
MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

1
Distributed File Storage with User-Hosted Nodes

UNIVERSITY OF PIRAEUS - DEPARTMENT OF INFORMATICS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ – ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

MSc «Advanced Informatics and Computing Systems - Software

Development and Artificial Intelligence»

ΠΜΣ «Προηγμένα Συστήματα Πληροφορικής – Ανάπτυξη Λογισμικού και Τεχνητής
Νοημοσύνης»

MSc Thesis

Μεταπτυχιακή Διατριβή

Thesis Title:

Τίτλος Διατριβής:

Distributed File Storage with User-Hosted Nodes

Κατανεμημένη αποθήκευση αρχείων με κόμβους που
φιλοξενούνται από χρήστες

Student’s name-surname:

Ονοματεπώνυμο φοιτητή:

Vasileios Argyropoulos

Βασίλειος Αργυρόπουλος

Father’s name:

Πατρώνυμο:

Ioannis

Ιωάννης

Student’s ID No:

Αριθμός Μητρώου:
ΜΠΣΠ2204

Supervisor:

Επιβλέπων:

Efthimios Alepis, Professor

Ευθύμιος Αλέπης, Καθηγητής

July 2024/ Ιούλιος 2024

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

2
Distributed File Storage with User-Hosted Nodes

3-Member Examination Committee

Τριμελής Εξεταστική Επιτροπή

Efthimios Alepis

Professor

Ευθύμιος Αλέπης
Καθηγητής

Costantinos Patsakis

Associate Professor

Κωνσταντίνος Πατσάκης
Αναπληρωτής Καθηγητής

Maria Virvou

Professor

Μαρία Βίρβου
Καθηγήτρια

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

3
Distributed File Storage with User-Hosted Nodes

Table of Contents

Table of Figures ... 5

Acknowledgments ... 6

Ευχαριστίες .. 6

Abstract ... 7

Περίληψη ... 7

Introduction .. 8

Short description of the Problem ... 8

Approach .. 8

Goals .. 8

Design Assumptions .. 9

Threat assumptions ... 9

Design ... 10

Bird’s eye view of the system .. 10

User-Hosted Worker .. 10

Centralized Service .. 11

Cryptography ... 12

Limitations .. 13

Related Work ... 14

Survey of Prior Publication .. 14

Filecoin survey ... 14

Storj survey .. 15

Other literature survey ... 15

Concrete implementation of the System ... 17

Technical Components of the System... 18

File Storage Worker Analysis .. 18

File Distribution System Analysis ... 20

Frontend Client ... 21

Identity Server .. 22

File Storage and Key Management Service .. 23

Performance evaluation .. 31

Evaluation of System Performance using the Message Quantity metric................................. 31

File Upload Process ... 31

File Retrieval Process .. 31

Worker Connection Process .. 31

Worker Disconnection Process .. 32

Evaluation of System Performance using Time-based metrics ... 33

Performance Evaluation Conclusions .. 34

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

4
Distributed File Storage with User-Hosted Nodes

Evaluation of Threat Mitigation Strategies .. 35

Use Cases ... 35

Conclusion ... 36

Limitations .. 36

Future work .. 36

Bibliography ... 37

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

5
Distributed File Storage with User-Hosted Nodes

Table of Figures

Figure 1: System Context Diagram ... 17

Figure 2: Container Diagram - File Storage Worker .. 18

Figure 3: Container Diagram - File Distribution System .. 20

Figure 4: Worker Connection Algorithm .. 23

Figure 5: File Splitting into chunks .. 24

Figure 6: File Upload Process. .. 25

Figure 7: State of workers after file upload. .. 26

Figure 8: File Upload Algorithm ... 27

Figure 9: File Retrieval Algorithm .. 28

Figure 10: File Retrieval Process. ... 29

Figure 11: File Reassembly from chunks. ... 30

Figure 12: Performance Evaluation Graph .. 33

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

6
Distributed File Storage with User-Hosted Nodes

Acknowledgments

I would like to express my gratitude to the people who offered me valuable support for the

completion of this thesis, which was prepared for the postgraduate program "Advanced

Informatics and Computing Systems - Software Development and Artificial Intelligence" of the

Department of Informatics of the University of Piraeus

First, I would like to thank my three-member examination committee for their excellent

guidance, patience, and support during my research and academic career.

I would also like to express my sincere thanks to my Mother, who has been a source of

inspiration, guidance and support to me. Her love, patience, and dedication have given me the

strength to continue even in the most difficult times.

Finally, I would like to thank my family and friends who have supported me throughout

my academic career.

Ευχαριστίες

Θα ήθελα να εκφράσω της ευγνωμοσύνη μου προς τα άτομα που μου προσέφεραν πολύτιμη

υποστήριξη για την ολοκλήρωση αυτής της διατριβής, η οποία εκπονήθηκε για το πρόγραμμα

μεταπτυχιακών σπουδών «Προηγμένα Συστήματα Πληροφορικής – Ανάπτυξη Λογισμικού και

Τεχνητής Νοημοσύνης» του τμήματος Πληροφορικής του Πανεπιστημίου Πειραιώς

Αρχικά, θα ήθελα να εκφράσω τις ευχαριστίες μου στην τριμελή εξεταστική επιτροπή

μου για την εξαιρετική καθοδήγηση, υπομονή και στήριξη κατά την διάρκεια της έρευνάς μου και

της ακαδημαϊκής μου πορείας.

Επίσης, θα ήθελα να εκφράσω τις ειλικρινείς μου ευχαριστίες στην Μητέρα μου, η οποία

αποτελεί πηγή έμπνευσης, καθοδήγησης και υποστήριξης μου. Η αγάπη, η υπομονή και η

αφοσίωσή της μου έδωσαν τη δύναμη να συνεχίσω ακόμη και στις πιο δύσκολες στιγμές.

Τέλος, θα ήθελα να εκφράσω τις ευχαριστίες μου στους συγγενείς και φίλους μου που

με στήριξαν σε όλη την πορεία της εκπόνησης της ακαδημαϊκής μου πορείας.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

7
Distributed File Storage with User-Hosted Nodes

Abstract

This thesis delves into a novel approach to distributed file storage, a system that consolidates

storage contributions using self-hosted workers. This innovative system integrates various

storage types, including local, cloud, and network-attached storage, into a storage pool. It

employs user-hosted nodes managed by a centralized control infrastructure to ensure data

redundancy, high availability, and security. By utilizing data encryption and distribution

methodologies, the system effectively safeguards data privacy and enhances resilience against

potential failures and security breaches.

The architecture of this system strikes a balance between the advantages of centralized

and distributed storage models, offering a flexible, scalable, and secure solution for

contemporary storage requirements. It triumphs over the limitations of existing storage solutions

by enabling the seamless integration of diverse storage media while maintaining optimal

performance and efficient resource utilization. Comprehensive performance evaluations

demonstrate the system's effectiveness, underscoring its potential as a solution for

organizations seeking to consolidate their storage infrastructure through a distributed approach.

Περίληψη

Η παρούσα διατριβή εξετάζει μια νέα προσέγγιση για την κατανεμημένη αποθήκευση αρχείων,

ένα σύστημα που ενοποιεί τις συνεισφορές αποθήκευσης χρησιμοποιώντας self-hosted

workers. Αυτό το καινοτόμο σύστημα ενσωματώνει διάφορους τύπους αποθήκευσης,

συμπεριλαμβανομένων των τοπικών, του cloud και της δικτυακής αποθήκευσης, σε ένα storage

pool. Χρησιμοποιεί κόμβους που φιλοξενούνται από χρήστες και διαχειρίζονται από μια κεντρική

υποδομή ελέγχου για να διασφαλίσει τον πλεονασμό των δεδομένων, την υψηλή διαθεσιμότητα

και την ασφάλεια. Χρησιμοποιώντας μεθοδολογίες κρυπτογράφησης και διανομής δεδομένων,

το σύστημα διασφαλίζει αποτελεσματικά το απόρρητο των δεδομένων και ενισχύει την

ανθεκτικότητα έναντι πιθανών αστοχιών και παραβιάσεων ασφαλείας.

