MANENIZTHMIO NEIPAIQZ
ZXOAH TEXNOAOIIQN NAHPO®OPIKHZ KAl
EMNIKOINQNIQN

TMHMA NAHPO®OPIKHZ

Mtuxiakn Epyacia

Tithog Mruxtaknic Epyaciag ,:V'L)r:veucn EunaBewwv oe moAumAatdopuikd meplBAaAlov pe xprion
ython

Proactive Vulnerability Management: A Python-Based Cross-Platform
Vulnerability Assessment Tool

Ovopatenwvupo Pottntn MuxdAng KaAAddog

MNatpwvupo Inupibwv
AplOudc Mntpwou /16040
ErupAEnwyY M. KotZavikoAdou, KaBnyntng

Huepounvia Napadoong JentéuPBplog 2024

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Copyright ©

Atoyopele - aviypogry, aTTobikeon ko davopy m¢ TTapoloag epyaoiag, ¢ ookMpou 1 tfuonog autdg, ya
guTTopkd okomd. ETmpémma n o avariTrwon, omoBikeuon ke davopd yio okomrd i Kepdookomke, ekmabeutkic 1
E0EWTKAG @UONG, UTTO MV TTPOUTTOBEON Vo avogéper N Ty TTpoéheuong kur var Bomnperal 10 TGV Wrvupal,

O orroges ko 1o oupTTepdopara TTou TTEpbyovin ot ouid 10 fyypago ekppdlow aTokleoTkG Tov - ouyypogéa kol e
WITTPOOWTTEOW 1 eTTionues Béoe Tou Mavermompiou Mepaiwg.

Q¢ ouyypooéag me TTapoloac gpyaciog Snhwvew TTwg N TTapoboa epyacia dev arTorele TTpadv AoyokhoTriic ka Bev TTepéye UMK aTTO N
QVOQEpOpeveS TTNYEC.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

MTYXIAKH EPTAZIA MIXAHA KAAAAGAS
EuxapioTieg

Oa nBeha va ekppdow TNV €LAKPLVA HOU EUYVWHOCUVN G 6Aou¢ 6oou¢ cUVERaAAY, £0TW Kol VONTIKA,
oTNV OAOKANPWGN AUTAG TN ITTUXLAKAG Epyaciag.

Mpwta am' 6Aa, To PEYAAUTEPO EUXOPLOTW TIPOG TOUG MPWNV cUVASEADOUG Lo, OL OToLOoL oU
€6el&av v afla g opadlkotnTag, TNG oUvVEPyaciag Kal tng aAAnAeyyung. Méow NG KOBNUEPLVAG
eunelpiag pe autolg, avttAndbnka mweg n adociwon otnv umoothpn twv cuvadéldwy pmopei va
dépel apolBaia odpéAn. ISlaitepa Ba fBea va suxaplotiow tov A. MAva, o omoiog pou £6eL€e pia
€VTEAWCG VEa SLACOTAON OTOV KOO0 TG aodalelag. Katd tn Stdpkela Tng Sletol cuvepyacoiog pag, Lou
LETESWOE YVWOELS TTOU cuvhBwg xpeLalovtal xpovia yla va aroktnBouv. Mou anédeife emavelAnuuéva
WG oTov Topéa tng aodalelag, Tinota dev Bewpeital Sedopévo, kat TOVIOE T onuacia tng Slapkoug
ETIOYYEALLATIKAG AVATITUENG KL TNG TipowOnong Tng Kowng e€EALENG e Toug cuvadéAdoug pag.

Eniong, opellw va ekPppdow TtV EVYVWHOOUVN HOU TIPOG TNV OLKOYEVELA oV Kal Toug diloug
LOU, yLa TNV ateAeiwTn umopovn Kot TV UTooTtrpLEr Toug o OAN Tt SLAPKELD TWV GTIOUSWV HOU.

TéNog Ba nBela va MpocBEécw TwE, TOPA TO yeyovog OTL Ta Ttuia Kat ot TitAol pmopolv va
efaodpalioouv eukalpleg, N TPAYUOTIKY EMLTUXIQ KOL N EMOAYYEAMATIKN avamtuén sfaptwvrtal amd
MPoowWTKEG afleg, adooiwon, €pyaTikOTNTA Kol TTAOOC ylo TO EMLOTNMOVIKO QVTIKE(MEVO. AuTh n
Slamiotwon Ba mpémel va Aswtoupyel wg otabepr) umevBLULON yla OAOUG HAG, QVEEAPTNTO MO TLG
€MLEOOELG TIOU €XOULE ONMELWOEL OTA OKASNMATKA oG teplBaAAovta.

SentéuPplog 24
MuxaAnc KaAAwadag

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

MTYXIAKH EPFAZIA MIXAHA KAAAIAGAE
MepiAnwn

H mapoloa MTUXLOKA €pyacia MApoucldlel TNy avamtuén evog epyaleiov elpeong eumabelwyv oe
UTIOAOYLOTEG KOl servers, ypappévo pPe Python. To epyadeio pmopel va tpéfel ota meplocotepa
Aettoupyikd cuotiuata (Windows kat Linux).

JKOTIOG TNG gpyaoiag ATtav n dnuloupyia evog eUXPNOTOU KoL OMOTEAECUATIKOU Epyaleiou yla Tov
€VTOTULOMO TIBOVWY gUTIABELWV O€ UTIOAOYLOTIKA cuoThpata. To epyoleio aflomoLlel TEXVIKEG TAPWONG
Kal avaluong yla va evtomicsl tuxov aduvapieg aodaleiag, cupBdarlovtag otnv mpooTacia Twv
OUOTNUATWY artd KOKOPBOUAEG EVEPYELEC.

H avantuén tou epyaheiou Baoiotnke otig akdAouBeg pebodoloyieg:

e JuMoyn mAnpodoplwv: ‘Epsuva Kol avAAUGN UTOPXOVTIWY EUNABELWY KAl TEXVIKWY

EKUETANEUONG AUTWV.

o Ixedlaouog: Anpoupyia oxebiou yla TNV OPXLTEKTOVLKA KAl TG AELTOUpYieg Tou epyaleiou.

e Avamrtuén: Xpnon tng yAwaoaoag Python yia tnv ulomoinon tou kwdika.

e 'Eheyxog: Als€aywyn SoKLUWV ylo TNV eMaABgucon TG AELTOUPYLIKOTNTAC KAl TG akpiBeLag Tou

epyaleiou.

H mtuxlakn epyocio odriynos otnv avamtuén evog Astitoupytkol epyaleiov elpeong eumabelwy Pe
TLG akOAouBeg SuvatdTnTeG:

e EktéAeon o€ mMOANATAEG MAATHOPHEG: To epyaleio pnopel va tpé€el o Windows kat Linux.

e Jdpwon sumaBelwv: EKTEAEL CAPWON TOU CUOTALOTOC YLa TUXOV YWWOTEG f TlOavég eumdBelec.

e Avadopd supnuatwv: MNapéxel Aemtopepn avodopd e T ATOTEAECUATA TNG OAPWONG.

H ulomoinon evog XpAoLou epyaleiou ylo TOV EVIOTIOUO EUTIAOELWY GE UTIOAOYLOTIKA CUCTAUATO
anodeixBnke. To epyaheio umopel va aflomoinBel omd SLAXELPLOTEG OCUOTNUATWY, ETALPELEG
TIANPOodOPLKNG KAL XPAOTEC yLa TNV EVIOXUON TG A0PAAELAG TWV CUCTNUATWY TOUG.

Néelg KAeldia: Avantuén, Epyaleio, Eunadeleg, Python, Ymoloyiotég, Servers, AopdlAcia, Zdpwon,
AvdAuan, Aettoupyika

Abstract

This bachelor’s thesis presents the development of a vulnerability discovery tool for computers and
servers, written in Python. The tool can run on various operating systems, such as Windows and Linux.
The goal of this thesis was to create a user-friendly and effective tool for identifying potential
vulnerabilities in computer systems.

The tool utilizes scanning and analysis techniques to detect security weaknesses, contributing
to the protection of systems from malicious activities.
The development of the tool was based on the following methodologies:

e Information Gathering: Research and analysis of existing vulnerabilities and exploitation

techniques.

e Design: Creation of a design for the tool's architecture and functionalities.

e Development: Implementation of the tool's code using Python.

e Testing: Conducting tests to verify the tool's functionality and accuracy.

This thesis resulted in the development of a functional vulnerability scanning tool with the following
capabilities:

e Cross-Platform: The tool can run on Windows and Linux.

e Vulnerability Scanning: Performs a scan of the system for known or possible vulnerabilities.

e Findings Report: Provides a detailed report with the scan results.

The development of a useful tool for identifying vulnerabilities in computer systems was
successfully achieved. The tool can be utilized by system administrators, IT companies, and users to
enhance the security of their systems.

Key-words: Development, Vulnerability, Tool, Python, Computers, Servers, Scanning, Analysis, Security,
Testing

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

MTYXIAKH EPTASIA MIXAHA KAAAIAGAS
Mivakag Mepiexopévwv

(0707 0377 474 01 (5 LSRR 2
0o T Lo X R UUPSRRRP 3
[Eo T a1 F OO OO OO PR UPTRRR 4
Y o1 Tt A TP SO T PSP PRTOUPPURPRPPRI 4
TTIVOKOIG TIEPLEXOEVIIV ..vveeeveienreeeereeeiteesteeesteeeteeeseesateeansasstesaseesbaeanseesasaeassessaseesnsessnseessesssessnsensns 5
TTIVOKOIG ELKOVWIV 1eveieviieeieeeieeeteeeteeeiteesbeeeteesateesaseesabeeenseesatasenseesataesnseesataeanseesnsasensesssaesnsessntesssensns 7
TTEVOUKOIG TTLVOLKUIV .t eeteeetee et e et e eteesabeeeteesabaeeaseesabeeessaesabasansaesasaeanseesasaeanseesasaeansessnsaesnsessntesnsensns 8
1 T} Ao Yo 18 ot o o ISR SPPRP 9
1.1 Description of the Problem under StUdYccooeeeeiiiiinieiieeeee et 9
1.2 PUIPOSE ANA ODJECHIVES.......c...eeeieeeeeeeee ettt 9
1.3 CoONCEPLUAT FOUNTALIONS ...c..eeeeeieesieeee ettt st 9
1.4 I\ Lo T=d 0Tl o 1 =P T 10
1.4.1 MeEthOOIOZIESeeeiuiiieiieeiee ettt ettt et s sbe e sabe e sbte e saneesneees 11
15 WOIK DEIIVEIADIEScoeeeeieeieeeeeee ettt ettt e e e saee e 12
1.6 TRESIS OULIINEveeeeeeeeeeeee ettt e e et e e s st e e e s tte e e e sataeesasstaesanstesessssnaesanseneeas 12
2 Overview of the field Under StUdYcoc.eiiiiiiiiii e 14
2.1 The TRFreAt LANGUSCOPEeveeeeeiiieeeieeeeeeee e ettt eeeetta e s stta e e s tteaessstasssaseaassssesessssnasssseneean 14
2.2 Vulnerability Assessment: A Proactive APProGCH.............coeeeeveeecuieeeesiieeseciieescieeessieaennnns 15
2.2.1 Vulnerability ASSESSMENT TYPES....icicuiiriiiiieeeiieeeeriteeessteeeestreessareeessreeeesseeesessseessssseees 16
2.2.2 Network-based asseSSMENTcociiiiiiiiiiiiee e 16
2.2.3 HOSt-Dased ASSESSMENTcccuuiiiieiiiiiiiieeiee ettt r e s 17
2.2.4 Application-based asSESSMENT.........ueiiiiiiiiiiiiiee e e e e e s e e e e e s eabrareeaeeeean 17
2.2.5 API-Based Vulnerability ASSESSMENT......cccuiiiiiiiiiiierie ettt 18
2.3 Existing Vulnerability Assessment Tools: A Comparative Analysis............ccceeveercuvenvueennee. 18
2.3.1 ToOlIS fOr SPECITIC SECUIITY ATAS ..eiiieueriieiiiieeeciee e eetee sttt e e et e e e eere e sare e e e sbaeeeenaeeesnseeeas 19
2.3.2 Open-Source vs. COmMMErcial TOOISccicviiiiiiiie et e e e e eeeee s 23
2.3.3 Limitations of vulnerability SCANNErscuveviiiiieie e e 24
2.4 Python: Open-source Cross-Platform Vulnerability Assessment...........ccccoceevvvveeeeeeeecinns 25
3 Methodology: Design and Development of the Python Toolcccccoeiiiiiiiieeeciicciee, 26
3.1 ToO! DeSigN ANA AICRIEECTUIE ...t e e ettt a e e e e st e e e e e e e ssssranaas 26
3.1.1 Design and COMPONENTES ..uuviiiiiiieiiiiieei e e e eeciiie et e e e eesitrer e e e e eesrabaeeeeaeeeesaabaaaeeeeeesennsreseeaaaeans 26
3.1.2 Data FIoW and INTEractioncccceeerieeririririenie ettt s 28
3.2 Vulnerability Detection Techniques EMPIOYEd...............ooeeeuvveeeceeeeeiiiieeeiiiaesceeeesieaanans 29
3.3 TOO! IMPIEMENTALION.......ccceeeeeeeiieeeee ettt et e e e e sttt e e et e e e st e e e ssteaessnseaassaseeaeas 30

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

3.3.1 Programming Language and LIbrariescccooeioiieiiiiiniinieeeeeeeeee e 31
3.3.2 Development ENVIFONMENT......cccuiii ittt e e etre e e st e e e e tr e e e ennaaeeenreeean 32
3.3.3 CVE Data Source: National Vulnerability Database (NVD)cccccvveeevciieeeeiieee e 33
3.3.4 Code-Level Analysis: Implementing TEChNIQUES..........ccocvieieiiiie e 33
4 Results and Evaluation of the Vulnerability Assessment TOO!lcccoocveeenviiieincieeeiienn. 39
4.1 Testing MEthOdOIOGYcc.eoeueieuieiiiieieeeee ettt 39
4.2 RESUIS ANA ANGIYSIS ..ottt 40
4.2.1 WIindOWS ASSESSMENT FESUILS...cccveiiiiieiieiiieeiee ittt ettt e s esbeesnee e 40
4.2.2 LinuX ASSESSMENT FESUILS ...eiiiiiiiiiiiieeee ettt et 50
4.2.3 Summarized and visUalized reSUILScoceeiieiiriiiieeeeee e 58
4.3 Comparison with Other Open-Source Vulnerability Assessment ToOISccccccuvveeune... 61
4.4 CONCIUSION ...ttt ettt sttt ettt sane s enaees 61
REFEIENCES ..ttt ettt e b e b e bt et e b et st e sheesbe e bt et e atesreenreens 63

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

MTYXIAKH EPTAZIA MIXAHA KAAAIADGAL
Mivakag Eikovwyv
= U T A N LT L oY =T o - ol I SRS 19

Figure 2: QUAIYS INTEITACE ...oiiiiiiieeie ettt et e see e be e s b e e sae e sneeenneees
Figure 3: OpenVAS Interface

Figure 4: Nexpose Interface

FIGUIE 51 ZAP INTEITACE. ..eiiiieiiie ettt ettt set e s bt e s ane e be e e saneesneeessneenneees 22
Figure 6: CloudSploit INtEITACE. ..eiiiviieeeiie e e e e e e e e e s eaea e e e sata e e e enteeeennnes 23
Figure 7: DataFIoW di@grameioccieee e cctee e cee ettt re e st e e e e rate e e s eaea e e e sataeeeenssaeesnsaaeesnsseeeastaeesnnsees 29
Figure 8: Regex is used in order to parse the file path. ..o, 34
Figure 9: Regex for parsing the username and the password from the shadow file..........cccccovveeennnnnneee. 34
Figure 10: Finding specific configurations in the configuration files..........ccccooveriiiiiinniiee, 35
Figure 11: Verifying that the output of the command doesn't contain a specific valuecccceeveeneen. 35
Figure 12: Using the Get-CIMInstance command to interact with the Win32_UserAccount WMI object. 36
Figure 13: Retrieving the path of a service querying the WMI database.ccccevviiiiiiiiiinicnniienieeen, 36
FIgUre 14: CVE retriEVal PrOCESS. ...uuvieeeiiieeecitee ettt e e ettt e eette e e s tae e e eeate e e e eabaaeesataeeeestaeesessaaessnbaeeeanstaeesansens 38
FIBUre 15: EXECUTION FESUILS. .uuviiiiiiiieeciiee e ettt e ettt e e ettt e e ttte e e s bt e e e ettaeeseabaaeesataeaeenssaeeessaaeeensseeeansaessansens 41

Figure 16: Active vulnerabilities reported by the tool

Figure 17: Execution results with cache file

Figure 18: Results from first USEr @asSESSIMENT.ueiieiiiiiiciiee e cieeeertee et e st e e e rire e e e rba e e e etbeeeeataeeeennes 44
Figure 19: Output with the identified vulnerable privileged account.c.cccoovieriiiiiienniieneeee, 45
Figure 20: Assessment results before the hardeningcceeo e e 47
Figure 21: Assessment results after the hardeningc.cooveeviiiinieniiier e 47
Figure 22: Registry keys identified by the t0O]ccoociiiiieiir e s 48
Figure 23: Registry keys with malicious SOftWare..........c.uoiicuiiiiiiiiie e et 48
Figure 24: Disabled Firewall discovered by the toOol..........cooiiiiiiiiiiniii e 49
Figure 25: Discovered misconfigurations in filezilla configuration filesccocevviiininniiiniinnee, 49
Figure 26: Example of no misconfiguration to reportc.eeeicuiieeeciiie e e et 49
Figure 27 (left): Printed Results WithOUt CACheccuuviiii i
Figure 28 (right): Printed Results with caching................

