
UNIVERSITY OF PIRAEUS

School of Information and Communication Technologies

Department of Informatics

Thesis

Thesis Title:

Τίτλος Διατριβής:

Integrating Security Scans into CI/CD Pipelines

Ενσωμάτωση ελέγχων ασφαλείας σε συστήματα
συνεχής ενσωμάτωσης και εκτέλεσης με
μέσα πληροφορίας

Student’s name-surname: George Trifyllis

Father’s name: Paraskevas

Student’s ID No: Π14185

Supervisor: Constantinos Patsakis, Associate Professor

July 2024/ Ιούλιος 2024

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Copyright ©

The copying, storage, and distribution of this work, in whole or in part, is prohibited for
commercial purposes. Reprinting, storage, and distribution are permitted for non-profit,
educational, or research purposes, provided that the source is acknowledged and this notice
is preserved. The views and conclusions expressed in this document are those of the author
and do not represent the official positions of the University of Piraeus. As the author of this
paper, I declare that this paper does not constitute a product of plagiarism and does not
contain material from unquoted sources.

i

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Ευχαριστίες

Αρχικά θα ήθελα να ευχαριστήσω τους δικούς μου ανθρώπους που ήταν δίπλα μου και με
βοήθησαν να ξεπεράσω τα προσωπικά μου προβλήματα για να βρίσκομαι εδώ που είμαι
σήμερα, χωρίς αυτούς η έκβαση θα ήταν πολύ διαφορετική.

Θα ήθελα να εκφράσω τις ευχαριστίες μου προς το προσωπικό του τμήματος της Πληροφορικής
του Πανεπιστημίου Πειραιά που με οδήγησε στο μονοπάτι που ακολουθώ σήμερα και
συνέβαλε σε μεγάλο βαθμό σε αυτό που είμαι.

Επίσης θα ήθελα να ευχαριστήσω τον κ. Πατσάκη που με εμπιστεύτηκε για την εκπόνηση αυτής
της πτυχιακής και με ώθησε να εξερευνήσω το κομμάτι της Κυβερνοασφάλειας που όπως θα
αναδείξω στην πορεία είναι το πιο κρίσιμο κομμάτι της σημερινής εποχής για τα τεχνολογικά
επιτεύγματα.

Σας ευχαριστώ και πάλι για όλα , ελπίζω αυτή η πτυχιακή εργασία να φανεί χρήσιμη και να
ενημερώσει όσους την διαβάσουν για τα σύγχρονα τεχνολογικά θέματα.

ii

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Περίληψη

Κατά τις τελευταίες δεκαετίες, η τεχνολογία έχει σημειώσει ραγδαία πρόοδο, κάνοντας την
διαθέσιμη σε πολίτες σε μία κλίμακα που παλαιότερα ήταν αδιανόητη. Σήμερα σχεδόν κάθε
ενήλικος διαθέτει τουλάχιστον μια έξυπνη συσκευή. Αυτές οι συσκευές φιλοξενούν
εφαρμογές που περιέχουν ένα ευρύ φάσμα προσωπικών δεδομένων, από φωτογραφίες έως
πληροφορίες για τραπεζικούς λογαριασμούς. Ισχυρά μέτρα ασφαλείας για αυτές τις
εφαρμογές είναι απαραίτητα για την προστασία ευαίσθητων πληροφοριών από πιθανές
απειλές. Οι εταιρείες στο παρελθόν έδειξαν δυσκολία, και ορισμένες το κάνουν ακόμα, με την
ισορροπία ποιότητας και ταχύτητας κατά την προσπάθεια παράδοσης μια εφαρμογής.

Εδώ συμβάλει η Συνεχής Ενσωμάτωση και Συνεχής Παράδοση/Ανάπτυξη (CI/CD) που
αποσκοπεί στην βελτιστοποίηση και την επιτάχυνση του κύκλου ζωής ανάπτυξης λογισμικού
(SDLC), η δυνατότητα να δημιουργούνται αξιόπιστες, ασφαλείς και διατηρήσιμες εφαρμογές
χωρίς να θυσιάζεται η ταχύτητα παράδοσης προς την αγορά. Ο σκοπός αυτής της πτυχιακής
είναι να παρουσιάσει βήματα για ένα ολοκληρωμένο σύστημα μαζί με δύο CI/CD διεργασίες,
μία που επικεντρώνεται στην Στατική Δοκιμή Ασφαλείας Εφαρμογών (SAST) και μια στην
Δυναμική Δοκιμή Ασφαλείας Εφαρμογών (DAST). Μια μή ασφαλή εφαρμογή θα
χρησιμοποιηθεί ώστε να παρουσιαστούν τα αποτελέσματα αυτών των δύο διεργασιών.

Η ασφάλεια πρέπει να είναι η πιο σημαντική πτυχή του κύκλου ζωής ανάπτυξης λογισμικού,
επειδή μπορεί να καθορίσει τα διαθέσιμα εργαλεία στους προγραμματιστές και τη δομή της
εφαρμογής. Γι' αυτό η ασφάλεια πρέπει να ενσωματωθεί στις διεργασίες που ακολουθεί το
CI/CD.

Λέξεις Κλειδιά: Συνεχής Ενσωμάτωση και Συνεχής Παράδοση/Ανάπτυξη, Κύκλος ζωής
ανάπτυξης λογισμικού, Στατική Δοκιμή Ασφαλείας Εφαρμογών, Δυναμική Δοκιμή Ασφαλείας
Εφαρμογών

Abstract

Over the last few decades, technology has advanced rapidly, becoming accessible to individuals
on a scale previously unimaginable. Today almost every adult possesses at least one smart
device. These devices host applications containing a wide range of personal data, from
photos to e-banking information. Ensuring the security of these data involves protecting the
medium through which they are transferred—namely, the applications themselves. Robust
security measures for these applications are essential to safeguard sensitive information
from potential threats. Companies have struggled in the past , and some still do, with the
balance of quality and speed when trying to deliver.

That's where Continuous Integration and Continuous Delivery/Deployment (CI/CD) aims to
streamline and accelerate the software development lifecycle (SDLC), the ability to build
reliable, secure and maintainable applications without sacrificing the delivery speed to
market. The goal of this thesis is to provide steps for a complete environment along with two
CI/CD pipelines, one that emphasizes on Static Application Security Testing (SAST) and one
on Dynamic Application Security Testing (DAST). An insecure application will be used in
order to show results of those pipelines.

Security should be the most crucial aspect of the development cycle of an application because it
can define the available tools to the developers and the structure of the application. That's
why security must be integrated into the CI/CD pipelines.

Key Words: Continuous Integration and Continuous Delivery/Deployment , Software
Development Lifecycle , Static Application Security Testing , Dynamic Application Security
Testing

iii

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Table of contents

Copyright ©... i
Ευχαριστίες.. ii
Περίληψη...iii
Abstract...iii
Table of contents..iv
List of Figures..v
Introduction..1
1. Introduction : Overview of CI/CD principles... 2

1.1 Waterfall model... 2
1.1.1 Security disadvantages for Waterfall model.. 2

1.2 Agile Model... 3
1.2.1 Security advantages for Agile model... 3

1.3 DevOps... 4
1.3.1 DevOps Goals... 4
1.3.2 DevSecOps... 4
1.3.3 DevSecOps Goals... 4
1.3.4 Rugged DevOps.. 5
1.3.5 Rugged DevOps Goals..5

2. Security in software Development...6
2.1 Parallels to physical security...6
2.2 Evolution of digital security in applications..7

2.2.1 Pre-internet Era : Digital Security mirroring Physical Security.................................7
2.2.2 Internet Era : Security Challenges and Agile Responses..7

2.3 Cybersecurity strategies for complex infrastructures.. 7
2.3.1 Defense in Depth...7
2.3.2 Zero Trust.. 8

3. Importance of security in software development...9
3.1 Real World Example: Equifax Data Breach (2017)... 9

3.1.1 Report By the United States Government Accountability Office..............................9
3.1.2 The Apache Software Foundation responses... 10

3.2 Lessons learned from a real world example..11
4. CI/CD Ecosystem...12

4.1 Host of the Ecosystem.. 12
4.1.1 What is Proxmox?... 12
4.1.2 Why use Proxmox as a base host... 12
4.1.3 Reasons why Proxmox was not used in the end...12
4.1.4 Alternative approach..13
4.1.5 Why VirtualBox was used as a final solution... 13

4.2 Operating System... 13
4.2.1 Why use Linux?... 13
4.2.2 Distribution of choice... 13

4.3 Service hosting..13
4.3.1 Running Services Directly in the OS..13

4.3.2 Running Services in Virtual Machines... 14
4.3.3 What is a container ?...14

iv

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

4.3.4 Running Services in a Container... 14
4.3.5 Preferred way of service hosting... 14
4.3.6 Docker... 14

4.4 Version Control..15
4.4.1 What is Version Control ?.. 15
4.4.2 Why use version control ?... 15
4.4.3 Version Control Systems... 15

4.5 Hosting Platform..16
4.5.1 GitLab.. 16
4.5.2 Why use GitLab ?.. 16

4.6 Automation Server.. 16
4.6.1 What is Jenkins ?.. 16
4.6.2 Why use Jenkins ?.. 17

4.7 Repository Manager..17
4.7.1 What is a Repository Manager ?... 17
4.7.2 Sonatype Nexus Repository.. 17

5. Ecosystem Installation..18
5.1 Creating the VM.. 18

5.1.1 Download VirtualBox... 18
5.1.2 Download your selected version of OS... 18
5.1.3 Configuring the VM..18
5.1.4 Installing Ubuntu..20
5.1.4 Optional : Connect from your base host.. 20
5.1.5 Verify Installation... 21
5.1.6 Updating and Upgrading after installation... 21
5.1.7 Setting to ensure stability for services... 21

5.2 Docker Installation...22
5.2.1 Prerequisites..22
5.2.2 Installation... 22
5.2.3 Services installation and configuration.. 23

5.3 GitLab Installation... 25
5.3.1 GitLab Docker Configuration... 25
5.3.2 Login after docker compose up... 25
5.3.3 Optional : Sign-up Restrictions.. 26

5.3.4 Outbound requests... 26
5.3.4 Add new projects...26
5.4 Jenkins Installation..27

5.4.1 Jenkins Docker Configuration..27
5.4.2 Maven installation in Jenkins...28
5.4.3 Required Plugins for Jenkins Pipelines... 29

5.5 Sonatype Nexus Repository Installation... 29
5.5.1 Sonatype Nexus Repository Docker Configuration... 29
5.5.2 Login after docker compose up... 29
5.5.3 Optional : Creating Repositories..30

5.6 SonarQube Installation... 31
5.6.1 SonarQube Docker Configuration... 32
5.6.2 Login after docker compose up... 32
5.6.3 Optional : Adjusting Quality Gate.. 32

iv

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

6. Ecosystem Interconnection..34
6.1 GitLab tokens and Hook... 34
6.2 Jenkins GitLab Connection... 34
6.3 SonarQube GitLab connection..36
6.4 Jenkins SonarQube connection.. 36
6.5 Adding to GitLab the PipelineConfig repository.. 37
6.5 Adding to Jenkins a MultiBranch Pipeline...38
7. Executing the pipelines... 40
7.1 Jenkinsfile Overview... 40
7.2 WebGoat... 40
7.3 SAST Pipeline...41

7.3.1 Hooks theory... 49
7.4 DAST Pipeline...50

7.4.1 Zed Attack Proxy... 50
7.4.2 DAST Pipeline Stages... 50

8. Result Analysis..56
8.1 SAST Result Analysis... 56
8.2 DAST Result Analysis...61

Conclusions... 65
Table of abbreviations-acronyms-initialisms..67
Bibliography and hyperlinks.. 68

Books and Monographs:... 68
Hyperlinks:.. 68

Annex..70
Annex A : Docker-compose.yaml..70
Annex B : JenkinsFile_Advanced... 73
Annex C : JenkinsFile_Zap_WebGoat_Scan..78
Annex D : WebGoat.context..83

iv

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

List of Figures

Image 1.1: Waterfall model..1
Image 5.1: VirtualBox : Create Virtual Machine...17
Image 5.2 : VirtualBox : Hardware...18
Image 5.3 : VirtualBox : Summary...18
Image 5.4 : VirtualBox : VM Network Settings...19
Image 5.5 : Ubuntu cat /etc/os-release result..20
Image 5.5 : Ubuntu : command sudo docker-compose ps.. 23
Image 5.6 : GitLab : Sign-up restrictions... 25
Image 5.7 Outbound Requests..25
Image 5.8 : Sonatype Nexus Repository : Available repositories for creation.............................30
Image 5.9 : SonarQube : Adjusted Quality Gate... 32
Image 6.1 Gitlab : Personal Access Tokens.. 33
Image 6.2 : Jenkins : Add Credential Screen.. 34
Image 6.3 : Jenkins : Setting GitLab connection... 35
Image 6.4 : SonarQube : How to add webhooks...35
Image 6.5 : Jenkins : SonarQube addition.. 36
Image 6.6 : Jenkins : New MultiBranch Pipeline Git settings.. 37
Image 6.7 : Jenkins : Pipeline configuration.. 38
Image 6.8 : Jenkins : Configure pipeline Hook.. 39
Image 7.1 : Jenkins : Build with parameters..40
Image 7.2 : Jenkins : SAST Pipeline... 41
Image 7.3 : Jenkins : Stage logs... 41
Image 7.4 : Jenkins : Branch status.. 41
Image 7.5 : Jenkins : Build information..42
Image 7.6 Jenkins : Build Test results... 43
Image 7.7 : Jenkins : Build logs...44
Image 7.8 : GitLab : Create new Branch.. 48
Image 7.9 : Jenkins : Hook triggered when we merge the custom branch..................................49
Image 7.10 : Jenkins : DAST pipeline.. 50
Image 8.1 : SonarQube : Project View.. 56
Image 8.2 : SonarQube : Vulnerability Where is the Issue..56
Image 8.3 : SonarQube : Vulnerability Why is this an Issue..57
Image 8.4 : SonarQube : Security Hotspots.. 58
Image 8.5 : SonarQube : Security Hotspot Authentication Token... 59
Image 8.6 : SonarQube : Security Hotspot Authentication Password... 59
Image 8.7 : SonarQube : Security Hotspot SQL Injection... 60
Image 8.8 : ZAP : Baseline Report Summary Alert.. 60
Image 8.9 : ZAP : Baseline Report Alerts..61
Image 8.10 : ZAP : Baseline Alert Report..62
Image 8.11 : ZAP : Full scan Report Summary Alert..62
Image 8.12 : ZAP : Full scan Report Alerts... 63
Image 8.13 : ZAP : Full scan Alert Report... 63

v

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Introduction

In today’s world software security has become crucial. As organizations adopt agile
development methodologies, meaning that software has less time from development to
production, the need to integrate security in the software development life cycle is
paramount. Integrating security scans into Continuous Integration and Continuous
Delivery/Deployment (CI/CD) pipelines enables early detection of vulnerabilities. By
following this shift left strategy for software security we are reducing the risk of costly security
breaches.

This paper will guide you and will first introduce you to the theory of why we need security to be
integrated into the CI/CD pipelines by showcasing theory and then real life examples. Then
with comprehensive and concise steps we will build a sandbox CI/CD environment from
scratch. After that pipelines will be added which run static application security testing and
dynamic application security testing against a vulnerable application.

The goal is to make everyone aware that software security is a never ending battle and we have
to automate this work in order to be done efficiently. Further exploration on this domain can
happen by integrating more tools that may specialize in other fields of security.

1

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

1. Introduction : Overview of CI/CD principles

Before explaining what CI/CD is we should study the past and what made us reach this point.
As with all actions humans make we are trying to find the most efficient way to reach the
desired results. This has made the development lifecycle to change over the years making it
as efficient as possible.

1.1 Waterfall model

Initially, when projects had a small and well-defined scope, the Waterfall model was the most
common approach. The Waterfall model consists of five phases: Requirements, Design,
Implementation, Verification, and Maintenance. Although not using the term Waterfall model
this method is defined in Royce, W. W. (2021). Managing the development of large software
systems (1970).

Image 1.1: Waterfall model

As you can tell this model makes the assumption that every time that we move on to the next
phase the previous one is completed which even for small projects is a naive assumption to
make and as Dr. Royce mentions in the previously mentioned article “the implementation
described above is risky and invites failure”.

1.1.1 Security disadvantages for Waterfall model

This methodology has disadvantages regarding the security aspects of an application:
● Critical security issue: A critical security issue discovered late in the Implementation

phase would require major changes and a potential violation of the initial contract.

2

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

● Minor security issue: A minor security issue arises during the Verification or the
Maintenance phase then we have to return to the Implementation phase which sets us
back in milestones and increases expenses every time we miss such a goal.