Η αρχιτεκτονική αυτού του συστήματος επιτυγχάνει ισορροπία μεταξύ των

πλεονεκτημάτων των συγκεντρωτικών και των κατανεμημένων μοντέλων αποθήκευσης,

προσφέροντας μια ευέλικτη, κλιμακούμενη και ασφαλή λύση για τις σύγχρονες απαιτήσεις

αποθήκευσης. Θριαμβεύει έναντι των περιορισμών των υφιστάμενων λύσεων αποθήκευσης,

επιτρέποντας την απρόσκοπτη ενσωμάτωση διαφορετικών μέσων αποθήκευσης, διατηρώντας

παράλληλα τη βέλτιστη απόδοση και την αποδοτική χρήση των πόρων. Αναλυτικές

αξιολογήσεις επιδόσεων αναδεικνύουν την αποτελεσματικότητα του συστήματος,

υπογραμμίζοντας τις δυνατότητές του ως λύση για οργανισμούς που επιδιώκουν να

ενοποιήσουν την υποδομή αποθήκευσης μέσω μιας κατανεμημένης προσέγγισης.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

8
Distributed File Storage with User-Hosted Nodes

Introduction

Short description of the Problem

Existing distributed file storage solutions are either fully decentralized, which can pose

challenges in terms of control and management, or they do not allow the seamless incorporation

of third-party storage providers in a way that is agnostic to the type of storage being used. This

presents a significant challenge for organizations that wish to leverage a diverse range of

storage options without being constrained by the architecture of their storage solution. The

inability to integrate various storage types into a cohesive system means that many

organizations cannot optimize their storage infrastructure to meet their specific needs, leading to

inefficiencies and potential vulnerabilities.

Consider, for instance, a scenario where a consortium of organizations explores

implementing redundant file storage by pooling their available resources. Each organization in

the consortium may have different types of storage media at its disposal, such as network-

attached storage, local storage, or cloud storage resources. The idea is to contribute these

varied resources to a unified storage pool that ensures redundancy and resilience. While the

concept is appealing, current distributed storage solutions do not support such diverse

integration in a straightforward and efficient manner. As a result, these organizations might face

potential barriers to achieving a unified storage solution that can effectively leverage their

collective storage capabilities if they adopt this approach.

Approach

The proposed distributed storage architecture offers a range of potential benefits. It can

integrate various storage types, presenting them as a unified pool that ensures both redundancy

and high availability. This involves coordinating storage contributions from multiple providers

while maintaining data consistency and integrity across the distributed network. Such an

approach requires advanced mechanisms to manage the heterogeneity of storage types

efficiently and securely, ultimately providing a robust and flexible storage infrastructure.

Additionally, due to the nature of the data stored, security and privacy are highly important, and

strict mechanisms must be implemented to ensure that the data is securely stored and only

accessed by authorized parties. The system's ability to seamlessly incorporate different storage

media and its focus on data security and privacy make it a promising solution for organizations

seeking to optimize their storage infrastructure.

To achieve these objectives, a centralized control infrastructure is designed and

implemented. This infrastructure orchestrates the workers deployed by the storage providers

and issues commands aimed at efficiently and securely managing the available storage

resources. The system ensures optimal performance, reliability, and security in managing

diverse storage resources by centralizing control while leveraging storage contributions in many

locations.

Goals

The main objective of this thesis is to establish a distributed storage architecture that integrates

various storage media into a unified and resilient storage pool. The goals include:

• Orchestrating contributions from different providers while maintaining data consistency and

integrity across the distributed workers.

• Securely and efficiently managing heterogeneous storage types across the distributed

storage infrastructure.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

9
Distributed File Storage with User-Hosted Nodes

• Having the ability to horizontally and vertically scale, along with the ability to orchestrate a

large number and size of available storage infrastructure.

The solution is realized in a novel software system that meets these requirements. This

system employs techniques to manage many storage types, ensuring that the distributed

worker-based storage infrastructure operates efficiently and securely. The design process and

implementation of this system are detailed in the following analysis, which explores the

architecture and functionality in depth. All accompanying diagrams are based on the C4 model

for visualizing software architecture, providing a clear and structured representation of the

system components and their interactions.

Design Assumptions

The proposed solution makes the following design assumptions:

• The system should be able to integrate with multiple storage types and make them a

storage pool.

• Any file must be always available for retrieval and stored redundantly.

• The storage contributions by the storage providers infrastructure must not be fully trusted

with the data that they hold.

• The system must be able to efficiently recover from worker failures and disconnects.

• The files will be added to the system encrypted, and they will be decrypted only on the client

side by the authorized and authenticated entities.

Threat assumptions

The proposed solution makes the following threat assumptions:

• The network infrastructure is susceptible to attack vectors such as and denial-of-service

attacks:

o Eavesdropping: This involves unauthorized interception of data traveling across

the network. Attackers can passively listen to the communication, capturing

sensitive information such as credentials or private messages, leading to privacy

breaches.

o Denial-of-service (DoS) attacks: These attacks aim to disrupt the normal

functioning of a network or service by overwhelming it with a flood of illegitimate

requests. This can render the service unavailable to legitimate users, causing

significant downtime and potentially leading to data loss or delayed processing.

• Individual storage nodes or workers cannot be fully trusted and may be compromised or

abused:

o Compromise of storage nodes: Malicious actors may gain unauthorized access to

storage nodes, either through exploiting vulnerabilities or insider threats. Once

compromised, these nodes can be used to access, alter, or delete stored data,

jeopardizing data integrity and confidentiality.

o Abuse of storage nodes: Even legitimate storage nodes can be misused by

trusted parties or turn malicious over time. This abuse can involve unauthorized

access to data, tampering with stored information, or denial of service by selectively

withholding data or resources.

• Authorized entities may attempt unauthorized access to other files:

o Unauthorized access attempts by authorized users: Users with legitimate

access to the system might try to access files beyond their permission level. Such

insider threats can lead to data breaches, where sensitive information is accessed,

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

10
Distributed File Storage with User-Hosted Nodes

copied, or distributed without proper authorization, compromising data privacy and

security.

• The system will encounter periodic worker failures and disconnections:

o Worker failures: These can occur due to hardware malfunctions, software bugs, or

operational errors, leading to loss of connectivity or functionality. Such failures can

disrupt the availability and reliability of the system, potentially resulting in data loss

or delayed access to stored information.

o Disconnections: Network issues or maintenance activities can cause workers to

disconnect from the system. These disconnections can temporarily lose data

accessibility, affecting the system's performance and user experience. Repeated or

prolonged disconnections can also strain the system's redundancy and failover

mechanisms.

Design

This section outlines the design considerations and decisions. First, a high-level overview of the

system is explained, and then each component and its design considerations are analyzed.

Bird’s eye view of the system

A distributed architecture with a central control point is proposed to fulfill the functional

requirements that were previously outlined. This topology comprises distributed nodes - called

workers - deployed and hosted by the storage provider, connecting to the provided storage

resources. These workers receive control instructions from a centralized infrastructure

responsible for coordinating file distribution across the network. Additionally, this centralized

infrastructure manages authentication, authorization, and cryptographic keys generated and

utilized by the client application with which the user interacts. The frontend application served to

the end user also provides a user-friendly interface for system use and content management.

Because this design relies on the workers interacting with the storage provider’s storage

infrastructure, the computational load of the operations is distributed along the centralized

control infrastructure and the workers, thus enabling more efficient scalability as the

computational and storage resources become available. This distribution of tasks ensures that

as more users and storage providers join the network, the system can handle increased

demand without compromising performance or reliability. Furthermore, the architecture's

flexibility allows it to adapt to varying storage and computational power levels, ensuring optimal

performance across different scenarios.

The design of the worker and service architecture was driven by the need to create a

distributed system for file storage homologation. The approach ensures that the worker nodes,

which handle storage tasks, can operate efficiently and independently across various

environments. This independence allows them to scale with the addition of new user-hosted

resources. Meanwhile, the central service is designed to manage and coordinate these

distributed workers. The central service also integrates authentication, authorization, and key

management, ensuring that security and user access control are maintained centrally without

needing the worker nodes. This design ensures that the system can scale while maintaining

performance and security.

