
UNIVERSITY OF PIRAEUS

SCHOOL OF INFORMATICS AND COMMUNICATIONS

DEPARTMENT OF DIGITAL SYSTEMS

POSTGRADUATE PROGRAM

INFORMATION SYSTEMS & SERVICES

Enhancing Biomedical Question Answering

Systems for COVID-19

MSc Thesis

By Ioannis-Andreas Philippas

Supervisor: Christos Doulkeridis

February, 2024



Abstract

In the domain of biomedical research and service, the retrieval of relevant information

from diverse data sources remains a critical challenge. Traditional Information Retrieval

(IR) systems often struggle with the complexity and the specificity of the biomedical do-

main. The COVID-19 pandemic has underscored the critical need for robust biomedical

Question Answering (QA) systems capable of rapidly retrieving accurate and relevant

information from validated biomedical literature sources. This thesis proposes an inno-

vative approach that integrates dense neural networks with traditional IR methods, to

enhance the performance of biomedical QA systems, with primary focus on addressing

COVID-19-related inquiries.

At its core, the system utilizes dense models, such as transformer-based architectures

like BERT (Bidirectional Encoder Representations from Transformers), known for their

ability to capture semantic relationships and context in textual data. These models are

trained on large-scale biomedical corpora to develop a deep understanding of domain-

specific language and terminology. Additionally, the integration of traditional IR methods

like BM25 complements the dense model IR infrastructure by providing an efficient and

effective mechanism for initial document retrieval based on keyword matching and sta-

tistical relevance scoring. Combining these two approaches, the proposed system aims to

enhance the accuracy, relevance and efficiency of biomedical QA tasks, particularly in the

context of COVID-19.

The system proposed in this thesis, incorporates a reader module trained on both

biomedical and general QA datasets. This module, leverages techniques from machine

reading comprehension, further refines retrieved documents to extract precise answers to

user queries.

The proposed QA system is supported by a web application, offering users a friendly

interface for querying biomedical-related inquiries. The back-end system orchestrates var-

ious components to efficiently retrieve documents stored in a specific vector database, rank

their relevance, and extract or generate potential answers. These answers are then pre-
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sented to users through a user-friendly interface. Additionally, users have the flexibility

to customize system parameters via the user interface, enhancing the system’s usability.

By adapting advances neural networks such as BERT and Transformer-based models in

biomedical domain, the system exhibited an increase in metrics over traditional and zero-

shot methods. This thesis underscore the potential of dense models and QA systems to

revolutionize biomedical IR, offering promising directions for future research and practical

applications in enhancing the accessibility of critical biomedical knowledge.

2



Subject Area

Information Retrieval and Question Answering, within Biomedical domain.
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1 Introduction

1.1 Motivation

In December 2019, a new type of coronavirus, later identified as Severe Acute Respi-

ratory Syndrome Coronavirus 2 (SARS-CoV-2), triggered a series of unusual respiratory

illnesses in Wuhan, Hubei Province, China finally causing pandemic. These respiratory

illnesses were labeled as COVID-19 [1]. According to the World Health Organization’s

statistics, from the beginning of the pandemic until February 2024, the global death toll

has reached 7,035,337 individuals [2]. Furthermore, a total of 774,771,942 people have

been reported to have contracted the virus, approximately 9.55% of the total population

[2].

Due to the unprecedented nature of this pandemic, governments around the world and

by extension healthcare systems, have had to rapidly adapt to high demands and organize

strategies to address this crisis. As a result, healthcare workers, which are in the front

line of this battle, are now required to handle increased workloads in order to successfully

manage these changing circumstances. Βesides, it was a situation of which they had no

prior experience since they had never encountered similar incidents before.

Since the emergence of COVID-19, there has been a notable surge in the volume of data

related to this topic [3]. The scientific community quickly came together to address the

crisis and create preventive measures to stop it from happening again. On the one hand,

the AI community took steps towards finding automated detection of COVID-19 through

Computed Tomography (CT) scans and X-ray images and on the other hand, epidemiol-

ogists and mathematicians by creating complex models to track the virus. Furthermore,

many scientists turned to collecting scientific articles related to this topic creating a com-

prehensive repository of literature that encourages the creation of knowledge-based systems

[4].

At the same time, the rapid increase in computing power has laid the groundwork for

the development of fast QA systems that meet the needs of domain specialists and assist

them in terms of accuracy and productivity. Such systems, should be capable of answering
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both simple and more complex questions posed by clinicians in order to facilitate them in

the field. It is imperative to note that the reliability of the sources from which information

is retrieved and processed is crucial.

The main objective of the QA system presented by this thesis is to construct a time

efficient, low cost accurate web infrastructure that can be easily deployed and updated in

any health compartment. This system, allows users to ask biomedical questions and receive

pertinent answers sourced from authoritative literature. The system can either directly

extract answers from relevant texts or synthesize responses based on the information found

in those texts. Additionally, the system can provide relevant passages without marking

the exact answer. The users also have the option to configure the number of relevant

passages to retrieve according to their preferences.

The proposed system can significantly assist healthcare workers in multiple ways. Given

the rapid evolution of the pandemic and the continuous emergence of new data, such a

system can provide instant, reliable, and up-to-date information, crucial for healthcare

decision-making.

1.2 Question Answering Systems in Biomedical Field

The complexity of medical data, coupled with the countless sources and continual ad-

vancements, often acts as a barrier for clinicians in making decisions. Additionally, the

individualized nature of patient care further complicates their tasks, requiring tailored

approaches for each case. Last but not least, medicine is divided into many fields, each

with its own unique knowledge and practices, which also adds complexity to healthcare

decision-making process.

Biomedical QA systems seeks to support healthcare professionals by providing them with

relevant information to address their queries effectively. Such systems, can address medical

data complexities efficiently as they can parse extensive medical literature repositories

in order to answer questions posed by clinicians. Natural Language Processing (NLP)

techniques are able to handle large amounts of data and extract meaningful insights. The
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fact that they are capable to retrieve information rapidly, enable them to act as a valuable

and disconnected piece of their work.

Despite the possible advantages of QA systems in the biomedical field, there are some

issues that need to be addressed. The explanation shortage is a common challenge when

it comes to this field. There is imperative need for the clinicians to receive explanations

for the responses and not only provide precise answers (e.g. ”yes” or ”no”) [5]. Moreover,

the fact that science is continuously evolving adds another risk to these systems [5]. This

implies that may have incorporated data (e.g. scientific literature) whose results and

practices are now out of dated or, even worse, have been contradicted by more recent

research. Consequently, the system could potentially mislead the user. Another challenge

arises from the scarcity of datasets for training compared to general domain QA datasets.

While most general domain datasets are easier to find, biomedical ones are more complex

and larger and require careful expert annotation which is more expensive and extensive

work hours are necessary [6].

1.3 Structure

The master thesis begins with an introductory section 1 that provides a concise overview

of the subject and outlines objectives of the research.

Subsequently, section 2 dices into the theoretical concepts essential for comprehending

the development of a QA system. This includes an in-depth exploration of the components

comprising a QA system, and a presentation of Deep Learning (DL) NLP concepts.

Section 3 provide a comprehensive overview of QA systems, describing their components

and functionalities. This section serves as foundational resource for understanding the

theoretical foundations of QA systems, facilitating deeper comprehension of their inner

functionalities and mechanisms.

Moving forward, section 4 describes the methodologies undertaken in training and de-

veloping a hybrid QA system. A description of the dataset utilized in the research, ac-
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companied by a presentation of the techniques employed to tailor NLP models to the

specialized biomedical domain are provided in the same section.

Furthermore, section 5 presents and analyzes the outcomes of the evaluation process. In

this section benchmark datasets are described, as the evaluation metrics employed during

the model evaluations.

Section 6 provides a description of the real-world QA application, developed based on

the models, which were trained for the purpose of this research.

Finally, the section 7 quotes conclusions and denotes observed drawbacks. In this sec-

tion, future work and possible enhancements are mentioned, aiming to augment the pro-

posed QA system accuracy.
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2 Theoretical Background and Literature Review

In this section, key concepts and advancements in NLP with a focus on transformer

models are explored. It begins by discussing fundamental NLP techniques such as Bag-of-

Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF) for text rep-

resentation. Next, it covers word embeddings like Word2Vec and GloVe, which enhance

semantic understanding in NLP tasks. The document then introduces transformers, em-

phasizing their innovative architecture and components like the attention mechanism. It

highlights notable transformer models such as BERT and its variants, showcasing their

impact on various NLP applications and tasks. In the second part of this section, the

reader is informed about the literature which this thesis was based on

2.1 Natural Language Processing

2.1.1 Overview

NLP is a subfield of Artificial Intelligence (AI). It’s primary task is to enable computers

interact with humans using natural language. It is obvious that computers cannot un-

derstand human language in the same way humans do. Through the utilization of text

numerical representation by transforming text data into format that can be processed

mathematically, the interaction between humans and computers is achieved.

2.1.2 Numerical Representation of Text

Bag-of-Words (BoW) [7] and Term Frequency-Inverse Document Frequency TF-IDF [8]

are fundamental NLP techniques, both of which maps a vector to each word. In the case of

BoW, it counts the frequency of each word in the document. This method has limitations,

as it cannot understand the semantic meaning of each word in the given context. On

the other hand, TF-IDF, measures the importance of each word in a given context. It

calculates TF and IDF. TF measures how frequent is a word in a document and IDF

measures the uniqueness or rareness of a word in a document. This component penalizes

words that appear frequently across many documents and gives higher weight to words

that are more unique to a particular document.
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One of the most widely used algorithms that utilize the aforementioned methods is BM25

algorithm. BM25 (Best Match 25) serves as a ranking algorithm introduced in 1994 by

Robertson and Walker in their paper ”The Probabilistic Relevance Framework: BM25

and Beyond” [9]. BM25 calculates the relevance score of a document to a given query.

Its implementation utilizes TF-IDF and document length. Regarding TF, it incorporates

a saturation function for term frequency. When a word appears multiple times in a

document, each additional occurrence does not count as much as the first one. This

prevents long documents from being favored too much in search results only because

they use the same word over and over. It also employs a saturation function in IDF.

This function ensures that uncommon words do not play a huge role in determining the

importance of a document. This action prevents them from having too much influence

on search results. Moreover, BM25 normalizes the document by comparing it with the

average document length. This ensures that larger documents will not have bigger impact

on search results that smaller ones. Moreover, the algorithm has two tunable parameters:

k1 and b, which adjusts how quickly the importance of a term diminishes as it appears

more in a document and controls how much document length affects the score, respectively.

BM25 score is given by the following formula:

BM25(D,Q) =
∑(

IDF(q)× TF(q,D)× (k1 + 1)

TF(q,D) + k1×
(
1− b+ b×

( |D|
avgdl

))) (1)

where:

• D is the document.

