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Αξιολόγηση της Επίδοσης Επίγειων και Εναέριων Δικτύων Επικοι-
νωνιών

Χαράλαμπος Αρμενιάκος

(Περίληψη)

Καθώς μεταβαίνουμε με γοργούς ρυθμούς προς την εποχή δικτύων 6ης γενιάς, γίνεται περισσότερο
προφανές ότι ένα βασικό χαρακτηριστικό της νέας αυτής εποχής θα είναι η αδιάκοπτη συνδεσιμό-
τητα τόσο για τους χρήστες όσο και για συσκευές τύπου μηχανών για την υποστήριξη μιας πληθώ-
ρας εφαρμογών. Για την επίτευξη του στόχου αυτού, η ακαδημαϊκή και η βιομηχανική κοινότητα
στρέφεται προς επίκαιρες τεχνολογίες όπως η μικροκυματική ζώνη συχνοτήτων και τα μη επαν-
δρωμένα εναέρια οχηματα. Ωστόσο, η εισαγωγή αυτών των τεχνολογιών έρχεται αντιμέτωπη με
ορισμένες προκλήσεις. Προκειμένου να αντιμετωπιστούν αυτές οι προκλήσεις και να προταθούν
λύσεις για το σχεδιασμό των κυψελωτών δικτύων 6ης γενιάς, απαιτείται λεπτομερής αξιολόγηση
της επίδοσης σε επίπεδο συστήματος, η οποία είναι και ο στόχος της παρούσας διατριβής.
Η ολοκληρωμένη αξιολόγηση της επίδοσης των επίγειων δικτύων στη μικροκυματική ζώνη συχνο-
τήτων,προϋποθέτει ότι οι χρήστες και οι σταθμοί βάσης είναι εξοπλισμένοι με κεραίες ικανές να
σχηματίσουν κατευθυντικούς λοβούς. Ωστόσο, με την εισαγωγή των δυνατοτήτων διαμόρφωσης
του λοβού ακτινοβολίας και το αναπόφευκτο σφάλμα σκόπευσης, είναι προφανές ότι και οι δύο
πολικές συντεταγμένες πρέπει τώρα να ληφθούν από κοινού υπόψη στη πολιτική συσχέτισης του
χρήστη με κάποιο σταθμό βάσης καθώς και στην αξιολόγηση της επίδοσης του δικτύου. Αρχικά,
στην παρούσα διατριβή, λαμβάνονται υπόψη οι πολικές συντεταγμένες των σταθμών βάσης και ε-
ξάγονται σε αναλυτική μορφή η συνάρτηση πυκνότητας πιθανότητας της μέγιστης λαμβανόμενης
ισχύος καθώς και ο μετασχηματισμός Laplace της συνολικής ισχύος των παρεμβολών. Ακολού-
θως, εκμεταλλευόμενοι θεμελιώδη εργαλεία της στοχαστικής γεωμετρίας, διεξάγεται υπολογισμός
της πιθανότητας κάλυψης. Η μελέτη της πιθανότητας κάλυψης διεξάγεται για λόγους πληρότητας
για ακόμα δύο ακόμα πολιτικές ζεύξης μεταξύ του δέκτη και του σταθμού βάσης που τον εξυπη-
ρετεί, δηλ. ένα ιδανικό σενάριο αναφοράς και μία πολιτική που βασίζεται αμιγώς στη γωνιακή
απόσταση. Προκειμένου να αποτυπωθεί και η επίδραση ενός ισχυρού παρεμβολέα στην επίδοση
των δικτύων μικροκυματικής ζώνης συχνοτήτων, πραγματοποιείται αξιολόγηση της επίδοσης υπό
την προσέγγιση ενός ισχυρού παρεμβολέα για κάθε προτεινόμενη πολιτική. Σαν σενάριο αναφο-
ράς, ορίζεται ένα πεπερασμένο δίκτυο που λειτουργεί στη μικροκυματική ζώνη συχνοτήτων και
επιπλέον υπάρχει τέλεια ευθυγράμμιση μεταξύ των κεραιών του δέκτη και του σταθμού βάσης που
τον εξυπηρετεί. Στη περίπτωση αυτή, προκειμένου να εξαχθούν επιπρόσθετα συμπεράσματα σε
επίπεδο συστήματος, παρουσιάζονται τρία βασικά σενάρια παρεμβολών και ακολούθως πραγμα-
τοποιείται αξιολόγηση της επίδοσης του δικτύου για κάθε ένα από αυτά.
Συνεχίζοντας την ανάλυση σε κομβικές τεχνολογίες που καθορίζουν τα δίκτυα 6ης γενιάς, το ερευ-
νητικό ενδιαφέρον στρέφεται στην ενσωμάτωση των μη επανδρωμένων εναέριων οχημάτων στα
κυψελωτά δίκτυα. Δυστυχώς, τα τρέχοντα κυψελωτά δίκτυα δεν έχουν σχεδιαστεί για να περιλαμ-
βάνουν πρωτίστως εναέριους κόμβους. Κινητοποιημένοι από τα προαναφερόμενα, προτείνεται το



τρισδιάστατο διωνυμικό κυψελωτό δίκτυο ως υποψήφια κυψελωτή αρχιτεκτονική για τα δίκτυα
μη επανδρωμένων εναέριων οχημάτων επόμενης γενιάς. Το τρισδιάστατο διωνυμικό κυψελωτό
δίκτυο περιλαμβάνει αποκλειστικά εναέριους σταθμούς βάσης και χρήστες και βασίζεται στη κυ-
ψελωτή δομή του περικομμένου οκτάεδρου, το οποίο είναι η πιο κοντινή προσέγγιση μίας σφαίρας
που μπορεί να πληρώσει τον τρισδιάστατο χώρο χωρίς κενά ή επικαλύψεις. Εξαιτίας της ιδιαίτερης
γεωμετρίας του περικομμένου οκτάεδρου, η διεξαγωγή της αξιολόγησης της επίδοσης του δικτύου
σε επίπεδο συστήματος είναι ιδιαίτερα απαιτητική. Μία βασική πρόκληση που καλούμαστε να
αντιμετωπίσουμε αποτελεί ο υπολογισμός του όγκου των υποπεριοχών της κυψέλης που μπορεί
να βρεθεί ένας εναέριος χρήστης. Στη συνέχεια, εκμεταλλευόμενοι την τρισδιάστατη διωνυμική
στοχαστική διαδικασία για τη μοντελοποίηση της χωρικής θέσης των εναέριων χρηστών, διεξάγε-
ται αξιολόγηση της επίδοσης ως προς την πιθανότητα κάλυψης για την περίπτωση 1) παρεμβολών
εντός της κυψέλης, και 2) για τη περίπτωση παρεμβολών εντός και εκτός της κυψέλης. Για λόγους
πληρότητας, η ανάλυση διεξάγεται επίσης και για μία κυψέλη της οποίας το γεωμετρικό σχήμα
μοντελοποιείται ως μία σφαίρα. Τονίζεται οτι η σφαίρα μπορεί να αποτυπώσει την επίδραση που
έχει ο τρισδιάστατος χώρος στην επίδοση του δικτύου ενώ την ίδια στιγμή η εξαγωγή αναλυτικών
εκφράσεων των μετρικών επίδοσης γίνεται απλούστερη. Με βάση αυτή την προσέγγιση, πραγ-
ματοποιείται λεπτομερής αξιολόγηση επίδοσης υπό την θεώρηση ενός ισχυρού παρεμβολέα για
ένα δίκτυο που μοντελοποιείται ως σφαίρα. Ακολούθως εξάγονται εκφράσεις σε κλειστή μορφή
για την πιθανότητα κάλυψης, το ρυθμό σφάλματος bit, το λόγο μέσης ισχύος του λαμβανόμενου
σήματος προς την ισχύ της παρεμβολής και την συνολική χωρητικότητα. Τέλος, προσπαθούμε να
ρίξουμε περισσότερο φως στη σύγκριση της επίδοσης μεταξύ των κυψελωτών δικτύων που βασί-
ζονται στη σφαίρα και αυτών που βασίζονται στη περικομμένο οκτάεδρο. Για το λόγο αυτό, το
ερευνητικό ενδιαφέρον στρέφεται προς τη χωρική τοποθέτηση των εναέριων σταθμών βάσης και
επομένως πραγματοποιείται μία σύγκριση της επίδοσης μεταξύ του κυψελωτού δικτύου που βα-
σίζεται στο περικομμένο οκτάεδρο και ενός κυψελωτού δικτύου που βασίζεται σε τρισδιάστατες
διωνυμικές κυψέλες Voronoi μέσα σε μία σφαίρα. Καθώς η πραγματική χωρική τοποθέτηση των
εναέριων σταθμών βάσης δεν είναι απόλυτα προκαθορισμένη αλλά ούτε και τελείως τυχαία, η τε-
λική σύγκριση της επίδοσης πραγματοποιείται προκειμένου να αναδείξει τα οφέλη κάθε μοντέλου
ως υποψήφιο τρισδιάστατο κυψελωτό δίκτυο για μη επανδρωμένα εναέρια οχήματα με εφαρμογή
σε ασύρματα δίκτυα επόμενης γενιάς.



Performance Evaluation of Terrestrial and Aerial Communication
Networks

Charalampos K. Armeniakos

(ABSTRACT)

Moving with tremendous growth toward the sixth-generation (6G) networks, it becomes more and
more clear that a key feature of the new era will be the uninterrupted connectivity to both users and
machine-type devices for supporting a huge variety of applications. To this end, the research and
industry community turns to key enabling technologies such as the millimeter-wave (mmWave)
and the unmanned aerial vehicles (UAVs). However, the introduction of these technologies comes
with several challenges. To investigate these challenges and propose solutions for the design of
6G cellular networks, detailed system-level analysis is required, which is the main objective of this
dissertation.
First, a comprehensive performance analysis is conducted for terrestrial mmWave networks, where
the user equipments (UEs) and the base stations (BSs) are equipped with antenna arrays that are
able to form directional beams. Nevertheless, with the introduction of beamforming capabilities
and the inevitable misalignment error between the two communications antennas, it becomes clear
that both polar coordinates should now be jointly considered in the user association policy and the
performance evaluation of the network. By jointly considering both polar coordinates, the prob-
ability density function (PDF) of the maximum received power and the Laplace transform of the
aggregate interference power distributions, are derived in exact form. Subsequently, coverage prob-
ability is examined by exploiting fundamental tools of stochastic geometry. Going one step further,
the analysis is also conducted for two other association schemes, i.e., an ideal baseline scenario and
a purely angular distance-based association scheme. The effect of a single dominant interferer in
coverage probability is also investigated for each policy scheme. As a baseline approach, a finite
mmWave network under perfect alignment between the serving BS and the receiver is also con-
sidered. To elaborate more on system-level insights, three key interference scenarios are presented
and the network’s coverage performance is subsequently investigated.
Continuing the analysis on 6G key enabling technologies, the research interest now turns on the
integration of UAVs in cellular networks. Unfortunately, current cellular architectures have not pri-
marily been designed for integrating aerial nodes. Triggered by the aforementioned, the binomial
3D cellular network is proposed as a candidate cellular architecture for beyond fifth-generation
(5G) UAV networks. The binomial 3D cellular network integrates merely UAV-BSs and UAV-UEs
and it builds on the truncated octahedron cell-shape which is the closest approximation of a sphere
which can fully tessellate the three-dimensional (3D) space with no overlaps or gaps. Due to the pe-
culiar geometry of the truncated octahedron, conducting a performance evaluation at system-level
is particularly challenging. A key challenge is the evaluation of the volume of the sub-regions of
a truncated octahedron cell-shape in which a UAV-UE may fall. Accordingly, by exploiting the
3D binomial point process (BPP) for modeling the spatial locations on the UAV-UEs, performance
analysis in terms of coverage probability is conducted under i) intra-cell interference only, and ii)



both intra- and a worst-case inter-cell interference scenario. For the sake of completeness, cover-
age probability analysis is also conducted for a finite cell modeled as a sphere which can clearly
capture the effect of the 3D coverage space while on the same time retains analytical tractability.
Accordingly, the analysis focuses to the performance under a dominant interferer approach in a
finite cell modeled as a sphere. Closed-form expressions are obtained for the coverage probability,
BER, average output SIR, and ergodic capacity. Finally, we bring more light to the debate between
cellular networks which are based on the sphere cell-shape and networks which are based on the
truncated octahedron cell-shape. Accordingly, the interest turns to the spatial deployment of the
UAV-BS and therefore a system-level performance comparison is conducted between the truncated
octahedron-based cellular network and a 3D binomial-Voronoi network in a sphere. While the
actual UAV-BS 3D deployment is neither absolutely well-defined nor totally random in practice,
performance comparison is conducted to highlight the benefits of each model as a candidate 3D
cellular UAV network for beyond-5G wireless communication systems.
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Chapter 1

Introduction

1.1 Background and Motivation

As the standardization of 5G NR technology operating in mmWave bands is over, the focus
of the research community is now shifting towards performance analysis and optimization of
beyond 5G wireeless communication systems for future cellular deployments. As we rapidly
step towards the 6G vision seeking for even more capacity at the air interface, the re-
search community already starts to entertain the challenge of utilizing the mmWave and
THz frequency band for cellular communications having tens or even hundreds of GHz of
consecutive bandwidth available. Indeed, the utilization of mmWave and THz frequency
bands promises to bring the extreme capacity to the air interface enabling novel 6G-based
rate-greedy applications such as virtual reality (VR), augmented reality (AR), and holo-
graphic telepresence [1]. Compared with conventional microwave communications, mmWave
communications have specific peculiarities, making the deployment and operation of next-
generation mmWave cellular networks more challenging [2]. Firstly, mmWave signals are
more vulnerable to blockage, which directly affects the coverage performance of mmWave
cellular networks. To overcome this limitation, mmWave networks are envisioned to be
densely deployed to shorten the serving distance to users and, in turn, achieve an acceptable
coverage and rate. Unfortunately, increasing the density of BSs leads to severe interference
problems and the network tends to be interference-limited. As mmWave signals are suscep-
tible to the surrounding environment which leads to significant path loss and in order to
address the severe interference problems, beamforming techniques are adopted to achieve
substantial array gains and compensate the high propagation loss. In this case, a peculiar
interference scenario which may severely downgrade the performance at a desired receiver
may be experienced: An interfering node might now cause fatal interference to the desired
receiving node even when the interfering node is located far from the receiving node, if its
highly directional antenna gain points to the desired receiving node and the AoA may fall
within the 3dB beamwidth of the antenna beam. This unique characteristic of beyond 5G
mmWave networks should be considered during the receiver’s association policy, interference
management schemes and performance optimization of the network. A fundamental objec-
tive of this dissertation is to address such challenges and provide key design insights and
guidelines for beyond 5G mmWave cellular networks.

On another front, with the increasing maturity of 6G wireless communication systems and in
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2 CHAPTER 1. INTRODUCTION

order to meet all those challenges introduced by the novel 6G-based applications, the UAVs
have been introduced as powerful technology enablers and are envisioned to play a key role in
the 6G vision. In principle, a UAV can act either as an aerial UE, or a relay to assist serving
the ground UEs, or even a BS, also known as a UAV-BS. UAVs possess several advantages
over their conventional terrestrial counterparts due to their mobility, ease of deployment,
cost-effectiveness, and a high probability of establishing LoS links. UAVs were considered
an essential part of the 5G ecosystem as part of the Non-Terrestrial-Network (NTN) domain
– mainly as flying base stations, integrated access and backhaul (IAB) enablers, relays, or
coverage extenders. In 6G, the role of the UAVs is significantly upgraded – especially under
the context of all applications enabled and supported by the new generation of networking.
Indeed, the UAVs are expected to contribute towards the “cell-free” 6G paradigm in con-
junction with multi-dimensional antennas, reconfigurable intelligent or holographic surfaces,
perform energy harvesting and contribute within the JCAS framework. Despite the numer-
ous advantages offered by the UAVs, this new technology comes with its own unprecedented
challenges. For instance, for UAV-BSs, some key design problems include 3D deployment
and trajectory optimization for maximizing key performance metrics. For UAV-UEs, there
is a need for i) reliable and low latency communications for efficient control, and ii) deter-
mining the 3D cell association criteria. Unfortunately, existing terrestrial cellular networks
have been primarily designed for supporting ground users and are not able to readily serve
aerial users. Clearly, to support UAVs in wireless networking applications, there is a need for
developing the 3D cellular network that incorporates both UAV-BSs and UAV-UEs. Sub-
sequently, the 3D cell association of the UAV-UEs can be determined. Triggered by the
aforementioned, part of this dissertation is dedicated to the design and performance analysis
of beyond 5G 3D cellular networks able to support both terrestrial and UAV nodes.

1.2 Selected Prior Works

Terrestrial mmWave/THz Networks. Since highly directional beams are usually employed in
mmWave/THz communications, the proper choice of the antenna pattern for the UE or/and
the BS is crucial and should be carefully considered in the statistical characterization of inter-
ference and hence in the network’s performance analysis. One work that clearly established
a meaningful yet simple relation between the received power and the role of the antenna pat-
tern is [2]. In particular, by highlighting the interference caused by highly directional beams,
the authors proposed two inter-cell interference coordination (ICIC) schemes for mmWave
bands: the first one was merely based on the path loss incorporating the blockage effect; the
other one considers both path loss and directivity gain. Nevertheless, a comprehensive per-
formance analysis of mmWave networks under LoS/NLoS conditions due to blockages had
already been conducted by [3]. Among several insights, the authors were the first that intro-
duced the concept of an equivalent LoS ball for investigating the performance of mmWave
networks. Recently, in [4], the authors extend to a non-coherent joint transmission scheme
and capture the impact of misalignment errors in the performance of THz networks. The
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impact of LoS/NLoS conditions is captured by introducing a LoS equivalent point process
for the first time. Nevertheless, it is clearly stated that as a simplifying assumption, the
impact of beam alignment errors during the process of user association is not considered.

Beyond 5G Aerial Cellular Networks. Looking closely to the open technical literature, it is
easy to observe that the majority of existing works that investigate the performance of UAV
networks, assume that the UAVs are spatially distributed in 2D space, e.g, on a disc above
the ground. While the aforementioned assumption usually yields mathematical tractability
and can even approximate practical deployment scenarios, it clearly cannot capture the
architecture of an aerial cellular network, similar to the Voronoi or the hexagonal cells
of the current terrestrial cellular networks. Triggered by the aforementioned, in [5], the
authors introduce the concept of a beyond 5G 3D cellular network that integrates both UAV-
BSs and UAV-UEs in an entirely aerial networking platform. Is it worth mentioning that
the proposed architecture served as a candidate 3D cellular network model for beyond 5G
cellular UAV networks. While the spatial locations of UAV-BSs were deterministic forming
a well-defined 3D lattice of cells, the spatial distribution of the drone-UEs was estimated
through an algorithmic approach using a kernel density estimation method. An optimization
problem for the 3D cell association was performed by exploiting optimal transport theory
and no exact-form expressions were obtained. To overcome the computational complexity
issues, the authors in [6] propose an entirely aerial cellular networking platform based on
3D Voronoi cells, which built on the graph tool of binomial-Delaunay tetrahedralization.
Other 3D cellular networks that have been proposed build on the sphere [7],[8] which can
definitely capture the effect of 3D space in modeling and performance of UAV networks but
clearly cannot be considered an aerial cellular network. Up to now, the proposed beyond
5G 3D cellular networks which integrate merely aerial nodes are particularly few in the open
literature.

1.3 Contributions

The main contributions of this dissertation are summarized as follows along with the related
publications. The detailed technical contributions are provided under the “Contributions”
section of each chapter.

1.3.1 The Role of Angular Distances in the Maximum Power Asso-
ciation Policy & in the Performance of Terrestrial mmWave
Networks

The introduction of the beamforming capabilities as a central feature in 5G NR that leads to
higher data rates, causes a series of beam management procedures to arise to ensure efficient
handling and network operation. In a network where the UEs and the BSs are equipped with
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antenna arrays that are able to form directional beams, one of the most rational criteria is
to perform the association of a UE to its serving BS based on the maximum received power.
However, another key feature of realistic mmWave networks is that beam misalignment is
inevitable, and the direction of the UE’s maximum gain may not be necessarily fully aligned
with the corresponding one of the serving BS. Therefore, the selection of the serving BS will
strongly depend on its location and thus, one should account for both polar coordinates of
the candidate serving BSs in the determination of the maximum receiver power. The main
part of Chapter 2 is dedicated to the investigation of the performance analysis of terrestrial
mmWave networks. To this end, the maximum power association policy is refined to jointly
account for both polar coordinates in the user association policy and in the calculation of
the aggregate interference power.

Subsequently, the role of angular distances in the interference characteristics is highlighted.
In particular, in mmWave networks, the interference characteristics are heavily dependent
on the directional transceiver beams and the corresponding half power beamwidths. Conse-
quently, the dominant interfering BS may not necessarily be the closest one to the receiver.
Instead, a worst-case dominant interference scenario may be experienced by assuming the
dominant interferer as the closest BS both in angular distance from the direction of the serv-
ing BS and the second nearest in Euclidean distance from the receiver. The angular distances
now have a key role in the definition of the interference within the antenna array pattern.
Therefore, a far interferer may cause severer interference than a closer one, due to the fact
that the AoA at the receiver may fall within the 3dB beamwidth of the antenna beam. In
order to merely capture the effect of interference in mmWave networks, subsection 2.6 of
Chapter 2 is dedicated to the investigation of the performance of a practical BPP mmWave
network under the assumption of perfect alignment between the directions of maximum gain
of the serving BS and the receiver. Subsequently, by defining the SINR for the three baseline
interference scenarios, the coverage probability is derived in exact form. Numerical results
highlight the key role of the azimuthal angles in the definition of dominant interference and
consequently in the coverage performance in mmWave cellular networks.

1.3.2 From Ground to Air: The Road towards a beyond-5G 3D
Cellular UAV Network

The research work that was conducted in the rest of this dissertation is dedicated to the
design and performance of beyond-5G 3D cellular UAV networks. To this end, the design
and the statistical characterization of the performance of UAV netoworks is conducted for
the conventional case where the maximum power-based association policy for the UAV-UEs
is reduced to the widely adopted minimum path loss criterion.

In Chapter 3, the binomial 3D cellular network, where the spatial locations of UAV-UEs
are modeled as a 3D BPP truncated octahedron cell-shapes is proposed. In particular, the
binomial 3D cellular network is defined as a network composed by truncated octahedron cell-
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shapes which integrates UAV-UEs, whose spatial locations are modeled as a 3D BPP. The role
of the truncated octahedron cell-shape as a candidate 3D cell for beyond 5G UAV networks
is highlighted. Subsequently, a comprehensive stochastic geometry-based statistical analysis
is conducted and the distance distributions are derived in closed form for both a 3D BPP
and a finite HPPP within a truncated octahedron. To this end, a key challenge faced, was
the evaluation of the volume of the sub-regions of a truncated octahedron cell-shape in which
a UAV-UE may fall. Accordingly, performance analysis in terms of coverage probability is
conducted under i) intra-cell interference only, and ii) both intra- and a worst-case inter-cell
interference scenario. For the sake of completeness, this analysis is also conducted for a finite
cell modeled as a sphere which is a 3D model that retains analytical tractability. Among
several intermediate results in the coverage probability analysis, the Laplace transform of
the aggregate interference was derived for the binomial 3D cellular network. Among several
system-level insights, is was revealed that the conventional spherical model provides a more
optimistic performance trend in terms of coverage, as compared to the truncated octahedron
cell-shape mode.

To reduce the complexity that the binomial 3D cellular network introduces, Chapter 4 of
this dissertation is dedicated to the impact of more tractable 3D models in the performance
of beyond 5G UAV networks. In particular, the 3D BPP is exploited to model the spatial
locations of a realistic UAV network, where a finite number of UAVs is assumed to be deployed
inside a sphere. Notably, a sphere cell-shape can fully capture the effect of 3D coverage
space while on the same time yields analytical tractability. Subsequently, by exploiting
the dominant interferer approach, a detailed SIR-based performance analysis is conducted
in terms of coverage probability, average SIR, BER and ergodic capacity and closed-form
expressions for the aforementioned metrics are derived.

Having investigated the performance of both binomial 3D cellular network and a 3D UAV
network modeled as a sphere and having demonstrated the trade-offs of each architecture,
in Chapter 5 performance comparison of wireless aerial 3D cellular network models is con-
ducted. In particular, by employing the 3D PPP for modeling the spatial locations of UAV-
UEs, performance analysis in terms of coverage probability and average rate is conducted
in a truncated octahedron-based cellular network. Next, performance analysis is conducted
for a finite realistic 3D binomial-Voronoi UAV network. This network model introduces ran-
domness in both the spatial deployment of the UAV-BS and the cell structure, while in the
same time allows for a tractable analysis. Also, the performance in a 3D binomial-Voronoi
network is compared to the one in a regular network with uniformly random selection pol-
icy. While the actual UAV-BS 3D deployment is neither absolutely well-defined nor totally
random in practice, performance comparison is used to obtain insights and highlight the
benefits of each model as a candidate 3D cellular UAV network for next-generation wireless
communication systems.
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1.4 Fundamentals of Stochastic Geometry Theory &
Mathematical Constructs

In this subsection, we briefly present helpful fundamentals of stochastic geometry theory and
preliminary mathematical constructs which are extensively exploited in this dissertation.

1.4.1 Homogeneous Poisson Point Process

The HPPP is considered as the most popular point process due to its tractability and an-
alytical flexibility and thus, it is widely adopted for the performance analysis of wireless
networks.

In general, a HPPP Ψ of density λ is a point process in Rd such that:

• For every compact set W ⊂ Rd, N(W ) has a Poisson distribution with mean λ|W | and
is characterized by a PMF as

P[N(W ) = m] =
(λ|W |)m

m!
e−λ|W |, (1.1)

where | · | denotes the Lebesgue measure or the d-dimensional volume of the subset W
and N(·) is the counting measure, i.e., the number of points falling in W .

• If W1, ...,Wn are disjoint bounded sets, then N(W1), ..., N(Wn) are independent ran-
dom variables.

1.4.2 Binomial Point Process

The BPP is a basic process whereby a fixed number of nodes M is identically and indepen-
dently distributed on a compact set W ⊂ Rd. For a fixed number M of nodes inside a given
network area W , if k ≤M nodes are located in a certain subset V ⊂ W , the remaining area
W \V contains necessarily M −k nodes, which introduces dependence between points of W .
In this case, the HPPP is clearly not a proper choice. Instead, the BPP can be exploited for
the spatial modeling of nodes in finite wireless networks, where the number of nodes which
is deployed in the network is predetermined.

The properties of the HPPP and the BPP are particularly useful for simulating point pro-
cesses. For example, conditioned on a compact set W ⊂ Rd, the only distinction between a
HPPP and a BPP in W is that different realizations of a HPPP consist of a different number
of points.
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1.4.3 A Fundamental Mathematical Tool for Calculating Interfer-
ence Power Distribution: Laplace Transform

In stochastic geometry theory, it is often mathematically convenient to statistically charac-
terize the aggregate interference power distribution of the aggregate interference I through
the Laplace transform of I to calculate the coverage probability. In the following, we present
two baseline tutorials for deriving the Laplace transform of the aggregate interference power
distribution under two conventional setups in HPPP and BPP networks which undergo
Nakagami-m fading. As it will become clear, there are fundamental conceptual differences
in the statistical characterization of I between a HPPP and a BPP network.

Laplace Transform of I in Homogeneous Poisson Networks under Nakagami-m
Fading

Let Φ be a homogeneous Point process with density λ denoting the spatial locations of
the BSs in a wireless network. Consider an oversimplified scenario where I is given by
I =

∑
x∈Φ! phx∥x∥−α, where Φ! denotes the point process of the interfering BSs which is

obtained as the set of all BSs excluding the serving BS for the receiver at the origin o. By
adopting the minimum path loss criterion, the serving BS is conventionally the closest BS
to the receiver. The channels are assumed to experience Nakagami-m fading and therefore
hx ∼ Γ(m, 1/m), ∥ · ∥−α denotes the path loss function with path loss exponent α and
p is the transmit power of the BSs. Unfortunately, by adopting ordered distances in the
receiver’s association policy, the distances between the receiver and the interfering BSs are
no longer independent random variables. However, conditioned on the serving distance ∥x0∥,
the distances between the receiver and the interfering BSs are now i.i.d. random variables.
The Laplace transform definition conditioned on the serving distance ∥x0∥ yields

LI(s|∥x0∥) ≜ EΦ!,hx [e
−sI |∥x0∥] = EΦ!,hx

[
e−s

∑
x∈Φ! phx∥x∥−α

∣∣∣∥x0∥]
(a)
= EΦ!

[ ∏
x∈Ψ!

bs

(
1 +

s p∥x∥−α

m

)−m∣∣∣∥x0∥]
(b)
= exp

(
− λ

∫∫
Ω

(
1−

(
1 +

s p ∥x∥−α

m

)−m)
dx
)

(c)
= exp

(
− λ

∫ 2π

0

∫ ∞

∥x0∥

(
1−

(
1 +

s p ∥x∥−α

m

)−m)
xdϕxdx

)
,

where (a) follows from the MGF of the gamma random variable hx, (b) follows from the
pgfl of the HPPP with respect to the MGF obtained in step (a). Here, Ω denotes the set of
spatial locations x ∈ Φ! where the interfering BSs can lie and it is mathematically defined
as Ω = {(x, y) ∈ R2 \ b(o, ∥x0∥)}, where b(o, ∥x0∥) denotes a ball of radius ∥x0∥ centered at
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o. Finally, (c) follows from a transformation to polar coordinates x = (x, ϕx).

Laplace Transform of I in BPP Networks under Nakagami-m Fading

We consider a wireless network of N BSs uniformly distributed in a finite compact set A
forming a BPP Ψ. For simplicity, it is assumed A = b(o, R), with R being the maximum
deployment distance. While the devices can be strategically placed to optimize the network
utility, in the absence of exact traffic patterns, these optimal locations are not known, which
justifies the BPP assumption. The receiver located at o is assumed to be associated with
the closest BS located at distance r. The aggregate interference I is assumed to be given
by I =

∑N−1
i=1 phidi

−α, where {di}i=1:N−1 denotes the unordered set of distances between the
receiver and the N − 1 interfering BSs. Following similar conceptual lines as in the previous
subsection, the Laplace transform definition conditioned on the serving distance r yields

LI(s|r) ≜ EI [e−sI |r] = Edi,hi
[
e−s

∑N−1
i=1 phidi

−α
∣∣∣r]

(a)
= Edi

[N−1∏
i=1

(
1 +

s pdi
−α

m

)−m∣∣∣r]
(b)
=
[
Edi
[(

1 +
s pdi

−α

m

)−m∣∣∣r]]N−1

(c)
=
[ ∫ R

r

(
1 +

s pd−α

m

)−m
fdi|r(d)dd

]N−1

,

where (a) follows from the MGF of the gamma random variable hi, (b) follows from con-
ditionally i.i.d. distances of interferers from the receiver, and (c) follows after applying the
definition of expectation and using the conditional PDF of di.

1.5 List of Publications

This dissertation had led to several related journal and conferences as listed below.

Journal Publications

[J1] H. K. Armeniakos, A. G. Kanatas and H. S. Dhillon, “Comprehensive Analysis of
Maximum Power Association Policy for Cellular Networks Using Distance and Angular Co-
ordinates,” IEEE Trans. Wireless Commun., doi: 10.1109/TWC.2024.3388845, 2024.