● Ongoing Vulnerabilities: With the downhill process that Waterfall follows it is difficult to
address any new vulnerabilities discovered immediately which leads to exposing
customers to a potential threat.

1.2 Agile Model

So another model must be followed if we want to be compliant with the security. That model
should have the ability to have continuous development in mind , such as the Agile model.

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Manifesto for Agile Software Development

Agile methodologies are following an iterative development where a team handles in a specific
timeframe, called sprint, a set of features for the application including design,
implementation, testing and deployment

1.2.1 Security advantages for Agile model

This methodology has advantages regarding the security aspects of an application:
● Critical security issue: A critical security issue is discovered , this issue can be

addressed in the following sprint with high priority or the feature introducing it can be
pushed to the next sprint in order to not cause a delay to the rest of the deliverables.

● Minor security issue: A minor security issue arise during the sprint development team
has the time to fix it during the sprint without any setbacks.

● Ongoing Vulnerabilities: The iterative nature of an Agile methodology allows the teams
to respond to any new security issues that may arise and deliver fixes to the clients in a
short time frame.

Agile promotes the iterative development and communication with the client so developers have
to adapt to that style and that's why CI/CD has been created.

Continuous integration (CI) refers to the practice of automatically and frequently integrating
code changes into a shared source code repository. Continuous delivery and/or deployment
(CD) is a 2 part process that refers to the integration, testing, and delivery of code changes.
Continuous delivery stops short of automatic production deployment, while continuous
deployment automatically releases the updates into the production environment.

Redhat : What is CI/CD?

If developers are the ones implementing and maintaining the application then who is
responsible for creating and maintaining the CI/CD process ? The answer to that question is
DevOps.

3

http://agilemanifesto.org/
https://www.redhat.com/en/topics/devops/what-is-ci-cd

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

1.3 DevOps

DevOps combines development (Dev) and operations (Ops) to unite people, process, and
technology in application planning, development, delivery, and operations. DevOps enables
coordination and collaboration between formerly siloed roles like development, IT operations,
quality engineering, and security.

Teams adopt DevOps culture, practices, and tools to increase confidence in the applications
they build, respond better to customer needs, and achieve business goals faster. DevOps
helps teams continually provide value to customers by producing better, more reliable
products.

Microsoft : What is DevOps?

1.3.1 DevOps Goals

So DevOps are the bridge between the development team and the operations team with goals
such as:
● Accelerate time to market
● Adapt to the market and competition
● Maintain system stability and reliability
● Improve the mean time to recovery

These goals can only be achieved with principles that focus on collaboration among all
departments and normalization of pipeline procedures which is the CI/CD principle. Although
we are mentioning theCI/CD principle we haven't mentioned security at all , are DevOps the
one to integrate security? The answer is that under the aegis of DevOps there are two other
teams that build security into all aspects of the process. DevSecOps and Rugged DevOps.

1.3.2 DevSecOps

DevSecOps, which stands for development, security, and operations, is a framework that
integrates security into all phases of the software development lifecycle. Organizations adopt
this approach to reduce the risk of releasing code with security vulnerabilities. Through
collaboration, automation, and clear processes, teams share responsibility for security, rather
than leaving it to the end when issues can be much more difficult and costly to address.
DevSecOps is an enhancement to DevOps that builds security into all aspects of the
process. The goal is to address security issues from the very start of the project. In this
framework, not only does the entire team take responsibility for quality assurance and code
integration but also security. In practice, this means teams discuss security implications
during planning and begin testing for security issues in development environments, rather
than waiting until the end. Another name for this approach is shift left security.

Microsoft: What is DevSecOps?

1.3.3 DevSecOps Goals

DevSecOps is an approach that integrates security practices within the DevOps process during
the SDLC. So their goals consist of :
● Integrate security practices throughout the SDLC
● Automate the security process into the CI/CD to ensure consistent and reliable

practices
● Share responsibility of security across all teams by providing tools that teams can use

to maintain security and create secure and reliable software
● Protect customer data and privacy of the users

When these goals are achieved we have used security practices during the SDLC so we have
shifted security left to identify vulnerabilities earlier so we can achieve an improved quality of
deliverables while having cost efficiency and faster time-to-market.

4

https://learn.microsoft.com/en-us/devops/what-is-devops
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

So DevSecOps are the ones that integrate security practices into the DevOps process in
various ways. What is the reason to even have a Rugged DevOps team? What are they
offering ?

1.3.4 Rugged DevOps

I am rugged and, more importantly, my code is rugged.
I recognize that software has become a foundation of our modern world.
I recognize the awesome responsibility that comes with this foundational role.
I recognize that my code will be used in ways I cannot anticipate, in ways it was not designed,
and for longer than it was ever intended.
I recognize that my code will be attacked by talented and persistent adversaries who threaten
our physical, economic, and national security.
I recognize these things - and I choose to be rugged.
I am rugged because I refuse to be a source of vulnerability or weakness.
I am rugged because I assure my code will support its mission.
I am rugged because my code can face these challenges and persist in spite of them.
I am rugged, not because it is easy, but because it is necessary and I am up for the challenge.
The Rugged Manifesto

1.3.5 Rugged DevOps Goals

Rugged DevOps is a philosophy that extends the principles of DevOps to create software that is
not only secure but also resilient and capable of withstanding attacks and adverse
conditions. This can be achieved by setting goals:
● Building systems that can withstand attacks and failures as a reactive approach to

security cannot scale and is doomed to fail.
● Share responsibility of security by performing activities like threat modeling, security

architecture, secure coding training, and security testing so there is a lasting value
across the project's team.

● Proactive measures to test and improve system's resilience in real world scenarios
where users are not following "golden paths" and can be malicious.

All the previously mentioned models , goals and definitions of teams should be integrated into
the CI/CD to ensure that security is a continuous, automated and integral part of the SDLC..
This integration is crucial because security is a fundamental value that everyone involved in a
project should focus on, regardless of their position. By doing so, it leads to the creation of more
secure, robust, and reliable software systems.

5

https://ruggedsoftware.org/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

2. Security in software Development

As presented in the previous chapter 1. Overview of CI/CD principles security should be crucial
during development and not left as the last part during the SDLC. This can lead to
irreversible damage to a project by breaking the user's trust.Security in software
development can also be referred as cybersecurity:

Cybersecurity refers to any technology, measure or practice for preventing cyberattacks or
mitigating their impact.

Cybersecurity aims to protect individuals’ and organizations’ systems, applications, computing
devices, sensitive data and financial assets against computer viruses, sophisticated and
costly ransomware attacks, and more.

IBM : What is cybersecurity?

and attacks against that is referred as cyberattack:

A cyberattack is any intentional effort to steal, expose, alter, disable, or destroy data,
applications, or other assets through unauthorized access to a network, computer system or
digital device.

IBM : What is a cyberattack?

2.1 Parallels to physical security

Let's take examples from history and parallel them to the evolution of cybersecurity.In the
beginning, humans sought shelter in caves and eventually built houses for protection from
predators and the elements. This need for security evolved with the addition of physical
measures like locks to deter home invasion. Similarly, the digital world necessitates
cybersecurity measures like firewalls and strong passwords to prevent unauthorized access.
However, these measures, like security cameras in a home, serve primarily as a deterrent
and detection system. Just as a safe within a house offers an extra layer of security for
valuables, data encryption provides an additional line of defense in cybersecurity. Even if a
breach occurs, encrypted data remains unreadable without the decryption key, rendering it
useless to attackers. As we can tell security and cybersecurity rely on layers of defenses and
more parallels can be made like :
● Maintaining the house condition by checking the structure and repairing weaknesses

that may arise for example a window that the lock doesn't work like patching
vulnerabilities found in an application

● A plan after an attack is made , incident response ,in order to address and recover from
an attack

● Even a guard dog being a form of multi-factor authentication

What everybody needs to understand , regardless of technical expertise , is that cybersecurity
mirrors real world security so everybody has to be precautious about the actions that they take
and that security relies on all parties. As said before security of any kind is conducted right when
there is collective awareness and action. For example imagine a castle (a very well structured
secure application) but allows the citizens to enter with an easy forged key (weak credentials).
Intruders will either replicate the key by a brute force attack or steal the key and then roam
freely inside the castle .

A brute force attack can manifest itself in many different ways, but primarily consists in an
attacker configuring predetermined values, making requests to a server using those values, and
then analyzing the response. For the sake of efficiency, an attacker may use a dictionary attack
(with or without mutations) or a traditional brute-force attack (with given classes of characters
e.g.: alphanumeric, special, case (in)sensitive). Considering a given method, number of tries,
efficiency of the system which conducts the attack, and estimated efficiency of the system which
is attacked the attacker is able to calculate approximately how long it will take to submit all

6

https://www.ibm.com/topics/cybersecurity
https://www.ibm.com/topics/cyber-attack

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

chosen predetermined values.
OWASP : Brute Force Attack

2.2 Evolution of digital security in applications

As in the physical world digital security evolved with each new threat presented and in the last
few decades with the technological boom the security has to keep up with all the new threats
and vulnerabilities.

2.2.1 Pre-internet Era : Digital Security mirroring Physical Security

Before the era of downloading software from the internet companies were distributing software
through physical mediums , floppy discs and CDs , to the customers. So the application
needed to be functional with no major defects and that's why the Waterfall model was
followed, there could be no incremental development as the costs to produce the physical
updates and distribute them were really expensive. As there was no internet, digital security
was as simple as physical security which means control the physical access to the machines
, this is called securing the perimeter by creating a secure internal environment. Since all
data , systems, even networks physically existed in one place companies had to restrict
access to those. This was done by:
● Physical means :

○ Personnel having access control cards , limiting their access to specific rooms
or buildings .

● Digital means :
○ Users having personal credentials to log into the computers
○ Access control Lists (ACL) user roles that limit access within topologies or files

in the network .
This set the foundation of digital security but it is far from the current form.

2.2.2 Internet Era : Security Challenges and Agile Responses

When the internet became widely available, companies began publishing their applications to
the internet thus creating the need to patch them over the internet as well. This influenced
the development models to move towards agile models. However the internet introduced a
new wave of security threats. Company networks were no longer isolated , even when not
directly exposed to the internet , there was the need to connect geographically dispersed
offices with secure connections . Along with the rise of data centers and cloud hosting
security became complex. On top of these changes companies started to use Software as a
service (SaaS) applications.

Software as a service (SaaS) is application software hosted on the cloud and used over an
internet connection by way of a web browser, mobile app or thin client.

IBM : What is SaaS

Although SaaS applications offer the advantage that the service provider can use the CI/CD
principles themselves and deliver robust and secure applications with regular updates that
eliminate the need to be installed and managed by company personnel , they have to be
integrated into the ecosystem of the company.

2.3 Cybersecurity strategies for complex infrastructures

2.3.1 Defense in Depth

Information security strategy integrating people, technology, and operations capabilities to
establish variable barriers across multiple layers and missions of the organization.

The National Institute of Standards and Technology (USA) : defense-in-depth

7

https://owasp.org/www-community/attacks/Brute_force_attack
https://www.ibm.com/topics/saas
https://csrc.nist.gov/glossary/term/defense_in_depth

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Defense in depth strategy focuses on layering defenses instead of having a general secure
perimeter , each layer should be secured independently from the previous ones.
Furthermore there should be a Governance team , to ensure that the company is following
compliance requirements , working along the Operations team in order to help the
Development team to create robust applications.

2.3.2 Zero Trust

Zero trust is a framework that assumes a complex network’s security is always at risk to
external and internal threats. It helps organizations strategize a thorough approach to
counter those threats.

IBM : What is zero trust?

Zero Trust strategy revolves around one rule "Never trust, always verify". This rule assures that
all connections are authenticated even if an authentication took place in a previous layer a
new independent authentication should take place for each layer.

Both of those Cybersecurity strategies ensure that we follow practices which enable authorized
and secure practices, by stopping any kind of activity without permission and even when one
system is compromised then linked systems will not be,

8

https://www.ibm.com/topics/zero-trust

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

3. Importance of security in software development

Previous chapter 2. Security in software development presents strategies that companies
should follow in order to have a secure ecosystem. But what happens if there is poor
implementation of such strategies or even worse no implementation of them. We don't need
to rely on hypothetical scenarios as everyday there are successful cyberattacks one example
is the Equifax Data Breach.

3.1 Real World Example: Equifax Data Breach (2017)

One of the largest data breaches in history , if not the largest one , is that of a major credit
reporting agency Equifax. Equifax exposed the personal information of at least 145.5 million
people, based on data presented by the USA Government which was caused by an
unpatched vulnerability in a web application framework Apache Struts. This led to social
security numbers, birth dates, addresses, and more to be exposed .The cost to the company
is estimated at over 4 billion dollars in total including settlements, fines, and remediation.

3.1.1 Report By the United States Government Accountability Office

The way that this data breach was done is reported in the GAO-18-559, DATA PROTECTION:
Actions Taken by Equifax and Federal Agencies in Response to the 2017 Breach, following
parts are from that document with highlighted parts to follow with the timeline of the actions.

Equifax has stated that, on March 10, 2017, unidentified individuals
scanned the company’s systems to determine if the systems were
susceptible to a specific vulnerability that the United States Computer
Emergency Readiness Team had publicly identified just 2 days earlier.
The vulnerability involved the Apache Struts Web Framework and would
allow an attacker to execute commands on affected systems.

According to Equifax officials, beginning on May 13, 2017, in a separate
incident following the initial unauthorized access, attackers gained access
to the online dispute portal and used a number of techniques to disguise
their activity. For example, the attackers leveraged existing encrypted
communication channels connected to the online dispute portal to send
queries and commands to other systems and to retrieve the PII residing
on the systems. The use of encryption allowed the attackers to blend in
their malicious actions with regular activity on the Equifax network and,
thus, secretly maintain a presence on that network as they launched
further attacks without being detected by Equifax’s scanning software.
Equifax officials added that, after gaining the ability to issue system-level
commands on the online dispute portal that was originally compromised,
the attackers issued queries to other databases to search for sensitive
data. This search led to a data repository containing PII, as well as
unencrypted usernames and passwords that could provide the attackers
access to several other Equifax databases. According to Equifax’s interim
Chief Security Officer, the attackers were able to leverage these
credentials to expand their access beyond the 3 databases associated
with the online dispute portal, to include an additional 48 unrelated
databases.

After successfully extracting PII from Equifax databases, the attackers
removed the data in small increments, using standard encrypted web
protocols to disguise the exchanges as normal network traffic. The attack
lasted for about 76 days before it was discovered.

9

https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf
https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

3.1.2 The Apache Software Foundation responses

After the news that Equifax data breach was by the web application framework Apache Struts ,
the Apache Struts Project Management Committee (PMC) released two blog posts regarding
this incident. Parts of the first blogpost Apache Struts Statement on Equifax Security Breach
from PMC follow with highlighted crucial information and links to the Common Vulnerabilities
and Exposures (CVE) mentioned for reader information.

We are sorry to hear news that Equifax suffered from a security breach and information
disclosure incident that was potentially carried out by exploiting a vulnerability in the Apache
Struts Web Framework. At this point in time it is not clear which Struts vulnerability would
have been utilized, if any. In an online article published on Quartz.com , the assumption
was made that the breach could be related to CVE-2017-9805, which was publicly
announced on 2017-09-04 along with new Struts Framework software releases to
patch this and other vulnerabilities . However, the security breach was already detected
in July , which means that the attackers either used an earlier announced vulnerability on an
unpatched Equifax server or exploited a vulnerability not known at this point in time –a
so-called Zero-Day-Exploit. If the breach was caused by exploiting CVE-2017-9805, it
would have been a Zero-Day-Exploit by that time.

1. Understand which supporting frameworks and libraries are used in your software
products and in which versions. Keep track of security announcements affecting
this products and versions.

2. Establish a process to quickly roll out a security fix release of your software product
once supporting frameworks or libraries needs to be updated for security reasons. Best
is to think in terms of hours or a few days, not weeks or months. Most breaches
we become aware of are caused by failure to update software components that
are known to be vulnerable for months or even years.

3. Any complex software contains flaws. Don’t build your security policy on the
assumption that supporting software products are flawless, especially in terms of
security vulnerabilities.

4. Establish security layers. It is good software engineering practice to have individually
secured layers behind a public-facing presentation layer such as the Apache Struts
framework. A breach into the presentation layer should never empower access to
significant or even all back-end information resources.

5. Establish monitoring for unusual access patterns to your public Web resources.
Nowadays there are a lot of open source and commercial products available to detect
such patterns and give alerts. We recommend such monitoring as good operations
practice for business critical Web-based services.

Once followed, these recommendations help to prevent breaches such as unfortunately
experienced by Equifax.