User-Hosted Worker

The design process of the Workers focused on a balance between autonomy, scalability, and

semi-trust. The main goal was to create a component that could live as part of a distributed

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

11
Distributed File Storage with User-Hosted Nodes

architecture but handle its storage tasks independently. This autonomy would allow each worker

to work independently of other workers.

Scalability was a key consideration, and since workers are hosted on the client's

infrastructure, the goal was to make it easier to scale the system by adding more workers

without affecting overall performance. Security was a primary concern, making it essential to

ensure that worker-managed data would remain unusable in the event of a data breach of the

worker. Finally, workers are not fully trusted by the network, so they should not have

unrestricted access to information on the network.

Several key techniques were used to implement scalability: The design uses a

distributed approach that allows storage providers to add self-hosted workers. This model

ensures the workload is distributed across multiple nodes in the end-user's infrastructure,

eliminating individual bottlenecks. Worker autonomy means that each worker can operate

independently, reducing dependencies and bottlenecks. The centralized system also used

dynamic resource allocation, adjusting the use of computing and storage resources based on

current needs to maintain efficiency. In addition, modular design principles were applied to

facilitate component integration and expansion without affecting existing functionality.

To implement security and semi-trust, several key techniques have been used to

ensure privacy and integrity in a semi-trusted network. The main method was to split the

encrypted file into pieces of random size. The random size of the chunks adds an additional

layer of security by making it more difficult for an attacker to reconstruct the original file. Even if

an attacker gains access to some chunks, they would not have a predictable pattern to follow,

complicating the task of reassembling the data. This randomness, combined with the encryption

and distribution of chunks across multiple workers, enhances the overall security and privacy of

the system, ensuring that compromised data remains unusable without access to all parts and

their correct sequence.

Strict authorization and access rights are implemented to ensure that workers can only

perform predefined tasks like file chunk addition, retrieval, and deletion. In addition, redundant

file block storage for multiple workers added a layer of failover that ensures data is available

even if some workers fail. Together, these methodologies ensured system security and semi-

trust, ensuring no worker could compromise data integrity or confidentiality.

Finally, to increase worker autonomy, it was designed so that each worker could work

independently without relying on other workers. This was made possible by local task

management, where each worker handled their own storage, file retrieval, and maintenance

tasks. Centralized decision-making allowed workers to act without coordination with other nodes

and complete tasks even when other network parts were unavailable. That independence

allowed workers to deal with errors and maintain continuous operation.

Centralized Service

The design goals of the centralized system focused on ensuring coordination, security, and user

accessibility across the network. Its goal was to create a robust framework for managing

authentication, authorization, and encryption key distribution, ensuring that all network

operations are secure and well-regulated. The centralized system was also designed to allow

efficient communication and management of distributed workers, allowing them to work

independently while maintaining the network's overall integrity. A major responsibility of the

Centralized service is to act as the semi-trusted cryptographic key management server,

handling the user’s encrypted cryptographic keys and applying authentication and authorization

to them using the Identity Server. In addition, it aims to provide a user-friendly interface to

manage storage and access rights.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

12
Distributed File Storage with User-Hosted Nodes

WebSockets were the transport protocol selected with the goal of allowing real-time

communication between workers and the centralized service. They provide a continuous, low-

latency connection that enables data transmission and control instructions instantly. This

decision was driven by the need for bidirectional communication, which is critical for

coordinating distributed storage operations and maintaining overall system performance. In

addition, WebSockets allow workers to connect without exposing a port, improving security by

reducing the potential attack surface.

To ensure efficient management of encryption keys, the design used techniques such

as client-side key generation and encryption of the private key in the client using a password to

ensure that private keys never end up in the central system, thus improving security. Encrypted

storage of keys in the central system protects them from unauthorized use. Strict access control

ensured that only authorized users could obtain and use their keys. The system also used two

separate passwords: one for authentication and one for key decryption, adding further security

by separating the verification of the user's identity from using the data access keys. The

centralized service played a key role in key management, acting as the Key Management

Server and ensuring the keys were accessible only to authorized users. In addition, secure key

distribution methods have been implemented to maintain the integrity and confidentiality of the

keys throughout their lifetime, like having them encrypted a second time at rest in the database.

Keys must also be rolled frequently, where new user keys are generated on the client side, and

file keys are re-encrypted on the client side. Finally, the Centralized service requires

authentication of any user with the Identity Server to provide access to his encrypted

cryptographic keys, thus acting as the Semi-Trusted Key Management Server.

Files are encrypted using a process designed to ensure data security and

confidentiality. Initially, the user's device generates a unique encryption key for each file in the

client running in the browser, which is used to encrypt the file's contents locally. This encryption

key is then encrypted with the user's private key. The system uses a file key sharing mechanism

to share files, where the file's encryption key is encrypted with the recipient's public key,

ensuring that only the intended recipient can decrypt and access the key and file. The encrypted

file and encrypted file key are then stored securely. This method ensures that even if the

storage is compromised, the data remains unreadable and secure, as a decryption key and

appropriate permissions are required to access the original file. By managing the encryption

process locally on the user's device and using encrypted file keys for sharing, the system

maintains high data security during the storage and retrieval processes.

To increase reliability, the system used several key methods to ensure data integrity

and availability even when workers are terminated or removed. Continuous monitoring of the

status of each worker using the WebSockets API helped detect problems in real time, allowing

immediate intervention in the event of disconnection. When new workers were connected, they

were provided with the least represented data chunks in the network, optimizing chunk

distribution and reducing the risk of a single worker becoming a performance bottleneck or point

of failure. On the other hand, when workers disconnected, their information was immediately

retrieved by the remaining workers and redistributed to maintain redundancy and prevent data

loss. The central service played a crucial role, as it kept a detailed log of the location of file

chunks between workers. By documenting which file pieces were saved to which worker, the

system could quickly reorganize and maintain data availability.

Cryptography

The cryptographic processes designed in this system ensure security and data integrity

throughout the user's interaction with the application. Upon registration, the user's browser

generates asymmetric RSA-OAEP encryption keys and RSA-PSS digital signature keys.

Subsequently, the user is prompted to create a second password distinct from the account

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

13
Distributed File Storage with User-Hosted Nodes

password. This second password is hashed using SHA-512, and the hash is used to produce a

symmetric AES-GCM key, utilized solely on the client side for encrypting and later decrypting

the user's private encryption and digital signature keys. The public and encrypted private keys

are then stored securely in the Key Management Server. During each login, the user must

provide the decryption password, recreating the symmetric key to decrypt the private keys,

thereby enabling access to the user's content.

A random symmetric key is generated to encrypt the file contents when uploading a file.

The File Service then processes the encrypted file for chunking and distribution. After the file is

chunked, for an added layer of security, the chunk is encrypted by a server-side AES-CBC

128bit encryption key, and the SHA-256 hash before and after the encryption is saved for

validation upon retrieval. Simultaneously, the file's symmetric key is encrypted with the user's

public key, and a digital signature of the file's original contents is created using the user's private

key. The encrypted file keys and metadata are stored in the Key Management Service, ensuring

that the unencrypted file remains only in the user's browser for enhanced security. For file

sharing, the file's owner decrypts the file key in their browser and re-encrypts it with the

recipient's public key. This re-encrypted key and corresponding ownership metadata are stored

securely. Revoking access involves the file owner requesting the deletion of this key copy from

the Key Management Service, effectively removing the recipient's authorization. When a user

fetches a file, the necessary keys are retrieved and decrypted using the user's private key. The

decrypted file keys are then used to decrypt the file, and its contents are validated using the

owner's digital signature, ensuring the file's integrity and authenticity. When a user is de-

authorized to access a file, his keys are deleted from the database, and even if he requests the

file from the file service, the reassembly algorithm will not be run due to the lack of

authorization.

Limitations

The above design has the following limitations:

• Initial Workers: For the system to initialize and be made available to the end-users, there

need to be at least 3 available workers. Nonetheless, the system cannot accept files to be

stored.

• Replication Factor: To balance storage efficiency and resiliency to worker failure, a

replication factor of three for all files in the system has been selected.

• Worker failure: Due to the replication factor of three, the system can only recover from two

concurrent worker failures.

• Storage availability: The usable storage is one-third of the available storage because every

file is saved in three copies due to the replication factor.

