a “True” or “False” label, for each claim, by using the input generated in
the previous pipeline steps. We additionally employ various techniques that mitigate the error
rate of each model and use accuracy as the measure of each model’s performance.

In the figure below, we present the current pipeline that is employed for the purpose of
this study. The first stage, Data Collection, is dedicated in expanding the already existing
dataset from the check4facts pipeline, enriching it with new claims as we analyzed in the
previous section. The searching stage is responsible for browsing the web, when having a claim
at hand, in order to gather web sources relating to its veracity. The harvesting stage collects the
textual information from the relating web sources such as the body and the title of the web
source and generates new features the “most similar paragraph” and the “most similar
sentence” feature. In the feature generation stage, we transform those features into text
embedding vectors, using OpenAl’s text embedding models. Finally, in the classification stage,
a series of neural networks are utilized in order to successfully classify a collection of claims in
regard to their veracity. The classification is binary, and generates a True or a False label for
each claim, when the forementioned embedding vectors are used as input.

Data Collection Searching Harvesting Feature Generation
Expand the already Transform the
existing dataset We harvest the title, textual information
. 3 Browse the web - - -
with new claims that body, most similar obtained during
for any source N
are relevant to . ’ paragraph the harvesting
of information e .
recent events .) and most similar stage into text
> relating to the claim] _
from fact checking at hand sentence of each embedding vectors via
websites along with their resource w.r.t each claim OpenAl's text
corresponding label embedding models

Figure 20. The main fact checking pipeline.

4.1 Searching and Harvesting stages

The searching stage begins with using a statement from our database as a google query. We
then proceed to store the list of the URLs found per claim on a list. The number of URLs found
can vary per claim. Some of them had gathered too much publicity, so there was a big variety of
information on the web. Others had a very low rate of publicity such that no web sources could
be found. Those cases are skipped and do not participate on the future stages of the pipeline.
Ideally, the goal is to collect at least five URLs per claim but for the reasons stated above, this is
not always the case.

Fact checking with large language models

46

MSc Thesis Koufopoulos loannis-Aris

For each list of URLs discovered per claim, we initiate a harvester instance. The
harvester parses the URL list, and for each item on the list, we collect its main body text along
with some metadata. Those are the title of the text, the URL itself, and the date that the web
source was harvested. The dynamic nature of this task made it very challenging to try to harvest
extra metadata, since every web page has a unique layout, and it wouldn’t be time efficient to
capture all the possible cases of its structure. Moreover, the majority of the claims were
associated with less than 5 URLs which is something to be expected considering the overall
minimal attention that fact-checking claims gather in the Greek domain. For this reason, we
generated five data frames, with the help of the pandas!* library. Each one of them has a
different number of web sources associated with each claim. This number will from now on be
represented with the letter n and it ranges from 1 to 5. As n increases by one, a new web source
is added to each claim. For example, given a certain claim, advancing from n=2 to n=3 means
that the claim has the same sources with n=2, but an extra one is also added.

The dot product metric is once utilized to create the “most similar paragraph” and “most
similar sentence” features. For the first feature, the main body text of each web source relating
to a claim, is divided into paragraphs. Each paragraph was then compared to the main claim
vector, and its dot score was calculated. The paragraph that produces the highest dot score,
when compared to the initial statement, was then stored into the dataset in a new column, as
the “most similar paragraph” feature. The same principal was also employed in the “most similar
sentence” feature. The only difference is that the main body text was split into sentences, using
the nitk®® tokenizer library. Having produced the extra features, in textual form, the next step is
to transform the features into word embedding vectors. Those features are the initial claim and
information gathered from a corresponding web source.

4.1.1 URL Analysis

In this section, we are going to visualize the various domains from which the information and the
extra features were harvested. The results are shown with three bar plots, which demonstrate
the most harvested web sources. Each bar plot corresponds to a group of claims. The first and
second group consist of claims that were harvested from Greek fact checking sites, and Cypriot
fact checking sites accordingly. The third group consist of claims that were collected from the
check4facts database. The results are presented in figures 21 through 23.

From the bar plots, we can conclude that overall, the web sources that were harvested
mainly consist of Greek news sites, Greek government websites and even domain names that
belong to the European Union. The most known online open content encyclopaedia, Wikipedia,
is also included in the results. A considerable number of claims utilized its knowledge for
obtaining additional information. Predominantly, the harvested websites emerge from trusted
sources that well known and provide reliability and trustworthiness.

14 https://pandas.pydata.org/
15 https://www.nltk.org/api/nitk.tokenize.html
Fact checking with large language models

47

Frequency

MSc Thesis

el.wikipedia.org
WWW.in.gr

www.lifo.gr
www.naftemporiki.gr
www._kathimerini.gr
www.protothema.gr
www.ob.gr

politic.gr

commission europa.eu
www.tanea.gr
www.cnn.gr
www.news247 gr
www.ethnos.gr
www.efsyn.gr
www.capital.gr
gr.euronews.com
www.newsbeast.gr
www.academia.edu
wwiw.scribd.com
www.europarl.europa.eu
www.athensvoice.gr
www thetoc.gr
www.moh.gov.gr
www.skai.gr
www.huffingtonpost.gr
WWW.iNnewsgr.com
www.bankingnews.gr
www.documentonews.gr
eody.gov.gr
emvolic.gov.gr

Koufopoulos loannis-Aris

Histogram of URL Occurence Frequency- Greek dataset

Figure 21. Histogram of URL occurrence for the Greek dataset

neakypros.com.cy
www.naftemporikigr
www.in.gr
www.factcheckergr
el.wikipedia.org
www.ot.gr
www.kathimerini.gr
www.protothema.gr
commission.europa.eu
politic.gr

wwwlifo.gr
dimpenews.com
www.sciencehoaxes.org
www.capital.gr
cyprustimes.com
www.alphanews. live
www.tanea.gr
www.moh.gov.gr
wWww.cnn.gr
emvalio.gov.gr

www. dw.com
eC.europa.eu
antithesi.gr
rm.kathimerini.com.cy
cmj.gr

www.europarl. europa_eu
www.government.gov.gr
greekcardiology. college
www.newsbeast.gr
climate_ec_europa.eu

Frequency

20

40 60

80

100

120

Histogram of URL Occurence Frequency- Cyprus dataset

10

20

30

Figure 22. Histogram of URL occurrence for the Cypriot dataset

Fact checking with large language models

40

MSc Thesis Koufopoulos loannis-Aris

Histogram of URL Occurence Frequency- Check4Facts dataset

migration.gov.ar
www.nafternporiki.gr
wWwwLin.gr
WWW.INewsgr.com
www.protothema.gr
www lifo.gr
www.tanea.gr

www kathimerini.gr
www.businessdaily.gr
WWW.ETENEWS.gr

el wikipedia.org
www.ethnos.gr
www.efsyn.gr
www.liberal.gr
WWW.SYTIZa.gr
www.newsbeast.gr
www.news247 .gr
www.ot.gr
www.documentonews.gr
www.capital.gr
WWW.OpEngov.ar
www.europarl europa.eu
www.sofokleousin.gr
www.newsbomb.gr
refugesobservatory.aegean.gr
WWW.VOria.gr
www.thetoc.gr
www.tovima.gr
gr.euronews. com
www.flash.gr

Frequency

0 5 10 15 20 25
Figure 23. Histogram of URL occurrence for the Check4Facts dataset

4.2 Feature generation stage

In this section, we will present the features that were used for the classification task in the next
section, along with some preprocessing techniques. Firstly, we will utilize one of OPENAI’s word
embedding models called “text-embedding-3-small”. This model will use textual information as
input and generate a 1536-sized vector as output, regardless of the input size of the text. This
vector represents a machine-readable interpretation of the input text and contains text
embeddings enriched with information that a deep learning algorithm can take advantage of.