After 8 days that more info came into the light there was another blogpost MEDIA ALERT: The
Apache Software Foundation Confirms Equifax Data Breach Due to Failure to Install Patches
Provided for Apache® Struts™ Exploit which stated :

What: On 7 September 2017, credit reporting agency Equifax announced a data breach
affecting 143 million consumers.
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628

Following this announcement, additional claims stated that the breach was caused by
CVE-2017-9805, an exploit in Apache Struts that was disclosed on 4 September 2017.
https://qz.com/1073221/the-hackers-who-broke-into-equifax-exploited-a-nine-year-old-securit
y-flaw/

On 9 September 2017, the Apache Struts PMC issued a statement on the Equifax data breach
that included details on its response process to reported vulnerabilities and also provided
recommended security guidelines. https://s.apache.org/8thB

On 13 September 2017, Equifax issued a statement confirming that "The vulnerability was
Apache Struts CVE-2017-5638". https://www.equifaxsecurity2017.com/

10

https://news.apache.org/foundation/entry/apache-struts-statement-on-equifax
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9805
https://news.apache.org/foundation/entry/media-alert-the-apache-software
https://news.apache.org/foundation/entry/media-alert-the-apache-software
https://news.apache.org/foundation/entry/media-alert-the-apache-software
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

This vulnerability was patched on 7 March 2017, the same day it was announced.
https://cwiki.apache.org/confluence/display/WW/S2-045

In conclusion, the Equifax data compromise was due to their failure to install the security
updates provided in a timely manner.

3.2 Lessons learned from a real world example

The lessons learned from these real world examples regarding infrastructure security is
everything described in the previous sections.
● Equifax made the most critical mistake not patching a basic vulnerability that was

discovered , patched and released to the public in a timely manner. This may be due to
poorly implemented security practices or outright negligence of management.

● Silos are defensible. Once the attackers were inside the perimeter, they were able to
move freely as they were not restricted to a single machine resulting in having access to
more than the initially breached ones. This means that Zero Trust was not implemented
in the system.

By following strictly the previous strategies and the strategies mentioned by PMC teams can
reduce the risk of such cyberattacks and as learned by the Rugged DevOps.

"I recognize that my code will be attacked by talented and persistent adversaries who
threaten our physical, economic, and national security"

11

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

4. CI/CD Ecosystem

Based on all the previous mentioned methodologies and strategies a modern ecosystem will be
introduced to house our CI/CD pipelines. Of course, depending on when you are reading
this, do research in order to ensure that the services used are still secure and please follow
the instructions mentioned and scale based on your needs. I want to emphasize the
criticality of doing research to ensure that everything is up to date as since when I started
doing investigation and implementation there have been major updates to services used and
even a critical patch.

The service Jenkins used in the ecosystem announced that a critical vulnerability along with 6
high vulnerabilities were found listed in the Jenkins Security Advisory 2024-01-24 and
prompted in the application all the users to proceed with an update, so we can see that the
advice from the PMC team is a basic rule that always must be followed with no exception.

“Understand which supporting frameworks and libraries are used in your software
products and in which versions. Keep track of security announcements affecting
these products and versions.”

4.1 Host of the Ecosystem

First approach was to use a Mini PC with Proxmox.

4.1.1 What is Proxmox?

Proxmox Virtual Environment (Proxmox VE) is an open-source platform designed for
virtualization that combines two virtualization technologies: KVM (Kernel-based Virtual
Machine) for virtual machines and LXC (Linux Containers) for lightweight container-based
virtualization. Using open-source software guarantees full access to all functionality, as well
as a high level of reliability and security. Features - Proxmox Virtual Environment

4.1.2 Why use Proxmox as a base host

● Security : Since Proxmox VE is an open-source virtualization platform, which means
that its source code is open and can be audited by the community. The open nature of
the software allows for transparency, and security-conscious users can review the code
to identify and address potential security issues.

● Container and Virtual Machine Isolation : Both KVM and LXC are supported by
Proxmox VE. Virtual machines provide full isolation, emulating a complete hardware
environment, while containers offer lightweight and efficient virtualization at the
operating system level.

● This thesis scope is to not only serve as a guide but also hold practical utility. For
real-world applications, ensuring high availability is crucial. Proxmox VE facilitates this
by allowing the creation of clusters and incorporating features like live migration of
virtual machines and high availability. The implementation of clustering not only
enhances security by introducing redundancy but also ensures the sustained operation
of your virtualized environment, even in the event of a node failure.

4.1.3 Reasons why Proxmox was not used in the end

The only reason that I decided against using Proxmox besides all the benefits that it provides
was that the Mini PC simply wasn't powerful enough to handle the growing number of services I
wanted to host. Initially it ran everything smoothly and the services worked great. However as I
added more services issues arose. After hours of investigation and trying to debug what went
wrong a valuable lesson was learned , consider hardware capabilities when choosing a
virtualization platform . Always have in mind scalability and even though Proxmox supports it I

12

https://www.jenkins.io/security/advisory/2024-01-24/
https://www.proxmox.com/en
https://www.proxmox.com/en/proxmox-virtual-environment/features

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

didn't as the Mini PC didn't have enough memory.

4.1.4 Alternative approach

Whole project was migrated to my personal computer but Proxmox requires to be installed as
an Operating System (OS) and then on top virtualize everything else in a separate OS or
have everything as a container. Then the decision was made to use Oracle VM VirtualBox.

4.1.5 Why VirtualBox was used as a final solution

Oracle VM VirtualBox is a free open source software that allows you to run virtual machines
(VM) on your existing computer. TheseVMs act as simulated computer systems, allowing
you to run different OS alongside your main one. Here's why VirtualBox stands out as a
choice:
● Strong Backing and Community: VirtualBox is backed by the tech giant Oracle which

ensures ongoing support. Additionally there is a large active user community that can
provide troubleshooting assistance.

● System Compatibility : VirtualBox offers a wide range of supported guest OS which can
be found under the Guest_OSes – Oracle VM VirtualBox wiki page.

● Sandbox creation: VirtualBox offers the option to create clonedVM which can be used
as a sandbox for users to test and experiment without having to impact and in an extent
compromise their personal systems.

4.2 Operating System

As with our application the used OS should be robust and supported by the developer. For me
the answer was clear from the beginning with no second thoughts, Linux.

4.2.1 Why use Linux?

Linux is free and open-source meaning it is available to the general public for use and review
making it a secure approach as well. This results in many versions of Linux to be available or
"distributions" as they are called which include the Linux kernel along with a set of libraries
and often a package management system. Those distributions can be as light and minimal
as the user needs it to be but there are distributions supported by the community with
ongoing updates regarding stability and security.

4.2.2 Distribution of choice

My personal choice is Ubuntu 22.04.4 LTS which at the time of writing this thesis is a robust
system that has existed for almost one year. There should be no fear that it has existed for
one year because it is a LTS version meaning Long-Term Support. LTS versions receive five
years of free security and maintenance updates which means that for the next 4 years the
system will be secure.

4.3 Service hosting

After choosing the OS of our choice we have to decide how our services will be running. We can
run them natively in Linux , make them run in different VMs or run them in containers.I shall
list the pros and cons of running services in the OS, in a VM, or in a Container in order to
make a choice of course here you can adjust based on your needs.

4.3.1 Running Services Directly in the OS

● Pros
○ Running services directly in the OS provides the best performance as there is

no virtualization thus no overhead.

13

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.oracle.com/
https://www.virtualbox.org/wiki/Guest_OSes
https://www.releases.ubuntu.com/22.04/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

○ No need to allocate and manage resources , everything is available without the
need of additional layers.

○ The best of all simplicity, no extra installations needed just run the services as
per manual.

● Cons
○ Since everything is running directly in the OS then there can be conflicts

between applications needing a finer tuning.
○ High security risk if one service is vulnerable everything is vulnerable.
○ Scaling and maintenance is way more difficult as the entire system needs to be

replicated and all services go down if the system is in need of a repair.

4.3.2 Running Services in Virtual Machines

● Pros
○ Running services in VMs provides isolation which provides security and

stability.
○ Since VMs can host their own OS each service can be run in what provides

best performance and stability.
○ Resources can be allocated and managed per VM providing better control.

● Cons
○ As you can tell we have a higher overhead as we need to virtualize the

hardware and the OS resulting in fewer total resources for our services.
○ Since VMs run on their own OS there is always a boot time which should be

taken into consideration.

4.3.3 What is a container ?

Containers are an abstraction at the app layer that packages code and dependencies together.
Multiple containers can run on the same machine and share the OS kernel with other
containers, each running as isolated processes in user space.

Docker : What is a container

4.3.4 Running Services in a Container

● Pros
○ Containers provide a form of isolation, they share the same host OS kernel but

keep the services and dependencies separate.
○ Containers have minimal overhead and are packaged with just what is

absolutely necessary to guarantee stability.
○ Since containers have specified dependencies which include them we can

ensure that there is a consistency across systems.
● Cons

○ Containers must use the same OS kernel as the host , limiting the variety of
environments.

○ Since containers share the same OS it can pose a security risk if not managed
correctly.

4.3.5 Preferred way of service hosting

In my opinion having the services run directly on the OS but in separate machines is the way to
go but considering the limitation of my available hardware containers is the best solution for
this project as we want it to be used as a sandbox and not as a final implementation. So we
are going to need something to manage all those containers and my choice for this is
Docker.

4.3.6 Docker

Docker is an open-source platform that provides tools that work based on Docker Engine.

14

https://www.docker.com/resources/what-container
https://www.docker.com

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Docker Engine is an open source containerization technology for building and containerizing
your applications. Docker Engine acts as a client-server application with:

- A server with a long-running daemon process dockerd | Docker Docs.
- APIs which specify interfaces that programs can use to talk to and instruct the Docker

daemon.
- A command line interface (CLI) client docker | Docker Docs.

The CLI uses Docker Engine API to control or interact with the Docker daemon through scripting
or direct CLI commands. Many other Docker applications use the underlying API and CLI.
The daemon creates and manages Docker objects, such as images, containers, networks,
and volumes.

Docker : Docker Engine overview

Docker provides various tools that can adjust to user needs :
● Docker CLI is a tool that uses the CLI that empowers you to interact with Docker

containers and manage different aspects of the container ecosystem directly from the
command line.

● Docker Desktop provides the same capabilities but with a user interface.
● Docker Hub is an application with user interface that is connected to a container registry

hosted by Docker where developers can share their container images for public use.

For our purposes we will use the Docker CLI that comes along the Docker Engine in order to
manage our containers since it includes everything and we have no need of a UI.

4.4 Version Control

One of our services and if not the most critical one that binds everything together is the service
that will provide the service control.

4.4.1 What is Version Control ?

Version control, also known as source control, is the practice of tracking and managing changes
to software code. Version control systems are software tools that help software teams
manage changes to source code over time. As development environments have accelerated,
version control systems help software teams work faster and smarter. They are especially
useful for DevOps teams since they help them to reduce development time and increase
successful deployments.

Version control software keeps track of every modification to the code in a special kind of
database. If a mistake is made, developers can turn back the clock and compare earlier
versions of the code to help fix the mistake while minimizing disruption to all team members.

Atlassian: What is version control?

4.4.2 Why use version control ?

As organizations accelerate delivery of their software solutions through DevOps, controlling and
managing different versions of application artifacts — from code to configuration and from
design to deployment — becomes increasingly difficult.

Version control software facilitates coordination, sharing, and collaboration across the entire
software development team. It enables teams to work in distributed and asynchronous
environments, manage changes and versions of code and artifacts, and resolve merge
conflicts and related anomalies.

Gitlab : Why use version control

15

https://docs.docker.com/reference/cli/dockerd
http://docs.docker.com/reference/cli/docker/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/
https://www.docker.com/products/cli/
https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-hub/
https://www.atlassian.com/git/tutorials/what-is-version-control
https://about.gitlab.com/topics/version-control/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

4.4.3 Version Control Systems

As you can tell a version control system (VCS) is the backbone of our operations. This is where
everyone’s work is stored no matter what your role is in the team. Also at this point I should
note that if you follow this guide to implement it in a real world scenario don’t overlook the
security of the data and follow the most basic storage rule the “3-2-1 Rule”. This rule states
to have 3 copies of your data , use 2 distinct types of media for storage and keep at least 1
copy off-site. Although there are three established version control systems :
● Git
● Apache Subversion
● Mercurial

I selected Git, besides being free and open-source it provides tools that can help in various
scenarios while having a very active community that can help out even in the most difficult or
unexpected scenarios.

Since we've chosen our VCS, it is time to select a hosting platform to store our project's
repository and integrate it into our workflows.

4.5 Hosting Platform

Having selected Git as our VCS we need to select a hosting platform to store our project's
repository. Since our selection is the most popular one , there are a lot of options . With the
vision of having a complete and isolated sandbox system considering our hardware
limitations, a platform that allows containerized deployment is the best option.

4.5.1 GitLab

GitLab is the obvious choice for our project due to its comprehensive feature set and the
availability of a free community edition GitLab CE in a container available from Docker Hub.

4.5.2 Why use GitLab ?

Besides having a free edition for us to host there are a lot of other reasons :
● Intuitive User Interface (UI) : GitLab has a web interface that caters to users with

varying levels of technical expertise. Having a well structured graphical interface
minimizes the reliance on command-line tools, making it accessible to those less
familiar with Git commands.

● Security : This is a critical feature for us since GitLab provides granular access control
mechanisms.

● Stability and Scalability : GitLab is used and backed by a plethora of companies GitLab
Customers. While the free tier may not offer all the functionalities available in the paid
versions, the inherent stability of the platform transcends editions.

Having listed the above we should take into consideration another point if this project transitions
from a sandbox environment to a full-fledged application GitLab offers paid versions with a lot
more features integrated. As highlighted in the previous chapter, early adoption of features can
potentially reduce long-term costs.

4.6 Automation Server

As established in the “Overview of CI/CD principles” chapter having an automations server that
acts as a central hub for automated tasks is critical. It allows you to define workflows, schedule
them, and execute them automatically, reducing manual work and improving efficiency. By
automating these processes, the server minimizes manual intervention, thereby enhancing
efficiency and reducing the potential for human error. This concept aligns perfectly with the core
principles of DevOps, which states automate every automatable aspect of the SDLC to bolster
efficiency and accuracy. Although GitLab offers aspects of an automation server, decoupling the

16

https://git-scm.com/
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://about.gitlab.com/
https://hub.docker.com/r/gitlab/gitlab-ce
https://about.gitlab.com/customers/
https://about.gitlab.com/customers/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

automated actions from it is the best option for me so we can always change our hosting
platform if needed.

4.6.1 What is Jenkins ?

Jenkins is an open-source automation server which offers a free edition to use jenkins/jenkins -
Docker Image available from Docker Hub. Jenkins offers all the previously mentioned features
of an automation server and to be honest we are using a fraction of them, as there is a very
active community backing it with a big variety of plugins to help.

4.6.2 Why use Jenkins ?

Besides offering an open-source full fledged free edition of an automated server there are more
reasons to use Jenkins:

● Intuitive UI : Jenkins has a web interface that eliminates the need of a command line
interface even for the most complicated activities.

● Large Community : A vast and active community supports Jenkins offering help at every
point while providing a lot of resources and tutorials.

● Plugin Availability : Jenkins offers the use of plugins released by the community so the
options are limitless in what operations we can automate with Jenkins.

● Security : Being open-sourced security is critical and Jenkins acknowledges that
besides the community focus on security they take their own measures , more can be
learned in Jenkins Security.

● Stability and Scalability : Backed by industry leaders like IBM and Amazon AWS.
Jenkins offers proven stability and scalability. Also if the need arises Jenkins can easily
distribute work across multiple machines making it scalable as long as resources are
available.

4.7 Repository Manager

As we are focusing on the continuous integration and not on the continuous delivery/deployment
in this thesis, the use of a repository manager is not strictly mandatory. However
incorporating a repository manager offers some features that are beneficial if we expand the
sandbox towards the delivery part.

4.7.1 What is a Repository Manager ?

A repository manager acts as a central point to where all the build images of your projects are
hosted in order for users to be able to find them and download them. Also you can set it as a
proxy for package manager in order to regulate the available packages by limiting access to
unsecure packages to the users.

4.7.2 Sonatype Nexus Repository

Sonatype Nexus Repository offers a free, open-source version in a container found in Docker
Hub which is ideal for our sandbox because as we can see from their documentation it is not
advised for large teams. Besides being free and open-source this is my choice for a
repository manager as it supports various package managers so no matter what we want to
run in our sandbox with minimal configuration we can execute it.

17

https://www.jenkins.io/
https://hub.docker.com/r/jenkins/jenkins
https://hub.docker.com/r/jenkins/jenkins
https://www.jenkins.io/security/
https://www.ibm.com/us-en
https://aws.amazon.com/
https://help.sonatype.com/en/sonatype-nexus-repository.html

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

5. Ecosystem Installation

5.1 Creating the VM

As described in “Host of Ecosystem” chapter the host of the ecosystem in my case will be a VM
powered by Oracle VM VirtualBox. So let's create our VM that will host our services.