• Data loss Point: Due to worker disconnections, the system will lose data when the available

storage is less than the used storage.

• Single Point of Failure: Despite being distributed, the reliance on a central control point

introduces a single point of failure.

• Client-Side Hosting: Hosting workers on client infrastructure introduces variability in

performance, depending on the client's resources.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

14
Distributed File Storage with User-Hosted Nodes

Related Work

Survey of Prior Publication

In this section of the thesis, a comparison will be made with the previous publication, "Semi-

Decentralized File Sharing as a Service" (Argyropoulos, Patsakis and Alepis 2022), which aims

to address the limitations of existing file-sharing platforms by combining the benefits of

centralized and decentralized approaches. It proposes a peer-to-peer, semi-decentralized file-

sharing system that leverages the InterPlanetary File System (IPFS) (Protocol Labs 2014) for

decentralization and a microservices centralized architecture for control. This application's

primary goal is to provide a user-friendly yet secure platform for sharing files, using IPFS as the

primary backbone.

On the other hand, this thesis aims to integrate various storage types, including local,

cloud, IPFS, and network-attached storage, into a unified storage pool using a self-hosted

worker-based distributed infrastructure. One major difference is that while the publication acts

as a centralized wrapper around IPFS and uses it exclusively for storage, the thesis aims to use

any storage provider – traditional providers and IPFS – to homologate them using a distributed

architecture comprised of workers hosted on client infrastructure. In terms of redundancy, the

thesis ensures that files are stored redundantly across multiple workers, providing mechanisms

to recover from worker node failures and guaranteeing that files are always available for

retrieval. This contrasts with the earlier publication, which bases its redundancy on the

permanent nature of IPFS.

Lastly, seeing both applications from a bird' s-eye view, we can distinguish that while

the publication aims to accomplish that no usable copy of the file is stored on intermediary

servers using IPFS as the main storage backbone, the thesis seeks to store files redundantly

without being able to interpret their contents while homologating many storage providers into

one storage pool.

Filecoin survey

Filecoin (Protocol Labs 2017) is a decentralized storage network that uses blockchain

technology and IPFS (Protocol Labs 2014) to create a marketplace for buying and selling

storage space, where participants are incentivized with Filecoin tokens to provide and verify

storage services. It ensures data integrity and availability through mechanisms like Proof-of-

Replication and Proof-of-Spacetime, allowing users to store and retrieve data securely and

efficiently.

The Filecoin protocol inspires this thesis. It focuses on creating decentralized storage

networks and aims to provide secure and reliable storage without relying on centralized entities.

Additionally, it uses the principle of the network of independent storage providers to distribute

and store data, which Filecoin implements to incentivize participants to contribute storage

resources to the network.

Filecoin implements an incentive using its cryptocurrency to reward storage and

retrieval miners. The thesis should incorporate a similar incentive mechanism in the future,

possibly integrating a token system to encourage participation and reward users who provide

storage resources. Additionally, Filecoin utilizes proofs such as Proof-of-Replication and Proof-

of-Spacetime to ensure that data is stored, verifiably replicated, and maintained over time. The

thesis should integrate similar proof mechanisms to enhance data integrity and reliability.

Filecoin builds on blockchain technology to provide a transparent, immutable ledger of

all transactions, enhancing security and trust. Integrating blockchain into the thesis can be a

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

15
Distributed File Storage with User-Hosted Nodes

double-edged sword since it can provide transparency and trustworthiness and severely impact

performance and scalability. Also, Filecoin establishes verifiable markets for storage and

retrieval, allowing transparent and decentralized transactions between clients and storage

providers. This is another double-edged sword since the thesis can integrate verifiable contracts

and payments to implement a public storage marketplace, but this can also negatively impact

trust in closed organizations or consortiums. Finally, it is very important to note that Filecoin and

the thesis, while having many similarities and common goals, focus on very different goals –

Filecoin targets the global market, and the thesis targets many smaller installations.

Storj survey

Storj (Storj n.d.) is a decentralized cloud storage platform that utilizes a peer-to-peer network of

nodes to store data securely and redundantly across the globe. By breaking files into smaller

encrypted shards and distributing them to multiple nodes, Storj (Storj n.d.) ensures high

availability, privacy, and security. Users can rent out their unused hard drive space and

bandwidth, earning compensation in Storj (Storj n.d.) tokens, while data owners benefit from a

scalable and resilient storage solution without relying on a single centralized provider.

Both the thesis and Storj (Storj n.d.) focus on distributed storage systems that aim to

enhance data security, privacy, and availability through decentralization. The thesis proposes a

system where storage nodes, or workers, contribute to a unified storage pool managed by a

centralized control infrastructure, ensuring redundancy and high availability. Similarly, Storj

(Storj n.d.) utilizes a decentralized approach, distributing encrypted data shards across multiple

nodes worldwide to mitigate risks of data breaches and ensure consistent availability. Both

systems emphasize security through encryption and redundancy, aiming to maintain data

integrity and confidentiality even when some nodes fail or are compromised.

Inspired by Storj (Storj n.d.), the thesis could integrate more advanced peer-to-peer

communication protocols to enhance node autonomy and reduce reliance on a centralized

control point. Storj's (Storj n.d.) use of erasure codes instead of simple replication for

redundancy could also be adopted to improve storage efficiency and reduce overhead costs.

Additionally, the thesis could benefit from implementing a marketplace model like Storj (Storj

n.d.), where storage providers are incentivized through a payment system for their contributions,

potentially leading to greater scalability and resource optimization. Finally, adopting a more

modular architecture as seen in Storj (Storj n.d.) could facilitate easier updates and

maintenance, ensuring long-term sustainability and adaptability of the system.

Other literature survey

OctopusFS (Kakoulli and Herodotou 2017) a distributed file system manages multiple storage

tiers, including memory, SSDs, HDDs, and remote storage, to optimize data management

based on performance and capacity characteristics. It focuses on managing multiple storage

tiers (memory, SSDs, HDDs, NAS) with pluggable policies for data management and

emphasizes tiered storage. On the other hand, this thesis focuses on integrating different

storage types into a unified storage pool, thus offering greater flexibility and usability.

Additionally, OctopusFS utilizes a multi-master/slave architecture for scalability, with policies

aimed at maximizing throughput and balancing load. However, the emphasis is on tiered

storage management rather than a unified, scalable approach, which is the focus of the thesis.

OctopusFS configures workers to manage data blocks on various storage media but does not

focus on the autonomy and independence of worker nodes as strongly. The thesis incorporates

the management of multiple storage tiers and optimizing data management based on

performance and capacity characteristics from OctopusFS. It adapts the concept of tiered

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

16
Distributed File Storage with User-Hosted Nodes

storage management to integrate various storage types into a unified pool, ensuring flexibility

and usability.

The paper "A Blockchain-Based Hierarchical Semi-Decentralized Approach Using

IPFS" (Athanere and Thakur 2022) presents a novel system for secure data sharing, combining

the decentralized storage capabilities of IPFS with the security and immutability of blockchain

technology. It outlines a two-level key management system to ensure data integrity and access

control, aiming to eliminate single points of failure. It primarily relies on IPFS for decentralized

storage, limiting the integration capabilities with other types of storage media, while the thesis

supports multiple storage types. Additionally, the paper does not focus on creating a unified

storage pool like the thesis but instead focuses on managing data in a more segmented manner

using IPFS, thus limiting ease of use and possible use cases. Furthermore, blockchain-based

systems like this paper suffer from higher communication overhead due to the need to

broadcast transactions to the blockchain and synchronize blockchain nodes. On the other hand,

by integrating a centralized control point, this thesis reduces the communication overhead

typically associated with purely decentralized systems, improving performance and

dependability. There are points that this thesis incorporates from this paper, like the principle of

ensuring data integrity and access control through a hierarchical semi-decentralized approach.

It adopts a two-level key management system to eliminate single points of failure and supports

multiple storage types for enhanced flexibility.