Figure 29: User with weak password was discovered

Figure 30: Privileged user with weak password discovered

Figure 31: Configuration assesSMENT OULPULc.ueeieiiiiiieiiee ettt e et e e et e e e eaaee e etreeeearaeeeenneas 56
Figure 32: Discovered weak coNfigurationsccccceeciiiiieies i 57
Figure 33: Tool Output after the changes in the files........cccuev e 57
Figure 34: Results With iNactive NFtabIescooo oo et aarae s 58
Figure 35: Reported rule from OUF t0O]ccuuii i e e e e nre e e e ennes 58
Figure 36: Service Assessment Dar Chart..........oooiiie i ree e e 59
Figure 37: Service Assessment with cache bar chart.........ccoooiiii e, 59
Figure 38:User AssesSmMeENt Dar Chart.........oocuiiriiiie e e e e s e e e nte e e e enees 60
Figure 39: Configuration Assessment Dar Chartc.ueeeieiiieiiiiee e e 60

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

MTYXIAKH EPTAZIA MIXAHA KAAAIADGAL
Mivakag Mvakwv
Table 1: SCripts @aNd their FOIESuviie et e e e e e e e st e e e e e eae e e sabeeeesataeeesnsseeesnsreeaans 28

B Lo I R o - T LT U Y=o EO P PRSUUSTRT
Table 3: VM Testing Environment

Table 4: Bare Metal Testing Environment

Table 5: Execution in the desktop system without cache

Table 6: Results USING CACNE fil.uiiieiiieeeei e e e et e e e eae e e srae e e e s atbeeeeanaaeesnreeeans 42
TabIE 7: DESKLOP MESUILS ...eeeieiiiieciiee e ctee ettt e et e ettt e e et e e e e st ta e e e estaeestaeeeeastseeeanssseessseeeesnsseeeasseessnsrenanns 43
Table 8: Results after high privileged user was added.coceeiiiiiiiiiiie e 44
Table 9: httpd.CONT @SSESSEMENT.....cciiiiieeeiee et e e e e ete e e s tae e e e satreeeeasaeeessseeeasatseeeasseessnsseeeans 45
Table 10: httpd.conf assessment after modificationsooceiriiiiii i 46
Table 11: FEA0ra 40 @XECULION FESUILSciiiiiiiiiiiieeeiiieeeeiee e eite e e st e e s stte e e s staeeeesbeeeesaaeeesnaeeeesnsseessnsseessnsseeenns 50
Table 12: Fedora 40 execution results With cache filec.oovviiiiiiiiii e 50
Table 13: User assessment results without a vulnerable privileged accountccocceeeviiiieniiniiieieeeeeee 51
Table 14: User Assessment results with vulnerable privileged accountccceecciiieeiii e 53

Table 15: Default Apache configurations in Fedora system

Table 16: Partially Hardened apache configuration file

Table 17: Parameters to be checkedccccvvvviiiiiiiireeiiiiiiiirieeee,

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Chapter 1

1 Introduction

Our digital world is a vast network, a web of connections that allows us to share information, access
services, and stay connected. But just like any intricate system, this network isn't flawless. Weaknesses
can hide within these connections, like cracks in a seemingly solid wall. These weaknesses can be
exploited by malicious actors, potentially leading to stolen data, disrupted services, and even threats to
critical infrastructure. This thesis dives into the world of vulnerability assessment, the process of
identifying and understanding these hidden weaknesses. By exploring existing tools and techniques,
we'll shine light on these weaknesses, allowing us to take steps to fortify our digital defences and keep
our information and systems safe.

1.1 Description of the Problem under Study

The cyber security world always demands ongoing efforts to uncover and address weaknesses lurking
within our computer systems and networks.

Traditional methods of vulnerability assessment, often manual or reliant on outdated tools, can
be time-consuming, resource-intensive, and potentially ineffective. This thesis addresses this challenge
by presenting the development of a Python-based vulnerability assessment tool specifically designed for
Windows, Red Hat-based, and Debian-based operating systems. This tool addresses the critical need for
efficient and vulnerability detection across these widely used platforms.

1.2 Purpose and Objectives

The primary purpose of this work is to develop a user-friendly and efficient vulnerability assessment tool
using the power and versatility of Python.

This tool aims to empower security professionals and system administrators by:

1. Automating Vulnerability Scanning: The tool will automate the process of scanning systems for
vulnerabilities across Windows, Red Hat, and Debian-based environments, making vulnerability
assessments easier and reducing manual effort.

2. Focusing on Critical Vulnerabilities: The tool will prioritize the identification of active Common
Vulnerabilities and Exposures (CVEs) within running system services. This focus ensures that
security teams address the most critical and recently discovered vulnerabilities first.

3. Enhancing Security Posture: The tool will identify weak user passwords and analyze
configurations for popular services like Apache, PostgreSQL, Nftables, Filezilla and windows
Registry. By addressing these areas, the tool helps strengthen an organization's overall security
posture.

4. Simplifying Remediation Efforts: The tool will present identified vulnerabilities in a clear and
concise format, enabling users to prioritize remediation efforts based on severity and potential
impact.

1.3 Conceptual Foundations

This section explores the essential vocabulary of vulnerability assessment in the "Nomenclature"
subsection. Following that, the "Methodologies" subsection examines existing approaches used in the
field. By understanding this foundation, we gain a deeper appreciation for the problem we aim to
address and the context within which our tool operates.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

MTYXIAKH EPTAZIA MIXAHA KAAIAGAS
1.4 Nomenclature

This section defines key terms used throughout this thesis to ensure clarity and understanding.

e Apache: Apache is one of the most widely used web server software in the world. Developed and
maintained by the Apache Software Foundation, it is an open-source project available for free.
Apache is known for its role in the initial growth of the World Wide Web and remains a popular
choice for delivering web content. [4]

e Brute Force: A brute force attack is a hacking method that uses trial and error to crack passwords,
login credentials, and encryption keys. It is a simple yet reliable tactic for gaining unauthorized
access to individual accounts and organizations’ systems and networks. The hacker tries multiple
usernames and passwords, often using a computer to test a wide range of combinations, until they
find the correct login information. [2]

e Cache: Pronounced cash, a special high-speed storage mechanism. It can be either a reserved section
of main memory or an independent high-speed storage device. Two types of caching are commonly
used in personal computers: memory caching and disk caching. [2]

e Common Information Model (CIM): Common Information Model (CIM) is the Distributed
Management Task Force (DMTF) standard for describing the structure and behavior of managed
resources such as storage, network, or software components. [5]

e Common Vulnerabilities and Exposures (CVEs): Publicly known security vulnerabilities assigned a
unique identifier for tracking and mitigation. Your tool focuses on identifying active CVEs within
running system services, prioritizing recently discovered and potentially exploitable vulnerabilities.

(3]

e Dictionary Attack: A dictionary attack is a type of brute force attack where hackers try to guess a
user’s password to their online accounts by quickly running through a list of commonly used words,
phrases, and number combinations. When a dictionary attack has successfully cracked a password,
the hacker can then use this to gain access to things like bank accounts, social media profiles, and
even password-protected files. This is when it can become a real problem for the attacker’s victim.

(2]

¢ Indicator of Compromise (I0C): It is a piece of forensic data that identifies potentially malicious
activity on a system or network. IOCs help security professionals and IT administrators detect data
breaches, malware infections, or other threat activities early, thereby enabling faster response to
prevent or mitigate potential damage. [6]

e Nftables: Nftables is a modern packet filtering and firewalling subsystem in the Linux kernel, which
replaces the older iptables, ip6tables, arptables, and ebtables systems. It provides a single
framework for IPv4, IPv6, ARP, and bridge packet filtering, with one unified command-line interface
and one configuration syntax. This simplifies the management and deployment of firewall rules and
policies across different types of networks and systems.

e Operating System (0S): Program that manages a computer’s resources, especially the allocation of
those resources among other programs. Typical resources include the central processing unit (CPU),
computer memory, file storage, input/output (I/O) devices, and network connections. Management
tasks include scheduling resource use to avoid conflicts and interference between programs. Unlike
most programs, which complete a task and terminate, an operating system runs indefinitely and
terminates only when the computer is turned off. [7]

e Pluggable Authentication Modules (PAM): PAM is a flexible and powerful suite of libraries that
handle authentication tasks on Unix-like operating systems. It provides a system of modules that can
be used to integrate multiple low-level authentication schemes into a high-level API, allowing for
programs that rely on authentication to be written independently of the underlying authentication
mechanism.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

10

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

e Port Scan: A port scan is a series of messages sent by someone attempting to break into a computer
to learn which computer network services, each associated with a "well-known" port number, the
computer provides. Port scanning, a favorite approach of computer cracker, gives the assailant an
idea where to probe for weaknesses. Essentially, a port scan consists of sending a message to each
port, one at a time. The kind of response received indicates whether the port is used and can
therefore be probed for weakness. [2]

e PostgreSQL: PostgreSQL, commonly known simply as Postgres, is a powerful, open-source object-
relational database system. It extends the SQL language combined with many features that safely
store and scale the most complicated data workloads. PostgreSQL is known for its robustness,
scalability, and performance and is used by a wide range of applications and organizations.

e Powershell: PowerShell is a cross-platform task automation solution made up of a command-line
shell, a scripting language, and a configuration management framework. PowerShell runs on
Windows, Linux, and macOS. [11]

e Registry: The Windows Registry is a crucial part of Microsoft Windows operating systems,
functioning as a database that stores low-level settings for both the operating system and
applications that opt to use the Registry. The Registry contains information, settings, options, and
other values for hardware and software installed on all versions of Microsoft Windows operating
systems. Its purpose is to provide a centralized and standardized solution for managing configuration
settings and to help control system and application operation more effectively. [9]

e Vulnerability: A weakness within a system, network, or application that can be exploited by
malicious actors to gain unauthorized access (Confidentiality), manipulate data (Integrity), or disrupt
operations (Availability). These three pillars, often referred to as the CIA triad, form the foundation
of information security. [1]

e Weak Configurations: Insecure settings on services or software that can be exploited by attackers.
Your tool will analyze configurations for popular services like Apache2, PostgreSQL, and iptables to
identify potential security weaknesses.

e Weak User Passwords: Passwords that are easy to guess or crack, such as short passwords,
dictionary words, or passwords reused across multiple accounts. Strong passwords are essential for
maintaining system security.

¢ Windows Management Instrumentation (WMI): Windows Management Instrumentation (WMI) is a
CIM server that implements the CIM standard on Windows. [10]

1.4.1 Methodologies

This research aims to identify and evaluate potential security vulnerabilities within computer systems.
The core methodology employed is a vulnerability assessment, which involves a comprehensive
examination of a system's configuration, services, and user accounts to identify exploitable weaknesses.
To facilitate this vulnerability assessment, a custom-designed Python-based tool was developed. This
tool makes the assessment process easier by automating various tasks, including:

Operating System Detection: The tool can identify the target system's operating system (Windows or
Linux) to tailor the assessment procedures accordingly.

Configuration Scanning: The tool scans the target system's configuration files and settings, searching for
potential vulnerabilities specific to the identified operating system.

Service Scanning: The tool identifies services running on the target system and compares them against a
maintained database of Common Vulnerabilities and Exposures (CVEs). This allows the tool to pinpoint
potential vulnerabilities associated with those services.

User Account Assessment: The tool analyzes user accounts and access control practices on the target
system, identifying weaknesses in user management that could be exploited by attackers. This

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

11

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

functionality is crucial for a vulnerability assessment as it helps identify potential security risks
associated with user privileges and access controls.

1.5 Work Deliverables

In this section, we outline the deliverables associated with the completion of this thesis.
e Thesis Document
e report_template.xlsx
e requirements.txt
e wordlist
e main.py
e lib directory
o Services Folder
= CVEUpdater.py
= ServiceScanController.py
= LinuxServicesScanner.py
= WinServicesScanner.py
o Users directory
= UserAssessmentController.py
= LinuxUserAssessment.py
= WinUserAssessment.py
o Configurations directory
= ConfigController.py
= LinuxConfigScanner.py
= WinConfigScanner.py
o OSProber.py

o Reporter.py

1.6 Thesis Outline

This section provides a roadmap for navigating the research to develop and evaluate a custom Python
tool for vulnerability assessment. Focusing on the critical field of cybersecurity, the thesis explores
existing vulnerability assessment practices and identifies a specific gap or limitation. Following this
exploration, the development process of the Python tool is detailed, analysing design methodologies
and the tool's functionalities. The effectiveness of the tool is then evaluated, with results and insights
presented. Finally, the concluding chapter summarizes the research findings, highlighting the tool's
contributions and outlining potential future directions for development. All the next chapters of this
thesis are briefly explained below:

e Chapter 2: Overview of the Field under Study: This chapter provides an overview of the field of
cyber security. It explores various types of assessments (e.g., network, system) and examines
existing tools and methodologies.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

12

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Chapter 3: Methodology: Design and Development of the Python Tool: This chapter dives into
the technical aspects of the research. It analyses the methodologies for designing and
developing the Python tool and a breakdown of the tool's functionalities and modules, along
with their interactions, clarifies its capabilities. The chapter concludes by summarizing the key
technical aspects and implementation of the Python tool.

Chapter 4: Results and Evaluation of the Vulnerability Assessment Tool: Chapter 4 explores
the effectiveness of the tool. The methodology employed for evaluation, such as test cases and
comparisons, is explained. The chapter presents the evaluation results, including the types and
number of vulnerabilities identified, detection rates, and any false positives encountered.
Following this, a thorough analysis evaluates the tool's strengths and weaknesses in terms of
accuracy and resource utilization. The chapter concludes by discussing potential improvements
and future development directions for the tool.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

13

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Chapter 2

2 Overview of the field under study

This chapter explores the crucial role of vulnerability assessment in today's computing environment.
We'll dive into existing techniques and tools for identifying and mitigating security weaknesses across
various operating systems.

2.1 The Threat Landscape

Modern computing is characterized by a wide gamma of operating systems powering everything from
personal computers and mobile devices to servers and embedded systems. This diversity offers users a
wide range of functionalities, but it also presents a complex challenge for security. Malicious actors
constantly refine their tactics, exploiting vulnerabilities in operating systems to gain unauthorized
access, steal sensitive data, disrupt operations, or deliver malware.

Some of the most common types of cyber-attacks that malicious actors use are:

1 Malware

Malware - or malicious software - is any program or code that is created with the intent to do harm
to a computer, network or server. Malware is the most common type of cyberattack, mostly because
this term encompasses many subsets such as ransomware, trojans, spyware, viruses, worms, keyloggers,
bots, crypto jacking, and any other type of malware attack that leverages software in a malicious way.

(2]

2 Denial-of-service (DoS) attacks

A Denial-of-Service (DoS) attack is a malicious, targeted attack that floods a network with false
requests in order to disrupt business operations. In a DoS attack, users are unable to perform routine
and necessary tasks, such as accessing email, websites, online accounts or other resources that are
operated by a compromised computer or network. While most DoS attacks do not result in lost data and
are typically resolved without paying a ransom, they cost the organization time, money and other
resources in order to restore critical business operations.