5.1.1 Download VirtualBox

You will need to download a suitable version of VirtualBox for your system. All necessary
information can be found under the official Download VirtualBox page. After downloading the
executable proceed with a standard installation.

5.1.2 Download your selected version of OS

Before proceeding with the creation of the VM we will need to provide an International
Organization for Standardization (ISO) image of the OS that we want to install. In my opinion
Ubuntu 22.04.4 LTSis a solid choice for the reasons described under “Operating System”.

5.1.3 Configuring the VM

The first time that you open VirtualBox you will be greeted by a mostly empty window, select the
option “New” to create a VM .

Image 5.1: VirtualBox : Create Virtual Machine

You will need to provide a name, a folder to save all the necessary data for our VM and the ISO
image that you downloaded before. It is highly recommended to select the checkbox Skip
Unattended Installation .After that you will select the amount of RAM and virtual CPU count that
will be allocated to the VM my choice was arbitrary and is probably more than what is needed
but I wanted to make sure that it will not be limited by hardware :

● 24 GB of RAM
● 12 cores

18

https://www.virtualbox.org/wiki/Downloads

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 5.2 : VirtualBox : Hardware
Then you will be prompted to select the Disk size allocated to the VM my choice was 250 GB of

an HDD. If you followed along then a Summary looking something like the following will
appear:

Image 5.3 : VirtualBox : Summary
After that you can select Finish and remember that these settings can change even after the

creation of the VM in order to be adjusted to our needs. Now that we have our VM ready for
the initial boot I highly recommend to go to the Settings of the VM and verify that under the
Network tab :
● Checkbox Enable Network Adapter is selected
● Dropdown “Attached to” has the value “Bridged Adapter”. This setting makes the VM

connect to the network as if it were a physical computer. Doing this may ease some
network configurations but shares the network with your host computer making your

19

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

base machine vulnerable as well. So this setting is only recommended in the sandbox
mode.

Image 5.4 : VirtualBox : VM Network Settings

5.1.4 Installing Ubuntu

Now you will need to boot the VM and proceed with the installation of Ubuntu. A standard
installation is recommended with the “OpenSSH” option selected so we can access the VM
from our host machine via network. Everything else is not needed at this point.

OpenSSH is the premier connectivity tool for remote login with the SSH protocol. It encrypts all
traffic to eliminate eavesdropping, connection hijacking, and other attacks. In addition,
OpenSSH provides a large suite of secure tunneling capabilities, several authentication
methods, and sophisticated configuration options.

OpenSSH

For the sandbox mode dummy passwords and usernames were used so proceed with strong
passwords.

5.1.4 Optional : Connect from your base host

There are a lot of Secure Shell (SSH) clients but I highly recommend downloading and installing
Visual Studio Code as it can be used in later steps as well. Visual Studio Code is a free
source code editor that supports plugins which will enable us in various ways. The IP to
connect to can be found by running the following command.

ip address

20

https://www.openssh.com/
https://code.visualstudio.com/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

5.1.5 Verify Installation

The first operation once we log in for the first time is to verify the installation which can be done
by running the following command .

cat /etc/os-release

In your command line something like the following image will appear to assure your installation.

Image 5.5 : Ubuntu cat /etc/os-release result

5.1.6 Updating and Upgrading after installation

Even though we have installed the latest LTS version we need to run a command to update and
upgrade all the packages . The first command will scan for upgrades while the second one
will ask for your permission to proceed with the download and installation. More information
can be found in Ubuntu : Package management with APT .

sudo apt-get update

sudo apt-get upgrade

What you may have noticed is that you were asked for the password of your logged in user, this
is due to the sudo part of the command which stands for superuser do. We can say that Linux in
a way supports the Zero Trust strategy as even if you were logged in , once you asked to
change system settings it was verified again. If you enter the correct password for a user with
administrative privileges, sudo temporarily grants you elevated access to execute the specified
command.

5.1.7 Setting to ensure stability for services

Our services of course use memory and need to be able to have enough of it. Even though we
have provided the VM with the memory we need to also increase the limit of the mappings a
process can have. This can be done by altering the `sysctl` setting `vm.max_map_count`.
The recommended value is `262144` and in order to make a permanent change , you'll need
to modify the system configuration file where these settings are defined. This involves editing
the `/etc/sysctl.conf` file or adding a new file in the `/etc/sysctl.d/` directory. By running the
following command you will open the file `/etc/sysctl.conf` in the nano command line text
editor and since this alters system settings sudo should be used as well.

sudo nano /etc/sysctl.conf

Add the following line at the end of the file and save the changes made.

21

https://help.ubuntu.com/community/AptGet/Howto

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

vm.max_map_count=262144

Then run the command to apply the changes from the configuration file.

sudo sysctl -p

After these steps we have set the VM and the OS and are ready to install Docker.

5.2 Docker Installation

As described in “Service hosting” we need to install the Docker Engine in our system in order to
host our containers. We can follow the official, a non GUI installation found in Install Docker
Engine on Ubuntu . Nonetheless I will offer an explanation of every step.

5.2.1 Prerequisites

Docker as all the applications have an OS requirement please review that you are compatible
as the OS is left on to the final user for selection. This installation guide will be for Ubuntu
22.04.4 LTS. Also if you are not in a fresh system verify that there are no conflicting
packages installed more info can be found in the Uninstall old versions of the official
documentation.

5.2.2 Installation

First of all we need to add Docker's official GPG key (please review on the official
documentation site that the following is the latest configuration) . GPG key stands for GNU
Privacy Guard key which follows the standards of private and public key.

sudo apt-get update

sudo apt-get install ca-certificates curl

sudo install -m 0755 -d /etc/apt/keyrings

sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o

/etc/apt/keyrings/docker.asc

sudo chmod a+r /etc/apt/keyrings/docker.asc

echo "deb [arch=$(dpkg --print-architecture)

signed-by=/etc/apt/keyrings/docker.asc]

https://download.docker.com/linux/ubuntu \

$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

docker-buildx-plugin docker-compose-plugin

The commands in order do:
● As a superuser (`sudo`) update the list of available software packages and their

versions.
● As a superuser (`sudo`) create a directory with specific permissions (`-d`).

○ `/etc/apt/keyrings` file location.
○ `-m 0755` permissions for the newly created directory.

■ 0 means the lack of special permission bits.
■ 7 as the next digit means grant all permissions (read, write, execute) for

the current owner.
■ 5 in the third digit means grant read and execute permissions to the

group that owns the directory.

22

https://docs.docker.com/engine/install/ubuntu
https://docs.docker.com/engine/install/ubuntu
https://docs.docker.com/engine/install/ubuntu/#uninstall-old-versions

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

■ 5 in the last digit means read and execute permissions to the users that
do not belong in the previous categories.

● As a superuser (`sudo`) download form the internet (`curl`).
○ `-fsSL` silence the curl output even at fails and follow redirects on the provided

link
○ `https://download.docker.com/linux/ubuntu/gpg` This is the URL from where the

GPG key file will be downloaded.
○ `-o /etc/apt/keyrings/docker.asc` outputs the downloaded file to the destination.

● As a superuser (`sudo`) change the permissions (`chmod`) on the downloaded file to
○ `a` all users
○ `+` add permission
○ `r` read permission

● Print into the terminal the result of (`echo`) the provided
○ From the Debian package repository `deb`
○ Get system architecture `arch=$(dpkg --print-architecture)`
○ Then use the GPG key that we downloaded before

`signed-by=/etc/apt/keyrings/docker.asc`
○ From the URL `https://download.docker.com/linux/ubuntu`
○ Get your running Ubuntu Version name `$(. /etc/os-release && echo

"$VERSION_CODENAME")` the `stable` version
● `|` gets the data provided by the `echo`

○ `tee` reads it as a normal input and write it into the file
`/etc/apt/sources.list.d/docker.list`

● Send any output to `> /dev/null`
● As a superuser (`sudo`) update the list of available software packages and their

versions.
● As a superuser (`sudo`) install the following packages.

At this point Docker suggests to run the command which downloads a test image and runs it in
a container.
sudo docker run hello-world

If everything is done correctly a confirmation message is printed and the container exits. This
concludes the basic installation.

5.2.3 Services installation and configuration

As a measure of keeping everything organized I suggest creating the following directories to
assign to our containers as means of having a permanent storage in our VM .

sudo mkdir -p /jenkins_home

sudo mkdir -p /nexus-data

sudo mkdir -p /sonarqube_data

sudo mkdir -p /sonarqube_extensions

sudo mkdir -p /sonarqube_logs

sudo mkdir -p /gitlab_data_config

sudo mkdir -p /gitlab_data_logs

sudo mkdir -p /gitlab_data_data

sudo mkdir -p /postgresql

sudo mkdir -p /postgresql_data

sudo mkdir -p /zap_data

sudo mkdir -p /shared

Docker offers the convenience of being able to create and do basic configurations for our
services through one file named docker-compose . Although we could use a different docker
compose for each service I believe that having a single configuration file is providing a lot
more benefits as:

23

https://download.docker.com/linux/ubuntu

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

● Shareability : A single Docker Compose file makes sharing my application configuration
easy while making sure that they can replicate my environment by running a single
command.

● Readability and Maintainability : Having all service configurations in one location
improves readability and maintenance as we have a clear picture of ports and volumes
used.

First create the docker-compose file and open it with nano in order to edit it.
touch docker-compose.yaml

nano docker-compose.yaml

Check in Annex for “docker-compose.yaml” the configuration of the environment. I will explain
quickly what it does but the explanation for each service will be included in the respective
section. The provided docker compose file consists of three sections:

● version : Specifies the version of the compose file format we are using in order to
ensure compatibility with the docker-compose-plugin version we are using.

● services : As the name implies this is where we define each service used and their
configurations.

● volumes : Binding the directories created in a previous step with a name example given
○ `postgresql_data` is the name of the volume.
○ `driver: local` Local driver will be used to manage this volume.
○ `driver_opts:` Set driver options as:

■ `type: none` There is no need for special file system types. Although
this is implied if not mentioned , it is nice to be able to see it.

■ `o: bind` Create a shortcut between the mentioned directory of the host
machine and the directory of the container.

■ `device: /postgresql_data` Location of the host machine directory.
After saving the docker-compose file you need to run the following command in order for
docker to start , download all the necessary images and boot the containers.
sudo docker-compose up

Logs will be printed from each service about the operations that they take. It is expected at the
first boot to contain a lot of messages but pay attention because it will inform you about
errors and general status. If everything was successful, running the following command in
another command line will produce the following , showing that everything runs as expected.

sudo docker-compose ps

Image 5.6 : Ubuntu : command sudo docker-compose ps
If we want to stop our running containers we should run `docker-compose stop` instead of

`docker compose down` , this is because we want to gracefully stop all containers defined in
our `docker-compose.yaml` which will save any configuration that we made in the container.
If we want to start them again then the `docker-compose up` is used.

24

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

5.3 GitLab Installation

As described in “Version Control” and ”Hosting Platform” we are going to install GitLab so we
can host and keep versioning on our projects and pipelines. We can follow the official GitLab
installation guide as a guideline and adjust to our needs.

5.3.1 GitLab Docker Configuration

services:

gitlab:

image: gitlab/gitlab-ce:latest

container_name: gitlab

restart: always

stop_grace_period: 5m

ports:

- "444:443"

- "81:80"

- "23:22"

volumes:

- gitlab_data_config:/etc/gitlab

- gitlab_data_logs:/var/log/gitlab

- gitlab_data_data:/var/opt/gitlab

shm_size: 256m

Let me explain line by line what we are doing here. First of all we are going to download and
launch the latest version of the official GitLab Community Edition `image:
gitlab/gitlab-ce:latest` . Then we are setting it a name by defining `container_name: gitlab` so
we can tell it apart from the rest of our containers. In the next two lines `restart: always` and
`stop_grace_period: 5m` we are telling to the system that it should restart in case of any
momentary fail and when we are executing a stop command to not forcefully shutdown the
container but wait for the container to close by itself in 5 minutes and if it hasn't exited yet
then forcefully exit. This is done in order to be sure that we don't lose any data or stop any
critical ongoing process. The `ports` part defines which ports the GitLab container will use
and are in the format `<external port>:<internal port>` which is done in order to not alter the
application's base configuration but we can still maintain with the external port that there is
no conflict in our system as two services requesting the same port resulting in errors. For
example the GitLab user interface is hosted on the 80 port by default but we may already
have a service running on 80 which is a pretty common port for a web interface , so in order
to avoid any conflicts I have set the ports to one above for the external port that we will be
accessing from our host computer. Then the `volumes` part assigns the locations that we
created in the previous chapter “Docker” . GitLab recommends to assign at least 256
megabytes of shared memory for the container which we do from the command `shm_size:
256m`.More information about default configuration for ports and connection can be found in
the official documentation Package defaults | GitLab.

5.3.2 Login after docker compose up

With the configuration that I have provided you will be able to open the link
http://{your_VM_address}:81/users/sign_in and land on the sign in page of GitLab , but there
is a problem it requires to log in when we haven't created any credentials. GitLab creates a
password for the root user which can be retrieved by running.

sudo docker exec -it gitlab grep 'Password:'

/etc/gitlab/initial_root_password

25

https://docs.gitlab.com/ee/install/docker.html
https://docs.gitlab.com/ee/install/docker.html
https://docs.gitlab.com/ee/administration/package_information/defaults.html

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

After logging in please change your password and decouple your user from the root user.

5.3.3 Optional : Sign-up Restrictions

In a sandbox scenario it shouldn't matter but in a real world scenario we should always disable
the sign-up option for new users which can be found under
http://{your_VM_address}:81/admin/application_settings/general#js-signup-settings.

Image 5.7 : GitLab : Sign-up restrictions

5.3.4 Outbound requests

Since in sandbox mode we are running all the services under the same local network then we
have to enable the following settings which can be found in the Admin Panel.

Image 5.8 Outbound Requests

5.3.4 Add new projects

At this point you can add new projects in your GitLab instance. We are going to need one to
store our Jenkins pipelines, I named mine ‘PipelineConfigs’, and one to save our test project.
You can either create a new project or upload an existing one from your computer. When
creating a new project GitLab also creates a ‘README.md’ file at the root level where it

26

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

contains useful information on how to progress. It is highly advised to follow these steps in
order to upload your project using Git.

5.4 Jenkins Installation

As mentioned in the “Automation Server” chapter we will use Jenkins. You can find general and
installation information in the official repository GitHub - jenkinsci/docker: Docker official
jenkins repo.

5.4.1 Jenkins Docker Configuration

jenkins:

image: jenkins/jenkins:lts-jdk17

container_name: jenkins

ports:

- "8080:8080"

- "50000:50000"

restart: always

stop_grace_period: 5m

volumes:

- jenkins_home:/var/jenkins_home

- /var/run/docker.sock:/var/run/docker.sock

networks:

- jenkins_network

As you can see there is an overlap of variables used in order to set the Jenkins container, the
only new one is the ‘networks: -jenkins_network’. This line connects the container to the
network named “jenkins_network” in order to provide communication with other services in
the environment. Also we are mounting the Docker socket ‘/var/run/docker.sock’ this is only
required for the sandbox mode where all services run in containers under the VM further
explanation will be given at a relative point.After the initial Jenkins installation when we try to
access the UI from the http://{your_VM_address}:8080/login you can see that a login is
expected even though we haven’t set any credential yet. This is due to Jenkins auto
generating an admin user along with a password assigned to that user. Jenkins informs the
user where to find that password in the logs, in case you missed it the password can be
found at /var/jenkins_home/secrets/initialAdminPassword.

nano /jenkins_home/secrets/initialAdminPassword

After having successfully logged in I recommend updating the password to something familiar
and unique to you, also as in GitLab to create a user other than the one that was created at
startup. When Jenkins is at a running state we should log in to the container and run the
required commands to update and install any necessary packages that will be used from our
projects.

sudo docker exec -it -u root jenkins /bin/bash

With this command we will log in to the Jenkins container with the user root at the /bin/bash
shell.Once you are into the container run the following in order to update any dependencies
that have updates.

apt-get update

27

https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

5.4.2 Maven installation in Jenkins

Since the application that I will use to showcase the SAST and DAST pipelines is a Java Maven
one then I proceed with the installation of Maven to Jenkins in order to be able to run Maven
commands.

apt-get install maven

Once installation is finished guide yourself to the http://{your_VM_address}:8080/systemInfo
there you can see all the System Information along with environmental variables. You will
see that the HOME environmental variable matches the one that we provided in the
docker-compose file. So inside your home directory for Maven and under the ‘.m2’ folder add
a file named ‘settings.xml’. This file contains the information for Maven on where to search
for packages and we specify two servers ‘nexus-snapshots’ and ‘nexus-releases’ while
providing a username and a password in order to complete the authentication. As you can
tell we are not inputting the username and password that we will use for Nexus because this
file is saved in a non encrypted format instead we are passing variables that Jenkins will
replace at runtime. Then we mirror the Maven Central repository by providing the url of our
Nexus repository management. The way mirroring work is to first ask the provided repository
and in case it fails then query the Maven Central Repository.