• Q is the query.

• q is a term in the query.

• IDF(q) is the inverse document frequency of term q.

• TF(q,D) is the term frequency of term q in document D

• k1 and b are constants that can be adjusted to tune the BM25 formula.

• |D| is the length of document D

• avgdl is the average document length in the corpus.
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Overall, BM25 is a straightforward yet effective algorithm that can handle large docu-

ments as it normalizes the length. However, its performance rely on parameter selection

and it does not take into account semantics or the relationship between words within the

same document, assuming them to be independent of each other.

2.1.3 Word Embeddings

The aforementioned methods of representing words in vector space have limitations

stemming from their inability to comprehend semantic associations between words within

a context. Word embeddings mitigate the shortcomings of BoW and TF-IDF by offering

approaches to represent words in vector space while leveraging their semantics. In this

framework, similar words are assigned similar or identical representations within the vector

space, enabling more context-aware language processing.

Word2Vec and GloVe are two popular techniques for generating word embeddings.

Word2Vec [10], pioneered by researchers at Google, learns distributed representations

of words in a continuous vector space, where words with similar meanings are located

closer together. Furthermore, it is trained using large text corpora and typically results in

dense word embeddings of fixed dimensions. GloVe [11] firstly introduced by researchers at

Stanford University. Unlike Word2Vec, which focuses on predicting word co-occurrences,

GloVe directly learns word embeddings by optimizing a global objective function that cap-

tures the ratio of co-occurrence probabilities between words. It leverages global statistics

of word co-occurrence across the entire corpus to produce word embeddings that reflect

both local and global semantic relationships.

2.2 Transformers

Transformers are models that utilize word embeddings. Embeddings serve as the initial

input to transformers, representing each word or token in a continuous vector space. The

concept of transformers was first introduced in the paper titled ”Attention Is All You

Need” [12] in 2014 which presents the transformer architecture and its core components.

Among these components is the encoder-decoder architecture. According to the paper,

transformers are simpler, more effective compared to Recurrent Neural Networks (RNNs)
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and Long Short-Term Memory (LSTMs). The attention mechanism, which enables the

model to focus on various segments of the input sequence while producing the output

sequence, is the primary innovation of the this architecture. The model can better manage

variable-length input and output sequences and capture long-range dependencies thanks

to this attention approach. With the transformer, the authors achieved state-of-the-art

results in various NLP tasks, including machine translation and language modeling, and

it has since become a cornerstone in the field of DL.

2.2.1 Attention Mechanism

The attention mechanism is a fundamental concept regarding transformers. This mech-

anism guides the model’s focus to different segments of the sequence, aiding in concept

comprehension. It provides a mathematical representation of the text that captures the

underlying concepts, allowing the model to understand the context better. By dynami-

cally allocating attention, the mechanism ensures that the model prioritizes relevant in-

formation, leading to a more nuanced understanding of the sequence’s concepts. For each

embedding is obtained query, key and value vectors, denoted as Q, K and V , respectively.

Matrices WQ, WK and WV are used to derive the query, key, and value vectors, respec-

tively. These matrices are model’s learnable parameters, meaning that they are updated

during training process through backpropagation algorithm. In the scaled dot-product

attention mechanism, the query (Q), key (K) and value (V ) vectors are computed using

linear transformations of the input embeddings:

Q = XWQ, K = XWK , V = XWV (2)

where X represents the input embeddings and WQ, WK and WV are the learnable

weight matrices for the query, key and value, respectively. Once the query, key, and value

vectors are obtained, the attention scores (A) are computed as follows:

A = softmax

(
QKT

√
dk

)
(3)

where dk represents the dimensionality of the key vectors. The output of the attention

mechanism is computed by the weighted sum of the value vectors using the attention

scores:
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Attention(Q,K, V ) = AV (4)

This operation results in a new set of context-aware embeddings that capture the

semantic relationships between the original tokens in the input sequence.

2.2.2 Encoder

Figure 1 illustrates a simplified version of the transformer architecture. The left part

presents the encoder module which consists of multiple sub-modules. The process ini-

tiates with the input embeddings. After that, the attention mechanism processes the

input embeddings. A normalization layer is applied after attention mechanism stabilizing

the learning process by normalizing the outputs of the previous layer. The output from

the normalization layer is then passed through a feed-forward neural network. Another

normalization layer is applied after the feed-forward network. This sequence of atten-

tion, normalization, and feed-forward layers can be stacked multiple times to form a deep

encoder network.

Figure 1: Simplified transformer representation
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2.2.3 Decoder

The right part of the Figure 1 illustrates decoder module which can be replicated multiple

times within a transformer model architecture. The decoder starts by taking output em-

beddings, which are processed by a masked attention mechanism. This masking ensures

predictions are made based on already produced tokens, maintaining an auto-regressive

nature. The decoder then uses a normalization layer, after which it employs another at-

tention mechanism that draws information from the encoder’s outputs. Another round

of normalization precedes the feed-forward network in the decoder. Finally, after a last

normalization step, the output passes through a classification head that predicts the prob-

abilities of the next tokens in the sequence.

2.3 Notable Transformer Models

In this section, some of the most notable transformer models are introduced that have

significantly impacted the field of NLP.

2.3.1 BERT (Bidirectional Encoder Representations from Transformers)

BERT, or Bidirectional Encoder Representations from Transformers, stands as a rev-

olutionary model within the realm of NLP, pioneered by Google AI researchers in 2018.

Described in the paper ”BERT: Pre-training of Deep Bidirectional Transformers for Lan-

guage Understanding” [13] this model introduces an innovative pre-training methodology

tailored for enhancing language comprehension tasks. Built upon the Transformer model,

BERT utilizes self-attention mechanisms to capture word dependencies within sentences.

Unlike prior models, BERT adopts a bidirectional approach by pre-training on a large cor-

pus using masked language modeling (MLM) and next sentence prediction (NSP) tasks. In

MLM, random tokens are masked, and the model predicts these tokens based on context,

allowing BERT to learn bidirectional representations of words. NSP involves predicting

whether pairs of sentences are consecutive, aiding in understanding sentence relationships.

BERT achieves state-of-the-art performance on various NLP tasks, such as QA and sen-

timent analysis, by fine-tuning the pre-trained model on task-specific datasets. Its ability

to capture contextual information bidirectionally eliminates the need for task-specific ar-

chitectures. Furthermore, BERT introduces innovative pre-training techniques, including
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large-scale corpus usage, dynamic masking, and next sentence prediction. Variants like

BERT-base and BERT-large offer different model sizes and parameters.

2.3.2 Variants of BERT

• RoBERTa: RoBERTa [14], developed by Facebook AI in 2019, is an optimized vari-

ant of BERT. It enhances pre-training strategies by using a larger corpus, dynamic

masking, and longer sequences during training. Unlike BERT, RoBERTa removes

the next sentence prediction task and focuses solely on masked language modeling.

These optimizations lead to significant performance improvements across various

NLP tasks, making RoBERTa a widely adopted model in the field.

• BIOBERT: While it is based on BERT, BIOBERT [15] is specifically designed and

trained for biomedical text mining and NLP tasks. It utilizes the same architecture

and pre-training objectives as BERT but is pre-trained on biomedical text data to

better understand and process domain-specific language. In summary, BIOBERT is

a specialized variant of BERT tailored for biomedical NLP applications, aiming to

address the unique challenges and requirements of analyzing biomedical text data.

2.3.3 Sentence-BERT (SBERT)

Sentence-BERT (SBERT) [16] represents a significant advancement in NLP by address-

ing the challenge of capturing semantic similarity between sentences. Developed by re-

searchers at the UKP Lab, SBERT introduces modifications to the BERT architecture to

enhance its effectiveness in generating fixed-length sentence embeddings. SBERT adopts

a siamese network architecture, where two identical BERT models share weights. This

architecture allows SBERT to compare pairs of sentences and generate embeddings that

capture semantic similarities or dissimilarities between them. Unlike traditional BERT

models, SBERT is trained using a contrastive loss function. This loss function encourages

semantically similar sentence pairs to have embeddings that are close together in the em-

bedding space, while dissimilar pairs are pushed further apart. By optimizing this training

objective, SBERT learns to generate discriminative embeddings that encode semantic in-

formation effectively. BERT, like BERT, supports fine-tuning on downstream tasks using

task-specific datasets. Leveraging transfer learning from pre-trained SBERT models en-
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ables users to achieve high performance on various NLP tasks with minimal task-specific

training data.

2.4 Literature Review

In recent years, AI in biomedical domain has witnessed significant advancements, partic-

ularly in the development of complex QA systems. The onset of COVID-19 pandemic has

further demanded the need for such systems, as healthcare professional and researchers

seeking updated information related to the virus. This literature review presents some

insights, on deep network and statistical architectures utilized in this thesis, the develop-

ment of the biomedical datasets and the evolution of QA systems within the biomedical

domain.

Robertson and Zaragoza in 2009 contributed to the field of information retrieval by

introducing BM25 algorithm [9]. The article outlines a probabilistic approach to ranking

documents based on their relevance to a given query, aiming to overcome limitations of

traditional vector models. BM25, a variant of the probabilistic model, incorporates term

frequency and document length normalization to calculate document relevance scores,

offering robust performance across a wide range of retrieval tasks.

Efficient Estimation of Word Representations in Vector Space is a landmark paper in

NLP, introduced by Tomas Mikolov and his colleagues at Google in 2013 [10]. This pa-

per introduced the Word2Vec model, which has become a cornerstone in NLP and ML.

The primary contribution of this paper is the development of two algorithms for training

distributed representation of words: Continuous Bag-of-Words (CBOW) and Skip-gram.

These algorithms learn dense vector representations of words, where similar words are rep-

resented by vectors that are close together in the vector space.One of the key advantages

of Word2Vec is its efficiency. It can be trained on very large corpora of text data in a

reasonable amount of time. This efficiency was achieved through techniques such as hier-

archical softmax and negative sampling, which enable faster training without sacrificing

much in terms of accuracy.
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Vaswani et al., in 2017 published the paper Attention is All You Need [12] which was

pivotal in the field of NLP, particularly in the field of neural network architectures. The

model proposed in this paper leverages self-attention mechanisms to effectively capture

long-range dependencies in input sequences, making it highly efficient for parallelization

and capable capturing contextual information across sequences of varying lengths. Its sig-

nificance lies in its ability to achieve state-of-the-art performance on various tasks reducing

training-time.

In 2018 Devlin et al., presented a groundbreaking approach to language representation

learning through bidirectional transformers with the paper BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding [13]. BERT (Bidirectional En-

coder Representations from Transformers) is pre-trained on large-scale text-corpora using

masked language modeling and next sentence prediction tasks, enabling it to capture deep

contextual representations of words and sentences. BERT has demonstrated remarkable

performance across a wide range of NLP tasks, inluding QA, sentiment analysis and Named

Entity Recognition. Its effectiveness stems from the ability to encode both leftand right

context simultaneously, capturing semantic relationships within text.