The difference between DoS and Distributed Denial of Service (DDoS) attacks has to do with the
origin of the attack. DoS attacks originate from just one system while DDoS attacks are launched from
multiple systems. DDoS attacks are faster and harder to block than DOS attacks because multiple
systems must be identified and neutralized to halt the attack.[2]

3 Phishing

Phishing is a type of cyberattack that uses email, SMS, phone, social media, and social engineering
techniques to entice a victim to share sensitive information — such as passwords or account numbers —
or to download a malicious file that will install viruses on their computer or phone.[2]

4 Spoofing

Spoofing is a technique through which a cybercriminal disguises themselves as a known or trusted
source. In so doing, the adversary is able to engage with the target and access their systems or devices
with the ultimate goal of stealing information, extorting money or installing malware or other harmful
software on the device.

5 Identity-based attacks
Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

14

https://www.crowdstrike.com/cybersecurity-101/spoofing-attacks/

MNTYXIAKH EPTAZIA MIXAHA KAAAIADAZ
Identity-driven attacks are extremely hard to detect. When a valid user’s credentials have been

compromised and an adversary is masquerading as that user, it is often very difficult to differentiate
between the user’s typical behavior and that of the hacker using traditional security measures and tools.

6 Code injection attacks
Code injection attacks consist of an attacker injecting malicious code into a vulnerable computer or

network to change its course of action. There are multiple types of code injection attacks:
e SQL Injection
e Cross-Site Scripting (XSS)
e Malvertising
e Data Poisoning

7 Supply chain attacks
A supply chain attack is a type of cyberattack that targets a trusted third-party vendor who offers

services or software vital to the supply chain. Software supply chain attacks inject malicious code into an
application in order to infect all users of an app, while hardware supply chain attacks compromise
physical components for the same purpose. Software supply chains are particularly vulnerable because
modern software is not written from scratch: rather, it involves many off-the-shelf components, such as
third-party APIs, open-source code and proprietary code from software vendors.

8 Social engineering attacks

Social engineering is a technique where attackers use psychological tactics to manipulate people
into taking a desired action. Through the use of powerful motivators like love, money, fear, and status,
attackers can gather sensitive information that they can later use to either extort the organization or
leverage such information for a competitive advantage. [2]

2.2 Vulnerability Assessment: A Proactive Approach

In order to prevent the cyber-attacks that were previously described, security measures are essential.
Vulnerability assessment (VA) plays a critical role in identifying, prioritizing, and mitigating security
weaknesses within systems before they can be exploited. VA helps organizations by proactively
identifying vulnerabilities so that organizations can prioritize and patch them before attackers can
exploit them.

For many organizations, compliance is a requirement too and many regulations require them to
conduct regular vulnerability assessments. These vulnerability assessments can help organizations meet
industry standards and data security mandates.

Other than that, optimizing security resources is a critical goal for most organizations. By
conducting regular Vulnerability Assessments (VA) scans, organizations can gain a much clearer picture
of their security posture. VA scans systematically identify and assess vulnerabilities within an IT
infrastructure, allowing security teams to prioritize their efforts effectively. This prioritization is crucial,
as resources for patching and remediation are often limited. By focusing on the most critical
vulnerabilities first, organizations can significantly improve their overall security posture and mitigate
the risk of breaches.

In other words, if a company wants to be safe from cyber-attacks, they should always perform a
vulnerability assessment at least annually.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

15

https://www.crowdstrike.com/cybersecurity-101/identity-security/identity-based-attacks/
https://www.crowdstrike.com/cybersecurity-101/cyberattacks/supply-chain-attacks/
https://www.crowdstrike.com/cybersecurity-101/social-engineering/

NTYXIAKH EPTAZIA MIXAHA KAAAIADAS
2.2.1 Vulnerability Assessment Types

There are several types of vulnerability assessment that are being used to extract different results and
target different security layers. The most common ones are explained below.

2.2.2 Network-based assessment

Network vulnerability scanning is the process of inspecting and reporting potential vulnerabilities and
security loopholes on a computer, network, web application or other device, including switches, routers,
firewalls, and wireless access points.

Types of network vulnerability scanning

There are several types of vulnerability scanning and each comes with a specific purpose. Some
common vulnerability scanning approaches include the following:

e Unauthenticated scanning. The tester performs the scan as an intruder would, without trusted
access to the network. Such a scan reveals vulnerabilities that can be accessed without logging
into the network.

e Authenticated scanning. The tester logs in as a network user, revealing the vulnerabilities that
are accessible to a trusted user or an intruder that has gained access as a trusted user.

e Host-based scanning. This type of scanning inspects individual servers or computers to detect
weaknesses in the operating system (OS), applications and configurations that are specific to
each host.

e Network-based scanning. This scanning identifies vulnerabilities such as weak passwords in
network devices, including routers, servers, firewalls, and switches. Limited penetration testing
is also conducted through network scanning without affecting the underlying system or
network performance.

e Web application scanning. This targeted scanning of web apps aims to identify security flaws in
their code, configurations, and authentication mechanisms, which helps mitigate common web-
based security breaches.

e Database scanning. This type of scanning focuses on identifying flaws in database management
systems.

e Port scanning. Port scanning entails making connection requests to network servers to locate
open ports and then monitoring the responses to assess their activity. Port scan attacks are
conducted by threat actors to get illegal access by locating open or underutilized ports.

e Cloud vulnerability scanning. Cloud-based vulnerability scanning is designed to pinpoint
weaknesses that are specific to Cloud services and configurations.

[12,13,15,16]

Network scanning tool

Numerous network vulnerability scanning tools are available, ranging from open source to
premium options. To make the best choice, organizations should carefully assess their specific
requirements and vet a tool that aligns well with their needs.

Examples of network vulnerability scanning tools include the following:

e Burp Suite. This web vulnerability scanner conducts automated enterprise-wide scans to check
for SQL injection, cross-site scripting, and other vulnerabilities besides being used for
compliance and security auditing.

e Falcon Spotlight. This cloud-based next-generation antivirus tool from CrowdStrike protects
networks and endpoints but also comes with a network threat-hunting module.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

16

https://www.techtarget.com/searchsecurity/tip/Types-of-vulnerability-scanning-and-when-to-use-each

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

e Nessus. Nessus from Tenable is an industry-standard platform that scans for security flaws in
hardware, software, OSes, cloud services and other network resources. Its enterprise edition
transitioned from being an open-source tool in 1998 to a commercial offering in 2005.

e Nmap. Short for Network Mapper, this open-source tool offers network exploration, security
audits and network discovery. Nmap is specifically designed to scan large networks rapidly,
although it can also be used on smaller single-node networks.

e Wireshark. This open-source packet analyzer is used for network troubleshooting, analysis,
software, and communications protocol development as well as for educational purposes.
Wireshark lets users capture and interactively browse the contents of network traffic.

e Wiz, Wiz is an agentless vulnerability management tool for all cloud resources. It continuously
assesses workloads to detect and prioritize vulnerabilities at scale and also extends
vulnerability management into the CI/CD pipeline, scanning virtual machine and container
images before deployment to prevent vulnerabilities from reaching production.

2.2.3 Host-based Assessment

Host-based security refers to the creation of a perimeter around each user workstation, server, or other
network hosts, that interact with the IT network. It means installing firewalls and intrusion prevention
systems and patching up software on a regular basis to avoid vulnerabilities. host-based security not
only prevents a host from being infected but also ensures that if a host is infected, it doesn’t spread the
infection across the neighboring hosts.

Host-based vulnerability scanning is the process of scanning a network host for security loopholes. A
scan of this kind can reveal:

e The history of security patches in said host.

e Vulnerabilities incurred through outdated patches.

e The damage that can be caused by the detected vulnerabilities.
e The level of access a hacker can gain by infecting the said host.

e Possible ways of mitigating the situation.Wireless network assessment

Like a regular network scan, a Wireless Security Assessment identifies potential threats.
However, it dives deeper specifically for Wi-Fi vulnerabilities. This assessment establishes a minimum-
security standard for your wireless network, verifies it adheres to any security regulations, and gathers
information on all connected devices' firmware versions to identify potential weaknesses. It even
measures the reach of your Wi-Fi signal to ensure it stays within your intended area. In essence, a
Wireless Security Assessment is a comprehensive examination of your Wi-Fi's security posture, ensuring
it's strong enough to keep unwanted access and breaches at bay.

2.2.4 Application-based assessment

An application vulnerability assessment is a process of reviewing security weaknesses in software
applications (Layer 7) including websites, mobile apps and APIs. It examines if the apps are susceptible
to known vulnerabilities and assigns severity/criticality levels to those vulnerabilities, recommending
remediation or mitigation if and whenever needed.

These assessments typically involve testing the application for common vulnerabilities, such as
SQL injection, cross-site scripting (XSS), and other OWASP Top 10 vulnerabilities. Application
vulnerability assessments can be performed using both automated and manual methods.

OWASP consistently compiles a list of the most critical application vulnerabilities, updated
periodically. In its latest OWASP Top 10 risks 2021 ranking, the following vulnerabilities demand
attention:

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

17

MNTYXIAKH EPTAZIA MIXAHA KAAAIADAL
e A01:2021-Broken Access Control
e A02:2021-Cryptographic Failures
e A03:2021-Injection
e A04:2021-Insecure Design
e A05:2021-Security Misconfiguration
e A06:2021-Vulnerable and Outdated Components
e A07:2021-ldentification and Authentication Failures
e A08:2021-Software and Data Integrity Failures
e A09:2021-Security Logging and Monitoring Failures
e A10:2021-Server-Side Request Forgery
(17]

2.2.5 API-Based Vulnerability Assessment

API vulnerability assessment is conducted to identify and mitigate potential security risks in APls. This
process identifies vulnerabilities and weaknesses in the API’s design, implementation, and deployment.
The goal is to ensure that the APl is secure, reliable, and resilient to attacks.

The following OWASP APl Top 10 vulnerabilities require specific attention in vulnerability
assessment process to ensure the security and integrity of APl interactions:

e API1:2023 Broken Object Level Authorization

e API2:2023 Broken Authentication

e API3:2023 Broken Object Property Level Authorization

e API4:2023 Unrestricted Resource Consumption

e API5:2023 Broken Function Level Authorization (BFLA)

e API6:2023 Unrestricted Access to Sensitive Business Flows
e API7:2023 Server-Side Request Forgery (SSRF)

e API8:2023 Security Misconfiguration

e API9:2023 Improper Inventory Management

e API10:2023 Unsafe Consumption of APIs

2.3 Existing Vulnerability Assessment Tools: A Comparative
Analysis

This comparative analysis section delves into the functionalities offered by a range of existing VA tools,
with a focus on their suitability for different security areas (which we'll explore further in a subsequent
section). We'll dissect their core strengths, such as the types of vulnerabilities they can detect (be it
network, application, or endpoint vulnerabilities), the depth of analysis they provide, and their ease of
use. However, no tool is perfect, and we'll also explore limitations, including the potential for false
positives, specific system compatibility, and cost considerations. This analysis will encompass both open-
source and commercially available tools, highlighting the advantages and disadvantages of each
category. Through this examination, we aim to empower security professionals with the knowledge
required to make informed decisions. By understanding the unique strengths and limitations of various
VA tools, professionals can select the solution that best aligns with their organization's specific security
posture, resource constraints, and budget.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

18

NTYXIAKH EPTAZIA MIXAHA KAAAIAGAE
2.3.1 Tools for Specific Security Areas

VA tools/solutions are designed to tackle different tasks and to provide a different view of each
company’s security posture. Some of these tools are summarized below:

1. Nessus

Nessus is a popular network vulnerability assessment tool. It provides features designed to help you
identify, assess, and rectify security vulnerabilities. Nessus offers tools for vulnerability scanning,
configuration auditing, asset profiling, and more. It is known for its speed, accuracy, and thoroughness
in scanning networks. Nessus provides a comprehensive vulnerability database, frequent updates, and
easy-to-use interface. Its ability to scan a wide range of devices, including network devices, databases,
and web servers, makes it a versatile tool suitable for organizations of all sizes. Moreover, its extensive
reporting capabilities enable you to understand your vulnerabilities in-depth and plan your mitigation
strategies accordingly. [22]

Nessuso Settings A intelresol o
Hack Configure Audit Trail Launch ¥ Export
= ¢« Back to My Scans
W My Scans B
W All Scans
Hosts | 1 Vulnerabilities 11 History |1
W Trash
Filter =
Scan Details
U Policies Sev Name Family Count Name: Hack
Plugin Rules Status Completed
CRITICAL 7-010: Securi d i Mindow: indaow i
i - MS17-010: Security Update for Microsoft Windows SMB. ‘Windows 1 policy: Advanced Scan
@ Scanners
Scanner: Local Scanner
-047: S d R indow:
MS16-047: Security Update for SAM and LSAD Remote ... Windows 1 Start: Today at 6:46 PM
End: Today at 6:52 PM
Netstat Portscanner (SSH) Part scanners 34 S
Elapsed: 7 minutes
DCE Services Enumeration ‘Windows 7
Vulnerabilities
Microsoft Windows SMB Service Detection ‘Windows 2
. ® CGitical
High
Microsoft Windows SME Log In Possible ‘Windows 1 Medium
® Low
Microsoft Windows SMB NativeLanManager Remote Sy... Windaws 1 ® Info
Microsoft Windows SME Registry : Nessus Cannot Acce.. Windows 1
—

Figure 1: Nessus Interface

2. Qualys

Qualys is a cloud-based network vulnerability assessment tool. Its primary function is to identify
vulnerabilities in your network and provide recommendations for their remediation. Qualys offers
speed, scalability, and accuracy in its vulnerability scans. Qualys’s cloud-based nature allows it to
perform scans without the need for any hardware or software installations. This scalability makes it
suitable for both small businesses and large enterprises. Furthermore, its real-time threat updates
ensure that you are always aware of the latest vulnerabilities. [22]

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

19

NTYXIAKH EPTAZIA

@ Qualys.

Web Application Scanning v

D Web Ap ions Scans Detections Reports Configuration KnowledgeBase

[E] web Application Management

T
1P Address

4 Filter Results i

e 10.10.26.20
10.10.25.88
New
Rogue £ 10102621
Approved
Ignored 2 10102621
In Subscription I
E 10102612
Operating System -
10.10.24.112
Yl 10.1024.112
Creation Date 101026112
0 10102080
Last Update Date [10.102585
4 10.10.25.65
Preview

Web Applications Authentication Catalog

Update
FQDN
23-26-20 patch.ad.vuin.qa qualys.com
23-26-20.patch.ad. vuin qa.qualys.com
2k364sp1-25-88p.2k364sp1.patch. ad.vuin qa.qualys.com
2k3esp1-26-21
2«3esp1-26-21
2K3r2-sp1-320it vuin.qa.qualys.com

2k3r2-sp1-32bit. vuin qa.qualys.com

Quick Actions qualys.com

View

qualys.com
Open In Browser
Edit fuin.ga qualys.com
Mark As. b | New |qa.qualys.com
Add Comment Rogue

Add To Subscripion | Approved 9a.qualys.com
Ignored

Maps

* Port
8030

80

8080

8443

NetBIOS
2K3-26-20

2K3-26-20
2K364SP1-25-88P
2K3ESP1-26-21
2K3ESP1-26-21
2K3R2-SP1-328IT
2K3R2-SP1-32BIT
2K3R2-SP1-328IT
2K3R2-SP1-328IT
2K3R2C-30-80
2K38P1-P-25-65
2K3SP1-P-25-65

MIXAHA KAAAIADAZ

@ Help v Logout

1-2000f8416] PO~

Created
23 Aug 2017

23 Aug 2017
23 Aug 2017
23 Aug 2017
23 Aug 2017
23 Aug 2017
23 Aug 2017
23 Aug 2017
23 Aug 2017
23 Aug 2017
23 Aug 2017

23 Aug 2017

http://2k3r2-s

IP address: 10.10.

p1-32bit.vuln.qa.qualys.com:8080

Updated by — | 23 Aug 20

Oper:

Comment

g System: Windows Server 2003 R2 Service Pack 1

System 23 Aug 2017
Web Application added from scan consolidated data from VM

Figure 2: Qualys Interface

3. OpenVAS

OpenVAS is a free and open-source application vulnerability assessment tool. It offers a suite of tools
for vulnerability scanning, management, and reporting. OpenVAS's strength lies in its vibrant community
of users and developers, who continually work on improving the tool and keeping it updated with the
latest threat intelligence. Its range of plugins allows for customization according to your specific needs.
Additionally, its detailed reporting capabilities help you understand your vulnerabilities and devise
effective mitigation strategies. [22]