<?xml version="1.0" encoding="UTF-8"?>

<settings

xmlns="http://maven.apache.org/SETTINGS/1.1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.1.0

[http://maven.apache.org/xsd/settings-1.1.0.xsd](http://maven.apache.org/xs

d/settings-1.1.0.xsd)">

<servers>

<server>

<id>nexus-snapshots</id>

<username>${env.MAVEN_NEXUS_SNAPSHOTS_USERNAME}</username>

<password>${env.MAVEN_NEXUS_SNAPSHOTS_PASSWORD}</password>

</server>

<server>

<id>nexus-releases</id>

<username>${env.MAVEN_NEXUS_RELEASES_USERNAME}</username>

<password>${env.MAVEN_NEXUS_RELEASES_PASSWORD}</password>

</server>

</servers>

<mirrors>

<mirror>

<id>central</id>

<name>central</name>

<url>http://{your_VM_address}:8081/repository/maven-group/</url>

<mirrorOf>*</mirrorOf>

</mirror>

</mirrors>

</settings>

28

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

5.4.3 Required Plugins for Jenkins Pipelines

As previously mentioned there are a lot of plugins that we can utilize but I have narrowed it
down to the following as the ones that we will use:
● GitLab Plugin
● SonarQube Scanner for Jenkins
● Config File Provider
● Remote Jenkinsfile Provider
● Multibranch Scan Webhook Trigger
● Pipeline Utility Steps

The dependencies on these plugins will either be installed as dependencies or Jenkins will ask
you to proceed with the installation of those.

5.5 Sonatype Nexus Repository Installation

As mentioned in the “Repository Manager” chapter we will use Sonatype Nexus Repository. You
can find general and installation information along the official image sonatype/nexus3 -
Docker Image.

5.5.1 Sonatype Nexus Repository Docker Configuration

nexus:

image: sonatype/nexus3

container_name: nexus

restart: always

stop_grace_period: 5m

ports:

- "8081:8081"

volumes:

- nexus_data:/nexus-data

As you can tell by now we are following the same pattern of setting our containers in the
docker-compose file. Declaring the image, the container name, handling what happens on
failure and how to shutdown, along with declaration of ports used and the volume that we
mount.

5.5.2 Login after docker compose up

The same pattern is followed here as well we can open the
http://{your_VM_address}:8081/#browse/welcome welcome page but when we try to log in
we can see that there is already a registered user named ádmin’. In order to retrieve the
password of the ádmin’ user we are going to need to log in to the container from CLI.

sudo docker exec -it nexus /bin/bash

Once we are inside the container we can execute the following to display the password.

cat /nexus-data/admin.password

Once we login, changing the default password and creating another user for Jenkins is highly
advised. Always remember to decouple your actions from the default users. Remember that
you can always go to the official documentation page Sonatype Help.

29

https://hub.docker.com/r/sonatype/nexus3/
https://hub.docker.com/r/sonatype/nexus3/
https://help.sonatype.com/index.html?lang=en

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

5.5.3 Optional : Creating Repositories

Sonatype Nexus Repository comes out of the box with some pre configured repositories ,
verifying that the repositories that are needed by your project exist under the repositories
tab. If you need to create a new one then you can go to the Administration panel , select
Repositories from the side menu and click the button “Create repository”. A screen like the
following will appear.

30

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 5.9 : Sonatype Nexus Repository : Available repositories for creation

5.6 SonarQube Installation

Up to this point I haven’t mentioned what tools we are going to use for the SAST and DAST
part. SonarQube will be the tool that we use for the SAST. SonarQube is an open-source
platform that inspects code quality, that means identifying possible bugs , vulnerabilities and
security issues.

31

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

5.6.1 SonarQube Docker Configuration

sonarqube:

image: sonarqube:lts-community

depends_on:

- db

environment:

SONAR_JDBC_URL: jdbc:postgresql://db:5432/sonar

SONAR_JDBC_USERNAME: sonar

SONAR_JDBC_PASSWORD: sonar

container_name: sonarqube

restart: always

stop_grace_period: 5m

ports:

- "9000:9000"

volumes:

- sonarqube_data:/opt/sonarqube/data

- sonarqube_extensions:/opt/sonarqube/extensions

- sonarqube_logs:/opt/sonarqube/logs

db:

image: postgres:12

environment:

POSTGRES_USER: sonar

POSTGRES_PASSWORD: sonar

volumes:

- postgresql:/var/lib/postgresql

- postgresql_data:/var/lib/postgresql/data

First of all we are following the official guide that can be found in Installing from Docker |
SonarQube Docs and we are using the free image version as previously mentioned
‘sonarqube:lts-community’. For SonarQube to run efficiently a database is required. We are
creating the database under the ‘db’ section where we are using Postgres along with a
default user for sonar to use. But first we are informing the SonarQube container to wait for
the database creation with the ‘depends_on’ line. Then following the official documentation
we are assigning SonarQube the default url of the connection and the username / password
of the database user in order for SonarQube to complete the actions needed.

5.6.2 Login after docker compose up

After the container is at a ready state we can head to http://{your_VM_address}:9090 page
where we can log in with the default credentials admin / admin. As it is now known you are
advised to change the default password and create another user for usage.

5.6.3 Optional : Adjusting Quality Gate

The philosophy that SonarQube is based around is that it checks a repository’s code and
reports the issues that it spotted. This is what is called a Quality Gate based on metrics that
we can adjust. We decide if we are “happy” based on the report with the state of the code
and release a statement that says if we have a PASS or a FAIL. The correct way to work is
when any kind of mistakes are found we fix them but as you can tell this is not the case with
all the projects. If the problems are not fixed when first discovered, SonarQube will consider
them known issues. This leads to a problem, executing back to back an analysis with no
code change will open the Quality Gate. For this reason I have decided to set a new Quality
Gate where you will set the conditions on Overall Code to match the ones of the conditions
on New Code, as shown in the following image.

32

https://docs.sonarsource.com/sonarqube/latest/setup-and-upgrade/install-the-server/installing-sonarqube-from-docker/
https://docs.sonarsource.com/sonarqube/latest/setup-and-upgrade/install-the-server/installing-sonarqube-from-docker/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 5.10 : SonarQube : Adjusted Quality Gate

33

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

6. Ecosystem Interconnection

At this point we have created all the necessary services and they are running. It is time to
connect everything with each other and complete the system installation.

6.1 GitLab tokens and Hook

We need to go into GitLab and create an environment user as I call him. That user will serve as
the user Jenkins and SonarQube uses in order to connect to GitLab. After we have created
that user we can go into the
http://{your_VM_address}:81/-/user_settings/personal_access_tokens page and select on
the top right “Add new token”. I recommend adding at the token name the service that will
use that token and the reason why it will use it if we need multiple of them. Proceed with the
creation of the following access tokens. More information about Personal Access Tokens can
be found in the Personal access tokens | GitLab.

Image 6.1 Gitlab : Personal Access Tokens
Then we can go under each Project that we have created and set Project Hooks. These settings

can be found at the project screen under the option Webhooks. Select from the top right the
option “Add new webhook” . At the URL you can set it as
http://{your_VM_address}:8080/multibranch-webhook-trigger/invoke?token={unique_token}.
This is the link towards your Jenkins instance where with a unique token that you can create
will inform Jenkins every time that hook is triggered. We can configure when that hook is
triggered by goin to the “Trigger” section and select what we want. Personally I believe that
selecting “Push”events along with “Regular expression” which states the branch naming
convention that we want it to trigger for , click “Save changes” when you have adjusted
based on your needs.

6.2 Jenkins GitLab Connection

First of all we need to go and set into Jenkins the token that we have created from GitLab which
is done under the http://{your_VM_address}:8080/manage/credentials/ address. Fill the
following and replace with you token.

34

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 6.2 : Jenkins : Add Credential Screen
Then we can go and set that connection under the GitLab section in the page

http://{your_VM_address}:8080/manage/configure and it should look like this.

35

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 6.3 : Jenkins : Setting GitLab connection

6.3 SonarQube GitLab connection

First of all we are going to create a token for Jenkins to use when connecting to SonarQube,
this can be done under “Administration” then “Security-Users” and now for the wanted user you
can select the “Tokens”option and create one. Now we can head back to the main page and
select from top right the option “Create Project” and then “More” select the GitLab icon and fill
the necessary data, this is where you will add the “api” token. Once you have set this a new
prompt will be shown to grant access to your projects here you will add the “read_api” token.
Now we can import our projects from GitLab to SonarQube. In order to set up the webhooks we
can open a project and go to the following setting. More info about webhooks in SonarQube can
be found under Webhooks.

Image 6.4 : SonarQube : How to add webhooks

6.4 Jenkins SonarQube connection

As we did for GitLab , first we have to set the token that we have created and then we can go to
the Jenkins page

36

https://docs.sonarsource.com/sonarqube/9.9/project-administration/webhooks/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

http://http://{your_VM_address}:8080/manage/configure and add the information regarding
SonarQube.

Image 6.5 : Jenkins : SonarQube addition

6.5 Adding to GitLab the PipelineConfig repository

If you haven’t yet created a repository where you will save your pipelines now is the time to do
so. I suggest not just copy the pipeline but to write it so you can understand what it does and
what you need to change. I have split it into 2 major pipelines, one that runs the SAST with
name “JenkinsFile_Advanced” along with the Maven operations and the publish to Nexus
Repository Manager and one that runs the DAST with name
JenkinsFile_Zap_WebGoat_Scan. Further explanations on the pipelines will be given at a
later chapter.

37

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

6.5 Adding to Jenkins a MultiBranch Pipeline

If everything has been set correctly we can go to them home page of Jenkins select from the left
side the “New Item” option, write our pipeline name which is usually the Project name and
select MultiBranch Pipeline. First set the repository of the targeted project as follows and
adjust based on your needs.

Image 6.6 : Jenkins : New MultiBranch Pipeline Git settings
After filling that information you will also need to specify to Jenkins where to look for the

Jenkinsfile. In our case this file exists in the separate repository that we created. Fill in the
required data as on the following image and adjust based on your environment.

38

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 6.7 : Jenkins : Pipeline configuration
After we have filled that information we can also set the name of the webhook that we created

before in GitLab for that project. The rest of the settings can remain empty but of course take
a look at them and adjust based on your needs.

39

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 6.8 : Jenkins : Configure pipeline Hook

7. Executing the pipelines

The time has finally come to execute our pipelines, this can be done in two ways either by
starting the job by hand or triggering the webhook. I first show how this can be done by hand
and then explain the process with the webhook.

7.1 Jenkinsfile Overview

Jenkinsfiles are written in groovy, which provides concise, familiar and easy to learn syntax
which is based on Java. A Jenkinsfile can be split into two parts: the Environment and the
Pipeline. In the environment we can declare global variables , functions and parameters while in
the pipeline part we can use those declared in globals in order to adjust the outcome. The
pipeline block consists of :

● Agents : this is where we declare who will run the pipeline. By default Jenkins executes
the pipeline in the same instance but based on the official documentation it is highly
advised to set a Master/Slave instance relationship in order to not affect Jenkins as a
service.

● Stages: During the pipeline we are splitting the major parts of the work into stages.
Those stages should be either isolated or dependent on a previous status. This is why
those stages run in a linear fashion and not in parallel.

● Steps : Each Stage can consist of multiple steps. In order to achieve the results that we
want we take it one step at the time so the pipeline can be readable as our code should
be.

● Post : What actions we want to do when all the stages have finished.
You can think of a Jenkinsfile as a cooking recipe, you gather the ingredients and the tools and
you make the food by following sequential steps. The result is always consistent as long as
there is no random factor. More info can be found in Pipeline Syntax and Pipeline: Basic Steps.

7.2 WebGoat

WebGoat is a deliberately insecure web application maintained by OWASP designed to teach
web application security lessons.

This program is a demonstration of common server-side application flaws. The exercises are
intended to be used by people to learn about application security and penetration testing
techniques.

WARNING 1: While running this program your machine will be extremely vulnerable to attack.
You should disconnect from the Internet while using this program. WebGoat's default
configuration binds to localhost to minimize the exposure.

WARNING 2: This program is for educational purposes only. If you attempt these techniques
without authorization, you are very likely to get caught. If you are caught engaging in
unauthorized hacking, most companies will fire you. Claiming that you were doing security
research will not work as that is the first thing that all hackers claim.

40

https://www.jenkins.io/doc/book/pipeline/syntax/
https://www.jenkins.io/doc/pipeline/steps/workflow-basic-steps/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

GIthub : WebGoat

WebGoat is a very good example that we can run our pipelines against. It is intentionally an
insecure application with vulnerabilities in order for people to practice their security skills.

7.3 SAST Pipeline

The first time that we open a pipeline we will see that it is empty and our created branches do
not show up. This is due to Jenkins not being aware yet what exists, we can make Jenkins
aware by clicking the button “Scan Multibranch Pipeline Now”. This opens a connection to
the GitLab where it will connect with the provided information and then run a few commands
to fetch any branches that match the name that we gave in the settings. Then our branches
will appear, open the one that you want the pipeline to run on. Since Jenkins has not yet
retrieved the Jenkinsfile you will need to run the job by pressing on the left “Build”, this job
will fail on its own due to parameters that I have set in the Jenkinsfile. Once it has failed you
will see that in the “Stage View” as Jenkins calls it. The “Build” button has changed to “Build
with Parameters” if you click it the following will appear.

Image 7.1 : Jenkins : Build with parameters

These parameters are set into our Jenkinsfile by the following part of code.

parameters {

booleanParam(name: 'SKIP_SONARQUBE',

description: 'Skip SonarQube Analysis',

defaultValue: false)

booleanParam(name: 'SKIP_NEXUS_PUBLISH',

description: 'Skip Publish to Nexus Repository Manager',

defaultValue: false)

}

We declare that it will be a boolean parameter so it has two states “true” or “false” and is
represented in the UI by a checkbox. Then we set a name , a description for the user to
understand what that parameter does and a defaultValue. Jenkins community here advises

41

https://github.com/WebGoat/WebGoat

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

that we add another boolean parameter named “CONFIRMATION” which is the first thing
that we check when pipeline starts in order to see if it was a miss-click by the user. I
considered that option supplementary but not critical enough to add it depending on your
pipeline feel free to add it. When we select ok and the pipeline runs we can see that a table
appears like the following one. As you can tell each column is a stage of the pipeline ,
Jenkins informs us with color coding:
● Green color if a stage was successful , this is called SUCCESSFUL
● Yellow if the result was unexpected but not a failing one , this is called UNSTABLE
● Red if the result is a failing one , this is called FAILURE

Image 7.2 : Jenkins : SAST Pipeline
If we select a step then a window opens with logs from that step.

Image 7.3 : Jenkins : Stage logs

After it is finished we can see that the latest status exists on the top of the screen, for example
here we can see that for the main branch we have a fail status (red x in the circle) and the
last successful result produced a zip. Let's open the last run by clicking the number id of the
build.

Image 7.4 : Jenkins : Branch status

42

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

When we open the specific build number id we can see information about the build. Produced
artifacts , latest commits from GitLab , who triggered that job and at which revision of the
repository the build was triggered for.

Image 7.5 : Jenkins : Build information
If we select the “Test Results” we can see that during our pipeline the test stage run had the
following results.

43

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 7.6 Jenkins : Build Test results
If we want to see the logs further we can always select them from the left side and see what

happened in detail.

44

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 7.7 : Jenkins : Build logs
Now that you are familiar with the UI, let's continue explaining the Jenkinsfile based on the order
that stages are being run. The first two stages that we execute is "Clean Up" and "SCM
chekout". The first one runs the native function ‘cleanWs’ which means clean workspace and
the second one is to checkout the selected project that we set in the settings of the pipeline.
After this stage is completed the project exists in the workspace.

stage("Clean Up"){

steps {

cleanWs()

}

}

stage("SCM chekout"){

steps {

checkout scm

}

}

Then we are executing the "Build" and "Test" stages for which we are running a maven
command to trigger a specific lifecycle phase. First that the project can compile it without
running any tests and then running the tests that exist inside of the project. Although those
tests are not a part of the SAST they can declare the project quality based on their status. In
both steps we can see that another method is called ‘withCredentials’ this takes the
settings.xml that we configured at the start and indicates to maven that it should use those
settings in order to execute.