The vector produced by the embedding model, is presented in a form that makes it
feasible to develop comparison metrics, as shown in previous sections. The textual information
that are transformed into text embedding vectors are the title, the “most similar paragraph” and
“most similar sentence” features, and of course the initial claim. Additionally, from now on, the
importance of a web source will be measured by the dot product produced between a claim
vector and its “most similar paragraph” vector. This feature holds the most crucial information
that can support or refute a claim and sorting the dataset with this manner (e.g. a descending
order based on this dot product score), would create an overall harmony to the classification
task, establishing a more direct method to draw conclusions from, after the end of the pipeline
process. In simpler terms, when a claim is under examination, its first web source (n=1) will hold
the most essential information, while the n-nth will hold the least. As more sources are added,
we also introduce more noise to the pipeline.

To get a better understanding of how the datasets are now formed based on n, we have
created the table below, where for each data source of information, with respect to n, we display
the total amount of unique claims gathered.

Fact checking with large language models

49

MSc Thesis Koufopoulos loannis-Aris

Datasets n=1 n=2 n=3 n=4 n=5
Greek Hoaxes 216 191 169 123 56
Greek AFP Fact 296 272 230 154 75
check
Fact Check 123 107 83 55 21
Cyprus
Check4Facts 145 143 134 102 58
dataset
Uizl e 780 713 616 434 210
claims

Table 3. Total number of claims regarding the no. of web sources associated with them.

It is evident that as n is increased there is a decrease in the relative web sources that
can be found, in order to assist the fact checking procedure. Specifically, there is a sharp
decline in the total number of claims that are associated with that n=4 different sources. As
mentioned above, most statements that are included in the datasets do not gather a significant
degree of popularity which can explain the above phenomenon.

4.2.1 Finding the optimal number of relating web sources

The goal of this approach is to try to define an ideal quantity of web sources that will be
concatenated with the claim and used as features in the future. Using up to five external
documents as a source of information would create imbalance in the next steps of the pipeline,
and thus our aim will be to lessen the use of unnecessary data. For this task, we have created
several violin plots that capture the distribution of the dot score calculated between a claim and
the most similar paragraph feature of its nt" relating web source (n ranging from 1 to 5) that was
harvested. For each data source, a separate violin plot is created in order to assess the noise
that a data source may introduce to the classification task. The plots are shown below:

Fact checking with large language models

50

ar_cos

most_similar,

ar_cos

most_similar,

MSc Thesis Koufopoulos loannis-Aris

1.2+

1.0+
0.8
0.6
0.4
0.24

T T T T
greekhoaxes factcheckgreek cyprus check4facts
source

Figure 24. Claim-Paragraph cosine distance score for n=1

t

T T T T
greekhoaxes factcheckgreek cyprus check4facts
source

1.2 A

1.0 1

0.8 1

e
=)
|

=]
Y
I

0.2

0.0 4

Figure 25. Claim-Paragraph cosine distance score for n=2

Fact checking with large language models 51

MSc Thesis Koufopoulos loannis-Aris

1.2 4
1.0
0.8 1
w
o
o
o
©
0.6
&
E
w
ml
g 0.4
0.2 1
0.01
T T T T
greekhoaxes factcheckgreek cyprus check4facts
source

Figure 26. Claim-Paragraph cosine distance score for n=3

1.0

b44

0.0

ar_cos

o
[=1]
L

most_similar

o
B
L

greekhoaxes factcheckgreek cyprus check4facts
source

Figure 27. Claim-Paragraph cosine distance score for n=4

Fact checking with large language models

52

MSc Thesis Koufopoulos loannis-Aris

0.8

par cos

0.6
0.4

14e

most_similar

0.2

greekhoaxes factcheckgreek cyprus check4facts
source

Figure 28. Claim-Paragraph cosine distance score for n=5

Judging from the result shown on the violin plots above we can conclude that the
Cypriot dataset has the best score distribution for n=1 followed by the check4facts dataset. This
phenomenon occurs because the Cypriot news sites regarding fact checking claims are
extremely limited, so the most popular and relatable results are usually found on the first web
source, which is also the one closer to the claim in terms of relativity. Additionally, for the
check4facts dataset, we can observe that most claims fall into the [0.6, 0.8] score range, which
is above average, and a good indicator that the most relating web source will prove a useful
source of information. The rest of the data sources have a somewhat average distribution
score.

For n=2 there is a significant drop in the dot score distribution. The majority of the
claims, regardless of the source, present an average score that is close to the [0.5, 0.6] range.
We can see a difference in dot product of even 0.3 from adding just one extra external source of
information, which raises questions about the integrity of the websites content that was
harvested. With that in mind, and from the knowledge derived from those plot, it is essential to
decrease the amount of the external knowledge that will be put to use in the classification task.

As n increased, as show in the above figures, the distribution of the dot score between
a claim and its most relating paragraph continues to decline. When n=3, the score is in the
[0.4, 0.6] range, which is lower than the n=2 figure. For n=4 and n=5, the score ranges at rates
that are low which could potentially create a lot of noise for our model, and create many
challenges in its performance, making simple tasks such as generalization and robustness
difficult to achieve. In practice, using more than three external sources per claim is redundant.
This conclusion can also be supported when considering the limited number of claims that could
be affiliated with four or more external documents.

In this section, we have proven that that exceeding a certain amount of additional external
documents, creates problems, introduces a lot of noise, and further increases the complexity for
the classification. From now on, the range of n will be reduced to a maximum of three
paragraphs for each claim.

Fact checking with large language models

53

MSc Thesis Koufopoulos loannis-Aris
4.2.2 Oversampling

Class imbalances in classification tasks has been proven to pose significant challenges in
developing effective models. In most cases, the performance of the machine learning algorithms
is typically evaluated using predictive accuracy. However, this is not appropriate when the data
is imbalanced, or the cost of different errors vary. For example, a typical mammography dataset
like the one in [21] might contain 98% normal pixels and 2% abnormal pixels. A simple, default
strategy of guessing the majority class each time would give an accuracy of 98%. However, the
nature of the health domain requires a high rate of accuracy for the minority class. Simple
predictive accuracy is clearly not appropriate in such situations.

In general, there are two main approaches when it comes to class imbalance issues.
One is to assign different costs to training examples. The other is to resample the original
dataset by oversampling the minority class or by undersampling the majority class. In this
thesis, we are choosing to oversample the minority class since by undersampling, we will be left
with a very small dataset at hand, and this would create different kind of impediments for our
classification task.

Relating literature regarding class imbalances, states that by simply under-sampling the
majority class, enables better classifiers to be built than over-sampling the minority class.
Combining the two, as done in earlier research, does not produce classifiers that perform better
than those created using undersampling alone. Nonetheless, the minority class has been
oversampled due to replacement sampling from the original data. Our approach takes
advantage of an alternative over-sampling technique.

For the purposes of this thesis, we are going to utilize the SMOTE oversampling
method. Simply put, SMOTE generates synthetic examples by operating in “feature space”
rather than the “data space”. The minority class is oversampled by taking each minority class
(one class in our case) and introducing synthetic examples along the line segments joining any
or all of the k minority class nearest neighbours. Depending upon the amount of oversampling
required, neighbours from the k-nearest neighbours are randomly chosen. The default version
of the SMOTE uses 5 nearest neighbours. If less synthetic samples are needed, then k may
vary. For example, if the amount of oversampling required is 200%, only two neighbours out of
the five are randomly chosen and one sample is generated in the direction of each.