Nogueira and Cho presented an innovative approach to passage re-ranking within the

context of information retrieval. In their paper Passage Reranking with BERT [17], they

proposed a state-of-the-art model, to enhance the relevance and accuracy of passage re-

trieval. By fine-tuning BERT on passage re-ranking tasks. The proposed cross encoder

model was figuring as the the leader of the MS MARCO passage retrieval task, surpassing

the next model by 27% in terms of MRR@10.

Reimers and Gurevych on 2019, introduced a significant advancement in the realm of

sentence embeddings. In their paper Sentence-BERT: Sentence Embeddings using Siamese

BERT-Networks [16] proposed a novel approach by training BERT-based models specifi-

cally for generating sentence embeddings by employing Siamese BERT-network architec-

ture. By fine-tuning BERT on Siamese network setup, Sentence-BERT effectively learns

to transform sentences onto vectors in a continuous vector space where semantically simi-

lar sentences are closer together. This was a great achievement in context of computation

power. Comparing sentences using BERT is expensive in computation and time terms.
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Reimers method enables the generation of high-quality sentence embeddings that capture

semantic information. Sentence-BERT models are suitable for tasks like semantic textual

similarity, paraphrase identification and clustering.

Similar to Sentence-BERT architecture, another bi-encoder model was introduced by

Facebook in 2020 [18]. This work introduces Dense Passage Retriever (DPR), a dense

retrieval approach that utilizes dense representations of passages to retrieve relevant in-

formation from large-scale document collections. The difference with Sentence-BERT

models, is the utilisation of separate encoders, for query and context vector representa-

tion. DPR models has demonstrated remarkable effectiveness for information retrieval in

general domains.

A novel approach to train dense retrievers for IR tasks in NLP was presented by

Hofstätter et al. in Efficiently Teaching an Effective Dense Retriever with Balanced Topic

Aware Sampling. The authors proposed Topic Aware Sampling Balance (TAS-B), a tech-

nique designed to address the challenge of topic imbalance in retriever training data. By

dynamically adjusting the sampling strategy during training, TAS-B ensures that retriever

is exposed to diverse range of topics, improving its capability to retrieve relevant docu-

ments across various domains. The paper demonstrates the superiority in performance of

the proposed trained model over traditional models, retrieving related documents. The

TAS-B model outperform BM25 method by 44% in terms of NDCG@10, and 11% more

than the docT5query model. The benchmark dataset used for the evaluation of the models

was TREC-Deep Learning Track query sets.

The BioBERT model, introduced in the paper BioBERT: a pre-trained biomedical lan-

guage representation model for biomedical text mining [15], a pre-trained language repre-

sentation model tailored specifically for biomedical applications. Developed by Lee et al.

in 2019, BioBERT is a BERT based model pre-trained on a massive corpus of biomedical

literature, including PubMed abstracts and PMC full-text articles. To evaluate the perfor-

mance of BioBERT, Lee et al. conducted extensive experiments across various biomedical

text mining tasks, demonstrating superior performance compared to general-purpose lan-

guage models like BERT and domain-specific baselines. The BioBERT model fine-tuned

for QA task demonstrated an MRR improvement of 12.24% over a generic BERT model.
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Pranav Rajpurkar et al. in 2016, presented a significant advancement in the field of NLP

by introducing the Stanford Question Answering Dataset (SQuAD) [19]. This dataset

provides over 100,000 question-answer pair in a specific format, sourced from Wikipedia

articles. The dataset is serving as a training dataset to build machine comprehension

models, and evaluate them. A second dataset was curated two years later, incorporating

in the dataset questions that could not be answered from given context [20].

In July of 2020 after the eruption of the COVID-19 pandemic, a critical resource was

created to consolidate COVID-19 related knowledge in a single dataset. Allen Institute

for AI with the help of other organizations released a massive dataset named CORD-

19 [21] comprised of scholarly articles, pre-prints and other research materials related to

COVID-19 and coronaviruses.

Another critical resource related to COVID-19 based on CORD-19 dataset was created

and introduced in 2020. TREC-COVID [22] is a specialized test collection designed to eval-

uate information retrieval system’s performance in retrieving relevant scientific literature

related to COVID-19. The dataset comprises a curated set of documents and relevance

judgments to 50 questions created by biomedical experts.

In the study ”COVID-QA: A Question Answering Dataset for COVID-19” by Timo

Möller et al. [23] COVID-QA dataset is presented. The dataset consists of 2,019 question-

answer pairs related to COVID-19, annotated by biomedical experts , related to COVID-

19. The study demonstrates that training a RoBERTa model on this domain-specific

dataset results in significant performance gains, underlining the importance of specialized

datasets for improving QA systems in biomedical domain.

Nandan Thakur et al. introduced BEIR a groundbreaking benchmark of information

retrieval models across diverse domains and languages [24]. By providing a standardized

evaluation framework, BEIR enables researchers to assess the generalization capability

and effectiveness of their information retrieval models. The accompanied paper outlines

the effectiveness of a hybrid IR model, which utilizes the IR power of keyword searching

with a BM25 model, alongside a powerful dense cross-encoder. This model outperformed

other models in most domain specific datasets.
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Generative Pseudo Labeling which this thesis relies on was introduced in 2022 by Kexin

Wang et al. The paper [25] presents a novel approach to unsupervised domain adaptation

within the context of dense retrieval. It leverages generative models to create queries for

an unlabeled dataset and with the assistance of powerful cross-encoders relation between

generated queries and context are annotated. GPL enables effective adaptation of dense

retrieval models to target specific domains without requiring labeled target domain data.

In this work a model which was trained with GPL and TSDAE [26] method outperformed

othe dense and keyword-searching applications in terms of NDCG@10.

In a related study by Shaina Raza, Brian Schwartz and Laura C. Rosella entitled ”Co-

QUAD: a COVID-19 question answering dataset system, facilitating research, benchmark-

ing, and practice” [27], they introduce CoQUAD, a QA system designed to help researchers

and practitioners quickly find answers to COVID-19 related questions. The system is built

on a Transformer-based architecture and utilizes a gold-standard dataset of 150 question-

answer pairs prepared by public health domain scientists. The MPNet model, fine-tuned

on the gold-standard dataset, is used within QA pipeline to improve answer retrieval

accuracy.

The COBERTmodel which firstly proposed in the paper entitled ”COBERT: COVID-19

Question Answering System Using BERT” [28] by Jafar A. Alzubi, Rachna Jain, Anubhav

Singh, Pritee Parwekar and Meenu Gupta, employs a sophisticated approach that inte-

grates domain-specific knowledge from various biomedical datasets, including COVID-19

research articles, to fine-tune a BERT model for enhanced understanding and processing

of medical queries. A critical contribution of the paper is its curated dataset, derived from

vast biomedical and COVID-19 specific sources, which it was utilized to train COBERT

model. The paper outlines the model’s performance in accurately answering complex

medical questions.

In their paper entitled ”List-wise learning to rank biomedical question-answer pairs with

deep ranking recursive autoencoders” by Yan, Yan AND Zhang, Bo-Wen and Li, Xu-Feng

and Liu, Zhenhan, an innovative approach to improve the retrieval of relevant answers in

biomedical QA systems is proposed.
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Paper [29] proposes an innovative approach to improve the retrieval of relevant answers

in biomedical QA systems. By employing Recursive Neural Networks (RNNs) for learning

semantic representations of question-answer relations and introducing an loss function

tailored for ranking, this study aims to enhance the accuracy of snippet answer retrieval.

The approach outperformed other challengers of the BioASQ tasks.
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3 Question Answering Systems

QA systems are computer-based systems whose main purpose is to process and answer

questions posed by the user in natural language [30]. Early research on QA in AI dates

back to the 1960s. The QA Track in Text Retrieval Conference (TREC) evaluations in 1999

laid the groundwork for extensive community research about Information Retrieval/Infor-

mation Extraction (IR/IE) [31]. The unpredictable growth of available data and the rise

in processing power contribute to the improvement of such systems.

QA systems can be divided into two main categories based on the source from which

the answers are retrieved from:

• Open QA Systems: Often call open-book, the answers to questions is achieved by

giving the model the context and then utilizing algorithms to retrieve relevant in-

formation.

• Closed QA Systems: Often called closed-book, the context is not being given explic-

itly as the model has already incorporated the knowledge into its internal parameters.

In this thesis, open QA approach is implemented and the core components are: docu-

ment store, retriever, reader and generator. First, a typical flow of such a system will be

described and then each part of this system will be described in detail.

Figure 2: Architecture of an Open Domain Question Answering (Open QA) System

18



In Figure 2 the workflow of Open QA System in presented. Initially, a user poses a

question and the system with the help of a retriever model, encodes the query. Then the

retriever is responsible for passing the encoded query to the document store, which fetches

the top k related passages that holds the answer. Upon retrieval, there are dual paths for

generating the final answer: the Abstractive QA path and the Extractive QA path. The

Abstractive QA employs a generator, which can create answers not limited to the exact

words found in the text, effectively generating a response that synthesizes information

from the k passages. In contrast, the Extractive QA utilizes an Extractive Reader model

that pinpoints and extracts the precise text span from the provided passages that directly

answers the query. With the first approach the system creates human-like responses, while

in the second approach the responses are source-based.

3.1 Document Store

In these systems, document store or knowledge base frequently utilizes vector databases.

A vector database stores data in a high-dimensional vectorized form. This vectorized

version of each document arises from the importance of each term in the document and in

the whole corpus. This representation facilitates efficient semantic similarity calculations

and enables rapid retrieval of documents that closely match the query’s semantic context.

3.2 Retriever

The retriever component plays a crucial role in IR systems by identifying the top k

passages likely to contain the answer to the user’s query. It calculates relevance by applying

a similarity metric to assess how closely a specific document aligns with a given query.

Given the computational expense of processing all available context, only a subset of

relevant information is passed to the reader component [13]. This subset is determined by

the hyperparameter k, which configures the amount of context fed into the reader.

3.3 Reader

Its main function is to process the passages or documents that the retriever has found in

order to extract relevant data or responses to the user’s inquiry. The reader receives these

passages once the retriever has identified the top k passages most likely to contain the
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desired information. By utilizing a range of NLP methods and Machine Learning (ML)

models, including Neural Networks, the reader is able to understand the passages’ content

and identify important entities, events, or concepts that are referenced. After that, it

responds to user questions by matching their inquiries with details found in the sections

to provide a precise answer.