[J2] C. K. Armeniakos and A. G. Kanatas, “Performance Comparison of Wireless Aerial
3D Cellular Network Models,” IEEE Commun. Lett., vol. 26, no. 8, pp. 1779-1783, Aug.
2022.
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[J3] C. K. Armeniakos, P. S. Bithas and A. G. Kanatas, “Finite Point Processes in a
Truncated Octahedron-Based 3D UAV Network,” IEEE Trans. Veh. Technol., vol. 71, no.
7, pp. 7230-7243, Jul. 2022.

[J4] C. K. Armeniakos, P. S. Bithas and A. G. Kanatas, “SIR Analysis in 3D UAV
Networks: A Stochastic Geometry Approach,” IEEE Access, vol. 8, pp. 204963-204973,
Nov. 2020.

Conference Proceedings

[C1] H. K. Armeniakos, A. G. Kanatas and H. S. Dhillon, “Analysis of Cell Association in
mmWave Networks based on Euclidean and Angular Distances,” IEEE Int. Symp. Person
Indoor Mobile Radio Commun., Sep. 2023,

[C2] C. K. Armeniakos and A. G. Kanatas, “Angular Distance-Based Performance Anal-
ysis of mmWave Cellular Networks,” in Proc. IEEE Global Commun. Conf., Dec. 2022.

1.6 Organization

The rest of this dissertation is organized as follows. By refining the maximum power-based
association policy for terrestrial mmWave networks, in Chapter 2, a comprehensive perfor-
mance analysis in mmWave networks is conducted. Going beyond terrestrial communica-
tions, in Chapter 3, by exploiting the 3D BPP for modeling the spatial locations of UAV-UEs
in a truncated octahedron-based 3D cellular network, the foundations of the binomial 3D
cellular network are presented and coverage probability analysis is conducted. In Chapter
4, the research interest turns to the investigation of tractable 3D models and an SIR-based
performance analysis is conducted under a dominant interfering UAV node in a sphere.
Having highlighted the trade-offs of each model as candidate cellular structures for beyond
5G 3D cellular network, in Chapter 5, a performance comparison between the truncated
octahedron-based cellular network and a 3D binomial-Voronoi network in a sphere is finally
conducted to reveal system-level insights. Finally, in Chapter 6, concluding remarks, open
challenges and future research directions are presented. The potential of integration of 6G
key enabling technologies to the developed frameworks is also discussed.



Chapter 2

Comprehensive Analysis of Maximum
Power Association Policy for Cellular
Networks Using Distance and
Angular Coordinates

2.1 Introduction

Due to the rapid proliferation of the smart devices and novel rate-greedy applications, mobile
data traffic has witnessed a tremendous growth. As the 5G cellular networks become more
ubiquitous and we start thinking of the 6G, the networks will continue to expand to higher
frequency bands to address the need for extreme capacity. Recently, mmWave and sub-THz
networks, operating at frequencies between 24 and roughly 330 GHz, have attracted consid-
erable attention from both academia and industry due to the enormous available bandwidth
[1], [9]. However, the extremely high data rates achieved in mmWave and sub-THz bands
come with challenging propagation characteristics, with the path loss being a key issue. To
overcome these limitations, first, mmWave networks are envisioned to be densely deployed
to achieve acceptable coverage [2]. However, increasing the density of BSs leads to severe
interference problems which in turn may cause a significant number of transmission fail-
ures. Next, steerable antenna arrays with highly directional antenna beams are needed to
achieve high power gain and improved coverage. In this case, the antennas’ 3 dB beamwidth
becomes a key design parameter. In addition, mmWave channels are sensitive to the dynam-
ically changing propagation environment (moving pedestrians, passing cars, blockages, etc.).
Thus, 5G NR mmWave wireless networks rely on adaptive beamforming and beam selection
techniques for optimizing the performance.

In a network where the UEs and the BSs are equipped with antenna arrays that are able
to form directional beams, one of the most rational criteria is to perform the association of
a UE to its serving BS based on the maximum received power. Therefore, the statistical
behaviour of the desired received signal power should be investigated by considering both
polar coordinates. As we will discuss shortly, if one ignores practical beam management con-
siderations, cell association decisions can be made purely based on the Euclidean distances.
However, in this Chapter, it is rigorously argued that if one accounts for practical issues

10
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such as the limited capability of UEs to perform a perfect beam alignment or an imperfect
channel estimation, or a codebook-based beamforming with limited number of beams, then
one needs to consider angular distances.

2.1.1 Related Works and Motivation

With the rise of 5G and beyond communication systems, the use of multiple antennas at
the BSs and the UEs has introduced beamforming capabilities as a central feature in 5G
NR that leads to higher data rates. However, a series of beam management procedures
are needed to ensure efficient handling and network operation. The selection of the best
receiving beam is performed by measuring the average received signal power in each beam
through exhaustive scanning in a set of candidate serving BSs. The maximum power-based
association policy is governed by the distance dependent path loss and the transmitting and
receiving antenna gain patterns. However, either a binary valued antenna pattern, called
flat-top pattern [10]−[12], or ideal conditions with realistic patterns, i.e., perfect channel
estimation and beam training, that imply full alignment between BS’s transmitting and
UE’s receiving beams has been assumed in most cases. In this ideal baseline scenario, the
cell association decision is purely based on the Euclidean distance between the two nodes
[2], [13]−[18].

Many works in the literature have studied beam management techniques and procedures for
5G NR networks by adopting tools from stochastic geometry, since it captures the spatial
randomness of network elements [19]−[22]. Modeling the spatial locations of BSs and/or
UEs as point processes allows the use of powerful tools from stochastic geometry to derive
tractable analytical results for several key performance metrics. Therefore, in [23], the
authors study among others both the initial beam selection during BS handover and beam
re-selection technique in a mmWave cell. However, the interference from other BSs is ignored.
To address this issue, the authors in [24] develop a stochastic geometry framework and
conduct a detailed performance analysis in terms of the average achievable rate and success
probability. Going beyond coverage probability and the achievable rate, in [25], the authors
studied the average number of beam switching and handover events, in mmWave vehicular
networks. Beam management techniques were also considered. In [26], both the impact of
beamwidth in the reliability and throughput of a THz network and the impact of the highly
directional antennas on the beam management procedures was investigated.

In realistic mmWave networks, beam misalignment is inevitable, and the direction of the UE’s
maximum gain may not be necessarily fully aligned with the corresponding one of the serving
BS [27]. More specifically, beam misalignment can occur between the transmitting and
receiving beams after channel estimation during the 5G NR beam management-based UE’s
association policy [28] due to the following reasons: 1) use of codebook-based beamforming
at the UEs with limited number of beams, 2) imperfect channel estimation, which results in
estimation errors in the angle-of-arrival (AoA) or angle-of-departure (AoD), 3) imperfections
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in the antenna arrays, which includes array perturbation and mutual coupling, 4) mobility
of the transceivers, and 5) environmental vibrations such as from wind or moving vehicles.
Indeed, by considering codebook-based beamforming at the UE, the receiver is agnostic to
the conditions that provide maximum power and the UE will perform scanning within a
distance-limited finite area to select the serving BS among a set of candidate serving BSs.
Therefore, it becomes clear that the selection of the serving BS will strongly depend on its
location and thus, one should account for both polar coordinates of the candidate serving
BSs in the determination of the maximum receiver power. Considering the aforementioned,
misalignment needs to be carefully accounted for in the mathematical analyses if one is to
capture realistic 5G NR beam management-based association procedures. Notably, while
path-loss is just dependent on the frequency and Euclidean distance, misalignment error,
which is now a function of the angular distance between the candidate serving BSs and the
UE, should be explicitly considered in the measurement of the received power in the UE’s
association policy. The authors in [4] and [16] model the misalignment error as a random
variable following the truncated Gaussian distribution, whereas the authors in [29], derived
an empirical PDF for the misaligned gain based on simulations. However, the consideration of
codebook-based beamforming at the UE necessitates a more nuanced analysis. This chapter
proposes for the first time a stochastic geometry framework to study the performance in
a mmWave cellular network by adopting 5G NR beam management-based procedures and
jointly considering the impact of both the Euclidean and angular distances of the BSs in the
UE’s association policy. The use of the angular distance is critical for the accurate estimation
of the receiving antenna gain using 3GPP antenna patterns and allows to depart from the
ideal baseline scenario.

Along similar lines, many works have captured the effect of the angular coordinate in the
calculation of interference power and correspondingly in performance analysis of cellular
networks by adopting realistic antenna patterns. In [30], the authors considered the effect
of beam misalignment utilizing a 3GPP-based antenna pattern in a stochastic geometry
framework. In [31], the authors investigated the impact of directional antenna arrays on
mmWave networks. Among other insights, the role of realistic antenna patterns in the
interference power is demonstrated. In [32], a multi-cosine antenna pattern is proposed to
approximate the actual antenna pattern of a uniform linear array (ULA) and the impact in
the interference power is highlighted. In [33], the authors adopt an actual three dimensional
antenna model and a uniform planar array, which is mounted on UAVs, to examine the
impact of both azimuth and elevation angles on the interference power.

On another front, the idea of the dominant interferer has been introduced in the literature
to facilitate the calculation of the SINR and provide a realistic and mathematically tractable
approximation of the accurate aggregate interference [34]−[37]. The notion of angular dis-
tances and their implication on the identification of the dominant interferer has recently been
highlighted in [38] and [39]. Triggered by the previous discussions, a dominant interfering
BS may not necessarily be the closest one to the receiver. Indeed, a far interferer may cause
severer interference than a closer one, due to the fact that the AoA at the receiver may fall
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within the 3dB beamwidth of the antenna beam. Towards this direction, a worst-case dom-
inant interference scenario may now be experienced by assuming the dominant interferer as
the closest BS both in angular distance from the direction of the serving BS and the second
nearest in Euclidean distance from the receiver. The distribution of the angular coordinates
now play a key role in the interference within the mainlobe or the sidelobe of the antenna
array pattern.

In summary, even though angular coordinates have appeared in the stochastic geometry-
based analysis, their manifestation in the received power as a consequence of realistic beam
management procedure and the overall effect on the system performance has not been stud-
ied, which is the primary objective of this chapter. Accordingly, this chapter proposes a
stochastic geometry framework to study the implications of beam misalignment error in
the association policy and the corresponding performance of a mmWave cellular network by
adopting realistic 5G NR beam management-based procedures and practical equipment limi-
tations. Extensive comparisons of the ideal baseline scenario with several association policies
are provided, and evaluation of diverse dominant interferer-based scenarios is conducted.

2.1.2 Contributions

The key aspects that this chapter addresses are highlighted next.

Angular distance distributions

By exploiting fundamental concepts of stochastic geometry theory, both the nth nearest
node and joint angular distance distributions within a finite ball are derived in closed form
for a 2D finite HPPP. As it will be shown, these distances play a key role in the definition
of dominant interferer in mmWave networks.

Refining the maximum power association policy in a mmWave stochastic geom-
etry framework

By employing the HPPP for modeling the spatial locations of the BSs, a number of BSs
with known density are deployed in a mmWave cellular network. The typical UE, which
is equipped with a realistic 3GPP-based antenna pattern, exploits directional beamforming
capabilities under imperfect alignment to communicate with the serving BS. In this chapter,
beam misalignment at the UE may occur due to limited codebook-based beamforming at the
UE and/or from imperfect channel estimation and/or potentially antenna arrays imperfec-
tions 1, and clearly depends on the random spatial location of the serving BS. Accordingly,

1According to the beam management procedure of the 3GPP NR for mmWave frequencies [27], our
framework is fully consistent with the Non- Standalone-Uplink (NSA-UL) scheme and beam misalignment
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as a key contribution, a realistic beam management-based association policy that jointly
considers both the Euclidean and angular distances of the BSs, is proposed for the UE. The
proposed policy takes into account both the directional beamforming and the beam mis-
alignment error at the UE through the adoption of a 3GPP-based antenna pattern. Two
other association schemes, i.e., an ideal baseline scenario and a purely angular distance-based
association scheme, are also proposed as special cases for completeness.

Coverage probability analysis

Performance analysis in terms of coverage probability is conducted under the three associa-
tion schemes and analytical expressions are obtained. As key intermediate results, the PDF
of the maximum received power and the Laplace transform (LT) of the aggregate interference
power distributions, are derived in exact form. It is worth mentioning that the computation
of the LT of the aggregate interference power distribution presented in this chapter consid-
ers the regions of the network on which the interfering BSs may lie and it is based on both
distance and angular coordinates.

Special case: Dominant interferer approach

A coverage probability analysis is conducted under the assumption of a single dominant
interferer for the maximum received power association policy. As a key result, the joint
PDF of the maximum received power from the serving BS and the received power from the
dominant interferer is derived. Conventionally, the dominant interferer is considered as the
nearest BS based on the Euclidean distance. By extending the definition of the dominant
interferer as the nearest BS in angular distance w.r.t. a reference line in mmWave networks,
coverage probability analysis is conducted for the two special cases under the assumption of
a dominant interferer for which exact-form expressions are derived. To this end, the PDF of
the ratio of the nearest BS, in angular distance, antenna gain to that of the second nearest
BS, as well as the PDF of the ratio of the corresponding path-losses are derived as insightful
intermediate results. Subsequently, the corresponding analytical expressions for the CDF of
the achieved SIR are obtained in exact form.

Special case: BPP 5G mmWave networks & a dominant interferer approach

A BPP-based stochastic geometry framework is proposed to capture the effect of dominant
interference scenarios in the performance of mmWave networks. To this end, performance
analysis in terms of coverage probability is conducted under three interference scenarios:
i) a worst-case dominant interference scenario, where the dominant interferer is the BS

can occur during the beam measurement phase as a result of possible array imperfections at the UE and/or
imperfect channel estimation.
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that is both the nearest in azimuthal angle from the direction of the serving BS, and the
second nearest in Euclidean distance from the receiver; ii) a dominant interferer, as the BS
that is the closest in azimuthal angle from the direction of the serving BS and uniformly
distributed in an annulus formed by the the serving distance and a ball radius R, and
iii) the aggregate interference in the network. The PDF of the receiver’s gain at the closest
interfering BS in angular coordinates and the Laplace transform of the aggregate interference
power distribution , are derived as intermediate results in the performance analysis.

2.2 Mathematical Preliminary & Constructs: Angular
Distances

In this section, the mathematical constructs of angular distances in 2D HPPP wireless net-
works defined over a finite region, are presented. These will provide a firm foundation for
the understanding and analysis of the coverage probability in mmWave cellular networks.

2.2.1 Angular Distance Distributions

As stated in [38], the investigation of the distributions of the angular distances is based on
defining the nth nearest point in angle ϕ from a reference line. Consider an HPPP Φ with
intensity λ over b(o, r), where b(o, r) denotes a ball of a finite radius r centered at the origin
o. Let ϕn denote the random variable representing the angular distance from an arbitrary
reference line to the nth nearest point of Φ in the coordinate ϕ, as shown in Fig. 2.1a.
Without loss of generality, the reference line is assumed to be the x-axis. Let Ar,n denote
the event that b(o, r) contains at least n points of Φ.

Lemma 2.1. Conditioned on Ar,n, the PDF of the nth nearest point in angular distance in
b(o, r) is given by

fϕn|Ar,n(ϕ) =
(λr2)nϕn−1

2n(Γ(n)− Γ(n, λπr2))
e−

λϕr2

2 , ϕ ∈ [0, 2π], (2.1)

where Γ(·) is the Gamma function defined as in [40, eq. (8.310.1)] and Γ(·, ·) denotes the
incomplete gamma function defined as in [40, eq. (8.350.2)].

Proof. See Appendix A.1 □
In mmWave cellular networks, it is often of interest the absolute angular distance, |ϕ|, for the
coordinate ϕ. This definition is particularly useful when dealing with angular distances from
the direction of the maximum directivity in an antenna beampattern [38]. Let |ϕ| ∈ [0, π],
as shown in Fig. 2.1b.
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(a) ϕn ∈ (0, 2π) (b) |ϕ| ∈ (0, π)

Figure 2.1: The nth nearest point in angular distance in a disk sector.

Corollary 2.2. Conditioned on Ar,n, the PDF f|ϕn|||Ar,n(|ϕ|) is given by

f|ϕn||Ar,n(ϕ) =
(λr2)n|ϕ|n−1

Γ(n)− Γ(n, λπr2)
e−λ|ϕ|r

2

, |ϕ| ∈ [0, π]. (2.2)

Proof. Letting ϕ = 2|ϕ| ∈ [0, 2π], then W (|ϕ|, r) = |ϕ|r2. Then, the proof follows the same
steps as the proof for obtaining (2.1). □

2.2.2 Joint Distributions

As mentioned in subsection 2.1.1 of this chapter, a UE may now be connected to the closest
BS in angular distance. In this case, the dominant interfering BS may not necessarily be the
closest one to the UE, but the closest BS in angular distance w.r.t the line of communication
link. This inspires the investigation of joint distributions of angular distances.

Let |φn| denote the absolute angular distance from o to the nth nearest point in absolute
angular distance.

Lemma 2.3. Conditioned on Ar,2, the joint PDF of |φ1|, |φ2| is given by

f
|φ1|,|φ2|

∣∣Ar,2
(|φ1|, |φ2|) =

(λr2)2 e−λr
2(|φ2|−π)

e−λπr2 − λπr2 − 1
, (2.3)

where |φ1| ∈ [0, π] and |φ2| ∈ [|φ1|, π].

Proof. See Appendix A.2. □

2.3 System Model

This subsection presents the considered mmWave cellular network and the key modeling
assumptions made in this chapter.
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Figure 2.2: Illustration of the system model.

2.3.1 Network Model

Consider a mmWave downlink cellular network, where the locations of the BSs is modeled
as a HPPP Φbs ⊂ R2 with intensity λbs. Let (rx, ϕx) denote the location of a BS located at
x ∈ Φbs, in terms of polar coordinates. The locations of UEs are independently distributed
according to some stationary point process Φue. Also, a BS serves one UE at a time per
resource block and all BSs are assumed to transmit at the same power p. Let (rs, ϕs) denote
the location of the serving BS x0 ∈ Φbs at a given time. Without loss of generality, the
receiving UE is assumed to be located at the origin o = (0, 0) at that time. After averaging
the performance of this UE over Φbs, the receiving UE becomes the typical receiver, which
will be interchangeably referred to as just the receiver in this chapter.

2.3.2 Beamforming and Antenna Modeling

A BS located at x ∈ Φbs is assumed to exploit beamforming techniques to communicate with
the receiver. In this work, a worst-case interference scenario is considered in the mmWave
network as the maximum gain of all BSs’ antennas is assumed to be always directed towards
the receiver. Please note that similar scenarios have already been employed in the literature
[41]. The receiver is assumed to be equipped with an antenna array able to produce 2m

receiving beams. The maximum gain directions of these beams, i.e., the centers of the
corresponding 3 dB beamwidths, are given by ϕm = 2π

2m
with m ∈ N. Then, the maximums

of the BS and UE beams will not necessarily be aligned because of the discretization on
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Figure 2.3: Illustration of the gain of the 3GPP-based antenna pattern given by (2.4) vs the
approximation of the 3GPP array pattern given by (2.6) for ϕ3dB = 65o and ϕr0 = 0.

the UE side, which is the reason angular distances appear in the analysis. In this work, a
realistic 3GPP-based antenna pattern recommended for 5G mmWave communications [42]
is adopted for the receiver and therefore, the actual antenna gain within the 3dB beamwidth
range is not constant. When directed towards ϕr0, this antenna has a radiation power pattern
(in dB) given by

G3gpp(ϕ− ϕr0) = Gmax −min
{
12
(ϕ− ϕr0
ϕ3dB

)2
, SLA

}
, (2.4)

where ϕ3dB is the 3dB beamwidth of the receiver’s antenna and SLA = 30dB is the front-to-
back ratio. The multiplicative antenna gain factor is denoted by g3gpp(ϕ−ϕr0). In this work,
the direction of maximum gain ϕr0 is modeled as a discrete random variable with probability
mass function (pmf) given by

ϕr0 =



ϕ1
0 =

π
2m
, w.p. pϕ = 1

2m

ϕ2
0 =

π
2m

+ π
2m−1 , w.p. pϕ = 1

2m...
ϕ2m

0 = π
2m

+
π

2m−1
+ ...+

π

2m−1︸ ︷︷ ︸
(2m−1) terms

, w.p. pϕ = 1
2m

, (2.5)
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A representative example of ϕr0 is shown in Fig. 2.2, with 2m = 4 beams enabled at the UE.
Unfortunately, the use of the array pattern of (2.4) may lead to extremely intractable analysis
[31]. For this reason, the array pattern is approximated by the two-branch expression given
by [43],

g(ϕ− ϕr0) =

 gmax10
− 3

10

(
2(ϕ−ϕr0)

ϕ3dB

)2

, |ϕ− ϕr0| ≤ ϕA
gs, ϕA ≤ |ϕ− ϕr0| ≤ π

(2.6)

where gmax and gs are the multiplicative gain factors of Gmax, and Gs = Gmax − SLA,
correspondingly, whereas ϕA = (ϕ3dB/2)

√
(10/3) log10(gmax/gs). It is worth mentioning that

the expression for the array pattern given by (2.6) is actually a two-branch expression of
the exact 3GPP-based antenna pattern given by (2.4). Indeed, in Fig. 2.3, the gain (in
dB) of the 3GPP-based antenna pattern given by (2.4) is compared to a corresponding one
under the approximate expression for the gain of the 3GPP array pattern given by (2.6) for
ϕ3dB = 65o. It can easily be observed that the two expressions for the gains of the array
patterns match perfectly, which verifies the fact that the expressions (2.4) and (2.6) are
actually equivalent.

2.3.3 Blockage Model

As seen from the receiver location, a BS can be either LOS or non-LOS (NLOS). While
mmWave signals are significantly affected by blockages [44], proper modeling is essential to
capture the effect of blockages on network performance. In this work, an LOS ball model is
adopted since it provides a better fit with real-world blockage scenarios [45], which considers
NLOS interfering links. Hence, the performance analysis for the receiver is restricted to
b(o, R), where b(o, R) denotes a ball of radius R centered at the origin o and thus, to an
almost surely (a. s.) finite HPPP Ψbs = Φbs ∩ b(o, R). Given a BS located at x ∈ Ψbs, the
propagation between the BS and the receiver is LOS if ∥x∥ < RL, where RL is the maximum
distance for LOS propagation and ∥ · ∥ denotes the Euclidean norm.

2.3.4 Path Loss and Channel Models

The LOS and NLOS channel conditions induced by the blockage effect are characterized by
different path-loss exponents, denoted by αL and αN , respectively. Similar to [24], typical
values of these path-loss exponents are αL ∈ [1.8, 2.5] and αN ∈ [2.5, 4.7]. Then, following
the standard power-law path-loss model for the path between the receiver and a BS located
at x ∈ Ψbs, the random path loss function is given by

l(∥x∥) =
{
K∥x∥−αL , ∥x∥ < RL

K∥x∥−αN , RL ≤ ∥x∥ ≤ R,
(2.7)
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where K =
(

c
4πfc

)2
with c being the speed of light and fc the carrier frequency.

The channels between a BS located at x ∈ Ψbs and the receiver undergo Nakagami-mu fading,
which is a generalized model for representing a wide range of fading states. The parameter
mu is restricted to integer values for analytical tractability. The channel fading gain hu is the
fading power for the channel in LOS condition. The shape and scale parameters of hu are mu

and 1/mu, respectively, i.e., hu ∼ Gamma
(
mu,

1
mu

)
. Here, u ∈ {s, x}, where s denotes the

link between the receiver and the serving BS, and x stands for the link between the receiver
and the interfering BSs at x ∈ Ψbs \ {x0}. The PDF of hu is given by

fhu(w) =
mmu
u wmu−1

Γ(mu)
exp (−muw). (2.8)

2.3.5 User Association and Beam Selection Policy

The association policy used in real networks is often based on the maximum received power.
The UE is agnostic to the conditions that provide the maximum power to the receiver. One of
the main contributions of this chapter is the adoption of an association policy, namely Policy
1, that accurately captures the real conditions. This is achieved by jointly considering both
polar coordinates in the calculation of received power. With the introduction of the angular
coordinate, this work investigates the use of a similar to the minimum Euclidean distance-
based criterion, namely, the minimum angular distance-based one. This is henceforth termed
as Policy 2. Nevertheless, for system performance analysis purposes it is highly desirable
and widely accepted to consider simplified policies. Therefore, a commonly utilized policy,
namely Policy 3, is the one that assumes only the Euclidean distance criterion. However,
this policy ignores the effect of angle-dependent antenna gains and inherently imposes a
discrepancy from real received power in the calculations. Consequently, Policies 2 and 3
serve as baseline schemes for comparison to Policy 1 which corresponds to the realistic
maximum power association scheme. We are particularly interested in understanding in
which regimes can Policy 2 or 3 closely describe the performance of Policy 1, which is clearly
more realistic but analytically more complicated compared to the other two. Moreover,
because of distance-based path-loss, the candidate serving BSs of the receiver are assumed
to lie within b(o, RL). From amongst these BSs, the serving BS is determined using the
beam management procedure of 5G NR as discussed above. Therefore, the serving BS can
lie anywhere within b(o, RL). Finally, all the association decisions are assumed to take place
within the coherence time of the channel.

Policy 1: Maximum Power-based Association Scheme

In this scheme, the receiver is associated with the BS providing the largest average received
power by jointly considering both the Euclidean and the angular distance of the BSs. Specif-
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ically, during this association procedure, the best receiving beam is selected by the receiver
for reception. According to the beam management procedure in 5G NR, this task is the so-
called beam selection procedure. In particular, all BSs periodically transmit the beamformed
reference signals, either channel state information reference signals (CSI-RS) or synchroniza-
tion signal blocks (SSBs), that may cover the entire set of available directions according to
the receivers’ needs. The measurements in mmWave networks related to the initial access
are based on the SSBs. The receiver in the proposed framework monitors the reference sig-
nals and forms a list of candidate serving BSs, being those BSs with the largest SNR and
exceed a predefined threshold, for each beam. Subsequently, the serving BS, defined as the
BS providing the largest SNR among all candidate serving BSs, is chosen for transmission.
The corresponding receiver’s beam in which the serving BS was identified, is selected as the
receiving beam.

A key assumption in this policy is that the BS has perfect CSI knowledge of the uplink and
thus, a perfect alignment of the BS beam maximum gain direction with the line toward the
receiver is achievable. However, the direction of the maximum gain of the receiver’s antenna
is not fully aligned with the direction of maximum gain of each BS transmitting beam. Let
φxi denote the angular distance between the direction of the line connecting the receiver and
a BS x ∈ Ψbs and the direction, ϕi0, of maximum directivity of a receiver’s beam i. Therefore,
for a BS x ∈ Ψbs, ϕx denotes its polar coordinate, and φxi is given by φxi = |ϕi0 − ϕx|. By
further considering the Euclidean distances of the BSs from the origin, rx, the location of
the serving BS and the receiving beam are chosen by the receiver as

(x0, i) = argmax
x∈(Ψbs∩b(o,RL))

i=1:2m

{
g(φxi )r

−αL
x

}
. (2.9)

Having selected x0 and i, the angle φxi is denoted as φr in Fig. 2. In this case, φr can be
modeled as a uniform random variable, i.e., φr ∼ U [0, ϕ3dB

2
], where ϕ3dB denotes the half-

power beamwidth of the user receiving beam. Clearly, the serving BS may not necessarily
be the nearest one to the receiver. Instead, it may lie close to the direction of the maximum
directivity gain of a receiver’s beam and thus providing maximum received power. The
equation (2.9) indicates that the receiver performs scanning for each beam to identify the
serving BS by jointly considering both the angular distance of the BSs, from the direction of
each beam’s maxima, and the Euclidean distance of the BSs, respectively to maximize the
received power.

Policy 2: Minimum Angular Distance Association Scheme

In this scheme, the receiver is attached to the closest BS in angular distance within b(o, RL).
Specifically, for each beam, the receiver performs exhaustive scanning and calculates the
minimum angle between the direction of the beam’s maxima and the direction of the line
connecting the receiver and each BS. Then, from a list of 2m angles, the receiver attaches
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to the BS with the minimum angular distance φc and the corresponding beam is selected as
the receiving beam. Mathematically, the location x0 of the serving BS and the beam i are
selected by the receiver as

(x0, i) = argmin
x∈(Ψbs∩b(o,RL))

i=1:2m

{
{|ϕi0 − ϕx|}

}
, (2.10)

and φc is given by
φc = min

i=1:2m

{
min

x∈(Ψbs∩b(o,RL))
{|ϕi0 − ϕx|}

}
. (2.11)

Policy 3: Minimum Euclidean Distance Association Scheme

In this scheme, the receiver is associated with the nearest BS in Euclidean distance within
b(o, RL). In this case, by adopting conventional beam management-based beam steering
techniques, the maximum gain of the receiver’s antenna is assumed to be directed towards
the serving BS and therefore perfect beam alignment is assumed. Without loss of generality,
due to the isotropy and the stationarity of the Ψbs, the reference line can be considered to be
along the x-axis and passing through the origin. In this case, the location x0 of the serving
BS is chosen by the receiver as x0 = argmin

x∈(Ψbs∩b(o,RL))

{rx}.

2.3.6 Signal-to-interference-plus-noise Ratio

The SINR under the three association schemes is now defined. Under Policy 1, the received
SINR is given by

SINR =
p hs gmax g(φr) l(∥x0∥)

I + σ2
, (2.12)

where p is the transmitted power and I refers to the aggregate interference power and is given
by I =

∑
x∈Ψ!

bs
p hx gmax g3gpp(φI) l(∥x∥), Ψ!

bs =
{
Ψbs \ {x0}

}
, φI is defined as φI = |ϕr0 − ϕx|

and σ2 is the additive white Gaussian noise power. Please note that, ϕr0 also determines the
direction of the reference line in this policy.

Under Policy 2, the received SINR is given by

SINR =
p hs gmax g(φc) l(∥x0∥)

I + σ2
, (2.13)

where I is given by I =
∑

x∈Ψ!
bs
p hx gmax g3gpp(φI) l(∥x∥) and φI is defined as φI = |φc−ϕx|.

Please note that, φc also determines the direction of the communication link in this policy.
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Under Policy 3, the received SINR is given by

SINR =
p hs gmax gmax l(∥x0∥)

I + σ2
, (2.14)

where I is given by I =
∑

x∈Ψ!
bs
p hx gmax g3gpp(ϕx) l(∥x∥).

2.4 Coverage Probability Analysis

In this section, performance analysis in terms of coverage probability is conducted under
the three association schemes. Formally, the coverage probability Pc(γ), is defined as the
probability that the SINR at the receiver exceeds a predefined threshold γ, i.e.,Pc(γ) ≜
P(SINR > γ).

