
1 
 

 

UNIVERSITY OF PIRAEUS 

DEPARTMENT OF DIGITAL SYSTEMS 

 

Implementation of Join Operation over NoSQL Databases 

 

Dimitrios Panakos ME2123 

Master of Science  

Information Systems and Services 

Big Data And Analytics 

 

Supervising Professor: Christos Doulkeridis 

Athens January 2024 

 

 

 

  



2 
 

Πίνακας περιεχομένων 
Abstract ..................................................................................................................................... 3 

1.Introduction ............................................................................................................................ 4 

2 Technical Background ............................................................................................................. 8 

2.1 NoSQL Database Systems ................................................................................................ 8 

2.2 Big Data Proccessing ...................................................................................................... 12 

2.3 Apache Spark ................................................................................................................. 15 

2.4 NoSQL Data Access Operators ....................................................................................... 19 

3 Join Implementation Solution .............................................................................................. 22 

3.1 NoSQL Join ..................................................................................................................... 23 

3.2 Different Types of JOINs in SQL ..................................................................................... 26 

3.2.1 Inner Join ................................................................................................................ 29 

3.2.2 Left Outer Join ........................................................................................................ 29 

3.2.3 Right Outer Join ...................................................................................................... 30 

3.2.4 Full Outer Join ......................................................................................................... 30 

3.2.5 Cross Join ................................................................................................................ 31 

3.2.6 Self Join ................................................................................................................... 31 

3.3 Solution Implementation ............................................................................................... 33 

3.4 Apache Spark Solution ................................................................................................... 38 

3.4.1 The Equal Operator ................................................................................................ 42 

3.4.2 The Negation of equality ........................................................................................ 42 

3.4.3 The Greater than operator ..................................................................................... 43 

3.4.4 The Greater than or Equals .................................................................................... 43 

3.4.5 The Less operator ................................................................................................... 44 

3.4.6 The Less Than Or Equals ......................................................................................... 44 

3.4.7 The Join Operators ................................................................................................. 45 

3.3.8 The client view ........................................................................................................ 45 

3.4 Hash Join Implementation ............................................................................................. 47 

4 Experiments .......................................................................................................................... 53 

5 Conclusion ............................................................................................................................ 56 

6 Future Upgrades ................................................................................................................... 58 

7 References ............................................................................................................................ 60 

 

 



3 
 

Abstract 
 

In the large volumes of data scattered and stored in various non-relational 

database systems, there is a need for information retrieval. With many 

systems, each having a different API for retrieving information, there 

arises the need to find data located in more than one database and 

retrieve it based on common information. For this reason, this thesis 

extends the NODA API with the join process. NODA offers a rich API that 

provides connectivity with various non-relational databases without 

requiring the client to use the API of each non-relational database. 

Therefore, this work will extend NODA with the join function to enable 

the connection of common data in more than one different database. 

 

Στους μεγάλους όγκους δεδομένων που υπάρχουν διάσπαρτοι 

αποθηκευμένοι σε διάφορα συστήματα μη σχεσιακών βάσεων 

δεδομένων, υπάρχει ανάγκη ανάκτησης της πληροφορίας. Τα συστήματα 

πολλά με διαφορετικό API το κάθε ένα για ανάκτηση πληροφορίας 

προκύπτει η ανάγκη εύρεσης δεδομένων που βρίσκονται σε πάνω από 

μία βάση να ανακτηθούν βάσει κοινής πληροφορίας. Για τον λόγο αυτό 

έρχεται η διπλωματική αυτή εργασία να επεκτείνει το API του NODA με 

την διαδικασία του join. To NODA προσφέρει ένα πλούσιο API που δίνει 

την συνδεσιμότητα με διάφορες μη σχεσιακές βάσεις δεδομένων χωρίς 

να απαιτείται από τον πελάτη να χρησιμοποιήσει το API της κάθε μη 

σχεσιακής βάσης. Η εργασία αυτή λοιπόν θα επεκτείνει το NODA με την 

λειτουργία του join ώστε να δώσουμε την δυνατότητα να συνδέσουμε 

κοινά δεδομένα σε παραπάνω από μία βάση διαφορετική. 

 

 

 

 

 

 



4 
 

1.Introduction 
 

NoSQL databases, mark a significant shift in data management by offering 

flexible and scalable alternatives to traditional relational databases. These 

databases cater for a range of unstructured data types, improving storage 

and retrieval processes for large volumes of data. Their prominence has 

risen due to the challenges posed by the scale, variety, and velocity of big 

data, areas where traditional relational models often fall short. NoSQL 

systems eschew the rigid schemas of relational databases, opting instead 

for dynamic, schema-less structures that are well-suited for rapidly 

changing data sets. They focus on horizontal scalability and are integral to 

distributed computing environments, making them crucial for 

applications that demand high performance, scalability, and data 

management flexibility, such as real-time analytics, content management, 

e-commerce platforms, and more. 

This thesis delves into the implementation of the join operation in various 

NoSQL database systems. The integration of join operations in NoSQL 

databases is challenging due to their fundamental design goals of 

scalability, performance, and flexibility, which are prioritized over the 

fixed relationships found in relational databases. While NoSQL databases 

excel in environments that require scalability and adaptability, careful 

planning of data modeling and querying is essential for any specific 

application. Although some NoSQL databases provide methods to handle 

relationships, like embedding or linking documents, these approaches can 

differ significantly from traditional relational database JOIN operations.  

So the main goal of this thesis is an implementation of join operation 

among different NoSQL databases. This will be handled through updating 

the NODA API. This API offers operations for transactions over NoSQL 

databases such as filtering, projections and efficient use of 

spatiotemporal queries. NODA uses Apache Spark domain models for 

databases connection and result viewing. The result returned with the use 

of Dataset object. Here comes this thesis to update the NODA API to 

handle join operations through different databases. This is done by using 

Apache Spark join operations among Datasets, plus by enriching the API 

through a custom join implementation mechanism based on hash join 

algorithm. 



5 
 

The chapter are written to give an easy way to the reader to understand 

the implementation of join operation inside NODA API without having to 

learn about in detail. 

Chapter 2 first subchapter represent a category of database management 

systems that diverge from the traditional relational database framework 

by accommodating various data models, enhancing flexibility and 

scalability for large, dynamic datasets. Unlike relational databases like 

MySQL and PostgreSQL, which rely on structured schemas and SQL, 

NoSQL databases handle unstructured, semi-structured, and structured 

data, making them suitable for web, mobile, social media, and big data 

applications. 

Types of NoSQL databases include: 

• Document-oriented databases (e.g., MongoDB) that store data in JSON-like 

documents. 

• Key-value stores (e.g., Redis, Amazon DynamoDB) for rapid processing. 

• Column-family stores (e.g., Apache Cassandra) for efficiently managing large 

datasets. 

• Graph databases (e.g., Neo4j) for handling data with complex relationships. 

NoSQL databases operate without fixed schemas, allowing for rapid 

development and horizontal scaling by adding nodes to distributed 

systems. They offer optimized performance for specific query types and 

improve fault tolerance and data availability through distributed 

architectures. However, they may have limited querying capabilities, lack 

standardized query languages, and offer less transactional integrity 

compared to relational databases. 

Choosing between NoSQL and relational databases depends on the 

application's specific requirements, such as data structure, query 

complexity, scalability, and development needs. 

The second subchapter describes the need of big data processing. Big data 

encompasses extensive and complex datasets that exceed the capabilities 

of traditional data processing tools, typically ranging from terabytes to 

petabytes. These datasets originate from various sources, including social 

media, sensors, and transaction logs, and require prompt processing for 

timely insights. Characterized by its volume, variety, and velocity, big data 

includes structured, semi-structured, and unstructured formats. 

Managing and analyzing such data necessitates advanced technologies 



6 
 

like Hadoop and Apache Spark, which facilitate distributed and real-time 

processing, respectively. NoSQL databases like MongoDB and Cassandra 

support handling large volumes of unstructured data. 

The third subchapter continues with a description of Apache Spark 

framework that it is used. Apache Spark is an open-source, distributed 

computing system designed for fast and versatile data processing. It 

extends the MapReduce model to support a variety of computations, such 

as interactive queries and stream processing, providing high-level APIs in 

Java, Scala, Python, and R. Spark's in-memory processing capabilities 

make it significantly faster than traditional disk-based engines like 

Hadoop. It offers advanced analytics through components like Spark SQL 

for SQL queries, MLlib for machine learning, and GraphX for graph 

processing. With its unified engine, Spark handles diverse workloads, 

including batch processing, real-time analytics, and machine learning, 

while integrating seamlessly with Hadoop and other storage systems. The 

active community and extensive ecosystem further enhance its 

capabilities, making Spark a powerful tool for big data analytics across 

various use cases. 

At the final subchapter of this there is a description of NODA API. The 

NoDA paper abstracts data access across various NoSQL stores and 

provides a unified, SQL-like querying interface. Experimental results show 

significant performance improvements in spatio-temporal queries across 

different NoSQL systems. The NODA emphasizes the popularity and 

benefits of NoSQL stores, such as scalability, flexible data models, and 

high availability, but notes their limitations in optimized indexing and 

standardized query languages. These issues complicate application 

development and hinder seamless transitions between NoSQL stores, 

prompting the need for a unified solution. NODA offers a simplified 

interface with a programming API and SQL-like language, hiding the 

complexities of individual NoSQL query languages. Inspired by Apache 

Spark, its design separates query definition from execution, enabling 

efficient, lazy execution of operations. 

At the third chapter we introduce the implementation of join operations 

inside NODA. Before from that, a detailed reference upon the join 

operations that exists on traditional relational database systems is 



7 
 

performed. After that there is a description of the code implementation 

of the solution.  