3.4 Generator

A common feature of QA systems is the generator component, which is essential for

generating answers to user inquiries. In contrast to the reader, who takes answers straight

out of passages that have been retrieved, the generator must create new content that

includes responses or answers from beginning. It utilizes many natural language generation

techniques, such as template-based, rule-based, and more sophisticated DL models. This

module processes the user’s query and relevant context such as retrieved passages or extra

information when it receives it. Then, it predicts the word order that will best answer the

user’s question or offer the required information, and it generates a response accordingly.
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4 Biomedical Domain Adapted Question Answering System

This chapter presents an in-depth exploration of the proposed QA system. At its core,

the system is structured into two distinct subsystems: the IR system and the Reader/-

Generator as it is shown in Figure 3. The IR system is tasked with conducting semantic

searches within a designated corpus, matching a given query with stored data, and pre-

senting a set of n relevant passages. The Reader/Generator system operates either in an

extractive capacity, endeavoring to identify pertinent answers within a given context c in

response to a query q, or in a generative capacity, aiming to formulate a coherent response

to a prompted query by synthesizing information from context passages provided by the

IR system.

Figure 3: QA system

Numerous studies and academic papers have demonstrated that out-of-the-box per-

formance of dense models often fall short of expectations when applied within specific

domains such as biomedicine and finance due to differences in domain-specific terminol-

ogy and linguistic structures. Notably, conventional methods like BM25 (referenced as [9])

outperform dense models in biomedical benchmarks.

Domain adaptation technique bridging the gap between general-domain pre-training and

domain specific fine-tuning, giving the capability to dense models to leverage rich semantic

information and relations within specific domain literature. In this thesis Generative

Pseudo Labeling (GPL) methodology is employed (as described in [25]) to train dense

retrieval models, thereby tailoring them to the biomedical domain. This approach resulted

in notable enhancements to the performance of the retriever model, as assessed through
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evaluation on a biomedical IR benchmark dataset (TREC-COVID). Subsequently, the

adapted model was utilized to index the target domain corpus—a segmented version of the

CORD-19 dataset (referenced as [21])—and store it within the Weaviate vector database

(referenced as [32]) in the form of embeddings. In regard to the extractive reader model,

a BERT model (referenced as [13]) was utilized initially fine-tuned for QA tasks using

the SQuAD dataset (referenced as [19]), further refining its performance on a COVID-

19 specific QA dataset (COVID-QA) (referenced as [23]). For the generative aspect of

the reader, the FLAN T5 model (referenced as [33]) was employed, which has undergone

fine-tuning across a diverse array of tasks.

The core QA system, encompassing both the IR and Reader components, is served

through a Python-based Web API. This API is engineered utilizing the FastAPI frame-

work. The User Interface (UI) is developed utilizing React. Notably, the entire system

infrastructure operates within a containerized environment, employing Docker for deploy-

ment and management.

4.1 Information Retrieval

In this section the pipeline of the development of the IR system is presented, beginning

with the data processing. The trained method (GPL) to adapt the dense models to the

CORD-19 dataset is described, followed by indexing the corpus into the vector database.

Finally, the TREC-COVID evaluation IR benchmark dataset [22] is presented.

4.1.1 Corpus and Data Preparation

The presented system is based on providing information according to the CORD-19

corpus [21], nevertheless the system is not limited to the specific dataset. The system

provides utilities which can be used to fetch queried PubMed articles in available formats,

convert them to the appropriate form and finally use them to train the model. Those

articles can be also be a member of the information corpus of the dataset when indexed

and uploaded in the vector database.

CORD-19. COVID-19 Open Research Dataset (CORD-19) [21] is a corpus which con-

tains over a million scholarly articles, half of them in full text version about coronaviruses
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COVID-19 and SARS-Cov-2. The dataset contains both meta information in a csv (comma

separated values) format and the text of the corpus article split in individual json files. The

baseline model has a maximum sequence length constraint of 512 tokens, which roughly

equates to 350-400 words. Due to this limitation, passages have partitioned into chunks

of 200 words, ensuring continuity in sentence structure to prevent automatic truncation

of overflow words by the model. Moreover, passages containing specific COVID-19 related

keywords were selectively collected, thereby facilitating the model’s adaptation to the

COVID thematic context. Sentences were not converted to lowercase and stop-words were

not removed, as such pre-processing actions contravene the specifications under which the

model was pre-trained, potentially compromising evaluation performance. The domain

adaptation dataset contains just 50,000 chunked passages, as the relevant research [25]

indicate increase in model performance within the initial few thousand training steps.

Given time limitation for training and evaluation, as well as limitations imposed by the

hardware infrastructure employed for this experiment, this dataset size is adequate for

achieving meaningful results.

BioASQ. BioASQ [34] is a benchmarking activity focused on biomedical semantic in-

dexing and QA. It provides a framework for evaluating the performance of systems in the

context of retrieving and answering biomedical questions using highly specialized datasets.

The BioASQ challenge is divided into several tasks, notably including Task A (large-scale

biomedical semantic indexing) and Task B (biomedical semantic QA), each targeting dif-

ferent aspects of biomedical information processing.

For the COVID-19 domain adaptation process the BioASQ eleventh revision task A

dataset was utilized. It is formatted in a json line file which each line represent a single

article. Specifically, the abstract and title of the article were used, ignoring the rest of

the metadata provided. The identical pre-processing pipeline described for the CORD-19

dataset is followed to finally obtain 50,000 passages.

The process method of the datasets described above is just an initial transformation.

Further dataset manipulation is described during the explanation of the training method

in a later section.
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4.1.2 Domain Adaptation with GPL

Dense retriever models have obtained state-of-the-art results on datasets which con-

tained a large number of training set elements from diverse topics, shown in Figure 4.

This is not the case though when it comes to perform in datasets focused on specific

domains such as biomedical field.

Figure 4: Domains

BEIR IR benchmark framework [24] reveals in its research, that sparse method like

BM25 outperformed most of the single evaluated dense models (in terms of Recall@100).

Domain Adaptation tries to adapt models to private or public specific text domain with-

out the need of labeled training data, which is very limited. There are several methods

proposed for domain adaptation such Masked Language Modeling, TSDAE [26] and GPL.

The proposed system is based on the GPL method [25] which overcome the heavy compu-

tational overhead which the other methods introduce. The main difference of the training

system is that GPL can be applied on an already fine-tuned model, thus the other method

proposes extensive pre-training on target domain and then fine tune it on labeled data.

Figure 5 illustrates the difference between GPL method and adaptive pre-training.

In the context of biomedical IR, GPL [25] offers a compelling solution for leveraging

large volumes of unlabeled biomedical text data to enhance the performance of dense

retrieval models. GPL is a rather complex method which augment IR performance in
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Figure 5: Domain Adaptation

domain specific datasets. The method consists three data process steps and a fine tuning

process in the end.

A brief description of the GPL method is provided first, with further discussion of

method steps to follow later in this section. The three data preparation steps are:

1. Query Generation using a T5 encoder-decoder [35]. The pre-trained T5 model

generates questions for the CORD-19 training corpus.

2. Negative mining of negative passages with a baseline pre-trained model. Negative

passages are defined as the passages not related to the provided query q (irrelevant

passages Q−)

3. Pseudo Labeling. A cross-encoder model is utilized to define similarity scores for

retrieved pairs.

The last step of the method is to train/fine-tune a bi-encoder model by optimizing a

margin MSE loss function.

Query generation is the process which generates possible search queries to an input

document passage. The training dataset selected for the domain adaptation process con-

sists 50,000 passages of the CORD-19 dataset and 50,000 BioASQ v2022 task a abstract

passages. Each training passage average about 200 words. The CORD-19 passages met

an inclusion criteria based on the matching of COVID-19 related keywords (SARS.CoV.2,

COVID.19, 2019.nCoV, covid, corona, coronavirus, SARS). No exclusion criteria was made
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Figure 6: GPL

for the BioASQ dataset. The objective was to adapt the model to encompass general

biomedical terminology.

DocT5query T5 based model was used to generate question for the pre-processed biomed-

ical corpus. In the experiment conducted query-gen-msmarco-t5-base-v1 model was se-

lected which is a pre-trained T5 model. This model has been trained on MS MARCO

Passage Dataset [36]. MS MARCO comprises about a million questions from Bing’s search

query log and the answering (relevant) passages and can be used for both training and as

benchmark dataset for IR. It must be pointed out that the MS MARCO dataset does not

contain any information about COVID-19.
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For the training purpose of our experiment, 3 queries are generated for each passage.

Each element of the new derived dataset contain a generated query Q and the relevant

passage P+. The dataset generated in this step contains 3× (2× 50, 000) = 300, 000 pairs

of (Q,P+). The process is presented in the Figure 7

Figure 7: Question Generation with T5

Generated queries with pre-trained docT5query models are far from being perfect. In

domain datasets where the vocabulary and the terms are domain specific and might not

been seen during the model pre-training, can add noise to the generated queries. In fact,

the query generation (GenQ) method for unsupervised training of model retrievers was

introduced before GPL. GenQ is sensible to random and nonsensical queries, and the

performance of the system rely on the quality of the synthetic queries. In contrast, GPL

is not affected so much by the noise of the synthetic queries as a last data preparation

step a cross-encoder is labeling the similarity of the pairs (generated query and passages)

thus labeling a pair containing a noisy query as irrelevant.

Negative Mining. The dataset derived from the preceding step comprises pairs con-

sisting of a generated query alongside the corresponding passage (Q,P+). However, fine-

tuning the baseline model solely on these pairs presents a potential drawback: the model

may struggle to differentiate between genuinely relevant passages and those that bear

similarity but are ultimately irrelevant to the query. To address this concern, negative

passages are incorporated into a new dataset. By refining the loss function, the pre-trained

model learns to distinguish the genuine positive passage P+ from similar but irrelevant to

the query passages P−
i .
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The negative mining process is an autonomous module of the experiment and can be

configured in many ways. In the experiment, a combination of a sparse BM25 model and a

pre-trained dense retriever were utilized. It is important to note that the pre-trained dense

model that was utilized for negative mining has not been pre-trained on COVID-19 related

terms. The integration of BM25 alongside the dense retriever, as demonstrated by BEIR

research [24], has shown promising results in enhancing the retrieval of biomedical-related

passages, particularly in datasets such as TREC-COVID and BioASQ Task b. Msmarco-

MiniLM-L-6-v3 was selected as a dense retriever, a bi-encoder sentence-transformer model

[16]. The bi-encoder consists of 2 encoders, one for the query Q and one for the passage

P . During training, the model tries to maximize the similarity score between the query

Q and the relevant passage P+ with the help of a contrastive loss function. At inference

time calculates the similarity score between the query Q and each element of a document

set D considering the document with the highest similarity score as the most relevant.