2.4.1 Coverage Probability Under Maximum Power Association
Scheme

To obtain Pc(γ) in this scheme, the PDF of the maximum received power must first be
derived. Let Six denote the received power from a BS located at x ∈ (Ψbs ∩ b(o, RL))
measured w.r.t to the i-th beam. Then, Six is given by

Six = g(|ϕi0 − ϕx|)∥x∥−αL = g(|ϕi0 − ϕx|︸ ︷︷ ︸
φx
i

)r−αL
x (2.15)

and the maximum received power S is obtained as

S = max
x∈(Ψbs∩b(o,RL))

i=1:2m

{Six}

(a)
= max

x∈(Ψbs∩b(o,RL))
{g(φx)r−αL

x︸ ︷︷ ︸
Sx

} (b)
= g(φr)r

−αL
s ,

(2.16)

where (a) follows after maximization of {g(φxi )}i=1:2m

x∈(Ψbs∩b(o,RL))
over i, i.e., for each x, the best

beam is determined and (b) follows from maximization over x with rs = ∥x0∥. Due to
exhaustive scanning of the receiver in the whole b(o, RL) and conditioned on ARL,1 in order
for S to be meaningfully defined, the serving BS may lie anywhere in b(o, RL)

2 Therefore,
rx are independent and identically distributed (i.i.d.) in b(o, RL) with PDF frx(r) of each
element given by frx(r) = 2r

R2
L

, r ∈ [0, RL].
2Conditioned on ARL,1, it is ensured that at least one LOS BS will always exist. Otherwise, the receiver

would try to connect to the strongest NLOS BS, which is not of much practical interest because of significantly
weaker NLOS links and is hence beyond the scope of the chapter.
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Lemma 2.4. Conditioned on ARL,1, the PDF of the maximum received power S is given by

fS|ARL,1
(s0) =

λbsπR
2
L fSx(s0) e

λbsπR
2
L

(
FSx (s0)−1

)
1− e−λπR

2
L

, (2.17)

with s0 ∈ [wmin,∞), and fSx(w) is given by

fSx(w) =

∫ ψ(w)

g3dB

1

x
fg(φx)(x)fr−αL

x

(w
x

)
dx, (2.18)

with w ∈ [wmin,∞), and f
r
−αL
x

(x) =
2( 1

x
)
αL+2
αL

αLR
2
L

, fg(φx)(g) = 1
ln(10)x

10

12
√

Gmax−10log(x)
12

, g3dB =

10
Gmax−3

10 , wmin = g3dBR
−αL
L and ψ(w) = min

{
w

R
−αL
L

, gmax

}
.

Proof. See Appendix A.3. □

Remark 2.5. Lemma 2.4 captures the misalignment error as a random variable within
g(φr) and thus, it is clearly different from deriving the conventional PDF of the minimum
distance-based path-loss.

Lemma 2.6. Conditioned on the maximum received power S = Sth from the serving BS
w.r.t. a given receiving beam, the conditional Laplace transform LI(s|Sth, ϕr0) of the aggregate
interference power distribution is given by

LI(s|Sth, ϕr0) = exp
(
− λbs

∫∫
Ω

(
1−

(
1 +

s pK gmax g3gpp(|ϕr0 − ϕx|) r−αL
x

mx

)−mx
)
rxdϕxdrx

)
× exp

(
− λbs

∫∫
Ω

′

(
1−

(
1 +

s pK gmax g3gpp(|ϕr0 − ϕx|) r−αN
x

mx

)−mx
)
rxdϕxdrx

)
,

(2.19)

where

Ω = {(rx, ϕx) ∈ R2|rminx ≤ rx ≤ RL, 0 ≤ ϕx ≤ 2π},
Ω

′
= {(rx, ϕx) ∈ R2|rmaxx ≤ rx ≤ R, 0 ≤ ϕx ≤ 2π},

(2.20)

and rminx = min
{(

g3gpp(|ϕr0−ϕx|)
Sth

) 1
αL , RL

}
, rmaxx = max

{(
g3gpp(|ϕr0−ϕx|)

Sth

) 1
αN , RL

}
.

Proof. See Appendix A.4. □

Theorem 2.7. Conditioned on ARL,1, the coverage probability of a receiver in a mmWave
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network inside b(o, RL) under the maximum power-based association policy is given by

Pc(γ) =
2m∑
i=1

ms−1∑
k=0

∫ ∞

wmin

(−s)k

k!

[
∂kLItot(s|Sth, ϕi0)

∂sk

]
s

fS|ARL,1
(Sth)pϕdSth, (2.21)

where s = msγ
p gmaxK Sth

and LItot(s|Sth, ϕi0) = exp(−σ2s)LI(s|Sth, ϕi0).

Proof. See Appendix A.5. □

2.4.2 Coverage Probability for minimum angular distance associ-
ation scheme

In this scheme, the receiver searches and associates with the BS that has the minimum angu-
lar distance φc among all minimum angular distances detected from each beam’s maxima. In
this case, the receiver may lie anywhere in b(o, RL) and φc also denotes the serving angular
distance.

Remark 2.8. Considering infinitely large LOS ball radius, the Euclidean distance between
the receiver and the serving BS may tend to infinity. In general, this scheme underestimates
the performance. In a similar vein, if the receiver is associated with the nearest BS in
Euclidean distance, the serving BS may lie near the boundaries of the 3dB beamwidth of the
receiver’s antenna, which is also not accurate and will (maybe significantly) underestimate
the coverage performance. The aforementioned conceptual gap is resolved by adopting a
more nuance user association policy which jointly considers both Euclidean and angular
distances, that is the Policy 1.

Therefore, the serving distance d0 = ∥x0∥ is now independent of the association policy and
i.i.d. in b(o, RL) with PDF given by fd0(d0) = 2d0

R2
L

, d0 ∈ [0, RL]. The PDF of φc is first
derived.

Lemma 2.9. For a receiver equipped with 2m sectors and conditioned on ARL,1 the PDF of
the closest angular distance φc is given by

fφc|ARL,1
(φc) =

λbs2
mR2

Lexp(−λbs2mφcR2
L)

1− e−λbsπR
2
L

, (2.22)

for φc ∈
[
0, π

2m

]
.

Proof. See Appendix A.6. □
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Lemma 2.10. Conditioned on φc w.r.t. ϕr0 , the conditional Laplace transform LI(s|φc, ϕr0)
of the aggregate interference power distribution is given by

LI(s|φc, ϕr0) = exp
(
− λbs

∫∫
V

(
1−

(
1 +

s pK gmax g3gpp(|ϕr0 − ϕx|) r−αL
x

mx

)−mx
)
rxdϕxdrx

)
× exp

(
− λbs

∫∫
V

′

(
1−

(
1 +

s pK gmax g3gpp(|ϕr0 − ϕx|) r−αN
x

mx

)−mx
)
rxdϕxdrx

)
,

(2.23)

where

V = {(rx, ϕx) ∈ R2|0 ≤ rx ≤ RL, φc ≤ ϕx ≤ 2π},
V

′
= {(rx, ϕx) ∈ R2|RL ≤ rx ≤ R, φc ≤ ϕx ≤ 2π}.

(2.24)

Proof. See Appendix A.7. □
Theorem 2.11. Conditioned on ARL,1, the coverage probability of a receiver in a mmWave
network inside b(o, RL) under a minimum angular distance-based association policy is given
by

Pc(γ) =
2m∑
i=1

ms−1∑
k=0

∫ π
2m

0

∫ RL

0

(−s)k

k!

[
∂kLItot(s|φc, ϕi0)

∂sk

]
s

pϕfd0(d0)fφc|ARL,1
(φc)dd0dφc, (2.25)

s = msγ

p gmaxK g(φc)d
−αL
0

LItot(s|φc, ϕi0) = exp(−σ2s)LI(s|φc, ϕi0).

Proof. See Appendix A.8. □

2.4.3 Coverage Probability for minimum Euclidean distance asso-
ciation scheme

In this scheme, the receiver associates with the closest BS in Euclidean distance. Once the
communication link has been established, all x ∈ Ψ!

bs interfere to the receiver with AoAs
ϕx ∼ U [−π, π]. The Laplace transform of the aggregate interference power distribution can
now be directly derived in the following Lemma.

Lemma 2.12. The Laplace transform of the aggregate interference power distribution con-
ditioned on the serving distance r1 is given by

LI(s|r1) = exp
(
− λbs

∫∫
Q

(
1−

(
1 +

s pK gmax g3gpp(ϕx) r
−αL
x

mx

)−mx
)
rxdϕxdrx

)
× exp

(
− λbs

∫∫
Q′

(
1−

(
1 +

s pK gmax g3gpp(ϕx) r
−αN
x

mx

)−mx
)
rxdϕxdrx

)
,

(2.26)
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where

Q = {(rx, ϕx) ∈ R2|r1 ≤ rx ≤ RL, −π ≤ ϕx ≤ π},
Q′

= {(rx, ϕx) ∈ R2|RL ≤ rx ≤ R, −π ≤ ϕx ≤ π}.
(2.27)

Proof. The proof for deriving Lemma 2.12 follows similar steps as the one of Lemma 2.10.
□

Theorem 2.13. Conditioned on ARL,1, the coverage probability of a receiver in a mmWave
network inside b(o, RL) under minimum Euclidean distance association policy is given by

Pc(γ) =
ms−1∑
k=0

∫ RL

0

(−s)k

k!

[
∂kLItot(s|r1)

∂sk

]
s=

msγr
αL
1

pK g2max

fr1|ARL,1
(r1)dr1, (2.28)

where LItot(s|r1) = exp(−σ2s)LI(s|r1) and fr1|ARL,1
(r1) =

2πλbsr1e
−λbsπr21

1−e−λπr2
, r1 ∈ [0, RL].

Proof. The proof for deriving Theorem 2.13 follows similar steps as the proof in Theorem
2.7. □

2.5 Special Cases: Dominant Interferer Approach

The dominant interferer approach has been widely used in the literature due to its usefulness
when the exact analysis is too complicated or leads to unwieldy results. For instance, in
[34]−[37], the authors capture the effect of the dominant interferer while approximating the
residual interference with a mean value. In this section, in order to understand the effect
of the different potential definitions of the dominant interferer on the performance analysis,
the coverage performance is investigated under the assumption of neglecting all but a single
dominant interferer for all policies. Note that in order to define the interferer as dominant,
the latter is restricted to b(o, RL). Accordingly, a performance comparison between the
dominant interferer approaches with the exact performance of Policy 1, is conducted. To
this end, the noise power is assumed to be negligible as compared to the aggregate interference
experienced at the receiver, i.e., interference-limited scenarios 3 Policy 2 and Policy 3 are
considered and coverage probability, i.e., Pc(γ) ≜ 1−FSIR(γ), analysis is conducted in terms
of the achieved SIR.

3Please note, that since interference from other BSs is ignored, it results in stochastic dominance of
the SIR as compared to the exact SIR of the respective policy, which implies that the dominant interferer
approach yields a bound on the exact coverage probability of Policy 1.
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2.5.1 Coverage Probability Under Policy 1

By considering maximum power user association policy, the receiver associates with the BS
providing the maximum power as described in subsection 2.3.5. Then, clearly the dominant
interferer is the BS which provides the second most powerful received power after the serving
BS. The received SIR for this dominant interferer analysis of Policy 1 can be written as

SIR =
h1Pr0
h2PrI

, (2.29)

where the maximum received power Pr0 = S and PrI denotes the second most powerful
received power. Once the receiver attaches to the serving BS, Pr0 and PrI are no longer in-
dependent. In this case, the joint PDF of Pr0 and PrI is required for the coverage probability
analysis, which is given next.

Lemma 2.14. Conditioned on ARL,2, the joint PDF of Pr0 and PrI is given by

fPr0,P rI |ARL,2
(s0, sI) =

(λbsπR
2
L)

2eλbsπR
2
L

(
FSx (s0)−1

)
fSx(s0)fSx(sI)

1− Γ(2, λbsπR2
L)

, (2.30)

where s0 ∈ [wmin,∞] and sI ∈ [wmin, s0].

Proof. See Appendix A.9 □
Having obtained fPr0,P rI |ARL,2

(s0, sI), it becomes mathematically convenient to statistically
characterize the SIR as SIR = P ·Q, where P = Pr0

PrI
and Q = h1

h2
.

Lemma 2.15. Conditioned on ARL,2, the PDF of P is given by

fP |ARL,2
(p0) =

∫ ∞

pmin(p0)

p0fPr0,P rI |ARL,2
(p0sI , sI)dsI , (2.31)

where p0 ∈ [1,∞] and pmin(p0) = max
{
wmin

p0
, wmin

}
.

Proof. The proof results directly from the formula for the PDF of ratio of two dependent
random variables. □

Lemma 2.16. Conditioned on ARL,2, the PDF of Q is given by

fQ|ARL,2
(q) =

qms−1mms
s mmx

x Γ(ms +mx)

Γ(ms)Γ(mx)(qms +mx)(ms+mx)
, (2.32)

where q ∈ [0,∞].
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Proof. The proof results directly from the formula for the PDF of ratio of two independent
random variables. □

Proposition 2.17. Conditioned on ARL,2, the coverage probability in the presence of a
dominant interferer under Policy 1 is given by

Pc(γ) = 1−
∫ γ

0

∫ ∞

1

1

x
fP |ARL,2

(x)fQ|ARL,2

( x
p0

)
dp0dx. (2.33)

Proof. See Appendix A.10 □

2.5.2 Coverage Probability Under Policy 2

By assuming that the receiver associates with the closest BS in angular distance, the domi-
nant interferer is the second nearest BS in angular distance w.r.t the maxima of the receiving
beam, as described in subsection 2.3.5. Without loss of generality, the receiving beam’s max-
ima is assumed to be along the x-axis.4 In this case, the received SIR is given by

SIR =
g(|φ1|)h1d−αL

1

g(|φ2|)h2d−αL
2

, (2.34)

where fdi(di) = 2di
R2

L
, i ∈ {1, 2} denotes the distance of the serving BS and the dominant

interferer, respectively, |φ1|, |φ2| denote the nearest and the second nearest absolute angular
distances of the serving and interfering BS from the direction of the receiving beam’s max-
imum directivity, and h1 = hs, h2 = hx, for notational convenience, respectively. Note that
in order to define the interferer as ”dominant”, the angle |φ2| is restricted to |φ2| < ϕA, i.e.,
the dominant interferer is assumed to fall in the mainlobe part of the receiver’s antenna pat-
tern. Let TϕA,2 define the event that 2 BSs (assumed to lie in b(o, RL)) fall in the mainlobe
part of the receiver’s antenna. Note that TϕA,2 ⊆ ARL,2. Once the receiver attaches to the
closest BS at |φ1|, the angular distances |φ1|, |φ2| are no longer independent. In this case,
it is mathematically convenient to statistically characterize the SIR as SIR = G ·W , where
G = g(|φ1|)

g(|φ2|) and W =
h1d

−αL
1

h2d
−αL
2

.

4As the scope of this section is merely to address the impact of the dominant interferer in the coverage
performance of mmWave networks, the exhaustive scanning procedure for the association policy proposed
in subsection 2.3.5 is not considered here as the location of the dominant interferer is independent of the
considered reference line.
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Lemma 2.18. Conditioned on TϕA,2, the PDF of G is given by

fG|TϕA,2
(g) =

1

P[TϕA,2]

∫ gmax
g

gs

5 (λbsR
2
Lϕ3dB)

2

24 g g2

√
log10(gmax

g2
)log10(gmax

g g2
)

ln(gmax

g2
)ln(gmax

g g2
)

× exp
(λbsR2

Lϕ3dB

√
10log10(gmax/g2)
2
√
3

)
dg2,

(2.35)

with g ∈ [1, gmax/gs] and

P[TϕA,2] =
1− e−λbsR

2
LϕA − λbsR

2
LϕAe

−λbsR2
LϕA

1− Γ(2,λbsπR
2
L)

Γ(2)

. (2.36)

Proof. See Appendix A.11. □
Lemma 2.19. Conditioned on ARL,2, the PDF of W is given by

fW |ARL,2
(w) =

∫ ∞

0

4w
− 4

αL
−1

2 (msmx)
− 2

αL

w
2

αL
+1
α2
LR

4
L

×

[
Γ
(

2
αL

+ms

)
− Γ

(
2
αL

+ms,
msww2

R
−αL
L

)][
Γ
(

2
αL

+mx

)
− Γ

(
2
αL

+mx,
mxw2

R
−αL
L

)]
Γ(ms)Γ(mx)

dw2,

(2.37)

with w ∈ (0,∞).

Proof. See Appendix A.12. □
Proposition 2.20. Conditioned on ARL,2 and TϕA,2, the coverage probability in the presence
of a dominant angular distance-based interferer under Policy 2 is given by

Pc(γ) = 1−
∫ γ

0

∫ gmax
gs

1

1

g
fW |ARL,2

(x/g)fG||TϕA,2
(g)dgdx. (2.38)

Proof. See Appendix A.13. □

2.5.3 Coverage Probability Under Policy 3

In this scenario, according to Policy 3 the dominant interferer is the second closest BS in
Euclidean distance to the receiver. In this case, the received SIR is given by

SIR =
gmaxh1r

−αL
1

g(|φ2|)h2r−αL
2

, (2.39)
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where r1, r2 denote the distances of the serving and the dominant interfering BS from the
receiver and |φ2| here denotes the absolute angular distance of the interfering node as seen
from the receiver. For the dominant interferer scenario, the property of PPP is exploited:
If |φ2| ∼ U [0, π], |φ2| remains uniform in the subset [0, ϕA] i.e., |φ2| ∼ U [0, ϕA]. In this
scenario, r1, r2 are dependent. The SIR can be written as SIR = G ·W , where G = gmaxh1

g(|φ2|)h2

and W =
r
−αL
1

r
−αL
2

.

Lemma 2.21. Conditioned on ARL,2, fG|ARL,2
(g) is given by

fG|ARL,2
(g) =

5
√
3
(

ms

gmax

)ms

mx
mxϕ3dB

6
√
10 ln(10)Γ(ms)Γ(mx)ϕA

∫ ∞

0

∫ z
gs

z
gmax

(g z)ms−1e−
msgz
gmax

−mxxxmx−1√
log10(xgmax/z)

dx dz.

(2.40)

Proof. See Appendix A.14. □

Lemma 2.22. Conditioned on ARL,2, fW |ARL,2
(w) is

fW |ARL,2
(w) =

(
1
w

) 2+αL
αL

αL

(3erf(√πλbs)
2λbs

− 2(1 + R2
Lλbsπ)e

−R2
Lλbsπ − e−λbsπ

) (2.41)

w ∈ [1,∞), and erf(·) denotes the error function [40, eq. (8.250.1)].

Proof. See Appendix A.15. □

Proposition 2.23. Conditioned on ARL,2, the coverage probability in the presence of a
dominant interferer under Policy 3 is given by

Pc(γ) = 1−
∫ γ

0

∫ ∞

1

1

g
fW |ARL,2

(x/g)fG|ARL,2
(g)dgdx. (2.42)

Proof. The proof follows the same steps as the proof in Proposition 2.17. □

2.6 Special Cases: A BPP mmWave Network under
Perfect Alignment

In the previous subsection, the definition of the dominant interferer in mmWave networks,
where the BSs were assumed to be deployed according to a FHPPP in a LOS ball, was
revisited and its effect in the coverage performance was addressed. Nevertheless, in practical
mmWave networks, a finite and predetermined number of mmWave small BSs is usually
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deployed in a finite region. This subsection provides an in-depth performance analysis of
a practical scenario where the BSs are assumed to be spatially distributed according to a
BPP. In order to merely capture the effect of the dominant interferer in mmWave networks,
perfect alignment between the direction of the UE’s and the receiver’s antenna is assumed.
Moreover, in a similar to subsection 2.5 vein, the BSs are assumed to lie in b(o, RL).

Towards this direction, in this subsection a coverage probability analysis is conducted under
three key interference scenarios: i) a worst-case dominant interference scenario, where the
dominant interferer is the BS that is both the nearest in azimuthal angle from the direction
of the serving BS, and the second nearest in Euclidean distance from the receiver; ii) a
dominant interferer, where the dominant interferer is defined as the BS that is the closest in
azimuthal angle from the direction of the serving BS and uniformly distributed in an annulus
formed by the the serving distance and a ball radius RL, and iii) the aggregate interference
in the BPP mmWave network, for completeness.

2.6.1 System Model and Assumptions

In this subsection, the BSs are spatially distributed according to a uniform BPP. Accordingly,
a fixed and finite number N of BSs is uniformly and independently distributed in b(o, RL). In
this case, only the first branch of (2.7) is exploited, i.e., l(∥x∥) = K∥x∥−αL , for ∥x∥ ∈ [0, RL].
By further letting ϕr0 = 0, the equations for the antenna patterns for both the UE and
the BSs are given by (2.4) and (2.6), where ϕ ∈ [−π, π]. In the following, the absolute
angular distance |ϕ| is considered. Since ϕ ∈ [−π, π], we define |ϕ| ∈ [0, π]. This notation is
particularly useful when dealing with the angular distance from the direction of the maximum
directivity in antenna beampatterns.

In order to elaborate more on practical system-level insights for the effect of the dominant
interferer in the coverage performance of mmWave networks, the minimum distance-based
association policy is considered for the receiver. Accordingly, the receiver is associated to the
nearest BS in b(o, RL) located at x0 and is referred to as the serving BS. Since the uniform
BPP in b(o, RL) is rotation invariant around the origin, it is assumed without loss of gener-
ality that x-axis is aligned with the line connecting the receiver and the serving BS referred
to as the communication link, as shown in Fig. 2.4. Also, the maximum gain of the N BSs’
antennas is assumed to be always directed towards the receiver for the sake of mathematical
tractability. Once the communication link has been established, the best receiving beam is
selected by the receiver for reception. Now, according to the beam management procedures
in 5G NR presented in detail in subsection 2.3.5, the beam pointing towards the serving
BS is chosen by the receiver as the receiving beam. By steering the receiver’s antenna, the
maximum gain of the receiver’s antenna is assumed to be directed towards the serving BS.
The complete scenario is illustrated in Fig. 2.4.
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Figure 2.4: Illustration of a special case of the system model presented in subsection 2.3
with i) perfect alignment and, ii) the BSs forming a BPP in b(o, RL).

2.6.2 SINR Definitions

As mentioned in the beginning of subsection 2.6, in order to capture and demonstrate the
effect of the angular distances on the directional gain and consequently, on the experienced
received SINR, three interference scenarios are considered: i) the worst-case dominant in-
terferer approach, ii) a dominant interferer approach, and iii) the aggregate interference in
b(o, RL).

Dominant Interferer Worst-Case Approach. In this setup, the worst-case dominant interfer
scenario is considered and its effect on the received SINR is accurately captured. The
interference from the rest N − 2 interfering BSs is assumed to be negligible as compared to
the interference caused by the dominant interferer. In the absence of fading, the dominant
interferer is the nearest BS in angle |ϕ| w.r.t. the line of the communication link, i.e., at |ϕ1|
as shown in Fig. 1, and the second nearest in Euclidean distance from the receiver, i.e., at
r2. In this case, the SINR at the receiver is given by

SINRw−dom =
p gmax gmax l(||x0||)

p gmax g(|ϕ1|||ϕ1| < ϕA)l(r2) + σ2
, (2.43)

By assuming dominant interference, the angle |ϕ1| is restricted to |ϕ1| < ϕA, i.e., the domi-
nant interferer is assumed to fall in the mainlobe of the receiver’s antenna.

Dominant Interferer Approach. In this setup, a common dominant interferer scenario is con-
sidered and its effect on the received SINR is accurately captured. In the absence of fading,
the dominant interferer is the nearest BS in angle |ϕ| w.r.t. the line of the communication
link, i.e., at |ϕ1|, and uniformly distributed in b(o, RL) \ b(o, ||x0||), at distance di. In this
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case, the SINR at the receiver is given by

SINRdom =
p gmax gmax l(||x0||)

p gmax g(|ϕ1|||ϕ1| < ϕA)l(di) + σ2
. (2.44)

Note that the angle |ϕ1| is again restricted to |ϕ1| < ϕA.

Aggregate Interference. In this setup, the aggregate interference in b(o, RL) is considered in
the definition of the SINR. In this case, the SINR at the receiver is given by

SINRagg =
p hs gmax gmax l(||x0||)

I + σ2
, (2.45)

where I is given by I =
∑N−1

i=1 p hi gmax g3gpp(|φi|) l(Ui) and refers to the aggregate interfer-
ence power. The term {Ui}N−1

i=1 denotes the distance between the interfering BSs and the
receiver. The spatial AoA |φi|, determines the receiver antenna gain towards the i-th inter-
ferer, and is assumed to be uniformly distributed in [0, π]. Please note that (2.45), considers
the exact expression for the antenna pattern of the BSs while calculating the aggregate
interference power.

2.6.3 Performance Analysis

In this section, performance analysis in terms of coverage probability is conducted.

Coverage Probability Under Worst-Case Dominant Interference. The conditional PDF of
g(|ϕ1|||ϕ1| < ϕA) is first calculated as an intermediate step in the coverage probability
analysis.

Lemma 2.24. Conditioned on |ϕ1| < ϕA, the conditional PDF of the gain g(|ϕ1|||ϕ1| < ϕA)
is given by

f(g||ϕ1| < ϕA) =
f(g, |ϕ1| < ϕA)

p|ϕ1|<ϕA
, (2.46)

where

f(g, |ϕ1| < ϕA) =
5

3 g ln(10)
ϕ3dB

2

N

πN

√
3

10 log10
(
gmax

g

)(π − ϕ3dB

2

√
10 log10

(
gmax

g

)
3

)N−1

,

(2.47)

where g ∈ [gs, gmax] and p|ϕ1|<ϕA = 1− π−N(π − ϕA)
N .

Proof. See Appendix A.16. □
The coverage probability of the receiver can now be obtained in exact form.
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Proposition 2.25. The coverage probability of a receiver in b(o, RL) in the presence of a
dominant worst-case interference scenario is given by

Pc(γ) =
∫ g0(r1,r2,γ,σ2)

gs

∫ RL

r1

∫ RL

0

fr1,r2(r1, r2)f(g, |ϕ1| < ϕA)dr1dr2dg, (2.48)

where r1 = ||x0||, and fr1,r2(r1, r2) = N(N − 1)2 r1
R2

L

2 r2
R2

L

(
1 −

(
r2
RL

)2)N−2

, g0(r1, r2, γ, σ2) =

min{ψ(r1, r2, γ, σ2), gmax}, ψ(r1, r2, γ, σ2) =
cbs gmax r

−αL
1 −γ σ2

cbsγ r
−αL
2

, and cbs = K p0 gmax.

Proof. See Appendix A.17. □
Coverage Probability Under Dominant Interference. In this approach, it is mathematically
convenient to first derive the PDF of P = g(|ϕ1|||ϕ1| < ϕA)d

−αL
i , conditioned on the serving

distance r1 = ||x0||.

Lemma 2.26. Conditioned on |ϕ1| < ϕA and r1 = ||x0||, the conditional PDF of P =
g(|ϕ1|||ϕ1| < ϕA)d

−αL
i is given by

fP (x||ϕ1| < ϕA, r1) =

∫ θ(x)

η(x)

1

y
f
d
−αL
i

(y/x|r1)fg3gpp(y||ϕ1| < ϕA)dy, (2.49)

where x ∈ [gsR
−αL
L , gmax r

−αL
1 ], η(x) = max

{
gs,

x

r
−αL
1

}
, θ(x) = min

{
gmax,

x

R
−αL
L

}
, f

d
−αL
i

(d|r1) =
2 d(αL+2)/αL

αL(R
2
L−r

2
1)

and y is a dummy variable.

Proof. See Appendix A.18. □
An exact expression for the coverage probability of the receiver can now be obtained.

Proposition 2.27. The coverage probability of a receiver in b(o, RL) in the presence of a
dominant interference scenario is given by

Pc(γ) =
∫ ω(r1,γ,σ2)

gsR
−αL
L

∫ RL

0

fP (x||ϕ1| < ϕA, r1)fr1(r1)dr1dx, (2.50)

where ω(r1, γ, σ2) = min
{
gmaxr

−αL
1 ,

cbsgmaxr
−αL
1 −γσ2

cbsγ

}
and fr1(r1) is given by

fr1(r1) =
2N

r1

( r1
RL

)2(
1−

( r1
RL

)2)N−1

. (2.51)

Proof. The proof is analogous to that of Proposition 2.25, with a different PDF fr1(r1) for
the serving distance given by [46], required for deconditioning on the conditional coverage
probability. □
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Coverage Probability Under Aggregate Interference. Conditioned on the serving distance r1 =
||x0||, the Laplace transform of interference power distribution is obtained as intermediate
step in the coverage probability analysis.

Lemma 2.28. The Laplace transform of the aggregate interference power distribution con-
ditioned on the serving distance r1 is given by5

LI(s|r1) =
[
1

π

∫ RL

r1

∫ π

0

(
1 +

s cbs g3gpp(|φi|) u−αL
i

mI

)−mI 2ui
R2
L − r21

d|φi| dui
]N−1

. (2.52)

Proof. See Appendix A.19. □
The exact expression of the coverage probability for the receiver under aggregate interference
can now be derived.

Proposition 2.29. The coverage probability of a receiver in b(o, RL) is given by

Pc(γ) =
∫ RL

0

ms−1∑
k=0

(−s)k

k!

[
∂kLItot(s|r1)

∂sk

]
s

fr1(r1)dr1, (2.53)

where s = msγ rαL

cbsgmax
and LItot(s|r1) = exp(−σ2s)LI(s|r1).

Proof. The proof for deriving Proposition 2.29 follows similar lines as the one presented in
[47, Appendix F]. □

2.7 Numerical Results and Discussions

2.7.1 Coverage Performance of FHPPP 5G NR mmWave Net-
works

In this section, numerical results are presented to evaluate and compare the performance
achieved in a dense FHPPP mmWave cellular network under the different association policies
as presented in subsection 2.3.5. The accuracy of the analytical results presented in this
chapter is verified by comparing them with the empirical results obtained from Monte-Carlo
simulations. For all numerical results, the following parameters have been used unless stated
otherwise: RL = 75 meters, αL = 2, αN = 3.5, fc = 26.5 GHz as in [24] and R = 100 meters.
As per the 3GPP specifications p = 45 dBm, σ2 = −74 dBm, λbs = 0.0008 BSs/m2 and

5Although the Laplace transform of the aggregate interference was derived using the realistic pattern
given by (2.1) because of its compact form, the same result can be derived by using (2.2). However, the
Laplace transform using the two-branch expression in (2.2) results in a non-compact form and hence it is
omitted here for brevity.
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Figure 2.5: CCDF of received power under Policy 1 and Policy 3, for different values of λbs.
Markers denote the analytical results.

mu = 2. The receiver is assumed to be equipped with a directional antenna with 4 sectors6,
i.e., m = 2 and ϕ3dB = π/2.

Fig. 2.5 presents the CCDF of the maximum received power under Policy 1, defined as
in (2.16) and evaluated through Lemma 2.3, for different values of λbs. To address and
highlight the impact of realistic association schemes in the performance of mmWave networks,
the results are compared through simulations to the received power of Policy 3, defined as
Sr = gmaxr

−αL
1 , where the receiver is associated to the nearest LOS BS and no misalignment

error exists. It is observed that Policy 3 overestimates the received power compared to the
maximum received power achieved under Policy 1, especially for small values of the abscissa.
Interestingly, notice that the misalignment error exists even in denser mmWave networks.
Consequently, associating to the nearest LoS BS is not realistic, even in dense mmWave
networks.