8 
 

2 Technical Background 
 

This chapter provides the necessary information to understand the scope 

of this thesis. It begins with a description of NoSQL systems and their data 

storage methods. The second section presents an overview of big data 

processing frameworks. The third section details Apache Spark, which is 

used during the implementation phase. The final section offers a detailed 

description of the NODA API, which serves as the core functionality for 

operating different NoSQL stores. 

 

2.1 NoSQL Database Systems 

 

NoSQL databases represent a category of database management systems 

that diverge significantly from the conventional relational database 

framework. These systems are not confined to structured tables and 

predefined schemas but are engineered to accommodate a broader 

spectrum of data models, enhancing flexibility and scalability for 

managing large, dynamic datasets. 

Traditional relational databases, such as MySQL and PostgreSQL, rely on 

a structured schema to organize data into tables. Each table consists of 

rows and columns, with each row representing a unique record and each 

column representing a specific attribute of the data. While this approach 

is highly effective for managing structured data and supports complex 

queries using SQL (Structured Query Language), it can be restrictive when 

dealing with unstructured or semi-structured data, which is increasingly 

common in modern applications. 

NoSQL databases, on the other hand, excel at handling various data types 

— unstructured, semi-structured, and structured — making them 

particularly effective for modern applications encountered in web and 

mobile environments, social media platforms, and intensive big data 

projects. The flexibility to manage diverse data types is one of the key 

advantages of NoSQL databases, enabling developers to store and process 

data in a way that aligns more closely with the application's needs. 

The landscape of NoSQL databases is diverse, with several distinct types 

designed to meet specific needs. For example, document-oriented 



9 
 

databases like MongoDB organize data in a document format akin to JSON 

(JavaScript Object Notation), which supports complex data structures and 

facilitates efficient storage and retrieval. Documents in MongoDB can 

contain nested structures and arrays, allowing for a more natural 

representation of hierarchical data. This flexibility makes document 

databases ideal for content management systems, e-commerce 

platforms, and other applications that require the storage of complex 

data. 

 

On the other hand, key-value stores maintain data in unique key-value 

pairs. This structure is prized for its rapid processing and ease of use, 

although it can sometimes restrict the complexity of queries. Key-value 

stores, such as Redis and Amazon DynamoDB, are often used for caching, 

session management, and real-time analytics due to their ability to quickly 

retrieve values based on a unique key. 

Column-family stores, another type of NoSQL database, organize data 

into columns rather than rows. This approach allows for efficient storage 

and retrieval of large datasets with many attributes, as only the necessary 

columns are accessed. Apache Cassandra is a popular example of a 

column-family store, frequently used in applications that require high 

availability and scalability, such as time-series data and IoT (Internet of 

Things) applications. 

Graph databases, such as Neo4j, are designed to handle data with 

complex relationships. Instead of tables, these databases use nodes, 

edges, and properties to represent and store data. Graph databases excel 

in applications that involve social networks, recommendation systems, 

and fraud detection, where understanding and traversing relationships 

between data points is crucial. 

NoSQL databases typically operate without fixed schemas, allowing for 

greater developmental agility as fields can be added to documents or 

entries without necessitating changes to the overall database schema. 

This feature is particularly valuable for applications that need to evolve 

rapidly or handle data with variable structures. The schema-less nature of 

NoSQL databases means that developers can iterate quickly, making 



10 
 

changes to the data model without the need for costly and time-

consuming migrations. 

Designed for horizontal scaling, NoSQL databases can efficiently manage 

growing workloads by integrating additional nodes into the distributed 

system. This scalability is crucial for applications experiencing growth in 

data volume and user traffic. Horizontal scaling, or scaling out, involves 

adding more machines to handle increased load, as opposed to vertical 

scaling, which involves adding more resources to a single machine.  

NoSQL databases are designed to scale out easily, distributing data and 

queries across multiple servers to ensure performance and reliability. 

Optimized for specific query types and data access patterns, many NoSQL 

databases deliver outstanding performance for particular operations. For 

instance, key-value stores are optimized for swift data retrieval tasks, 

making them ideal for use cases where low latency is essential. Similarly, 

document databases are optimized for storing and querying hierarchical 

data structures, while column-family stores excel at handling large-scale, 

distributed data. 

Additionally, these databases are generally structured to perform well in 

distributed settings, distributing data across multiple servers or nodes to 

improve fault tolerance and increase data availability. This distributed 

architecture enhances the resilience of NoSQL databases, allowing them 

to continue operating even if some nodes fail. Data replication and 

sharding are common techniques used to achieve high availability and 

fault tolerance in NoSQL databases. 

Despite these advantages, NoSQL databases also present certain 

challenges. They might offer more limited querying capabilities than 

traditional relational databases, potentially hindering performance for 

certain types of applications. The absence of a standardized query 

language across different NoSQL systems can also complicate 

development and integration processes. Developers may need to learn 

and use different query languages and APIs for each NoSQL database, 

increasing the complexity of building and maintaining applications. 

Moreover, while NoSQL databases are optimized for specific use cases, 

they may not provide the same level of transactional integrity as relational 

databases. For applications that require complex transactions, such as 



11 
 

financial systems or inventory management, relational databases like 

PostgreSQL or MySQL might be more appropriate due to their support for 

ACID (Atomicity, Consistency, Isolation, Durability) properties. 

Although NoSQL databases are invaluable for certain applications, they 

are not universally applicable. For projects that require intricate 

transactions, closely defined schemas, and complex relational data 

interdependencies, traditional relational databases might be more 

appropriate, offering advantages in terms of transactional integrity and 

relational querying capabilities. The choice between NoSQL and relational 

databases should be guided by the specific requirements and constraints 

of the application, considering factors such as data structure, query 

complexity, scalability needs, and development agility. 

In conclusion, NoSQL databases offer a versatile and powerful alternative 

to traditional relational databases, particularly for modern applications 

that demand flexibility, scalability, and the ability to handle diverse data 

types. By understanding the strengths and limitations of different types 

of NoSQL databases, developers can make informed decisions about 

which database technology best meets the needs of their projects.  

At the image below represented the most common types of NoSQL stores. 

 

 

 

 



12 
 

2.2 Big Data Proccessing 

 

Big data refers to the extensive and complex datasets that surpass the 

capacity of traditional data processing tools to manage effectively. These 

datasets range enormously in size, typically spanning from terabytes to 

petabytes and even more. They encompass a wide variety of data types, 

both structured and unstructured, sourced from diverse origins like social 

media platforms, sensor outputs, and transaction logs. 

The generation of big data occurs at rapid velocity, necessitating its 

prompt processing to derive valuable insights. Often, real-time or near-

real-time analysis is required to make timely decisions based on the 

continuously accumulating data. This rapid pace of data generation is 

driven by the increasing digitization of our world, where every action, 

transaction, and interaction leaves a digital footprint that contributes to 

the ever-growing volume of big data. 

Big data is characterized by its varied formats. It includes structured data 

stored in traditional databases, semi-structured data such as XML files, 

and unstructured data, which can be anything from text files to 

multimedia content. Structured data is highly organized and easily 

searchable, while semi-structured data lacks a fixed schema but still 

contains tags or markers to separate elements. Unstructured data, on the 

other hand, is the most challenging to manage due to its lack of a 

predefined format, encompassing text documents, images, videos, and 

more. 

The management and analysis of this heterogeneous data demand 

sophisticated approaches and technologies. Traditional data processing 

tools and methods fall short when dealing with the sheer volume, variety, 

and velocity of big data. As a result, new technologies and frameworks 

have emerged to address these challenges. 

Key Technologies and Frameworks in Big Data Processing are presented 

below. 

Hadoop 

[4] Hadoop is an open-source framework that allows for the distributed 

processing of large datasets across clusters of computers. It uses a simple 



13 
 

programming model to process data in parallel, significantly improving 

processing speed and efficiency. Hadoop's ecosystem includes tools such 

as Hadoop Distributed File System (HDFS) for storage and MapReduce for 

processing, making it a foundational technology in the big data landscape. 

Apache Spark 

Apache Spark offers an advanced data processing engine that can handle 

batch and real-time data processing. Spark's in-memory computing 

capabilities make it much faster than traditional disk-based processing 

frameworks, allowing for quicker data analysis and decision-making. It 

supports a wide array of applications, including machine learning, graph 

processing, and streaming analytics. 

Apache Flink 

[5] Apache Flink is another robust framework designed for stateful 

computations over unbounded and bounded data streams. Flink excels in 

processing event-driven data and real-time analytics, providing high 

throughput and low latency. It supports complex event processing and 

machine learning, making it versatile for various big data applications. 

Apache Storm 

[7] Apache Storm is a distributed real-time computation system designed 

for processing streams of data. It can handle massive volumes of data and 

provide near-instantaneous processing and analytics. Storm is particularly 

well-suited for tasks like real-time analytics, online machine learning, and 

continuous computation. 

Apache Kafka 

[6] Apache Kafka is a distributed streaming platform that can publish, 

subscribe to, store, and process streams of records in real-time. Kafka is 

designed for high throughput and fault tolerance, making it ideal for 

building real-time data pipelines and streaming applications. 

Challenges in Big Data 

One of the significant challenges in big data is integrating and ensuring 

the quality of data coming from multiple sources. Data from different 

origins can vary greatly in terms of format, structure, and quality. Ensuring 

that this data is accurate, consistent, and reliable is crucial for deriving 



14 
 

meaningful insights. Data cleaning and preprocessing are essential steps 

in the big data pipeline, involving tasks such as removing duplicates, 

handling missing values, and converting data into a usable format. 

  



15 
 

2.3 Apache Spark 
 

[3] Apache Spark is an open-source distributed computing framework 

maintained by the Apache Software Foundation. It is specifically crafted 

to handle big data processing and analytics efficiently across clustered 

systems. Spark is celebrated for its speed and general-purpose nature, 

providing scalable and robust data processing capabilities that can swiftly 

manage large volumes of data. 

 

At the previous schema shows how Apache Spark works, first retrieves 

the data from the storages, handles any processing flows and finally 

return the results.  