The document set of the training dataset is mapped to vector embeddings with the

bi-encoder. The vector embeddings are then upserted to the Weaviate vector database

[32] which facilitates retrieval process during the negative mining. Weaviate also offers

out-of-the-box BM25 retrieval services making it perfect candidate for our training and

production corpus storage database. The vector database is queried, requesting 50 relevant

passages with each method (BM25, bi-encoder). From the database results, the golden

passage is excluded that was originally used to generate the queries in the previous step

(referred to as the positive passage). Subsequently, a new dataset is constructed wherein

each training instance comprises a triplet: a query Qi, the corresponding positive passage

P+
i , and a negative passage P−

ij . This process is illustrated in Figure 8.

Pseudo-labeling with cross encoder model: In simple terms, a cross encoder is a neural

network architecture which receives two input sequence in the input and produce a single

output representing the similarity between the two inputs Figure 9.

Pseudo labeling is the final step of training data preparation. A cross encoder model

was utilized to generate similarity scores from positive sim(Q,P+) and negative pairs

sim(Q,P+). The objective is to train our baseline model (SBERT bi-encoder) using

the margin Mean Squared Error (MSE) loss function. This function requires the margin
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Figure 8: Negative Mining

Figure 9: Cross Encoder

between the two scores calculated above. The margin is defined asmargin = sim(Q,P+)−

sim(Q,P−) [37]. The training elements of the dataset produced in this step has the form

of (Qi, P
+
i , P−

i ,Marginι).

Training the bi-encoder. The last step is a traditional way of bi-encoder training.

The training is achieved by optimizing the margin MSE loss function 5

LmarginMSE(θ) = − 1

M

M−1∑
i=0

|δ̂i − δι|2 (5)

• M is the number of elements of the dataset.

• δi represents the true label of the margin between the ith pairs

• δ̂i represents the predicted value of the the margin of the ith pairs

The bi-encoder is used to encode the positive and negative pairs (Qi, P
+
i ) and (Qi, P

−
i ),

respectively. Similarity between the items of the pair is computed via the dot product of
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their vectors. By subtracting the two similarities, concludes to the predicted margin δi as

presented in Equation 6. Predicted margin value δ̂i is computed by the cross-encoder via

pseudo labeling in the previous step.

δi = sim(Q,P+)− sim(Q,P−) (6)

The baseline model selected for the final step (training) of the GPL domain adapta-

tion model is a distilbert-based model initially been trained on MS MARCO dataset.

The model then was ported to sentence-transformer architecture as a bi-encoder marco-

distilbert-base-tas-b. The model was evaluated with the MS MARCO benchmark and

shown better performance among its competitors in terms of nDCG@10 [38]. The model

was trained for 100,000 training steps for 1 epoch due to time limitation. Hardware con-

straints of the GPU (AMD RX 6700, 8GM RAM), imposed a batch of 8 during the training.

The data process pipeline produced a dataset by primarily providing all the unique query-

positive passage combination with one negative (random) passage. If the length dataset

was surpassed by the training step the training generator provided subsequent negative

passages. This way the model could be trained on a wider area of biomedical terms.

4.1.3 Alternative IR training methods

In the experiment, different methods were used to train the baseline models. Ulti-

mately, it was concluded that GPL was the most effected architecture for the core of the

proposed system. This section presents alternative methods implemented to enhance IR

performance.

Dense Passage Retrieval (DPR). Dense retrieval methods have emerged as a pow-

erful approach in IR systems, offering a significant leap over traditional sparse retrieval

techniques, such as TF-IDF and BM25. Unlike sparse retrieval, which relies on exact

keyword matches between query and document terms, dense retrieval methods utilize DL

models to encode both queries and documents into continuous vector spaces. These meth-

ods leverage the semantic meaning of text, enabling the retrieval system to understand and

match the intent behind queries and the information within documents more effectively.
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The first dense custom model was implemented based on the dense passage model

proposed by Vladimir Karpukhin [18]. In this paper the proposed model outperformed

BM25 systems by 9% - 15% in terms of top-20 passage retrieval accuracy, in various open-

domain QA benchmark datasets (NQ, TriviaQA, WQ, TREC, SQuAD). The baseline

model did not performed well during the evaluation of our domain specific benchmark

dataset TREC COVID [22].

To increase the quality of IR, a training process of the DPR model was conducted. DPR

are trained in a specific way as is indicated in the paper. Training the model’s encoders,

involves building a vector space where relevant elements of the question-passage pairs will

be closer (more similar) than the elements of the irrelevant pairs. In order to train the

model effectively, it was imperative to curate a dataset where each element adhered to a

specific format:

L(q, p+, p−1 , . . . , p
−
n ) (7)

where q is the query, p+ is the relevant passage and p−n are the n irrelevant passages for

this query. The overall goal is to optimize the loss function as the negative log likelihood

of the positive passage (8).

− log
(
esim(qi,p

+
i )
)
+

esim(qi,p
+
i )

esim(qi,p
+
i ) +

∑n
j=1 e

sim(qi,p
−
i,j)

(8)

The BioASQ Task B dataset [34] provides potential answers and corresponding contexts

for each query. To align with the specifications of the DPR training process, several pre-

processing steps are undertaken. Initially, the dataset is filtered to include only factoid

and list type responses, facilitating the conversion to the SQuAD format for subsequent

evaluation. Subsequently, the filtered dataset is converted into SQuAD format and up-

load it into an ElasticSearch database for efficient data mining. The next step involves

labeling the first relevant context as the positive context. However, identifying negative

contexts poses a challenge. Building on insights from Karpukhin et al. [18], which suggest

that incorporating more negative samples can enhance model performance, the following

strategy is adopted for negative context retrieval. For each question, the BM25 algorithm

[9] is employed to retrieve up to 30 relevant documents. Subsequently, ”hard negatives”
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are designated as those documents that do not pertain to the relevant (positive) contexts

associated with the given question. The selection of the latest BioASQ dataset as the

train dataset was made due to the inclusion of COVID-19 terms in its data.

Sentence Embeddings using Siamese BERT-Networks. The evaluation of the

DPR model demonstrated that the biomedical domain adaptation was poor. Our research

lead us to dense retrieval methods based on Siamese BERT-Networks [16]. Sentence-BERT

(SBERT) is an adaptation of the BERT network [13] that incorporates siamese and triplet

networks to generate semantically meaningful sentence embeddings. This modification en-

hances BERT’s capabilities, allowing it to address tasks that were previously inaccessible.

These tasks include large-scale semantic similarity comparison, clustering, and semantic

search for IR. BERT [13] becomes very slow as the corpus get bigger due to the use of cross

encoder which computes the similarity between two sentences (here query and passage).

To retrieve the most relevant passage from the corpus C to a given query q, n compu-

tations must be performed where n is the length of the corpus C. In contrast, SBERT

aims to derive fixed-size vectors for sentence inputs. Consequently, all equivalent vector

embeddings of corpus passages can be computed once and stored in a vector database.

During inference, only the query needs encoding, facilitating retrieval of the k most similar

passages. In Figure 10 the architecture of SBERT model is presented.

Fine tuning a bi-encoder is a straightforward process and it can achieved by optimizing

MNRL (Multiple Negatives Ranking Loss) loss function presented in the paper entitled

”Efficient Natural Language Response Suggestion for Smart Reply” [39]. The model tries

to create a clear distinction between positive and negative passages concerning a query.

During training, the model tries to increase the distance in a vector space between positive

and negative passage vectors in relation to a query vector as it is shown in Figure 11.

The MNRL method require a dataset in the form of triplets. The triplets include a

query Q, a positive passage P+ and a negative one P−. The product model of this model

behaves rather poorly as it is shown later in the evaluation section. This is due to false

negative passages selection. The negative passages was selected via BM25 query, declaring

all related passages for a query as negatives except the actual positive.
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Figure 10: Bi-Encoder

4.1.4 Proposed IR Architecture

Following the evaluation research, it is deduced that the SBERT model, trained utilizing

the GPL method, exhibited superior adaptability within the biomedical domain. All

passages from the CORD-19 corpus were encoded using the proposed adapted bi-encoder

and subsequently integrated into a Weaviate vector database for future retrieval purposes.

Weaviate is a vector database built in the GO language, designed to store both vectors

and objects, thus enabling the combination of vector searching and structured queries. It

also provides out-of-the-box BM25, ideal for standalone or hybrid retrieval architectures.

Weaviate stores data both on disk and memory. Disk storage is used for persistence and

data durability in case of an emergency event occurs (shutdown, restart). Data are also

cached in memory for faster access and retrieval, optimizing the overall performance of

the system.
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Figure 11: query-passages relation

Indexing corpus passages into the mentioned database was a time-consuming procedure.

Due to limitation in both time and hardware resources, only 2,867,150 of 11,843,565 pas-

sages were successfully encoded and uploaded. Each vector is of length of 768 (embedding

length). The procedure required approximately 9 hours to complete, encompassing both

encoding and uploading the passages into the database.

An evaluation of a dense-sparse hybrid retrieval system was conducted, incorporating

our GPL trained model alongside the BM25 retrieval model. A pre-trained cross-encoder

on MS-MARCO dataset was added, reranking retrieved passages as the last step of the

retrieval pipeline, taking advantage of the demonstrated power of the model. The architec-

tures of cross encoders and their use cases have been previously discussed. Observations

indicated a notable enhancement in the IR system’s performance in terms of NDCG@10.

The proposed IR system is shown on Figure 3.

4.2 Reader System

In this section, the reader system of the proposed architecture is presented. The reader

model comprises two components: a pre-trained transformer-based model and a classifi-

cation head. The transformer model identifies semantic relations between the query and

the provided context, facilitating the extraction of relevant information. The classifica-

tion head determines the possibility of token being the start or the end of a possible

answer. Through this dual-functionality mechanism the reader model effectively identifies

and extract possible answers included in provided contexts, given a query.
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The foundation of the approach lies in leveraging state-of-the art transformer-based

BERT models. BERT bidirectional architecture allows it to capture contextual infor-

mation effectively, make in it well-suited for natural language understanding tasks. For

baseline models, BERT-based models pre-trained on generic datasets such as BookCor-

pus and English Wikipedia are utilized. The architecture of BERT model is presented in

Figure 12.

Figure 12: Fine-tuning BERT for QA

To adapt the pre-trained BERT-based models for QA tasks, fine-tuning was performed

on the SQuADv2 (Stanford Question Answering Dataset) dataset. SQuADv2 consists of

real-world questions posed by crowdworkers on a diverse set of Wikipedia articles, along

with the corresponding passage spans containing the answers. The Version 2 of this dataset

also includes query-passages pairs where they cannot be answered. By fine-tuning the

model on squad format, model’s parameters are optimized to minimise the loss function,

which measures the discrepancy between the predicted and the ground truth answers.