45

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

stage("Build"){

steps {

withCredentials([file(credentialsId: 'maven-settings',

variable: 'MAVEN_SETTINGS')]) {

sh 'mvn -s ${MAVEN_SETTINGS} clean install -DskipTests'

}

}

}

stage("Test"){

steps {

withCredentials([file(credentialsId: 'maven-settings',

variable: 'MAVEN_SETTINGS')]) {

sh 'mvn -s ${MAVEN_SETTINGS} test'

}

}

}

After that we execute the "SonarQube Analysis" stage which first checks if we want to run this
step by checking that parameter’s SKIP_SONARQUBE value. Another addition that I made
is that for this job to not run this stage if the branch name is not ‘main’ or ‘master’ this is a
personal choice based on the CI/CD principles as I consider that personal branches do not
need the info from Sonarqube and if someone needs it, it can be executed locally through
add-ons in their IDE.Then by using environmental variables we are running a command
which triggers the SonarQube analysis based on the project’s Sonar key which can be
retrieved in the SonarQube UI and I scan the file that is created in the build part ‘target’
which contains all the files and produced artifacts from the “Build” stage. As you can see I
have left in this stage some lines that start with ‘//’ these are comments and as I state there
running the commented command produces only errors found under ‘src’ and since the
project doesn’t contain only Java code this is not optimal.

stage("SonarQube Analysis"){

steps{

script {

echo "SKIP_SONARQUBE parameter value:

${params.SKIP_SONARQUBE}"

echo "Running branch is : ${env.BRANCH_NAME}"

echo "Running job is : ${env.JOB_NAME}"

if (!params.SKIP_SONARQUBE && (env.BRANCH_NAME ==

'main' || env.BRANCH_NAME == 'master')) {

echo "This stage will only run if SKIP_SONARQUBE is

false and BRANCH_NAME is 'main' or 'master'"

scannerHome = tool "${SONARQUBE_NAME}";

withSonarQubeEnv("${SONARQUBE_NAME}") {

sh """

${scannerHome}/bin/sonar-scanner

\

46

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

-Dsonar.projectKey=${SONAR_PROJECT_KEY} \

-Dsonar.sources=. \

-Dsonar.java.binaries=target/

"""

// Running the following for SonarQube produces

only errors found under src and since we have projects with not only java

it is not optimal

// withCredentials([file(credentialsId:

'maven-settings', variable: 'MAVEN_SETTINGS'),

// string(credentialsId:

'Sonarqube', variable: 'SONARQUBE_TOKEN')]) {

// sh 'mvn -s ${MAVEN_SETTINGS} sonar:sonar

-Dsonar.token=${SONARQUBE_TOKEN} -Dsonar.projectKey=${SONAR_PROJECT_KEY}'

// }

}

} else {

echo "Skipping this stage as SKIP_SONARQUBE is true

or BRANCH_NAME is not 'main' or 'master'"

}

}

}

}

Our last stage is the "Publish to Nexus Repository Manager with Quality Gate" as explained
before under the Nexus Repository Manager section we have modified the default Quality
Gate. First we apply the same logic as the previous stage that we don’t need to publish an
image unless it is one from the main or the master that we would host in an environment.
Then we check the status of the Quality Gate if it is not OK we are failing the build. If the
status is OK then we proceed by taking the produced artifact under ‘target’ and we get from
the pom.xml file the packaging and version of the project. Then we run the provided
‘nexusArtifactUploader’ function with the required parameters and our upload has been
completed.

stage("Publish to Nexus Repository Manager with Quality Gate") {

steps {

script {

echo "SKIP_NEXUS_PUBLISH parameter value:

${params.SKIP_NEXUS_PUBLISH}"

echo "Running branch is : ${env.BRANCH_NAME}"

if (!params.SKIP_NEXUS_PUBLISH && (env.BRANCH_NAME ==

'main' || env.BRANCH_NAME == 'master')) {

echo "This stage will only run if

SKIP_NEXUS_PUBLISH is false and BRANCH_NAME is 'main' or 'master'"

// Check the status of the Quality Gate

// If it fails, mark the build as failed

if (waitForQualityGate().status != 'OK') {

error "Pipeline aborted due to Quality Gate

47

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

failure"

}

pom = readMavenPom file: "pom.xml";

filesByGlob = findFiles(glob:

"target/*.${pom.packaging}");

echo "${filesByGlob[0].name} ${filesByGlob[0].path}

${filesByGlob[0].directory} ${filesByGlob[0].length}

${filesByGlob[0].lastModified}"

artifactPath = filesByGlob[0].path;

artifactExists = fileExists artifactPath;

if(artifactExists) {

echo "*** File: ${artifactPath}, group:

${pom.groupId}, packaging: ${pom.packaging}, version ${pom.version}";

nexusArtifactUploader(

nexusVersion: NEXUS_VERSION,

protocol: NEXUS_PROTOCOL,

nexusUrl: NEXUS_URL,

groupId: pom.groupId,

version: pom.version,

repository: NEXUS_REPOSITORY,

credentialsId: NEXUS_CREDENTIAL_ID,

artifacts: [

[artifactId: pom.artifactId,

classifier: '',

file: artifactPath,

type: pom.packaging],

[artifactId: pom.artifactId,

classifier: '',

file: "pom.xml",

type: "pom"]

]

);

} else {

error "*** File: ${artifactPath}, could not be

found";

}

} else {

echo "Skipping this stage as SKIP_SONARQUBE is true

or BRANCH_NAME is not 'main' or 'master'"

}

}

}

}

}

This concluded the stages and now it is time to run the post section in which we select always
meaning that regardless of the build status try to execute the following commands. The first
one publishes into Jenkins the Surefire test report that we executed in the “Test” stage and

48

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

then we put it into a zip file named surefire-report.zip and archive it. This zip file now exists
as long as there are data about that build in order to have a history that we can get back to.

post {

always {

// Publish Surefire test report

junit skipPublishingChecks: true, testResults:

'target/surefire-reports/*.xml'

// Zip the test results directory

zip zipFile: 'surefire-report.zip', archive: false, dir:

'target/site'

// Archive the zip file

archiveArtifacts artifacts: 'surefire-report.zip', fingerprint:

true

}

}

7.3.1 Hooks theory

Although we have set hooks we have not used them up till now.

Image 7.8 : GitLab : Create new Branch
With the way that we have configured the environment and our pipeline when we are pushing

changes to a branch that matches the regex that we have specified , in this case custom/.* ,
the hook is triggered and lets Jenkins know to start a Build for that branch. The logic here is
to run the basic stages of “Build” and “Test” in order to have a confirmation that our changes
did not introduce any regression , so they can be merged into main when the time comes. As
soon as that custom branch is merged into the main branch then a new Build is triggered for
the main branch which now includes the new changes and runs the SAST part as well.

49

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 7.9 : Jenkins : Hook triggered when we merge the custom branch

7.4 DAST Pipeline

7.4.1 Zed Attack Proxy

Up to this point I have only mentioned DAST but haven’t explained what is the purpose of it and
what tool we are going to use. Running a DAST against an application means to simulate
attacks like a malicious character would do, meaning that it is a black box testing focused on
the security part of the application. Running these simulations means finding these
vulnerabilities and fixing them before any external user has access to the application. This
helps with the protection of user data from cyber threats. DAST always should be run
alongside SAST as each kind of testing can produce results that the other activity cannot,
since DAST is executed at run time while SAST has full access to the code base.

For the DAST part we are going to utilize Zed Attack Proxy (ZAP).

Zed Attack Proxy (ZAP) is a free, open-source penetration testing tool being maintained under
the umbrella of The Software Security Project (SSP). ZAP is designed specifically for testing
web applications and is both flexible and extensible.

At its core, ZAP is what is known as a “man-in-the-middle proxy.” It stands between the tester’s
browser and the web application so that it can intercept and inspect messages sent between
browser and web application, modify the contents if needed, and then forward those packets on
to the destination. It can be used as a stand-alone application, and as a daemon process.

ZAP – Getting Started

Besides that the reason it was our selected tool is because there is Docker version of it which
we can host and run and because there is a growing community behind it with public forums
and developers are active in it meaning easy troubleshooting for us. Also there is a plethora of
addons that we can utilize or even create our own for our project needs. When ZAP is executed
from a Docker container there are a few steps that are being utilized.

● Configuration Loading : In the Annex you will find a file named ‘WebGoat.context’ this is
a file where we define addresses that we want to scan along with credentials that we
can use in the application in order to be able to test for functionality beyond the log in
screen.

● Web Crawling : As the first step it starts with exploring the targeted website with an
automated indexing called ‘Spiders’ which are starting from a single point and start
following links that are found in the HTML code. This is done recursively until either time
is up or spiders have reached maximum depth meaning how many links the have
processed after the initial one and or they cannot find any new URL to go to.

● Penetration Testing : Since ZAP now has a map of the website it starts to launch a
simulated attack by sending API requests toward the targeted application and collecting
any relative data.

● Report Generation : Of course all previous would go to waste if there was no report for
us to extract , read and base our design and code fixes upon. Also ZAP assigns a risk

50

https://www.zaproxy.org/
https://www.zaproxy.org/getting-started/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

level for each entry of the report so we can effectively target any critical vulnerabilities
first.

7.4.2 DAST Pipeline Stages

Following the same principles as for the SAST pipeline we create the DAST pipeline which
consists of the following stages.

Image 7.10 : Jenkins : DAST pipeline

First of all we set 3 parameters ‘SCAN_TYPE' , 'NETWORK' and 'GENERATE_REPORT'.
● ‘SCAN_TYPE' is a drop down with two values that can be selected: 'Baseline' and 'Full'
● 'NETWORK' is an input with a default value of 'zap-communication-network'
● 'GENERATE_REPORT' is a boolean with default value true

parameters {

choice choices: ['Baseline', 'Full'],

description: 'Type of scan that is going to perform inside

the container',

name: 'SCAN_TYPE'

string defaultValue: 'zap-communication-network',

description: "ZAP container network",

name: 'NETWORK'

booleanParam defaultValue: true,

description: 'Parameter to know if wanna generate

report.',

name: 'GENERATE_REPORT'

}

Then we are printing in the logs the parameters that the user selected and starting by cleaning
the workspace and checking out the refenced repository in order to get the context file for
ZAP.

stages {

stage('Pipeline Info'){

steps {

script {

echo '<--Parameter Initialization-->'

echo """

The current parameters are:

51

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Scan Type: ${params.SCAN_TYPE}

Scan Type: ${params.NETWORK}

Generate report: ${params.GENERATE_REPORT}

"""

}

}

}

stage("Clean Up"){

steps {

cleanWs()

}

}

stage("SCM chekout"){

steps {

checkout scm

}

}

This is the part that I would advise against when you are setting this environment , in a previous
part I mentioned that Jenkins should be set in a Master / Slave relationship because when
Jenkins runs in a Docker and you want to spin up a container for a Jenkins pipeline this will
create a Docker in Docker (DinD) . It is highly not recommended due to instability, not being
secure and because it is perplexing when it scales since we will have to track layers of internal
and external ports. The way I found success in creating a container from my Jenkins service
doing that to do it is to grant access to my host VM. This can be done by executing the following
commands in the CLI.

sudo chmod 777 /var/run/docker.sock

sudo docker exec -it -u root jenkins /bin/bash

curl -fsSL https://get.docker.com | sh

usermod -aG docker jenkins

First we are granting read, write, execute access to the Docker socket file. Log in into the
Jenkins container with the root user, downloading Docker and assigning to the jenkins user that
runs by default in the Jenkins service the group docker. Now that I have explained that, let's
proceed with the pipeline steps. We are creating a Docker virtual network in case it doesn’t
exist. This allows us to be able to create connections when we are setting our containers. Then
we are downloading and starting the WebGoat container and run the custom waitForContainer
method which is pinging the specified port on the container in order for us to get a pseudo ready
status that the application is ready in order to start running the tests against it.

stage('Creating Docker virtual network') {

steps {

script {

echo '<-- Docker virtual network-->'

def networkExists = sh(returnStatus: true, script:

'docker network inspect zap-communication-network')

if (networkExists != 0) {

echo 'Network does not exist, create it'

sh 'docker network create

52

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

zap-communication-network'

} else {

echo 'Network zap-communication-network already

exists.'

}

}

}

}

stage('Setting up WebGoat docker container') {

steps {

echo 'Pulling up last WebGoat container --> Start'

sh 'docker pull webgoat/webgoat:latest'

echo 'Pulling up last VMS container --> End'

echo 'Starting container --> Start'

sh """

docker run --detach \\

--network ${params.NETWORK} \\

-p 8383:8080 -p 9090:9090 \\

--name webgoat \\

webgoat/webgoat \\

"""

// We hit internal ports here to verify that container is

ready along with the application

waitForContainer("webgoat",9090)

waitForContainer("webgoat",8080)

}

}

Then we proceed with creating a user by using the API of the application.

stage('Creating user via cURL') {

steps {

sh """

curl 'http://192.168.1.164:8383/WebGoat/register.mvc'

-X POST --data-raw

'username=testuser&password=testuser&matchingPassword=testuser&agree=agree'

"""

}

}

Now it is the time to start our ZAP container and start the scan , in case anything goes wrong
and produces an error I have set the catchError method in order to notify the user that there
was an error produced during the scan. First I am printing into the logs the codes that the
ZAP produces after it has finished. Then I get and print the paths that our data exist and will
be generated by string manipulation, this is done in order to bind that data into the ZAP
container that will start. Based on the SCAN_TYPE we are starting the container with a
different preset that ZAP provides more info can be found in the following pages ZAP -
Baseline Scan and ZAP - Full Scan. The base options that I set are:
● -t ${target} : Specify the start point of the application which is the log in screen

53

https://www.zaproxy.org/docs/docker/baseline-scan/
https://www.zaproxy.org/docs/docker/baseline-scan/
https://www.zaproxy.org/docs/docker/full-scan

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

● -r report.html : Create a HTML report with name report
● -w report.md : Create a Markdown report with name report
● -n WebGoat.context : Use the WebGoat.context which we have loaded on the /zap/wrk

directory
● -U testuser : From the context use the user testuser
● -I : Do not return failure on warning
● -j : Use Ajax spider
● -d : Show debug messages in order for the user to know what is going on
● -z "-config api.addrs.addr.name=.* -config api.addrs.addr.regex=true -config

api.disablekey=true" : Based on official documentation this is not needed but as with
other default values I prefer to set them in order to be visible to the end user.

The difference in options that I set for Full scan is:
● -m 10 : the number of minutes to web crawl for.
● -T 60 : setting the max time for ZAP to start and the scan to run

stage('Scanning target on ZAP container') {

steps {

catchError(buildResult: 'UNSTABLE', stageResult:

'UNSTABLE') {

script {

echo """

ZAP can exit with :

0: Success

1: At least 1 FAIL

2: At least one WARN and no FAILs

3: Any other failure

Values 1 to 3 will mark the build as UNSTABLE

"""

def jenkinsPath = "${WORKSPACE}/jenkins/zap"

def hostPath =

jenkinsPath.replace('/var/jenkins_home', '/jenkins_home')

echo "<-- ${jenkinsPath} is the path corresponding

to Jenkins -->"

echo "<-- ${hostPath} is the translated path

corresponding to Host machine -->"

echo '<-- The following will be mounted to zap/wrk

-->'

sh "ls -lR ${jenkinsPath}"

scan_type = "${params.SCAN_TYPE}"

echo "----> scan_type: $scan_type"

target = "http://192.168.1.164:8383/WebGoat/login"

if (scan_type == 'Baseline') {

sh """

docker run \\

--rm \\

--name zap-${BUILD_ID} \\

54

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

-p 8484:8080 \\

-p 8443:8443 \\

-v "${hostPath}:/zap/wrk/:rw" \\

--network ${params.NETWORK} \\

zaproxy/zap-stable \\

zap-baseline.py \\

-t ${target} \\

-r report.html \\

-w report.md \\

-n WebGoat.context \\

-U testuser \\

-I -j -d \\

-z "-config api.addrs.addr.name=.*

-config api.addrs.addr.regex=true -config api.disablekey=true"

"""

}

else if (scan_type == 'Full') {

sh """

docker run \\

--rm \\

--name zap-${BUILD_ID} \\

-p 8484:8080 \\

-p 8443:8443 \\

-v "${hostPath}:/zap/wrk/:rw" \\

--network ${params.NETWORK} \\

zaproxy/zap-stable \\

zap-full-scan.py \\

-t ${target} \\

-r report.html \\

-w report.md \\

-n WebGoat.context \\

-U testuser \\

-m 10 \\

-T 60 \\

-I -j -d \\

-z "-config api.addrs.addr.name=.*

-config api.addrs.addr.regex=true -config api.disablekey=true"

"""

}

else {

echo 'Something went wrong...'