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

20

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

No auto-refresh - Loggedin as Admin dookie | Logout
Mon Oct 23 17:57:34 2017 UTC

Assets Secinfo Configuration Administration

Dashboard

,‘;‘ Dashboard

)
- Tasks by Severity Class (Total: 0) v Tasks by status (Total: 0)
v CVEs by creation time (Total: 96428) - Hosts topology v NVTs by Severity Class (Total: 0)
~— CVEs | year Total CVEs
16,000 - 100,000
14,000 + - 90,000
I
12,000 - e
'- 70,000
A0H00 |- 60.000 No hosts with topology selected
8.000 A ||-50.000
5.000 ng | | 40,000
\J/ |- 30.000
4,000 /
/ I 20,000
2.000 10,000

T T T T T T
1990 1995 2000 2005 2010 2015

Figure 3: OpenVAS Interface

4. Nexpose

Nexpose, developed by Rapid7, is a network vulnerability management tool that offers real-time
insights into your security posture. It is known for its dynamic risk scoring, which evaluates
vulnerabilities in the context of their potential impact on your business. Dynamic risk scoring helps you
prioritize your efforts based on the potential damage a vulnerability could cause. This context-based
approach allows for more effective vulnerability management. Moreover, its integration capabilities

with other security tools further enhance its effectiveness as a comprehensive security solution. [22]

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

21

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

nexpose’ Create @~ Q C & johndoe

& MEMS

9,055 ASSets | zmosose e 174 39 7,862

- License Usage: 9955 / 5000000 (0.20%) Asset Groups Tagged Assets
Va I
K
ASSET CHARTS
= Assessment Status = Assets by Operating System = Exploitable Assets by Skill Level
M Microsoft (6,410)
I Ubuntu (3,059)

I Unknown OS (482)
Debian (306)

Il Sun (198)
Il Red Hat (177)
Cisco (173)
FreeBSD (143)
[Other (374)
SCANNED
Address Name site Operating System £ N Vunebilties Riskv Assessed LastScan Delete
10.1.10.101 server001 Los Angeles - Full Audit Microsoft Windows Server 2003 R2, 89 33 1429 1690272 Yes SunOct 11 ®
Enterprise Edition SP2 2015 b

Figure 4: Nexpose Interface

5. zap

Zed Attack Proxy (ZAP) scores the highest overall for all open-source vulnerability scanners and
provides the highest rated open-source value and ease of use of the tools tested. Pre-installed on Kali
Linux, ZAP places itself between the tester’s browser and the web application to intercept requests to
act as a “proxy”. This tests applications by modifying contents, forwarding packets, and other user
behavior simulations in a comprehensive and robust fashion. [23]

StandardMode 7] | | D I = & IR DS 0 do . Oh)oNEmRE cCcQe
[@ sites| # | [& Quick Start | =» Request | Responses= | 4 |
eSEen Header: Text v | Body: Text v | |
* = Contexts HTTP/1.1 200 OK A
(7] Default Context X-Powered-By: Express
v+ @ Sites Access-Control-Allow-Origin: *
_ X-Content-Type-Options: nosniff
" IV http./icdnjs.cloudflare.com X-Frame-Options: SAMEORIGIN

» Il ™ http://iocalhost:3000 Content-Type: application/json; charset=utf-8

Content-Length: 49
ETag: W/"31-c8VbHI3fnWu2adzwy80zzdD79mA"

1204, :"8%1 ’ 1"24")

[History | “\, Search | X Break Points | ¥ Alerts | |~ Output | 4¥ WebSockets | % Spider | ¥ AJAX Spider | 4 |
© @ | Filter: OFF ¢ Export

Id Req. Timestamp Method |URL Code Reason RTT | Size Resp. Body |HighestAlert Note Tags]
353 2211119143722 GET http:/localhost:3000 P ts/1/revi 304 Not Modified 4ms 0 bytes Medium .
354 22/11/1914:37.26 GET http://localhost:3000/rest/user/whoami 304 Not Modified 11 ms 0 bytes * Medium
355 22/11/1914:37:26 GET http://localhost:3000/rest/captcha/ 200 OK 92ms 49 bytes * Medium JSON
356 22/11/1914:37:29 GET http://localhost:3000/rest/admin/application-c... 304 Not Modified 32ms 0 bytes * Medium
358 22/11/1914:37:29 GET http:/localhost:3000/api/Memorys/ 200 OK 132... 783 bytes * Medium JSON
359 22/11/19 14:37:29 GET http:/localhost:3000/assets/public/images/u... 200 OK 46ms 1,834 bytes * Medium Script r
| Alerts (40 ;45 ;-8 fu9 Current Scans 4w 0 €0 @0 1 0 ()0 #0 ,°0 #0

Figure 5: ZAP interface.

6. CloudSploit

Aqua acquired and continues to maintain the open-sourced cloud-infrastructure scanning engine
Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

CloudSploit so that users can download, modify, and enjoy the benefits of the specialty tool. CloudSploit
scans can be performed on-demand or configured to run continuously and feed alerts to security and
DevOps teams. This tool examines cloud and container deployments not only for known vulnerabilities
but also for common misconfiguration issues. [23]

Projects/cloudsploit/scans$

Figure 6: CloudSploit interface.

2.3.2 Open-Source vs. Commercial Tools

This section will compare and contrast open-source and commercial tools in this domain.
Understanding the strengths and weaknesses of each approach will help us make an informed decision
when selecting the tool that best suits our specific needs and resource limitations.

Open-Source Tools

Open-source software, often referred to as "free and open-source software" (FOSS), is
characterized by its publicly accessible source code. This allows developers to freely modify, distribute,
and improve the software, creating a vibrant community of collaboration and innovation. Some of the
key features of FOSS are:

e Customization: Open-source grants you the freedom to tailor the software to your exact needs
and preferences. Whether you're building a custom web application or experimenting with a
new data analysis tool, the ability to modify the code unlocks incredible flexibility.

e Cost-Effectiveness: In an era of tight budgets, the free nature of open-source software makes it
a compelling option for independent developers and startups. This can significantly reduce
development costs, allowing you to focus on building your project without financial constraints.

e Community Support: Open source thrives on a collaborative spirit. A vast network of
developers actively contributes to and supports open-source projects, providing valuable
resources and assistance through online forums, documentation, and troubleshooting guides.
This collective knowledge base can be invaluable when encountering challenges or seeking new
insights.

e Transparency and Security: With the source code readily available, open source fosters a high
degree of transparency. You can scrutinize the code's functionality and security, ensuring it

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

aligns with your ethical and security standards. This transparency also allows for rapid
identification and patching of vulnerabilities, contributing to the overall security of the
software.

Commercial Tools

While open source offers unique advantages, commercial software provides a different set of
benefits, particularly suited for specific development needs.

e Dedicated Support and Maintenance: Commercial software vendors typically offer dedicated
support teams and regular updates, ensuring smooth operation and addressing issues
promptly. This can be important for high-stakes projects or long-term development cycles
where stability and ongoing maintenance are paramount.

e Integrated Solutions: Many commercial software solutions provide comprehensive and pre-
configured environments, streamlining your development process by eliminating the need to
manage multiple disparate tools. This can significantly improve efficiency and reduce time
spent on configuration and setup.

e User-Friendly Interfaces: Commercial software is often designed with user-friendliness in mind,
featuring intuitive interfaces and well-documented features. This can be a major benefit for
remote developers, as it minimizes the learning curve and allows you to focus on your core
development tasks.

e Clear Licensing and Compliance: Purchasing commercial software grants you a clear license
that outlines your rights and obligations, ensuring legal compliance and intellectual property
protection. This is particularly important for projects with strict licensing requirements or those
involving sensitive data.

What is better?

Ultimately, the choice between open-source vs commercial software hinges on your specific
circumstances and priorities. Open source might be ideal for experienced professionals that have time
to customize the tool based on their needs, while commercial software can offer a more plug-n-play
solution.

The budget of each company is a vital part for its life expectancy too. Open source offers a
significant cost advantage, while commercial software comes with upfront licensing fees and potentially
ongoing support costs. Weigh your budget constraints against the value proposition of each option.

Another factor to consider is technical expertise. If you possess the technical skills and desire
for customization, open source can be empowering. But if you value dedicated support, commercial
software is a better fit.

The ideal choice between open-source vs commercial software will depend on your specific
project needs.

2.3.3 Limitations of vulnerability scanners

Vulnerability scanning involves using either a software or hardware-based scanner to locate soft spots in
your code or in your infrastructure that can be exploited by known attack vectors. Soft spots are
typically a result of unsanitized code that permits illegal inputs, misconfigurations that can be used to
gain unwanted access or unpatched software.

Scans involve periodic pen-tests and code reviews to uncover weak spots, followed by code
updates and patches to remove vulnerabilities. The targets are rescanned afterward to ensure that

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

24

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

vulnerabilities have been weeded out. This review and patch cycle should be conducted after updates
and anytime new attack vectors that could endanger your infrastructure are discovered.

As a whole, vulnerability scanning comes with several operational issues. For one, new
vulnerabilities continually pop up, making scanning a frequent and resource-intensive process.
Moreover, complete code sanitization is rarely achieved, as the body code usually exists in a continual
state of change. This is on top of the fact that it’s impossible to predict all attack scenarios.

Lastly, vulnerability scanning cannot help with rapid responses to newly uncovered (zero-day)
threats. This is crucial, as most exploits take place soon after new vulnerabilities are made public.
Response time to such threats becomes a key component of any vulnerability management strategy —
one that can’t be addressed by a prolonged cycle of reviews and sanitizations.

2.4 Python: Open-source Cross-Platform Vulnerability Assessment

Python's versatility and rich ecosystem of security libraries make it well-suited for developing VA tools. It
offers libraries like scapy for network analysis, nmap for network scanning, and behave for security
testing. These libraries provide pre-built functionalities for vulnerability detection and analysis. Even if
you don’t decide to use the pre-built functionalities, developing new processes from the ground-up is
easier than any other programming language.

On top of that, the vast open-source community offers numerous security libraries and
frameworks readily available for integration. This offers an easy way to implement solutions that might
benefit every member in the community and in a way that best suit your needs.

Lastly, python's clear and concise syntax makes code easier to write, understand, and maintain.
This is crucial for security tools, which require ongoing updates and modifications as new vulnerabilities
emerge.

By understanding existing vulnerability assessment techniques and tools, we can identify
potential gaps and opportunities for improvement. The next chapter will delve deeper into the design
and functionalities of our Python-based vulnerability assessment tool, focusing on its capabilities for
identifying and analyzing vulnerabilities across Windows, Red Hat-based, and Debian-based
environments.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

25

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Chapter 3

3 Methodology: Design and Development of the Python Tool

The crux of this thesis lies in the development of a Python-based vulnerability assessment tool designed
for cross-platform environments. This section will dive into the inner workings of this tool. We'll begin
by exploring the overall design and architecture of the tool, outlining its core components and
functionalities (Section 3.1). Next, we'll examine the specific vulnerability detection techniques
employed by the tool, focusing on its capabilities for identifying vulnerabilities across various operating
systems (Section 3.2). Finally, Section 3.3 will shed light on the implementation process, discussing the
programming languages and frameworks used to bring this tool to life.

3.1 Tool Design and Architecture

This subsection dives into the blueprint of our Python-based vulnerability assessment tool.
We'll dissect its overall design, outlining the core components and their functionalities. Here's what we'll
explore:

Modular Design: We'll discuss the tool's modular architecture, explaining how it's broken down into
distinct modules that perform specific tasks. This modular design promotes code reusability,
maintainability, and easier integration of future functionalities.

Core Components: We'll dive into the essential components that make up the tool. This includes a
service assessment module, a user assessment module, a configuration assessment module and small
reporting module for presenting results.

Data Flow and Interaction: We'll describe how these modules interact with each other and with the
target system. This explanation will illustrate how user input triggers the scanning engine and how
vulnerabilities are identified and reported.

Scalability and Extensibility: We'll explore the tool's design considerations for future growth. This might
involve discussing how the architecture allows for adding new vulnerability detection modules or
supporting additional operating systems without major code overhauls.

3.1.1 Design and components

Our Python-based vulnerability assessment tool adopts a modular design for enhanced code reusability,
maintainability, and future expandability. This section dives into its core components and their
functionalities:

Central Orchestrator: main.py
The main.py script acts as the central control unit, coordinating the entire vulnerability assessment
process. It facilitates user interaction, initiates scans based on user input, and aggregates results for a
clear presentation.
Platform-Specific Configuration Scanning
The tool employs two key modules for configuration scanning, each tailored to a specific operating
system:
e WinConfigScanner.py: This module focuses on Windows system configurations. It parses
relevant configuration files and system settings to identify potential vulnerabilities that
attackers could exploit.

e LinuxConfigScanner.py: This module mirrors the functionality of WinConfigScanner.py but
caters to the specific configuration files and settings found on Linux systems.
Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

26

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

These modules work in conjunction with a coordinator script, ConfigController.py. This script acts
as a hub and triggers the appropriate platform-specific scanner module (either WinConfigScanner.py or
LinuxConfigScanner.py). On top of that this script calls the corresponded function for the targeted
configurations. Some configurations that the script checks are Apache2, PostgreSQL and Iptables
configuration files. This ensures efficient and targeted configuration scanning based on the target
environment and service.

Service Scanning for Vulnerabilities
Similar to the configuration scanning modules, the tool utilizes two platform-specific scripts for service
scanning:

e WinServicesScanner.py: This module scans for vulnerabilities in services running on Windows
systems. It leverages libraries or system calls to identify active services and compares them
against a database of known Common Vulnerabilities and Exposures (CVEs) retrieved and
maintained by CVEUpdater.py.

e LinuxServicesScanner.py: This module functions similarly to its Windows counterpart, focusing
on vulnerabilities in running services on Linux systems. It employs appropriate libraries or
system calls to gather service information and performs CVE checks against the updated
database managed by CVEUpdater.py.

These service scanners rely on a coordinator script, ServiceScanController.py. This script acts as a
hub/controller, which gets called and initiates the corresponding service scan module (either
WinServicesScanner.py or LinuxServicesScanner.py). This ensures the tool performs vulnerability
assessments aligned with the target system's operating system.

CVE Database Management: CVEUpdater.py

CVEUpdater.py plays a vital role in maintaining an up-to-date vulnerability database. It retrieves CVE
data for the running services from NIST and stores it locally. This ensures the tool leverages the latest
CVE information for accurate vulnerability identification during service scans. The local file acts as a
cache for the local services and has a 7-day update interval, meaning that if the local data are older than
a week then the file will be updated with the new data.

User Assessment Module
The tool offers a user assessment functionality to gain a better understanding of potential security
weaknesses.

This functionality is coordinated by UserAssessmentController.py, which manages platform-
specific user assessment scripts. WinUserAssessment.py handles user account assessments on
Windows systems, focusing on aspects like identifying privileged accounts and analyzing password
complexity. Similarly, LinuxUserAssessment.py performs analogous user account assessments on Linux
systems.

Operating System Detection: OSProber.py

OSProber.py is crucial for directing the tool's functionalities. This script identifies the operating system
of the system where the tool is running. This information is vital, as it dictates which platform-specific
scanning modules are executed. By identifying the target system's OS, the tool ensures efficient and
accurate vulnerability assessments.

Report Generation: Reporter.py

The Reporter.py script is designed to generate reports in both PDF and Excel (XLSX) formats based
on the results produced by the tool. This script automates the process of compiling, formatting, and
exporting data, making it easier to share and review the findings.

In the table below we can see a summarization of the scripts and their functionalities.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

27

NTYXIAKH EPTAZIA

Table 1: Scripts and their roles

MIXAHA KAAAIADAZ

Script Name

Role

main.py

Central control unit, orchestrates execution, handles
user interaction, initiates scans, aggregates results

CVEUpdater.py

Retrieves and updates the local CVE database used
for vulnerability identification. Creates a cache file
that contains the local services and their CVEs.

OSProber.py

Identifies the operating system (and its distribution if
available) of the system where the tool is running

ConfigurationController.py

Coordinates platform-specific configuration scanners
(WinConfigScanner.py & LinuxConfigScanner.py)

WinConfigScanner.py

Scans Windows system configurations for potential
vulnerabilities

LinuxConfigScanner.py

Scans Linux system configurations for potential
vulnerabilities

ServiceScanController.py

Coordinates platform-specific service scanners
(WinServicesScanner.py & LinuxServicesScanner.py)

WinServicesScanner.py

Scans for active vulnerabilities in services running on
Windows systems

LinuxServicesScanner.py

Scans for active vulnerabilities in services running on
Linux systems

UserAssessmentController.py

Coordinates platform-specific user assessments
(WinConfigScanner.py & LinuxConfigScanner.py)

WinUserAssessment.py

Performs user account assessments on Windows
systems (e.g., identifying privileged accounts,
analyzing password complexity)

LinuxUserAssessment.py

Performs user account assessments on Linux
systems (e.g., identifying privileged accounts,
analyzing password complexity)

Reporter.py

Creates an xlIsx and a pdf report with all the results.