This process adapts the model to QA tasks, refining its ability to extract accurate answers

from given contexts.

Due to the critical need for reliable QA systems in the biomedical domain, further

refinement was conducted on the fine-tuned BERT-model (on SQuAD dataset) using the

COVID-QA dataset [23]. This dataset comprises 2,019 question/answer pairs annotated

by biomedical experts on scientific articles related to the COVID-19 pandemic, sourced

from reputable sources such as medical forums, research articles and healthcare guidelines.

By fine-tuning the model on the COVID-QA dataset, the aim was to enhance the model’s
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performance specifically in the biomedical domain. The dataset was already in SQuAD

format which facilitated the pre-processing step.

Transformer based models encounter a specific challenge when dealing with long-text

passages. Notably, datasets such as SQuAD and COVID-QA, utilized as our training data,

encompass numerous answering contexts exceeding 300 words in length. BERT models

employed in our training pipeline are constrained by a maximum length limit of 512 tokens,

corresponding down to approximately 300-350 words. This discrepancy necessitates care-

ful consideration in pre-processing strategies to effectively handle longer passages while

adhering to the model’s input constraints. It is noteworthy to mention that the Haystack

framework [40], which is used to train the reader models, and to build the proposed QA

system, incorporates pre-processing tools tailored to address challenges associated with

lengthy text passages. Specifically, Haystack framework provides truncation, padding and

chunking methods, enabling seamless processing of our data with reduced code complexity.

Our exploration of related work within the biomedical domain led us to uncover the

BioBERT [41] model, a significance advancement suited specifically for biomedical tasks.

BioBERT is pre-trained on large-scale biomedical corpora, including PubMed abstracts

and PubMed Central full-text articles, enabling it to capture domain-specific knowledge

and terminologies essential for biomedical applications. BioBERT offers versatility through

fine-tuning, allowing customization for various objectives such as entity extraction and QA.

During evaluation process, our fine-tuned model based on BioBERT demonstrated the

most promising results. Our proposed reader model leverages BioBERT, initially fine-

tuned on the SQuAD dataset, followed by further refinement the COVID-QA dataset.

This sequential fine-tuning process enhances the model’s understanding of both general

QA tasks and specialized biomedical inquiries.

4.3 Generative Reader System

As part of a comprehensive approach to build a biomedical QA system, the utilization of

a T5-FLAN (Text-to-Text Transformer) generative model [33] is introduced as a reader

component. The T5-FLAN model is based on encoder-decoder transformer architecture,
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renowned for its effectiveness in natural language understanding and generation tasks.

T5-FLAN employing text-to-text transfer learning, wherein both inputs and outputs are

representing text sequences. This feature allows the model to handle various tasks includ-

ing QA, summarization and translation.

In our biomedical QA system, the T5-FLAN generative model serves as an alternative

to the extractive model as a reader component. It is responsible for generating answers to

user queries based on retrieved passages from the IR system. In our system.

The T5-FLAN model is utilized at inference as a zero-shot model without undergoing

further fine-tuning. The decision not to fine-tune the FLAN model was primarily influ-

enced by the significant computational resources required to accommodate its large size.

Despite recognizing potential benefits of fine-tuning hardware limitations, rendered this

solution unfeasible.

5 Results

In the following section, the results of the experiments performed during the building of

the proposed QA system, which was described in Section 4 are presented. This experiment

analysis presents the efficacy and the robustness of our solution in accurately retrieving

relevant information and providing precise answers to user queries related to the biomedical

domain. Based on innovative methodologies and established metrics, an examination of

the proposed system’s performance across biomedical benchmarking datasets is performed,

aiming to highlight its strength, limitations, and potential enhancement.

5.1 Hardware

One of the goals of this experiment is to develop a product that can be trained at low

cost, perform well, and be easily deployed within any healthcare unit. The goal is to

empower healthcare units, especially those with limited resources, financially and in terms

of hardware, by developing a system that is cost-effective, robust, and accessible. Pre-

processing steps of the datasets utilized in this experiment, fine-tuning transformer models
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except GPL domain adaptation, indexing and database management and the development

were performed in a personal PC with the following specs:

• Ryzen 9 6000 series, 8 high performance cores, 4.9GHz max boost clocking.

• 40GB RAM Memory.

• AMD Radeon™ RX 6700S, with 28 compute units and 8GB of Memory.

Unfortunately, the training phase of the bi-encoder component in the GPL method faced

obstacles within the specified infrastructure due to memory constraints. Consequently, the

decision was made to train the bi-encoder transformer model in Kaggle’s infrastructure,

leveraging the computational power of a P100 GPU with 16GB of memory. This shift

allowed the smooth execution of the process, overcoming the memory constraints imposed

by the previous infrastructure. The model was successfully trained over 50,000 steps,

utilizing a batch size of 8 to maximize efficiency and optimize performance.

5.2 Metrics

In the results section, separate evaluations were conducted for the QA system, with

one focusing on the IR component and the other on the reader component. To ensure a

comprehensive assessment, well-known benchmark datasets relevant to the study domain

(biomedical) were utilized. Each evaluation method employed distinct metrics tailored to

the specific requirements of the method.

5.2.1 Information Retrieval Metrics

CappedRecall@k Score. Recall in K is the fraction of the relevant items returned by

the model successfully (true positives), within the set of the relevant items that exists in

the entire dataset 9. K refers to the number of the items retrieved by the IR system. As

for the IR task, recall reflects the ability of the model to correctly return all the relevant

documents according to a query.

Recall@K =
|{relevant documents} ∩ {K retrieved documents}|

|{relevant documents}|
(9)
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TREC-COVID dataset averaging 300 relevant passages per query. Some queries can

contain up to 500 relevant passages. The Recall@K defined above 9 would be deceptive

for the dataset, miss-evaluating the model. Consider that a query Qi included in the

TREC-COVID dataset, contains 500 relevant passages Passages. By retrieving all the

relevant passages, the Recall@10 score for this query would be 0.02, which is quite low

even though the model retrieves successfully 10 relevant documents. To correct this issue,

the capped recall [24] was introduced. CapedRecall@K is defined as the number of the

relevant documents returned by the IR system, within the minimum of K and the total

number of relevant documents 10.

CappedRecall@K =
|{relevant documents} ∩ {K retrieved documents}|

|min{K, relevant documents}|
(10)

MRR Score. Mean Reciprocal Rank in contrast with R@K defined above, is an order-

aware metric. MRR takes into account the rank or order of the relevant documents.

Specifically, MRR measures the mean reciprocal rank of the relevant documents, consid-

ering their descending order of importance. MRR is calculated based on multiple queries

as it is shown below:

MRR@K =
1

Q

Q∑
q=1

1

rankq
(11)

where:

• Q denotes the total number of queries

• ranki is the rank of the first relevant result.

While MMR provides insights into the rank of the first relevant retrieved item, it may

not capture the overall performance of the IR system, when dealing with multiple relevant

documents.

NDCG@K Score. NDCG@K stands for Normalized Discounted Cumulative Gain at

K. It is a powerful tool in the hands of the analyst. It is an order-aware metric that is

derived for simpler one. Unlike traditional metrics such as Recall and MRR, considers

both the relevance and the position order of retrieved documents. In short, NDCG ensures
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that higher ranks and highly relevant documents receive greater weights, providing a clear

picture of the retrieval capacity of the IR system.

NDCG@K sums up the discounted gains of the relevant documents up to rank K,

normalized by the ideal DCG@K value. The discount factor is determined by the loga-

rithm of the position of the document in the returned list, reflecting the attenuation of

importance moving down the list.

NDCG@K =
1

Z

K∑
i=1

2reli − 1

log2(i+ 1)
(12)

where:

• K represent the rank cutoff.

• reli represent the relevance of the document at ranki.

• Z is the formalization factor. It is the ideal DCG@K value for the given set of

queries.

5.2.2 Reader Metrics

Exact match EM Score is ta binary metric that measures whether a model predicted

the answer exactly. If the model answer prediction matches the ground truth answer , EM

is 1, otherwise is 0. Overall, EM is the proportion of instances where the model’s answer

prediction matches exactly the correct answer provided by the dataset as it is shown below:

EM =


1 if predicted answer = ground truth answer

0 otherwise

(13)

F1 Score is a metric less strict than EM . It measures word overlap between model’s

predicted answer and the labeled. It considers two sub-metrics: precision and recall.

Precision is the common words (predicted, labeled) to the total words of the predicted

answer. Recall is the ratio of the number of common words to the number of words in

ground truth. The math formula is as follows:
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F1 = 2 ∗ precision ∗ recall
precision+ recall

(14)

5.3 IR System Evaluation

In this section, the experiments conducted to evaluate the methodologies and implemen-

tation described in Section 4 are presented. Each component of the system was evaluated

separately, with appropriate benchmark datasets representative of real-world scenarios

chosen to ensure the robustness and reliability of the findings. Specific metrics tailored to

describe the performance of each component were utilized in the evaluation. The results

were compared with state-of-the-art models and methodologies to assess the performance

of the proposed system.

5.3.1 Datasets and knowledge source

In the thesis, as outlined in the methodology described in Section 4, two biomedi-

cal benchmark datasets, BioASQ and TREC-COVID, were employed for evaluation pur-

poses. BEIR is a widely used specific dataset format in the IR task, on which evaluation

experiments were based. Typically, this format comprises three main components: a file

containing the queries, each identified with a unique ID, a corpus file containing the pas-

sages, and a relation file containing the query-passage relation labeled by the score of the

relation.

BioASQ Task 9a & 9b. BioASQ Task 9a v.2020 is a collection of 14,913,939 English

article abstracts sourced from PubMed within the biomedical domain [42]. Document

chunking was not performed during pre-processing. The dataset is consisted from ab-

stracts, each spanning approximately 250-300 words in length. This length falls within

the processing capabilities of our GPL model, as well as most and most of the experimental

models. To transform BioASQ dataset to the BEIR format, BioASQ Task 9b 2021 dataset

was processed, comprising 3,742 queries encompassing various type of answers such as fac-

toids, list answers and yes/no. All labeled passages were considered as relevant, denoted

by a binary label of 1. It is important to note that GPL guidelines [25] recommend re-

ducing the corpus size to one million for more efficient evaluation; however, the reduction
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was not opted for, and the original corpus size was used following BEIR instructions [24],

allowing direct comparisons with BEIR benchmark for the BioASQ dataset.

TREC-COVID. TREC-COVID dataset is a collection of documents and queries cu-

rated specifically for research related to the COVID-19 pandemic. The primary objective

of this dataset is to evaluate the efficacy of a retrieval model operating within the biomed-

ical domain, with a specific focus on the COVID-19 topic.

To evaluate the models, the round 5 document and judgments were utilized, relying on

version 2020-07-16 of the CORD-19 dataset as a corpus. It contains 50 topics/queries, each

labeled to corpus passages as follows: 0 unrelated, 1 partially relevant, 2 fully relevant.