The first step of the SMOTE method it to take the difference between the feature vector
(sample) under consideration and its nearest neighbour. Multiply this difference by a random
number between 0 and 1 and add it to the feature vector under consideration. This causes the
selection of a random point along the line segment between two specific features. This
approach effectively forces the decision region of the minority class to become more general.
On the next page, we present the algorithm of SMOTE, that displays an example of calculation
of random synthetic samples.

The reason as to why synthetic minority oversampling is as a mean of improving a
classifier's performance instead of oversampling with replacement is fairly simple. When
oversampling with replication, the decision regions in the feature space becomes smaller and
more specific, with less variance as the minority samples in the region are replicated. This is not
the desired effect. On the other hand, when oversampling is achieved via the addition of
synthetic examples, causes the machine learning algorithm to build larger decision regions that
contain nearby minority class points. This is why SMOTE performs better than traditional
sampling techniques and cost-sensitive approaches. We present the SMOTE algorithm below.

Fact checking with large language models

54

MSc Thesis Koufopoulos loannis-Aris

Algorithm 1: Algorithm SMOTE(T, N, k)

Input: Number of minority class samples T; Amount of SMOTE N%; Number of nearest
neighbours k

Output: (N/100) * T synthetic minority class samples

(*If N is less than 100%, randomize the minority class samples as only a random percent of
them will be SMOTEGd. #)

1 if N <100
2 then Randomize the T minority class samples
3 T =(N/100) =T
4 N =100
5 end
if
6 N = (int)(N/100) (* The amount of SMOTE is assumed to be in integral multiples of 100. =)
7 k = Number of nearest neighbours
8 numattrs = Number of attributes
9 Sample[][]: array for original minority class samples
10 newindex: keeps a count of number of synthetic samples generated, initialized to 0
11 Synthetic[][]: array for synthetic samples (* Compute k nearest neighbours for each minority
class sample only. #)
12 fori—1toT
13 Compute k nearest neighbours for i, and save the indices in the nnarray
14 Populate(N, i, nnarray)
15 end
for
16 Populate(N, i, nnarray) (* Function to generate the synthetic samples. %)
17 while N# 0
18 Choose a random number between 1 and k, call it nn. This step chooses one of
the k nearest neighbours of i.
19 for attr — 1 to numattrs
20 Compute: dif = Sample[nnarray[nn]][attr] — Sampleli][attr]
21 Compute: gap = random number between 0 and 1
22 Synthetic[newindex][attr] = Sample[i][attr] + gap =+ dif
23 endfor
24 newindex++
25 N=N-1
26 end while
27 return (= End of Populate. x)
28 End of Pseudo-Code.
Algorithm 1

4.3 Classification stage

In this section, we will discuss the classification process of the fact checking pipeline. The main
goal is to employ deep learning techniques and various methods in order to extensively fine
tune machine learning algorithms that are trained on domain specific datasets. Then we

Fact checking with large language models 55

MSc Thesis Koufopoulos loannis-Aris

proceed to employ those models for the purpose of successfully labeling unseen claims and
measure their performance on different sets of features and datasets.

Neural networks overall, have given NLP models a huge capacity for understanding and
simulating human language. They have allowed machines to predict words and address topics
that were not part of the learning process. To achieve this performance in NLP processes, the
neural networks must be trained on a substantial number of documents (corpora) according to
the type of text or language to be processed. They have shown strong capabilities that could
be utilized within problems of NLP, providing efficient solutions towards problems within the
field. As the neural network evolves from its most straight-forward feed-forward neural network,
towards more sophisticated recursive neural network, more and more complex problems within
NLP could be solved through the utilization of these networks such as sentiment analysis as
well as text classification, which is the main subject of this thesis.

Additionally, we also demonstrate the model’'s parameters and machine learning
techniques used in order to generate models capable for the task at hand. For each n, we have
produced different collections of models, since with an increment of n, the final sum of the word
embedding vectors size, increases dramatically. Considering this, each model collection has a
different architecture. The neural network models were initialized with the use of the pytorch?6
library and consist of linear layers in conjunction with intermediate dropout layers with a p value
of 0.2 or 0.5 for n=3. To measure the performance of our classification model, a cross entropy
loss function was also implemented. Finally, the training dataset was split into 5 folds, and we
then employed a k-fold cross validation to estimate the training accuracy of the models. Based
on that, and through experimentations with different combinations of different parameter values,
we fine-tuned our neural network model by estimating an optimal learning rate value, and a
weight decay parameter value which is then used as a form of regularization that helps to
prevent overfitting by penalizing large weights, encouraging the neural network to maintain
smaller, more generalizable weights. The optimizer algorithm used was the AdamW?7 [17].
Finally, the activation function is a rectified linear unit (ReLU) or a leaky RelLU [18,19] depending
on the model’s architecture. More details on the optimizer algorithm the activation and loss
function(s) and the k-fold technique are presented below. On the tables presented in this
section, we demonstrate the architecture of each neural network model, depending on n. In the
last column of every table, we present the input size of each layer in the neural network, in the
form of an array.

4.3.1 Input vectors and feature reduction

In terms of input vectors, we have created three discrete experiments to evaluate the use of
different combinations of word embeddings that operate as feature vectors in the classification
task. On the first case, only the claim and the most similar paragraph feature will be utilized. On
the second case, the most similar sentence feature will be added, and on the last case, we also
include the title of the web source. The total number of 1536-sized vectors used, is calculated
with respect to n (e.g. the number of web sources utilized for a single statement). This means
that each discrete feature will appear n times as input, since every web source has its own
unique set of title, most relating paragraph, and most relating sentence. Finally, with the use of
PCA feature reduction technique, we transformed the title and most similar sentence vectors
into a 768-sized vector each, from its initial 1536-sized vector. By doing so, we decreased the
total input size that the neural network must process, reducing noise and error rates.
Additionally, we work under the assumption that the most similar paragraph feature along with
the initial claim, hold the most information that can aid the model to determine a final label. With
that in mind, we want to prioritize those features, by keeping their vector size intact,
simultaneously reducing the noise for the rest of the feature vectors. The final formula for the
total size of the feature vectors, when all is equal to n * (768+768+1536) + 1536, where n
equals the total number of web sources utilized, the sizes in the parenthesis equal the feature
vector sizes to each corresponding feature, and the final 1536-sized vector represents the initial

16 https://pytorch.org/
17 https://pytorch.org/docs/stable/generated/torch.optim. AdamW.html
Fact checking with large language models

56

MSc Thesis Koufopoulos loannis-Aris

claim. When less features are employed in the classification, the number in the parenthesis is
reduced accordingly.

In the figure below, we present our future reduction flowchart when given a claim and 1
relating web source, when all the harvested information is utilized. We can observe that the title
and the "most relating sentence” feature vectors were reduced in half, due the fact that they
introduce a lot of noise to the classification, and the fact that the final vectors are considerably
large in size, which could generate performance issues. Because the final vector size utilized as
the neural network'’s input is large, there is a need for complex deep learning models capable of
handling this amount of information.

Feature reduction for n=1

1536-sized
vectors Final size: n* (768+768+1536) + 1536
-
Claim I: :I
Feature vector —
Most similar
paragraph | 7ottt
-’
768-sized
vectors
Most similar -
Most similar
sentence tence |ttt
PCA feature sentence
reduction technique
Title

Title [........]