Fig. 2.6 compares the coverage probability versus γth under Policy 1 and Policy 3 for sev-
eral numbers of beams/sectors produced by the receiver antenna. It is observed that the

6Very large codebooks can be considered at the receiver, thereby resulting in a huge number of narrow
beams. However, [48] states that the SSB-based requirements upper-bound the number of RX beams to 8.
Besides, to avoid the high overhead and complexity issues associated with wide spatial domain coverage with
a huge number of very narrow beams, on which CSI-RSs are transmitted, it is reasonable to consider only
subsets of those beams, usually based on the locations of the active receiver. This is also important for UE
power consumption considerations.
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Figure 2.6: Coverage probability versus γth under Policy 1 and Policy 3, for different num-
ber of sectors. Simulation results under a flat-top antenna pattern are also presented for
completeness.

coverage performance of the network under Policy 3 is overestimated and the difference in
coverage performance is not negligible (e.g. for γth = −1 dB, the coverage probability under
Policy 3 is 0.55, while the coverage probability under Policy 1 is 0.48). Note that in Policy 1,
the receiver performs exhaustive scanning in each sector to select the BS that provides the
maximum power. The number of beams/sectors of the receiver’s antenna affects both the
desired received power and the interference power falling within the 3dB beamwidth of the
receiver’s antenna pattern, while in Policy 3 the number of sectors only determines the inter-
ference power. Indeed, by increasing the number of sectors in Policy 1, the receiver minimizes
the misalignment error. At the same time, the receiver’s beams become highly-directional,
thus decreasing the interference power, and the coverage performance approaches the corre-
sponding one under Policy 3. The cyan curve depicts coverage performance for the worst-case
interference scenario under the flat-top antenna pattern approximation. It is observed that
the coverage performance under the flat-top pattern approximation is overestimated w.r.t.
the performance under Policy 1, especially in the higher SINR regime. Therefore, the joint
effect of the approximation of the flat-top antenna pattern and perfect alignment on the
coverage performance under Policy 1, is captured.

Fig. 2.7 compares the coverage probability versus γth under Policy 1 and Policy 2 when the
receiver’s antenna is equipped with different number of sectors. In both of the association
schemes, the receiver performs maximum power-based and angular distance-based exhaustive



2.7. NUMERICAL RESULTS AND DISCUSSIONS 39

Figure 2.7: Coverage probability versus γth under Policy 1 and Policy 2, for several numbers
of sectors. Markers denote the analytical results.
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Figure 2.8: Coverage probability versus number of sectors under Policy 1 and Policy 3, for
different values of λbs and γth = 3dB.
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Figure 2.9: Coverage probability versus λbs for different number of sectors under the three
policies, for γth = 3dB.

scanning, respectively to select the serving BS. It is observed that when only angular distance-
based scanning is performed, the coverage performance is significantly underestimated. This
result indicates that: i) Considering merely angular distance-based criteria for estimating the
coverage performance is inaccurate ii) The path-loss plays a crucial role in the performance
of mmWave networks.

Fig. 2.8 compares the coverage probability versus the number of sectors of the receiver’s
antenna under Policy 1 and Policy 3, derived analytically in Theorem 2.7 and Theorem
2.13, respectively, for different values of λbs and target γth = 3 dB. One can observe that
the coverage performance under ideal baseline scenario overestimates the corresponding one
under Policy 1, which accounts for the misalignment error, for all BSs’ deployment densities.
With the increase of the number of sectors, the UE’s beams in Policy 1 become more direc-
tional which alleviates beam misalignment effects and the coverage performance approaches
the corresponding one under the ideal baseline scenario. This also highlights the need for
explicitly modeling of misalignment error for realistic antenna patterns, even a small mis-
alignment error will impact the performance and hence, the angular distances become crucial
in realistic performance analysis of mmWave networks.

Fig. 2.9 shows the coverage probability versus λbs for different number of sectors of the
receiver’s antenna, under the three policies. It is observed that Policy 3 slightly overesti-
mates the coverage performance of the network for all number of sectors. On the other
hand, it is clearly observed that Policy 2 significantly underestimates the network’s cover-
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Figure 2.10: Coverage probability versus number of sectors under Policy 1 and Policy 3, for
different values of λbs and γth = 3dB.

age performance. This result clearly confirms that path-loss cannot be ignored during the
determination of the serving BS.

Fig. 2.10 shows the coverage probability versus γth under Policy 1, Policy 2 and Policy
3 for the dominant interferer. Moreover, the coverage performance under Policy 1 and
aggregate interference is depicted, when the receiver’s antenna is equipped with different
number of sectors. Quite interestingly, it is observed that the coverage performance under
Policy 2 with a single dominant interferer approximates the performance under Policy 1
with aggregate interference, especially when the number of sectors is small. In this case,
the angular distance-based criterion results in realistic network performance. On the other
hand, the performance under Policy 3 in the presence of a single dominant interferer clearly
overestimates the corresponding one under Policy 1, which leads to the following system-
level outcome: In a LOS ball of a mmWave network under beam misalignment error at the
receiver, by attaching to the closest BS in angular distance and considering the dominant
interferer as the closest BS in angular distance w.r.t. the line of communication link, results
in a more accurate approximation of the coverage performance compared to the policy of
attaching to the closest LOS BS and considering the dominant interferer as the second
nearest BS. Notably, the performance of Policy 2 under dominant interferer approach yields
a better approximation of the network’s coverage than the corresponding performance under
Policy 1 under dominant interferer approach.

Fig. 2.11 shows the coverage probability versus γth under Policy 1 and Policy 2 dominant



42
CHAPTER 2. COMPREHENSIVE ANALYSIS OF MAXIMUM POWER ASSOCIATION POLICY FOR

CELLULAR NETWORKS USING DISTANCE AND ANGULAR COORDINATES

-30 -20 -10 0 10 20 30 40

th
 (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

v
e

ra
g

e
 P

ro
b

a
b
ili

ty

Policy 1, 4 sectors

Policy 2-dom, 4 sectors

bs
 = 0.0008

bs
 = 0.0002

(a) Different values of λbs.
-20 -10 0 10 20 30

th
 (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

v
e

ra
g

e
 P

ro
b

a
b
ili

ty

Policy 2-dom, 4 sectors,

R
L
= 75 meters

Policy 2-dom, 4 sectors,

R
L
= 50 meters

Policy 1, 4 sectors,

R
L
= 50 meters

Policy 1, 4 sectors,

R
L
= 75 meters

(b) Different values of RL

-20 -10 0 10 20 30

th
 (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

v
e

ra
g

e
 P

ro
b

a
b
ili

ty

Policy 2-dom, 4 sectors

Policy 1, 4 sectors, a
N

= 4

Policy 1, 4 sectors, a
N

= 2.5

(c) Different values of αN .

Figure 2.11: Coverage probability versus γth under Policy 1 and Policy 2 dominant interferer
approach. Markers denote the analytical results.

interferer approaches. This figure investigates different network setups for which the per-
formance under Policy 2 dominant interferer approach yields a close approximation for the
network’s coverage performance. In Fig. 2.11a, coverage probability versus γth under Policy
1 and Policy 2 dominant interferer approach for different values of λbs, is illustrated. It is
observed that the performance under Policy 2 dominant interferer approach closely approx-
imates the network’s coverage performance for both dense and sparse mmWave networks,
especially in the higher SINR regime. In Fig. 2.11b, coverage probability versus γth under
Policy 1 and Policy 2 dominant interferer approach for different values of RL, is illustrated.
In a similar vein, it is observed that the performance under Policy 2 dominant interferer
approach is a good approximation of the network’s coverage performance for both values
of RL, especially in the higher SINR regime. Finally, in Fig. 2.11c, coverage probability
versus γth under Policy 1 and Policy 2 dominant interferer approach for different values of
aN in Policy 1, is illustrated. Clearly, the performance under Policy 2 dominant interferer
approach yields a close approximation of the network’s coverage performance for both values
of aN , especially as the interference power outside the LOS ball becomes weaker.

Remark 2.30. Note that the received power under Policy 2 would tend to zero for infinitely
large LOS ball radius RL. However, infinite radius is practically impossible to occur in
realistic mmWave networks where typical values are smaller than 100 meters [24].

2.7.2 Coverage Performance of BPP 5G NR mmWave Networks

In this section, numerical results of the performance analysis in terms of coverage probability
in the special case of a BPP 5G NR mmWave network without misalignment error, as
described in subsection 2.6.2, are presented under the three interference scenarios defined in
subsection 2.6.2. The CDF of the receiver’s antenna gain towards the closest BS in angle ϕ,
is also demonstrated to capture the effect of the dominant interference on the performance
of the proposed framework. The default system parameters are fc = 26.5GHz, αL = 2,
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Figure 2.12: The cumulative distribution function (cdf) of the receiver’s gain at the closest
BS in angular coordinates, for different values of ϕ3dB.

RL = 75 meters as in [24], N = 10 and mv = 4 in order to approximate a no fading scenario.
As per the 3GPP specifications and in order to be consistent with subsection 2.7.1, p = 45
dBm, σ2 = −74 dBm and ϕ3dB = 65◦ and ϕA = 102.8◦.

Fig. 2.12 compares the CDF of the receiver’s antenna gain at an angle that corresponds to
the closest interfering BS in angle ϕ, obtained through numerical integration of the PDF
derived in Lemma 2.24, for different values of ϕ3dB. The range of the gain values is [gs, gmax].
It is observed that as the half power beamwidth, ϕ3dB, of the receiver’s antenna increases,
the probability that the gain towards the closest BS falls below a target gain value decreases.
Indeed, with the increase of ϕ3dB the closest BS is more likely to fall in the mainlobe of the
receiver’s antenna. Therefore, the receiver antenna gain towards the closest interfering BS
in angle ϕ is concentrated to higher values, which in turn, increases the interference. On the
other hand, as the directivity of the receiver’s antenna increases, the closest interfering BS
is less likely to fall within the mainlobe of the receiver’s antenna and thus the probability
that the gain values are smaller, increases. The red dashed line is used to denote the half
power beamwidth region and the corresponding probability that the receiver’s gain at ϕ1

falls within ϕ3dB gain region. Finally, as observed, in all cases the analytical results match
the simulations perfectly, which verifies the accuracy of Lemma 2.24.

Fig. 2.13 illustrates the coverage probability, derived in Propositions 2.27-2.29, versus the
SINR thresholds γ under the three interference scenarios. A first observation is that the cov-
erage performance in the presence of a dominant interfering BS, underestimates the overall
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coverage performance, especially for the smaller values of γ. Indeed, while both the interfer-
ing BSs and the dominant interferer can lie anywhere in b(o, RL) \ b(o, ||x0||), the receiver’s
gain towards the N−1 interfering BSs seem to affect the coverage performance considerably,
as most BSs fall in the mainlobe of the receiver’s antenna. Although the overall coverage
performance is more pessimistic than the one under the dominant interferer assumption, the
approximation of the dominant interferer is valid. On the other hand, the coverage per-
formance in the presence of the worst-case dominant interference scenario is overestimated.
This is because the interfering BS is the closest BS both in Euclidean and in angular distance.
In contrast, the N − 1 interfering BSs can lie anywhere in b(o, RL) \ b(o, ||x0||) and some of
them may lie outside the mainlobe of the receiver’s antenna. Finally, in all scenarios, the
analytical results match the simulations perfectly, which verifies the accuracy of Proposition
2.25, Proposition 2.27 and Proposition 2.29.

Fig. 2.14 illustrates the CDF of the random variable P derived through numerical integration
of Lemma 2.26, for different values of αL. The serving BS is assumed to be located at distance
r1 = 20 meters from the receiver. Recalling (2.44), it is easy to observe that the random
variable P actually indicates the interference power received from the dominant interferer.
A first observation is that the probability that P is below a target value x of the interference
power increases as the propagation conditions getting worse. This is more profound for the
smaller values of x. Moreover, it is observed that the statistical behavior of the CDF of P
becomes different as αL increases. This is because of the large distance from the receiver
that the dominant interferer may lie. Indeed, given that the serving BS is at distance r1 = 20
meters from the receiver, the dominant interferer lies in the annulus b(o, RL) \ b(o, r1) and
it is assumed to lie in the mainlobe part of the receiver’s antenna. In this case, i) the gain
of the receiver’s antenna in the definition of P is multiplicative, however ii) even small a
degradation in the propagation conditions, severely affect the path-loss. The aforementioned
result indicates that the effect of path-loss has a dominant role in the performance of BPP
mmWave cellular networks.

2.8 Chapter Summary

In this chapter, we presented an in-depth and unified stochastic geometry framework to study
the performance analysis of a 5G NR mmWave cellular network by jointly considering the
polar coordinates of the BSs with respect to the typical user. To this end, both the Euclidean
and the angular distances of the BSs in a maximum power-based association policy for the
UE are considered to account for realistic beam management considerations. For complete-
ness, two other association schemes are considered, which merely accounted for the minimum
angular and Euclidean distance association policy. Subsequently, coverage probability anal-
ysis was conducted for all policies and exact-form expressions were obtained. Several key
intermediate results, such as the Laplace transform of the aggregate interference power distri-
bution, were also derived. Next, the key role of angular distances is highlighted by revisiting
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the dominant interferer approach using angular distance-based criteria instead of Euclidean
distance-based, and conducting a dominant interferer-based coverage probability analysis.
Among others, the numerical results revealed that considering angular distance-based crite-
ria for determining both the serving and the dominant interfering BS, can approximate the
coverage performance more accurately as compared to utilizing Euclidean distance-based cri-
teria. Nevertheless, it was shown that a merely angular distance-based association policy is
not accurate and therefore considering merely the directional characteristics in the receiver’s
association policy severely underestimates the coverage performance. In other words, the
effect of path-loss cannot be neglected in 5G NR mmWave networks. Finally, a practical
case of a BPP mmWave network under the assumption of perfect alignment was studied
and three dominant interference scenarios were studied, namely i) a worst-case dominant
interferer scenario, ii) a dominant interferer scenario, and iii) the aggregate interference.
Numerical results showed that angular distances play a key role in the definition of the
dominant interferer in mmWave networks. Indeed, the closest BS in angular distance from
the receiver and uniformly distributed in an annulus, has a strong impact on the overall
coverage performance and tends to approximate the coverage probability under aggregate
interference for the demanding values of SINR. To the best of our understanding, this chap-
ter offered a unified analysis of 5G NR mmWave networks while considering realistic beam
management procedures and established meaningful connections between the Euclidean and
angular distances. The interested readers are encouraged to extend the proposed framework.

In the next chapter, we extend the analysis beyond the study of terrestrial networks and
focus on the modeling and the performance of beyond 5G UAV networks. While our goal
is mainly to address conceptual gaps in the modeling of realistic beyond 5G cellular UAV
networks, the assumption of the minimum path loss association policy, i.e., the conventional
minimum Euclidean distance criterion is adopted in the next chapters.



Chapter 3

Finite Point Processes: Foundations
of a Truncated Octahedron-Based 3D
UAV Network

3.1 Introduction

As we step towards the 6G vision, UAV-based wireless communications are expected to
play a fundamental role to the establishment of the next-generation wireless network infras-
tructures. Due to their flexibility and inherent ability for LoS communications, UAVs can
provide broadband and reliable connectivity during emergency situations and disaster sce-
narios [49],[50]. Compared to conventional terrestrial BSs, the advantage of using UAVs as
aerial BSs is their ability to adjust their altitude and enhance the likelihood of establishing
LoS communication. UAVs can also function as aerial UEs, known as cellular-connected
UAVs. Under the 6G umbrella, the latter can be used for a wide range of applications such
as surveillance, wireless power transfer, sensing and tracking of terrestrial devices or vehicles.

Despite all these attractive opportunities, wireless networking with UAVs still faces a number
of challenges. For the UAV-BSs, a key design problem is the 3D deployment as well as the
air-to-air/ground channel modeling. A key challenge is to manage the service provision
to UAV-UEs in a way to achieve a reliable communication, since the current terrestrial
cellular networks have been primarily designed for supporting ground users. Consequently,
current cellular networks fail to meet the demanding communication requirements in terms
of coverage and capacity for UAV-UEs. A promising solution, is the deployment of UAV-BSs
capable of providing reliable connectivity to UAV-UEs [49]. However, given the complicated
3D nature of a UAV network and the dependencies between the spatial locations of UAV-
UEs and UAV-BSs, it is not straightforward to statistically characterize the performance of
the network at system level. Tackling this challenge, this chapter develops a comprehensive
framework with foundations in stochastic geometry to study the performance of a realistic
aerial 3D cellular network which was proposed [5] as a candidate beyond 5G 3D cellular
architecture. The proposed 3D cellular architecture builds upon the concept of the truncated-
octahedron cell shape and integrates both UAV-BSs and UAV-UEs.

47
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3.1.1 Related Work and Motivation

There are a number of works on UAV-based networks focusing on various design and com-
munication challenges that involve 3D deployment and performance analysis. The authors
in [51],[52], conducted a coverage and rate analysis assuming that UAVs were deployed in a
plane above the ground forming a PPP. In [8], an analysis of a UAV network is performed
in terms of the outage probability, where the locations of UAVs are modeled as PPP in a
sphere, whereas the authors in [53] conducted a performance analysis in terms of the received
rate, by considering aerial mobility models. In [54], [55] the authors exploited Poisson cluster
processes to analyze the performance of UAV networks. In [56], the authors examined the
performance of a MIMO NOMA assisted UAV network, where the locations of the terrestrial
users were modeled as a PPP. However, a PPP does not always adequately model a realistic
aerial network since different realizations of the point process consist of different number of
aerial nodes. In practice, a finite number of aerial nodes is deployed in UAV networks. For
these scenarios, a simple yet proper model for the spatial distribution of a finite number of
UAVs is the BPP.

The BPP has received considerable attention in UAV networks. In [57], the BPP was pro-
posed to model a finite UAV network, in which the UAVs were distributed in a disk above the
ground and a detailed downlink coverage analysis of terrestrial UEs, was introduced. The
authors in [58] performed an analysis of a finite UAV network by considering LoS and NLoS
propagation. In [59], a similar analysis was conducted by incorporating trajectory models for
the aerial BSs. The authors in [60] exploited the 2D BPP to study the outage probability in
a finite UAV network, by considering NOMA mode and correlated UAV channels. In [7], the
authors analyzed the performance of a binomial network with nodes placed within a sphere
in order to capture the effect of 3D space. In [47], the downlink coverage probability and the
rate of an aerial user in vertical heterogeneous networks, was investigated. Finally, the au-
thors in [61] conducted a detailed performance analysis within a UAV-to-ground framework
and compared the theoretical results with empirical data.

The majority of existing works propose generic 3D models, where UAV-BSs provide commu-
nication links for terrestrial UEs or terrestrial BSs that serve UAV-UEs. In fact, although
many of the aforementioned works have utilized the BPP as a realistic point process for the
modeling of UAV networks, they do not capture the effect of the 3D space. More specifi-
cally, either they deploy the UAVs in a 2D geometrical shapes above the ground, e.g., disc,
or they use 3D geometrical shapes, e.g., the sphere, that cannot tessellate the 3D space1. In
contrast to this, the authors in [5], set for the first time, the foundations of 3D aerial cellular
networks by introducing a fundamental cellular architecture for the deployment of UAVs
based on the truncated octahedron. The latter is the closest approximation to a sphere,
which can tessellate the entire 3D space, and thus it can approximate the spherical radiation
pattern of an isotropic antenna. In the proposed cellular architecture, the UAV-BSs are

1The 3D tessellation implies that the 3D space is entirely filled with no overlaps or gaps, in a similar way
to the hexagonal grid in the 2D cellular networks.
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deployed at the center of the truncated octahedrons, forming a 3D lattice. Moreover, the
authors in [5], performed network planning and 3D cell association for minimum latency
without investigating the performance in the cell. The spatial distribution of the UAV-UEs
was only estimated using kernel density estimation. Therefore, the distance distributions in
the truncated octahedron and fundamental network metrics such as the coverage probability
and the statistical characterization of the SINR have not been investigated. Till now the
performance analysis inside a truncated octahedron cell-shape, which is a major beyond 5G
candidate 3D cellular architecture, remains an open problem. To overcome the mathemati-
cal complexity implied by the adoption of the truncated octahedron cell-shape, the authors
in [6] utilized the BPP for the spatial deployment of aerial BSs and the Delaunay tessellation
for the 3D cellular network modeling.

Triggered by the aforementioned, in this chapter the finite point process are defined for a
truncated octahedron cell-shape for the first time. This also led to the definition of the
binomial 3D cellular network, which is formally defined next.

Definition 3.1. A network composed by truncated octahedron cell-shapes and integrates
aerial nodes, whose spatial locations are modeled as a 3D BPP, is called a binomial 3D
cellular network.

3.1.2 Contributions

The contributions in this chapter are the following:

Binomial 3D cell: Modeling of a truncated octahedron-based 3D cell with finite
number of UAVs-UEs

By employing the 3D BPP for modeling the spatial locations of UAVs-UEs, a fixed and
finite number of UAVs-UEs is uniformly and independently distributed inside the truncated
octahedron. A key contribution of this chapter is the evaluation of the volume of the sub-
regions of a truncated octahedron cell-shape in which a UAV-UE may fall. These volumes
play a fundamental role in the definition of the BPP and in the coverage probability analysis.

Stochastic geometry analysis in a truncated octahedron

By exploiting fundamental concepts of stochastic geometry theory, distance distributions in
a truncated octahedron are statistically characterized. In particular, the n-th nearest node
distance distributions are derived in closed-form for a 3D BPP within a truncated octahedron.
Intermediate results for the concentration of UAV-UEs in different regions of the truncated
octahedron, are also derived. The analysis also extends to the case where the spatial locations
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of points are modeled as a finite HPPP. By defining the FHPPP in a truncated octahedron,
expressions for the statistical characterization of distance distributions are derived.

3D cellular network coverage probability analysis

Performance analysis in terms of coverage probability under intra-cell interference is con-
ducted. For the sake of completeness, this analysis is also conducted for a finite cell modeled
as a sphere, which is a 3D model that retains analytical tractability. As intermediate results
in the coverage probability analysis, uniform distance distributions in a truncated octahe-
dron are derived and the Laplace transform of the aggregate interference power, is calculated
in exact form.

Multi-cell case coverage probability analysis

Coverage probability analysis is conducted under both intra- and a worst-case inter-cell
interference scenario. In particular, further to the interference from the UAV-UEs in the
reference cell, a dominant interferer is also assumed to be present from each of the 14
neighboring cells, that is hovering at the center of each of the 14 faces, i.e., at the boundaries
of the cell. Note that this is a worst-case scenario due to the minimum distance of the
interferers from the reference UAV-BS.

3.2 Mathematical Constructs and Stochastic Geome-
try Analysis

Consider a 3D cell modeled as a truncated octahedron W ⊂ R3 with 14 faces and edge length
R. Without loss of generality, it is assumed that W is centered at the origin o = (0, 0, 0)
of the 3D Cartesian coordinate system, and is referred to as the reference cell (the black
cell shown in Fig. 3.1). The 3D cellular network consists of a predefined arrangement of
multiple truncated octahedron cells, as shown in Fig. 3.1. For expositional simplicity, only
4 cells out of 8 neighboring to the hexagonal faces of W and 2 cells out of 6 neighboring
to the square faces of W , are depicted. By assuming the first tier of a 3D cellular network,
14 adjacent cells with respect to the reference cell are deployed, and will be referred to as
the neighboring cells. The coordinates of the centers of the neighboring cells can be directly
obtained from [5, Theorem 1]. The UAV-BS located at the center o of W , is referred to
as the reference UAV-BS. It is noted that the deployment of the UAV-BS is not random
in practice [47], which justifies such a lattice and makes the network modeling even more
realistic. Consider N transmitting UAV-UEs (or simply UAV-UEs for brevity) uniformly
and independently distributed in the reference cell. The spatial locations of the UAV-UEs
form a BPP Φ. Let Rn denote the random variable representing the Euclidean distance from
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Figure 3.1: Illustration of the system model.

o to the n-th nearest UAV-UE of Φ, and b3(o, r) represents the 3D ball of radius r centered
at o.

3.2.1 BPP: Distance Distributions in W

Definition 3.2. Let p denote the probability that a random UAV-UE of the BPP Φ falls in
b3(o, r). Then, p is given by [46]

p =
|b3(o, r) ∩W |

|W |
=
O(o, r)
|W |

. (3.1)

Accordingly, the following Lemma for obtaining O(o, r) is given as follows.

Lemma 3.3. The overlap region O(o, r) between b3(o, r) and W is given by

O(o, r) =
{

|b3(o, r)| − B(i)(r), r < Rc

|W |, r ⩾ Rc
(3.2)

for i = 1, ..., 4.

Proof. See Appendix B.1. □
In a practical 3D wireless cell modeled as a truncated octahedron, the parameter p provides
insights about the probability that an arbitrary aerial node falls within the corresponding
region of the cell.
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Corollary 3.4. The number of UAV-UEs Φ(O(o, r)) or Φ(b3(o, r)) lying in O(o, r) or in
b3(o, r), respectively, follows a binomial distribution with parameters n = N and p given by
(3.1), i.e., Φ(O(o, r)) ∼ B(n, p).

Subsequently, the complementary CDF of the distance Rn is the probability that there are
less than n UAV-UEs in O(o, r) and it is defined in [46] as

F̄Rn(r)
△
=

n−1∑
k=0

(
N

k

)
pk(1− p)n−k = I1−p(N − n+ 1, n), (3.3)

where Ix(·, ·) is the regularized incomplete beta function [40, eq. (8.39)].

Following [46, eq. (3)], the PDF of the distance Rn inside W is formally presented in the
following Theorem.

Theorem 3.5. In a truncated octahedron W centered at o, the PDF of the distance Rn from
the origin o to its n-th nearest UAV-UE is given by

fRn(r) =
dp
dr

(1− p)N−npn−1

B(N − n+ 1, n)
, (3.4)

for 0 ≤ r ≤ Rc, where dp
dr =

dO(o,r)
dr

/
|W |, and

dO(o, r)
dr =



dO(1)(o,r)
dr 0 ≤ r ≤ Rhex

dO(2)(o,r)
dr Rhex < r ≤ Rsq

dO(3)(o,r)
dr Rsq < r ≤ Rmid

dO(4)(o,r)
dr Rmid < r < Rc

0 r ⩾ Rc

(3.5)

where O(i)(o, r) = |b3(o, r)| − B(i)(r),

dO(1)(o, r)
dr = 4πr2,

dO(2)(o, r)
dr = 4πr2 − 16πr(r −Rhex),

dO(3)(o, r)
dr =

dO(2)(o, r)
dr − 12πr(r −Rsq),

(3.6)
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and dO(4)(o,r)
dr is given by

dO(4)(o, r)
dr =

dO(3)(o, r)
dr +

8ahexmax (r
3 −R3

mid)C(r)

3 (r2 −R2
hex)

√
r2 −R2

mid

+ 8rC(r) arccos
(

ahexmax√
r2 −R2

hex

)

+

8 (r3 −R3
mid)

(
− 12(ahexmax)

2

√
r2−(ahexmax)

2
+ 4

√
3(asqmax)

2

√
r2−(asqmax)

2
+

2
√
6R2

sq√
r2−R2

sq

−
√
6R

)
3r2

arccos
(

ahexmax√
r2 −R2

hex

)
,

(3.7)

where B(·, ·) denotes the Beta function [40, eq. (8.380.1)], and C(r) is given by

C(r) =4
√
3
√
r2 − (asqmax)2 − 12

√
r2 − (ahexmax)

2 +
√
6R + 2

√
6
√
r2 −R2

sq. (3.8)

Proof. See Appendix B.2. □
The void probability p0b of the BPP Φ is defined as the probability of there being no UAV-UE
of Φ in a region O(o, r) of W and consequently

p0b = (1− p)N . (3.9)

Of great interest are the nearest and farthest node distances in W , which are usually taken
as the serving distance and the distance of a cell-edge user in UAV-enabled communication
scenarios. The nearest node distance PDF in W is given by

fR1(r) = N
dp
dr (1− p)N−1, (3.10)

and the distance PDF to the farthest UAV-UE from the origin o in W is given by

fRN
(r) = N

dp
drp

N−1. (3.11)

3.2.2 PPP: Distance Distributions in W

In the following the analysis is extended to the case of a PPP. The finite HPPP in a truncated
octahedron W is formally defined.

Definition 3.6. Let Ω be a HPPP of intensity λ over the entire R3. Define the finite HPPP
inside W as Ψ = Ω ∩W .

The only distinction between Φ and Ψ in W , is that different realizations of Ψ constitute
of a different number of UAV-UEs. The finite HPPP Ψ is suitable for modeling a random
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number of nodes within the finite truncated octahedron W . The probability that there are
k UAV-UEs inside a region O(o, r) of W is distributed according to the Poisson distribution

Pk(o, r) = P(Ψ(O(o, r)) = k) = e−λO(o,r)Tk, (3.12)

where Tk = (λO(o,r))k
k!

, and the probability that there are k UAV-UEs inside the complemen-
tary region of O(o, r), W \O(o, r), is given by

Qk(o, r) = P(Ψ(W \O(o, r)) = k) = e−λ(|W |−O(o,r)) (λ(|W | −O(o, r)))k
k!

. (3.13)

Notice that the number of UAV-UEs falling into the disjoint regions of W , O(o, r) and
W \ O(o, r), is independent. In the finite HPPP Ψ, the void probability with respect to a
test set O(o, r) is given by

u0b = P(Ψ(O(o, r)) = 0) = P0(o, r) = e−λO(o,r). (3.14)

The PDF of Rn for a finite HPPP Ψ along with the corresponding CDF are presented in the
following Corollary.

Corollary 3.7. In an finite HPPP Ψ inside W , the PDF of the distance Rn between the
origin o and its n-th nearest UAV-UE, and the corresponding CDF, are given by

fRn(r) = λn
d(O(o, r)n)

dr
e−λO(o,r)

nΓ(n)
, (3.15)

FRn(r) = 1−
n−1∑
k=0

e−λO(o,r)Tk, (3.16)

for 0 ≤ r ≤ Rc.

Proof. See Appendix B.3. □
Notice that Corollary 3.7 depends only on the overlapping area between b3(o, r) and W .
Consequently, the previous results can be generalized for an arbitrary region V as follows.

Corollary 3.8. Consider the finite HPPP of density λ over an arbitrary compact set V ⊂ R3

centered at the origin o. If the region, L(o, r) = |b3(o, r) ∩ V | can be evaluated, for every
radius r, then the PDF of Rn inside V along with the corresponding CDF are given directly
after substituting O(o, r) in Corollary 3.7, with L(o, r).

Remark 3.9. For the special case where V = b3(o, D), (3.15) reduces to [46, eq. (11)], i.e.,

fRn(r) = e−
4πλ
3
r3 (4πλr

3)n

nΓ(n)
, r ∈ [0, D]. (3.17)
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Remark 3.10. A practical case is met when V is a 3D cell modeled as a cube, which can
tessellate the entire R3, too [5]. Although it is not a close approximation of a sphere when
compared to the truncated octahedron, it is geometrically tractable. In this case, L(o, r) is
evaluated similar to O(o, r).