3.1.2 Data Flow and Interaction

The modular design of our tool facilitates a seamless flow of data between components, orchestrating a
comprehensive vulnerability assessment process. Let's delve into this interaction.

Firstly, the user initiates the assessment by interacting with the central main.py script. The
interaction starts by specifying the type of assessment desired (configuration scan, service scan, user
assessment or a combination of them).

Next, OSProber.py plays a crucial role by identifying the target system's operating system
(Windows or Linux) and its distribution (Debian, RedHat etc.). This information is critical, as it dictates
the subsequent course of action. Based on user input and the identified OS, main.py triggers the
appropriate scanning modules.

For configuration scanning, ConfigController.py receives the user's selection and the OS
information. It then acts as a conductor, launching the relevant platform-specific scanner.
WinConfigScanner.py handles Windows systems, parsing relevant configuration files and system
settings to identify potential vulnerabilities. Similarly, LinuxConfigScanner.py tailors its approach to the
specific configuration files and settings found on Linux systems.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

28

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Service scanning follows a similar path. ServiceScanController.py receives user’s selections and
OS information before initiating the appropriate service scanner. WinServicesScanner.py focuses on
Windows systems, leveraging libraries and system calls to identify active services and compare them
against the CVE database maintained by CVEUpdater.py. Likewise, LinuxServicesScanner.py functions
on Linux systems, employing appropriate libraries and system calls to gather service information and
perform CVE checks against the updated database.

CVEUpdater.py plays a vital role behind the scenes, keeping the CVE database fresh. It retrieves
CVE data based on the running services from NIST and stores it locally, ensuring the tool identifies
vulnerabilities based on the latest information.

For the User assessment procedure, we follow the same idea. For Windows systems,
WinUserAssessment.py takes charge. For Linux systems, LinuxUserAssessment.py handles the user
assessment tasks. These scripts act as platform-specific counterparts and are called by the
UserAssessmentController.py script. Both WinUserAssessment.py and LinuxUserAssessment.py
interact with their respective operating systems to gather information about user accounts. This
involves querying the local system to identify accounts with login capabilities. The scripts then analyze
these accounts, assessing the complexity of their passwords and their group memberships.

Finally, main.py collects the results from all scanning modules. It then processes and organizes
this data, with the help of the Reporter.py, into a comprehensive report, presented to the user in
terminal, in a pdf and in an xIsx file. This report details identified vulnerabilities, potential risks
associated with those vulnerabilities, and recommendations for remediation.

This coordinated data flow, facilitated by the modular design, ensures a user-friendly and
informative vulnerability assessment experience.

ConfigControllerpy

Windows

WinConfigScanner py

Linux LinuxConfigScannerpy

I

CVEUpdaterpy

Windows

WinSeniceScannerpy

User Input

User
main_py param eters% SeniceScanControllerpy

Results
LinuxSeniceScanner.py

- @@

OSProber py

Windows

WinUserAssessmentpy

serAssess mentController p

inuxUserAssessment py

Figure 7: DataFlow diagram

3.2 Vulnerability Detection Techniques Employed

The tool leverages various techniques and attacks to identify potential vulnerabilities within a target
system. These techniques work in tandem with the data flow described earlier to provide a
comprehensive vulnerability assessment. For the most part, the scanning analysis is based on string
parsing, string comparisons and static code analysis, but let’s dig deeper into the techniques:

Static Code Analysis (SCA)

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

29

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Static Code Analysis principles are employed during configuration and service scanning. By
examining configuration files and system settings specific to the target operating system (Windows or
Linux), the tool can detect potential vulnerabilities arising from insecure configurations or the lack of
configuration hardening. For example, it might identify weak access controls or insecure service
configurations.

LSASS Dumping

The Local Security Authority Subsystem Service (LSASS.exe) is a critical process in Microsoft
Windows operating systems. It acts as the gatekeeper, enforcing security policies and ensuring only
authorized users gain access. LSASS verifies user logins, manages password changes, and creates access
tokens that function like digital keys for accessing resources. It also keeps a record of security-related
events in the Windows Security Log. However, due to the sensitive information it stores, including
hashed passwords and access tokens, LSASS becomes a prime target for attackers. By dumping the
contents of LSASS memory, attackers can potentially steal this information and bypass normal login
security, gaining unauthorized access to user accounts and systems. This technique is known as LSASS
dumping. [24,25]

User/Group enumeration through WMI/CIM queries

WMI (Windows Management Instrumentation) acts as a bridge between applications and the
inner workings of a Windows system. Imagine it as a universal translator that allows programs to
request and interpret information about various aspects of the system, including hardware components,
software applications, and security configurations.

For user and group information, WMI provides specific classes that function like data
blueprints. One such class is Win32_UserAccount, which holds details about user accounts like
usernames, full names, and account status. Another class, Win32_LocalGroup, stores information about
local groups on the system, including their names, descriptions, and member users.

By crafting WMI queries that target these classes, administrators can retrieve specific user and group
information. For instance, a query might target the Win32_UserAccount class to retrieve a list of all
usernames on the system. Another query could target the Win32_LocalGroup class in conjunction with
the Win32_GroupUser association class to determine which users belong to a specific local group.

By taking advantage of this functionality, we can retrieve information about user accounts and their
privileges. [26,28]

Dictionary Attack

A dictionary attack is a type of brute force attack where we try to guess a user’s password to
their accounts by quickly running through a list of commonly used words, phrases, and number
combinations. When a dictionary attack has successfully cracked a password, the hacker can then use
this to gain access to things like bank accounts, social media profiles, and even password-protected files.
This is when it can become a real problem for the attacker’s victim. In this python tool we employ the
same attack in order to find the user’s password. If the password is found, then it means that it’s weak
and we recommend a password change.

Registry Scanning

A critical technique that involves scanning the Windows registry to identify potential
misconfigurations. The Windows registry is a hierarchical database that stores low-level settings for the
operating system and installed applications. Misconfigurations within the registry can lead to security
vulnerabilities, system instability, or compliance issues. Our tool systematically navigates through
registry hives and keys, extracting values and settings that are known to affect system security. By
comparing these settings against best practice baselines and security benchmarks, the tool identifies
deviations that could indicate misconfigurations.

3.3 Tool Implementation

This section dives into the technical details of constructing the Python vulnerability assessment tool.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

30

MNTYXIAKH EPTAZIA MIXAHA KAAAIADAL
3.3.1 Programming Language and Libraries

Python was chosen as the primary development language due to several factors. First and foremost,
Python's clean and concise syntax promotes readability. This makes the codebase easier to understand
not only for the developer but also for potential collaborators or future maintainers. This clarity
simplifies future modifications to the tool.

Beyond readability, Python provides a vast ecosystem of well-established libraries that offer
functionalities directly applicable to vulnerability assessment. These libraries make the development
easier and empower the tool with specific capabilities. For instance, the regex library provides powerful
parsing functionalities. The tool uses a few libraries for the main reason that Python provides all the
core functionalities using its built-in methods. Functionalities like reading files, stripping string, searching
sentences etc, are some of the easiest things to do with python compared to other programming
languages. In the end, by leveraging this, we can focus our development efforts on crafting the core
logic of the tool rather than reinventing the wheel for essential functionalities.

Table 2: Libraries Used

Library Name

Description

re (Regular Expressions)

This built-in library provides powerful functionalities
for pattern matching and text manipulation. It's
instrumental in parsing configuration files, log files,
and other text-based data for vulnerability
identification.

pprint (Pretty Printing)

This built-in library helps in formatting and
presenting complex data structures (like dictionaries
or nested lists) in a more human-readable format.
This can be valuable for debugging purposes or for
generating user-friendly reports.

os (Operating System)

This built-in library offers functionalities to interact
with the operating system. It can be used for tasks
like file system operations (reading/writing files),
path manipulation, and potentially querying system
information relevant to vulnerability assessment.

json (JavaScript Object Notation)

This built-in library facilitates working with JSON
data format, which is commonly used for data
exchange between applications. It can be used for
parsing vulnerability databases or configuration files
stored in JSON format.

datetime (Date and Time)

This built-in library provides functionalities for
working with dates, times, and timedeltas. It can be
crucial for tasks like recording timestamps for scans,
scheduling scans, or manipulating timestamps
associated with vulnerabilities.

time (Time Access)

This built-in library offers functionalities for
measuring elapsed time, scheduling tasks, and
controlling the program flow based on timing
requirements. This can be relevant for measuring
scan duration or implementing timeouts

subprocess (Subprocesses)

This built-in library allows you to execute external
programs or commands from within your Python
script. This might be useful for situations where you
need to leverage external tools for specific tasks
during vulnerability assessment.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA

MIXAHA KAAAIADAZ

platform (System Platform Information)

This built-in library provides access to information
about the system platform (operating system,
architecture, version). This information can be used
to tailor vulnerability assessments based on the
specific platform or identify platform-specific
vulnerabilities.

requests (HTTP Requests)

This external library simplifies making HTTP requests
to web servers. It can be used for tasks like fetching
vulnerability data from online databases or
interacting with web-based services for vulnerability
checks.

packaging (Packaging Utilities)

[External Library] The packaging library has a module
called Versions which provides functionalities for
parsing and comparing version strings. This can be
particularly useful for comparing the versions of
local services with known vulnerable versions listed
in CVE databases.

progressbar (Progress Bars)

This external library provides functionalities for
displaying progress bars to the user during long-
running operations like vulnerability scans. This can
improve user experience by providing visual
feedback on the progress of the scan.

aspose.cells

This external library allows for the creation,
manipulation, and conversion of Excel files
programmatically. It's used in scenarios where
automation of Excel file processing is needed, such
as generating reports or data analysis.

openpyxl

The openpyx1 library provides tools for reading
and writing Excel files in the .x1sx format. It's
widely used for data extraction, report generation,
and automating Excel-based workflows.

shutil

The shutil module offers high-level operations on
files and collections of files, such as copying, moving,
and archiving. It's essential for file management
tasks, backups, and deployment scripts.

winreg

The winreg module provides access to the
Windows registry, allowing for the reading, writing,
and manipulation of registry keys and values. This is
useful for Windows-specific configuration and
system management tasks.

grp

The grp module provides access to the Unix group
database, allowing for retrieval of group information
by name or ID. This is useful for user management
and access control on Unix-like systems.

pam

The pam module provides an interface to the
Pluggable Authentication Modules (PAM) library,
used for authentication in Unix-like systems. It's
essential for implementing authentication
mechanisms and integrating with system-level
security.

3.3.2 Development Environment

The tool was primarily developed using Visual Studio Code (VS Code), a popular code editor that offers

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

cross-platform compatibility. This flexibility allowed for development between Windows and Linux
environments. On top of that, VS Code provides the possibility to manage a Git repository from inside
the tool, further simplifying development between platforms.

The logic of the tool is to work in as many operating systems as possible. So, to maximize
development flexibility and ensure the tool's adaptability, a multi-platform development approach was
adopted. This involved working on the tool across a range of operating systems, including Windows 10,
Windows 11, CentOS 9, Fedora 28-30, Debian 11, and RaspberryPi OS. This allows for seamless
development and testing regardless of the underlying operating system.

3.3.3 CVE Data Source: National Vulnerability Database (NVD)

Our Python vulnerability assessment tool relies on the National Vulnerability Database (NVD)
maintained by the National Institute of Standards and Technology (NIST) as its primary source of
vulnerability information. The NVD offers a comprehensive repository of publicly known cybersecurity
vulnerabilities, including details like:

e CVE Identifier: A unique identifier assigned to each vulnerability.
o Affected Software: Software products or libraries susceptible to vulnerability.

e Vulnerability Details: Descriptions of the vulnerability, potential impact, and mitigation
strategies.

e Severity Level: A classification of the vulnerability's severity (e.g., critical, high, medium, low)
based on its potential impact.

Utilizing the NVD Data:

The tool leverages the NVD data in two keyways:

1. Periodic Updates: To ensure our vulnerability assessments reflect the latest threats, the tool
incorporates a mechanism to periodically download and parse the relevant NVD data. The
downloaded data is in JSON format, but this can differ depending on the chosen access
method. Libraries like requests can be used to interact with the NVD API for data retrieval.

2. CVE Matching During Scans: During vulnerability assessments, the tool compares the software
versions identified on the target system with the affected software versions listed in the NVD
data. If a match is found, the tool raises a potential vulnerability alert, highlighting the specific
CVE identifier, severity, Exploitability score and Impact Score from the NVD.

The NVD's established reputation as a trusted source of vulnerability information offers several
advantages for our tool. Firstly, it ensures our assessments are based on comprehensive and reliable
data, minimizing the risk of basing security decisions on outdated or inaccurate information. Secondly,
the NVD utilizes a standardized data format for vulnerabilities. This standardized format allows for
efficient parsing and seamless integration into the tool's vulnerability assessment logic, making the
processing of vulnerability data simpler and easier. Finally, the NVD team actively maintains the
database, continually adding new vulnerabilities and updating existing entries with the latest
information. This ongoing maintenance guarantees our tool remains effective against the evolving
landscape of cybersecurity threats, ensuring the accuracy and relevance of our vulnerability
assessments.

3.3.4 Code-Level Analysis: Implementing Techniques

Our Python vulnerability assessment tool leverages various techniques to identify potential security
vulnerabilities on target systems and/or to have a better performance on the detection. This subsection
sheds light into the code-level implementation of these key techniques, showcasing how they contribute
to the tool's functionality.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

33

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

1. Parsing information from the systems

A critical aspect of vulnerability assessment involves retrieving information about the system and its
installed services. This information is often stored in configuration files with varying formats. To address
this challenge, we employed regular expressions. By defining patterns that match specific keywords and
delimiters within these files, we can efficiently extract relevant details like operating system version,
service names, installed software versions and configuration files.

There are many places in our code where regex is being employed, some examples are shown in the
following figures (8-9).

1t match:
filtered

capture_output=True})

:stdnut d
.split

ervice_version[service] = proc[1].strip()
ervice version[service] "L

ion

Ge

.PIPE).stdout.decode().split(

search(pattern, user)
if captures:
if captures.groups()[@] len{captures.groups()[1])
local users.append(captures.groups 1

n local users

Figure 9: Regex for parsing the username and the password from the shadow file.

Beyond regular expressions, Python's built-in capabilities offer another powerful approach to
searching configuration files for specific strings. The in operator within an if statement allows you to
efficiently detect patterns within variables. We can see some in-code examples in the figures 10 and 11.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

34

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

if - erToken
hardening[file][
f "Serve ture F line:
hardening[file][ture Off"] = True
f "FileET '

f "H e dit Set
hardening[file][
hardening[file][

f 'H et
hardening[file][

£ tific

hardening[file][
f "<Limit

~ service in services:
cmd [

> -Filter ‘MName like \"{serwvice
run{cmd, capture_output=True)).stdout.decode().split("\n"))

proc[@]:

Figure 11: Verifying that the output of the command doesn't contain a specific value

2. User/Group Enumeration through WMI/CIM Queries (Windows Systems)

On Windows systems, we can leverage the Windows Management Instrumentation (WMI) to retrieve
information about users and groups on the target machine. This information can be valuable for
identifying weak security configurations, such as accounts with excessive privileges or unused accounts.
However, it's important to note that this technique should only be used on authorized systems and only
for good purposes.

The implementation involves utilizing the subprocess library to execute specific CIM queries.
Figure 12 and Figure 13 provide some examples of this implementation:

GetUsers(s

cmd = [°

proc = (
local_us [1

local user in proc:
local_users.append(local user)

eturn local_users

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Figure 12: Using the Get-CIMInstance command to interact with the Win32_UserAccount WM/
object.

service in services:
cmd = [

cimInstance -(me win3 = 2 -Filter ‘Name like \"{service}\

]

proc = ({(subpr .run{cmd, capture output=True)).stdout.decode().split{"\n"))

Figure 13: Retrieving the path of a service querying the WM/ database.
3. Dictionary Attack

Disclaimer: Due to the potential for misuse, performing a dictionary attack is generally discouraged.
It can be used for malicious purposes and can be ineffective against strong passwords.
However, for educational purposes only, here's an overview of how a dictionary attack is implemented
in this thesis

Windows
° The tool requires a dictionary file containing potential passwords to be used in the attack. By
default, a wordlist is provided with the tool, but there is the option to use a custom one.

° In order to perform an authentication, the tool tries to start the cmd using the discovered user’s
credentials.