Figure 29. Feature reduction flowchart for n=1

4.3.2 Classification tasks

For the purposes of this thesis, we initialized two classification tasks. We will work in this
manner, since we are interested in the performance of the machine learning algorithms in
different settings, to get a better understanding of whether the dataset that the neural network is
being trained on, creates an impactful shift in the model’s behaviour. Moreover, since this thesis
is a continuation of the check4fact’s prior techniques, we are interested in reproducing the prior
classification task conditions to a certain degree combined with new logic of approach. To this
end, we define the first classification task, where the training datasets are the Greek and Cypriot
claims that were harvested from fact-checking websites. The dataset used for testing consists of
the check4facts dataset alone. On second classification task, we utilize a train-validation-test
split technique with an 64%-16%-20% ratio. The classification is binary, meaning that the model
will be trained on and predict claims on a True/False basis.

Neural Network Layers Activation function Input sizes of layers
model_1 [768, 192]
model_2 [768, 364]
model_3 2 Linear layers [3072, 768]
model_4 Leaky ReLU [3072, 1536]
model_5 3 Linear layers [3072, 1536, 768]
model_6 4 Linear layers [3072, 1536, 768, 384]
model_7 5 Linear layers [3072, 1536, 768, 384, 192]

Table 4. Table of models and their parameters when utilizing n=1 web sources per claim

Fact checking with large language models

57

MSc Thesis Koufopoulos loannis-Aris
models Layers Activation function Input size

model 8 [768, 192]

model 9 2 Linear layers [768, 364]

model 10 RelLU [1536, 384]

model 11 [1536, 768]

model 12 3 Linear layers [4608, 3072, 1536]
model 13 4 Linear layers [4608, 3072, 1536, 768]

Table 5. Table of models and their parameters when utilizing n=2 web sources per claim

Neural Network Layers Activation function Input size
model 14 2 Linear layers [768,384]
model 15 [6144, 1536]
model 16 3 Linear layers RelLU [6144, 3072, 1536]
model 17 4 Linear layers [6144, 3072, 1536, 384]
model 18 5 Linear layers [6144, 3072, 1536, 768, 384]
model 19 6 Linear layers [6144, 4608, 3072, 1536, 768, 384]

Table 6. Table of models and their parameters when utilizing n=3 web sources per claim

5 Result analysis

On the tables below, we present the results of the first two classification tasks, in accordance
with the number of external web sources used (n), and the feature vector that were utilized as
input (title vector, most similar paragraph vector etc.). Tables 7 through 24 display the accuracy
of each model, the learning rate and weight decay parameters, the total number of external web
sources utilized, a short description of the different combination of features that was used on
each experiment, and the classification task that is at hand. In some cases, some models do not
participate in the classification task, when a new feature is added, due to input size
differentiations. On each table, the best accuracy achieved is highlighted. The display of the
classification performance is followed by an extensive analysis of the results, with commentary
and explanation in regard to the classification task, the number of external web sources, and the
combination of the different feature vectors utilized for each experiment.

Neural Accurac learning rate weight deca No. of web Information
Network y 9 9 y sources
model 1 43.44%
model 2 52.90% . L

5 First classification task
model 3 42.75% using only the “most
model 4 48.27% 0.005 0.005 1 similar paragraph”
model 5 40% feature of the web
model 6 48.27% source
model 7 45.51%

Table 7. First classification task using the “most similar paragraph” feature, with n=1.

Fact checking with large language models

58

MSc Thesis Koufopoulos loannis-Aris

Neural . . No. of web .
Network Accuracy learning rate weight decay SOUICeSs Information
model 8 45.45%
model 9 48.15% First classification task
model 10 39.86% using only the “most

5 0.01 0.01 2 similar paragraph”
model 11 45.45% feature of each web
model 12 44.75% source
model 13 42.65%

Table 8. First classification task using the “most similar paragraph” feature, with n=2.

Neural . . No. of web .
Network Accuracy learning rate weight decay SOUICESs Information
model 14 47.01%
model 15 55.22% First classification task
model 16 53.73% using only the “most

5 0.01 0.005 3 similar paragraph”
model 17 95.22% feature of each web
model 18 59.70% source
model 19 50.74%

Table 9. First classification task using the “most similar paragraph” feature, with n=3

Neural . . No. of web .
Network Accuracy learning rate weight decay Sources Information
model 1 55.88%
model 2 56% First classification task
model 3 55.88% using the “most similar
model 4 55.88% 0.001 5 1 paragraph” feature and

the “most similar
model 5 52.20% sentence feature” of the
model 6 49.26% web source
model 7 56.61%

Table 10. First classification task using the “most similar paragraph” and “most similar sentence”
feature, with n=1.

Fact checking with large language models

59

MSc Thesis Koufopoulos loannis-Aris
Neural . : No. of web .
NErEr Accuracy learning rate weight decay sources Information
model 8 48.14% First classification task
irst classification tas
model 9 42.96% using the “most similar
model 10 - »

0.01 0.01 > paragrelph fea_ture and
model 11 - the “most similar
model 12 54.07% sentence feature” of

each web source
model 13 57.77%

Table 11. First classification task using the “most similar paragraph” and “most similar sentence”
feature, with n=2.

NEE Accurac learning rate | weight deca No. of web Information

Network y 9 9 y sources

model 14 51.58% First classification task
irst classification tas

0

model 15 48.41% using the “most similar

model 16 51.58% paragraph” feature and

model 17 51.58% 0.01 0.005 3 the “most similar

model 18 5238% sentence feature” of

oI IO L% each web source

Table 12. First classification task using the “most similar paragraph” and “most similar sentence”
feature, with n=3.

Neural Accurac learning rate weight deca No. of web Information

Network y 9 9 y sources

model 1 48%

model 2 50% First classification task

model 3 47.05% using the “most similar

model 4 47.06% 0.001 5 1 paragraph” feature , the
most similar sentence

model 5 53.67% feature” and the title of

model 6 52.94% each web source

model 7 51.47%

Table 13. First classification task using the “most similar paragraph” , “most similar sentence” and

“title” feature, with n=1.

Fact checking with large language models

60

MSc Thesis Koufopoulos loannis-Aris
Neural : . No. of web .
Network Accuracy learning rate weight decay Sources Information
model 8 49% First classification task
irst classification tas
0,

model 9 50% using the “most similar
model 10 - »

0.01 0.01 5 earagraph_ feature , the
model 11 - most similar sentence
model 12 51.85% feature” and the title of

each web source
model 13 55.55%

Table 14. First classification task using the “most similar paragraph” , “most similar sentence” and

“title” feature, with n=2.

Neural Accurac learning rate weight deca No. of web Information

Network y 9 9 y sources

model 14 53.17% . lassificatt ‘

irst classification tas
0,

model 15 49.20% using the “most similar
model 16 51.58% paragraph” feature , the
model 17 53.17% 0.01 0.005 3 “most similar sentence”
model 18 48.41% feature and the title of
el 19 £ 2% each web source

Table 15. First classification task using the “most similar paragraph” , “most similar sentence” and

“title” feature, with n=3.

Neural Accurac learning rate weight deca No. of web Information
Network y 9 9 y sources

model 1 86.45%

model 2 90.32% .

5 Second classification
model 3 85.16% task using only the
model 4 87.09% 0.005 0.005 1 “most similar paragraph”
model 5 84.51% feature of the web
model 6 85.16% souree
model 7 87.09%

Table 16. Second classification task using the “most similar paragraph” feature, with n=1.