3.3 Coverage Probability Analysis

In this section, performance analysis in terms of coverage probability is conducted for the
reference UAV-BS. In particular, the coverage performance is investigated under two in-
terference cases: i) intra-cell interference: the reference UAV-BS experiences interference
only from the UAV-UEs in W , and ii) intra- and inter-cell interference, i.e., the reference
UAV-BS experiences additional interference from UAV-UEs in the neighboring cells under
a worst-case scenario. For this case, a UAV-UE from each of the 14 neighboring cells of the
network is supposed to hover at the center of each of the 14 faces (i.e., the boundaries) of W
interfering at the reference UAV-BS. For the sake of completeness, the coverage probability
analysis under intra-cell interference in W is also conducted for an aerial 3D cell, where the
user locations are modeled as a 3D BPP in a sphere.

3.3.1 Communication, Channel Models and SINR Definitions

Assume a finite 3D cell, where the UAV-UEs are modeled as a 3D BPP in b3(o, Rc). Then,
the unordered set of distances from the reference UAV-BS to the UAV-UEs are denoted by
{Ui}, {Di}, for W and b3(o, Rc), respectively, and indicate that the index i is arbitrarily
assigned to the UAV-UEs. The ordered set of the distance between the reference UAV-BS
and the nth nearest UAV-UE, is denoted by {Rn}n=1:N for both W and b3(o, Rc). Assume
that the reference UAV-BS communicates with the nth nearest node out of the N UAV-UEs.
The work in this section focuses on the reverse link and therefore, the nth nearest UAV-UE
is referred to as the serving UAV-UE and the reverse link as the serving link. The distance
of the serving UAV-UE to the reference UAV-BS is denoted by RS = Rn and is referred to
as the serving distance. An ALOHA-like MAC protocol is assumed for the communications
inside the cell. Once the serving link has been established, the remaining N − 1 UAV-UEs
in W and in b3(o, Rc) interfere to the reference UAV-BS. In order to capture the effect of a
worst-case inter-cell interference scenario on coverage performance in W , a UAV-UE from
each of the 14 neighboring cells is supposed to hover at the center of each of the 14 faces of
W . The communication links among the interfering UAV-UEs and the reference UAV-BS
are referred to as the interfering links.

Assume that the UAV-UEs transmit at the same power (30 dBm). The channels undergo
Nakagami-m fading, which is a generalized model for various fading environments and si-
multaneously retains analytical tractability [57]. The amplitude of the received signal power
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follows Nakagami-m distribution, while the channel fading gain h ∈ {hS, hi}, for the serving
and interfering links, follows the Gamma distribution with fading parameter m ∈ {mS,mI},
respectively. The shape and scale parameters of h are m and 1/m, respectively, i.e., h ∼
Gamma

(
m, 1

m

)
with PDF given by

fh(x) =
mmxm−1

Γ(m)
exp (−mx). (3.18)

Note that E[h2] = 1. Also, the values of mS are restricted to integers for analytical tractabil-
ity.

In practice, the location of the serving UAV-UEs is usually investigated in order to cope
with limitations such as the flight time and the on-board energy [62], [63]. In the following
scenario, it is assumed to be fixed and henceforth RS = Rn = rs. However, the same analysis
can be also applied to the case where RS is a RV. The SINR at the reference UAV-BS is

SINRoct =
hSr

−α
s

Ioct + σ2
, (3.19)

and the SINR at the reference UAV-BS in b3(o, Rc) is

SINRsph =
hSr

−α
s

Isph + σ2
, (3.20)

where σ2 is the additive white Gaussian noise power and Ioct, Isph refers to the interference
power in W and b3(o, Rc), respectively. By considering the serving distance rs, then n − 1
nodes lie within the near zone O(o, rs) and b3(o, rs) of the reference UAV-BS for W and
b3(o, Rc), respectively, while the farther nodes lie within the far zone W \ O(o, rs) and
b3(o, Rc) \ b3(o, rs) of the reference UAV-BS. for W and b3(o, Rc) respectively, and interfere
to the reference UAV-BS. Consequently, Ioct, Isph can be expressed as Ioct = Inearoct + Ifaroct and
Isph = Inearsph + Ifarsph , respectively, where

Inearoct =
n−1∑
i=1

hi(U
near
i |rs)−α, Ifaroct =

N−n∑
i=1

hi(U
far
i |rs)−α,

Inearsph =
n−1∑
i=1

hi(D
near
i |rs)−α, Ifarsph =

N−n∑
i=1

hi(D
far
i |rs)−α,

(3.21)

where Unear
i |rs, Dnear

i |rs, U far
i |rs, and Dfar

i |rs denote the conditional distances between the
reference UAV-BS and the interferers of the near and the far zone respectively, given the
serving distance rs in W and b3(o, Rc). The parameter α is the path-loss exponent.

If the aggregate interference i.e., both intra- and inter-cell interference is considered, the
reference UAV-BS experiences additional interference from 8 UAV-UEs hovering at the center
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of the 8 hexagonal faces of W and from 6 UAV-UEs hovering at the center of the 6 square
faces of W . Then, the SINR at the reference UAV-BS is given by

SINRoct,agg =
hSr

−α
s

Ioct + Iinter + σ2
, (3.22)

where Iinter is given by

Iinter =
8∑
i=1

hiR
−α
hex +

6∑
i=1

hiR
−α
sq , (3.23)

where Rhex, Rsq have been defined in Appendix B.1.

3.3.2 Relevant Distance Distributions

In this subsection the distance distributions between the reference UAV-BS and the UAVs
inside W and b3(o, Rc) are statistically characterized. This is a key intermediate step in the
coverage probability analysis. The set of distances {Ui} from the reference UAV-BS to the
UAVs in W are i.i.d. with the following

fUi
(ui) =

dO(o, ui)
dui

/
|W |, 0 ≤ ui ≤ Rc (3.24)

The corresponding CDF is given by

FUi
(ui) =

O(o, ui)
|W |

. (3.25)

The above expressions lead to the following Lemmas for the distributions of Unear
i |rs, U far

i |rs.

Lemma 3.11. Conditioned on the serving distance rs, the distances {Unear
i |rs}i=1:n−1 between

the reference UAV-BS and the interferers of the near zone O(o, rs), are i.i.d. with the
following PDF

fUnear
i |rs(ui) =

dO(o, ui)
dui

/
O(o, rs), 0 ≤ ui ≤ rs. (3.26)

The corresponding CDF is given by

FUnear
i |rs(ui) =

O(o, ui)
O(o, rs)

, 0 ≤ ui ≤ rs. (3.27)

Proof: The procedure for deriving (3.26) is the same as in [6, App. A] and hence it is omitted
here. The corresponding CDF is obtained through integration with respect to the range of
ui and this completes the proof. □
For the sphere, conditioned on the serving distance rs, the distances {Dnear

i |rs}i=1:n−1 be-
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tween the reference UAV-BS and the interferers of the near zone b3(o, rs) in b3(o, Rc), are
i.i.d., with PDF given by

fDnear
i |rs(di) =

3d2i
r3s
, 0 ≤ di ≤ rs. (3.28)

Similarly, conditioned on the serving distance rs, the distances {Dfar
i |rs}i=1:N−n between the

reference UAV-BS and the interferers in the far zone b3(o, Rc) \ b3(o, rs), are i.i.d. with a
PDF given by

fDfar
i |rs(di) =

3d2i
R3
c − r3s

, rs ≤ di ≤ Rc. (3.29)

3.3.3 Coverage Probability Analysis

In this subsection, exact form expressions for the coverage probability at the reference UAV-
BS, are derived under the two interference cases.

Intra-Cell Interference Case

Under the intra-cell interference case, exact and closed-form expressions for the coverage
probability inside W and b3(o, Rc), respectively, are extracted. Given the serving distance
rs, the conditional Laplace transform of the interference power distribution is first derived
in exact form for W , and in closed form for b3(o, Rc).

Lemma 3.12. The Laplace transform of the intra-cell interference power distribution Ioct,
Isph conditioned on the serving distance rs is given by

LIoct(s|rs)

=

[∫ rs

0

(
1 +

su−αi
mI

)−mI

fUnear
i |rs(ui) dui

]n−1[∫ Rc

rs

(
1 +

su−αi
mI

)−mI

fUfar
i |rs(ui) dui

]N−n

,

(3.30)

and

LIsph(s|rs)

=

[∫ rs

0

(
1 +

sd−αi
mI

)−mI

fDnear
i |rs(di) ddi

]n−1[∫ Rc

rs

(
1 +

sd−αi
mI

)−mI

fDfar
i |rs(di) ddi

]N−n

=

[
3 2F1

(
mI ,mI +

3
a
; 1 +mI +

3
a
;− rsamI

s

)
rs3−amI

(
mI

s

)−mI (amI + 3)

]n−1[
Θ(s,Rc)−Θ(s, rs)

R3
c − r3s

]N−n

,

(3.31)
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respectively, where Θ(s, x) = x3 2F1

(
− 3
a
,mI ;

a−3
a
;−x−as

mI

)
with 2F1 (·) denoting the Gauss

hypergeometric function given in [40, eq. (9.34.8)].

Proof. See Appendix B.4. □
Remark 3.13. Lemma 3.12 captures the interference caused by both the dominant and
the distant interfering UAV-UEs separately. Consequently, one can compare the interference
experienced in the near and far zone of a cell modeled as a truncated octahedron and a cell
modeled as a sphere.

The coverage probability is defined as the probability that the SINR at the reference UAV-
BS inside W and b3(o, Rc) exceeds a predefined threshold γ, i.e.,

Poct
c ≜ P(SINRoct ⩾ γ),

Psph
c ≜ P(SINRsph ⩾ γ),

(3.32)

respectively. The coverage probability is now obtained in exact form for W , and in closed
form for b3(o, Rc), in the following Theorem.
Theorem 3.14. The coverage probability at the reference UAV-BS in W and b3(o, Rc) under
the intra-cell interference case and conditioned on the serving distance rs, in the presence of
Nakagami-m fading is given by

Poct
c =

mS−1∑
k=0

(−mSγr
a
s )
k

k!

[
∂kLoctIintra

(s|rs)
∂sk

]
s=mSγras

, (3.33)

and

Psph
c =

mS−1∑
k=0

(−mSγr
a
s )
k

k!

[
∂kLsphItot(s|rs)

∂sk

]
s=mSγras

, (3.34)

respectively, where LoctIintra
(s|rs) = exp(−σ2s)LIoct(s|rs) and LsphItot(s|rs) = exp(−σ2s)LIsph(s|rs).

Proof: Following the same lines as in [47, App. F], (3.33) is derived. Moreover, using (3.31),
(3.34) results to a closed form expression and this completes the proof. □
Remark 3.15. The expression derived in Theorem 3.14 considers the different locations of
the serving UAV – UE. For the truncated octahedron cell, the volume of the geometrical
regions in which the interfering UAV–UEs lie varies significantly. This affects the resulting
interference and the coverage probability.

Intra- and Inter-Cell Interference Case

Under both intra-cell and the worst case inter-cell interference scenario, exact-form expres-
sion for the coverage probability, is derived. The Laplace transform of the inter-cell inter-
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ference power distribution is first calculated as intermediate step in the coverage probability
analysis.
Lemma 3.16. The Laplace transform of the inter-cell interference power distribution Iinter
is given by

LIinter
(s) =

(
1 +

sR−α
hex

mI

)−8mI
(
1 +

sR−α
sq

mI

)−6mI

. (3.35)

Proof: The proof of the Laplace transform of the inter-cell interference follows the same lines
as the proof in Lemma 3.12, and hence it is omitted here. □
The coverage probability is defined as the probability that the SINRoct,agg at the reference
UAV-BS exceeds a predefined threshold γ, i.e.,

Poct
c,agg ≜ P(SINRoct,agg ⩾ γ). (3.36)

The coverage probability may now be obtained as in the following Theorem.
Theorem 3.17. The coverage probability under an intra- and inter-cell interference case,
and conditioned on the serving distance rs, in the presence of Nakagami-m fading is given by

Poct
c,agg =

mS−1∑
k=0

(−mSγr
a
s )
k

k!

[
∂kLoctIagg(s|rs)

∂sk

]
s=mSγras

, (3.37)

where LoctIagg(s|rs) = LoctIintra
(s|rs)LIinter

(s).

Proof: The proof for deriving (3.37) follows the same lines as in [47, App. F], and hence it
is omitted here. □

3.4 Numerical Results and Discussions

In this section, numerical results are presented to evaluate i) the proposed stochastic ge-
ometry analysis of the finite point processes in a truncated octahedron cell-shape, ii) the
coverage performance achieved in a truncated octahedron cell-shape, and iii) the coverage
performance of a multi-cell 3D network under both intra- and a worst- case inter-cell inter-
ference scenario. The accuracy of the analytical results presented in this chapter is verified
by comparing them with the empirical results obtained from Monte-Carlo simulations.

3.4.1 Stochastic Geometry Analysis in a Truncated Octahedron

Fig. 3.2, depicts the probability that exactly n UAV-UEs fall inside different regions O(o, r).
The theoretical curves were evaluated using (3.3), for different values of the radius r, whereas
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Figure 3.2: Probability of having n UAV-UEs in O(o, r) with Rc ≈ 95 meters and N = 10.
Markers denote simulation points.

for the simulation results a 3D BPP in W was deployed using the simulation procedure given
in Appendix B.5. In all the following numerical results, the edge length R of W is assumed
R = 60 meters and consequently Rc ≈ 95 meters, Rhex ≈ 73 meters, Rsq ≈ 85 meters and
Rmid = 90 meters, whereas N = 10. For r = 60 meters, b3(o, r) is enclosed within W , while
for r = 75 meters, b3(o, r) lies outside W . As one can easily observe, the probability that
there are exactly n UAV-UEs in O(o, r) admits a trapezoidal form. This means that for
different values of r, the probability is maximized and becomes stabilized for some specific
values of n. For example, for r = 60 meters there is approximately 50% probability that
there are 3 or 4 nodes in O(o, r).
Fig. 3.3 compares F̄Rn(r), for a truncated octahedron and a sphere of radius Rsph = Rc, for
different values of r. A first observation is that for r = 60 meters and r = 75 meters, the
probabilities that there are less than n UAV-UEs inside O(o, r) are noticeably smaller than
the ones inside a sphere. In fact, as r increases, the difference between these probabilities
becomes significantly larger. This is due to the fact that as r increases, the geometry of
O(o, r) starts to significantly differentiate from the geometry of the corresponding sphere.
For a 3D cell, this fact indicates that more aerial nodes is likely to fall within the regions
of the truncated octahedron than in the sphere. A second observation is that, F̄Rn(r) for
b3(o, 85) coincides with the F̄Rn(r) of O(o, 75). The same applies to b3(o, 93) and O(o, 85).
In practice, this means that although the volume of the two cell-shapes is different, p is
approximately the same.

Fig. 3.4 illustrates again the F̄Rn(r) but in contrast to Fig. 3.3, the volume of the two
cell-shapes is assumed to be equal. In particular, R ≈ 64.6 meters and Rsph = 90 meters.
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Figure 3.3: Probability of having less than n UAV-UEs in the region O(o, r) of W and a
sphere of radius Rc = 95 meters and N = 10. Markers denote simulation UAV-UEs.
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Figure 3.4: Probability of having less than n UAV-UEs in the region O(o, r) of W and a
sphere of the same volume for Rsph = 90 meters, N = 10 and R ≈ 64.6 meters. Markers
denote simulation points.

Also, Rhex ≈ 79 meters, while Rc ≈ 102 meters. In this case, the probability p in (3.1)
is dominated only by O(o, r) for both the sphere and the truncated octahedron, i.e., for
r = 70 meters, O(o, 70) = b3(o, 70) and consequently F̄Rn(r) is the same, as expected. As
r increases, the difference in curves between the region O(o, r) and the sphere increases as



3.4. NUMERICAL RESULTS AND DISCUSSIONS 63

0 10 20 30 40 50 60 70 80 90 100

r (meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
R

n

(r
)

Increasing

n= 1, 2, 4, 6, 10

Figure 3.5: CDF of the distance Rn derived in Theorem 1 for Rc ≈ 95 meters, N = 10.
Markers denote simulation points.
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Figure 3.6: Comparison of the CDF of Rn for a conditioned PPP versus a BPP of the same
density λ = N/|W |, N = 10 and Rc = 95 meters.

well, which in turn affects the aforementioned probabilities. In general, notice that up to
r = Rhex, O(o, r) = b3(o, r).
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Fig. 3.5 illustrates the CDF of Rn in a truncated octahedron, through applying numerical
integration of Theorem 3.5. The CDF is plotted as a function of the distance r for different
values of n. As n increases, the slope of the curves increases as well. Fig. 3.5 also illustrates
the regions of the truncated octahedron, in which each UAV-UE may lie in, according to
the range of r. Notice that for all values of n, the theoretical results match the simulations
perfectly.

Fig. 3.6 compares the CDF of the distance Rn, obtained through numerical integration of
Theorem 3.5, with the CDF for a conditioned PPP of the same density, derived in Corollary
3.7, for different values of n. It is easy to notice that the CDFs for a conditioned PPP does not
accurately approach the CDFs for a BPP. In fact, as n increases, i.e., for farther neighbors,
the difference between the conditioned PPP and the BPP increases as well. This is because
of the different nature of the two point processes. For example, by assuming that the first
nearest UAV-UE lies within a distance s from the center of the truncated octahedron, then
necessarily the N − 1 UAV-UEs lie in the remaining region. In the conditioned PPP, by
contrast, this statement does not hold as the total number of UAV-UEs lying within the
truncated octahedron is random.

3.4.2 Coverage Probability analysis

Fig. 3.7 compares the coverage probability, derived in Theorem 3.14, versus the SINR
threshold for a cell modeled as a truncated octahedron and a cell modeled as a sphere. For
both models, the serving distance rs = 40 meters. The coverage probability is illustrated
for different values of the path-loss factor α and shaping parameter m. A first observation
is that the sphere geometry, although it is undoubtedly a mathematically tractable model,
provides more optimistic results compared to a 3D cellular network modeled by a truncated
octahedron. The second observation is that as the propagation conditions move to more
favorable from α = 4 to α = 2.5, the aggregate interference power experienced at the
reference UAV-BS is increased and thus the overall coverage probability is degraded. In Fig.
Fig. 3.7, the coverage probability is also demonstrated for different values of the Nakagami
fading parameter m. Once again, the coverage is better in a network where the UAVs-UEs
are deployed within a sphere than in a network where the deployment space is a truncated
octahedron for both values of m. As the fading conditions move from Rayleigh (m = 1) to
more favorable conditions (m = 4), the coverage is significantly improved for both models.
An interesting result is observed for the more demanding values of the SINR threshold. For
both values ofm, there is a crossing-point after which the coverage probability is inverted, i.e.,
the coverage is better for poor fading conditions. Indeed, for higher values of SINR threshold,
the serving UAV node is favored under poor fading conditions, since it is the closest node
to the reference UAV-BS. The aggregate interference power in poor fading conditions, by
contrast, is degraded since the interfering UAVs-UEs are far from the reference UAV-BS and
they are severely affected by the bad channel conditions. Notice that in all cases, Theorem
3.14 match the simulations perfectly, which validates the accuracy of the proposed coverage
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Figure 3.7: Coverage probability versus SINR threshold for different parameters and N = 10,
Rc = 95 meters, and RS = R1. The curves corresponding to different values of m are derived
assuming a = 3. Squares denote simulation points.

probability analysis.

Fig. 3.8 compares the coverage probability versus SINR threshold for both cell models under
the same fading and propagation conditions m = 4, α = 3, respectively, when different
serving nodes are selected. For both models, N = 10, and Rc = 95 meters. When the 5-th
nearest node is selected as the serving node with serving distance rs = 65 meters, then 4
UAV-UEs lie within the near regions O(o, 65) and b3(o, 65) of the reference UAV-BSs, for
the truncated octahedron and the sphere, respectively, and cause severe interference to the
UAV-BS. The remaining 5 UAV-UEs lie within the far region of the reference UAV-BSs
and interfere less severely. As one can easily observe, the performance in terms of coverage
probability is almost identical for both models. This is because the 4 interfering UAV-UEs,
which interfere significantly to the reference UAV-BSs, lie within the same near region, i.e.,
a sphere, both for the truncated octahedron and the sphere. The impact of the interference
to the coverage probability from UAV-UEs that lie within different far regions in the two
models, is negligible.

The worst case performance scenario under intra-cell interference only is considered when
the serving node is chosen at the cell-edge at serving distance rs = 88 meters. Indeed, as
seen from Fig. 3.8, the aggregate interference power experienced at the reference UAV-BS
from 9 UAV-UEs, all of them located closer than the serving node, is maximized and thus
the overall coverage probability is severely degraded. In this case, notice that there is a large
difference in the performance when the 5-th nearest node and the cell-edge UAV-UE are
chosen as the serving nodes. Moreover, it is noticed again that the spherical model provides
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Figure 3.8: Coverage probability versus SINR threshold for different serving distances RS.
Squares denote simulation points.

a more optimistic performance trend in terms of coverage, as compared to the truncated
octahedron cell-shape model. This is because of the different geometrical areas between the
truncated octahedron and the sphere, in which the interfering UAV-UEs may lie.

Furthermore, Fig. 3.9 compares the coverage probability versus the SINR threshold for dif-
ferent serving distances RS, under the consideration of intra-cell interference only, derived in
Theorem 3.14, with the one under the consideration of the aggregate interference experienced
at the reference UAV-BS, derived in Theorem 3.17. The fading and propagation conditions
have been set to m = 4, α = 3, respectively. The difference in coverage performance between
the two interference scenarios, is significant for all serving nodes. When the 1st nearest node
is selected as the serving node with serving distance rs = 40 meters, the difference in the
coverage performance for the two cases is considerably large and all UAV-UEs interfere at
the reference UAV-BS in approximately the same degree. When the 5-th nearest node is
selected as the serving node with serving distance rs = 65 meters, the difference in the cover-
age performance for the two cases is still significant. In this case, the aggregate interference
is affected more by the 4 dominant interfering UAV-UEs in the near region of the reference
UAV-BS, while the rest of the interfering UAV-UEs, including those from the neighboring
cells, lie outside the near zone of the reference UAV-BS. The same behaviour is observed
when the farthest node is selected as the serving node with serving distance rs = 88 meters.
In fact, this is a worst-case performance scenario where the serving node lies near at a corner
of the reference cell, while all interfering UAV-UEs, both in the reference cell and in the
neighboring cells, hover at distance smaller than the serving distance.
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and interference cases. Squares denote simulation points.

3.5 Chapter Summary

In this chapter, the performance of a 3D UAV wireless network has been analyzed using
stochastic geometry tools and the cell shape of a truncated octahedron, which is the closest
approximation of a sphere that can tessellate the 3D space. By modeling the spatial locations
of the aerial users as a 3D BPP, stochastic geometry analysis in a truncated octahedron-
shaped cell, was performed. To this end, the volume of the regions of the cell in which
an aerial user may fall, was evaluated. The results then compared to a 3D cell modeled
as a sphere, which is a mathematically more tractable model. Subsequently, results about
the distances between aerial nodes and their concentration within the two models, were
illustrated. Next, coverage probability analysis was conducted under intra-cell interference
for both the truncated octahedron and the sphere. Exact form expressions were also derived
for the coverage probability under both intra- and a worst case inter-cell interference scenario.
The accuracy of the theoretical results was validated through simulation. The results revealed
that the spherical model provides a more optimistic performance trend in terms of coverage
probability, as compared to the truncated octahedron cell-shape model. In realistic finite 3D
networks, this is clearly a consequence of the different geometry of the two cell-shape models
and therefore, of the different probabilities regions where a UAV-UE may lie. Note that this
chapter was a first yet reasonable step towards the understanding of the binomial 3D cellular
network. Building upon the proposed framework, one may extend it so as to integrate UAVs
with directional 3D antenna patterns, LoS/NLoS scenarios, mobility models for the UAVs,
key enabling technologies for 6G wireless communications (e.g. RIS technology), etc.
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As an undoubtedly more tractable cell-shape as compared to the truncated octahedron cell-
shape, in the next chapter we conduct a simple yet in-depth performance analysis in terms
of key performance metrics and obtain system level insights for a 3D cellular UAV network
modeled as a sphere.



Chapter 4

SIR-based Performance Analysis in
3D UAV Networks

4.1 Introduction

As shown in Chapter 3, although the truncated octahedron cell-shape is undoubtedly a
realistic 3D cellular network architecture, it has extremely high analytical complexity. In
this chapter, a simple yet tractable stochastic geometry framework is proposed to study the
performance of a 3D UAV network modeled as a sphere. In this simple scenario, a UAV-BS
reference receiver is located at the center of a sphere and communicates with the nearest
transmitting UAV node. If sensing-assisted communication is exploited [64], the location
of the transmitting UAV node is assumed to be known, otherwise the location inside the
sphere is random. The reverse link suffers from the presence of a single dominant interferer,
whose location is random within the sphere. Closed-form expressions are derived for key
performance metrics for two scenarios, namely for fixed and random location of the desired
transmitting node.

4.1.1 Contributions

Modeling of Finite UAV Network in a Sphere & Stochastic Geometry Analysis

A finite number of UAV nodes is uniformly distributed in a sphere. Based on the BPP, a
tractable stochastic geometry framework has been developed. This framework is used to
calculate the SIR for realistic network scenarios with predetermined number of transmitting
UAV nodes.

Closed-form Expressions

Closed-form expressions are derived for key performance indicators, namely the coverage
probability, BER, average output SIR, and ergodic capacity.

69
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4.2 System Model

Assume that a 3D UAV network comprised of one fixed and a finite number N of transceiv-
ing nodes is deployed in a sphere. The locations of the N transceiving nodes are modeled as
a uniform BPP, where the nodes are independently and uniformly distributed in the sphere.
In stochastic geometry terms, it is implied that the transceiving nodes are uniformly dis-
tributed in a finite compact set A ⊂ R3. For the needs of the 3D network modeling, let A =
b3(o, R) denote a 3D ball of radius R that is centered at the origin o ≡ (0, 0, 0). In contrast
to prior geometrical models assumed, e.g., [57], the sphere is a simple yet realistic 3D model
to describe the UAV network coverage space. To the best of the authors’ knowledge, no
previous work has ever captured the effect of a spherical model in the performance analysis
of a finite UAV network. A UAV - base station (UAV-BS) reference receiver is assumed to
be located at the origin o and communicates with the nearest node out of the N transceiving
nodes. This work focuses on the reverse link analysis and therefore, the nearest transceiving
node is referred to as the desired transmitting node and the reverse link as the reference
link. The distance of the transmitting node to the reference receiver is denoted by Rs. The
thermal noise is assumed to be negligible as compared to the interference experienced by the
receiver [57]. Once the reference link has been established, the remaining transceiving nodes
are uniformly distributed in b3(o, R) \ b3(o, s). In principle, the reference link may suffer
from undesired signals from many interfering nodes. However, for mathematical tractability
purposes, this work considers only one dominant interfering node, which is the nearest trans-
mitting node outside the area b3(o, s), i.e., the second nearest node to the UAV-BS reference
receiver. Such an assumption is quite common in the open technical literature, e.g., [65, 66].
Indeed, in [65], only one ground-based interferer is considered in the performance analysis,
while in [66], it is stated that the CP has similar trend when multiple interfering nodes or
one dominant interfering node are considered. The link between the dominant interfering
node and the UAV-BS reference receiver is referred to as the interfering link and the dis-
tance of the interfering node to the reference receiver is denoted by RI . After establishing
the reference link, the distance distribution of RI is no longer independent of the distance
Rs. In this case, the PDF of the distance RI conditioned by the distance of the reference
link Rs = y, is given by [46]

fRI
(rI |Rs = y) =

3rI
2

(R3 − y3)N−1

(R3 − rI
3)N−2

B(N − 1, 1)
. (4.1)

The system model described is depicted in Fig. 4.1. The received SIR is defined as

SIR =
PshsRs

−a

PIhIRI
−a , (4.2)

where (·)−a models power path-loss with factor a, and Ps, PI represent the transmit powers
of the transmitting and dominant interfering nodes, respectively. Moreover, the random
variable h ∈ {hs, hI}, models Nakagami-m channel fading for the reference and interfering
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Figure 4.1: Illustration of the system model.

link, respectively, with PDF given by

fh(x) =
xm−1

Γ(m)θm
exp

(
− x

θ

)
, (4.3)

where m ∈ {ms,mI} is the shape parameter, θ ∈ {θs, θI} is the scale parameter [67] of the
distribution, and Γ(·) denotes the Gamma function [40, eq. (8.310.1)]. Note that Nakagami-
m fading is a generalized model that mimics various fading environments and simultaneously
retains analytical tractability [57].

While the modeling assumptions and the analysis are motivated by the study of UAV net-
works, the proposed generic framework is designed to incorporate also terrestrial nodes.
Towards this direction, two scenarios for the spatial location of the transmitting nodes, are
investigated: (i) the transmitting node is assumed to be located at a deterministic distance
from the UAV-BS, and (ii) the transmitting node is randomly located. The two scenarios
considered, are presented in the following.

4.2.1 Scenario 1: Fixed Location of Desired Transmitting Node

For this system setup, the transmitting node is assumed to be located at a fixed distance s
from the center o of A. In this case, (4.2) can be rewritten as

SIR =
Pshss

−a

PIhIRI
−a . (4.4)
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An example link for this scenario is the one between a UAV and a ground-based node.
Moreover, a typical use-case includes a fixed ground-based node or an aerial one acting as a
relay that serves other ground-based nodes. In the latter case, the UAV transmitting node is
considered to be fixed in an optimum location for maximum reliability of the link. As already
mentioned, a fixed and known location of the transmitting UAV node may be considered by
exploiting sensing-assisted communications.

4.2.2 Scenario 2: Random Location of Desired Transmitting Node

The UAV-BS reference receiver once again communicates with the nearest transmitting node.
However, in this setup, the distance Rs, between the transmitting node and the UAV-BS
reference receiver, is a random variable following a PDF given by

fRs(rs) =
3r2s
R3N

(R3 − r3s)
N−1

B(N, 1)
. (4.5)

For this system setup, the SIR experienced by a UAV-BS reference receiver located at the
center o of A is defined as in (4.2). This scenario is a generic one, since all nodes’ locations
are random, i.e., it is applicable for UAVs and ground-based nodes placed randomly in the
considered space.

4.3 Performance Analysis

In this section, the stochastic analysis is conducted in terms of the instantaneous SIR or
simply SIR for brevity. Closed-form expressions for the CDF of the SIR for the two scenarios
studied, are derived.

4.3.1 Coverage Probability

Scenario 1

As the distance of the reference link is deterministic, with Rs = s, the interest turns on
defining the distribution of the distance RI of the interfering link. However, as mentioned in
Section II, after establishing the reference link, the distance distribution of RI is no longer
independent of the distance Rs. In this case, for RI ∈ [s,R], the PDF of the distance RI

conditioned by the distance of the reference link Rs, results from (4.1), after substituting
y = s.

Let I = PIhIRI
−a represent the RV of the denominator of (4.4), directly proportional to

the received power of the interfering signal. The conditional PDF of the RV I, given the
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interfering link distance rI , is given by

fI|RI
(x|rI , Rs = s) =

(
rI
a

PIθI

)mI xmI−1

Γ(mI)
exp

(
− rI

ax

PIθI

)
. (4.6)

The unconditional distribution of the RV I can now be obtained by averaging (4.6) over
(4.1).