° A rate limiter and proper error handling is implemented to avoid overwhelming the target system
or triggering security measures.

In the following code snippet, you can see the implementation of the dictionary attack in the tool.

PassCracker(self, wordlist, local user):
length = len(wordlist)
count =
widgets = ['Progress: ', Percentage(), ' | ', Timer(), ' | ', AdaptiveETA()]
bar = ProgressBar(widgets=widgets, max_value=100).start()

for password in wordlist:

scriptBlockLinel = "{"+f'$pass="{password}"|ConvertTo-SecureString -AsPlainText -Force'
scriptBlockLine2 = "\n$Cred=New-Object
anagement.Automation.PsCredential('{local user}',$pass)”

scriptBlockLine3 = '\nStart-Process -FilePath cmd.exe /c -Credential $Cred }'
scriptBlock = scriptBlockLinel + scriptBlockLine2 + scriptBlockLine3

cmd = ['powershell’, '-c', f'Invoke-Command -ScriptBlock {scriptBlock}']
proc = (subprocess.run(cmd, capture_output=))
error = proc.stderr.decode().split("\n")

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool 36

MTYXIAKH EPTAZIA MIXAHA KAAAIADGAL
output = proc.stdout.decode().split("\n")
time.sleep(1)
if error[0] output[o]:
bar.update(100)
return , password

count+=1
bar.update(self.TranslateTol@0(count, length))

return , password

Linux
o The tool requires a dictionary file containing potential passwords to be used in the attack. By
default, a wordlist is provided with the tool, but there is the option to use a custom one.

In order to authenticate we simulate a pam authentication using the PAM library in python for a
specified user.

A rate limiter and proper error handling is implemented to avoid overwhelming the target system
or triggering security measures.

While the tool's dictionary attack functionality shares similarities with the Windows version,
the Linux implementation differs in how it handles authentication. Here's a code snippet demonstrating
the Linux-specific approach.

PassCracker(self, wordlist, local user):

length = len(wordlist)
count = 0

widgets = ['Progress: ', Percentage(), ' | ', Timer(), ' | ', AdaptiveETA()]
bar = ProgressBar(widgets=widgets, max_value=100).start()
for password in wordlist:
p = pam.pam()
auth = p.authenticate(local_user, password)
if auth:
bar.update(100)
return True, password

time.sleep(0.5)

count+=1
bar.update(self.TranslateTol@0(count, length))

return False, password

4. Data Caching for Performance Optimization

To enhance the efficiency of vulnerability assessments, our tool implements a local CVE cache. The

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) serves as a
source for our CVE data. However, repeatedly fetching the latest CVE information during scans can be
resource-intensive, especially if the internet connection is slow.

Our approach involves storing a locally accessible file containing relevant CVE data retrieved from
the NVD. This cached data includes details like CVE identifier, affected software versions, and severity
levels. Here's a breakdown of the implementation:

. Downloading and Parsing CVE Data: The tool periodically downloads the latest CVE data from the

NVD using libraries like requests to interact with the NVD API. It then parses the downloaded data

(in JSON format) to extract the required CVE details.

. Local Storage: The extracted CVE information is stored in a JSON format within a local file. This file
serves as the local CVE cache.

. CVE Lookup During Scans: During vulnerability assessments, the tool first checks the local CVE
cache for relevant entries. If the required CVE information is present and sufficiently recent (based
on a defined refresh interval), it utilizes the cached data for comparisons. This eliminates the need
for repeated NVD queries, improving scan performance.

. Cache Invalidation: To ensure the cached data remains up to date, the tool implements a cache
invalidation strategy. This strategy involves weekly updates to download fresh CVE data from the
NVD and update the local cache.

Our tool uses the CVEUpdater script to take care of this process. This script downloads information
about security vulnerabilities (CVEs) and stores them in a local file for future reference. It focuses on
vulnerabilities that are relevant to the specific services it finds running on the system. In the following
screenshot you can see the code implementation for the vulnerability retrieval process:

GetVulnerabilities(self):
cache
[pos_json for pos_json in os.listdir(’.") if pos_json.startswith(’Cac
if cached_cves_f:
if exists(cached cves f[8]):
if os.stat(hed_cves

cached =
cached_vulnerabilities

Figure 14: CVE retrieval process.

Finally, by using a local CVE cache, our tool reduces reliance on external resources during scans
and streamlines the vulnerability assessment process. This approach minimizes network traffic and
improves overall scan execution times, particularly in scenarios with limited internet bandwidth.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Chapter 4

4 Results and Evaluation of the Vulnerability Assessment Tool

The preceding chapters explored the design and implementation of our Python vulnerability assessment
tool. This chapter analyses the results of our evaluation process, aiming to assess the tool's effectiveness
in identifying vulnerabilities and its overall performance characteristics. Through an extensive testing
methodology, we analyze the tool's ability to detect various vulnerabilities, its accuracy in reporting
findings, and its resource utilization during scans. The insights gleaned from this evaluation will be useful
in refining the tool and ensuring its continued effectiveness.

4.1 Testing Methodology

To thoroughly evaluate the effectiveness of our Python vulnerability assessment tool, we implemented a
simple and efficient testing methodology. This methodology aimed to assess the tool's ability to identify
various vulnerabilities, its accuracy in reporting findings, and its overall performance characteristics.

Building a Test Environment

The foundation of our testing methodology was a controlled environment containing both
virtual machines (VMs) and bare-metal devices. This environment was crafted to mirror real-world
system deployments and included a variety of commonly used operating systems.

The VM environment featured CentOS 9, Fedora versions 38, and 40, Debian 11 and Windows
10, each running with a different configuration ranging from 4GB to 8GB of RAM and 4 to 6 CPU cores.
This configuration allowed for consistent testing across different operating systems within the
virtualized environment.

For bare-metal testing, we utilized a spectrum of devices to represent real-world scenarios. A
high-performance desktop PC equipped with an AMD Ryzen 5 3600 CPU and 16GB of RAM. We also
tested on a Lenovo IdeaPad 3 15IAU7 laptop, a commonly encountered configuration in personal and
professional settings, equipped with an Intel i5 1235U CPU and 8GB of RAM. Finally, the tool's capability
on resource-constrained devices was evaluated by running tests on Raspberry Pi 3 and 4 running
Raspberry Pi OS.

Table 3: VM Testing Environment

Operating System (OS) Specifications

CentOS 9 8GB RAM, 6 CPU cores
Debian 11 (Bullseye) 4GB RAM, 2 CPU cores
Fedora (38, 40) 4GB RAM, 4 CPU cores
Windows 10 8GB RAM, 6 CPU cores

Table 4: Bare Metal Testing Environment

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Bare Metal Device Operating System (OS)
AMD Ryzen 5 3600 CPU .
Desktop Windows 11, Fedora 40
16GB RAM
Intel i5 1235U CPU .
Laptop Fedora 37, Fedora 38, Kali Linux
8GB RAM
Raspberry Pis Versions 3 & 4 Raspberry Pi OS

Introducing Vulnerabilities for Assessment

To effectively evaluate the tool's vulnerability detection capabilities, we introduced a variety of
vulnerabilities into the test environment. This process involved installing software packages with known
vulnerabilities and modifying system configurations to create exploitable weaknesses. By deliberately
introducing these vulnerabilities, we ensured the testing process comprehensively assessed the tool's
ability to identify a diverse range of security risks across different operating systems and hardware
configurations.

Benefits of Testing in Limited Resource Environments

While real-world servers often possess significantly more RAM, testing with limited resources
offers a valuable advantage. By demonstrating the tool's effectiveness in a constrained environment, we
establish a strong foundation for its performance in scenarios with more ample resources. This approach
provides confidence that the tool can efficiently identify vulnerabilities even in situations where
hardware limitations might exist.

4.2 Results and Analysis

Building upon the testing methodology outlined in the previous section, this section dives into the
results obtained from evaluating our Python vulnerability assessment tool. We'll analyze the tool's
performance across various metrics, including its ability to detect diverse vulnerability types, the
accuracy of its reported findings, and its overall resource utilization during scans. By closely examining
the test data, we aim to gain a clear understanding of the tool's strengths, limitations, and potential for
further refinement. The insights gleaned from this analysis will be valuable in shaping future iterations
of the tool and ensuring its continued effectiveness.

The results will be gathered from each Operating System and analyzed based on each
component of the tool starting with the services.

4.2.1 Windows Assessment results

Here we will gather and analyze all the results that the tool brought during the assessment in Windows
0s.

Services Assessment
The results that are described here have been gathered from the desktop system. The tool
didn’t use any cached data yet.

Table 5: Execution in the desktop system without cache

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA

MIXAHA KAAAIADAZ

Category Description

System - OS Desktop — Windows 11
CPU AMD Ryzen 5 3600
RAM 16GB

Services Discovered

135 out of 135

Services with Version Info

42 out of 135

Services with Active Vulnerabilities

Services with Potential Vulnerabilities

Execution Time

6 minutes and 15 seconds

== Services ==

133 services have been discovered

== Versions ==

'U2 services report their versions

=== Vulnerabilities ===

== Active ==

None found

== Other Possible Matches ==

{'CorsairService': {'CVE': 'CVE-2018-12u41',
‘Exploitability Score': 3.9,
'Impact Score': 10.0
'Service Version
'Severity': 'HIGI
'EFS': {'CVE': 'CVE-2002-1814',
‘Exploitability Score': 3.9,
'Impact Score': 6.4,
'Service Version': '10.0.22621.3235',
'Severi MEDIUM'},
*MSDTC': {'CVE': VE-2002-8224' |
'Exploitability Score': 10.0,
‘Impact Score': 2.9,
'Service Version': '2001.12.10941.16384',
'Severity': 'MEDIUM'},
'Spooler': {'CVE': 'CVE-1999-8898',
'Exploitability Score': 3.9,
‘Impact Score': 10.©,
'Service Version '10.0.22621.3672",
'Severity': 'HIGH'},
'Steam Client Service': {'CVE': 'CVE-2015-4016',
'Exploitability Score': 10.0,
*Impact Score': 2.9,
‘Service Version': '8.98.79.13',

‘Severity': 'MEDIUM'},
'CVE-2019-5540',
'Exploitability Score': 8.9,
'Impact Score’

'Service Version

'VMnetDHCP': {'CVE':

‘Severity': "MEDI
*VMware NAT Service': {'CVE':
'Exploitability Score':
'Impact Score': 10.0,
'Service Version': '16.1.0.683",
'Severity': 'MEDIUM'}}

===== Execution time
Tool execution total
Service scan duration:

0:06:15.291782
:15.289779

Figure 15: Execution results.

Our analysis reveals that the tool identified
seven potentially vulnerable services. These services
either had a reported CVE (Common Vulnerability and
Exposures) in the past, but the version on the system
didn't match the reported vulnerability, or the service
name had a partial match with a known vulnerable
service. In this case, further investigation is required to
confirm the validity of these vulnerabilities. We'll need to
manually check the associated CVEs for each service.

After the manual investigation we can break
down the results. Six out of the seven identified
vulnerabilities had a correct service name match, but a
version mismatch. This lowered the tool's confidence
level in these findings. The remaining service, EFS, was
flagged incorrectly due to a mismatch in the service name
itself.

In the next step we removed the “unpatched” applications and safely introduced a vulnerable
one (teamviewer version 14.2 with a reported CVE-2019-18196) to see If our tool can successfully detect
it. Remarkably our tool returned the results with the reported application and with some more CVEs

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

that we couldn’t find easily through the website. Figure 16 shows the results from the report generated
by the tool.

Services Assessment

Service Name TeamViewer
Active Vulnerabilities Possible Vulnerabilities
CVE CVE-2019-18196 CVE-2019-18988
Exploitability Score 3,4 3,4
Impact Score 10 6,4
Service Version 14.2.3558 14.2.2558
Severity MEDIUM MEDIUM
Starting version 12.0.0 o
Ending Version 14.7.1965 14.7.1965
CVE CVE-2021-34803 CVE-2021-34858
Exploitability Score 3,4 8,6
Impact Score 6,4 6,4
Service Version 14.2.2558 14.2.2558
Severity MEDIUM MEDIUM
Starting version 10.0.2551 0
Ending Version 14.7.48644 15.21.2
CVE CVE-2021-35005
Exploitability Score 39
Impact Score 29
Service Version 14.2.2558
Severity LOW
Starting version 0
Ending Version 15.18.5.0
CVE CVE-2022-23242
Exploitability Score 3,4
Impact Score 29
Service Version 14.2.2558
Severity Low
Starting version 0
Ending Version 15.28

Figure 16: Active vulnerabilities reported by the tool

Results with the usage of a cache file
To assess the impact of caching on execution time, we ran the analysis again using a cached file.
Table 6 summarizes the results.

Table 6: Results using cache file.

Category Description

Services Discovered 135 out of 135

Services with Version Info 42 out of 135

Services with Active Vulnerabilities 0

Services with Potential Vulnerabilities 7

Execution Time 2 minutes and 39 seconds

From this execution we can safely deduce that the cache file brought about a dramatic ~200%
reduction in execution time since the first execution finished in 6 minutes and 15 seconds and the

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

MNTYXIAKH EPTAZIA MIXAHA KAAAIADAZ
execution with the cache file finished in 2 minutes and 39 seconds.

== Services ==

'135 services have been discovered®

== Versions ==

'42 services report their versions®

= Vulnerabilities ===
== Active ==
None found
== Other Possible Matches ==

{'CorsairService': {'CVE': 'CVE-2818-12u4u41"',
'Exploitability Score': 3.9,
'Impact Score': 10.0,
*Service Version': "'3.38.0.4°,
'Severity': 'HIGH'},
'EFS': {'CVE': 'CVE-20082-1814"',
‘Exploitability Score': 3.9,
"Impact Score': 6.4,
'Service Version': "'10.0.22621.3235",
‘Severity': 'HEDIUH'},
*MSDTC': {'CVE': 'CVE-2802-8224',
'Exploitability Score': 1.0,
'Impact Score': 2.9,
'Service Version': "'2801.12.10941.16384",
‘Severity': "MEDIUM'},
'*Spooler': {'CVE': 'CVE-1999-8898',
'Exploitability Score': 3.9,
'Impact Score': 10.0,
*Service Version': '18.8.22621.3672",
'Severity': 'HIGH'},
'Steam Client Service': {'CVE': 'CVE-2015-4816"',
‘Exploitability Score': 1.0,
"Impact Score': 2.9,
'Service Version': '8.98.79.13°",
‘Severity’': 'MEDIUM'},
'VMnetDHCP': {'CVE': 'CVE-2019-55U8',
'Exploitability Score': 8.0
'Impact Score': 2.9,
'Service Version': "16.1.8.683",
'Severity': 'MEDIUM'},
"VMware NAT Service': {'CVE': 'CVE-2017-4949'
'Exploitability Score':
'Impact Score': 10.0,
'Service Version': "l16
'Severity': 'MEDIUM'}}

"

Execution time =
Tool execution total time: 0:82:39.U431787
Service scan duration: ©:82:39.431787

Figure 17: Execution results with cache file

User Assessment

Next up, let's look at how the tool performed when assessing user accounts. We'll be using the
same approach as with the services assessment, testing the tool on the Desktop. Here, we'll see how
well the tool finds user accounts, identifies situations where someone might have too much access (high
privileged groups), and uncovers weak passwords.

Starting again with the desktop system, we executed the tool and asked it to try and find the
password of all the discovered accounts. For the testing purposes we used a wordlist with 60 passwords.
One of them was the correct password for the two accounts in the desktop. Table 7 projects the
findings.

Table 7: Desktop results

Category Result

Discovered Accounts 7 out of 7

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Discovered Vulnerable Users 2 out of 2
Discovered Vulnerable High Privileged Users Ooutof0
User Assessment Execution Time 10 minutes, 49 seconds

As expected, the 2 vulnerable users were found. None of them were a member of a privileged group. In
Figure 18 we can see the output of the tool with the two vulnerable accounts.
ment for local Us

dlist. This might
Loaded

it could take up to 8 hot
(type S if you want to

o rator
: ©:01:31 | ETA: ©0:00:00

words for TALOS\DefaultAccount
100% | Elapsed Time: ©:01:31 | ETA:
> Couldn't find password

for TALOS\Guest

:32 | ETA:

yAccount
:31 | ETA:

.8U5683

Figure 18: Results from first user assessment.

Our next step involves evaluating the tool's effectiveness in identifying privilege escalation
scenarios. To achieve this, we will introduce a controlled vulnerability. Specifically, we will add the
previously identified vulnerable user TestUser to the administrators group. Following this modification,
we will re-run the user assessment to determine if the tool detects this elevated privilege level for
TestUser.