Fact checking with large language models

61

MSc Thesis Koufopoulos loannis-Aris
Neural . : No. of web .
Network Accuracy learning rate weight decay Sources Information
model 8 82.26%
model 9 80.85% Second classification
model 10 81.56% task_us_lng only the
5 0.005 0.5 2 “most similar paragraph”
model 11 82.26% feature of each web
model 12 90.78% source
model 13 89.36%
Table 17. Second classification task using the “most similar paragraph” feature, with n=2.
Neural Accurac learning rate weight deca No. of web Information
Network y 9 9 y sources
model 14 71.31%
model 15 81.96% Second classification
model 16 86.88% task using only the
5 0.01 10 3 “most similar paragraph
model 17 84.42% feature” of each web
model 18 77.86% source
model 19 49.18%
Table 18. Second classification task using the “most similar paragraph” feature, with n=3.
Neural Accurac learning rate weight deca No. ofiweh Information
Network y 9 9 y sources
model 1 84.51%
model 2 85.16% Second_classififation
5 task using the “most
model 3 85.80% similar paragraph”
model 4 90.97% 0.005 0.005 1 feature and the “most
model 5 83.87% f similar Sfer;]tence]
eature” of the we
model 6 85.58% source
model 7 85.16%

Table 19. Second classification task using the “most similar paragraph” and “most similar

sentence” feature, with n=1.

Fact checking with large language models

62

MSc Thesis Koufopoulos loannis-Aris

Neural . : No. of web .
Network Accuracy learning rate weight decay Sources Information
model 8 81.56% Second classification
model 9 84.40% task using the “most

model 10 N similar paragraph”
0.005 0.5 2 feature and the “most
model 11 - similar sentence
model 12 85.11% feature” of each web
model 13 83.68% source
Table 20. Second classification task using the “most similar paragraph” and “most similar
sentence” feature, with n=2.

Neural Accurac learning rate weight deca No- ofiweh Information

Network y 9 9 y sources

model 14 71.31% Second classification
model 15 80.32% task using the “most
model 16 75.40% similar paragraph”

5 0.01 10 3 feature and the “most
model 17 78.68% similar sentence
model 18 74.59% feature” of each web
model 19 74.59% source

Table 21. Second classification task using the “most similar paragraph” and “most similar
sentence” feature, with n=3.

Neural . . No. of web .
Network Accuracy learning rate weight decay Sources Information
model 1 56.77%
model 2 61.93% Second_classification

5 task using the “most

model 3 82.58% similar paragraph”
model 4 83.22% 0.005 0.005 1 feature , the “most
model 5 82.58% oo milar sentence

eature” and the title o
model 6 83.22% the web source

model 7 82.58%

Table 22. Second classification task using the “most similar paragraph” ,”most similar sentence”,

and “’title” feature, with n=1.

Fact checking with large language models

63

MSc Thesis

Koufopoulos loannis-Aris

hetal Accuracy learning rate weight decay NI S Information
Network sources
model 8 52% Second classification
model 9 53.90% task using the “most
model 10 N similar paragraph”
0.005 0.5 2 feature , the “most
model 11 - similar sentence
model 12 82.97% feature” and the title of
model 13 80.85% each web source

Table 23. Second classification task using the “most similar paragraph” ,”most similar sentence”,

and “title” feature, with n=2.

NEE Accuracy learning rate weight decay NE. OIETED Information
Network sources
model 14 54.10% Second classification
model 15 74.59% task using the “most
model 16 81.97% similar paragraph”
0.01 10 3 feature , the “most
model 17 76.23% similar sentence
model 18 78.69% feature” and the title of
model 19 72.95% each web source

Table 24. Second classification task using the “most similar paragraph” ,”most similar sentence” ,
and “’title” feature, with n=3.

On table 7, we present a classification where the check4facts dataset was utilized to
test the performance of the models shown on the table (first classification task). The number of
web sources utilized was one, and the only textual information utilized is the “most similar
paragraph” feature. The optimal model parameters (learning rate, weight decay) were equal to
0.005. In terms of accuracy, we didn’t achieve considerable results. The best model was model
2 which achieved an accuracy of 52.90%. Model 5 produced the weakest performance, of 40%.
The rest of the models did not surpass the 50% threshold, and thus we can conclude that this
experiment did not yield satisfactory results. In most cases, the models failed to successfully
classify more than half of the training dataset correctly.

On table 8, we conduct the same experiment as above, but this time the number of web
sources that are associated to a claim is two. The learning rate and weight decay parameters
are set to 0.01. We observe that the best model produces an accuracy of 48.15%, which is
lower that our previous experiment. Increasing the number of web sources worsened the
model’s performance.

On table 9, the number of web sources was further increased, creating a total of 3
external online documents relating to a claim. The learning rate and weight decay parameters
were set to 0.01 and 0.005 accordingly. The best model’s performance was 59.70%, which is
considerably higher than the top performing models from previous experiments. This can be
attributed to the complexity of the models that were initialized for this task, which allows them to
detect patterns within the text embedding vectors with greater ease. Nevertheless, the top
accuracy is still relatively low, but the improvement in comparison to the previous tables is worth

Fact checking with large language models

64

MSc Thesis Koufopoulos loannis-Aris

noting. The rest of the models on this table also produce more satisfying results. All of them,
expect one, surpass the 50% threshold. This phenomenon was not observed in the previous
experiments.

Table 10 presents the results of a classification experiment, with the same
train/validation/test split as the previous ones. In this case however, we proceed with employing
an extra feature, named “most similar sentence”, (it is translated as a 768-sized text embedding
vector) in addition to the “most similar paragraph”. The number of web sources utilized is equal
to one. The learning rate and weight decay parameters were set to 0.01 and 5 accordingly. The
best performance was achieved from model 7, and as equal to 56.61%. The rest of the models,
(except from model 6), successfully surpassed the 55% threshold. The addition of an extra
feature proved beneficial to the classification task, when compared to table 7, where the same
experiment conditions are met, with a difference on the features utilized. Learning rate and
weight decay were setto 0.001 and 5.

Table 11 presents the results on an experiment with the same conditions as above
(Table 10), and with the increment of external web sources (n=2). The learning rate and weight
decay parameters were set to 0.01. While model 13 presents an increased accuracy in
comparison to the previous experiment (57.77%), some models dropped below the 50%
threshold, probably due to the fact that two extra text embedding vectors were introduced, when
we incremented the number n. This introduced a high degree of complexity to the classification
task, that the neural networks could not follow. Models 10 and 11 did not participate in the
classification because their input layer could not match the sum of the text embedding vectors.

Further increasing the number n, as shown on table 12, improved the average
classification performance (most of the model surpass the 50% threshold), but did not achieve a
superior performance when compared to tables 10 and 11. Model 15 had the worst
performance. The learning rate and weight decay parameters were set to 0.01 and 0.005
accordingly.

On table 13, we proceed to add textual information in addition to the previous two (most
similar paragraph and sentence). We introduce a text embedding vector of size 768, holding
information regarding the title of each web document. Starting from n=1, a learning rate of
0.001, and a weight decay parameter of 5, we observe that our best performing model achieves
an accuracy of 53.67%. Some models with simpler architectures on this table, do not surpass
the 50% threshold. This phenomenon occurs because of the high degree of complexity that is
introduced with the addition of an extra feature as input, and with the noise that the title feature
introduces.