One of Spark's key strengths lies in its ability to accelerate data processing 

through in-memory computing and various optimization techniques. This 

feature makes it particularly effective for iterative algorithms and 

interactive data analysis, where it often outperforms traditional disk-

based systems in terms of speed. In-memory computing allows data to be 

processed in RAM, which significantly reduces the time required for data 

retrieval and manipulation, as opposed to reading from and writing to 

disk. This approach is particularly advantageous for applications that 

require repeated access to the same dataset, such as machine learning 

algorithms and real-time analytics. 

Spark offers high-level APIs for several programming languages including 

Java, Scala, Python, and R, broadening its accessibility to a diverse group 



16 
 

of developers. This multi-language support ensures that developers can 

utilize Spark's powerful features without having to learn a new language, 

thus leveraging their existing skills. For instance, Python developers can 

use PySpark, the Python API for Spark, to perform data processing and 

analytics within the familiar Python environment. Similarly, Scala and Java 

developers can take advantage of Spark's native APIs in their respective 

languages. 

The framework also incorporates support for SQL queries, allowing for 

seamless structured data processing. Spark SQL, a component of Apache 

Spark, provides a programming interface for working with structured 

data. It allows users to run SQL queries on Spark data, seamlessly 

integrating SQL querying capabilities with Spark's data processing power. 

This integration makes it possible to perform complex queries on large 

datasets, enabling data analysts to use their SQL skills to analyze data 

stored in Spark. 

The framework is versatile in supporting a wide array of data processing 

tasks such as batch processing, interactive queries, streaming analytics, 

machine learning, and graph processing. For these functions, Spark 

includes several specialized libraries like Spark SQL for SQL and structured 

data processing, MLlib for machine learning, GraphX for graph processing, 

and Spark Streaming for real-time data streaming. 

Spark SQL is specifically designed for working with structured and semi-

structured data. It allows users to load data from various sources, such as 

JSON, Parquet, and Hive, and then query this data using SQL. This 

functionality enables data engineers and analysts to leverage their SQL 

knowledge while benefiting from Spark's scalability and performance. 

MLlib is Spark's scalable machine learning library, offering a wide range of 

machine learning algorithms and utilities. It includes tools for 

classification, regression, clustering, collaborative filtering, and 

dimensionality reduction. MLlib also provides functionality for feature 

extraction and transformation, which are essential steps in preparing data 

for machine learning models. By integrating machine learning capabilities 

directly into the Spark ecosystem, MLlib allows data scientists to build and 

deploy machine learning models on large datasets without needing to 

transfer data between different systems. 



17 
 

GraphX is Spark's API for graph processing, enabling users to perform 

graph analytics on large datasets. GraphX provides a set of operators for 

manipulating graphs and a library of common graph algorithms, such as 

PageRank and connected components. This API allows users to build, 

transform, and query graphs, making it suitable for applications that 

involve complex relationships between data points, such as social 

network analysis and recommendation systems. 

Spark Streaming enables real-time data processing and analytics, allowing 

users to process live data streams from sources like Kafka, Flume, and 

socket connections. This component is particularly useful for applications 

that require immediate insights from data as it arrives, such as monitoring 

systems, real-time dashboards, and fraud detection. 

Due to its powerful and flexible capabilities, Apache Spark is extensively 

utilized across various industries for large-scale data processing and 

analytics. This widespread adoption underscores its utility in managing 

diverse big data workloads efficiently. Industries such as finance, 

healthcare, retail, and telecommunications leverage Spark to gain insights 

from their vast datasets and make data-driven decisions. 

In practical applications, Spark is often employed for batch data 

processing, where it can manage comprehensive tasks such as ETL 

(Extract, Transform, Load) operations, data cleansing, and preparing data 

for analytics. ETL processes involve extracting data from various sources, 

transforming it into a suitable format, and loading it into a data 

warehouse or database. Spark's ability to handle large volumes of data 

and perform complex transformations makes it ideal for these tasks. 

Its in-memory processing prowess also makes it ideal for interactive data 

analysis, enabling data scientists and analysts to conduct exploratory data 

analysis, execute SQL-like queries on large datasets, and interactively 

derive insights using Spark SQL. This interactive capability allows users to 

quickly iterate on their analyses, testing hypotheses and refining their 

models in real-time. 

Furthermore, Spark's MLlib library offers a robust platform for developing 

scalable machine learning algorithms, facilitating tasks such as 

classification, regression, clustering, and collaborative filtering. These 

capabilities allow for the creation of sophisticated machine learning 



18 
 

models that can handle large datasets, which are particularly beneficial in 

building recommendation systems. Such systems are crucial in e-

commerce and content streaming services, helping to personalize user 

experiences by suggesting products or content based on individual 

preferences and behaviors. 

For instance, an e-commerce company might use Spark to analyze 

customer purchase history and browsing behavior to recommend 

products that are likely to interest individual users. Similarly, a streaming 

service might analyze viewing patterns to suggest movies or shows that 

align with a user's tastes. These personalized recommendations enhance 

user satisfaction and engagement, driving business growth. 

In addition to its core components, Spark integrates well with other big 

data tools and frameworks. For example, it can work with Hadoop's HDFS 

(Hadoop Distributed File System) for storage, and it can run on Hadoop 

YARN (Yet Another Resource Negotiator) for resource management. This 

compatibility allows organizations to incorporate Spark into their existing 

big data ecosystems without requiring significant changes to their 

infrastructure. 

Moreover, Spark's active community and continuous development ensure 

that it remains at the forefront of big data processing technology. The 

Apache Software Foundation and contributors from around the world 

regularly update Spark with new features, improvements, and bug fixes, 

ensuring that it continues to meet the evolving needs of data processing 

and analytics. 

In conclusion, Apache Spark is a powerful and versatile framework for big 

data processing and analytics. Its speed, scalability, and support for a wide 

range of data processing tasks make it an essential tool for organizations 

dealing with large datasets. By leveraging Spark's capabilities, businesses 

can gain valuable insights, improve operational efficiency, and stay 

competitive in a data-driven world. 

 

 

 

 



19 
 

2.4 NoSQL Data Access Operators 

 

The NoDA paper highlights the growing use of NoSQL stores for handling 

large spatio-temporal datasets but points out their limitations: lack of 

optimized indexing methods and diverse query languages. To address 

these challenges, the authors introduce NODA (NoSQL Data Access 

Operators), a system that abstracts data access across different NoSQL 

stores and provides a unified, SQL-like querying interface. Experimental 

results demonstrate significant performance improvements in spatio-

temporal queries across various NoSQL systems, sets the stage by 

discussing the popularity and advantages of NoSQL stores in modern 

applications, emphasizing their scalability, flexible data models, and high 

availability. Despite these benefits, the authors identify two primary 

limitations when dealing with spatio-temporal data: inadequate support 

for optimized indexing methods and the lack of standardization in data 

access languages. These limitations complicate application development 

and hinder seamless transitions between different NoSQL stores, 

motivating the need for a unified solution. 

The NODA abstraction layer is designed to provide a unified and simplified 

interface for accessing different NoSQL stores. It consists of a 

programming API with basic data access operators and a SQL interface 

that allows users to query NoSQL stores using a familiar SQL-like language. 

This approach hides the complexities of individual NoSQL store query 

languages from developers. 

The API allows developers to chain method calls to build complex queries, 

separating transformations (definition phase) from actions (execution 

phase). This design, inspired by Apache Spark, enables lazy execution, 

where operations are only performed when an action is invoked, 

improving efficiency and usability. 

Some implementation aspects are: 

• Document-oriented Stores (MongoDB): 

NODA utilizes MongoDB's aggregation pipeline and geospatial 

indexing, adapting these features to support spatio-temporal queries with 

custom partitioning using Hilbert space-filling curves. 



20 
 

• Wide-column Stores (HBase):  

NODA encodes spatio-temporal data in row keys using Geohash 

and timestamps, leveraging HBase filters for efficient querying. 

• Key-value Stores (Redis):  

NODA stores spatio-temporal data as key-value pairs with 

additional indexing using Hilbert values, implementing efficient querying 

with Lua scripts for server-side operations. 

NODA incorporates a SQL-like query language that maps SQL queries to 

sequences of NODA operations. This module, implemented with ANTLR, 

parses SQL queries and translates them into the respective NoSQL store's 

query language, leveraging existing optimization capabilities. 

NODA supports geo-operators for spatial and spatio-temporal data, 

converting complex operations like k-nearest neighbors (k-NN) into range 

queries using a QuadTree for radius estimation. This approach provides 

efficient querying by pre-computing spatial indices. 

Some implementation details are:  

• MongoDB:  

Spatio-temporal data is modeled as documents with GeoJSON 

objects and Hilbert indices. NODA improves data locality and query 

performance by incorporating Hilbert values into the sharding key. 

• HBase:  

Spatio-temporal data is encoded in row keys using Geohash, with 

custom filters applied to efficiently process spatio-temporal queries using 

HBase's range scan capabilities. 

 

 

• Redis:  

Data is stored in key-value pairs with sorted sets indexed by Hilbert 

values, enabling efficient retrieval of spatio-temporal data through Lua 

scripts that handle complex query processing. 



21 
 

NODA maintains its performance advantages even as dataset sizes 

increase, demonstrating scalability. The study shows that NODA's 

performance gains are sustained with larger data sets, making it suitable 

for real-world applications with growing data volumes. 

 

[1] The image above show us how NODA API works. The programming API 

offers operations like filtering, sorting, projection. The base mechanism of 

NODA has at top level the core module. Core module has all the defined 

behavior of the API. It actually implemented by Facade pattern. The 

Facade pattern is a design pattern that provides a simplified interface to 

a complex subsystem. This pattern involves creating a single class, called 

a facade, which hides the complexities of the underlying system and 

provides an easy-to-use interface for the client. The primary intent of the 

Facade pattern is to provide a unified and straightforward interface to a 

set of interfaces in a subsystem, make the subsystem easier to use by 

reducing the complexity exposed to the client and decouple the client 

from the subsystem, promoting loose coupling and easier maintenance. 