In a positive outcome, the tool successfully detected the elevated privilege level for the
TestUser. This finding confirms the tool's effectiveness in identifying situations where users might
possess excessive permissions, potentially posing a security risk. In figure 19 we can see that the tool has
reported the TestUser account as a member of the Administrators group, thus making it a privileged
account.

Table 8: Results after high privileged user was added.

Category Result

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

44

NTYXIAKH EPTAZIA

MIXAHA KAAAIADAZ

Discovered Accounts 7 out of 7
Discovered Vulnerable Users 2 out of 2
Discovered Vulnerable High Privileged Users loutofl

User Assessment Execution Time

8 minutes, 46 seconds

= Assessment for local Users ====

Loading wordlist. This might take a while.

Wordlist loaded

== Discovered Users ==
TALOS\Administrator
TALOS\DefaultAccount
TALOS\Guest
TALOS\mikerose
TALOS\TestUser
TALOS\UserTest
TALOS\WDAGUtilityAccount

Do you want to assess all the users? If yes it could take up to 8 hours.(N/y)
Alternatively you can specify specific users. (type S if you want to add custom users)

>y

Trying passwords for TALOS\Administrator
| Elapsed Time: ©:01:15 | ETA:

Progress:
> Couldn't find password

Trying passwords for TALOS\DefaultAccount
| Elapsed Time: 8:01:15 | ETA:

Progress:
> Couldn't find password

ds for TALOS\Guest

| Elapsed Time: ©:01:15 | ETA:

> Couldn't find password

Trying passwords for TALOS\mikerose
Progress:
> Couldn't find password

ds for TALOS\TestUser

| Elapsed Time: ©:061:14 | ETA:

> testpass2

Trying passwords for TALOS\UserTest

Progress:
> Password Found
> testpass2

Trying passwords for TALOS\WDAGUtilityAccount
| Elapsed Time: ©:061:14 | ETA:

Progress:
> Couldn't find password

== Vulnerable users Found ==
TALOS\TestUser
TALOS\UserTest

== Vulnerable High privilaged Users =

| Elapsed Time: ©:61:14 | ETA:

| Elapsed Time: ©:061:14 | ETA:

0e:00:00

User TALOS\TestUser is a member of Administrators

Execution time
execution total
User scan duration: @ 110206

:08:47.185553

Figure 19: Output with the identified vulnerable privileged account.

Configurations assessment
To evaluate the tool's effectiveness in assessing Windows system configurations, we conducted

a configuration assessment across multiple systems. The tool examined a variety of settings and

software configurations to identify potential misconfigurations that could compromise security.

Apache assessment

Our initial assessment of Apache configuration files on the windows systems focuses on
identifying missing security settings based on CIS benchmarks. Table 13 summarizes the configuration
discrepancies found during this process.

Table 9: httpd.conf assessement

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

45

NTYXIAKH EPTAZIA

MIXAHA KAAAIADAZ

Recommended Setting

Presence in
(httpd.conf)

the configuration file

ServerTokens Prod X
ServerSignature Off X
ApacheOptions X
Etag X
TraceReq X
CookieProtection X
ClickJacking Attack X
X-XSS protection X
SSL X
Browser Listing X
System Setting Protection X
HTTP Request Methods Restriction X

In order to evaluate if the tool can pick up the changed in the configurations, we changed some
parameters in the httpd.conf file to see if the tool will report them as present. Table 14 depicts the
output of the tool and its findings. In figures 20 and 21 we can see the output of the tool with the results

from before and after the configuration hardening.

Table 10: httpd.conf assessment after modifications

Recommended Setting

Presence in
(httpd.conf)

the configuration file

ServerTokens Prod v
ServerSignature Off v
ApacheOptions X
Etag v

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

46

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

TraceReq N
CookieProtection X
ClickJacking Attack v
X-XSS protection v
SsL X
Browser Listing v
System Setting Protection X
HTTP Request Methods Restriction X

Configuration: C:\xampp\apache\conf\httpd.conf

Consider adding "ServerTokens Prod" in the configuration file
Consider adding "ServerSignature Off" in the configuration file
Consider adding "ApacheOptions" in the configuration file
Consider adding "Etag" in the configuration file

Consider adding "TraceReq" in the configuration file

Consider adding "CookieProtection" in the configuration file

Consider adding "ClickJacking Attack" in the configuration file

Consider adding "X-XSS protection" in the configuration file

Consider adding "SSL" in the configuration file

Consider adding "Browser Listing" in the configuration file

Consider adding "System Setting Protection" in the configuration file
Consider adding "HTTP Request Methods Restriction" in the configuration file

Figure 20: Assessment results before the hardening

Configuration: C:\xampp\apache\conf\httpd.conf

Consider adding "ApacheOptions" in the configuration file

Consider adding "CookieProtection" in the configuration file

Consider adding "SS5L" in the configuration file

Consider adding "Browser Listing" in the configuration file

Consider adding "System Setting Protection" in the configuration file

Consider adding "HTTP Request Methods Restriction" in the configuration file

Execution time
Tool execution total time: 9:00:12.154732
Configurations scan duration: ©:00:12.153729

Figure 21: Assessment results after the hardening

Registry assessment

To identify potential persistence mechanisms and unauthorized program executions, the tool
incorporates a registry analysis module. By searching in the registry hives, such as those associated with
Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool 47

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

startup programs, services, and software installation, the tool aims to discover suspicious entries or
unexpected configurations. This will help us detect potential indicators of compromise (10Cs).

To test our tool's ability to accurately identify unauthorized startup programs, a series of tests
were conducted involving the manipulation of startup registry keys. By intentionally adding and
removing programs from the startup locations, the tool's performance in detecting these changes was
assessed.

In the first run we left out registry untouched to see the already registered programs as shown
in figure 22.

Configurations Assessment

Registry
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
Needs review
%windir¥\system32\SecurityHealthSystray.exe
"C:\WINDOWS\System32\DriverStore\FileRepository\realtekservice.inf_amd64_1803724721d1a34c\RtkAudUServiceb4.exe" -background

= [m] *
MName Type Data
al REG_SZ (value not set)
a_ﬂ RtkAudUService REG_SZ "CAWINDOWSSystem32\ DriverStore'\FileRepository'realtekservice.inf_amdg4_1803724721d1a34c"
ab) SecurityHealth REG_EXPAND_SZ Fewindirie\system 32\ SecurityHealthSystray.exe

Figure 22: Registry keys identified by the tool

The tool successfully identified all pre-existing entries within the specified registry keys,
demonstrating accurate detection capabilities. Figure 22 visually represents the tool's output, aligning
with the expected registry configurations. This initial evaluation serves as a baseline for assessing the
tool's ability to identify changes in registry configurations.

The next step was to add a new program to run during the startup process and see if the tool
could detect the difference. After we added the malicious_persistant_malware.exe we re-run the tool
and got the results as seen in figure 23.

Configurations Assessment

Service Registry
Registry Key SOFTWARE\Microsoft\Windows\CurrentVersion\Run
Needs review

SecurityHealth Fwindirde\system32\SecurityHealthSystray exe

RtkAudUService "CAWINDOWS\System32\DriverStore\FileRepository\realtekservice.inf_amd64_1803724721d1a34c\RtkAudUServicebd. exe" -background

MaliciousSoftware ""C:\Users\mikerase\AppData'\Roaming\Microsoft\Windows\5tart Menu\Programs\5tartup\malicious_persistant_malware.exe"

- O X

Name Type Data
ab) (Default) REG_SZ (value not set)
Em REG_SZ "Ch\Users\mikerose\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\malicious_persistant_malware.ex:
i_"] RtkAudUService REG_SZ "CAWINDOWS\ System32\DriverStore\FileRepositoryrealtekservice.inf_amdéd_1803724721d1a34c\RtkAudUServicebd.exe” -be
ab) SecurityHealth REG_EXPAND_SZ Fowindirfe\system32\SecurityHealthSystray.exe

Figure 23: Registry keys with malicious software

The tool successfully identified the newly added program during the scan, demonstrating its
effectiveness in detecting changes to startup configurations. In general, this capability is crucial for
identifying potential persistence mechanisms employed by malicious actors.

Another key aspect of the assessment focused on the firewall's status. The tool examined the
EnabledFirewall registry value to determine if the Windows Firewall was active. By checking if this value

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

was set to 1, indicating an enabled firewall. If the value is set to O then the tool reports it for the
administrators to further investigate it. Figure 24 depicts a disabled firewall in the report where the tool
has highlighted the possible misconfiguration.

Configurations Assessment

Service Registry
Registry Key SOFTWARE\Microsoft\Windows\CurrentVersion\Run
MNeeds review

SecurityHealth Hwindiris\system32\SecurityHealthSystray.exe
RtkAudUService "CAWINDOWS\System 32\ DriverStore\FileRepository\realtekservice.inf_amdbd_1803724721d1a34¢c\RtkAudUServicebd exe” -background
Registry Key System\ CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\5tandardProfile

Needs review
EnableFirewall 0

Figure 24: Disabled Firewall discovered by the tool

Filezilla assessment

The assessment of Filezilla configurations was undertaken in the windows desktop system to
identify basic misconfigurations that could jeopardize the security and functionality of the application. In
the initial execution, our VA tool identified numerous default misconfigurations depicted in figure 25.

Configurations Assessment

Service Filezilla
Configuration File C:\xampp\FileZillaFTP\FileZilla Server Interface.xml
Recommendations
Warning: Please set the password minimum length to >12
Consider adding "TLSRequired” in the configuration file
Consider adding "MaxClients" in the configuration file
Configuration File C:\xampp\FileZillaFTP\FileZilla Server.xml
Recommendations
Warning: Please set the password minimum length to =12
Consider adding "TLSRequired” in the configuration file
Consider adding "MaxClients" in the configuration file
Configuration File C:\xampp\FileZillaFTP\FileZillaServer.xml
Recommendations
Warning: Please set the password minimum length to >12
Consider adding "TLSRequired” in the configuration file
Consider adding "MaxClients” in the configuration file

Figure 25: Discovered misconfigurations in filezilla configuration files

Following these findings, we patched the identified vulnerabilities and re-ran the assessment to
evaluate the effectiveness of the changes and to see if the tool could detect the improvements. Figure
26 highlights the differences post-patching.

Configurations Assessment

Service Filezilla
Configuration File C:\xampp\FileZillaFTP\FileZilla Server.xml
Recommendations

Figure 26: Example of no misconfiguration fo report
Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool 49

MTYXIAKH EPFAZIA MIXAHA KAAAIAGAE
4.2.2 Linux Assessment results

Continuing our evaluation, we will examine how well the tool functions and produces accurate results
within a Linux operating system.

Services Assessment

Following the analysis of service assessment on Windows-based systems, we will now take a
look at a Linux environment. This execution was done on the desktop system running fedora 40. The
results in table 11 are from the first execution of the services assessment module (In Figure 20 you can
see the results given by the tool).

Table 11: Fedora 40 execution results

Category Description

Services Discovered 42 out of 42

Services with Version Info 14 out of 42

Services with Active Vulnerabilities 0

Services with Potential Vulnerabilities 8

Execution Time 1 minutes and 46 seconds

The tool successfully identified all 42 active services running on the system. While version
information was available for 14 of these services, enabling vulnerability checks, no active vulnerabilities
were detected within this subset. However, 8 services were flagged as having potential vulnerabilities
based on service name recognition alone. Further investigation is required to determine the accuracy of
these potential vulnerabilities and their actual risk level. In figure 27 we can see the output of the
potential vulnerabilities.

Results with the usage of a cache file

To evaluate the potential performance benefits of caching previously gathered service
information, we repeated the service assessment on the Fedora 40 desktop system while utilizing a
locally stored cache.
With the cached service data, the tool successfully identified all 42 active services within 15 seconds.
This represents an 85.85% reduction in assessment time compared to the initial assessment without
caching, demonstrating the effectiveness of the caching mechanism in improving performance (In Table
12 you can find the result overview and in figure 28 the execution time with the potential
vulnerabilities).

Table 12: Fedora 40 execution results with cache file

Category Description
Services Discovered 42 out of 42
Services with Version Info 15 out of 42
Services with Active Vulnerabilities 0

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

50

NTYXIAKH EPTAZIA

MIXAHA KAAAIADAZ

Services with Potential Vulnerabilities

Execution Time

15 seconds

== Other Possible Match

{"ModemMar

reion':
"MEDIUM"

tion time
ition total time

Figure 27 (left): Printed Results without cache
Figure 28 (right): Printed Results with caching

Users Assessment

! fwupd'

'gdm':

'"MEDIUM"
21-38

10.0,

tion total tim
duration:

The user assessment on the Fedora 40 desktop system successfully discovered all user accounts
on the system. A critical test involved adding the previously identified vulnerable user TestUser to the
wheel group. The tool accurately detected this elevated privilege level, highlighting its effectiveness in
identifying potential privilege escalation scenarios. In the figure 29 we can see the results printed with
the TestUser being a normal user with weak password. Figure 30 shows the elevated privilege attribute.

Table 13: User assessment results without a vulnerable privileged account

Category

Result

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

51

NTYXIAKH EPTAZIA

MIXAHA KAAAIADAZ

Discovered Accounts 3 outof3
Discovered Vulnerable Users 1outofil
Discovered Vulnerable High Privileged Users Ooutof0

User Assessment Execution Time

Running on RedHat based

ent for lo
Loading wordlist

Figure 29: User with weak password was discovered

uld

e

7 minutes 46 seconds

take up to 3
if you want to a

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

52

NTYXIAKH EPTAZIA

t take a while.

wrds for root
s: 1 | Ela
uldn't find p

/ulnerable users Found

Figure 30: Privileged user with weak password discovered

Table 14: User Assessment results with vulnerable privileged account

MIXAHA KAAAIADAZ

Category Result

Discovered Accounts 3 out of 3
Discovered Vulnerable Users 1outofl
Discovered Vulnerable High Privileged Users Ooutof0

User Assessment Execution Time

7 minutes 39 seconds

Configurations assessment

To evaluate the tool's ability to assess linux system configurations, we conducted a
configuration assessment across multiple distros. The tool analyzed various system settings and
software configurations to identify potential misconfigurations that could pose security risks.

Apache assessment

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

53

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Firstly, we will see the assessment we conducted for the apache configuration files. In short, we
search for missing configurations that help harden the web server (based on CIS security
recommendations). In the table 15 we can see the discovered configurations from the first execution in
the fedora system.

Table 15: Default Apache configurations in Fedora system

R ST Z:'tet;e(;\;i nf)in the configuration file
ServerTokens Prod X
ServerSignature Off X
ApacheOptions X
Etag X
TraceReq X
CookieProtection X
Clicklacking Attack X
X-XSS protection X
SSL X
Browser Listing X
System Setting Protection X
HTTP Request Methods Restriction X

Table 15 summarizes the recommended security configurations for the
/etc/httpd/conf/httpd.conf file, along with their presence in the analyzed system. A checkmark (V)
indicates the presence of the recommended setting, while a cross (X) indicates its absence. The default
apache configuration doesn’t have any hardening options in it and the tool manage to discover the
missing setting.

To assess the tool's ability to detect configuration deviations, a custom configuration file was
created incorporating several recommended security settings from the previous analysis.

By comparing the results from the custom configuration assessment to the previous
assessment using the default configuration, we can evaluate the tool's accuracy in identifying
implemented security measures and highlighting any remaining misconfigurations. In the table 16 we
can see the discovered results from the new configuration file.

Table 16: Partially Hardened apache configuration file

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

54

NTYXIAKH EPTAZIA

MIXAHA KAAAIADAZ

Recommended Setting

Presence
(test.conf)

in

the

configuration file

ServerTokens Prod

ServerSignature Off

ApacheOptions

Etag

TraceReq

CookieProtection

ClickJacking Attack

X-XSS protection

SSL

Browser Listing

System Setting Protection

HTTP Request Methods Restriction

In Figure 31 the output from the configuration assessment is depicted. We can easily identify

the different levels of hardening between the two files.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

55

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Configuration: ttpd/conf
ommendation: Consider adding "Se rTokens Prod" in the configuration file
ommendation onsider adding "¢ ignature OFf" dn configuration file
ommendation: Consider adding in onfiguration file
ommendation: Consider adding "Etag" in the
ommendation onsider adding " eg" in th
ommendation: Consider adding "C tion" in the
ommendation: Consider adding vt t
ommendation onsider adding
ommendation: sider adding "SSL" in the
ommendation: Consider adding "Browser Listing" in the conf
ommendation 5 adding "HTTP Request Methods Re iction" in the configuration file

Configuration: fconf/
ommendation sider addin ignature Off" in configuration file
ommendation: Consider adding che in the configuration file
ommendation: Consider adding tion" 1in th nfiguration file
ommendation: Consider adding "Cli in the configuration file

ommendation: Consider adding j 4 g" din the

= ition time
Tool ¢ on total tim
Configurations scan duration:

Figure 31: Configuration assessment output

Postgresgl Assessment

Next, to assess probable missconfigurations of the PostgreSQL database, an analysis of the
primary configuration files was conducted. This evaluation focused on identifying potential
misconfigurations that could compromise the database's integrity and availability. In table 17 we can see
the options that should be considered for hardening a postgresql database.