On table 14, we further increase the number of n to two. The learning rate and weight
decay parameters are equal to 0.01. The most complex model on this table yields the best
results (55.55%). As the model becomes less complex, the accuracy drops. The lowest
performance recorded was 49%. Again, the need for complex models is highlighted in this
experiment.

On table 15, with further increased the number of web sources associated with a
statement when compared to the previous experiment. In spite of the fact that with the
increment of n, we introduced three new text embedding vectors, (each web source introduces
its own unique title, most similar paragraph and most similar sentence features) the models of
on this experiment had considerable higher number of input layers and architectural
parameters, that resulted in an increase in performance. The best model had the higher
complexity and produced an accuracy of 57.14%. The increase in accuracy was very slight
overall. Learning rate was equal to 0.01 and weight decay was equal to 0.005.

Tables 16 through 24, provide the results of the second classification task, where the
split was random in an 64/16/20 ratio (we reserved 25% of the training set for validation). Table
16 presents the experiment results where along with the claim, we utilized the “most similar
paragraph” feature alone, with n=1. Additionally, we set the learning rate and weight decay
parameters to 0.005. The accuracy results were overall very satisfying. Model 2 achieved the

Fact checking with large language models

65

MSc Thesis Koufopoulos loannis-Aris

greatest accuracy results, with a 90.32% score. The worst performance was measured at
84.51%, which is still higher considering the results from the first classification task.

On table 17, we worked in the same manner as before but with an increment of n, which
is now equal to two. Models with higher complexity yielded superior performance. The best
model on this table, obtained an accuracy of 90.78%. The second-best accuracy was equal to
89.36% (model 13). The rest of the models did not perform in the same manner. Their accuracy
is close to 80%. Such a drop in performance is expected considering the increment of relating
web sources.

Continuing with the increase of n, on table 18, we present the results achieved when
the number of relating web sources are three and the only feature utilized is the "most relating
paragraph”. Learning rate is set to 0.01 and weight decay to 10. The best performance was
achieved from model 16 (86.88%). The worst performance observed was 49.18%. The rest of
the models had varying scores ranging from 71.31% (model 14), to 84.42% (model 17). The
average accuracy dropped significantly which was expected, given the increment of the input
vectors.

On table 19, we start by setting the number n to one, the learning rate and weight decay
to 0.005, and by adding the “most similar sentence” feature along with the “most similar
paragraph” feature. Results were very satisfying. The best model achieved an accuracy of
90.97%, and the rest of the models converged to 85% accuracy in most cases, which shows
that the classification was not correlated to the neural network architectures. Learning rate and
weight decay were set to 0.005.

The experiment on table 20 produced inferior results when compared to the previous
one. The increment of n, once again, introduced a lot of complexity to the classification that
caused the neural networks to produce lower accuracy scores. The best model on this table had
an accuracy of 85.11%, and the worse one (model 1), an accuracy of 81.56%. The rest of the
models produced results that were below the 85%, which was the threshold that most of the
models from the previous experiments converged to. Learning rate and weight decay were set
to 0.005 and 0.5 accordingly.

Table 21 utilized a third web source. Most of the models converge to an accuracy of
75%. The best model (model 15) produced an accuracy of 80.32%, and the lowest score was
produced by model 14 (71.31%). Again, we detect a drop in accuracy with the introduction of a
third web source that is relating to a claim. Learning rate and weight decay were set to 0.01 and
10 accordingly.

Table 22 introduces the “title” feature and sets the number of external web sources to
one. The less complex models (model 1 and 2), produce poor results with an accuracy of
56.77% and 61.93% accordingly. The best performance is shared by models 4 and 5, with an
accuracy of 83.22%. The rest of the models share an accuracy of 82.58%. It is evident that the
title feature was not beneficial to the classification, when compared to tables 19 and 16.
Learning rate and weight decay were set to 0.005.

Further increment of n (Table 23), when 3 features are utilized (title, most similar
paragraph, and sentence), lowers the accuracy of the experiment. Once again, models having a
simple architecture (model 8 and 9), produce poor results with an accuracy of 52% and 53.90%
accordingly. The best performance was produced from model 12 (82.97%). Model 13 produced
an accuracy of 80.85%. Learning rate was set to 0.005 and weight decay to 0.5.

Table 24 is the most complex experiment of this section. We utilize the maximum
number of web sources (n=3) and the all the available features. The best accuracy is achieved
by model 16 (81.97%). The lowest score is 54.10% (model 14). The rest of the accuracies range
from 72.95% to 78.69%. Learning rate is set to 0.01 and weight decay is equal to 10. The
accuracy dropped in comparison to tables 22 and 23, but it is something to be expected when
taking under consideration the large number text embedding vectors and the noise that is
introduced to this experiment.

Fact checking with large language models

66

MSc Thesis Koufopoulos loannis-Aris
5.1 Comparison of the different classification tasks

One of the most important insights from the classification stage, is that the first task
didn’t yield the results we expected. The experiment where we trained the neural networks on
the whole dataset, and then tested its performance on the check4facts claims, provided us with
a maximum accuracy of 59.70%, as we can see on table 9. We weren’t able to replicate the
results from the check4facts pipeline by using a different collection of claims. This may occur
due to the high variance of the datasets and more specifically, from the fact that the check4facts
dataset is primarily build on claims that refer to the migration subject in Greece. The rest of the
dataset reflects on worldwide news, such as war news, news referring to the United Stated
politics, new about the COVID19 pandemic etc. Generally, they are not constricted in Greece
and Cyprus exclusively. Thus, it is reasonable to conclude that data variation plays an essential
role in the classification, given the fact that both classification tasks had an approximately
similar ratio of train-test data split.

In second classification task, where the train, validation test split was done in an 64/16/20
ratio randomly, had a substantial increase in performance. Models surpassed the 90% threshold
in accuracy multiple times. The best recorded model had an accuracy of 90.97%. Randomly
splitting the claims into distinct sets for training and testing, where both sets include claims from
all the data sources (Greek, Cypriot, and from check4facts), allowed for better generalization
and decreased the model’s sensibility to variance. We can safely conclude that the 64/16/20
split was far more superior that the split in the first classification task, where only the
check4facts dataset was used to evaluate the performance of our neural networks, as explained
above.

The different combinations feature vectors that were utilized along the classification tasks,
had an important impact to the accuracy of the models as well. When the test set consisted of
claims that stemmed from the check4facts dataset, adding the most similar sentence feature
along with the most similar paragraph feature, would lead to an increase in accuracy for n=1
and a slight decrease after the addition of the title feature. For n=2, adding the most similar
sentence increased the accuracy and the overall accuracy. Adding the title increased the overall
accuracy of the models but the best accuracy recorded didn’t surpass the 57.77% threshold.
For n=3, the best results were achieved when only the most similar paragraph feature was
utilized. This is expected considering the high number of feature vectors and embeddings that
are used as input for n=3. Adding extra features introduces a lot of complexity and noise to the
classification. Overall, the title feature vector didn’t yield better results when it was utilized, and
the most similar sentence vector aided in specific cases.

On the other hand, when the train/test split was random, while n<2, gradually adding
extra features such as the most similar sentence and the title feature, only lowers the average
accuracy. When n=3, adding the title feature as a third feature increases the average accuracy
slightly. The neural networks were the most efficient when only the most similar paragraph
feature was utilized. Using the most similar sentence feature only aided in a specific model
implementation for n=2, where we achieved the highest accuracy overall (90.97%), which was
not the case in the first classification task (utilizing the most similar sentence feature helped in
many cases). The title feature only worsened the results in both classification tasks. This feature
contains a lot of noise and is not helpful to the neural network.