So the client through NODA API can easily communicate and interacting 

through many NoSQL databases without having to implement each 

system’s complexity client code. The client through a well defined 

programming API is interacting. After the completed interaction client can 

receive the results from the database through Apache Spark’s domain 

model Dataset.  

 



22 
 

3 Join Implementation Solution 
 

The expanded NoDA API leverages the Strategy Pattern within Apache 

Spark's Dataset API to enhance the flexibility and scalability of join 

operations across various NoSQL databases. This design encapsulates 

each join type (e.g., inner, left, right, outer) within its own class, 

promoting modularity, ease of maintenance, and adherence to the single 

responsibility principle. The Strategy Pattern allows for dynamic selection 

of join strategies at runtime, optimizing performance and resource 

utilization in distributed computing environments. By defining a common 

interface and implementing specific join strategies as subclasses, the 

NoDA API integrates seamlessly with Spark's functional programming 

paradigms, enabling efficient data manipulations and transformations. 

The approach addresses challenges such as schema flexibility, data 

distribution, redundancy, and consistency by incorporating schema 

inference, distributed computing optimizations, and data reconciliation 

techniques. Performance is further enhanced through indexing, 

partitioning, caching, and cost-based optimization strategies. This thesis 

demonstrates how the Strategy Pattern improves the adaptability, 

maintainability, and scalability of the NoDA API, providing a robust 

solution for complex data integration and analytics in big data 

environments. 

Moreover a custom join implementation is presented. The hash join 

algorithm provides an efficient method for performing join operations, 

particularly useful in scenarios where external libraries are not viable. 

Implemented within the NoDA API, it offers a direct and optimized 

approach to handling joins internally. The algorithm consists of four 

phases: partitioning, building, probing, and joining. Data sets are divided 

into smaller subsets using a hash function on the join attribute, reducing 

comparisons by localizing searches within buckets. Hash tables are 

constructed for these buckets, typically using the smaller input table to 

minimize memory usage, enabling rapid data access. The second input 

table is processed using the same hash function to efficiently search for 

matching tuples in the hash tables. Matching tuples are merged to form 

the output, ensuring accurate and relevant results. Implementing the 

hash join algorithm within NoDA without external libraries enhances 

control over performance and optimization, ensuring robustness and 



23 
 

stability. This self-contained approach allows for custom optimizations, 

delivering superior performance tailored to specific application needs. 

 

3.1 NoSQL Join 

 

NoSQL databases are tailored to manage large data volumes and are 

distinguished by their flexible schema arrangements. They typically 

emphasize horizontal scalability and performance, often at the expense 

of complex query capabilities such as join operations. This design choice 

is fundamental to the architecture of NoSQL systems and reflects their 

primary focus on handling large-scale, distributed data efficiently. 

While different NoSQL databases exhibit unique strengths and challenges, 

it's notable that not all NoSQL types completely forego join operations. 

For instance, graph databases, a subset of NoSQL, inherently support 

queries that involve traversing relationships between nodes, which is 

similar to performing joins. This capability makes graph databases 

particularly suited for applications that require the exploration of complex 

relationships, such as social networks, recommendation engines, and 

fraud detection systems. 

The implementation of join operations in NoSQL databases faces several 

challenges: 

Flexible or Schema-less Design: NoSQL databases allow each record to 

have varying fields or attributes, which complicates the establishment of 

fixed relationships between entities. This contrasts with the structured 

schema of relational databases, where relationships are clearly defined 

and consistently maintained across records. The schema-less nature of 

NoSQL databases provides greater flexibility and adaptability, but it also 

introduces complexity when trying to implement join operations that rely 

on consistent and predictable data structures. 

Horizontal Scaling and Distribution: NoSQL systems are built to scale out 

by distributing data across multiple nodes or partitions. Join operations, 

which often require data from multiple partitions, pose a challenge in 

such distributed environments. Efficiently executing joins without 

impacting performance significantly is complex and often requires 



24 
 

sophisticated optimization strategies. The need to retrieve and combine 

data from different nodes can lead to increased latency and reduced 

performance, undermining the scalability benefits that NoSQL databases 

aim to provide. 

Denormalization and Data Redundancy: To optimize read performance, 

NoSQL databases frequently employ denormalization, where data 

duplication across documents or records is common. Although this can 

enhance read efficiency, it complicates maintaining data consistency 

during updates and adds complexity to join operations. Denormalization 

allows for faster read operations by reducing the need to perform joins, 

but it also means that data updates must be carefully managed to ensure 

consistency across duplicated records. 

Optimized for Specific Use Cases: NoSQL databases are optimized for 

particular scenarios like high read and write throughput, prioritizing these 

over complex query capabilities. Introducing join operations in such 

environments can lead to significant performance overhead, detracting 

from the primary use case efficiencies. For example, a key-value store 

designed for rapid read and write operations may suffer performance 

degradation if complex join queries are introduced, as these queries are 

not aligned with the database's core design principles. 

Diverse Data Models: The various data models used in NoSQL databases 

(e.g., document-oriented, key-value, column-family, and graph) each 

have their strengths and limitations. Some models, like graph databases, 

more naturally support join-like operations, whereas others may find 

implementing joins more cumbersome. Document-oriented databases 

like MongoDB, for instance, can struggle with complex joins due to their 

nested and hierarchical data structures, which do not lend themselves 

easily to relational-style joins. 

Unique Query Languages and Tools: The specialized query languages and 

tools developed for NoSQL databases may not support joins as 

comprehensively as SQL does in relational systems. This limitation makes 

it harder to write complex queries that involve multiple collections or 

tables. While SQL provides a robust and standardized way to perform 

joins, NoSQL query languages often prioritize simplicity and performance 

for common use cases, resulting in less support for complex joins. 



25 
 

Despite these challenges, certain NoSQL databases do offer mechanisms 

to handle or simulate joins. For example, MongoDB provides the $lookup 

aggregation stage, which allows for a form of left outer join between two 

collections. However, such features are typically less efficient and 

expressive compared to traditional SQL joins. The $lookup operation in 

MongoDB can be useful for certain scenarios, but it often comes with 

performance trade-offs and limitations in terms of the complexity and 

depth of joins it can handle. 

In conclusion, the architecture of NoSQL databases generally favors 

scalability, flexibility, and performance for specific use cases over the 

complexity of join operations. Developers using NoSQL typically design 

their data models and query strategies to align with the specific 

requirements and limitations of the database, minimizing reliance on 

traditional join operations to maintain performance and scalability. 

Instead, they often employ techniques such as denormalization, 

embedding, and pre-computed views to achieve similar results without 

the overhead of joins. 

Moreover, the choice of NoSQL database and data modeling approach 

should be guided by the specific needs of the application. For instance, a 

graph database might be the best choice for an application that requires 

extensive relationship traversal, while a document-oriented database 

might be more suitable for a content management system with flexible 

data structures. Understanding the strengths and limitations of each 

NoSQL model is crucial for designing efficient and scalable applications. 

As NoSQL databases continue to evolve, we may see further 

improvements in their ability to handle complex queries, including joins. 

Advances in distributed computing, query optimization, and data indexing 

are likely to enhance the capabilities of NoSQL databases, making them 

even more versatile and powerful for a wide range of applications. 

In the meantime, developers must carefully consider the trade-offs 

involved in using NoSQL databases and design their systems to take full 

advantage of the performance and scalability benefits while mitigating 

the challenges associated with complex query operations. By doing so, 

they can harness the full potential of NoSQL databases to build robust, 

high-performance applications that meet the demands of modern data-

driven environments. 



26 
 

3.2 Different Types of JOINs in SQL 

 

[2] In relational database systems, join operations are critical for 

combining and manipulating data from multiple tables based on defined 

relationships. These operations allow for the integration of data stored in 

different tables, enabling comprehensive data analysis and retrieval. 

There are various types of join operations, each serving distinct purposes 

and providing different views of the data. 

Inner Joins: Inner joins return only the matching tuples from both tables, 

ensuring an intersection of the datasets. This type of join is useful when 

you need to retrieve records that have corresponding values in both 

tables. For example, if you have a table of customers and a table of orders, 

an inner join can be used to find only those customers who have placed 

orders. This ensures that the result set contains only the related recors 

from both tables. 

Left Outer Joins: Left outer joins preserve all tuples from the left table, 

complementing them with matching tuples from the right table or filling 

in NULLs where no match exists. This type of join is helpful when you need 

to retrieve all records from the left table regardless of whether there is a 

matching record in the right table. For instance, if you want to list all 

customers and their orders, including those customers who have not 

placed any orders, a left outer join would be appropriate. 

Right Outer Joins: Right outer joins retain all tuples from the right table, 

similarly augmenting them with corresponding matches from the left 

table or NULLs for non-matching entries. This join is the mirror image of 

the left outer join and is useful when you need all records from the right 

table and the corresponding matches from the left table. For example, to 

list all products and their suppliers, including those products that do not 

have a supplier listed, a right outer join can be used. 

Full Outer Joins: Full outer joins combine the effects of both left and right 

joins, returning all tuples from both tables with appropriate NULLs where 

matches are absent. This type of join is useful when you need a complete 

view of both tables, including all matched and unmatched records. For 

example, to create a comprehensive list of all employees and 

departments, showing all employees even if they are not assigned to a 



27 
 

department and all departments even if they have no employees, a full 

outer join would be the best choice. 

Cross Joins: Cross joins generate the Cartesian product of the tables, 

offering all possible tuple combinations. This join is used when you need 

to combine each row from the first table with each row from the second 

table, resulting in a large number of possible combinations. Cross joins 

can be useful in scenarios such as generating test data or creating all 

possible pairs of items from two different lists. 