Both this thesis and FileDES (Minghui, et al. 2024) aim to provide secure, scalable

decentralized storage solutions, leveraging client-side encryption to ensure data privacy and

eliminate single points of failure. This novel application distinguishes itself by integrating diverse

storage types and employing a centralized control infrastructure for efficient node management

and consistent performance, whereas FileDES (Minghui, et al. 2024) focuses on decentralized,

encrypted storage without explicitly addressing such integration. However, FileDES's (Minghui,

et al. 2024) use of advanced proof systems like Proof of Encrypted Storage and rollup-based

batch verification for scalable proof generation and verification, along with its robust incentive

mechanisms, presents areas for potential enhancement in this application. The thesis leverages

client-side encryption to ensure data privacy and eliminate single points of failure from FileDES

and it integrates diverse storage types and employs a centralized control infrastructure for

efficient node management and consistent performance.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

17
Distributed File Storage with User-Hosted Nodes

Concrete implementation of the System

Figure 1 is focused on a bird’s eye view of the software system illustrating the big picture of the

system. The primary focus of this diagram is the users and their roles. The two types of users in

the landscape are the user, who can upload files to the system, verify the existence of any file,

fetch his files, share a file with another user, and transfer the ownership of a file to another user

or group of users. The other user type is the File Storage Provider, which hosts an instance of

the File Storage Worker and provides storage resources to the network through it.

The File Distribution system is the central node of this architecture and the main

connection point for all application consumers. It serves the React-based frontend client to the

users and exposes a WebSocket API—through SignalR—where the File Storage Workers

connect to and receive commands. It is deployed on publicly accessible infrastructure in Docker

Containers and supports horizontal and vertical scaling using a Redis SignalR backplane and a

Kubernetes cluster.

The File Storage Worker is the distributed node of this architecture and is deployed in

infrastructure owned and operated by the File Storage Providers. It consumes many different

storage media provided by the client and receives commands from the File Distribution System

over the SignalR connection. It also contains a local database that holds the records of the

individual chunks of files stored along with their location. For it to connect to the network, an API

key needs to be requested from the File Distribution System and provided upon the First

connection with the SignalR Hub. Furthermore, it requires the connection configuration to the

available storage mediums along with its size limit.

Figure 1: System Context Diagram

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

18
Distributed File Storage with User-Hosted Nodes

Technical Components of the System

File Storage Worker Analysis

Figure 2: Container Diagram - File Storage Worker

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

19
Distributed File Storage with User-Hosted Nodes

Figure 2 provides a more detailed view of the File Storage worker and its interactions with the

software ecosystem. It is a component written in C# .NET Core 8 (Microsoft 2024) and utilizes a

SignalR client to connect to the File Distribution System. Every worker is either owned by the

host of the File Distribution System or a File Storage Provider, who is anyone with available

storage resources to add to the distributed network. For the worker to connect and use the

available storage resources, it accepts the connection options in the form of connection strings

in its startup configuration. The worker can interact with any storage using the Simple Storage

Service (S3) API, like Amazon S3, Ceph, etc. It can also interact with Azure blob Storage and

any file System, either over File Transfer Protocol (FTP) / Secure Shell (SSH) File Transfer

Protocol (SFTP) or directly using a mount. Lastly, it can control private or public InterPlanetary

File System (IPFS) nodes and nodes in an IPFS cluster. Because the storage providers are

implemented using the Adapter and Factory Design Patterns, it is quite easy to add more in the

future if support for more storage types is needed. In the startup configuration, it is necessary to

add a limit to the amount of storage the worker can provide to the network.

 When the worker first connects to the File Storage and Key Management Service

SignalR hub, the unique worker identifier is provided to authenticate and identify the worker.

After that, the worker broadcasts all the files that it contains from previous executions, to

synchronize with the service and receive a deletion event for any files needing to be deleted.

After the synchronization process, if the worker has more than half of the total storage capacity

available, a request is made to the Service, and the least represented chunks of data get stored

in the worker.

 The worker, after the initialization process, provides a set of available methods for the

Service to invoke. Primarily, it provides the method for file chunk storage, which receives the file

chunk's unique identifier and the file chunk in the form of an array of bytes. If there are multiple

storage providers available, it runs a decision algorithm to select the appropriate provider. After

that, it saves the file chunk and registers it in the correlation database along with the file chunk's

unique identifier and the location where it is stored. Finally, it returns to the Service an indication

that the operation was successful.

 Another method provided by the worker is the retrieval of a file chunk using its unique

identifier. Firstly, the database is queried to fetch the location of the file chunk, and the

appropriate storage provider is requested from the File Repository Factory implementation.

Then the file is fetched and either returned as a response or returned using a Hub method

invocation, depending on the provided parameters. Similarly, there is the Deletion event, where

a file chunk identifier is requested for deletion and the metadata entry along with the file chunk

is deleted. In case the file is saved in IPFS, the metadata entry is deleted, and the CID is un-

pinned, causing the file chunk to become garbage, as a result allowing for a “destroy” operation

in an IPFS node, something not natively supported by the design of IPFS (Politou, et al. 2020).

 Lastly, to optimize the performance of the Service on File upload, a method is created in

the worker that accepts a file size and returns whether there is enough room to accept that file.

This is used by the Service to decide which workers should send the file without making

complex queries to the Service Database.

The above design of the worker has a lot of advantages – the most significant being

that it does not have any knowledge of the contents stored within it. This happens because it

hosts parts of encrypted files and does not know which chunks compose the original encrypted

file, or their order. Any file within the system after it is split into chunks, can be stored partially in

many mediums, e.g. Some chunks of the file are stored in IPFS and some other chunks in S3

storage. This further ensures that even in the event of the worker’s storage being compromised

by an attacker or the storage medium not being fully trusted (Karapapas, Polyzos and Patsakis

2024), the data is unusable, and the original files cannot be retrieved.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

20
Distributed File Storage with User-Hosted Nodes

File Distribution System Analysis

To further understand how the File Distribution System fits in and interacts with the overall

environment, we will zoom in on the previous diagram and end up with a container diagram of

the File Distribution System in Figure 3. We define a container as a separately runnable and

deployable unit that executes code, contains an external service, or stores data. The technology

used to achieve that result is Docker, which is the most widely used open-source

containerization platform. It packages the developed services or external applications into

standardized executable components by combining the source code with any needed Operating

System libraries and dependencies into a self-contained container. This zoomed-in view of the

diagram illustrates the high-level architecture of the software system and how data and

responsibilities are distributed across it. It also highlights the major technological choices and

how the containers communicate with each other.

 The Containers of the File Distribution System can be grouped into three distinct layers.

The first layer is the client-side application, written in JavaScript using React. The second layer

is the server-side application layer, which contains the Identity Server, based on Keycloak, and

the File storage and Key management Service, written in C# using .NET core 8 (Microsoft

2024). The last layer is the Data storage layer, which contains the Databases used by the above

services, in a Postgres Relational Database Management System (RDBMS) Container, and the

Application cache used by the File storage and Key Management Service in a Redis-Stack

Container.

Figure 3: Container Diagram - File Distribution System

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

21
Distributed File Storage with User-Hosted Nodes

Frontend Client

The Frontend client is a JavaScript application based on React (Meta Open Source n.d.). It

allows users to interact with the available Services in a user-friendly way. Integrating with the

Keycloak Identity Server uses the @axa-fr/react-oidc npm package, the @mui npm package for

the UI components based on Google Material Design, and the browser’s crypto API for the

cryptography functions.

When the user registers with the application, an account is created in the Keycloak

Identity Server (Keycloak 2024). This account holds the login credentials and the user's role

information. Immediately after the first registration, the browser will generate a set of

asymmetric RSA-OAEP encryption keys and asymmetric RSA-PSS digital signature keys. After

that, the user is prompted for a second password, different than the account password, and

from its SHA-512 hash, a symmetric AES-GCM key will be generated, which will be used only

client-side to encrypt and later decrypt the user's private encryption and digital signature keys.

After that step, the public and encrypted private keys are sent to the Key Management Server

and saved with the user's identity. After every login, the user is asked for the decryption

password, the symmetric key is recreated, and the private encryption and signature keys are

decrypted, thus allowing the user to access his content.