Table 17: Parameters to be checked

Option Description

listen_addresses Defines allowed client connections

ssl Enables/disables SSL encryption
keepalives Configures TCP keep-alive parameters
Authentication methods £I;i:atmf>sfhazi\!g\gtetc:usrt?ethods, eg, mds,

In the first execution of our configuration assessment the tool identified some missing options
as depicted in figure 32.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

56

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

nfiguration: -/1ib/pgsql/16/data/postgresgl.conf
tecommendation: Consider adding
Recommendation: Consider adding

Configuration: jfvar/lib/pgsql/16/
ecommendation: Consider adding "s: i e C iguration file
ommendation: in the configuration

Configuration: ar/lib/pgsql/1¢ :
ommendation: Consider adding C i ation file

Recommendation: s ali configuration

iguration: r/1ib/pg i
ommendation: Consider adding i e C iguration file
Recommendation: Consider adding i C guration

tion time =
jon total time:
Configurations scan duration: @:

Figure 32: Discovered weak configurations

To further evaluate the tool's accuracy in identifying configuration deviations we modified
some of the files to have hold missconfigurations and some others to be perfectly fine. Then we re-run
the tool to assess its ability to detect these configurations.

Figure 33 shows that the tool detected the changes from the files. In the pg_hba.conf file we
added a connection that doesn’t require any authentications and a parameter that allows every IP to
connect to the database with no restrictions. The tool successfully detected those configurations and
reported them as warnings. On the other hand, the configuration file postgresql.conf had some
additional hardening done, thus the tool couldn’t find any bad configurations to report.

nfigura ons from anywhere
onsider i i nfiguration file

ation file
authentication

Figure 33: Tool Output after the changes in the files

Nftables Assessment

For the nftables the checks were simple. Firstly, it needs to be running at all costs so we
implemented a health check in our tool where it will get the status of the service. If the status is inactive
then it will report it, as depicted in figure 34.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

57

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Running on RedHat based

|
Configurations Assessment

Service
Needs review

Figure 34: Results with inactive Nftables

Following our test, we started the nftables and added some but rules, specifically we allowed
for every source IP to communicate with every destination IP, meaning that there is no filter in the
firewall. Then we re-run our tool and got the following results in figure 35.

Configurations Assessment

Service Nftables

Meeds review
ip saddr 0.0.0.0/0 ip daddr 0.0.0.0/0 accept

Figure 35: Reported rule from our tool

Our tool listed this rule for review, providing visibility to the system administrators and
requesting for their actions.

4.2.3 Summarized and visualized results

In this subsection, we present a summary and visual representation of the key findings from our
assessments and analyses. By synthesizing the results into clear and easily interpretable formats, we try
to provide an overarching view of the outcomes. The use of charts, graphs, and tables not only
facilitates a more comprehensive understanding of the data but also allows for more effective
communication of the results. This section summarizes our findings, enabling readers to quickly grasp
the core conclusions.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool 58

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Service Assessment Execution Time
900
800
700
600
500
400

312

300

198

200
100

Windows Linux

Figure 36: Service Assessment bar chart

The first bar chart (Figure 36) illustrates the average time taken by the services assessment
module across different operating systems. The chart reveals that the assessment of services on
Windows systems generally requires more time compared to Linux systems. This discrepancy can be
attributed to the more complex and diverse nature of services running on Windows platforms, which
often include a wider range of background processes and dependencies that need to be analyzed. In
contrast, Linux services, being more modular and standardized, tend to be assessed more quickly.

[CACHE] Service Assessment Execution Time

900
800
700
600
500
400
300

200
100

I
0
Windows Linux

Figure 37: Service Assessment with cache bar chart

The second bar chart (Figure 37) displays the average time taken by the services with cache
assessment module for both Windows and Linux systems. Similar to the previous chart, the assessment
on Windows systems takes longer but overall, the average duration has dropped dramatically. These
results suggest that optimizing cache analysis techniques could yield significant improvements in
assessment times.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

59

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

User Assessment Execution Time

900
800
700
600 °82 539
500
400
300
200

100

Windows Linux

Figure 38: User Assessment bar chart

The third bar chart (Figure 38) shows the average time required for the users’ assessment
module across Windows and Linux systems. Interestingly, this chart highlights a more balanced
performance between the two operating systems, with only a slight increase in assessment time for
Windows. This indicates that the complexity of user authentication is relatively comparable between
Windows and Linux environments. However, the slight edge in speed for Linux could still be linked to the
more streamlined and transparent user authentication methods inherent to Unix-like systems.

Configuration Assessment Execution Time

60
50
40
30
20
10 9
. -
0 -
Windows Linux

Figure 39: Configuration Assessment bar chart

The fourth bar chart (Figure 39) represents the average time taken by the configurations
assessment module for Windows and Linux systems. Unlike the other modules, the assessment times for
configurations are nearly identical for both operating systems. This surprising result indicates that,
despite the inherent differences in how configurations are managed (with Windows using the registry
and Linux using text-based configuration files), the complexity and effort required for thorough
assessment are comparable. This suggests that our assessment tools are equally effective at parsing and
evaluating configuration settings across both platforms, highlighting the adaptability of our
methodology.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

60

MTYXIAKH EPFASIA MIXAHA KAAAIAGAS
4.3 Comparison with Other Open-Source Vulnerability Assessment
Tools

In comparing our vulnerability assessment tool to other open-source solutions, several distinctions and
overlaps became apparent. Tools such as OpenVAS, Lynis, Wazuh, and OpenSCAP are widely used for
system security assessments, but they differ in focus and functionality. For instance, OpenVAS provides
comprehensive vulnerability scanning with a strong focus on network-based vulnerabilities, while Lynis
is primarily Linux-focused, targeting system audits and security configurations. Our tool, in contrast,
offers a unique combination of features such as cross-platform support for both Windows and Linux,
service scanning, and user account assessment. One of the key differentiators is the caching mechanism,
which significantly reduces scan times during subsequent assessments, a feature not present in other
tools. Furthermore, while OpenSCAP is a great choice for compliance checks against security
benchmarks (e.g., NIST, CIS), our tool is designed to be easily extensible, allowing for the future inclusion
of such standards. By offering detailed service assessments and password cracking capabilities, our tool
addresses both vulnerability identification and mitigation, providing a solution that balances depth and
efficiency in diverse computing environments.
In the following table we compare the functionalities of all the pre-mentioned tools.

Table 18: Open-Source Vulnerability Assessment Tool Comparison

FEATURE/TOOL THIS TOOL OPENVAS LYNIS WAZUH OPENSCAP
LIS (I Cross- Linux
PLATFORM SUPPORT Windows & Linux VM), limited Linux !
. platform Windows
Windows
SERVICE SCANNING Yes Yes No No Yes
USER ACCOUNT ASSESSMENT | Yes No Z‘;Ty()“"“" No Yes
CONFIGURATION ASSESSMENT | Yes Yes ZETV()L'MX Yes Yes
VULNERABILITY DATABASE Ves Ves No Vs Vs
(CVE)
CACHING FOR FASTER SCANS | Yes No No No No
REAL-TIME MONITORING No No No No No
PASSWORD CRACKING Yes No No No No
Detailed reports Yes (PDF, Basic audit Yes (XML,
REPORTIN Y
ORTING (XLSX, PDF) HTML, CSV) report es HTML)
AUTOMATED VULNERABILITY
SCANS Yes Yes Yes Yes Yes
. Yes (CIS,
BENCHMARK SUPPORT Yes (CIS) No Yes (CIS, Linux), o) UL,
benchmarks) 5TIG) CIS, DISA)

4.4 Conclusion

In summary, the results from our assessments across different modules reveal distinct patterns in
performance between Windows and Linux operating systems, with notable similarities in the
configurations and users assessment modules where the times are nearly identical. Generally, Windows
systems, due to their inherent complexity and extensive configurations, require more time for the
assessment, while the modular and transparent nature of Linux systems allows for more efficient
analysis. These insights emphasize the need for specialized tools and techniques tailored to the specific
characteristics of each operating system to enhance the efficiency and accuracy of vulnerability
assessments.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

61

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

Service Assessment Module: Although the current implementation effectively identifies
vulnerable services, some false positives may occur due to the way service names are searched in the
NIST database or due to the unavailability of the service version in the system. Future improvements
could involve refining the search method to reduce false positives and incorporating additional CVE
databases to broaden the scope and accuracy of vulnerability identification.

User Assessment Module: The assessment of user passwords and permissions is relatively
efficient across both Windows and Linux systems. However, the process could be expedited by
implementing offline password cracking methods. For Windows, this could involve dumping passwords
and performing an offline password crack. For Linux, an offline attack using the shadow file and
encoding with yescript could significantly reduce assessment time while maintaining accuracy. On top of
that, searching during the execution the high privileged groups would be a better way to identify the
high privileged accounts.

Configurations Assessment Module: While the current tool checks for a range of configuration
settings, there is potential for infinite expandability by adding more configurations to the checklist. This
could include newer security benchmarks and best practices, ensuring the tool remains relevant and
comprehensive over time.

By continuously refining our methodologies and tools, we can achieve more effective and
timely evaluations, ultimately contributing to more secure and robust computing environments. The
enhancements proposed above aim to improve the accuracy, speed, and scope of the assessment tool,
ensuring it remains a valuable asset in the ongoing effort to maintain system security. This thesis helps
us understand the differences between Windows and Linux assessments and opens the door for future
improvements, making vulnerability assessments more efficient and thorough across different
computing environments.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

62

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

References

1. Contributor, T. (2019, February 19). vulnerability (information technology). Whatls.
https://www.techtarget.com/whatis/definition/vulnerability

2. Glossary of Security Terms | SANS Institute. (n.d.). https://www.sans.org/security-
resources/glossary-of-terms/

3. Awati, R. (2023, November 3). Common Vulnerabilities and Exposures (CVE). Security.
https://www.techtarget.com/searchsecurity/definition/Common-Vulnerabilities-and-
Exposures-CVE

4. Sheldon, R. (2023, April 14). Apache. Whatls.
https://www.techtarget.com/whatis/definition/Apache

5. Olsen, G. (2022, April 29). Common Information Model (CIM). Storage.
https://www.techtarget.com/searchstorage/definition/Common-Information-Model

6. Sheldon, R., & Bacon, M. (2024, January 29). indicators of compromise (IOC). Security.
https://www.techtarget.com/searchsecurity/definition/Indicators-of-Compromise-l10C

7. Bigelow, S. J. (2023, April 27). operating system (0S). Whatls.
https://www.techtarget.com/whatis/definition/operating-system-0S

8. Bigelow, S. J., Moore, J., Jones, D., & Bertram, A. (2023, March 16). What is PowerShell and how
to use it: The ultimate tutorial. SearchWindowsServer.
https://www.techtarget.com/searchwindowsserver/definition/PowerShell

9. Stevewhims. (2021a, January 7). Registry - Win32 apps. Microsoft Learn.
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry

10. Microsoft Learn. (2023, August 3). Windows Management Instrumentation - Win32 Apps |
Microsoft Learn. https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page

11. JasonGerend. (2023, February 3). PowerShell. Microsoft Learn. https://learn.microsoft.com/en-
us/windows-server/administration/windows-commands/powershell

12. Yasar, K. (2023, August 23). Network vulnerability scanning. Security.
https://www.techtarget.com/searchsecurity/definition/vulnerability-scanning

13. Hasson, E. (2023, December 20). What is Vulnerability Assessment | VA Tools and Best
Practices|Imperva. Learning Center. https://www.imperva.com/learn/application-
security/vulnerability-assessment/

14. What is a vulnerability assessment? and how to conduct one | UpGuard. (n.d.).
https://www.upguard.com/blog/vulnerability-assessment

15. Wireless network vulnerability Scanning | CISA. (n.d.). Cybersecurity and Infrastructure Security
Agency CISA. https://www.cisa.gov/resources-tools/services/wireless-network-vulnerability-
scanning

16. Chauhan, A. S. (n.d.). Practical network scanning. O’Reilly Online Learning.
https://www.oreilly.com/library/view/practical-network-scanning/9781788839235/27f6192b-
3a22-4043-9fb8-eb782167f44d.xhtml

17. Chinnasamy, V. (2024, March 4). The Importance of Vulnerability Assessment: Types and
Methodology. Indusface. https://www.indusface.com/blog/explore-vulnerability-assessment-
types-and-methodology/

18. Roldan-Molina, G., Almache-Cueva, M., Silva-Rabadao, C., Yevseyeva, |., & Basto-Fernandes, V.
(2017). A comparison of cybersecurity risk analysis tools. Procedia Computer Science, 121, 568—
575. https://doi.org/10.1016/j.procs.2017.11.075

19. Khounborine, C. (n.d.). A survey and comparative study on vulnerability scanning tools.
ScholarWorks@UARK. https://scholarworks.uark.edu/csceuht/124/

20. Dinis B. Cruzl, Jodo R. Almeidal, And José L. Oliveira (2016). Open Source Solutions for
Vulnerability Assessment: A Comparative Analysis

21. Hasson, E. (2023a, December 20). Vulnerability management | Patches & scanners vs input
validation | |Imperva. Learning Center. https://www.imperva.com/learn/application-
security/vulnerability-management/

22. Chopskie, E. (2023, December 18). Vulnerability assessment tools: Key features and 5 tools you

should know. Bright Security. https://brightsec.com/blog/vulnerability-assessment-tools-key-
features-and-5-tools-you-should-know/

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

63

NTYXIAKH EPTAZIA MIXAHA KAAAIADAZ

23.

24.

25.

26.

27.

28.

29.
30.
31.

32.

33.

34.

Kime, C. (2024, June 3). 6 Top Open-Source Vulnerability Scanners & Tools. eSecurity Planet.
https://www.esecurityplanet.com/networks/open-source-vulnerability-scanners/
JasonGerend. (2023b, September 13). Credentials processes in Windows Authentication.
Microsoft Learn. https://learn.microsoft.com/en-us/windows-server/security/windows-
authentication/credentials-processes-in-windows-authentication#BKMK_LSA

Intelligence, M. T. (2024, May 2). Detecting and preventing LSASS credential dumping attacks.
Microsoft Security Blog. https://www.microsoft.com/en-
us/security/blog/2022/10/05/detecting-and-preventing-Isass-credential-dumping-attacks/
Microsoft Learn. (2021, July 1). Operating System Availability of WMI Components - Win32
Apps | Microsoft Learn. https://learn.microsoft.com/en-us/windows/win32/wmisdk/operating-
system-availability-of-wmi-components

Microsoft Learn. (2021, July 1). Managed Object Format (MOF) - Win32 Apps | Microsoft Learn.
https://learn.microsoft.com/en-us/windows/win32/wmisdk/managed-object-format--mof-
Scripto, D. (2019, February 18). Should I use CIM or WMI with Windows PowerShell? Scripting
Blog [Archived]. https://devblogs.microsoft.com/scripting/should-i-use-cim-or-wmi-with-
windows-powershell/

CIS BenchmarksTM. (n.d.). CIS. https://www.cisecurity.org/cis-benchmarks

CIS CentOS Linux Benchmarks. (n.d.). CIS. https://www.cisecurity.org/benchmark/centos_linux
Stevewhims. (2021, January 7). Registry Hives - Win32 apps. Microsoft Learn.
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry-hives

M. Burmester and P. Kotzanikolaou: “Securing Networks against Extreme Attacks”. In Volume
of essays in honour of Professor Antonios C. Panayotopoulos, pp. 875-886, University of
Piraeus, Greece, 2006.

C. Douligeris and P. Kotzanikolaou: “Introduction to Network Security”. In “Network Security:
Current Status and Future Directions”, IEEE Press — Wiley Interscience, ISBN 978-0-471-70355-
6, pp.1-12, April 2007.

Stallings, W., & Brown, L. (2023b). Computer security: Principles and Practice. Pearson
Educational.

Proactive Vulnerability Management: A Python-Based Cross-Platform Vulnerability Assessment Tool

64