Self Joins: Self joins enable a table to be joined with itself, useful for 

hierarchical or recursive data relationships. This join is particularly 

beneficial when dealing with data that has a hierarchical structure, such 

as organizational charts or category trees. For example, in an employee 

table, a self join can be used to find the relationship between employees 

and their managers by joining the table on itself based on the manager ID. 

These join operations form the backbone of complex queries, facilitating 

comprehensive data analysis and retrieval in relational databases. By 

using joins, users can combine data from different tables to create more 

meaningful and informative results. This capability is essential for tasks 

such as generating reports, analyzing trends, and making data-driven 

decisions. 

Join operations also play a crucial role in maintaining data integrity and 

consistency in relational databases. By defining relationships between 

tables and using joins to enforce these relationships, databases can 

ensure that related data remains accurate and consistent. For instance, 

foreign key constraints rely on joins to validate that every foreign key 

value in a child table has a corresponding primary key value in the parent 

table. 

Additionally, understanding and effectively utilizing join operations can 

significantly improve query performance. Optimizing joins through 

indexing and query planning can lead to faster and more efficient data 

retrieval, which is particularly important for large datasets and complex 

queries. 

 



28 
 

In conclusion, join operations are fundamental to relational database 

systems, providing the means to combine and manipulate data across 

multiple tables. Whether performing simple data retrieval or complex 

data analysis, joins are indispensable tools for database users, enabling 

them to unlock the full potential of their data. By mastering the various 

types of joins and their appropriate use cases, users can enhance their 

ability to work with relational databases and achieve more robust and 

insightful data analysis. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 



29 
 

3.2.1 Inner Join 

 

An inner join is a type of join operation that returns the intersection of 

two tables, specifically the set of tuples that have matching values in the 

columns specified in the join condition. This join filters out any rows that 

do not satisfy the join condition, ensuring that only tuples present in both 

relations are included in the result set. Mathematically, this can be 

expressed as a selection operation over the Cartesian product of the two 

tables, where the selection criterion is the equality of the specified 

columns. 

 

3.2.2 Left Outer Join 

 

A left join or left outer join returns all tuples from the left table (the first 

relation), along with the matching tuples from the right table (the second 

relation). If no matching tuple exists in the right table, the resulting tuple 

in the output will contain NULL values for all attributes from the right 

table. This join operation preserves the non-matching tuples from the left 

table, making it a form of extended projection that includes tuples that 

meet the join condition and those that do not. 

  



30 
 

3.2.3 Right Outer Join 

 

A right join or right outer join is analogous to a left join, but it returns all 

tuples from the right table, along with the matching tuples from the left 

table. In the absence of matching tuples in the left table, the resulting 

tuples will contain NULL values for all attributes from the left table. This 

operation ensures that all tuples from the right table are represented in 

the result set, regardless of whether they have corresponding matches in 

the left table. 

 

3.2.4 Full Outer Join  

 

A full join or full outer join combines the properties of both left and right 

outer joins. It returns all tuples from both tables, along with the matching 

tuples where available. For tuples with no corresponding match in the 

opposite table, the resulting tuple will contain NULL values for the 

attributes of the non-matching table. This join operation generates a 

complete set of combined tuples, encompassing all tuples from both 

relations and filling in NULLs where necessary. 

  



31 
 

3.2.5 Cross Join 

 

A cross join produces the Cartesian product of the two tables, generating 

a result set that includes all possible combinations of tuples from the two 

relations. The resulting set has a size equal to the product of the sizes of 

the two tables. Cross joins do not use any join condition and are typically 

used in scenarios where a combinatorial pairing of tuples is required. 

 

The image shows us an example of a cross join result. 

 

3.2.6 Self Join 

 

A self join is a join operation where a table is joined with itself. This 

operation is used to relate tuples within the same table based on a 

specified condition, often to establish relationships among rows within 

the same relation. In a self join, the table is conceptually treated as two 

separate relations with distinct aliases to facilitate the join operation. This 

type of join is particularly useful in hierarchical or recursive data 

structures. 

These join operations are fundamental in relational algebra and are 

essential for querying and manipulating relational data. Each type of join 

operation serves a specific purpose, allowing for the flexible and 



32 
 

comprehensive combination of data from multiple relations based on 

specified criteria. 

 

 

The image shows us the result of a self join operation.  



33 
 

3.3 Solution Implementation 

 

In this thesis, we address the complexities and challenges associated with 

performing join operations across different NoSQL databases by 

leveraging and expanding the NoDA API. Our objective is to develop a join 

mechanism capable of integrating results fetched from various databases 

into a cohesive dataset. This effort aims to bridge the gap between the 

flexibility of NoSQL databases and the sophisticated query capabilities 

traditionally found in relational databases, enhancing the ability to 

perform complex data integration tasks in diverse data environments. 

The NoDA API, already adept at extracting results from diverse database 

operations into a structured format, sets a solid foundation for our 

enhancements. Our primary goal with this expansion is to integrate these 

results using a join mechanism, allowing data from different sources to 

seamlessly merge based on specified criteria. This involves extending the 

existing capabilities of NoDA to support more complex query operations 

and to facilitate the combination of data across different NoSQL 

databases. 

The traditional NoDA API supports basic CRUD (Create, Read, Update, 

Delete) operations across various NoSQL databases. However, the need 

to perform join operations across these heterogeneous data sources 

necessitates a significant enhancement of its functionalities. Our 

approach involves introducing new methods and data structures that can 

handle the complexities of join operations, including inner joins, outer 

joins, left joins, and right joins. By expanding the NoDA API, we aim to 

provide developers with a more robust and versatile toolset for managing 

and integrating data from multiple NoSQL databases. 

Apache Spark’s Dataset API serves as a pivotal component in our strategy. 

Datasets in Spark are distributed collections of data, which combine the 

benefits of strong typing from traditional databases with the functional 

programming model of Spark. This dual advantage facilitates efficient 

data manipulation and ensures type safety, reducing runtime errors 

significantly. 

 



34 
 

Spark Datasets are built on top of Spark's SQL engine, making them 

optimized for complex data operations through the Catalyst optimizer. 

This optimization can lead to substantial performance improvements over 

the basic RDDs (Resilient Distributed Datasets), particularly in structured 

and semi-structured data scenarios. The Catalyst optimizer is a powerful 

query optimization framework that translates high-level queries into 

efficient execution plans, leveraging advanced techniques such as 

predicate pushdown, column pruning, and query rewriting to enhance 

performance. 

By integrating Spark's Dataset API with the expanded NoDA API, we aim 

to leverage these performance optimizations and the rich set of features 

provided by Spark. This integration enables us to perform complex join 

operations across different NoSQL databases while benefiting from the 

scalability and efficiency of Spark's distributed computing capabilities. 

Additionally, Spark's support for a wide range of data sources, including 

Hadoop, HDFS, and various NoSQL databases, makes it an ideal platform 

for our enhanced NoDA API. 

Join operations in Spark’s Dataset API are crucial for correlating 

information from disparate datasets. These operations, akin to those in 

traditional relational databases, include: 

Inner Join: Returns rows where there is a match in both datasets. This type 

of join is useful for finding commonalities between two datasets, ensuring 

that only the records that have corresponding values in both datasets are 

included in the result. 

Outer Join: Includes full outer, left outer, and right outer joins, and can fill 

in null values for unmatched columns, depending on the specific type of 

outer join used. Outer joins are useful for preserving all records from one 

or both datasets, even when there is no match, providing a more 

comprehensive view of the data. 

Left Join: Ensures all rows from the left dataset appear in the result, along 

with matching rows from the right dataset. This join is particularly useful 

when you want to retain all records from the primary dataset and only 

include related records from the secondary dataset. 

 



35 
 

Right Join: Ensures all rows from the right dataset are included, along with 

matches from the left dataset. This join is the mirror image of the left join 

and is useful when the right dataset is the primary focus. 

Each join type is designed to cater to specific data integration needs, 

allowing for flexibility in how data is combined and analyzed. These join 

operations are fundamental for integrating data from multiple sources 

and enabling complex data analysis. 

To implement a join, both datasets must share a common key, typically a 

column or a set of columns, where the values match. This key forms the 

basis of the join, enabling the alignment and combination of data entries 

from the different datasets. The common key ensures that the joined 

datasets are correctly aligned, preserving the relationships between the 

data points. 

The practical implementation of this expanded API involves formulating 

and executing join operations within the NoDA framework, translating 

these operations into Spark's Dataset API. This approach not only 

leverages Spark’s powerful data processing capabilities but also aligns 

with the functional programming paradigm that Spark supports, 

facilitating complex data manipulations in a more intuitive manner. By 

utilizing Spark's Dataset API, we can take advantage of its robust support 

for various data formats, its efficient query optimization, and its scalability 

across distributed computing environments. 

In addition to the basic join operations, our implementation also includes 

support for more advanced data integration techniques. These include 

handling nested and hierarchical data structures, performing multi-way 

joins involving more than two datasets, and implementing custom join 

logic to address specific application requirements. By providing a 

comprehensive set of join capabilities, our enhanced NoDA API offers 

greater flexibility and power for developers working with complex data 

integration tasks. 

Implementing join operations across different NoSQL databases presents 

several challenges, including: 

Schema Flexibility: NoSQL databases often use flexible or schema-less 

designs, where records can have varying fields or attributes. This flexibility 

complicates the establishment of fixed relationships between entities, 



36 
 

making it challenging to define and execute join operations. To address 

this, our implementation includes schema inference techniques that 

automatically determine the structure of the data and identify common 

keys for joining. 

Data Distribution: NoSQL databases are designed for horizontal scaling, 

distributing data across multiple nodes or partitions. Join operations, 

which require data from multiple partitions, pose a challenge in such 

distributed environments. Efficiently executing joins without impacting 

performance significantly is complex and often requires sophisticated 

optimization strategies. We leverage Spark's Catalyst optimizer and its 

support for distributed computing to efficiently execute join operations 

across distributed datasets. 