To summarize, the second classification task, where the train, validation and test split was
done in an 64/16/20 ratio, we observed a substantial increase in performance. Models
surpassed the 90% threshold in accuracy multiple times. The best recorded model had an
accuracy of 90.97%. Randomly splitting the claims into train, validation, and test sets, where
both sets included claims from all the data sources (Greek, Cypriot, and from check4facts),
allowed for better generalization and decreased the model's sensibility to variance. We can
safely conclude that the 64/16/20 split was far more superior that the split in the first
classification task, where only the check4facts dataset was used to evaluate the performance of
our neural networks, as explained above.

Fact checking with large language models

67

MSc Thesis Koufopoulos loannis-Aris
5.2 Other parameters

In conclusion, the analysis conducted showed the results below:

e In terms of the number of web-sources: Utilizing multiple web sources is an
optimal technique when there is a lack of textual information that can be
utilized. For example, when using only the “most similar paragraph feature”, we
can observe that making use of the maximum number of web sources (n=3),
produces superior results than when additional information is at play (e.g. “title”,
“‘most similar sentence”). The surprising result is that in both classification
tasks, when utilizing 3 web sources and 3 features, the accuracy is higher than
the case where 3 web sources and 2 features where used. We worked under
the assumption that extra features would produce noise to the task and affect
the results negatively. For the rest of the cases, utilizing one or two web
sources is the optimal solution for the majority of the experiments.

e In terms of feature sets: In the first classification tasks the combination of
textual information that was used as input, did not affect the results in a
significant manner. The differences in accuracy, regarding the features sets is
very slight. We conclude that other parameters should be considered. In the
second classification task, the “most similar paragraph” and “most similar
sentence” combination produced the best results. Utilizing the “most similar
paragraph” only also yielded promising results but came second in terms of
accuracy. Using all three features introduced a lot of noise and worsened
performance of the models.

e Interms of model complexity: In the first classification task, models of higher
complexity in terms of layers produced better results in the majority of the
cases. When increasing n from two to three, we achieved better average
performance, due to the fact that models initialized on the n=3 experiments,
were deeper and more complex, than the ones initialized on the n=2
experiments. In the second classification task, a model of medium to high
complexity usually generated superior accuracy. This is probably due to the
high number of embeddings used that generated the requirement for complex
models that are more capable of locating patterns within the text embedding
vectors.

e In terms of learning rate and weight decay: The learning rate and weight
decay parameters were assigned on each experiment through various trials and
experimentations, especially through the observation of the validation’s test
accuracy.

6 Conclusion

In this thesis, we discussed how the automated fact checking pipeline works, along with an
extensive analysis of its components and its architecture. Moreover, we presented related work
on how the use of the large language models can benefit the pipeline, by producing more
accurate results without the need for human intervention or the constant monitoring of the
pipeline. We presented relevant research that was conducted on the fact-checking domain in
non-English languages and presented the results. Finally, we presented deep learning
techniques and models capable of managing the automated fact-checking pipeline, and various
datasets that are commonly used as benchmarks to evaluate those models. Text representation
and text similarity methods as were essential to our pipeline.

The pipeline that was established in this thesis dissertation, was based on the grounds
of the check4facts pipeline. We extended the previous dataset to a considerable degree,
reaching a total of 794, from which just a small portion was not used due to preprocessing
procedures. The expanded dataset allows for better generalization of the models, reduced

Fact checking with large language models

68

MSc Thesis Koufopoulos loannis-Aris

variance and it encapsulates a wider range of claims for a more comprehensive coverage. The
feature extraction stage was also reconstructed. With the use of the OPENAI’s text embeddings,
we discarded the traditional natural language approaches, which were heavily reliant on
sentiment analysis, and human annotation, that require a significant amount of manual labor.
Each on of the features of a textual information was translated into a 1536-sized vector that
contained all the needed information in the form of embeddings. Those embeddings vectors are
a core element to the architecture of many popular LLMs. Finally, the classification stage was
updated with the utilization of deep learning models that provide flexibility in designing and can
handle large-scale datasets and complex model architectures that are suited for challenging
tasks such as the classification of textual claims that utilize multiple 1536-sized vectors as input.

The results demonstrated the promising aspects of the fact-checking pipeline when LLM
architectures are utilized. Accuracy surpassed the 90% threshold in many cases, proving that a
straightforward plug-and-play embedding API, can successfully replace complex NLP features
(like the ones generated at the check4facts pipeline) that require multiple hours of annotation
and construction, that sometimes result in uneven shaped feature vectors. Furthermore, the
new established pipeline is less static, and easier to customize. One may experiment with ease
on the text embedding models that will be employed, the feature vectors that are utilized, and
the classification models are also very simple to personalize to meet someone’s needs. The
check4facts pipeline on the other hand, would face various challenges in terms of flexibility,
such as the static nature of the Greek lexicon, that cannot follow the development of neologisms
and lexical evolution, like a text embedding model can. Additionally, the prior classification
models were not suited for the current classification tasks that are more complex and often
require a considerable amount of data.

Overall, despite the drawbacks that a non-English fact checking pipeline introduces,
incorporating LLM and deep learning technologies to an existing pipeline, proved to be
beneficial in terms of performance, time and reusability. Future examinations should include the
following:

e Extension of the current dataset, in order to encapsulate a wider range of subjects that
concern the public and have gathered the equivalent attention from the media.

e Collection of claims that encompass a larger spectrum of linguistic variations, such as
different syntax, etc.

e The implementation of alternative neural networks like CNN or RNN, that present
different capabilities, and the further experimentation on the already established neural
networks by altering its architecture (loss and activation function, number of layers etc.)

e Utilization of other multimodal data such as videos or images as features that can aid
the classification process.

e Introduction of new labels, that the current pipeline could not handle, due to lack of
relevant data.

e The production of justification prompts, with the use of visual aids, such as diagrams
and relating images.

Fact checking with large language models

69

MSc Thesis Koufopoulos loannis-Aris

7 References

(1]
(2]

3]

[4]

(5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Check4Facts: Public Discourse Fact Checking. Athens: Hellenic Foundation for
Reasearch and Innovation, General Secretariat for Reasearch and Technology.

Nayeon Lee, Belinda Z Li, Sinong Wang, Wen-tau Yih, Hao Ma, and Madian Khabsa.
2020. Language models as fact checkers? In FEVER Workshop, pages 36—41.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kittler, Mike Lewis, Wen-tau Yih, Tim Rocktéaschel, et al. 2020.
Retrieval-augmented generation for knowledge-intensive nlp tasks. In NeurlPS, volume
33, pages 9459-9474.

Nayeon Lee, Yejin Bang, Andrea Madotto, and Pascale Fung. 2021. Towards few-shot
fact-checking via perplexity. In NAACL, pages 1971-1981.

Zhang, X. and Gao, W., 2023. Towards lim-based fact verification on news claims with
a hierarchical step-by-step prompting method. arXiv preprint arXiv:2310.00305.
w

Sheikhi, G., Touileb, S. and Khan, S., 2023, May. Automated Claim Detection for Fact-
checking: A Case Study using Norwegian Pre-trained Language Models. In Proceedings
of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa) (pp. 1-9).

Lee, N, Li, B.Z., Wang, S., Yih, W.T., Ma, H. and Khabsa, M., 2020. Language models
as fact checkers?. arXiv preprint arXiv:2006.04102.

Ahmadi, N., Lee, J., Papotti, P. and Saeed, M., 2019. Explainable fact checking with
probabilistic answer set programming. arXiv preprint arXiv:1906.09198.