In our evaluation experiment, all passages containing only the title of the article were

eliminated, as instructed by the GPL method [25]. The final evaluation dataset consisted

of 129,192 passages, 50 queries, and 21,541 query-passage relations. Additionally, all

relations labeled as zero were excluded.

CORD-19. CORD-19 is a comprehensive and valuable dataset, particularly in the

biomedical domain. The final update, which performed on 2022-06-02, includes more than

1,000,000 scholarity articles, focused on COVID-19, SARS-CoV-2, and coronaviruses in

general. It enables researchers to extract crucial insights, identify trends, and develop

innovative solutions in the fight against COVID-19. As a trusted repository of knowledge,

it serves as an initial knowledge base of our proposed QA system.

5.3.2 IR Evaluation Results on TREC-COVID

The evaluation of our proposed QA system in biomedical domain, with a specific em-

phasis on COVID-19, was conducting using the BEIR benchmark framework, which is

formed of various IR datasets and tools, offering a robust robust platform for our model

performance evaluation experiments. BEIR includes three datasets within the biomed-

ical domain: BioASQ, TREC-COVID and NFCorpus. However, our primary attention

was focused to the TREC-COVID dataset. Specifically, metrics such as NDCG@k and

Recall@k was employed to evaluate the IR system performance. Given the large size of the
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BioASQ corpus dataset, the evaluation process was limited to the final proposed model,

comparing results with the original BEIR benchmark [24].

Table 1: IR Evaluation on TREC-COVID dataset using nDCG@K. Bold indicate the best re-
sult.

Model nDCG@1 nDCG@10 nDCG@100

BM25 0.81 0.65 0.45
msmarco-distilbert-base-tas-b 0.82 0.68 0.48
DPR base 0.22 0.23 0.14
DPR fine-tuned 0.30 0.24 0.15
msmarco-distilbert-base-tas-b + CE 0.76 0.72 0.46
BM25 + CE 0.74 0.70 0.50
GPL on CORD19 full-articles 0.76 0.72 0.52
GPL on BIOASQ + CORD19 0.77 0.64 0.46
GPL + BM25 + CE 0.75 0.73 0.55

Table 1 presents an evaluation of various IR models on the TREC-COVID dataset,

measured used the nDCG@K metric, where higher values indicate better retrieval perfor-

mance. Retrieving relevant documents at the top of the ranking list (just one element), it

is described with nDCG@1, where the base SBERT model msmarco-distilbert-base-tas-b

performed better with a score of 0.82. The msmarco-distilbert-base-tas-b, is a DistillBert-

based model, trained with Balanced Topic Aware Sampling [43] on the MSMARCO dataset

[38], then ported to SBERT [16] architecture.

On the other hand, models like DPR, both in its base and fine-tuned forms, perform

comparatively poorer, indicating potential limitations in their retrieval capabilities on this

dataset. As it was already demonstrated by GPL paper [25], BM25 perform rather well

on biomedical domain benchmark such as BioASQ and TREC-COVID.

The evaluation results highlight the significant enhancement of the IR system by the

GPL method, particularly when consider k = 10 and k = 100. These parameters represent

crucial retrieval scenarios where users often expect results within many passages. Using

GPL as a hybrid system alongside BM25, complemented by a cross-encoder ranker, show-

cased the system’s superior performance, particularly in retrieving 10 and 100 passages.
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This hybrid approach demonstrates the strength og both traditional probabilistic retrieval

methods like BM25 and advanced transformer-based models like SBERT.

Regarding the calculation of Recall@k with the BEIR tool, recall is calculated utilizing

all relevant documents as the denominator. In scenarios where the number of relevant

documents for each query varies, as TREC-COVID dataset has an average of 500 relevant

documents per passages, the recall scores can lead to false performance conclusions. To

address this issue, as BEIR suggests, is to compute the capped recall metric. This metric

adjusts the calculation of Recall@k by considering the minimum between the number of

relevant documents available and the specified value of k.

The capped recall metric, in this experiment behaves similarly to the nDCG@k metric,

providing insights into how well a model can retrieve truly relevant passages related to

queries. The hybrid proposed system demonstrates superior performance compared to

other experimental models, particularly for k = 10 and k = 100. The computed Recall@k

values are demonstrated in the following Table 2.

Table 2: IR Evaluation on TREC-COVID dataset using Recall@K. Bold indicate the best re-
sult.

Model R@1 R@10 R@100

BM25 0.81 0.65 0.45
msmarco-distilbert-base-tas-b 0.88 0.68 0.45
DPR base 0.32 0.25 0.14
DPR fine-tuned 0.32 0.25 0.14
msmarco-distilbert-base-tas-b + CE 0.84 0.75 0.46
BM25 + CE 0.80 0.75 0.50
GPL on CORD19 full-articles 0.82 0.77 0.51
GPL on BIOASQ + CORD19 0.82 0.67 0.41
GPL + BM25 + CE 0.78 0.78 0.58

5.3.3 IR Evaluation Results on BioASQ

Permission constraints preventing researches to load BioASQ dataset, with the corre-

sponding format. Instead, they must be authorized by BioASQ source to legally download

the dataset. The dataset was processed for evaluation, as instructed by BEIR [24] and

GPL [25] papers. The original corpus size from 14,913,939 documents to 1,000,000, due

to hardware constraints. The same constraints also impact the evaluation process on
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BioASQ dataset, preventing the assessment to every individual experimental model. The

evaluation focused solely on the GPL model trained on both CORD-19 full-text articles

and BioASQ abstracts. The results are compared with those of GPL original paper [25].

Comparisons are demonstrated on Table 3.

Table 3: nDCG@k performance of several models, included our trained model, on BioASQ
dataset

Model nDCG@10

BM25 0.47
BM25 + CE 0.52
msmarco-distilbert-base-tas-b 0.34
GPL on BIOASQ + CORD19 0.59

5.4 Extractive Reader Evaluation

In this section, the evaluation performed on several fine-tuned experimental models

based on BERT architecture [13] is presented. Evaluation is performed on two biomedical

related QA datasets.

Covid-QA [23] is a SQuAD [19] formatted dataset, comprised by 2,019 question-answers

pairs, annotated by biomedical experts on 147 scientific articles extracted from CORD-

19 dataset. It differs from SQuAD dataset in terms of context passage length, where in

CORD-19 the average token per passage is 6,118.5 versus 153.2 in SQuAD. The context

passages within the corpus exhibits an average word count of 4,889.2, while question and

answers presents modest lengths, with average of 9.2 and 13.9 words.

BioASQ QA dataset [34] is a biomedical benchmark dataset including questions in the

English language with golden answers, annotated by biomedical experts. Moreover, the

dataset contains metadata such as ideal answers and ontology keywords which are not used

in this experiment. The version 7b of this dataset was selected during the experiment.

BioASQ dataset contains multiple type of answering. The evaluation performed solely on

the factoid type answer set. The dataset is transformed according the SQuAD format for

easier training and evaluation. The corpus passages related to the answers of the dataset

are parsed through a custom web scraping pipeline, querying the E-utilities PubMed API

[44].
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To ensure efficient processing without compromising comprehension, lengthy contexts

was partitioned into passages, each one consisting of 256 tokens-the maximum sequence

length possible indicated by the baseline models. Furthermore, a passage stride of 128

tokens was performed.

In the experimental setup with the benchmark datasets mentioned above, three distinct

baseline models were employed. RoBERTa [14], BERT [13] and BioBERT [15]. These

models are variants of the Transformer architecture, each offering unique advantages for

NLP tasks. A notable difference between BERT-based models (BERT, BioBERT) and

RoBERTa, is in the handling of masked tokens during training. In BERT, the mask

is predetermined during pre-processing and remains static through training, whereas in

RoBERTa, the mask label is dynamically changed during each epoch of training. BioBERT

is a specialized variant of BERT model. It has been pre-trained on domain-specific

biomedical-data, which enables it to capture domain-specific knowledge and terminology

effectively.

To prepare the baseline models for QA tasks, they were fine-tuned using the SQuADv2

[19] dataset. By fine-tuning with SQuAD, the aim was to equip the models with the

capability to accurately extract answer spans from passages. The model was trained

on the SQuAD dataset for 10 epochs using a learning rate of 0.00001. The evaluation

performed on the dataset’s test split is shown below.

Table 4: Reader models fine-tuned on SQuADv2, QA evaluation

Model F1% EM%

bert-base-cased-squad 77.45 75.21
roberta-base-squad 84.24 82.12
biobert v1.1-cased-squad 52.11 48.94

As a next experiment, the performance of SQuAD fine-tuned models on previously un-

encountered biomedical datasets was investigated. Specifically, the efficacy of these models

was investigated on two distinct datasets: COVID-QA and BioASQ. Each dataset presents

unique challenges. The COVID-QA dataset, structured in the SQuAD format, comprises

extensive passages spanning thousands of words. Conversely, the BioASQ dataset diverges

in nature, featuring factoid-style questions, which demand concise, direct, and short an-
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swers. The evaluation scores of the SQuAD fine-tuned models are presented in Table

5.

Table 5: QA reader models, Evaluation on biomedical datasets

Dataset

COVID-QA BioASQ 7b

F1% EM% F1% EM%

bert-base-cased-squad 26.54 15.10 21.60 15.70
roberta-base-squad 29.15 18.31 20.85 16.95
biobert v1.1 base-cased-squad 27.61 16.83 27.38 23.23
biobert v1.1 large-cased-squad 32.88 18.31 37.43 31.16

It is surprising to observe that the BioBERT model v1.1, which was pre-trained on

PubMED articles targeting the biomedical domain, performs poorly on the COVID-1QA

dataset. This behaviour may be attributed to the fact that the BioBERT model was

trained before the COVID-19 pandemic, thus it may lack specific knowledge related to the

pandemic. Instead, the model focuses on general biomedical information available in the

pre-pandemic literature.

To address this issue, fine-tuning the models on COVID-19 related data was considered.

As the training dataset, the trained split CORD-19 dataset was utilized. The models were

trained for 5 epochs and then evaluated on the biomedical datasets. Due to hardware

and time constraints, the base version of the BioBERT model was selected for further

fine-tuning. Results are presented in the following table 6.