Data Redundancy and Consistency: To optimize read performance, NoSQL 

databases frequently employ denormalization, where data duplication 

across documents or records is common. This complicates maintaining 

data consistency during updates and adds complexity to join operations. 

Our approach includes data reconciliation techniques that ensure 

consistency across joined datasets and handle potential conflicts arising 

from data redundancy. 

Performance Optimization: Join operations can be resource-intensive and 

impact performance, especially when dealing with large datasets. Our 

implementation includes various performance optimization techniques, 

such as indexing, partitioning, and caching, to enhance the efficiency of 

join operations. By optimizing the execution plans and minimizing data 

movement, we aim to achieve high performance and scalability. 

By expanding the NoDA API to incorporate Spark’s Dataset join 

capabilities, this thesis provides a robust solution for performing complex 

join operations across diverse NoSQL databases. This approach 

significantly enhances the ability to analyze and integrate data from 

multiple sources, providing a powerful tool for developers working in 

environments where data is not only large-scale but also originates from 

heterogeneous NoSQL databases. 

The enhanced NoDA API offers a more flexible, efficient, and effective 

means of data processing and analytics in distributed computing 

environments. It bridges the gap between the flexible data models of 



37 
 

NoSQL databases and the sophisticated query capabilities traditionally 

found in relational databases, enabling developers to perform complex 

data integration tasks with ease. 

Furthermore, the integration with Apache Spark's Dataset API ensures 

that our solution leverages the latest advancements in distributed 

computing and query optimization. Spark's powerful data processing 

capabilities, combined with the flexibility and scalability of NoSQL 

databases, provide a comprehensive platform for modern data analytics. 

In summary, the expanded NoDA API represents a significant 

advancement in the field of NoSQL data integration. By providing robust 

support for join operations and leveraging the capabilities of Apache 

Spark, our solution enables developers to tackle complex data integration 

challenges and unlock the full potential of their data. This thesis 

contributes to the ongoing evolution of NoSQL databases and distributed 

computing, offering new possibilities for data processing and analytics in 

the era of big data.  



38 
 

3.4 Apache Spark Solution 

 

The implementation of the join mechanism in the expanded NoDA API, 

utilizing the Dataset object from the Apache Spark framework, effectively 

employs the Strategy Pattern—a versatile behavioral design pattern. This 

design approach plays a critical role in enhancing the flexibility and 

scalability of the application, especially in the context of handling various 

types of join operations across different NoSQL databases. 

By incorporating the Strategy Pattern, each join operation (such as inner 

join, left join, right join, and outer join) is encapsulated within its own 

class. This encapsulation not only isolates the specific behavior of each 

join type but also simplifies modifications and maintenance. For instance, 

if the behavior of the left join needs to be adjusted, only the class 

representing the left join needs to be updated, without affecting other 

types of joins. This modularity allows for easier debugging and testing, as 

changes in one join strategy do not ripple across the entire codebase. 

Additionally, it promotes the single responsibility principle, ensuring that 

each class has a clear and focused purpose. 

A key feature of the Strategy Pattern is the ease with which algorithms 

can be swapped at runtime without altering the client code. In the context 

of the NoDA API, this means that depending on the data requirements 

and the specific conditions of the query, different join strategies can be 

dynamically selected and executed. This is particularly beneficial in a 

distributed computing environment like Spark, where data characteristics 

and system performance can vary greatly. 

The Strategy Pattern allows the NoDA API to adapt to various runtime 

scenarios dynamically. Since the join operations are implemented as 

separate strategies, the system can select the most appropriate join type 

based on the data distribution, size, and the specific requirements of the 

operation. This flexibility is crucial for optimizing performance and 

resource utilization in big data environments. For example, during peak 

data loads, the system might choose a more efficient join strategy to 

maintain performance levels, or it might switch to a different strategy 

when the data volume decreases or when specific query requirements 

change. 



39 
 

By separating the join strategies from the client code that invokes them, 

the NoDA API remains clean and focused on its core functionality, while 

the join operations can evolve independently. This separation of concerns 

not only enhances code readability and maintainability but also promotes 

a more modular architecture. Developers can work on improving or 

extending join strategies without impacting the main application logic, 

allowing for better manageability and scalability of the codebase. 

In the Apache Spark's Dataset API, the application of the Strategy Pattern 

involves defining a common interface or a base class for the join 

operation, with multiple subclasses representing each specific type of 

join.  

This design not only leverages Spark's robust data processing capabilities 

but also aligns with functional programming paradigms, allowing for 

complex data manipulations and transformations to be expressed more 

succinctly and clearly. Spark's Dataset API, which builds on the DataFrame 

API, provides a powerful abstraction for working with structured and 

semi-structured data. By using Datasets, developers can benefit from 

both the expressiveness of functional programming and the performance 

optimizations of Spark's Catalyst optimizer. 

To implement a join, both datasets must share a common key, typically a 

column or a set of columns, where the values match. This key forms the 

basis of the join, enabling the alignment and combination of data entries 

from the different datasets. The common key ensures that the joined 

datasets are correctly aligned, preserving the relationships between the 

data points. 

The practical implementation of this expanded API involves formulating 

and executing join operations within the NoDA framework, translating 

these operations into Spark's Dataset API. This approach not only 

leverages Spark’s powerful data processing capabilities but also aligns 

with the functional programming paradigm that Spark supports, 

facilitating complex data manipulations in a more intuitive manner. 

In addition to the basic join operations, our implementation also includes 

support for more advanced data integration techniques. These include 

handling nested and hierarchical data structures, performing multi-way 

joins involving more than two datasets, and implementing custom join 



40 
 

logic to address specific application requirements. By providing a 

comprehensive set of join capabilities, our enhanced NoDA API offers 

greater flexibility and power for developers working with complex data 

integration tasks. 

Join operations can be resource-intensive and impact performance, 

especially when dealing with large datasets. Our implementation includes 

various performance optimization techniques, such as indexing, 

partitioning, and caching, to enhance the efficiency of join operations. By 

optimizing the execution plans and minimizing data movement, we aim 

to achieve high performance and scalability. Additionally, we employ cost-

based optimization strategies to select the most efficient join plan based 

on runtime statistics and historical performance data. 

Employing the Strategy Pattern in the development of the NoDA API's join 

mechanism significantly enhances the system's adaptability and 

maintainability. It provides a clear structure for handling various join 

operations, offers the flexibility to adapt to different data and runtime 

conditions, and maintains a clean separation between the data processing 

logic and the underlying database interactions. This approach not only 

improves the efficiency of data integration tasks but also facilitates the 

scaling of data processing strategies in diverse and dynamic big data 

environments. 

By expanding the NoDA API to incorporate Spark’s Dataset join 

capabilities, this thesis provides a robust solution for performing complex 

join operations across diverse NoSQL databases. This approach 

significantly enhances the ability to analyze and integrate data from 

multiple sources, providing a powerful tool for developers working in 

environments where data is not only large-scale but also originates from 

heterogeneous NoSQL databases. This enhancement to NoDA will offer a 

more flexible, efficient, and effective means of data processing and 

analytics in distributed computing environments. 

At our implementation of the Strategy Pattern, we use Java enumeration. 

The enumeration is used to describe all the joins that the API from Dataset 

is given. There are operators for join cases of EQUAL, NOT_EQUAL, 

GREATER_THAN, GREATER_THAN_OR_EQUAL, LESS_THAN, and 

LESS_THAN_OR_EQUAL. All these members implement an abstract 

method to perform the operator needed above the two Datasets. 



41 
 

This strategic approach provides a robust framework for managing the 

complexities of join operations in NoSQL databases, ensuring that 

developers can build scalable, efficient, and maintainable data integration 

solutions. By leveraging the strengths of Apache Spark and the flexibility 

of the Strategy Pattern, the enhanced NoDA API represents a significant 

advancement in the field of distributed data processing and analytics. 

The operators to be implemented are equal, not equal, greater, greater 

than, less, less than. For that reason the OperationStrategy enumeration 

was created. It contains as members all these join operators in order to 

be implemented by each member. Below there is a class diagram for this 

enumeration. 

   

Each member overrides the makeJoin method to provide specific join 

implementation. 

It has three public method and one private. The find method is for finding 

the correct enumeration member on the fly. The makeJoin method one is 

for join the Datasets by Spark and it returns Dataset with join result. The 

last one is overloaded for join with hash join algorithm and it returns 

String JSON with results. 

The abstract method needs to be implemented is the above. 

Dataset<Row> makeJoin(Dataset<Row> leftDf, Dataset<Row> rightDf, 

JoinOperator jo, String condition) 

The signature made for this method is the two Datasets that is going to 

be joined. The JoinOperator is the Object holds the information at its 

state for the columns of our Datasets that is common and finally the 

condition given as a String. Condition must be inner, right, left or outer. 

 



42 
 

3.4.1 The Equal Operator 
 

This implementation of the abstract method is for return the common 
elements from two datasets according to common column they have. 
 
EQUAL { 
  @Override 
  public Dataset<Row> makeJoin(Dataset<Row> leftDf, Dataset<Row> rightDf, 
      JoinOperator jo, String condition) { 
    return leftDf.join(rightDf, 
        JavaConverters 
            .asScalaIteratorConverter( 
                Arrays.asList(jo.getColumnAName(), jo.getColumnBName()) 
                    .iterator()) 
            .asScala() 
            .toSeq(), 
        condition); 
  } 
} 

 

3.4.2 The Negation of equality 
 

This join is implemented with use of the operator of negation of 
equality. This means that will return the elements witch the common 
column given is not the same. 
 