When a file gets uploaded to the frontend client, a random symmetric key is generated

and used to encrypt the file contents. After that, the encrypted file is sent to the File Service,

where its chunking and distribution occur. In parallel, the file's symmetric key is encrypted using

the user's key, and the digital signature of the original file's contents is created using the user's

key. The encrypted file's keys and metadata are then saved in the file service database. It is

crucial for the security of the implementation that the file exists unencrypted only in the user's

browser.

When a file's owner shares it with another user, its key is fetched and decrypted in the

user's browser. After that, using the recipient's public key, a copy of the file key is encrypted and

saved along with ownership metadata in the File Service's Key Management Service. When the

file access is revoked, the file owner requests the deletion of this key copy from the Key

Management Service, thus removing the authorization to that user.

When a user fetches a file, the appropriate keys are fetched from the server alongside

it. The user's private key then decrypts the keys. Using the decrypted file keys, the file is

decrypted, and its contents are validated using the owner's digital signature.

Other notable functionalities that the frontend client provides to the end-user are a user-

friendly user interface to manage his files and a dashboard to discover other available users. A

dashboard is also available to administrators that shows the available storage workers, their

storage capacity, and their status.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

22
Distributed File Storage with User-Hosted Nodes

Identity Server

The identity server selected for this application is Keycloak (Keycloak 2024), an Identity and

Access Management (IAM) software. Its primary goal is to verify the identity of users or systems

requesting access and to evaluate a set of rules determining what features and assets those

users or systems can access.

Identity management and access management, though related, are distinct entities.

Identity management focuses on verifying users' identities, while access management maps

these verified identities to specific permissions within an environment. Typically, access

management relies on an Identity Provider to verify the user. It then builds on this verification to

define what the user or system can do within a given environment. Role-Based Access Control

(RBAC) is a common method used to implement an access control layer.

A support layer, usually consisting of a set of protocols, is added to facilitate this access

management in conjunction with other applications. OAuth2 is a standard protocol often used to

manage access control parameters on the authorization software side and provide guidelines

for applications consuming it. Keycloak integrates the functionalities of both an Identity Provider

and an Authorization Server, offering a complete, open-source IAM solution. It supports out-of-

the-box integrations with social login sites, other identity providers, and federated external user

databases, such as LDAP servers.

In this novel application, a dedicated Realm has been established within Keycloak.

Within this Realm, appropriate clients have been configured for each specific service, ensuring

that all necessary access and identity management requirements are met. Local roles have

been defined within each client for finer control over permissions. These roles specify the exact

capabilities and access rights for users within the context of each service. Additionally, global

compound user roles have been created to aggregate multiple local roles, providing a

streamlined way to manage user permissions across the entire application.

The storage of this configuration data and user data is handled by a PostgreSQL

database. This database is deployed as a Docker (Docker 2024) container, which provides an

isolated and consistent environment for the database, enhancing both security and scalability.

This setup ensures that data integrity and availability are maintained, even as the application

scales.

Every user must initially register with the identity server before accessing the

application. This registration process involves creating a unique user account within Keycloak,

which then maps to the roles and permissions defined within the Realm. Once registered, users

gain full access to the application's features according to their assigned roles. This streamlined

registration and access management process ensures that only authenticated and authorized

users can interact with the application, thereby enhancing security and user management

efficiency.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

23
Distributed File Storage with User-Hosted Nodes

File Storage and Key Management Service

The File Management Service is developed in C# utilizing .NET Core 8 (Microsoft 2024). This

service is responsible for the encryption keys, authorization policies, and the control of worker

processes related to user files. Specifically, it securely stores users' encrypted keys and

manages the distribution and authorization of files shared by users among the workers. The

authorization policies include multiple sharing options: sharing a file with another user, sharing

with a group, sharing anonymously via a public URL, or keeping the file personal.

Internally, the File Storage and Key Management Service implements many Design

Patterns and algorithms to ensure Data Availability and Data Integrity. The workers are

connected to the Service using SignalR, a library that facilitates real-time web functionality,

allowing server-side code to push content to clients instantly as it becomes available and

supports bi-directional communication between server and client over WebSockets. This allows

the Service to communicate with the workers and exchange information – file chunks and

commands. Also, it allows for monitoring the connected workers, which in turn allows the

system to spread the files of any worker that disconnects to the others that are available.

Additionally, internally the Service uses the Command-Query Responsibility Segregation

(CQRS) Design Pattern, which separates read and write operations for a data store, allowing for

optimized and scalable handling of commands (writes) and queries (reads). This allows for the

efficient handling of heavy tasks - like a file initially uploaded to the system – and the optimized

and fast composition of a file from the chunks redundantly stored in the distributed workers.

Figure 4: Worker Connection Algorithm

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

24
Distributed File Storage with User-Hosted Nodes

To thoroughly understand the mechanisms implemented within the Service, it is

necessary first to explain the foundational principles. The first Algorithm is the Worker

connection algorithm, outlined in Figure 4. For the worker to connect to the Service, it must first

be registered by an administrator and assigned a unique identifier, which will be, in turn,

validated during the establishment of the SignalR connection. Upon the client's first connection,

the connection Identifier and worker’s available data capacity are saved in the database along

with the connection status. After that, to synchronize the worker and the Service, the worker

sends the identifiers of the chunks of files it contains from previous connections. Any chunks of

files present in the worker of earlier connections and deleted from the Service in the timespan

that the worker has been offline are found, and garbage is collected. Any chunks still relevant to

the service are registered as existing. After that, it is populated with the chunks of data it should

host, selected using an algorithm that queries the database, and finds the chunks of files least

represented in the network, which sums up to half of the available capacity of the newly

connected worker. The highest priority chunks are the ones that are represented three or fewer

times in the network and are always added to newly connected workers. When a worker

disconnects or the connection drops, its connection status is updated in the database, and the

chunks of files hosted by the worker are distributed among the other available workers. The goal

of this mechanism is always to ensure that all the file chunks are distributed to at least three

different workers, allowing up to two concurrent failures of workers before any data is lost or

temporarily unavailable. To ensure that the Service is always available, it is run in multiple

instances on different machines, and a Redis cluster backbone is used to synchronize and

Scale the SignalR hub. The database is deployed in a cluster, regularly snapshotted, and

backed up on multiple machines.

Figure 5: File Splitting into chunks

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

25
Distributed File Storage with User-Hosted Nodes

Figure 6: File Upload Process.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

26
Distributed File Storage with User-Hosted Nodes

Figure 7: State of workers after file upload.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

27
Distributed File Storage with User-Hosted Nodes

Figure 8: File Upload Algorithm

When a client-side encrypted file is initially uploaded to the Service, an algorithm

illustrated in Figure 8, is run in a background job using Hangfire, a C# .NET core library that

enables efficient background processing, that chunks the file and distributes it along the

connected workers. Firstly, the size of the file and its metadata are saved to the database, and

the file is assigned a unique identifier. After that, the file contents are split into chunks - as

illustrated in Figure 5 - with the following rules: Files smaller than 1 byte cannot be uploaded. All

files must be split into at least two chunks. The chunk size is from one byte up to 32 Megabytes.

Each chunk’s size is random. After the file is split into chunks, the metadata of each chunk –

order, size, parent file identifier - is saved to the Database. After all the above, a message is

broadcasted to the connected workers, with the size of the complete file, and any worker with

available space for the whole file responds. If there are less than 3 workers with enough space

to receive the entire file, the file cannot be uploaded. If there are exactly three workers with

enough space to hold the entire file’s chunks, they all receive all the shuffled file chunks, and all

the chunks are prioritized for distribution once any new workers connect. If more than three

workers respond, then the file chunks are shuffled and distributed partially to each worker

following these rules: All file chunks cannot be present in one worker. All chunks must be saved

to at least three workers. The chunks must be shuffled before distribution. An example of this

process for three chunks and four workers is illustrated in Figure 6. Importantly, after the upload

process is completed, the original encrypted file is never present whole in the Service. This

mechanism ensures that any file uploaded to the system is distributed to multiple workers,

providing redundancy in the event of a worker failure. Because of the minimum replication factor

of three copies of all chunks of files, the storage is efficiently managed – one-third of the

available storage is usable - but the system can only recover from two concurrent worker

disconnects or failures.

When a file is queried from the Service, the algorithm illustrated in Figure 9 is run.