Lemma 4.1. The PDF fI(x|Rs = s) of the RV I assuming that the reference link is fixed,
is given by

fI(x|Rs = s)

=
3xmI−1(PIθI)

−mI (R3 − s3)
1−N

aΓ(mI)B(N − 1, 1)

N−2∑
k=0

(
N − 2

k

)
R3N−3k−6(−1)ksamI+3k+3Ea−amI+3k−3

a

(
sax

θIPI

)

− 3xmI−1(PIθI)
−mI (R3 − s3)

1−N

aΓ(mI)B(N − 1, 1)

N−2∑
k=0

(
N − 2

k

)
R3N−3k−6(−1)kRamI+3k+3Ea−amI+3k−3

a

(
Rax

θIPI

)
,

(4.7)

where En(·) denotes the exponential integral function [68, eq. (06.34.02.0001.01)] and B(·, ·)
the Beta function [40, eq. (8.380.1)].

Proof : See Appendix C.1. □
The random variable of the nominator of (4.4), S = PshsRs

−a, is directly proportional to
the received power experienced by the UAV-BS reference receiver. The PDF of the random
variable S results immediately from [67] with a simple change of variable and has similar
form with (4.6). The distribution of the SIR can now be derived in the following Lemma.

Lemma 4.2. The PDF of the SIR denoted as f fixSIR(γ|Rs = s), is given by

f fixSIR(γ|Rs = s) =
3γ−(mI+1) (Pss

−aθs)
mI (PIθI)

−mI

(R3 − s3)N−1B(N − 1, 1)B(ms,mI)
(Z (s)− Z (R)), (4.8)

with

Z (j) =
N−2∑
k=0

(
N − 2

k

)
(−1)k

R3N−3k−6

ams − 3k − 3
jamI+3k+3

(
Pss

−aθs
PIj−aθIγ

)−(ms+mI)

× 2F1

(
ams − 3k − 3

a
,ms +mI ;

ams + a− 3k − 3

a
;−PIj

−aθIγ

Pss−aθs

)
, j = {s,R} ,

(4.9)

where 2F1 (·) is the Gauss hypergeometric function [40, eq. (9.100)].

Proof: See Appendix C.2. □
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The corresponding CDF is now derived from (4.8) in the following Lemma.

Lemma 4.3. The CDF F fix
SIR(γ|Rs = s) of a UAV-BS reference receiver served by its nearest,

fixed-located node in the presence of a dominant interferer, is given in closed form by

F fix
SIR(γ|Rs = s) =

3γms (Pss
−aθs)

mI (PIθI)
−mI

(R3 − s3)N−1B(N − 1, 1)B(ms,mI)ms

N−2∑
k=0

(
N − 2

k

)
R3N−3k−6 (−1)k

ams − 3k − 3

×

{
sams+3k+3(
Psθs
PIθI

)(ms+mI)
3F2

(
ams − 3k − 3

a
,ms +mI ,ms;

ams + a− 3k − 3

a
,ms + 1;−PIθI

Psθs
γ

)
−

Rams+3k+3(
Pss−aθs
PIR−aθI

)(ms+mI)
3F2

(
ams − 3k − 3

a
,ms +mI ,ms;

ams + a− 3k − 3

a
,ms + 1;−PIR

−aθI
Pss−aθs

γ

)}
,

(4.10)

where 3F2(·) is the generalized hypergeometric function [40, eq. (9.14.1)].

Proof: See Appendix C.3. □

Scenario 2

Next, the scenario where the distance of the reference link is no longer deterministic, is inves-
tigated. For this case, it is mathematically convenient to characterize the ratio distribution
of H = Pshs

PIhI
. Through simple change of variables, the PDF of H can be easily obtained as

fH(y) =
yms−1

(
PI

Ps

)ms
(

1
θI

+ yPI

Psθs

)−ms−mI

B(ms,mI)θms
s θmI

I

. (4.11)

In addition, based on [40, eq. (3.194.1)] the corresponding CDF FH(x), results immediately
to

FH(x) =

(
PIθI
Psθs

x
)ms

msB(ms,mI)
2F1

(
ms,ms +mI ; 1 +ms;−

θIPI
θsPs

x

)
. (4.12)

Note that in this setup, it is mathematically convenient to consider the product of random
variables resulting in the received SIR. Towards this direction, the distribution of the ratio
V of random distances Rs/RI is first obtained. Notice that the two random variables are
dependent. In this context, let V = Rs/RI represent the ratio of the distances. Through a
change of variables, RI can be expressed as RI = Rs/V . The corresponding CDF and PDF
of the random variable V are provided in the following Lemma.
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Lemma 4.4. The CDF and PDF of V are respectively given by

FV (v) = v3 and fV (v) = 3v2. (4.13)

Proof: See Appendix C.4. □
Interestingly, it is noticed that the distribution of ratio V confirms i) a square dependence
between distances and ii) independence from the number of nodes N and the radius R, i.e.,
from the area of the spherical region of the network. Based on (4.12) and (4.13), the CDF
F rand
SIR (γ) of SIR can now be obtained as

F rand
SIR (γ) = P(SIR ≤ γ) = P(HV −a ≤ γ) = EV {FH(γV a), } , (4.14)

where E[·] denotes the expectation operator and P(·) denotes probability operator.

The above equation results in the following Lemma.

Lemma 4.5. The CDF F rand
SIR (γ) and the corresponding PDF f randSIR (γ) are respectively given

by

F rand
SIR (γ) =

(
PIθI
Psθs

)ms 3γms
3F2

(
ms,ms +mI ,ms +

3
a
; 1 +ms,ms +

3
a
+ 1;−PIθI

Psθs
γ
)

ms (ams + 3)B(ms,mI)
,

(4.15)

f randSIR (γ) =

(
PIθI
Psθs

)ms 3γms−1
2F1

(
3
a
+ms,ms +mI ; 1 +

3
a
+ms;−PIθI

Psθs
γ
)

(ams + 3)B(ms,mI)
. (4.16)

Proof: See Appendix C.5. □
The coverage probability is mathematically be expressed as

Pc = P(SIR > γth) = 1− P(SIR ≤ γth). (4.17)

and can now lead to the following Propositions for the coverage probability for the two
scenarios.

Proposition 4.6. Under Scenario 1, the coverage probability is expressed as Pc = 1 −
F fix
SIR(γth|Rs = s).

Proposition 4.7. Under Scenario 2, the coverage probability is expressed as Pc = 1 −
F rand
SIR (γth)
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4.3.2 BER

Next, the performance of the two scenarios, is evaluated in terms of the average BER for
binary modulation schemes. The average BER is the metric that is most revealing about
the nature of the system behavior and the one most often illustrated in works containing
system performance evaluation studies [69], [70], [71]. Using the CDF-based approach pro-
posed in [72], the average BER is obtained by integrating the derivative of conditional error
probability (CEP) P ′

e(γ), over the respective CDF of the SIR of each scenario. The average
BER is then given by

P̄e,p =

∫ ∞

0

−P ′
e(γ)F

p
SIR(γ)dγ, (4.18)

where Q(·) is the area under the tail of the Gaussian PDF defined as [73, eq. (2-1-97)]
and p ∈ {fix, rand}. Moreover, Pe(γ) = Q(

√
2γ) for binary phase-shift keying (BPSK) and

Pe(γ) = 1
2
e−

γ
2 for differential BPSK (DBPSK).

Scenario 1

The average BER is first derived for Scenario 1 in the following Proposition.

Proposition 4.8. Given the fixed distance s of the reference link, the average BER for the
BPSK and DBPSK modulation schemes are given by

P̄BPSK
e,fix =

3π− 1
2 (R3 − s3)

1−N∑N−2
k=0

(
N−2
k

)
R3N−3k−6(−1)ks3k+3G4,1

3,4

(
Psθs
PIθI

∣∣∣ 1−ms,
−3+a−3k

a
, 1

1
2
, −3−3k

a
,mI , 0

)
2aΓ(ms +mI)B(N − 1, 1)B(ms,mI)

−
3π− 1

2 (R3 − s3)
1−N∑N−2

k=0

(
N−2
k

)
R3N−3k−3(−1)kG4,1

3,4

(
s−aPsθs
R−aPIθI

∣∣∣ 1−ms,
−3+a−3k

a
, 1

1
2
, −3−3k

a
,mI , 0

)
2aΓ(ms +mI)B(N − 1, 1)B(ms,mI)

.

(4.19)

P̄DBPSK
e,fix =

3 (R3 − s3)
1−N∑N−2

k=0

(
N−2
k

)
R3N−3k−6(−1)ks3k+3G4,1

3,4

(
Psθs
PIθI

∣∣∣ 1−ms,
−3+a−3k

a
, 1

1, −3−3k
a

,mI , 0

)
2aΓ(ms +mI)B(N − 1, 1)B(ms,mI)

−
3 (R3 − s3)

1−N∑N−2
k=0

(
N−2
k

)
R3N−3k−3(−1)kG4,1

3,4

(
s−aPsθs
R−aPIθI

∣∣∣ 1−ms,
−3+a−3k

a
, 1

1, −3−3k
a

,mI , 0

)
2aΓ(ms +mI)B(N − 1, 1)B(ms,mI)

.

(4.20)

respectively, where Gm,n
p,q (x) is the Meijer G-function defined in [40, eq. (9.301)].
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Proof: See Appendix C.6. □

Scenario 2

The average BER for Scenario 2, is formally presented in the following Proposition.

Proposition 4.9. Given a random location Rs of the transmitting node, the average BER
for binary modulation schemes is given by

P̄BPSK
e,rand =

3G4,1
3,4

(
Psθs
PIθI

∣∣∣ 1−ms, 1,
3
a
+ 1

0.5, 0,mI ,
3
a

)
2a

√
πΓ(ms +mI)B(ms,mI)

(4.21)

and

P̄DBPSK
e,rand =

3G4,1
3,4

(
Psθs
PIθI

∣∣∣ 1−ms, 1,
3
a
+ 1

0.5, 0,mI ,
3
a

)
2aΓ(ms +mI)B(ms,mI)

. (4.22)

Proof: By following a similar procedure as the one presented for deriving the BER in Scenario
1, the previously presented closed-form expressions for the BER are deduced. □

4.3.3 Average Output SIR

In this subsection, the analysis focuses on studying the network performance in terms of
the average output SIR for the generic scenario where the distance of the reference link is
random. The average output SIR can be calculated by

γ̄ =

∫ ∞

0

γf randSIR (γ)dγ. (4.23)

The above equation results in the following Proposition.

Proposition 4.10. Given a random location Rs of the transmitting node, the average output
SIR is given by

γ̄ =
Psθs
PIθI

3ms

(mI − 1)(3− a)
. (4.24)

Proof: Through the change of variable PIθI
Psθs

γ = y in (4.16), the integral in (4.23) can be
easily derived in closed form by using [68, eq. (07.23.21.0014.01)]. After applying some
simplifications, (4.24) yields immediately. □
Note that (4.24) holds for a < 3, which is a valid and logical restriction for UAV-enabled
networks, in which the path-loss factor takes values 1-3 for LoS scenarios, i.e., [57],[74].
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4.3.4 Ergodic Capacity

The ergodic channel capacity quantifies the maximum achievable rate that can be supported
by the subjected channel. In this subsection, the ergodic capacity is leveraged to measure the
achievable rate of the network for the generic scenario where the distance from the defined
UAV-BS node is random. It is defined as follows

C̄ = BW

∫ ∞

0

log2(1 + γ)f randSIR (γ)dγ, (4.25)

where BW denotes the channel’s bandwidth. The ergodic capacity can now be evaluated
through the following Proposition.

Proposition 4.11. Given a random location Rs of the transmitting node, the ergodic channel
capacity is given by

C̄ =BW
3

ln 2Γ(ms)Γ(mI)a

PIθI
Psθs

G3,3
4,4

(
PIθI
Psθs

∣∣∣ − 3
a
,−mI ,−1, 0

ms − 1,−1,−1,−1− 3
a

)
. (4.26)

Proof: See Appendix C.7. □

4.4 Numerical Results and Discussions

In this section, representative numerical examples have been prepared using the expressions
derived in the previous sections, while simulation results were also used for verification
purposes. The numerical results for the performance of the proposed framework in terms of
coverage probability, average BER and ergodic capacity are also discussed to reveal system
level insights.

4.4.1 Coverage Probability

For all system setups θs = θI = 1, in order to compare the same Nakagami fading conditions
and Ps = PI = 0dBm, in order to preserve equal transmit powers, unless otherwise stated.
Other simulation parameters are a = 3 and ms = mI = 2.75 to consider the same severity
of fading. Note that these values are typically considered for UAV-enabled communication
scenarios and approach LoS propagation conditions [74], [75],[8]. For Scenario 1, a finite
network of UAVs is simulated with N = 10, inside a sphere of radius R = 100 meters, and
the coverage probability is evaluated for various simulation parameters. In Fig. 4.2, the
coverage probability is plotted as a function of R for different values of γth. One can observe
that for small values of R, i.e., for a small-sized networks, the coverage probability degrades
rapidly while moving towards more demanding values of γth. In contrast to this, for large
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Figure 4.2: Coverage probability versus R for different values of γth for Scenario 1 (circles
denote simulation points).

values of R, i.e., for a large-sized network, the probability that acceptable communication is
established is very high even for demanding values of γth. Indeed, an increase of the size of
the network area increases the probability that the distance of the interfering link is longer
than the one of the reference link.

In Fig. 4.3, the coverage probability of the UAV-BS reference receiver is plotted as a function
of the distance s. Note that s is expressed as a percentage of R. It can be observed that
the more demanding the values of γth are, the more rapid is the degradation of coverage
probability as the transmitting node moves closer to the network edge. For the rest of the
plots, it is assumed that s = 20 meters.

Fig. 4.4 is the representative plot chosen to compare the two scenarios for different values of
s and N . It is observed that when s = 20 meters, the coverage probability of Scenario 1 is
far better than the coverage probability of Scenario 2, even for N = 10. However, with the
increase of s, i.e., while moving the transmitting node towards the edge of the network, it is
more likely that the distance values of the interfering and the reference link are approximately
equal for Scenario 1. In this case, the coverage probability of Scenario 2 outperforms the
coverage probability of Scenario 1 even for N = 5. Moreover, with the increase of N , the
coverage probability is worsened as expected. Another important conclusion from Fig. 4.4
is the necessity for 3D modeling of UAV networks. Indeed, comparing the 2D and 3D model
curves for Scenario 2, it is observed that the 2D BPP model provides optimistic coverage
probability compared to the realistic one provided by 3D BPP. This fact, further motivates
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Figure 4.3: Coverage probability versus distance s (expressed as a percentage of radius R)
for different values of γth for Scenario 1 (circles denote simulation points).

the study of 3D network models.

For Scenario 2, the coverage probability is independent of the system parameters R,N .
In Fig. 4.5, the coverage probability is plotted as a function of γth for different fading
conditions and path loss exponent values. In this figure, it is shown that the better the
channel conditions are, the worse the coverage probability is achieved. This observation
includes, both the mean received power dominated by the path loss exponent and the fading
conditions, implied by the parameters ms,mI . This is because the interfering link gets
stronger and this is more profound for larger values of γth. The second observation is that
there is a cross point for small values of γth where the behaviour of coverage probability
is inverted, i.e., the coverage probability is slightly larger for better channel conditions. It
should be pointed out that higher values of Nakagami-m parameter (ms = mI = 4) model
sufficiently LoS propagation environment [74].

For the sake of BER performance evaluation of Scenario 1, a finite network of UAVs is
simulated with N = 10, in a sphere of radius R = 200 meters and the average BER as a
function of the transmit power Ps is computed. The utilized simulation parameters are a =
3 and ms = mI = 2.75. In Fig. 4.6, the average BER is plotted for different values of the
serving distance s for the BPSK modulation scheme. Once again, the distance s is given as
a function of the sphere radius R. It is observed that as s increases, the performance of the
average BER degrades but the degradation is gradually smaller.



4.4. NUMERICAL RESULTS AND DISCUSSIONS 81

-5 0 5 10 15 20

th
 (dB)

10
-4

10
-3

10
-2

10
-1

10
0

C
o

v
e

ra
g

e
 P

ro
b

a
b

ili
ty

Scenario 1, N= 5

Scenario 1, N= 10

Scenario 2, 3D

Scenario 2, 2D

s= 20m

s= 50m

Figure 4.4: Comparison of coverage probability versus γth for the two scenarios (circles denote
simulation points).

-5 0 5 10 15 20

th
 (dB)

10
-3

10
-2

10
-1

10
0

C
o

v
e

ra
g

e
 P

ro
b

a
b

ili
ty

Increasing 

m
s
= m

I
= 1, m

s
= m

I
= 2,

m
s
= m

I
= 4

= 2

= 4

Figure 4.5: Coverage probability versus γth for different values of ms,mI for Scenario 2
(circles denote simulation points).



82 CHAPTER 4. SIR-BASED PERFORMANCE ANALYSIS IN 3D UAV NETWORKS

-10 -5 0 5 10 15 20

Transmit Power P
s
 (dBm)

10
-8

10
-6

10
-4

10
-2

10
0

A
v
e

ra
g

e
 B

E
R

Increasing

s= 0.1R, 0.3R, 

0.5R, 0.7R

Figure 4.6: Average BER for BPSK versus Ps for Scenario 1 (circles denote simulation
points).
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For Scenario 2, the average BER of binary modulation schemes is compared for different
values of the channel fading parameters ms,mI . In Fig. 4.7, the average BER is plotted as
a function of the transmit power Ps for the BPSK modulation scheme. It can be observed
that as Ps increases, the average BER becomes significantly better when moving from severe
fading (ms = mI = 1) to less-severe fading (ms = mI = 4) conditions. In other words, when
severe fading is present, non-LoS (NLoS) propagation conditions exist and the performance
of the average BER is significantly degraded.

In Fig. 4.8, the average BER is plotted as a function of the transmit power Ps for both
scenarios, for the DBPSK, and for different values of s. It is observed that the performance
of Scenario 2 approximates the performance of Scenario 1, when s = 0.4R. When s = 0.2R,
the average BER of Scenario 1 is far better than the corresponding of Scenario 2. However,
for s > 0.4R, i.e., when the transmitting node starts moving towards the edge of the network,
the performance of Scenario 2 is clearly better.

Remark 4.12. The demonstrated results enable the system designer to quantify the ef-
fects of the distance s, transmit power, and Nakagami - m fading parameter on the error
performance of a UAV-BS reference receiver.

Next, the performance of the network in terms of the achievable rate is evaluated. As shown
from the analytical expression, the ergodic capacity is independent of the system parameters
R,N . The utilized simulation parameters are a = 2, θs = 1

ms
and θI = 1

mI
, respectively,
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Figure 4.9: Ergodic Capacity versus average output SIR for Scenario 2 (circles denote
simulation points).

so that the expectation of Nakagami fading equals to unity and PI= 0dBm. In Fig. 4.9,
the normalized ergodic capacity C̄/BW is plotted as a function of γ̄ for different fading
conditions. For the needs of the numerical evaluation, the simulation parameter Ps is set
such that a desired output SIR is achieved every time. It can be observed that with the
increase of average output SIR, the achievable rate increases as expected. As the fading
conditions become more favorable, capacity increases. However, it can be observed that in
the low average SIR region, the increment is rather small.

4.5 Chapter Summary

In this chapter, a mathematical framework for studying the performance analysis of finite
wireless 3D UAV networks is proposed. The model assumes a UAV-BS reference receiver
communicating with its nearest transmitting node, while suffering from interference from a
dominant interfering node. Modeling the locations of nodes as a uniform BPP, two scenarios
are examined: 1) the transmitting node is at a fixed and known distance from the UAV-BS
reference receiver and 2) the transmitting node is randomly located in the spherical-shaped
network area. The presented framework is utilized to study the statistics of the received
SIR, the coverage probability, and the average BER for binary modulation schemes for the
two scenarios. Finally, the calculation of the average output SIR is leveraged to study the
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ergodic capacity of the network. It is also clear that the proposed framework although simple
yields high analytical tractability and therefore, can directly serve as baseline framework for
the development of more complicated ones, which integrate 6G key enabling technologies.
Subsequently, performance analysis in terms of key performance metrics can similarly be
conducted.

Having presented both the truncated octahedron-based 3D cellular network and a more
tractable 3D cellular network in Chapters 3 and 4, respectively, a simple yet direct extension
is to conduct a performance comparison between the two cellular networks in the presence
of multiple interfering UAV nodes to obtain key system level insights for the design and
performance of beyond 5G cellular 3D network. The motivation of the next chapter is
triggered by the aforementioned.



Chapter 5

Performance comparison of wireless
aerial 3D cellular network models

5.1 Introduction

In Chapter 3, it became clear that realistic point processes should be employed to model the
locations of UAVs in 3D networks and therefore accurately capture key performance metrics
for obtaining design insights. Accordingly, a comprehensive performance analysis in terms
of the uplink coverage probability in a truncated octahedron-based cellular network, was
conducted. It is worth reminding that the truncated octahedron cell-shape is the closest ap-
proximation to the sphere that can tessellate the entire 3D space with the minimum number
of polyhedrons in a similar manner with the hexagonal cell in the 2D cellular networks. To
reduce the analytical complexity of the proposed framework, in Chapter 4, it was highlighted
that i) a sphere cell-shape can reasonably approximate the radiation pattern of an isotropic
base station antenna, ii)can capture the effect of the 3D space, and iii) can serve as base-
line 3D cell-shape for integrating 6G key enabling technologies. Nevertheless, as rigorously
argued in Chapter 3, a sphere cell-shape clearly cannot tessellate the 3D space, i.e., fill the
entire 3D space with no gaps or overlaps.

To bring more light to the aforementioned debate, in this final technical Chapter, by em-
ploying the 3D PPP for the spatial locations of UAV-UEs, performance analysis in terms of
coverage probability and average rate is conducted in a regular UAV network. Next, perfor-
mance analysis is conducted for a finite realistic binomial-Voronoi UAV network, deployed
in 3D space. This network model introduces randomness in both the spatial deployment of
the UAV-BS and the cell structure, while in the same time allows for a tractable analysis.
Indeed, closed-form expression for the Laplace transform of the aggregate interference is
derived as intermediate step in the coverage probability analysis. Finally, the analytical and
simulation results are presented to investigate the performance achieved by the proposed
network models. Also, the performance in a binomial-Voronoi network is compared to the
one in a truncated octahedron-based cellular network with the spatial locations of the UAV-
UEs following a 3D PPP, referred to as regular network in the following, with uniformly
random selection policy. While the actual UAV-BS 3D deployment is neither absolutely
well-defined nor totally random in practice, performance comparison is conducted to obtain
design insights and highlight the benefits of each model as a candidate 3D cellular UAV

86
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network for beyond-5G wireless communication systems.

5.2 System and Channel Models

5.2.1 Truncated Octahedron-based Network

Consider a 3D cell modeled as a truncated octahedron, W ⊂ R3, with 14 faces and edge
length R. Without loss of generality, it is assumed that W is centered at the origin o =
[x0, y0, z0]

T = [0, 0, 0]T of the 3D Cartesian coordinate system, and is referred to as the
reference cell. In this case, the 3D cellular network consists of a predefined arrangement of
multiple truncated octahedron cells. The desired 3D space can be tessellated with multiple
copies of the truncated octahedron cell without any gap or overlap. In this work, only the
first tier of the 3D cellular network is considered, i.e., Nc = 14 adjacent cells with respect to
the reference cell are deployed, and will be referred to as the neighboring cells. The UAV-BSs
are located at the center of the cells. The UAV-BS hovering at o in the reference cell will be
referred to as the reference UAV-BS. The model is depicted in Fig. 5.1a. The 3D locations
of the UAV-BS at the centers of the neighboring cells are given in Cartesian coordinates by
the matrix [5, Theorem 1]

P{a,b,c} =
√
2RH, (5.1)

where a, b, c ∈ {−1, 0, 1} and the matrix H is given by

H =

−1 −1 −1 1 1 −1 1 1 −2 0 0 2 0 0
−1 1 −1 −1 −1 1 1 1 0 −2 0 0 2 0
−1 −1 1 1 −1 1 −1 1 0 0 −2 0 0 2

 , (5.2)

where each column of H represents the normalized 3D coordinates of the Nc UAV-BSs.

Consider the forward transmission from the UAV-BSs to UAV-UEs, the spatial locations of
which are distributed according to a homogeneous PPP Φ with intensity λ. The reference
UAV-BS is assumed to serve the n-th nearest UAV-UE of Φ, which is referred to as the
receiver and without loss of generality, is assumed to hover in the reference cell. Let pi =
[xpi , ypi , zpi ]

T , i = 1, ..., Nc denote the deterministic 3D location of the i-th UAV-BS obtained
from the i-th column of P. Also, let wn = [rn, θn, ϕn]

T denote the 3D location of the receiver in
spherical coordinates. Then, wcn = [rn cos(ϕn) sin(θn), rn sin(ϕn) sin(θn), rn cos(θn)]T denotes
the 3D location of the receiver in Cartesian coordinates. The distance Ui between the receiver
and the i-th UAV-BS is denoted by Ui = ||wcn − pi||. Please note that for a limited time-
period the positions of both the UAV-UEs and the UAV-BSs remain fixed, and therefore,
the proposed framework is also applicable to mobile UAVs.

In this Chapter, the frequency reuse factor is set to q = 1, a selection that corresponds to
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(a) The 3D cellular network with the deter-
ministic location of the UAV-BSs at the cen-
ter of truncated octahedrons and the loca-
tions of UAV-UEs modeled as a 3D PPP.

(b) The 3D cellular network modeled as a
binomial-Voronoi network, where the ran-
dom locations of the UAV-BSs are modeled
as 3D BPP.

Figure 5.1: Illustration of the two considered network deployments depicting both UAV-BSs
and UAV-UEs.

a worst-case interference scenario in which all UAV-BSs interfere with each other1. In this
case, the 3D locations of all co-channel interfering UAV-BSs are given by (5.1). All UAV-BSs
are assumed to transmit at the same power p0, and all UAVs are equipped with an isotropic
antenna. Since the UAVs are assumed to hover above rooftops, the communication links
between the UAV-BSs and the UAV-UEs are considered to be in LoS condition [47]. The LoS
channels are assumed to experience Nakagami-m fading 2 with different fading parameter m.
Therefore, the channel power gains hv follow a Gamma distribution, hv ∼Gamma

(
mv,

1
mv

)
with the shape and scale parameters of hv being mv and 1/mv, respectively. Here, v ∈ {s, k},
where s denotes the link between the reference UAV-BS and the receiver, and k the link
between the receiver and the i-th UAV-BS located at pi. The PDF of hv is given by

fhv(x) =
mv

mvxmv−1

Γ(mv)
exp (−mvx), (5.3)

where Γ(·) is the Gamma function [40, eq. (8.310.1)]. Note that E[hv] = mv
1
mv

= 1. Also,
the values of ms are restricted to integers for analytical tractability. The SINR at the receiver

1Although the worst-case interference scenario is considered, it can be easily extended to other values of
q and consider more tiers of the 3D network.

2As stated in [76], the most natural choice for modeling small-scale fading in UAV-assisted communications
is Rician fading, which makes a clear distinction between the direct and the scattered paths. This is mainly
due to the high probability of LoS links in aerial networks. However, the Rician PDF does not lend itself
to further analysis since it entails the modified Bessel function. Therefore, Nakagami-m model is chosen,
which is quite common in the literature thanks to its mathematical tractability. Furthermore, the Rician
distribution with factor K can be well approximated with the Nakagami-m distribution using m = (K+1)2

2K+1 .
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is given by
SINR =

p0hsr
−α
n

I + σ2
, (5.4)

where σ2 is the additive white Gaussian noise power, and α is the path-loss exponent. Finally,
I refers to the aggregate interference power and is given by I =

∑Nc

i=1 p0hiU
−α
i .

5.2.2 Binomial-Voronoi Network

Consider a 3D UAV network with UAV-UEs whose spatial location is modeled as a 3D PPP
with intensity λ. Moreover, consider a BPP Ψ, which models the spatial locations of N
UAV-BSs. In this setup, the N UAV-BS are assumed to be uniformly and independently
distributed in a finite 3D ball b3(o, D) centered at the origin o = [0, 0, 0]T with radius
D. Again, the forward link from the UAV-BSs to the UAV-UEs is considered. The wireless
backhaul connectivity for the UAV-BSs is supposed to be provided by high altitude platforms
(HAPs). By using the criteria of the nearest neighbor association, each UAV-UE is directly
associated with the closest UAV-BS and 3D binomial-Voronoi cells are therefore formed.
Without loss of generality, the UAV-UE receiver is assumed to be located at the origin o,
and it is served by the nearest UAV-BS that is located in the corresponding Voronoi cell
and is called the serving UAV-BS. A representative example of this model is depicted in Fig.
5.1b. Let r denote the Euclidean distance between the receiver and the serving UAV-BS. All
other assumptions related to the communication and channel models follow the same lines
as the ones presented in the previous subsection. Once the link between the receiver and
the serving UAV-BS has been established, the remaining (N − 1) UAV-BS interfere to the
receiver. Let {Vi}N−1

i=1 denote the distance between the interfering UAV-BSs and the receiver.
In this case, the SINR at the receiver is given by

SINR =
p0hsr

−α

I + σ2
, (5.5)

where I =
∑N−1

i=1 p0hiV
−α
i , is the aggregate interference.

5.2.3 Coverage Probability and Average Rate

Recalling the previous chapters, the coverage probability is defined as the probability that
the SINR at the receiver, exceeds a predefined threshold γ, i.e. Pc(γ) ≜ P(SINR ⩾ γ).
The instantaneous achievable rate of the corresponding UAV-UEs is defined as Rinst ≜
Bw log2(1 + SINR), where Bw is the considered bandwidth. The CDF of Rinst is defined
as P[Rinst ≤ rt], where rt is the target rate. Then, the average achievable rate of the
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corresponding UAV-UEs is calculated as

R ≜ E[Bw log2(1 + SINR)]) = Bw

ln 2

∫ ∞

0

Pc(γ)
1 + γ

dγ. (5.6)

5.3 Performance Analysis

5.3.1 Coverage Probability Analysis for the Regular Network

Initially, the joint distribution of the receiver’s spherical coordinates is extracted.

Lemma 5.1. The joint PDF of the spherical coordinates of the receiver at wn is given by

fwn(rn, θn, ϕn) =
3 sin (θn)

4π

r3n−1
n

(
4πλ
3

)n
Γ(n)

exp
(
− 4πλr3n

3

)
. (5.7)

Proof: See Appendix D.1. □
The Laplace transform of I is now derived as an intermediate step in the coverage probability
analysis. However, the direct statistical characterization of the distance Ui is complicated.
Conditioned on wn, the distance Ui is no longer a random variable.

Lemma 5.2. The Laplace transform of the interference power distribution conditioned on
the location wn is

LI(s|wn) =
Nc∏
i=1

(
1 +

sp0U
−α
i

mk

)−mk

. (5.8)

Proof. The proof follows similar lines as the one presented in [57, Appendix E] and hence it
is omitted here for brevity. □
Now, by exploiting Lemma 5.1 and Lemma 5.2, the coverage probability can now be derived.

Theorem 5.3. The coverage probability of a receiver in the reference cell W is given by

Pc(γ) =
∫ ∞

0

∫ π

0

∫ 2π

0

ms−1∑
k=0

(−1)k

k!

(
msγr

α
n

p0

)k[
∂kLItot(s|wn)

∂sk

]
s

× fwn(rn, θn, ϕ)rmdϕnrmdθnrmdrn,

(5.9)

where s = msγrαn
p0

and LItot(s|wn) = exp(−σ2s)LI(s|wn).