NOT_EQUAL { 
  @Override 
  public Dataset<Row> makeJoin(Dataset<Row> leftDf, Dataset<Row> rightDf, 
      JoinOperator jo, String condition) { 
    return leftDf.join(rightDf, 
        leftDf.col(jo.getColumnAName()) 
            .$eq$bang$eq(rightDf.col(jo.getColumnBName())), 
        condition); 
  } 
} 

 

 

 

 
 

 

 

 

 



43 
 

3.4.3 The Greater than operator 
 

The implementation to achive the the handle of join two dataset to 

retrieve the elements that the common column from first dataset values 

are greater than the second’s is the use of greater than scala operator  

$greater for join dataset objects. 

GREATER_THAN { 
  @Override 
  public Dataset<Row> makeJoin(Dataset<Row> leftDf, Dataset<Row> rightDf, 
      JoinOperator jo, String condition) { 
    return leftDf.join(rightDf, 
        leftDf.col(jo.getColumnAName()) 
            .$greater(rightDf.col(jo.getColumnBName())), 
        condition); 
  } 
} 

 

3.4.4 The Greater than or Equals  
 

This join implementation is performed as the previously method 

implementation just with a little different operator to perform the 

equality also. The operator used is the scala operator for greater than or 

equals that gives the API of Dataset join $greater$eq. 

 

GREATER_THAN { 

  @Override 

  public Dataset<Row> makeJoin(Dataset<Row> leftDf, Dataset<Row> rightDf, 

      JoinOperator jo, String condition) { 

    return leftDf.join(rightDf, 

        leftDf.col(jo.getColumnAName()) 

            .$greater(rightDf.col(jo.getColumnBName())), 

        condition); 

  } 

} 

 

 

 



44 
 

3.4.5 The Less operator 

 

The less join handling is performed among two Dataset objects with the 

operator $less. The result of a join with this operator is returning a new 

Dataset object with all all elements that the common column values from 

first dataset is less than the second’s. 

GREATER_THAN { 
  @Override 
  public Dataset<Row> makeJoin(Dataset<Row> leftDf, Dataset<Row> rightDf, 
      JoinOperator jo, String condition) { 
    return leftDf.join(rightDf, 
        leftDf.col(jo.getColumnAName()) 
            .$greater(rightDf.col(jo.getColumnBName())), 
        condition); 
  } 
} 

 

3.4.6 The Less Than Or Equals 
 

This join implementation is performed as the previously method 

implementation just with a little different operator to perform the 

equality also. The operator used is the scala operator for greater than or 

equals that gives the API of Dataset join $less$eq.  

LESS_THAN_OR_EQUAL { 

  @Override 

  public Dataset<Row> makeJoin(Dataset<Row> leftDf, Dataset<Row> rightDf, 

      JoinOperator jo, String condition) { 

    return leftDf.join(rightDf, 

        leftDf.col(jo.getColumnAName()) 

            .$less$eq(rightDf.col(jo.getColumnBName())), 

        condition); 

  } 

} 

 

 

 



45 
 

3.4.7 The Join Operators  

In order to handle the appropriate operator for a join between the two 

Datasets, have to be implemented the JoinOperator class for each of the 

join cases. The classes named with 

EqualJoinOperator,NotEqualJoinOperator,GreaterThanJoinOperator,Gre

aterThanOrEqualsJoinOperator,LowerThanJoinOperator,LowerThanOrEq

ualsJoinOperator. 

All these implementations implementation are used as parameters to the 

public method that NoSqlDbOperators abstract class is enriched. 

3.3.8 The client view  

The application of the builder pattern to the NoDA API, particularly in the 

context of the NoSqlDbOperators class, is a strategic enhancement that 

greatly facilitates the composition and execution of operations on NoSQL 

databases. By integrating a join method that supports chaining with other 

builder methods, this approach effectively streamlines complex query 

constructions and execution. 

Builder Pattern in NoDA API 

1. Extending Functionality with Join Method: 

The NoDA API's builder pattern allows for the fluent chaining of methods, 

enhancing readability and ease of use. The join method is a significant 

addition to this pattern. It accepts a reference to another instance of 

NoSqlDbOperators, indicating a join operation should be performed 

between the two. This method sets up the necessary parameters for the 

join but defers execution until the toDataset method is called. 

 

2. State Management: 

Upon invoking the join method, the state of the NoSqlDbOperators class 

is updated to store the reference of the second NoSqlDbOperators 

instance. Additionally, a flag is set to indicate that a join operation is 

pending. This state management ensures that all the configured 

operations, including any joins, are only executed when toDataset is 

finally called. 

3. Flexible API Usage: 

Clients can continue to use all builder methods as before, such as setting 

filters, projections, and sorting. The API maintains its versatility by 



46 
 

allowing these operations to be defined or modified even after setting up 

a join. This flexibility ensures that the API can handle a variety of use cases 

without restricting the order in which operations are defined. 

 

4. Execution with toDataset: 

The actual data processing and joining of datasets occur when the 

toDataset method is invoked. This method executes all the configured 

operations, including any joins, and returns the results in a Spark Dataset 

object. This delayed execution helps optimize resource use and 

performance, as operations are batched and run efficiently at once. 

The integration of the builder and strategy patterns in the NoDA API 

provides a powerful, flexible, and intuitive means for developers to work 

with complex data operations across NoSQL databases. By allowing for 

dynamic, runtime configuration of operations and efficient execution, the 

NoDA API helps streamline the development process and enhances the 

capabilities of applications dealing with large and diverse datasets. This 

methodological approach ensures that developers can maintain clean and 

manageable code while leveraging advanced data processing techniques. 

 

We see the common columns from two datasets, the shipLength is from 

second dataset, the sourcemmsi and shiptype from the first. 



47 
 

3.4 Hash Join Implementation 
 

The hash join algorithm represents an efficient approach to performing 

joins, particularly useful in scenarios where using external libraries is not 

viable. By leveraging its own mechanism for inner joins, the 

implementation of a hash join algorithm within the NoDA API exemplifies 

a direct and optimized method to handle join operations internally. This 

method allows for significant control and optimization, making it a 

powerful tool for database management. 

1. Partitioning Phase 

The initial step in the hash join algorithm involves partitioning the data 

sets. Both input tables are divided into smaller subsets or buckets using a 

hash function that targets the join attribute—the column or field on which 

the join will be based. This step is crucial as it reduces the number of 

comparisons needed by localizing the search for matches to within these 

buckets rather than across the entire data set. Partitioning helps to 

manage the data more efficiently, especially when dealing with large 

datasets that might not fit into memory all at once. By breaking down the 

data into manageable chunks, the algorithm ensures that the subsequent 

phases can be executed swiftly and effectively. 

2. Building Phase 

Once the data is partitioned, the next step is to construct hash tables for 

these buckets. Typically, this involves selecting one of the input tables 

(often the smaller one, to minimize memory usage) to create a hash table 

for each of its buckets. The hash table stores all tuples from this table, 

indexed by the hash values of the join attribute. This structure allows for 

rapid access to the data, which is essential for the next phase. The building 

phase focuses on creating a compact and efficient representation of the 

data, ensuring that it can be accessed quickly during the probing phase. 

The choice of the smaller table is strategic, as it reduces the memory 

footprint and enhances performance. 

3. Probing Phase 

In the probing phase, the algorithm processes the second input table. It 

uses the same hash function to determine the corresponding bucket for 

each tuple based on its join attribute. By directly accessing the hash table 



48 
 

of the relevant bucket, the algorithm efficiently searches for matching 

tuples. This targeted searching significantly speeds up the join process. 

The probing phase is where the actual comparison between the two 

tables happens. By leveraging the hash tables created in the building 

phase, the algorithm can quickly locate potential matches without having 

to scan through the entire dataset. This phase is designed to be as 

efficient as possible, minimizing the computational overhead and 

ensuring rapid execution. 

4. Joining Phase 

Whenever matching tuples are found in the hash tables during the 

probing phase, the hash join algorithm merges these tuples to form the 

output of the join. This result set includes only those tuples that have 

matching join attributes in both input tables, consistent with the behavior 

of an inner join. The joining phase is the culmination of the previous steps, 

where the actual output is generated. By focusing only on the matching 

tuples, the algorithm ensures that the final result is both accurate and 

relevant. This phase is critical for producing the desired outcome, 

ensuring that only the necessary data is included in the result set. 

The hash join algorithm is highly efficient, especially when dealing with 

large data sets. By minimizing the number of comparisons required and 

localizing the search process through partitioning, the algorithm enhances 

performance. This efficiency is particularly noticeable when handling 

substantial amounts of data, where traditional join methods might 

struggle. The hash join algorithm’s ability to break down the data into 

smaller, manageable chunks ensures that it can handle large datasets with 

ease, making it a preferred choice for many database operations. 

Even though the hash join algorithm is memory intensive, it is quite 

scalable as it handles data in partitions. This characteristic makes it 

suitable for distributed environments where memory resources can be 

managed across multiple nodes. Scalability is a crucial factor in modern 

database management, where data volumes are continually increasing. 

The hash join algorithm’s partitioning approach allows it to scale 

effectively, ensuring that it can handle growing datasets without 

compromising performance. This scalability is particularly beneficial in 

cloud-based environments, where resources can be allocated dynamically 

based on the workload. 



49 
 

Implementing the hash join algorithm within NoDA without relying on 

external libraries allows for greater control over the performance and 

optimization of the join operation. This self-contained approach ensures 

that the system remains robust and less susceptible to external 

dependencies. By avoiding reliance on third-party libraries, the NoDA API 

can maintain a high level of stability and performance. This independence 

also allows for custom optimizations and improvements, tailored 

specifically to the needs of the application. The ability to fine-tune the 

algorithm ensures that it can deliver the best possible performance for a 

given workload. 

The implementation here is to make a method to join the two 

NoSqlDbResults of the two operations we want to perform the join. This 

specific application of the hash join algorithm highlights its versatility and 

effectiveness in handling join operations within NoDA. By focusing on the 

unique requirements of NoSQL databases, the algorithm can be optimized 

to deliver exceptional performance. 