Firstly, the chunks are retrieved from the database, the chunk identifiers are then broadcasted

to all connected clients, and the response for each chunk is awaited. Each file chunk request is

resolved once the first available worker responds with the correct content, which is validated by

its SHA-512 hash, both encrypted by the server and decrypted, and all further duplicate

responses are ignored. An example of this process is illustrated in Figure 10. Once all the file

requests have been resolved, the file chunks are aligned according to their order, and the final

response is generated and returned to the client, as illustrated in Figure 11. If all the available

clients respond and at least one of the chunks of the file is not found, then the file is invalid and

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

28
Distributed File Storage with User-Hosted Nodes

not returned. Because the fastest worker response for each file is used, the file retrieval time is

relative to the quickest response for each chunk. Finally, the file is reassembled and validated

by its SHA-512 hash. When a file is requested multiple times, and if there is enough storage in

the network, a job is triggered to replicate the file’s chunks to more workers than the replication

factor of three, further accelerating the query times. Notably, the editing of a file is implemented

by first uploading the new version of the file to the system and then removing the old version.

Due to this, it is straightforward to maintain a version log of the file's history by not deleting the

old versions.

Last but not least, the Service is responsible for acting as the Key Management Service

and storing the File Access Control List (FACL) for each file. When a user generates the

asymmetric keys in the browser and encrypts the private asymmetric key with the password-

based symmetric key, the resulting ciphertext and public key are stored in a Database Table

and the user’s unique identifier. The Private key ciphertext can only be accessed by its owner,

and anyone can access the public key. When the user shares a file with another user, the file’s

symmetric key is encrypted with the recipient’s public asymmetric key, and the resulting

ciphertext, along with both user’s unique identifiers, is stored in the FACL. When access to a

user is revoked, the corresponding entry in the FACL is removed. Before a user can fetch a file,

the FACL entry is checked, and only if it exists in the file is the decryption key returned to the

user. This ensures that the files are accessible only by the authorized users and only for the

span of time that the authorization is active. If a user that is not authorized tries to access the

file, the server will not run the algorithm to assemble the encrypted file from the workers.

Furthermore, the user will be unable to access the decryption key because it will be deleted

from the database, resulting in a secure way to de-authorize a user.

Figure 9: File Retrieval Algorithm

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

29
Distributed File Storage with User-Hosted Nodes

Figure 10: File Retrieval Process.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

30
Distributed File Storage with User-Hosted Nodes

 Another very important mechanism that runs in the file storage service is the ability to

detect when there is a graceful or ungraceful exit of a worker and the system's overall health.

This uses some mechanisms implemented in the service, the first of which is the SignalR polling

mechanism, a health check built in the SignalR server that determines if a connection is still

alive or should be garbage collected. If it is garbage collected, an event fires with the connection

identifier, which is used by the service to determine from the database the worker identifier, and

the files that are stored in the worker are distributed to other available workers. The second

mechanism implemented to achieve this is a periodical content ping, where the server

broadcasts the request for the hash of some chunks to the clients. All clients' responses are

awaited and validated against the database records, and any chunk copies that have

differences are removed and added to another worker.

Figure 11: File Reassembly from chunks.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

31
Distributed File Storage with User-Hosted Nodes

Performance evaluation

This section of the thesis presents a performance evaluation of the thesis. Performance is

critical in this application because it is designed to integrate various storage types and manage

many user-hosted workers. Therefore, it needs to scale efficiently to handle increasing amounts

of data and users. The performance also directly impacts the system's ability to provide

redundancy and high availability. Quick recovery from node failures and efficient distribution of

file chunks across nodes make it possible on a large scale.

Evaluation of System Performance using the Message Quantity metric

File Upload Process

To calculate the number of messages sent during the file upload process, we follow the steps

outlined in the system overview:

• Broadcast to Workers: The service broadcasts a request to all connected workers for

available storage space. Assuming n workers, Messages: n

• Worker Responses: Each worker responds with their available space. Messages: n

• Chunk Distribution: The service splits the file into chunks and sends each chunk to at

least three workers. Assuming m chunks, Messages: 3*m

• Worker Acknowledgment: Each worker acknowledges the receipt of each chunk.

Messages: 3*m

Total Messages for file upload: n + n + 3*m + 3*m = 2*n + 6*m

File Retrieval Process

To calculate the number of messages sent during the file retrieval process, we follow the steps

outlined in the system overview:

• Broadcast to Workers: The service broadcasts a request message to all connected workers

with unique file chunk identifiers. Assuming n workers, Messages: n

• Worker Responses: Each worker responds with the requested file chunks. We only use the

first response for each chunk and discard the rest. Assuming m chunks: Messages: m

Total Messages for file retrieval: n + m

Worker Connection Process

To calculate the number of messages sent during the worker connection process, we follow the

steps outlined in the system overview:

• Worker Registration: The worker sends a connection request to the Service with its unique

identifier and available storage capacity. Messages: 1

• Synchronization Request: The Service requests the list of file chunks currently stored on the

worker to synchronize its records. Messages: 1

• Worker Response: The worker responds with the list of file chunks it currently holds.

Messages: 1

• Deletion of outdated chunks: The Service sends to the worker the list of file chunk unique

identifiers to delete. Messages: 1

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

32
Distributed File Storage with User-Hosted Nodes

• Worker Population: The service Sends the worker the least represented file chunks in the

network to save. Assuming m chunks and n workers. Messages: n-1 + m (retrieval) + m

(Save) = 2*m + n – 1

Total Messages for worker connection Process: 1 + 1 + 1 + 1 + 2*m + n – 1 = 2*m + n + 3

Worker Disconnection Process

To calculate the number of messages sent during the worker disconnection process, we follow

the steps outlined in the system overview:

• Broadcast to Remaining Workers: The Service broadcasts a request to remaining

connected workers. Assuming n workers, Messages: n

• Remaining Workers Respond: Each remaining worker responds with available storage

capacity. Messages: n

• Chunk Redistribution: The Service distributes the file chunks found in the database to other

workers. Assuming the disconnected worker had m chunks and each chunk needs to be

replicated to one other worker: n + m (retrieval) + m (save) + m (acknowledgment) = n + 3m

Total messages for worker disconnection process: n + n + n + 3*m = 3*n + 3*m

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

33
Distributed File Storage with User-Hosted Nodes

Evaluation of System Performance using Time-based metrics

To evaluate the system performance, we will record the time needed to complete some frequent

operations, such as uploading and retrieving a file, using 3 and 4 worker instances, all uploading

to AWS S3. The File Storage Service and the workers are deployed in a local network Virtual

machine (4 cores, 4GB RAM) inside docker containers in an Ubuntu server 24.04 host running

in a local network VMware ESXi hypervisor. The timing is calculated using the C# .NET System

Diagnostics and starts upon arrival of the request to the controller method and ends on the

response generation.

Figure 12: Performance Evaluation Graph

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

34
Distributed File Storage with User-Hosted Nodes

Analyzing the graph of Figure 12 We can see that the read-and-write performance

scales linearly as the file size grows. Additionally, adding more workers decreases the read

times due to the first response mechanism, and increases write times due to the additional

communication overhead. These numbers indicate that the read performance scales efficiently

with the addition of more workers, and the write performance scales linearly with file size.

Adding more workers to the write operation causes some delays, most probably caused by IO

bottlenecks and network delays.

Performance Evaluation Conclusions

The system's performance evaluation outlined some strengths and some areas for

improvement. The system can efficiently scale the read performance by adding more workers,

mainly due to the selection of the first valid response from the workers. The main bottleneck of

the read operations is the network delays between both File Service and Workers and workers

and storage infrastructure. The read performance can be improved by adding a cache to the

workers and introducing a storage classification, where the most frequently accessed chunks

get stored in the most performant workers and cached locally to the File Service.