Proof: See Appendix D.2. □
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While the reduced analytical complexity of our framework is of great interest, an accurate
approximation of Theorem 5.3 with reduced complexity is presented next.

Corollary 5.4. The approximated coverage probability of a receiver in W is given by

Papprox
c (γ) ≈

∫ ∞

0

∫ π

0

∫ 2π

0

ms∑
k=1

(−1)k+1

(
ms

k

)
LItot

(
kms(ms!)

− 1
ms γrα

p0

∣∣∣∣∣wn
)

× fwn(rn, θn, ϕn)dϕndθndrn.
(5.10)

Proof. The proof builds on the lower bounds of a complementary CDF of a Gamma-
distributed random variable, provided in [47]. Thus, it is omitted here. □

5.3.2 Coverage Probability Analysis for the binomial-Voronoi net-
work

In this subsection, the Laplace transform of the aggregate interference I is first derived in
closed form as intermediate step in the coverage probability analysis. The PDF of the serving
distance r is obtained directly by [2] as

fr(r) = 3Nr2
(D3 − r3)N−1

D3N
, 0 ≤ r ≤ D. (5.11)

However, the distances {Vi}N−1
i=1 are dependent due to the common serving distance r. Con-

ditioned on r, the PDF of {Vi}N−1
i=1 is derived in the following Lemma.

Lemma 5.5. Conditioned on the serving distance r, the distances {Vi}N−1
i=1 are i.i.d with

PDF given by
fVi|r(vi) =

3v2i
D3 − r3

, r ≤ vi ≤ D. (5.12)

Proof. Please refer to the Appendix D.3 for the proof. Note that this is an alternate proof
to the one provided in [6], as it is not based on theory of order statistics. □
The Laplace transform of I conditioned on r can now be calculated in order to derive the
overall coverage probability.

Lemma 5.6. The Laplace transform of the interference power distribution conditioned on
the serving distance r is given by

LI(s|r) = (Θ(s,D)−Θ(s, r))N−1, (5.13)



92 CHAPTER 5. PERFORMANCE COMPARISON OF WIRELESS AERIAL 3D CELLULAR NETWORK MODELS

where Θ(·, ·) is given by

Θ(s, x) =
x3

D3 − r3
2F1

(
−3

a
,mk;

a− 3

a
;−sp0x

−a

mk

)
, (5.14)

and 2F1 (·) denotes the Gauss hypergeometric function given in [40, eq. (9.100)].

Proof: See Appendix D.4. □
By exploiting Lemma 5.5 and Lemma 5.6, the coverage probability of the binomial-Voronoi
network can now be derived.

Theorem 5.7. The coverage probability of the receiver in a binomial-Voronoi network is
given by

Pc(γ) =
∫ D

0

ms−1∑
k=0

(
−msγr

α

p0

)k
fr(r)

k!

[
∂kLItot(s|r)

∂sk

]
s

dr, (5.15)

where s = msγrα

p0
, LItot(s|r) = exp(−σ2s)LI(s|r), and fr(r) is given by (5.11).

Proof. The proof for deriving Theorem 5.7 follows similar lines as the one presented in
Theorem 5.3. □

5.3.3 Average Rate Analysis

Given the expressions for the coverage probability derived in Theorems 5.3 and 5.7, the
average achievable rate of the receiver in the two networks is now obtained, in a way similar
to [47], as

R =
Bw

ln 2

∫ ∞

0

Pc(et − 1)dt

≈ Bw

ln 2

M∑
k=1

Pc(Tk)
Tk + 1

π2sin
(
2k−1
2M

π
)

4M cos2
(
π
4
cos
(
2k−1
2M

π
)
+ π

4

) , (5.16)

where M is a parameter to be adjusted for high accuracy and Tk = tan
(
π
4
cos
(

2k−1
2M

π
)
+ π

4

)
.

The approximation yields low complexity and it is based on the Gauss-Chebysev Quadrature
as in [77].
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Figure 5.2: Coverage probability versus SINR threshold.

5.4 Numerical Results and Discussions

In this section, simulation and numerical results are presented to evaluate and compare
the performance achieved by the two 3D cellular UAV network models. For the simulation
results, unless otherwise stated, λ = 10−5 UAV-UEs/m3, N = 15 UAV-BSs, R = 50 meters,
D = 212 meters, p0 = 30 dBm, mv = 2, α = 2, and σ2 = −113 dBm. Note that b3(o, D)
includes all the 15 cells of the regular network.

In Fig. 5.2, the coverage probability versus the SINR threshold is illustrated for i) a regu-
lar network with n-th nearest receiver selection policy and ii) a binomial-Voronoi network.
For the former case, it is observed that as n increases, the coverage performance is signif-
icantly degraded and the curves become steepest. Also, when the deployment density of
the UAV-UEs increases, the coverage performance increases, since the receiver comes closer
to the reference UAV-BS. The coverage probability of the binomial-Voronoi network is also
compared, via Monte-Carlo simulation, to that of a regular network with uniformly random
receiver selection policy. It is interestingly observed that the performance of the binomial-
Voronoi network is slightly degraded. This is because of the geometry of the regular network,
where the UAV-BSs hover at the center of the cells and the receiver is not equally affected
from all interfering UAV-BSs. In all cases, the simulation results verify the accuracy of
Theorems 5.3 and 5.7, as well as the accuracy of the approximate expression of Corollary
5.4.

Fig. 5.3, presents the empirical, via simulation, CDF of the instantaneous spectral efficiency
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Figure 5.3: CDF of the instantaneous spectral efficiency versus target rate.

versus the instantaneous target rate. The average achievable rate for each curve is also il-
lustrated, as evaluated both analytically using (5.16) and via simulation. Subsequently, the
probability that the instantaneous spectral efficiency is below the average achievable rate is
simulated. A first observation is that as n increases, the probability that the instantaneous
spectral efficiency falls below a target rate, significantly increases. When the tenth nearest
UAV-UE is selected as the receiver, the CDF curve is close to those of the binomial-Voronoi
network and the regular network with uniformly random receiver selection policy. An in-
teresting observation is that the right most curves preserve larger spectral efficiency but
significantly increased variance. Finally, it is noticed that the average spectral efficiency
of the binomial-Voronoi network and the regular network with uniformly random receiver
selection policy are close. However, the probability of achieving the average value is smaller
as compared to the other cases.

5.5 Chapter Summary

In this Chapter, downlink performance analysis of two 3D cellular UAV networks was con-
ducted. Analytical and simulation results were demonstrated for a regular network with
n-th nearest receiver selection policy, and a binomial-Voronoi network. Simulation results
were also presented for the performance in a regular network with uniformly random re-
ceiver selection policy. The coverage performance of this network slightly outperforms the
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corresponding one in a binomial-Voronoi network. The achievable average rate of the two
networks is close but the probability of achieving the average rate is smaller as compared to
the one in a 3D cellular network with n-th nearest receiver selection policy. Finally, it can
be concluded from the analytical expressions that the binomial-Voronoi network maintains
mathematical tractability and lower complexity.



Chapter 6

Conclusion and Open Research
Directions

In this dissertation, various fundamental challenges related to 6G key enabling technologies,
namely the mmWave and the UAV technology, were investigated. While the mathematical
results derived throughout the dissertation are obviously of primary interest to wireless and
stochastic geometry communities in academia, several of the design insights can be consid-
ered exploitable from the industrial community, too. For example, as far as Chapter 2 is
concerned, it is clear that the theoretical framework can help in the design and the estimation
of the performance of heterogeneous mmWave-enabling networks under the exploitation of
realistic 3GPP-based antenna patterns. Finally, in Chapter 3, the concept of the proposed
binomial 3D cellular network, can motivate the practical spatial deployment of UAV-BSs in
the 3D space while on the same time ensures that minimum number of 3D cells is required.

In the following, some conclusions are drawn for the 6G enabling technologies which were
investigated in this dissertation namely, the mmWave and the UAV-based technology. Po-
tential future challenges and research directions are also presented.

6.1 Conclusions

6.1.1 Design Insights & Guidelines for mmWave Networks

Based on the insights obtained from Chapter 2 some system level insights can be drawn:

• Due to blockage and the frequent misalignment errors of the highly-directional mmWave
beams, fluctuations of the channel capacity and outages are often. By recalling the
analytical complexity of the 5G NR-based exhaustive scanning procedures presented in
Chapter 2, it is clear that the aforementioned challenges cannot be straightforwardly
solved by utilizing physical-layer functionalities. Consequently, more efficient tools,
e.g. machine learning/artificial intelligence techniques can be applied to compensate
the increased complexity issues.

• With the introduction of the highly directional characteristics implied by mmWave net-
works, the angular distances should be essentially considered in order to have i) a more
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nuanced user association policy based on the 5G NR beam management procedure, and
ii) a more realistic calculation of the received power.

• Considering merely the directional characteristics in the receiver’s association policy
severely underestimates the coverage performance. In other words, the effect of path-
loss in mmWave networks has a dominant role in the cell association procedure.

• Under a single dominant interferer assumption, the coverage performance with a merely
angular distance-based association policy, yields a closer approximation of the net-
work’s coverage performance under aggregate interference as compared to considering
a merely Euclidean distance-based SINR metric. This trend becomes more obvious
when the number of UE’s sectors is small.

6.1.2 Design Insights & Guidelines for Beyond 5G 3D Cellular
Networks

Based on the insights obtained from Chapters 3, 4 and the performance comparison results
drawn from Chapter 5, some key system level insights can be derived:

• By considering a finite number of cellular-connected UAV-UEs in 3D cellular networks,
the spherical model provides a more optimistic performance trend in terms of coverage
probability, as compared to the binomial 3D cellular network. Nevertheless, although
the binomial 3D cellular network can lead to full tessellation of the 3D space by deploy-
ing the minimum number of cells, the analytical complexity of the latter is particularly
high and one should consider alternative 6G enabling tools such as optimization and
machine learning techniques for the design and investigation of the performance of
such networks.

• A binomial-Voronoi 3D network with the UAV-BSs being randomly distributed ac-
cording to a 3D BPP achieves slightly higher coverage performance as compared to
the regular truncated octahedron-based 3D cellular network with the locations of the
UAV-BSs being well-defined and the UAV-UEs forming a 3D PPP.

• In a binomial-Voronoi 3D network, a key design parameter for determining its per-
formance is the number of deployed UAV-BSs, which also determines the number of
Voronoi cells. Increasing the number of deployed UAV-BSs will increase the received
power but will also increase the interference power at the receiver. In this case, CoMP
and interference coordination schemes should further be investigated.

• In a regular truncated octahedron-based 3D cellular network, the key design parameters
which strongly affect its performance are the number and the size of the cells. In this
case proper frequency reuse planning is necessary to reduce the interference power
at the receiver. Moreover, the performance at the receiver is location-dependent and
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therefore trajectory optimization schemes for finding optimal locations which maximize
the performance, should be investigated. Finally, increasing the size of the cells also
increases the distances between the UAV-BSs in the well-defined lattice. One technique
for increasing the coverage performance at the receiver would be to involve all of the
14 neighboring UAV-BSs of the first tier of the cellular network into a CoMP scheme.
The interference power from the interfering cells will then be extremely low due to the
high path-loss.

6.2 Future Work

Inspired by this dissertation research, some open problems and future directions are now
discussed.

The proposed generic framework for mmWave communications can serve as baseline frame-
work for integrating further 6G key enabling technologies such as the JCAS and/or power
transfer capability. However, as it has already been argued, due to the strong directivity
and rapid attenuation of mmWave signals, the coverage of mmWave sensing is very limited.
As RIS can reconfigure the mmWave signal direction, it can guide the mmWave signal to the
originally inaccessible positions to enhance the sensing coverage. The investigation of fun-
damental performance limits of frameworks that combine all these 6G-related technologies
are of high interest from both industry and academia.

On another front, although promising, the UAV technology comes with several open chal-
lenges and there is still a lot of research work to be done before UAVs become part of the 6G
cellular network. Building on the tractable 3D stochastic geometry frameworks presented in
this dissertation, several future directions can be investigated as follows.

• RIS-assisted UAV communications: A UAV equipped with RIS offers all the advantages
of RIs technology while on the same time yields high flexibility die to the UAVs’
capability of adjusting their position. Nevertheless, electromagnetic signal modeling
and performance evaluation of such a framework is not a straightforward task.

• UAV-enabled JCAS: JCAS networks can also be utilized to monitor and manage
cellular-connected UAVs, especially UAVs at low altitudes. For cellular-connected
UAVs, JCAS signals emitted by ground BSs can be used for tracking the UAVs and
thus enhancing the communication performance through efficient beam prediction.
Since communication is generally continuously required while sensing tasks are often
performed periodically specific JCAS stochastic geometry frameworks should be de-
signed to facilitate the resource allocation and trajectory planning. Nevertheless, UAVs
usually operate in swarms to execute a task which makes the design of proper mobil-
ity patterns challenging. In order to properly model the UAV mobility and traffic i)
aerial corridors can be envisaged or ii) the Poisson line Cox process deployed above
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the ground may be exploited to conceptualize aerial roads similar to current vehicular
communication networks. Subsequently, fundamental performance limits in terms of
Cramer-Rao lower bound be investigated.

• mmWave Cell-free Architectures: To overcome the complex 3D cellular structures, cell-
free architectures which eliminate inter-cell interference by turning it into useful signal
which mostly benefits UAVs in downlink, can be exploited. On the same time, the
integration of mmWave band into cell-free architectures will increase the capacity due
to highly directional 3D antennas. Stochastic geometry-based performance analysis
can subsequently be conducted to reveal key design insights.
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Appendix A

Proofs of Chapter 2

A.1 Proof of Lemma 2.1

Let W (ϕ, r) denote a disk sector with dihedral angle ϕ and radius r. The area of the disk
sector is |W (ϕ, r)| = ϕr2

2
. The CCDF of ϕn is given by

F̃ϕn|Ar,n(ϕ) = P[Φ(W ) < n|Φ(b(o, r)) ≥ n]

=
P[Φ(W ) < n,Φ(b(o, r)) ≥ n]

P[Φ(b(o, r)) ≥ n]

=

∑n−1
k=0 Pk(ϕ, r)

(
1−

∑n−k−1
l=0 Ql(ϕ, r)

)
∑∞

k=n Pk(2π, r)
,

(A.1)

where Pk(ϕ, r) = e−
λϕr2

2
(λϕr

2

2
)k

k!
, Ql(ϕ, r) = e−λ(πr

2−ϕr2

2
) (λr

2(π−ϕ
2
))l

l!
and Φ(·) is a counting

measure denoting the number of points of the point process Φ falling in an area. Now, the
PDF of the conditional distance distribution is given by fϕn|Ar,n(ϕ) = − dF̃ϕn|Ar,n (ϕ)

dϕ . Along
similar conceptual lines as the proof presented in [46, Corollary 2.3], fϕn|Ar,n(ϕ) can be
obtained as

fϕn|Ar,n(ϕ) =
λr2

2
Pn−1(ϕ, r)

∑∞
k=0Qk(ϕ, r)∑∞

k=n Pk(2π, r)
. (A.2)

By noticing that
∑∞

k=0
xk

k!

△
= ex ,

∞∑
k=n
n>0

xk

k!

△
= ex(Γ(n)−Γ(n,x))

Γ(n)
and after applying some manipula-

tions, we obtain Lemma 2.1.

A.2 Proof of Lemma 2.3

Consider the event Ar,2. Following the properties of a PPP, the spatial locations of the
K points in b(o, r) form a finite PPP and the number of points falling in b(o, r) follows
a Poisson distribution with mean λ|b(o, r)|. The set of the unordered absolute angular
distances {|ϕk|}k=1:K for the kth angular distance of kth point, is uniformly distributed on
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[0, π], i.e., |ϕk| ∼ U [0, π]. By order statistics [78], let Zr,k define the event that k BSs exist
in b(o, r). The joint PDF of the smallest two random variables X1, X2, given Zr,K , is given
by fX1,X2(x, y |Zr,K) = K(K − 1)[1 − FX1(y)]

K−2fX1(x)fX1(y). Let X1 = |φ1|, X2 = |φ2|.

Then, f|φ1|,|φ2|(|φ1|, |φ2| |Zr,K) is given by f|φ1|,|φ2|(|φ1|, |φ2| |Zr,K) = K(K−1)
π2

(
1 − |φ2|

π

)K−2

,

and corresponding CDF is given by

F|φ1|,|φ2|(|φ0
1|, |φ0

2| |Zr,K)

=

∫ |φ0
1|

0

∫ |φ0
2|

|φ1|
f|φ1|,|φ2|(|φ1|, |φ2||Zr,K) d|φ2| d|φ1|

=
K

πK

(πK − (π − |φ0
1|)K −K|φ0

1|(π − |φ0
2|)K−1

K

)
.

(A.3)

Then, for the PPP case over a finite region, F|φ1|,|φ2||Ar,2(|φ0
1|, |φ0

2|) can be obtained as

F|φ1|,|φ2||Ar,2(|φ0
1|, |φ0

2|) =
P[|φ1| < |φ0

1|, |φ2| < |φ0
2|,Ar,2]

P[Ar,2]
. (A.4)

Now, the probability that the event {|φ1| < |φ0
1|, |φ2| < |φ0

2|,Ar,2} occurs, can be obtained
by averaging over Ar,2, that is

P[|φ1| < |φ0
1|, |φ2| < |φ0

2|,Ar,2]

=
∞∑
k=2

F|φ1|,|φ2|(|φ0
1|, |φ0

2| |Zr,k)
(λπr2)k

k!
e−λπr

2

= 1− e−λr
2|φ0

1| − λr2|φ0
1|e−λr

2|φ0
2|.

(A.5)

Next, P[Ar,2] = 1− Γ(2,λπr2)
Γ(2)

. By substituting in (52), F|φ1|,|φ2||Ar,2(|φ0
1|, |φ0

2|) is given by

F|φ1|,|φ2||Ar,2(|φ0
1|, |φ0

2|) =
1− e−λr

2|φ0
1| − λr2|φ0

1|e−λr
2|φ0

2|

1− Γ(2,λπr2)
Γ(2)

. (A.6)

Finally, f|φ1|,|φ2||Ar,2(|φ1|, |φ2|) can be obtained after differentiating (A.6) w.r.t |φ0
1|, |φ0

2| as
f|φ1|,|φ2||Ar,2(|φ1|, |φ2|) =

∂2F|φ1|,|φ2||Ar,2
(|φ0

1|,|φ0
2|)

∂|φ0
1|∂|φ0

2|
, which directly results to Lemma 2.3.

A.3 Proof of Lemma 2.4

The PDF of Sx is first derived. Since φr ∼ U [0, ϕ3dB
2

], g(φx) = 10
Gmax−12

(
φx

ϕ3dB

)2
10 . Then, g(φx)

is a function of the random variable φx. Building on φx and applying successive change of
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variables, the PDF fg(φx)(g) is given by fg(φx)(g) =
1

ln(10)x
10

12
√

Gmax−10log(x)
12

, x ∈ [g3dB, gmax].

Subsequently, the PDF of r−αL
x is expressed in terms of the corresponding CDF as

P[r−αL
x ≤ x] = P

[
rαL
x ≥ 1

x

]
= 1− P

[
rx ≤

(1
x

) 1
αL

]
= 1− Frx

((1
x

) 1
αL

)
, Frx(r) =

r2

R2
L

.

(A.7)

Now, f
r
−αL
x

(x) is obtained after differentiating (A.7) w.r.t the appropriate range of x, that

is, f
r
−αL
x

(x) =
2
(

1
x

)αL+2
αL

αLR
2
L

, x ∈ [R−αL
L ,∞). The PDF and the CDF of Sx can now be written as

fSx(w) =

∫ ψ(w)

g3dB

1

x
fg(φx)(x)fr−αL

x

(w
x

)
dx, (A.8)

FSx(w0) =

∫ w0

g3dBR
−αL
L

∫ ψ(w)

g3dB

1

x
fg(φx)(x)fr−αL

x

(w
x

)
dxdw, (A.9)

The PDF of S = max
x∈(Ψbs∩b(o,RL))

{Sx} can now be obtained by exploiting results from Order

Statistics [78]. However, S is meaningfully defined conditioned on ARL,1. Accordingly, let
ZRL,k, with k ≥ 1, define the event that k BSs exist in b(o, RL). Then, from the definition of
Ψbs ∩ b(o, RL), P[ARL,k] = e−λbsπR

2
L(λbsπR

2
L)
k/k!. Given ZRL,k and since the elements of Sx

are i.i.d., the probability that S ≤ s0 is given by P[S ≤ s0|ZRL,k] = FS(s0|ZRL,k) = (FSx(w))
k.

Now, in a similar vein to the proof presented in Appendix A, FS|ARL,1
(s0) can be obtained

as FS|ARL,1
(s0) =

P[S≤s0,ARL,1]

P[ARL,1]
. Accordingly, P[S ≤ s0,ARL,1] can be derived by averaging

P[S ≤ s0|ARL,k] over ARL,k, that is

P[S ≤ s0,ARL,1]

(a)
=

∞∑
k=1

(FSx(w))
ke−λbsπR

2
L
(λbsπR

2
L)
k

k!

(b)
= eλbsπR

2
L

(
1−FSx (s0)

)
− e−λbsπR

2
L , s0 ∈ [wmin,∞),

(A.10)

where (a) follows after averaging over k and (b) follows from
∑∞

k=1
akbk

k!

△
= eab − 1. Next,

P[ARL,1] = 1 − e−λπR
2
L . By substituting all the above in the definition of FS|ARL,1

(s0),
FS|ARL,1

(s0) yields. Finally, the PDF fS|ARL,1
(s0) is obtained directly as fS|ARL,1

(s0) =

dFS|ARL,1
(s0)

ds0
=

λbsπR
2
L fSx (s0) e

λbsπR2
L

(
FSx

(s0)−1

)
1−e−λπR2

L
.
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A.4 Proof of Lemma 2.6

Conditioned on S = g(φr)r
−αL
s , the location x0 of the serving BS and the maxima ϕr0 of

the receiving beam are known. Once the serving BS has been determined, by appealing to
Slivnyak’s Theorem, Ψ!

bs is a HPPP restricted to the set {Ω ∪ Ω
′}. The set {Ω ∪ Ω

′} is
defined by all possible locations of the interfering BSs, being those locations which lie outside
the exclusion zone. Note that the exclusion zone is defined by all possible locations of x0.
However, the location x0, given through φr, rs, is a function of the maximum received power
Sth. In Fig. A.1a, a representative powersurface example of the maximum received power S
from x0 in terms of φr and rs, is illustrated, by assuming a 4-sectored antenna, i.e, ϕ3dB =
π/2. In Fig. 3b, the corresponding powersurface of the received power Sx = g(|ϕr0−ϕx|)r−αL

x

from x ∈ (Ψbs ∩ b(o, RL)) in terms of rx, ϕx, is shown, by assuming that the third beam has
been chosen as the receiving beam and therefore ϕr0 = π/4 + π/2 + π/2. Notice that for a
given value of S = Sth in Fig. A.1a, the received power from the interfering BSs should be
smaller than Sth and the locations of x ∈ Ψ!

bs must lie outside the exclusion zone indicated
by the yellow markers. Also, notice that in Fig. A.1b, Sth indicates the maximum received
power of an interfering BS. Considering the aforementioned, the minimum distance rminx is
given by

g3gpp(|ϕr0 − ϕx|)rminx

−αL < g(φr)r
−αL
s︸ ︷︷ ︸

Sth

⇔ g3gpp(|ϕr0 − ϕx|)
Sth

< rminx

−αL

⇔ rminx >
(g3gpp(|ϕr0 − ϕx|)

Sth

) 1
αL ,

(A.11)

as ϕx ∈ [0, 2π]. Now, by observing from Fig. 3b that rx > RL for some values of S, rminx is

rewritten as rminx = min
{(

g3gpp(|ϕr0−ϕx|)
Sth

) 1
αL , RL

}
. Now, along similar conceptual lines, rmaxx

can be derived. Next, the Laplace transform of I conditioned on S and ϕr0 is given by
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(a) Powersurface of maximum received power S,
versus rs and φr.

(b) Powersurface of received power Sx = g(|ϕr0−
ϕx|)r−αL

x , versus rx and ϕx.

Figure A.1: Representative example of powersurfaces for the serving and interfering BSs
corresponding to a receiver equipped with a 4-sectored antenna, ϕr0 = π/4 + π/2 + π/2 and
S = Sth.

LI(s|Sth, ϕr0) = EΨ!
bs
[e−sI ] = EΨ!

bs

[
e
−s

∑
x∈Ψ!

bs
phxgmaxg3gpp(|ϕr0−ϕx|)l(∥x∥)

∣∣∣Sth, ϕr0]
(a)
= EΨ!

bs

[ ∏
x∈Ψ!

bs

(
1 +

s p gmax g3gpp(|ϕr0 − ϕx|)l(∥x∥)
mx

)−mx
∣∣∣Sth, ϕr0]

(b)
= exp

(
− λbs

∫∫
Ω

(
1−

(
1 +

s p gmax g3gpp(|ϕr0 − ϕx|)Kr−αL
x

mx

)−mx
)
rxdϕxdrx

)

× exp
(

− λbs

∫∫
Ω

′

(
1−

(
1 +

s p gmax g3gpp(|ϕr0 − ϕx|)Kr−αN
x

mx

)−mx
)
rxdϕxdrx

)
(c)
= exp

(
− λbs

∫ RL

rmin
x

∫ 2π

0

(
1−

(
1 +

s p gmax g3gpp(|ϕr0 − ϕx|)Kr−αL
x

mx

)−mx
))

rxdϕxdrx

× exp
(

− λbs

∫ rmax
x

RL

∫ 2π

0

(
1−

(
1 +

s p gmax g3gpp(|ϕr0 − ϕx|)Kr−αN
x

mx

)−mx
))

rxdϕxdrx,

(A.12)

where (a) follows from the MGF of hx, (b) follows from the PGFL of the PPP and from
independence between the locations of LOS and NLOS interfering BSs, and (c) follows from
integration over the set of the region Ω and Ω

′ .
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A.5 Proof of Theorem 2.7

The conditional coverage probability is first given by

Pc(γ) = P
[p hs gmax g(φr) l(∥x0∥)

I + σ2
> γ

∣∣∣rs, ϕs, ϕr0] = P
[p hs gmaxK Sth

I + σ2
> γ

∣∣∣Sth, ϕr0]
= P

[
hs >

γ(I + σ2)

p gmaxK Sth

∣∣∣Sth, ϕr0]
(a)
=

ms−1∑
k=0

(−s)k

k!

[
∂kLItot(s|Sth, ϕr0)

∂sk

]
s

(b)
=

2m∑
i=1

ms−1∑
k=0

∫ ∞

wmin

(−s)k

k!

[
∂kLItot(s|Sth, ϕi0)

∂sk

]
s

fS(Sth)pϕdSth,

(A.13)

where (a) follows from the CCDF of hs, the definition of incomplete gamma function for
integer values of ms and by using EItot [exp(−sItot)(sItot)k] = (−s)k ∂

kLItot (s)

∂sk
, and (b) follows

from deconditioning over the maximum power S and all possible receiving beam’s maxima
ϕr0, with the PDF fS(s0) and the pmf pϕ, respectively.

A.6 Proof of Lemma 2.9

Through manipulation of Corollary 2.2, let r = RL, λ = λbs, ϕ = 2m+1φc, n = 1 and
φc ∈ [0, π

2m
] so that ϕ ∈ [0, 2π]. Then, W (ϕ, r) = ϕr2

2
= 2mφcR

2
L. Next, the proof follows the

same steps as the proof for deriving Lemma 2.1.

A.7 Proof of Lemma 2.10

As the distance of x0 is independent of the association scheme, the locations of x ∈ Ψ!
bs can

be anywhere in angular distance larger than the serving angular distance φc, and therefore
let V = {(rx, ϕx) ∈ R2|0 ≤ rx ≤ RL, φc ≤ ϕx ≤ 2π}. Then, the proof follows the same steps
shown in Appendix A.4 and hence it is omitted here.
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A.8 Proof of Theorem 2.11

Similar to the proof for deriving Theorem 2.7,

Pc(γ) = P
[p hs gmax g(φc) l(∥x0∥)

I + σ2
> γ

∣∣∣φc, ϕr0, d0]
(a)
=

2m∑
i=1

ms−1∑
k=0

∫ π
2m

0

∫ RL

0

(−s)k

k!

[
∂kLItot(s|φc, ϕi0)

∂sk

]
s

pϕfd0(d0)fφc|ARL,1
(φc)dd0dφc,

(A.14)

where (a) follows from deconditioning over the conditioned random variables φc, ϕr0, d0 of the
conditional coverage probability.

A.9 Proof of Lemma 2.14

By exploiting theory of Order Statistics [78], and given that k BSs (k ≥ 2) exist in b(o, RL),
the joint PDF is first given by

fPr0,P rI |k(s0, sI) = k(k − 1)(FSx(s0)
k−2fSx(s0)fSx(sI). (A.15)

Then, fPr0,P rI |ARL,2
(s0, sI) can be obtained along similar lines as the proof presented in

Appendix A.2 and thus it is omitted here.

A.10 Proof of Proposition 2.17

The PDF of the SIR results directly from expressing the SIR given as a product of two
random variables

fSIR(x) =

∫ ∞

1

1

x
fP |ARL,2

(x)fQ||ARL,2
(
x

p0
)dp0. (A.16)

Then, FSIR(γ) =
∫ γ
0
fSIR(x)dx.

A.11 Proof of Lemma 2.18

Since |φ1|, |φ2| are dependent and conditioned on TϕA,2, the PDF f|φ1|,|φ2|||TϕA,2
(|φ1|, |φ2|) of

|φ1|, |φ2| is given as

f|φ1|,|φ2||TϕA,2
(|φ1|, |φ2|) =

1

P[TϕA,2]
∂2F|φ1|,|φ2||TϕA,2

(|φ0
1|, |φ0

2|)
∂|φ0

1|∂|φ0
2|

, (A.17)
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where F|φ1|,|φ2||TϕA,2
(|φ0

1|, |φ0
2|) is obtained through (A.6) for |φ0

1| < ϕA, |φ0
2| < ϕA and P[TϕA,2] =

1−e−λR2
LϕA−λR2

LϕAe
−λR2

LϕA

1−
Γ(2,λπR2

L
)

Γ(2)

. Presenting (A.17) through Lemma 2.3,

f|φ1|,|φ2||TϕA,2
(|φ1|, |φ2|) =

f|φ1|,|φ2|(|φ1|, |φ2| , TϕA,2)
P[TϕA,2]

=
(λbsR

2
L)

2e−λbsR
2
L(|φ2|−π)

eλbsπR
2
L − λbsR2

LϕAe
λbsR

2
L(π−ϕA) − eλbsR

2
L(π−ϕA)

,

(A.18)

for |φ1| ∈ [0, ϕA] and |φ2| ∈ [|φ1|, ϕA]. Now, notice that g(|φ1|), g(|φ2|) are functions of a ran-

dom variable, i.e., g(|φi|) = gmax10
− 10

3

(
2|φi|
ϕ3dB

)2

, i ∈ {1, 2}. Building on |φ1|, |φ2| and applying
successive change of variables and simplifications, the joint PDF fg(|φ1|),g(|φ2|)|TϕA,2

(g1, g2) is

fg(|φ1|),g(|φ2||TϕA,2)(g1, g2)

=
5 (λbsR

2
Lϕ3dB)

2

24 g1 g2

√
log10(gmax

g2
)log10(gmax

g1
)

ln(gmax

g2
)ln(gmax

g1
)

exp
(
λbsR

2
Lϕ3dB

√
10log10(gmax/g2)/(2

√
3)
)

1− e−λbsR
2
LϕA − λbsR2

LϕAe
−λbsR2

LϕA
,

(A.19)

for g(|φ1|) ∈ [gs, gmax] and g(|φ2|) ∈ [gs, g(|φ1|)]. Let g(|φ1|) = g1 and g(|φ2|) = g2. Through
G = g1

g2
, it comes that g1 = Gg2, where gs ≤ g1 ≤ gmax. Therefore, g2 ∈ [gs, gmax/z]. Then,

the PDF of G can be expressed as fG|TϕA,2
(g) =

∫ gmax
g

gs
g2 fg(|φ1|),g(|φ2|)|TϕA,2

(g g2, g2) dg2, for
g ∈ [1, gmax/gs]. After some simplifications Lemma 2.18 yields.