}

}

}

}

}

55

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Once ZAP has finished based on the 'GENERATE_REPORT' value we are putting everything
that ZAP has created along with the files that we mount into a zip and archive it. Then we are
proceeding with stopping the webgoat container and removing it. We do not need to handle
the ZAP container as we use docker run along with the --rm option which means start the
container, execute, get a result and then remove the container.

stage('Archive Reports to Workspace') {

when {

environment name : 'GENERATE_REPORT', value: 'true'

}

steps {

catchError(buildResult: 'FAILURE', stageResult: 'FAILURE') {

script {

zip zipFile: "ReportsAndContext-${BUILD_ID}.zip",

archive: true, dir : "${WORKSPACE}/jenkins/zap/"

}

}

}

}

}

post {

always {

echo 'Removing containers'

sh """

docker stop webgoat

docker rm webgoat

"""

}

}

8. Result Analysis

Now that our pipelines have been executed it is time to see the results.

8.1 SAST Result Analysis

By heading into SonarQube we can see the latest report of the project. On the top left side it
informs us that it has failed the Quality Gate that we have specified . Then we can see a
rating as well to inform us what the project’s state is. While in the main view we can see that
SonarQube has identified 266 potential Bugs, 1 Vulnerability and 72 Security hotspots. At the
end it gives an estimate on how much time it would take to fix those issues along with
detected Code Smells , Unit tests number and coverage and code duplication stats.

56

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 8.1 : SonarQube : Project View

For example when we select to see the Vulnerability we see the following.

Image 8.2 : SonarQube : Vulnerability Where is the Issue
SonarQube shows us in the code where the vulnerability is and also has a tab with

recommendations on how to fix and why is this an issue, informing and educating the
development team.

57

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 8.3 : SonarQube : Vulnerability Why is this an Issue
Then if we select the Security Hotspots we can see that SonarQube has categorized them

based on the priority from High to Low as well as grouping them based on the security
vulnerability that they introduce into our application.

58

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 8.4 : SonarQube : Security Hotspots
Following the same pattern, SonarQube shows us where this risk is , what is the risk , assess

the risk and how we can fix it. In the following images there are a few examples from the
High priority category. The first two show us that SonarQube executes secret scanning which
means detecting tokens and passwords in the code. And the third show us that we have not
followed the correct practices which can lead to an SQL injection.

59

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 8.5 : SonarQube : Security Hotspot Authentication Token

Image 8.6 : SonarQube : Security Hotspot Authentication Password

60

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 8.7 : SonarQube : Security Hotspot SQL Injection

As for all issues that SonarQube finds it enables the development team to handle them which
means mark them as a non issue and create comments for the finding in order to assess
what is the best fix.

8.2 DAST Result Analysis

First I am going to show parts from the Baseline scan and then parts from the Full scan. As with
SonarQube Zap categorizes each alert found with a risk level

Image 8.8 : ZAP : Baseline Report Summary Alert
Then shows us for each alert how many instances were found.

61

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 8.9 : ZAP : Baseline Report Alerts

Then if we select an alert it guides us to that alert section which informs us with a description ,
where and how it was found as well as how to fix it with some references that we can read.

62

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 8.10 : ZAP : Baseline Alert Report

Image 8.11 : ZAP : Full scan Report Summary Alert

63

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Image 8.12 : ZAP : Full scan Report Alerts

Image 8.13 : ZAP : Full scan Alert Report

64

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Conclusions

Integrating Security Scans into CI/CD Pipelines is crucial in order for us to be able to make
secure applications. This should be the new standard having just a working application is not
enough it has to be secure as well. Following the guidelines we have set up a complete
CI/CD environment all the way from the VM level down to the Automation Server. Then we
connected all the services between them enabling them to work flawlessly. Then we created
two pipelines, one that does the SAST which blocks the release if the criteria are not met
and a DAST that provides results from just a container and both of them provide a lot of
crucial results. The targeted application is an intentionally insecure application but we have
to keep in mind that this could also be the work of a new developer. I hope this serves as a
guide for anyone that wants to get into DevSecOps as there are not a lot of resources that
can help you with real life examples and how to set everything up. Future research could
explore more SAST and DAST tools but also the CD part.

65

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Terminology table

English Terminology Ελληνική Ορολογία

Pipeline Διεργασία

Waterfall model Μοντέλο καταρράκτη

Agile Ευέλικτο μοντέλο

Brute force attack Επίθεση με ωμή δύναμη

Securing the perimeter Ασφάλιση της περιμέτρου

Defense in Depth Άμυνα σε βάθος

Zero Trust Μηδενική εμπιστοσύνη

Zero-Day-Exploit Εκμετάλλευση μηδενικής ημέρας

Black box testing Λειτουργικός έλεγχος χωρίς γνώση κώδικα

66

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Table of abbreviations-acronyms-initialisms

CI/CD Continuous Integration and Continuous
Delivery/Deployment

SDLC software development lifecycle

SAST Static Application Security Testing

DAST Dynamic Application Security Testing

DevOps Develop and Operations

DevSecOps Develop Security and Operations

ACL Access control Lists

SaaS Software as a service

PMC Apache Struts Project Management
Committee

CVE Common Vulnerabilities and Exposures

KVM Kernel-based Virtual Machine

LXC Linux Containers

OS Operating System

VM Virtual Machine

LTS Long Term Support

API Application Programming Interface

CLI command-line interface

VCS version control system

UI User Interface

ISO International Organization for
Standardization

SSH Secure Shell

GPG GNU Privacy Guard key

GNU GNU’s not Unix

ZAP Zed Attack Proxy

DinD Docker in Docker

67

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Bibliography and hyperlinks

Books and Monographs:

Royce, W. W. (2021). Managing the development of large software systems (1970).

Hyperlinks:

Manifesto for Agile Software Development (http://agilemanifesto.org/)
Redhat : What is CI/CD? (https://www.redhat.com/en/topics/devops/what-is-ci-cd)
Microsoft : What is DevOps? (https://learn.microsoft.com/en-us/devops/what-is-devops)
Microsoft: What is DevSecOps? (

https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops)
The Rugged Manifesto (https://ruggedsoftware.org/)
IBM : What is cybersecurity? (https://www.ibm.com/topics/cybersecurity)
IBM : What is a cyberattack? (https://www.ibm.com/topics/cyber-attack)
IBM : What is SaaS (https://www.ibm.com/topics/saas)
The National Institute of Standards and Technology (USA) : defense-in-depth (

https://csrc.nist.gov/glossary/term/defense_in_depth)
IBM : What is zero trust? (https://www.ibm.com/topics/zero-trust)
GAO-18-559, DATA PROTECTION: Actions Taken by Equifax and Federal Agencies in

Response to the 2017 Breach (
https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.p
df)

Apache Struts Statement on Equifax Security Breach (
https://news.apache.org/foundation/entry/apache-struts-statement-on-equifax)

CVE-2017-9805 (https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9805)
MEDIA ALERT: The Apache Software Foundation Confirms Equifax Data Breach Due to Failure

to Install Patches Provided for Apache® Struts™ Exploit (
https://news.apache.org/foundation/entry/media-alert-the-apache-software)

CVE-2017-5638 (https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638)
Jenkins Security Advisory 2024-01-24 (https://www.jenkins.io/security/advisory/2024-01-24/)
Proxmox (https://www.proxmox.com/en)
Features - Proxmox Virtual Environment (

https://www.proxmox.com/en/proxmox-virtual-environment/features)
Oracle VM VirtualBox (https://www.virtualbox.org/)
Oracle (https://www.oracle.com/)
Guest_OSes – Oracle VM VirtualBox (https://www.virtualbox.org/wiki/Guest_OSes)
Ubuntu 22.04.4 LTS (https://www.releases.ubuntu.com/22.04/)
Docker : What is a container (https://www.docker.com/resources/what-container)
Docker (https://www.docker.com)
dockerd | Docker Docs (https://docs.docker.com/reference/cli/dockerd)
docker | Docker Docs (http://docs.docker.com/reference/cli/docker/)
Docker Engine API (https://docs.docker.com/engine/api/)
Docker : Docker Engine overview (https://docs.docker.com/engine/)
Docker CLI (https://www.docker.com/products/cli/)
Docker Desktop (https://www.docker.com/products/docker-desktop/)
Docker Hub (https://www.docker.com/products/docker-hub/)
Atlassian: What is version control? (

https://www.atlassian.com/git/tutorials/what-is-version-control)
Gitlab : Why use version control (https://about.gitlab.com/topics/version-control/)
Git (https://git-scm.com/)
Apache Subversion (https://subversion.apache.org/)
Mercurial (https://www.mercurial-scm.org/)
GitLab (https://about.gitlab.com/)
GitLab CE (https://hub.docker.com/r/gitlab/gitlab-ce)
GitLab Customers (https://about.gitlab.com/customers/)

68

http://agilemanifesto.org/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://learn.microsoft.com/en-us/devops/what-is-devops
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops
https://ruggedsoftware.org/
https://www.ibm.com/topics/cybersecurity
https://www.ibm.com/topics/cyber-attack
https://www.ibm.com/topics/saas
https://csrc.nist.gov/glossary/term/defense_in_depth
https://csrc.nist.gov/glossary/term/defense_in_depth
https://www.ibm.com/topics/zero-trust
https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf
https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf
https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf
https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf
https://news.apache.org/foundation/entry/apache-struts-statement-on-equifax
https://news.apache.org/foundation/entry/apache-struts-statement-on-equifax
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9805
https://news.apache.org/foundation/entry/media-alert-the-apache-software
https://news.apache.org/foundation/entry/media-alert-the-apache-software
https://news.apache.org/foundation/entry/media-alert-the-apache-software
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://www.jenkins.io/security/advisory/2024-01-24/
https://www.proxmox.com/en
https://www.proxmox.com/en/proxmox-virtual-environment/features
https://www.proxmox.com/en/proxmox-virtual-environment/features
https://www.virtualbox.org/
https://www.oracle.com/
https://www.virtualbox.org/wiki/Guest_OSes
https://www.releases.ubuntu.com/22.04/
https://www.docker.com/resources/what-container
https://www.docker.com
https://docs.docker.com/reference/cli/dockerd
http://docs.docker.com/reference/cli/docker/
https://docs.docker.com/engine/api/
https://docs.docker.com/engine/
https://www.docker.com/products/cli/
https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-hub/
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://about.gitlab.com/topics/version-control/
https://git-scm.com/
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://about.gitlab.com/
https://hub.docker.com/r/gitlab/gitlab-ce
https://about.gitlab.com/customers/

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Jenkins (https://www.jenkins.io/)
jenkins/jenkins - Docker Image (https://hub.docker.com/r/jenkins/jenkins)
Jenkins Security (https://www.jenkins.io/security/)
IBM (https://www.ibm.com/us-en)
Amazon AWS (https://aws.amazon.com/)
Sonatype Nexus Repository (https://help.sonatype.com/en/sonatype-nexus-repository.html)
Download VirtualBox (https://www.virtualbox.org/wiki/Downloads)
OpenSSH (https://www.openssh.com/)
Visual Studio Code (https://code.visualstudio.com/)
Ubuntu : Package management with APT (https://help.ubuntu.com/community/AptGet/Howto)
Install Docker Engine on Ubuntu (https://docs.docker.com/engine/install/ubuntu)
Uninstall old versions (https://docs.docker.com/engine/install/ubuntu/#uninstall-old-versions)
GitLab installation guide (https://docs.gitlab.com/ee/install/docker.html)
Package defaults | GitLab (

https://docs.gitlab.com/ee/administration/package_information/defaults.html)
GitHub - jenkinsci/docker: Docker official jenkins repo (https://github.com/jenkinsci/docker)
Download and Compatibility - Sonatype Lifecycle (

https://help.sonatype.com/en/download-and-compatibility.html#DownloadandCompatibility-Je
nkins)

sonatype/nexus3 - Docker Image (https://hub.docker.com/r/sonatype/nexus3/)
Sonatype Help (https://help.sonatype.com/index.html?lang=en)
Installing from Docker | SonarQube Docs (

https://docs.sonarsource.com/sonarqube/latest/setup-and-upgrade/install-the-server/installin
g-sonarqube-from-docker/)

Personal access tokens | GitLab (
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html)

Webhooks (https://docs.sonarsource.com/sonarqube/9.9/project-administration/webhooks/)
Pipeline Syntax (https://www.jenkins.io/doc/book/pipeline/syntax/)
Pipeline: Basic Steps (https://www.jenkins.io/doc/pipeline/steps/workflow-basic-steps/)
GIthub : WebGoat (https://github.com/WebGoat/WebGoat)
ZAP (https://www.zaproxy.org/)
ZAP – Getting Started (https://www.zaproxy.org/getting-started/)
ZAP - Baseline Scan (https://www.zaproxy.org/docs/docker/baseline-scan/)
ZAP - Full Scan (https://www.zaproxy.org/docs/docker/full-scan).

69

https://www.jenkins.io/
https://hub.docker.com/r/jenkins/jenkins
https://www.jenkins.io/security/
https://www.ibm.com/us-en
https://aws.amazon.com/
https://help.sonatype.com/en/sonatype-nexus-repository.html
https://www.virtualbox.org/wiki/Downloads
https://www.openssh.com/
https://code.visualstudio.com/
https://help.ubuntu.com/community/AptGet/Howto
https://docs.docker.com/engine/install/ubuntu
https://docs.docker.com/engine/install/ubuntu/#uninstall-old-versions
https://docs.gitlab.com/ee/install/docker.html
https://docs.gitlab.com/ee/administration/package_information/defaults.html
https://docs.gitlab.com/ee/administration/package_information/defaults.html
https://github.com/jenkinsci/docker
https://help.sonatype.com/en/download-and-compatibility.html#DownloadandCompatibility-Jenkins
https://help.sonatype.com/en/download-and-compatibility.html#DownloadandCompatibility-Jenkins
https://help.sonatype.com/en/download-and-compatibility.html#DownloadandCompatibility-Jenkins
https://hub.docker.com/r/sonatype/nexus3/
https://help.sonatype.com/index.html?lang=en
https://docs.sonarsource.com/sonarqube/latest/setup-and-upgrade/install-the-server/installing-sonarqube-from-docker/
https://docs.sonarsource.com/sonarqube/latest/setup-and-upgrade/install-the-server/installing-sonarqube-from-docker/
https://docs.sonarsource.com/sonarqube/latest/setup-and-upgrade/install-the-server/installing-sonarqube-from-docker/
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.sonarsource.com/sonarqube/9.9/project-administration/webhooks/
https://www.jenkins.io/doc/book/pipeline/syntax/
https://www.jenkins.io/doc/pipeline/steps/workflow-basic-steps/
https://github.com/WebGoat/WebGoat
https://www.zaproxy.org/
https://www.zaproxy.org/getting-started/
https://www.zaproxy.org/docs/docker/baseline-scan/
https://www.zaproxy.org/docs/docker/full-scan

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

Annex

Annex A : Docker-compose.yaml

version: "3.8"

services:

gitlab:

image: gitlab/gitlab-ce:latest

container_name: gitlab

restart: always

stop_grace_period: 5m

ports:

- "444:443"

- "81:80"

- "23:22"

volumes:

- gitlab_data_config:/etc/gitlab

- gitlab_data_logs:/var/log/gitlab

- gitlab_data_data:/var/opt/gitlab

shm_size: 256m

jenkins:

image: jenkins/jenkins:lts-jdk17

container_name: jenkins

ports:

- "8080:8080"

- "50000:50000"

restart: always

stop_grace_period: 5m

volumes:

- jenkins_home:/var/jenkins_home

- /var/run/docker.sock:/var/run/docker.sock

networks:

- jenkins_network

nexus:

image: sonatype/nexus3

container_name: nexus

restart: always

stop_grace_period: 5m

ports:

- "8081:8081"

volumes:

- nexus_data:/nexus-data

70

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

sonarqube:

image: sonarqube:lts-community

depends_on:

- db

environment:

SONAR_JDBC_URL: jdbc:postgresql://db:5432/sonar

SONAR_JDBC_USERNAME: sonar

SONAR_JDBC_PASSWORD: sonar

container_name: sonarqube

restart: always

stop_grace_period: 5m

ports:

- "9000:9000"

volumes:

- sonarqube_data:/opt/sonarqube/data

- sonarqube_extensions:/opt/sonarqube/extensions

- sonarqube_logs:/opt/sonarqube/logs

db:

image: postgres:12

environment:

POSTGRES_USER: sonar

POSTGRES_PASSWORD: sonar

volumes:

- postgresql:/var/lib/postgresql

- postgresql_data:/var/lib/postgresql/data

zap:

image: zaproxy/zap-stable

container_name: zap

restart: always

stop_grace_period: 1m

ports:

- "8282:8080"