Ahmadi, N., Lee, J., Papotti, P. and Saeed, M., 2019. Explainable fact checking with
probabilistic answer set programming. arXiv preprint arXiv:1906.09198

N. Nakashole and T. M. Mitchell Language-aware truth assessment of fact candidates.
In ACL 2014

Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F. and Flammini, A.,
2015. Computational fact checking from knowledge networks. PloS one, 10(6):1-13

Tedmori, S. and Awajan, A., 2019. Sentiment analysis main tasks and applications: a
survey. Journal of Information Processing Systems, 15(3), pp.500-519.

Karadzhov, G., Nakov, P., Marquez, L., Barron-Cedefio, A. and Koycheyv, I., 2017. Fully
automated fact checking using external sources. arXiv preprint arXiv:1710.00341

Popat, K., Mukherjee, S., Strotgen, J. and Weikum, G., 2017, April. Where the truth lies:
Explaining the credibility of emerging claims on the web and social media.
In Proceedings of the 26th International Conference on World Wide Web
Companion (pp. 1003-1012)

Popat, K., Mukherjee, S., Strétgen, J. and Weikum, G., 2016, October. Credibility
assessment of textual claims on the web. In Proceedings of the 25th ACM international
on conference on information and knowledge management (pp. 2173-2178).

Fact checking with large language models

70

MSc Thesis Koufopoulos loannis-Aris

[16] Thorne, J. and Vlachos, A., 2018. Automated fact checking: Task formulations, methods
and future directions. arXiv preprint arXiv:1806.07687.

[17] Loshchilov, I. and Hutter, F., 2017. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101.

[18] Mastromichalakis, S., 2020. ALReLU: A different approach on Leaky ReLU activation
function to improve Neural Networks Performance. arXiv preprint arXiv:2012.07564.

[19] Xu, B., Wang, N., Chen, T. and Li, M., 2015. Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853.

[20] Shlens, J., 2014. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100.

[21] Woods, K., Doss, C., Bowyer, K., Solka, J., Priebe, C., & Kegelmeyer, P. (1993).
Comparative Evaluation of Pattern Recognition Techniques for Detection of
Microcalcifications in Mammography. International Journal of Pattern Recognition and
Artificial Intelligence, 7(6), 1417-1436.

[22] Li, B. and Han, L., 2013. Distance weighted cosine similarity measure for text
classification. In Intelligent Data Engineering and Automated Learning—IDEAL 2013:
14th International Conference, IDEAL 2013, Hefei, China, October 20-23, 2013.
Proceedings 14 (pp. 611-618). Springer Berlin Heidelberg

[23] G. Salton and C. Buckley, “Term-weighting Approaches in Automatic Text Retrieval,”
Information Processing and Management, vol.24, no.5, 1988, pp.513-523.

[24] Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P., 2002. SMOTE: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16, pp.321-
357

[25] Gomaa, WH. and Fahmy, AA. 2013. A survey of text similarity
approaches. international journal of Computer Applications, 68(13), pp.13-18

[26] Huang, A., 2008, April. Similarity measures for text document clustering. In Proceedings
of the sixth new Zealand computer science research student conference
(NZCSRSC2008), Christchurch, New Zealand (Vol. 4, pp. 9-56).

[27] Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781

[28] Pennington, J., Socher, R. and Manning, C.D., 2014, October. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP) (pp. 1532-1543).

[29] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[30] Konstantinovskiy, L., Price, O., Babakar, M. and Zubiaga, A., 2021. Toward automated
factchecking: Developing an annotation schema and benchmark for consistent
automated claim detection. Digital threats: research and practice, 2(2), pp.1-16.

[31] Ferreira, W. and Vlachos, A., 2016, June. Emergent: a novel data-set for stance

classification. In Proceedings of the 2016 conference of the North American chapter of
the association for computational linguistics: Human language technologies. ACL.

Fact checking with large language models

MSc Thesis Koufopoulos loannis-Aris

[32] Atanasova, P., 2024. Generating fact checking explanations. In Accountable and
Explainable Methods for Complex Reasoning over Text (pp. 83-103). Cham: Springer
Nature Switzerland.

[33] Guo, Z., Schlichtkrull, M. and Vlachos, A., 2022. A survey on automated fact-
checking. Transactions of the Association for Computational Linguistics, 10, pp.178-
206.

[34] Zeng, X., Abumansour, A.S. and Zubiaga, A., 2021. Automated fact-checking: A
survey. Language and Linguistics Compass, 15(10), p.e12438.

[35] Augenstein, [, 2021. Towards Explainable Fact Checking. arXiv preprint
arXiv:2108.10274.

[36] Zhou, C., Sun, C., Liu, Z. and Lau, F., 2015. A C-LSTM neural network for text
classification. arXiv preprint arXiv:1511.08630.

[37] Huang, L., Ma, D., Li, S., Zhang, X. and Wang, H., 2019. Text level graph neural
network for text classification. arXiv preprint arXiv:1910.02356.

[38] Babi¢ K, MartinCi¢-IpSic S, Mestrovic A. Survey of Neural Text Representation
Models. Information. 2020; 11(11):511. https://doi.org/10.3390/info11110511

[39] Thorne, J., Vlachos, A., Christodoulopoulos, C. and Mittal, A., 2018. FEVER: a large-
scale dataset for fact extraction and VERIification. arXiv preprint arXiv:1803.05355.

[40] Wang, W.Y., 2017. " liar, liar pants on fire": A new benchmark dataset for fake news
detection. arXiv preprint arXiv:1705.00648.

[41] Hassan, N., Arslan, F., Li, C. and Tremayne, M., 2017, August. Toward automated fact-
checking: Detecting check-worthy factual claims by claimbuster. In Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 1803-1812).

[42] Ferreira, W. and Vlachos, A., 2016, June. Emergent: a novel data-set for stance
classification. In Proceedings of the 2016 conference of the North American chapter of
the association for computational linguistics: Human language technologies. ACL.

[43] Hanselowski, A., Stab, C., Schulz, C., Li, Z. and Gurevych, I., 2019. A richly annotated
corpus for different tasks in automated fact-checking. arXiv preprint arXiv:1911.01214.

[44] Cao, H., Wei, L., Chen, M., Zhou, W. and Hu, S., 2023. Are Large Language Models
Good Fact Checkers: A Preliminary Study. arXiv preprint arXiv:2311.17355

[45] Li, M., Peng, B. and Zhang, Z., 2023. Self-Checker: Plug-and-Play Modules for Fact-
Checking with Large Language Models. ArXiv abs/2305.14623 (2023).

[46] Kim, K., Lee, S., Huang, K.H., Chan, H.P., Li, M. and Ji, H., 2024. Can LLMs Produce
Faithful Explanations For Fact-checking? Towards Faithful Explainable Fact-Checking
via Multi-Agent Debate. arXiv preprint arXiv:2402.07401.

[47] Choi, E.C. and Ferrara, E., 2024. FACT-GPT: Fact-Checking Augmentation via Claim
Matching with LLMs. arXiv preprint arXiv:2402.05904.

[48] Van der Maaten, L. and Hinton, G., 2008. Visualizing data using t-SNE. Journal of
machine learning research, 9(11).

Fact checking with large language models

https://doi.org/10.3390/info11110511

[49]

MSc Thesis Koufopoulos loannis-Aris

Ashfaque, J.M. and Igbal, A., 2019. Introduction to support vector machines and kernel
methods. no. April, pp.1-9.

Fact checking with large language models

73