On the other hand, the write performance, while it scales linearly with file size,

experiences a decrease in performance with the addition of more workers. This is because the

file was uploaded to multiple workers, generating a traffic spike. This can be heavily improved

by adding a write cache layer, where the chunks are locally cached to the File Service and

incrementally sent to the workers when network resources are available. Another technique that

can significantly improve overall system performance is the addition of a gossip protocol, where

the workers can communicate directly with each other to more efficiently spread data on file

upload and worker exit.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

35
Distributed File Storage with User-Hosted Nodes

Evaluation of Threat Mitigation Strategies

The proposed solution addresses the previously mentioned threat assumptions through a

combination of security measures and architectural design choices. To mitigate the risks

associated with eavesdropping, the system is designed with the principle that all data

transmitted between nodes and the central control infrastructure is encrypted and only partial

chunks, meaning that a whole file is never transmitted to workers, ensuring that even if data is

intercepted, it remains unintelligible to attackers. To counter denial-of-service (DoS) attacks, the

system incorporates traffic filtering and rate-limiting mechanisms through which it communicates

with the workers. These measures help maintain service availability and protect against

downtime and data loss.

For the threats related to individual storage nodes or workers, the system assumes

these cannot be fully trusted and may be compromised or abused. To mitigate these risks, each

client-side encrypted file is split into further encrypted chunks, with each chunk distributed

across multiple nodes. This approach ensures that even if a node is compromised, the attacker

cannot access complete data, preserving data integrity and confidentiality. Additionally, the

system implements authorization and access control policies, preventing storage nodes from

performing unauthorized operations or accessing data beyond their permitted scope. The

system uses client-side encryption to address the threat of authorized entities attempting

unauthorized access to other files, ensuring that only entities with the correct decryption keys

can access the data. Additionally, before a file is returned to a user, the user’s authorizations

are checked, meaning that if there are no keys in the Key Management Service, the file will not

be returned to the user.

The system also addresses the challenges posed by periodic worker failures and

disconnections by the system’s redundancy and failover mechanisms. Data is stored

redundantly across multiple workers, allowing the system to recover and maintain data

availability even when some fail. Furthermore, the system continuously monitors the status of

each worker and redistributes data as needed to ensure redundancy. In the case of

disconnections caused by network issues or maintenance activities, the system’s design

ensures that data accessibility is maintained by reallocating tasks to connected workers.

Use Cases

This thesis presents a versatile distributed storage solution that can be applied across various

use cases, particularly benefiting large organizations and corporations. These entities often

require robust backup and disaster recovery systems to safeguard critical data. The proposed

distributed architecture ensures data redundancy and high availability, making it an ideal choice

for maintaining business continuity in the face of hardware failures or cyberattacks. Additionally,

the system's ability to integrate and unify different storage mediums allows organizations to

optimize their existing storage infrastructure, reducing costs and improving efficiency. For

instance, corporations can leverage local, cloud, and network-attached storage mix to create a

cohesive storage pool that meets their diverse needs.

This storage solution can greatly benefit educational institutions such as universities

and schools. These institutions often face short-term bulk storage requirements, such as during

exam periods or research data collection phases. The flexibility and scalability of the proposed

system make it well-suited for handling such temporary storage demands efficiently.

Furthermore, the system's encryption and access control mechanisms ensure the privacy and

integrity of sensitive academic and research data. The capability to perform due diligence,

coupled with features like IPFS destruction, enables secure and thorough data management,

ensuring that obsolete or sensitive data can be irreversibly deleted when necessary. This makes

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

36
Distributed File Storage with User-Hosted Nodes

the system a valuable asset for educational institutions aiming to enhance their data storage

and management capabilities.

Conclusion

Limitations

Despite its advantages, the proposed system has several limitations. One significant limitation is

the reliance on a central control point, which introduces a potential single point of failure,

compromising the system's overall resilience. Additionally, the requirement for a minimum of

three workers to ensure adequate data redundancy means that the system will not function with

fewer nodes, limiting its applicability in smaller-scale deployments. The replication factor of

three also results in higher storage overhead, as only one-third of the total storage capacity is

usable for actual data storage. Furthermore, hosting workers on client infrastructure introduces

variability in performance depending on the client's resources and available network

infrastructure, potentially affecting the system's reliability and efficiency.

The cryptographic implementation, while robust, also presents limitations, particularly

regarding key management. If a file encryption key becomes compromised, the affected file will

be re-encrypted with a new key. This resource-intensive process requires secure re-distribution

of new keys and re-encryption of data across distributed nodes. Ensuring that all instances of

the compromised key are replaced without data loss or unauthorized access adds another layer

of complexity. Finally, while the system currently integrates various storage mediums, its

scalability and performance could be challenged by the need to handle increasingly diverse

storage types and large volumes of data and users.

Future work

This thesis presents a novel application we developed to homologate user storage contributions

into a unified pool, effectively integrate diverse storage types, and ensure high redundancy and

availability. The system achieves scalable and efficient distributed node management by

employing a centralized control infrastructure, enhancing overall performance. This approach

optimizes resource utilization and ensures consistent and reliable access to stored data across

the network.

Future work will focus on incorporating advanced proof systems, such as Proof of

Encrypted Storage (Minghui, et al. 2024), Proof of Replication (Protocol Labs 2017), and Proof

of Spacetime (Protocol Labs 2017) and incentive mechanisms (Protocol Labs 2017), possibly

using blockchain technology to enhance data integrity and user participation. Furthermore, the

system will undergo additional security enhancements to protect user data and ensure

compliance with regulatory standards, ultimately strengthening the system's overall robustness

and appeal. Cryptography implementation can be significantly improved by introducing more

advanced cryptography concepts, like zero-knowledge proofs, proxy re-encryption, etc.

Leveraging the system’s modular design, more storage connectors can be easily added in the

future to accommodate more types of file storage. Lastly, many technologies available should

be investigated, including the possibility of replacing SignalR transport, like IPFS Pub-Sub,

OrbitDB, and WebRTC. Lastly, the findings of the performance evaluation can be implemented

with the goal of significantly accelerating the read-and-write performance of the system and

improving the efficiency of the system.

MSc Thesis – Μεταπτυχιακή διατριβή Vasileios Argyropoulos

37
Distributed File Storage with User-Hosted Nodes

Bibliography

Argyropoulos, Vasileios, Constantinos Patsakis, and Efthimios Alepis. 2022. "Semi-

Decentralized File Sharing as a Service." 2022 13th International Conference on

Information, Intelligence, Systems & Applications (IISA). Corfu, Greece: IEEE. 1-8.

Athanere, Smita, and Ramesh Thakur. 2022. "Blockchain based hierarchical semi-decentralized

approach using IPFS." Journal of King Saud University Computer and Information

Sciences 1523-1534.

Docker. 2024. Docker. Accessed 07 15, 2023. https://www.docker.com/.

Kakoulli, Elena, and Herodotos Herodotou. 2017. "OctopusFS: A Distributed File System with

Tiered Storage." 05: 65-78.

Karapapas, Christos, George C. Polyzos, and Constantinos Patsakis. 2024. "What's Inside a

Node? Malicious IPFS Nodes Under the Magnifying Glass." In ICT Systems Security

and Privacy Protection, 149--162. Springer Nature Switzerland.

Keycloak. 2024. keycloak. Accessed 06 15, 2024. https://www.keycloak.org/.

Kubernetes. 2024. k8s. Accessed 06 15, 2024. https://kubernetes.io/.

Meta Open Source. n.d. React. Accessed 2024. https://react.dev/.

Microsoft. 2024. C# .NET core 8. Accessed 06 15, 2024. https://learn.microsoft.com/en-

us/dotnet/core/whats-new/dotnet-8/overview.

Minghui, Xu, Zhang Jiahao, Guo Zhang, Cheng Xiuzhen, Yu Dongxiao, Hu Qin, Li Yijun, and

Wu Yipu. 2024. "FileDES: {A} Secure Scalable and Succinct Decentralized Encrypted

Storage Network." CoRR abs/2403.14985.

Politou, Eugenia, Efthimios Alepis, Constantinos Patsakis, Fran Casino, and Mamoun Alazab.

2020. "Delegated content erasure in IPFS." Future Generation Computer Systems 956-

964.

Protocol Labs. 2017. "Filecoin: A Decentralized Storage Network." 07 19.

—. 2014. IPFS. Accessed 06 15, 2024. https://ipfs.tech/.

Storj. n.d. Storj: A Decentralized Cloud Storage Network. Accessed 2024.

https://www.storj.io/storjv3.pdf.