- "8443:8443"

volumes:

- zap_data:/zap/wrk/

- shared_data:/shared

command: >

sh -c "zap-webswing.sh"

networks:

- zap-communication-network

volumes:

jenkins_home:

driver: local

driver_opts:

type: none

o: bind

device: /jenkins_home

71

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

nexus_data:

driver: local

driver_opts:

type: none

o: bind

device: /nexus-data

sonarqube_data:

driver: local

driver_opts:

type: none

o: bind

device: /sonarqube_data

sonarqube_extensions:

driver: local

driver_opts:

type: none

o: bind

device: /sonarqube_extensions

sonarqube_logs:

driver: local

driver_opts:

type: none

o: bind

device: /sonarqube_logs

gitlab_data_config:

driver: local

driver_opts:

type: none

o: bind

device: /gitlab_data_config

gitlab_data_logs:

driver: local

driver_opts:

type: none

o: bind

device: /gitlab_data_logs

gitlab_data_data:

driver: local

driver_opts:

type: none

o: bind

device: /gitlab_data_data

72

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

postgresql:

driver: local

driver_opts:

type: none

o: bind

device: /postgresql

postgresql_data:

driver: local

driver_opts:

type: none

o: bind

device: /postgresql_data

zap_data:

driver: local

driver_opts:

type: none

o: bind

device: /zap_data

shared_data:

driver: local

driver_opts:

type: none

o: bind

device: /shared

networks:

jenkins_network:

driver: bridge

zap-communication-network:

driver: bridge

Annex B : JenkinsFile_Advanced

def pipelineConfig=[

branches: [

"master": 'master',

"main": 'main',

"custom/.*": 'custom'

],

sonarProjectKeys: [

"TestMultiBranchPipelineSpringBoot/master":

'testgroup_testprojectspringboot_AY2VC-wEJgYs34GJxpb-',

"MultiBranch WebGoat/main":

73

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

'testgroup_webgoat_AY3CEp3yPjze8Ea254MD',

],

]

def getBranchName(def pipelineConfig) {

branchName = null

pipelineConfig.branches.any {

branchPattern, branch ->

if(env.BRANCH_NAME ==~ /${branchPattern}/){

branchName = branch

}

}

return branchName

}

def getSonarProjectKey(def pipelineConfig) {

def sonarProjectKey = null

pipelineConfig.sonarProjectKeys.any { projectName, projectKey ->

if (env.JOB_NAME == projectName) {

sonarProjectKey = projectKey

}

}

return sonarProjectKey

}

def parameterValidation(params){

currentBuild.result = 'ABORTED'

error('BAD PARAM: ' + params)

}

pipeline {

agent any

tools {

maven "Maven"

}

options {

skipDefaultCheckout(true)

}

environment {

NEXUS_VERSION = "nexus3"

NEXUS_PROTOCOL = "http"

NEXUS_URL = "192.168.1.164:8081"

NEXUS_REPOSITORY = "maven-snapshots"

74

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

NEXUS_CREDENTIAL_ID = "nexus-jenkins-user"

BRANCH_NAME = "${getBranchName(pipelineConfig)}"

SONAR_PROJECT_KEY = "${getSonarProjectKey(pipelineConfig)}"

SONARQUBE_NAME = "SonarQube"

SONARQUBE_AUTH_TOKEN_NAME = "SonarQube"

}

parameters {

booleanParam(name: 'SKIP_SONARQUBE',

description: 'Skip SonarQube Analysis',

defaultValue: false)

booleanParam(name: 'SKIP_NEXUS_PUBLISH',

description: 'Skip Publish to Nexus Repository Manager',

defaultValue: false)

}

stages {

stage("Clean Up"){

steps {

cleanWs()

}

}

stage("SCM chekout"){

steps {

checkout scm

}

}

stage("Build"){

steps {

withCredentials([file(credentialsId: 'maven-settings',

variable: 'MAVEN_SETTINGS')]) {

sh 'mvn -s ${MAVEN_SETTINGS} clean install -DskipTests'

}

}

}

stage("Test"){

steps {

withCredentials([file(credentialsId: 'maven-settings',

variable: 'MAVEN_SETTINGS')]) {

sh 'mvn -s ${MAVEN_SETTINGS} test'

75

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

}

}

}

stage("SonarQube Analysis"){

steps{

script {

echo "SKIP_SONARQUBE parameter value:

${params.SKIP_SONARQUBE}"

echo "Running branch is : ${env.BRANCH_NAME}"

echo "Running job is : ${env.JOB_NAME}"

if (!params.SKIP_SONARQUBE && (env.BRANCH_NAME ==

'main' || env.BRANCH_NAME == 'master')) {

echo "This stage will only run if SKIP_SONARQUBE is

false and BRANCH_NAME is 'main' or 'master'"

scannerHome = tool "${SONARQUBE_NAME}";

withSonarQubeEnv("${SONARQUBE_NAME}") {

sh """

${scannerHome}/bin/sonar-scanner

\

-Dsonar.projectKey=${SONAR_PROJECT_KEY} \

-Dsonar.sources=. \

-Dsonar.java.binaries=target/

"""

// Running the following for SonarQube produces

only errors found under src and since we have projects with not only java

it is not optimal

// withCredentials([file(credentialsId:

'maven-settings', variable: 'MAVEN_SETTINGS'),

// string(credentialsId:

'Sonarqube', variable: 'SONARQUBE_TOKEN')]) {

// sh 'mvn -s ${MAVEN_SETTINGS} sonar:sonar

-Dsonar.token=${SONARQUBE_TOKEN} -Dsonar.projectKey=${SONAR_PROJECT_KEY}'

// }

}

} else {

echo "Skipping this stage as SKIP_SONARQUBE is true

or BRANCH_NAME is not 'main' or 'master'"

}

}

}

}

stage("Publish to Nexus Repository Manager with Quality Gate") {

steps {

76

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

script {

echo "SKIP_NEXUS_PUBLISH parameter value:

${params.SKIP_NEXUS_PUBLISH}"

echo "Running branch is : ${env.BRANCH_NAME}"

if (!params.SKIP_NEXUS_PUBLISH && (env.BRANCH_NAME ==

'main' || env.BRANCH_NAME == 'master')) {

echo "This stage will only run if

SKIP_NEXUS_PUBLISH is false and BRANCH_NAME is 'main' or 'master'"

// Check the status of the Quality Gate

// If it fails, mark the build as failed

if (waitForQualityGate().status != 'OK') {

error "Pipeline aborted due to Quality Gate

failure"

}

pom = readMavenPom file: "pom.xml";

filesByGlob = findFiles(glob:

"target/*.${pom.packaging}");

echo "${filesByGlob[0].name} ${filesByGlob[0].path}

${filesByGlob[0].directory} ${filesByGlob[0].length}

${filesByGlob[0].lastModified}"

artifactPath = filesByGlob[0].path;

artifactExists = fileExists artifactPath;

if(artifactExists) {

echo "*** File: ${artifactPath}, group:

${pom.groupId}, packaging: ${pom.packaging}, version ${pom.version}";

nexusArtifactUploader(

nexusVersion: NEXUS_VERSION,

protocol: NEXUS_PROTOCOL,

nexusUrl: NEXUS_URL,

groupId: pom.groupId,

version: pom.version,

repository: NEXUS_REPOSITORY,

credentialsId: NEXUS_CREDENTIAL_ID,

artifacts: [

[artifactId: pom.artifactId,

classifier: '',

file: artifactPath,

type: pom.packaging],

[artifactId: pom.artifactId,

classifier: '',

file: "pom.xml",

type: "pom"]

]

);

} else {

error "*** File: ${artifactPath}, could not be

found";

}

} else {

77

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

echo "Skipping this stage as SKIP_SONARQUBE is true

or BRANCH_NAME is not 'main' or 'master'"

}

}

}

}

}

post {

always {

// Publish Surefire test report

junit skipPublishingChecks: true, testResults:

'target/surefire-reports/*.xml'

// Zip the test results directory

zip zipFile: 'surefire-report.zip', archive: false, dir:

'target/site'

// Archive the zip file

archiveArtifacts artifacts: 'surefire-report.zip', fingerprint:

true

}

}

}

Annex C : JenkinsFile_Zap_WebGoat_Scan

def waitForContainer(containerName, port) {

timeout(time: 120, unit: 'SECONDS') {

sh """

#!/bin/bash

until docker exec $containerName sh -c 'curl -s

http://localhost:$port > /dev/null'

do

echo 'Waiting for container $containerName on port $port...'

sleep 1

done

echo 'Container $containerName on port $port is ready'

"""

}

}

pipeline {

agent any

options {

skipDefaultCheckout(true)

}

78

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

parameters {

choice choices: ['Baseline', 'Full'],

description: 'Type of scan that is going to perform inside

the container',

name: 'SCAN_TYPE'

string defaultValue: 'zap-communication-network',

description: "ZAP container network",

name: 'NETWORK'

booleanParam defaultValue: true,

description: 'Parameter to know if wanna generate

report.',

name: 'GENERATE_REPORT'

}

stages {

stage('Pipeline Info'){

steps {

script {

echo '<--Parameter Initialization-->'

echo """

The current parameters are:

Scan Type: ${params.SCAN_TYPE}

Scan Type: ${params.NETWORK}

Generate report: ${params.GENERATE_REPORT}

"""

}

}

}

stage("Clean Up"){

steps {

cleanWs()

}

}

stage("SCM chekout"){

steps {

checkout scm

}

}

stage('Creating Docker virtual network') {

steps {

script {

echo '<-- Docker virtual network-->'

def networkExists = sh(returnStatus: true, script:

79

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

'docker network inspect zap-communication-network')

if (networkExists != 0) {

echo 'Network does not exist, create it'

sh 'docker network create

zap-communication-network'

} else {

echo 'Network zap-communication-network already

exists.'

}

}

}

}

stage('Setting up WebGoat docker container') {

steps {

echo 'Pulling up last WebGoat container --> Start'

sh 'docker pull webgoat/webgoat:latest'

echo 'Pulling up last VMS container --> End'

echo 'Starting container --> Start'

sh """

docker run --detach \\

--network ${params.NETWORK} \\

-p 8383:8080 -p 9090:9090 \\

--name webgoat \\

webgoat/webgoat \\

"""

// We hit internal ports here to verify that container is

ready along with the application

waitForContainer("webgoat",9090)

waitForContainer("webgoat",8080)

}

}

stage('Creating user via cURL') {

steps {

sh """

curl 'http://192.168.1.164:8383/WebGoat/register.mvc'

-X POST --data-raw

'username=testuser&password=testuser&matchingPassword=testuser&agree=agree'

"""

}

}

stage('Scanning target on ZAP container') {

steps {

catchError(buildResult: 'UNSTABLE', stageResult:

'UNSTABLE') {

script {

80

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

echo """

ZAP can exit with :

0: Success

1: At least 1 FAIL

2: At least one WARN and no FAILs

3: Any other failure

Values 1 to 3 will mark the build as UNSTABLE

"""

def jenkinsPath = "${WORKSPACE}/jenkins/zap"

def hostPath =

jenkinsPath.replace('/var/jenkins_home', '/jenkins_home')

echo "<-- ${jenkinsPath} is the path corresponding

to Jenkins -->"

echo "<-- ${hostPath} is the translated path

corresponding to Host machine -->"

echo '<-- The following will be mounted to zap/wrk

-->'

sh "ls -lR ${jenkinsPath}"

scan_type = "${params.SCAN_TYPE}"

echo "----> scan_type: $scan_type"

target = "http://192.168.1.164:8383/WebGoat/login"

if (scan_type == 'Baseline') {

sh """

docker run \\

--rm \\

--name zap-${BUILD_ID} \\

-p 8484:8080 \\

-p 8443:8443 \\

-v "${hostPath}:/zap/wrk/:rw" \\

--network ${params.NETWORK} \\

zaproxy/zap-stable \\

zap-baseline.py \\

-t ${target} \\

-r report.html \\

-w report.md \\

-n WebGoat.context \\

-U testuser \\

-I -j -d \\

-z "-config api.addrs.addr.name=.*

-config api.addrs.addr.regex=true -config api.disablekey=true"

"""

}

else if (scan_type == 'Full') {

81

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

sh """

docker run \\

--rm \\

--name zap-${BUILD_ID} \\

-p 8484:8080 \\

-p 8443:8443 \\

-v "${hostPath}:/zap/wrk/:rw" \\

--network ${params.NETWORK} \\

zaproxy/zap-stable \\

zap-full-scan.py \\

-t ${target} \\

-r report.html \\

-w report.md \\

-n WebGoat.context \\

-U testuser \\

-m 10 \\

-T 60 \\

-I -j -d \\

-z "-config api.addrs.addr.name=.*

-config api.addrs.addr.regex=true -config api.disablekey=true"

"""

}

else {

echo 'Something went wrong...'

}

}

}

}

}

stage('Archive Reports to Workspace') {

when {

environment name : 'GENERATE_REPORT', value: 'true'

}

steps {

catchError(buildResult: 'FAILURE', stageResult: 'FAILURE') {

script {

zip zipFile: "ReportsAndContext-${BUILD_ID}.zip",

archive: true, dir : "${WORKSPACE}/jenkins/zap/"

}

}

}

}

}

post {

82

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

always {

echo 'Removing containers'

sh """

docker stop webgoat

docker rm webgoat

"""

}

}

}

Annex D : WebGoat.context

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<configuration>

<context>

<name>WebGoat</name>

<desc/>

<inscope>true</inscope>

<incregexes>http://192.168.1.164:8383.*</incregexes>

<incregexes>http://192.168.1.164:8383/WebGoat/login.*</incregexes>

<incregexes>http://192.168.1.164:8383/WebGoat/start.*</incregexes>

<incregexes>http://192.168.1.164:8383/WebGoat/start.mvc?username=testuser#l

esson/.*</incregexes>

<excregexes>http://192.168.1.164:8383/WebGoat/logout</excregexes>

<tech>

<include>Db</include>

<include>Db.CouchDB</include>

<include>Db.Firebird</include>

<include>Db.HypersonicSQL</include>

<include>Db.IBM DB2</include>

<include>Db.MariaDB</include>

<include>Db.Microsoft Access</include>

<include>Db.Microsoft SQL Server</include>

<include>Db.MongoDB</include>

<include>Db.MySQL</include>

<include>Db.Oracle</include>

<include>Db.PostgreSQL</include>

<include>Db.SAP MaxDB</include>

<include>Db.SQLite</include>

<include>Db.Sybase</include>

<include>Language</include>

<include>Language.ASP</include>

<include>Language.C</include>

<include>Language.JSP/Servlet</include>

<include>Language.Java</include>

<include>Language.Java.Spring</include>

<include>Language.JavaScript</include>

83

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

<include>Language.PHP</include>

<include>Language.Python</include>

<include>Language.Ruby</include>

<include>Language.XML</include>

<include>OS</include>

<include>OS.Linux</include>

<include>OS.MacOS</include>

<include>OS.Windows</include>

<include>SCM</include>

<include>SCM.Git</include>

<include>SCM.SVN</include>

<include>WS</include>

<include>WS.Apache</include>

<include>WS.IIS</include>

<include>WS.Tomcat</include>

</tech>

<urlparser>

<class>org.zaproxy.zap.model.StandardParameterParser</class>

<config>{"kvps":"&","kvs":"=","struct":[]}</config>

</urlparser>

<postparser>

<class>org.zaproxy.zap.model.StandardParameterParser</class>

<config>{"kvps":"&","kvs":"=","struct":[]}</config>

</postparser>

<authentication>

<type>2</type>

<strategy>EACH_RESP</strategy>

<pollurl/>

<polldata/>

<pollheaders/>

<pollfreq>60</pollfreq>

<pollunits>REQUESTS</pollunits>

<loggedin><button type="button" data-toggle="dropdown"

class="btn btn-default dropdown-toggle" id="user-menu"></loggedin>

<loggedout><button class="btn btn-primary btn-block"

type="submit">Sign in</button></loggedout>

<form>

<loginurl>http://192.168.1.164:8383/WebGoat/login</loginurl>

<loginbody>username={%username%}&password={%password%}</loginbody>

<loginpageurl>http://192.168.1.164:8383/WebGoat/login</loginpageurl>

</form>

</authentication>

<users>

<user>10354;true;dGVzdHVzZXI=;2;dGVzdHVzZXI=~dGVzdHVzZXI=~</user>

</users>

84

Integrating Security Scans into CI/CD Pipelines - ΓΙΩΡΓΟΣ ΤΡΙΦΥΛΛΗΣ

<forceduser>10354</forceduser>

<session>

<type>0</type>

</session>

<authorization>

<type>0</type>

<basic>

<header/>

<body/>

<logic>AND</logic>

<code>-1</code>

</basic>

</authorization>

</context>

</configuration>

85