A.12 Proof of Lemma 2.19

The PDF of Wi = hir
−αL
i , i ∈ {1, 2} is given by

fWi
(wi) =

∫ ∞

R
−αL
L

1

y
f
d
−αL
i

(y)fhi(wi/y)dy

=
2m

− 2
αL

u w
− 2

αL
−1

i

[
Γ
(

2
αL

+mu

)
− Γ

(
2
αL

+mu,
muwi

R
−αL
L

)]
αLR2

LΓ(mu)
.

(A.20)

By setting W1 = WW2, the PDF of W is given by

fW ||ARL,2
(w) =

∫ ∞

0

w2fW1(ww2)fW2(w2)dw2. (A.21)
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After applying some simplifications, Lemma 2.19 yields.

A.13 Proof of Proposition 2.20

First, recall that TϕA,2 ⊆ ARL,2, which means that fG|ARL,2,TϕA,2
(g) = fG|TϕA,2

(g).Second, it is
easy to argue in this setting that W is conditionally independent of TϕA,2 when conditioned
on ARL,2. Therefore, the PDF of the SIR results directly from expressing the SIR given as
a product of two random variables

fSIR(x) =

∫ gmax
gs

1

1

g
fW |ARL,2

(x/g)fG|TϕA,2
(g)dg. (A.22)

Then, FSIR(γ) =
∫ γ
0
fSIR(x)dx.

A.14 Proof of Lemma 2.21

The PDF fg(|φ2|)(g2) is given by

fg(|φ2|)(g2) =
5
√
3ϕ3dB

6
√
10 ln(10)ϕA g

√
log10(gmax/g)

, (A.23)

g ∈ [gs, gmax]. Then, fG|ARL,2
(g) can be obtained by following similar steps with the proof

for Lemma 2.19.

A.15 Proof of Lemma 2.22

The joint PDF of fr1,r2|ARL,2
(r1, r2) is first derived. By exploiting theory of order statistics

and following similar procedure as in Appendix A.1, the joint PDF of fr1,r2|ARL,2
(r1, r2) is

given by

fr1,r2|ARL,2
(r1, r2) =

4(πλbs)
2r1r2e

−λbsπr22

1− Γ(2,λbsπR
2
L)

Γ(2)

, (A.24)

for r1 ∈ [0, RL], r2 ∈ [r1, RL]. Then, the PDF of W is obtained by first obtaining the PDF of
v = r1/r2 through the formula for the PDF of the ratio of two dependent random variables
and then through the transformation W = v−αL .
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A.16 Proof of Lemma 2.24

The PDF f|ϕ1|(|ϕ1|, |ϕ1| < ϕA) can be obtained from [38] w.r.t the range of |ϕ1| when |ϕ1| < ϕA
as

f|ϕ1|(|ϕ1|, |ϕ1| < ϕA) =
N

πN
(π − |ϕ1|)N−1, (A.25)

|ϕ1| ∈ [0, ϕA]. In this case, notice that g(|ϕ1|, |ϕ1| < ϕA) is a function of a random variable,
i.e.,

g(|ϕ1|, |ϕ1| < ϕA) = gmax10
− 10

3

(
2|ϕ1|
ϕ3dB

)2

, (A.26)
Building on |ϕ1| and applying successive change of variables, the PDF f(g, |ϕ1| < ϕA) is

obtained directly as in (2.47), for g ∈

[
gmax

10
3
10

(
2ϕA
ϕ3dB

)2 , gmax] = [gs, gmax]. Now, F (g||ϕ1| < ϕA)

is first obtained as the ratio of the joint CDF of (2.47), to the probability that the event
|ϕ1| < ϕA occurs,

F (g||ϕ1| < ϕA) =
Fg(g, |ϕ1| < ϕA)

F|ϕ1|(|ϕA|)

=
Fg3gpp(g, |ϕ1| < ϕA)

p|ϕ1|<ϕA
,

(A.27)

where F|ϕ1|(|ϕA|) = p|ϕ1|<ϕA = 1−π−N(π−ϕA)N is obtained directly from the CDF of (A.25).
After differentiating (A.27), Lemma 2.24 yields and this completes the proof.

A.17 Proof of Proposition 2.25

By setting g(|ϕ1|||ϕ1| < ϕA) = grx(|ϕ1|) for convenience, the coverage probability is given
through its definition as

Pc(γ) = E

[
P

(
cbs gmax r

−αL
1

cbs grx(|ϕ1|) r−αL
2 + σ2

> γ

)]

= E

[
P

(
grx(|ϕ1|) <

cbs gmax r
−αL
1 − γ σ2

cbs γ r
−αL
2

)]
(a)
= E

[
F (g0(r1, r2, γ, σ

2), |ϕ1| < ϕA)

]
(b)
=

∫ g0(r1,r2,γ,σ2)

gs

∫ RL

r1

∫ RL

0

fr1,r2(r1, r2)f(g, |ϕ1| < ϕA)dr1dr2dg,

(A.28)
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where (a) is derived through the CDF of (2.46), obtained through integration and by consid-
ering the independence between the gains and the distances r1, r2, and (b) is obtained after
applying the expectation w.r.t the appropriate range of g. By order statistics [78], the joint
PDF fr1,r2(r1, r2) of r1, r2, is provided in Proposition 2.25 and this completes the proof.

A.18 Proof of Lemma 2.26

The PDF of di is given by [10] fdi(di|r1) = 2di
R2

L−r
2
1
. Then, the PDF of d−αL

i is given in terms
of the corresponding CDF as

P(d−αL
i ≤ d|r1) = P

(
dαL
i ≥ 1

d

)
= 1− P

(
di ≤

(1
d

)αL
)

= 1− Fdi

((1
d

)αL
))
, Fdi(di) =

d2i
R2
L − r21

.
(A.29)

Now, f
d
−αL
i

(d|r1) is obtained after differentiating (A.29) w.r.t the appropriate range of d, i.e.,
d ∈ [R−αL

L , r−αL
1 ]. The final PDF fP (x||ϕ1| < ϕA, r1) of P can now be obtained directly from

the well-known formula for the PDF of the product of two independent random variables
[79], w.r.t the appropriate range for the dummy variable y. The proof is now complete.

A.19 Proof of Lemma 2.28

The Laplace transform of the interference power distribution conditioned on r1 is given by

LI(s|r1) = EI [exp(−sI)]
(a)
= Ehi

[
EUi

[
E|φi|

[
e−s

∑N−1
i=1 p0higmaxg3gpp(|φi|)KU

−αL
i

∣∣∣r1]]]
(b)
=

(
EUi

[
E|φi|

[(
1 +

s cbs g3gpp(|φi|) u−αL
i

mI

)−mI
∣∣∣∣∣r1
]])N−1

,

(A.30)

where (a) follows from the independence between hi, Ui, |φi| and (b) follows from the MGF
of hi and the conditionally independent and i.i.d. Ui, |φi|. By applying the definition of
expectation and using the conditional PDF [10] fUi

(ui|r1) = 2ui
R2

L−r
2
1

and f|φi|(|φi|) = 1
π
,

Lemma 2.28 yields and this completes the proof.



Appendix B

Proofs of Chapter 3

B.1 Proof of Lemma 3.3

B.1.1 Truncated Octahedron Geometry

Without loss of generality, it is assumed that the truncated octahedron W of edge length
R is centered at the origin o of the 3D Cartesian coordinate system with the z-axis passing
through the centroid of one hexagonal face ofW . According to the geometrical characteristics
of W [? ], the inner radius Rhex of W is given by Rhex = R

√
3
2
, while the outer radius Rsq is

given by Rsq = R
√
2. The inner and the outer radius of W touch the hexagonal and square

faces of W , respectively. The circumscribed radius Rc of W is given by Rc = R
√

5
2

and
touches all the 24 vertices of W . Note that the aforementioned parameters are shown in Fig.
B.1. The overall volume of W is given by |W | = 8

√
2R3.

B.1.2 Evaluation of O(o, r)

The evaluation of the volume O(o, r) requires the computation of the overlap region between
a 3D ball b3(o, r) and W . In other words, as b3(o, r) increases, the task is to evaluate O(o, r)
until W has been entirely enclosed within b3(o, r). In order to evaluate O(o, r) for all possible
values of the radius r, the analysis is split into 5 cases.

Let B(i)(r) denote the overall volume of the segments lying outside W with respect to the
corresponding case i. Then, O(o, r) can be evaluated by considering the volume segments of
b3(o, r) lying outside the faces of W , i.e., O(i)(o, r) = |b3(o, r)| − B(i)(r) with respect to the
case i and |b3(o, r)| = 4π

3
r3. The problem is reduced to the evaluation of B(i)(r).

Case 1, corresponds to 0 ⩽ r ⩽ Rhex, i.e., b3(o, r) lies completely within W resulting to
B(1)(r) = 0, as shown in Fig. B.2a.

Case 2, shown in Fig. B.2b, corresponds to Rhex < r ⩽ Rsq. In this case, volume segments
of b3(o, r) start lying outside W . While the distance Rsq ⩾ Rhex, b3(o, r) does not cross
the square faces of W . Fortunately, these volume segments are spherical caps, lying upon
the hexagonal faces of W . The volume V hex

cap of a spherical cap is given by V hex
cap (r) =

112
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Figure B.1: The truncated octahedron cell-shape.

π
3
(r −Rhex)

2(2r +Rhex) and consequently B(2)(r) can be evaluated as B(2)(r) = 8V hex
cap (r).

Case 3, shown in Fig. B.2c, corresponds to Rsq < r ⩽ Rmid. As the radius r of b3(o, r)
exceeds Rsq, volume segments of b3(o, r) start crossing the 14 faces of W . Notice that the
limiting values of the third case are defined for r = Rmid, as shown in Fig. 11d. The radius
Rmid =

3
2
R, is called midradius of W and it indicates the maximum r for which the spherical

caps are simultaneously inscribed in the hexagonal and square faces ofW . The volume V sq
cap(r)

of a spherical cap lying upon a square face of W is given by V sq
cap(r) =

π
3
(r−Rsq)

2(2r+Rsq)
and consequently B(3)(r) can be evaluated as B(3)(r) = 8V hex

cap (r) + 6V sq
cap(r).

Case 4 corresponds to Rmid < r ⩽ Rc, i.e., until W is entirely enclosed within b3(o, r). While
spherical caps still lie upon the hexagonal and square faces of W , they extend beyond the
perimeter of the faces of W and thus cannot be used for evaluation. In this case, there is
an overlap between the volume segments formed outside W , which complicates the task of
finding O(o, r).
Let ahexext (r), a

sq
ext(r) denote the base radius of the extending spherical cap lying upon a hexag-

onal and a square face of W , respectively, as shown in Fig. B.4a and Fig. B.4b. The key
idea is to remove that volume segments of the spherical caps that lie outside the hexagonal
and square faces of W . Let ∆hex(r) and ∆sq(r) denote the volume segments of a spherical
cap formed outside the hexagonal and square faces of W , respectively, and extend above the
plane in which the face belongs. As seen from top, these segments are illustrated in Fig. B.4
with faded grey. The remaining caps, are called truncated caps, and are illustrated in Fig.
B.4 with dark grey. Let T hexcap (r), T

sq
cap(r) denote the volume of a truncated cap lying upon a

hexagonal and square face of W , respectively.

B(4)(r) can then be approximately evaluated as the sum of the truncated caps and the
remaining volume segments of b3(o, r) lying between adjacent truncated caps, as shown with
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(a) r ⩽ Rhex (b) Rhex < r ⩽ Rsq (c) Rsq < r ⩽ Rmid

(d) r = Rmid (e) Rmid < r ⩽ Rc (f) r > Rc

Figure B.2: Illustration of the overlap between b3(o, r) and W for different values of the
radius r.
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Figure B.3: Side view of truncated octahedron.

grey color in Fig. B.3. Let Shexhex(r), S
sq
hex(r) denote the volume segments, whose side view

are limited by the points 1 and 2, and 3 and 4, respectively. Then, B(4)(r) = 8T hexcap (r) +
6T sqcap(r)+12Shexhex(r)+24Ssqhex(r), where T hexcap (r) = V hex

cap (r)−6∆hex(r)+3Shexhex(r)+3Ssqhex(r) and
T sqcap(r) = V sq

cap(r)−4∆sq(r)+4Ssqhex(r) are the volumes of a truncated cap lying upon hexagonal
and square face of W , respectively. Notice that ∆hex(r),∆sq(r) incorporate Shexhex(r), S

sq
hex(r),

which need to be added in the expressions of T hexcap (r), T
sq
cap(r) in order to avoid considering

twice the volume segments Ssqhex(r), S
sq
hex(r) in the evaluation of B(4)(r).

The problem is reduced to the evaluation of the volume segments Shexhex(r), S
sq
hex(r),∆hex(r),∆sq(r).

Fortunately, these volume segments are spherical volume elements. Consequently, they can
be easily calculated by integrating the spherical volume elements with respect to the ap-
propriate ranges for the spherical coordinates (r̄, θ, ϕ ). Note that θ, ϕ are used in order
to indicate the set of the polar and azimuthal angles shown in Fig. B.3 and Fig. B.4,
respectively. The requested volume segments are then given by

Shexhex(r) =

∫ θhex1hex

θ2hex

∫ 2ϕhex

0

∫ Rc

r

r̄2 sin θ dr̄ dϕ dθ, (B.1)

Ssqhex(r) =

∫ θsq1hex

θ2hex

∫ 2ϕhex

0

∫ Rc

r

r̄2 sin θ dr̄ dϕ dθ, (B.2)

∆hex(r) =

∫ θ4hex

θ2hex

∫ 2ϕhex

0

∫ Rc

r

r̄2 sin θ dr̄ dϕ dθ, (B.3)

∆sq(r) =

∫ θsq1hex

θsq3hex

∫ 2ϕhex

0

∫ Rc

r

r̄2 sin θ dr̄ dϕ dθ. (B.4)
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(a) Hexagonal face. (b) Square face.

Figure B.4: Top view of the truncated caps formed upon the faces of the truncated octahe-
dron.

The angles under investigation (shown in Fig. B.3 and in Fig. B.4) are given by

θ2hex = arcsin
(
ahexmax
r

)
, θ4hex = arcsin

(
ahexext
r

)
, (B.5)

θhex1hex
= arcsin

(
ahexmax + sin (dh−h)hhex

r

)
, (B.6)

θsq1hex = arcsin
(
ahexmax + sin (dh−sq)hsq

r

)
, (B.7)

θsq3hex = arccos
(
Rhex + sin (d6−4)(a

sq
ext − asqmax)

r

)
, (B.8)

ϕhex = arccos
(

ahexmax√
r2 −R2

hex

)
, (B.9)

where ahexmax = R
√
3
2

, asqmax = R
2
, ahexext =

√
r2 −R2

hex, a
sq
ext =

√
r2 −R2

sq, dh−h = arccos (−1
3
),

dh−sq = arccos (− 1√
3
), hhex =

√
r2 − (ahexmax)

2−Rhex, hsq =
√
r2 − (asqmax)

2−Rsq. After evalu-
ating (B.1)- (B.4) in closed form and after some algebraic manipulations and simplifications
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B(4)(r) is given by

B(4)(r) = B(3)(r) +
8 (r3 −R3

mid)

3

(√
6R

r

+ 4
√
3

√
1−

(
asqmax

r

)2

− 12

√
1−

(
ahexmax

r

)2

+ 2
√
6

√
1−

(
Rsq

r

)2
)
arccos

(
ahexmax√
r2 −R2

hex

)
.

(B.10)

Case 5 is identified for r > Rc, i.e., W becomes entirely enclosed within b3(o, r), as shown
in Fig. B.2f. In this case, it is clear that O(o, r) = |W | and this also completes the proof.

B.2 Proof of Theorem 3.5

The proof for deriving (3.4) follows the same lines as in [46] and hence it is omitted here.
Now, having derived O(o, r), (3.6)-(3.8) can be obtained after taking the derivative of O(o, r)
with respect to the appropriate range of r and applying algebraic manipulations. □

B.3 Proof of Corollary 3.7

Based on the approach presented in [80], the complementary CDF of Rn is the probability
that there are less than n UAV-UEs closer than r, for 0 ≤ r ≤ Rc, and it is given directly
through (3.12) as

F̄Rn(r) =
n−1∑
k=0

Tke
−λO(o,r). (B.11)

The PDF of Rn can now be obtained as fRn(r) = − dF̄Rn (r)

dr , which after some computations
results in

fRn(r) = λ
dO(o, r)

dr
( n−1∑
k=0

Tk −
n−1∑
k=1

Tk−1

)
e−λO(o,r)

= λ
dO(o, r)

dr Tn−1e
−λO(o,r)

= n
dO(o, r)

dr O(o, r)n−1︸ ︷︷ ︸
d(O(o,r)n)

dr

λne−λO(o,r)

nΓ(n)
,

(B.12)
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which is identical to (3.15). Then, (3.16) is directly obtained as the complementary of B.11,
and this completes the proof.

B.4 Proof of Lemma 3.12

Conditioned the serving distance rs, the Laplace transform of the interference received from
the UAV-UEs in W is given by

LIoct(s|rs) = EIoct [exp(−sIoct)] = EInear
oct ,Ifaroct

[exp(−s(Inearoct + Ifaroct ))]

(a)
= EInear

oct
[exp(−sInearoct )] · EIfaroct

[exp(−sIfaroct )]

(b)
= EUnear

i

[ n−1∏
i=1

Ehi [exp(−shi(Unear
i |rs)−α)]

]
EUfar

i

[N−n∏
i=1

Ehi [exp(−shi(Dnear
i |rs)−α)]

]
(c)
= EUnear

i

[ n−1∏
i=1

(
1 +

su−αi
mI

)−mI
]
EUfar

i

[N−n∏
i=1

(
1 +

su−αi
mI

)−mI
]

=
[
EUnear

i

[(
1 +

su−αi
mI

)−mI
]]n−1[

EUfar
i

[(
1 +

su−αi
mI

)−mI
]]N−n

,

(B.13)

In (B.13), (a) follows from the independence between the interference power Inearoct experienced
in the near zone and the interference power Ifaroct experienced in the far zone, (b) follows
from the independence of channel gains and the distances of interferers from the reference
UAV-BS and by expressing the sum as a product, and (c) follows from the MGF of gamma
random variable hi. By applying the definition of expectation and using the conditional PDFs
of Unear

i , U far
i , (3.30) yields. Following the same procedure, (3.31) is derived. Moreover,

using the formula
∫
(1 + px−q)

−m
xk dx = xk+1

k+1 2F1

(
m,−k+1

q
; 1− k+1

q
;−px−q

)
, the closed-

form solution of (3.31) yields and this completes the proof.

B.5 Simulation Methodology for the Deployment of a
3D BPP of N Points in W

A truncated octahedron W of edge length R = 1 centered at the origin o has vertex co-
ordinates given by all permutations of

(
±

√
2,±

√
2
2
, 0
)
. The key idea is to deploy a point

uniformly distributed in b3(o, Rc). Then the decision about whether the particular point lies
within the 14 planes forming W , is made. The algorithm for distributing N points uniformly
and independently inside W is as follows
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Algorithm 1: Simulating a 3D BPP of N points in W .
Step 1: Define the vertex coordinates of all 8 hexagons and 6 squares of W .
Step 2: For a considered face of W , take 2 vectors v⃗1, v⃗2 that belong to the respective
face. Derive the normal vector n⃗ as the cross product of the 2 vectors v⃗1, v⃗2, i.e.,
n⃗ = v⃗1 × v⃗2. Note that the direction of n⃗ should point inside, towards the center o .

Step 3: For the same face of W , consider an arbitrary vertex V of the face and derive
its position vector v⃗.

Step 4: Draw a point P uniformly and randomly distributed inside b3(o, Rc). Derive p⃗
as the position vector of P.

Step 5: Derive the vector d⃗ as d⃗ = p⃗− v⃗.
Step 6: Decide whether to keep point P or not.
if n⃗ · d⃗ ⩾ 0 then

keep P
else

discard P
end
Step 7: Repeat the steps 1-6 for each one of the 14 faces of W , by ignoring step 4. If
n⃗ · d⃗ ⩾ 0 for all of the faces of W , the point P lies within W .

Step 8: Repeat steps 1-7 until N points lie within W .



Appendix C

Proofs of Chapter 4

C.1 Proof of Lemma 4.1

The conditional PDF of RV I is given by

fI(x|Rs = s) =

∫ R

s

fI|RI
(x|rI , Rs = s)fRI

(rI |Rs = s)drI . (C.1)

By substituting (4.6), (4.1) in (C.1) and applying the Binomial expansion in the term
(R3 − r3I )

N−2, the following integral appears

I1 =

∫ R

s

ramI+3k+2
I exp

(
− xraI
θIPI

)
drI , (C.2)

which using [40, eq. (3.381.8)], results in a subtraction of the lower incomplete gamma
function, I1 = γ

(
3+3k+amI

a
, xs

a

PIθI

)
− γ

(
3+3k+amI

a
, xR

a

PIθI

)
[40, eq. (8.350.1)]. Through trans-

formation of I1 to exponential integral using [68, eq. (06.06.27.0003.01)] and adoption of
the Binomial expansion, (4.7) yields and that completes the proof.

C.2 Proof of Lemma 4.2

The PDF f fixSIR(γ|Rs = s), after a change of variable is given by

f fixSIR(γ|Rs = s) =

∫ ∞

0

fS(yγ)fI(y|Rs = s)ydy. (C.3)

After substituting fS(yγ), which is of the form given by (4.6), and (4.7) in (C.3), the only
integral existing is

I2 =

∫ ∞

0

ymI+ms−1 exp
(
− yγ

s−aθsPs

)
E

1− 3(1+k)
a

−mI

(
say

θIPI

)
dy

−
∫ ∞

0

ymI+ms−1 exp
(
− yγ

s−aθsPs

)
E

1− 3(1+k)
a

−mI

(
Ray

θIPI

)
dy.

(C.4)
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By expressing the exponential function and the exponential integral function through the
Meijer G-function according to [68, eq. (01.03.26.0004.01)] and [68, eq. (06.34.26.0005.01)],
respectively, the integral I2 can be directly evaluated in closed form using [68, eq. (07.34.21.0011.01)].
The resulting Meijer G-function can be expressed in terms of the Gauss hypergeometric func-
tion using [40, eq. (9.34.8)]. After applying some simplifications, finally yields (4.8).

C.3 Proof of Lemma 4.3

Disregarding any constant value for brevity, the CDF is expressed as a difference of integrals

F fix
SIR(γ|Rs = s) =

∫ γ

0

f fixSIR(z|Rs = s)dz

=

∫ γ

0

zms−1
2F1

(
·, ·; ·;−PIθI

Psθs
z

)
dz −

∫ γ

0

zms−1
2F1

(
·, ·; ·;−PIR

−aθI
Pss−aθs

z

)
dz

(a)
=
γms

ms
3F2

(
·, ·, ·; ·, ·;−PIθI

Psθs
γ

)
− γms

ms
3F2

(
·, ·, ·; ·, ·;−PIR

−aθI
Pss−aθs

γ

)
.

(C.5)

In (C.5), a follows from [68, eq. (07.23.21.0002.01)]. After substituting (C.5) in the initial
expression and applying some simplifications, (4.10) yields immediately.

C.4 Proof of Lemma 4.4

The CDF of V yields from double integration of the joint distance PDF with respect to the
limits of rs, rI and consequently

FV (v) =

∫ Rv

0

∫ R

rs/v

fRI
(rI |Rs = rs)fRs(rs)drIdrs, (C.6)

where v ∈ [0, 1]. By substituting the distance distributions in the above integral and applying
the Binomial expansion, FV (v) is derived. The PDF fV (v) is then obtained by simply taking
the derivative of FV (v) and that completes the proof.

C.5 Proof of Lemma 4.5

Begin from the CDF F rand
SIR (γ)= P(SIR ≤ γ) = EV {FH(γV a)} =

∫ 1

0
FH(γv

a)fV (v)dv. Mak-
ing the change of variable y = va and afterwards a second change of variable by setting
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x = θIγy
θs

, the only remaining integral to be solved is I3, given by

I3 =

∫ θIγ

θs

0

xms+
3
a
−1

2F1(ms,ms +mI ; 1 +ms;−x) dx. (C.7)

Using [68, eq. (07.23.21.0004.01)], (4.16) yields immediately. The respective PDF given by
(4.17) is now given directly by simply taking the derivative of (4.16).

C.6 Proof of Proposition 4.8

If any constant value is neglected, by substituting (4.10) and the derivative of Pe(γ) in (4.19),
P̄BPSK
e,fix results in

P̄BPSK
e,fix =

∫ ∞

0

γms− 1
2 e−γ 3F2

(ams − 3k − 3

a
,ms +mI ,ms;

ams − 3k − 3

a
,ms + 1;−PIθI

Psθs
γ
)
dγ

−
∫ ∞

0

γms− 1
2 e−γ 3F2

(ams − 3k − 3

a
,ms +mI ,ms;

ams − 3k − 3

a
,ms + 1;−PIR

−aθI
Pss−aθs

γ
)
dγ.
(C.8)

Through a simple change of variables c1 = PIθI
Psθs

γ, c2 = PIR
−aθI

Pss−aθs
γ and using [40, eq. (9.34.8)],

(C.8) results to

P̄BPSK
e,fix =

Γ
(−3+a−3k+ams

a

)
Γ(1 +ms)

Γ
(−3−3k+ams

a

)
Γ(ms +mI)Γ(ms)

×

{∫ ∞

0

γms− 1
2 e

− γ
c1G1,3

3,3

(
γ

∣∣∣∣ 1 + 3+3k−ams

a
, 1−ms −mI , 1−ms

0, 1− −3+a−3k+ams

a
, 1−ms

)
dγ

−
∫ ∞

0

γms− 1
2 e

− γ
c2G1,3

3,3

(
γ

∣∣∣∣ 1 + 3+3k−ams

a
, 1−ms −mI , 1−ms

0, 1− −3+a−3k+ams

a
, 1−ms

)
dγ
}
.

(C.9)

By using [40, eq. (7.813.1)], the integrals in (C.9) can now be easily derived in closed form
as in (4.20). The same procedure is also followed for the derivation of the average BER for
the DBPSK scheme.

C.7 Proof of Proposition 4.11

After expressing the log2(·) and the hypergeometric functions of (4.25) in terms of the Mei-
jer G- function, by using [68, eq. (01.05.26.0002.01)] and [68, eq. (07.23.26.0004.01)],
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respectively, (4.25) results in

C̄ = BW×∫ ∞

0

3γms

(
PIθI
Psθs

)ms+1 Γ(1+ 3
a
+ms)

Γ( 3
a
+ms)

ln(2)Γ(ms)Γ(mI)(ams + 3)
G1,2

2,2

(
PIθI
Psθs

γ
∣∣∣ − ( 3a +m

)
,−(ms +mI)

−1,−
(
1 + 3

a
+ms

) )
G1,2

2,2

(
γ
∣∣∣ 1, 1
1, 0

)
dγ.

(C.10)

Now, (C.10) can directly be derived in closed form by using [68, eq. (07.34.21.0011.01)].
After applying some simplifications, (4.26) is deduced.
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Proofs of Chapter 5

D.1 Proof of Lemma 5.1

The joint PDF frn,θn,ϕn(rn, θn, ϕn) is given by

frn,θn,ϕn(rn, θn, ϕn)
(a)
= frn(rn)fθn(θn)fϕ(ϕn)

(b)
=

sin (θn)
4π

3r3n−1
n cnλ
Γ(n)

exp (−cλr3n),
(D.1)

where (a) follows from the independence between rn, θn, ϕn, and (b) is derived given that
frn(rn) is given by [2, eq. (11)], fθn(θn) =

sin(θn)
2

, fϕn(ϕn) = 1
2π

, and cλ =
4πλ
3

.

D.2 Proof of Theorem 5.3

The conditional coverage probability is given by [57],

Pcond
c (γ|wn)

=
ms−1∑
k=0

(−1)k

k!

(
msγr

α
n

p0

)k[
∂kLItot(s|wn)

∂sk

]
s=

msγr
α
n

p0

.
(D.2)

Then, Pc(γ) is obtained by deconditioning Pcond
c (γ|wn) over the spatial location wn of the

receiver.

D.3 Proof of Lemma 5.5

Conditioned on the serving distance r, the (N − 1) UAV-BSs are uniformly distributed in
the spherical shell S = b3(o, D) − b3(o, r) with volume VS = 4π

3
(D3 − r3). The joint PDF
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fxi,yi,zi(x, y, z) of the i-th UAV-BS is given by

fxi,yi,zi(x, y, z) =
1

VS
, r ≤ x2i + y2i + z2i ≤ D. (D.3)

By applying the transformation of changing coordinate system to (vi, θi, ϕi), yields the fol-
lowing equality ∫ D

r

∫ π

0

∫ 2π

0

1

VS
v2i sin (θi)︸ ︷︷ ︸

fVi,θi,ϕi (vi,θi,ϕi)

dϕidθidvi = 1, (D.4)

where θ ∈ [0, π] and ϕ ∈ [0, 2π] are the elevation and azimuth angles of the i-th UAV-BS
with PDFs given by fθi(θi) = sin(θi)

2
, and fϕi(ϕi) = 1

2π
, respectively. Due to independence

between vi, θi, ϕi, fVi,θi,ϕi(vi, θi, ϕi) = fVi(vi)fθi(θi)fϕi(ϕi). By solving w.r.t. fVi(vi), (5.12)
yields.

D.4 Proof of Lemma 5.6

Following similar lines as in [57, Appendix E],

LI(s|r) =

[∫ D

r

(
1 +

sp0v
−α
i

mk

)−mk 3v2i
D3 − r3

dvi

]N−1

. (D.5)

By using [68, eq. (01.02.26.0007.01)] and [68, eq. (07.34.21.0002.01)] along with some
mathematical manipulations, (D.5) reduces to

LI(s|r) = (H(r)−H(D))N−1, (D.6)

H(x) =

3
a

(
sp0
mk

)3/a
Γ(mk) (D3 − r3)

G1,2
2,2

(
sp0
mkxa

∣∣∣∣∣ 1, 1− 3
a
−mk

− 3
a
, 0

)
, (D.7)

By using [40, eq. (9.34.7)] and after applying some simplifications, (D.6) reduces to (5.13).
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