Table 6: QA reader models fine-tuned on COVID-QA , Evaluation on 2 biomedical datasets

Dataset

COVID-QA BioASQ 7b

F1% EM% F1% EM%

bert-base-cased-squad-covidqa 34.11 20.14 21.50 13.64
roberta-base-squad-covidqa 53.42 26.73 31.96 20.70
biobert v1.1 base-cased-squad-covidqa 55.03 37.87 40.12 31.17

The roberta-base-squad-covidqa markedly outperforms the BERT-based model on COVID-

QA dataset. However, its performance on the BioASQ 7b dataset, while improved com-

pared to BERT, suggests only a moderate superiority. The biobert v1.1 base-cased-squad-

covidqa model demonstrated better performance, compared to roberta-base-squad-covidqa

on the COVID-19 dataset, proving its effectiveness in understanding and processing pan-
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demic related information. The biobert v1.1 base-cased-squad-covid model outperforms

the other models on the BioASQ 7b dataset. This underscores the model’s enhanced ca-

pability to generalize across different biomedical domains, likely due to its pre-training on

a large biomedical corpus.

In the next phase of the experiment, the SQuAD v2 trained models were refined by

conducting fine-tuning on the BIOASQ 7b factoid subset for 5 epochs. Following this fine-

tuning process, the model’s performance across the two biomedical benchmark datasets,

COVID-QA and BioASQ 7b factoid subset, was meticulously evaluated. The results are

presented in Table 7.

Table 7: QA reader models fine-tuned on BioASQ 7b factoids, Evaluation on 2 biomedical
datasets

Dataset

COVID-QA BioASQ 7b

F1% EM% F1% EM%

bert-base-cased-squad-bioasq 27.13 16.89 37.13 30.60
roberta-base-squad-bioasq 30.25 17.82 43.67 40.77
biobert v1.1 base-cased-squad-bioasq 28.16 16.35 56.96 45.10

In the final phase of the reader evaluation experiment, an in-depth assessment of the

BioBERT QA model’s performance was conducted. Initially trained on the COVID-QA

dataset, followed by fine-tuning on the BioASQ 7b dataset, unsatisfactory outcomes were

encountered. The subsequent training adversely affected the model’s ability to answer

COVID-19 related questions, as it appears to prioritize adapting to general biomedical

factoid answers. To address this issue, a new dataset was created. The dataset is a

shuffled and merged version of COVID-QA and BioASQ 7b factoid subset. The BioBERT

SQuAD model was trained for five epochs with the modified dataset. The results were

notably promising, as the model demonstrated adaptability on both COVID-19 related

questions and general biomedical queries as it is shown on Table 8.

Table 8: BioBERT initially fine-tuned on SQuAD v2 and then on the biomedical dataset consist-
ing of COVID-QA set and BioASQ 7b, Evaluation on 2 biomedical datasets

Dataset F1% EM%

COVID-QA 51.90 27.50
BioASQ 7b factoids 52.16 48.55
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6 Covid WISE. A Covid QA Application

After conducting extensive experiments and evaluations, the most appropriate models

for both retrieval and reading within our QA Web application have been carefully selected.

Our approach involves indexing a significant portion of the CORD19 corpus (2,867,150

passages) into embeddings within the Weaviate vector database [32], using a biomedical

adapted retriever model trained on both COVID-19 and general biomedical corpus. Addi-

tionally, the Weaviate database offers BM25 indexing, enhancing the retrieval capabilities

of the server. Every indexed passage was chunked into approximately 200-word segments,

to be processed correctly by all involved models in the pipeline.

The users of our system have the flexibility to choose between different retrieval modes.

They can opt for solely dense retrieval or a hybrid approach combining BM25 lexical

search. Furthermore, users can specify the number of articles they wish to retrieve, tai-

loring the search results to their requirements. Our application provides users with mul-

tiple options for interacting with the retrieved information. They can navigate through

passages, explore relevant content, or attempt to find or generate answers based on the

retrieved passages. These features aim to assist and guide users in efficiently obtaining

the information they seek.

Figure 13: Covid WISE QA Application
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6.1 Querying Covid WISE

The evaluation process demonstrated good performance of the proposed QA system.

The system’s performance was tested as components and not as an individual system.

Sometimes QA systems perform well during evaluation using benchmark datasets, but

behaving rather bad into real-life scenarios.

6.1.1 What do we know about COVID-19 risk factors?

This subsection demonstrates a real user query and the system’s behaviour in the two

available architectures. Figures 14 15 16 display the results generated by the QA ap-

plication, utilizing the hybrid IR model as a retriever and the COVID-QA fine-tuned

BioBERT model as a reader. Figure 14 presents the most relevant results retrieved by the

hybrid IR model, followed by subsequent figures displaying subsequent relevant outputs

in descending order of relevance.

Figure 14: 1st most relative answer to question ”What do we know about COVID-19 risk fac-
tors?”

The system’s generative answer using the T5-FLAN model utilizing the hybrid retriever

is presented at 17

50



Figure 15: 2nd most relative answer to question ”What do we know about COVID-19 risk fac-
tors?”

Figure 16: 3nd most relative answer to question ”What do we know about COVID-19 risk fac-
tors?”

6.1.2 Application Infrastructure

The QA pipeline within our system was developed using the Haystack framework [40],

which simplifies the development of complex NLP tasks such as QA, by providing powerful

tools. QA components, can be built and evaluated separately and finally utilize them to

a single pipeline with appropriate configuration environment variables. The QA system

is backed by FastAPI, a powerful yet simple Python Web framework. FastAPI is widely

used in AI services due to its efficiency and simplicity, enabling seamless integration with

the rest of our application. The User Interface (UI) of our application is designed using

React, a Javascript framework created by Facebook. React is a framework for building
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Figure 17: Generated Answers

dynamic and responsive interfaces, enhancing the overall user experience of our QA web

application
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7 Conclusions and future work

In this thesis, a robust QA system was developed and evaluated with a focus on COVID-

19-related and biomedical topics. Despite constraints such as limited time and processing

power, the development of a system that can aid medical professionals and researchers in

addressing complex biomedical inquiries was demonstrated. The aim of this project is to

facilitate knowledge acquisition and informed decision-making in the face of this global

health crisis.

This study has focused on the development and evaluation of a biomedical QA sys-

tem tailored specifically for addressing inquiries related to COVID-19, with a potential

to be adapted on several topics. The system employs a hybrid retriever, combining a

domain-adapted [25] dense retrieval model based on Siamese BERT Networks [16], with a

BM25 lexical retriever [9], to enhance the retrieval of relevant information from biomedical

literature.

The performance evaluation of the hybrid retriever on the TREC-COVID dataset [22],

as depicted in Table 1, demonstrates its effectiveness in retrieving pertinent information.

Particularly noteworthy is the competitive performance of the bi-encoder retrieval model,

which was adapted to the biomedical domain with focus on COVID-19, using domain

adaptation techniques with GPL [25]. Despite the strength of BM25 in biomedical data

retrieval, the proposed dense model’s performance is close, indicating its capability to

capture domain-specific information effectively.

Furthermore, incorporating a cross-encoder model [13] as a ranker. Cross-encoder mod-

els have consistently demonstrated superior performance compared to other architectures

in various IR tasks [24]. In our study, the cross-encoder model is employed as a ranker

on documents fetched by the hybrid retriever, thereby enhancing its overall performance,

as evaluated by nDCG@10 presented in Table 1. Utilizing the proven strength of cross-

encoders, the disadvantage of those models on comparing a large number of documents

is considered, as the input of the proposed cross-encoder is the top-n documents already

fetched by our retriever, thereby reducing the computational need.
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Regarding the extractive reader component, the performance of three transformer-based

BERT models was investigated: BERT [13], RoBERTa [14], and BioBERT [15]. Specifi-

cally opting for the cased versions of these models, the aim was to retain case sensitivity for

enhanced linguistic understanding. The base version of those models was selected for fine-

tuning due to time and hardware constraints. Among the models considered, BioBERT,

which had been pre-trained on PubMed articles, was selected as the primary focus. To

enhance its adaptability to a broader range of biomedical inquiries, particularly COVID-19

topics, BioBERT was trained with a merged version of datasets consisting of COVID-QA

and BioASQ 7b training datasets. As demonstrated in Table 8, the model performed well

on each test dataset individually.

The development of the proposed biomedical QA system was not without its challenges.

Numerous difficulties were encountered along the way, with time constraints and hardware

limitations posing significant hurdles. These constraints imposed exploration of suitable

methodologies to construct a system capable of truly assisting biomedical professionals.

Further improvements and customization opportunities exists on the proposed system.

While the retrieval model was trained for domain adaptation using the full text of a small

subset of the CORD-19 and BioASQ Task a corpus, the GPL method, which the system

is based on, utilized abstract passages from the TREC-COVID corpus. Exploring the

potential impact of training the bi-encoder on a larger subset of the dataset, shuffled with

biomedical PubMed articles covering various topics, could be particularly interesting. This

approach could enhance the model’s adaptability and performance across diverse biomedi-

cal domains. The model has trained for a limited number of training steps, approximately

50,000 steps. However, there remains an opportunity for further investigation by extending

the training duration with additional training steps and epochs. The exploration would

provide insights on how the model evolves over time and weather it continues to improve

with prolonged training.

One of the crucial steps of the GPL method [25], that the proposed retrieval was based

on, involves question generation for the unlabeled target domain corpus, leveraging a

T5 question generation model. It is worth noting that this model may lack exposure

to COVID-19 related contexts and biomedical passages in general, potentially impacting
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the quality of generated questions. To address this limitation and enhance the efficacy

of the model, an approach would be training the T5 model biomedical generative text,

with the help of BioASQ datasets. By exposing the model to biomedical contexts and

terminology, it can develop a deeper understanding of relevant topics and generate more

accurate and contextually relevant questions, simulating real biomedical queries performed

by professionals.

Utilizing our robust retrieval component as a hard negative miner represents a promising

enhancement to the GPL method. Given the retrieval system’s strong performance on

biomedical data, as demonstrated by its successful evaluation on reliable datasets, it could

suggest related passages to questions during the mining step of the GPL method. This

could be augment the effectiveness of negative sampling, outperforming conventional bi-

encoders in identifying negative examples.

Expanding the proposed system to support different languages presents an opportunity

for broadening its applicability impact. Transformer-based models like BERT and SBERT

have been ported to many languages. One potential approach involves training the re-

triever component on a targeted biomedical corpus consisting of books, notes, prescriptions

etc, in a different language. This expansion not only enhance accessibility for non-English

speakers, but also facilitates cross-linguistic biomedical research and collaboration.

In this study only three BERT-based models were trained on size-limited biomedical

training datasets. A further study on additional transformer-based models could be per-

formed, especially on those pre-trained models on large biomedical corpora, across multiple

diverse training datasets.

This study was concentrated on transformer-based models such as BERT and SBERT,

and the effectiveness of larger models like GPT, LLaMA and Galactica was not investi-

gated. However, with the advent of these powerful language models, a new era in NLP

is emerging, especially within the biomedical domain. There is a significant potential to

integrate those models into the proposed biomedical QA system, by combining them with

the adapted retriever within a Retrieval-Augmented Generation (RAG) architecture [45].
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