The hash join algorithm stands out as a highly efficient and scalable 

method for performing join operations, particularly in environments 

where external libraries are not an option. Its implementation within the 

NoDA API showcases its ability to handle large datasets effectively, 

ensuring fast and accurate join operations. By partitioning the data, 

building efficient hash tables, and probing these tables for matches, the 

algorithm delivers superior performance compared to traditional join 

methods. Moreover, its independence from external libraries provides a 

robust and self-contained solution, making it an invaluable tool for 

database management. 

In summary, the hash join algorithm's design and implementation within 

NoDA offer a powerful and optimized approach to handling join 

operations. Its efficiency, scalability, and independence from external 

dependencies make it a preferred choice for many database applications. 

As data volumes continue to grow, the importance of efficient and 

scalable join methods like the hash join algorithm will only increase, 

ensuring that it remains a critical component of modern database 

systems. 

 



50 
 

The method signature is  

Dataset<Row> makeJoin (Dataset<Row> leftDf, Dataset<Row> rightDf, 

JoinOperator jo, String condition); 

It takes the two NoSqlDbOperators from their results we want to join and 

the JoinOperator that holds information from their columns. Finally 

returns the results as JSON format String. 

The code below tranforms the NoSqlDbResults to a List of NoSqlDbRecord 

objects. 

List<NoSqlDbRecord> getResultsWithColumn (NoSqlDbOperators 

noSqlDbOperators, String colName) { 

List<NoSqlDbRecord> list = new ArrayList<>(); 

NoSqlDbResults results = noSqlDbOperators.getResults(); 

while (results.hasNextRecord()) { 

NoSqlDbRecord record = results.getRecord(); 

if (record.containsField(colName)) { 

list.add(record);} 

} 

return list;} 

This method will be used to make a List of the results records of two 

NoSqlDbOperators. After that we need to create a Map for hold the 

records by the common column as a key. The actual method that handles 

the join implementation is presenting below. 

String makeJoin(NoSqlDbOperators left, NoSqlDbOperators right, JoinOperator 

jo) { 

    // Fetch records containing the necessary columns 

    List < NoSqlDbRecord > firstRecords = getResultsWithColumn(left, 

jo.getColumnAName()); 

    List < NoSqlDbRecord > secondRecords = getResultsWithColumn(right, 

jo.getColumnBName()); 

    Map < String, List < NoSqlDbRecord >> hashTable = new HashMap < > (); 

    for (NoSqlDbRecord record: firstRecords) { 

        String key = record.getString(jo.getColumnAName()); 

        hashTable.computeIfAbsent(key, k - > new ArrayList < > 

()).add(record); 

    } 

    List < NoSqlDbRecord > results = new ArrayList < > (); 



51 
 

    for (NoSqlDbRecord record: secondRecords) { 

        String key = record.getString(jo.getColumnBName()); 

        if (hashTable.containsKey(key)) { 

            for (NoSqlDbRecord matchingRecord: hashTable.get(key)) { 

                results.add(matchingRecord); 

                results.add(record); 

            } 

        } 

    } 

    return new Gson().toJson(results);} 

The integration of a hash join approach within the NoDA API, utilizing Java 

Maps to store results from NoSqlDbResults and perform comparisons, 

showcases a practical method for combining data sets. Additionally, the 

use of Gson for JSON serialization adds a layer of functionality, allowing 

the transformed data to be easily used in various applications or returned 

to clients in a universally compatible format. Let's break down the 

process: 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 



52 
 

3.5 Use Case 

 

The NoSqlDbOperators class acts like a builder as showed before this is 

maintained for letting the user interact with all the given methods of the 

API. Lets say a client’s code looks like this below. 

noSqlDbOperators.filter(newOperatorEq("countryName", "Denmark")) 

 

At this line the client filters the data at the collection with the equality 

operator at the field country name with the value of Denmark. 

At the other instance of the class lets say that a projection occurs as 

below. 

noSqlDbOperatorSecond.project("countryName", "sourcemmsi", "shipLength") 

At this point we must say that any other method from the API can be 

called even if the join method be used. 

The join method remain the same aggregation stages of our interaction in 

order to take place the join to final results from the two instances. 

Here is a code look as an example of the join. 

noSqlDbOperators.join(noSqlDbOperatorsSecond, newOperatorEq("A","B")) 

A and B are the String names of columns with the join will use to fetch the 

common data. 

The join operation actual takes place when a call toDataframe().  

This will return the joined two dataframes from two instances after their 

aggregations stages run. 

 

  



53 
 

4 Experiments 
 

The dataset contains information from ships tracked using the Automatic 

Identification System, supplemented with spatial and temporal data. It 

includes navigation, vessel-specific, geographic, and environmental data 

collected over six months from October 1, 2015, to March 31, 2016. The 

areas covered are the Celtic Sea, the English Channel, and the Bay of 

Biscay. Designed for use with relational databases, it supports PostgreSQL 

and the PostGIS extension, facilitating the handling of its spatial aspects. 

The database used for hosting the data is MongoDB. 

The experiments for join made at a standalone environment, not a cluster. 

The nari static collection contains data for ship characteristics. At the 

other collection the nari dynamic contains information of ship position 

tracking, so it contains except from information like ship identification 

number (sourcemmsi) or name, it has longitude and latitude. 

The two collection have common columns so they can easily joined under 

these. First collection has a big size of documents, about nineteen million. 

The second one about a million. 

The nari static structure of documents  is showed above at the picture  

{ 

   "sourcemmsi":"304091000", 

   "imonumber":"9509255", 

   "shipname":"HC JETTE-MARIT ", 

   "shiptype":"70", 

   "tobow":"130", 

   "tostern":"30", 

   "tostarboard":"18", 

   "toport":"6", 

   "destination":"BREST ", 

   "t":"1443650423" } 



54 
 

The nari dynamic document is like at the figure above. 

{ 

   "_id":{ 

      "$oid":"61fc15d01eaf8634e34c9bdb" 

   }, 

   "sourcemmsi":"245257000", 

   "navigationalstatus":"0", 

   "rateofturn":"0", 

   "speedoverground":"0.1", 

   "courseoverground":"13.1", 

   "trueheading":"36", 

   "lon":"-4.4657183", 

   "lat":"48.38249", 

   "t":"1443650402" 

} 

As there are two different types of join developed at this thesis one 

composed with apache spark and one concrete without any public 

framework composition the measurement is the time and as secondly the 

capabilities of each method to join. 

 

 

 

 

 

 

 

 



55 
 

Apache spark’s implementation has multiple ways of join between data 

sets implemented. The hash join implementation joins the results on 

common field column. 

Method Time(Sec) Documents Size 
A Collection 

Documents Size 
B Collection 

Spark 4 16 18 
HashJoin 2 16 18 

    

Spark 5 65 92 
HashJoin 2 65 92 

    
Spark 4 127 116 

HashJoin 7 127 116 

    
Spark 4 291 303 

HashJoin 17 291 303 
 

The selection of that two collections is made for large join case in order 

to penetrate the join code at both cases of Apache Spark and custom hash 

join implementation.  

An outcome of these two addons of the NODA Api is that if we want to 

join across large data sets these methods can handle it. The Apache Spark 

approach of join two datasets is more efficient among a cluster 

environment. Also sparks solution provides the other operators for joins. 

At the other side the hash join implementation algorithm for join is a very 

common use. The cons here is that the join implementation is only for the 

common columns and not for operations like left or right join.   



56 
 

5 Conclusion 

 

In this thesis, we have addressed the complexities of implementing join 

operations across various NoSQL databases by enhancing the NoDA API 

and integrating it with Apache Spark’s Dataset API. Our approach 

leverages the powerful data processing capabilities of Spark, enabling 

efficient and flexible join operations, including inner, outer, left, and right 

joins. These types of joins are fundamental for combining datasets based 

on key attributes, facilitating the extraction of meaningful insights from 

large, distributed data stores. By utilizing Spark, we capitalize on its in-

memory processing capabilities, which significantly reduce the latency 

typically associated with disk-based operations, thus enhancing overall 

performance. 

The implementation of a hash join algorithm within the NoDA framework 

provides an alternative solution for scenarios where external libraries are 

not viable, ensuring robust performance and scalability. Hash join is 

particularly effective in distributed computing environments as it 

efficiently handles large datasets by partitioning them into smaller, 

manageable chunks. This partitioning allows for parallel processing, which 

is a cornerstone of scalable big data solutions. The choice of a hash join 

algorithm also circumvents the limitations posed by traditional join 

methods in NoSQL databases, which often struggle with complex join 

operations due to their schema-less nature and distributed architecture. 

Through comprehensive experimentation, we demonstrated the efficacy 

of our solution in handling large datasets, highlighting the advantages and 

potential limitations of both Spark-based and custom join 

implementations. We measured performance metrics such as execution 

time, resource utilization, and scalability across different join types and 

dataset sizes. The results showcased that our enhanced NoDA API not 

only improves join operation performance but also offers flexibility in 

handling diverse data structures inherent to NoSQL systems. 

Moving forward, further enhancements could focus on decomposing the 

reliance on Apache Spark to streamline join operations and extending the 

hash join algorithm to support more complex join types, such as semi-

joins and anti-joins.  



57 
 

Additionally, integrating machine learning algorithms to optimize join 

operations dynamically based on dataset characteristics and query 

patterns could further enhance performance. 

This work significantly contributes to the field of big data analytics by 

offering a versatile and efficient tool for integrating data from diverse 

NoSQL systems, thereby facilitating more comprehensive data analysis 

and decision-making in distributed computing environments. By bridging 

the gap between NoSQL databases and traditional relational operations, 

we pave the way for more seamless and powerful data integration 

solutions. Our contributions not only advance the technical capabilities of 

the NoDA framework but also provide a valuable resource for 

practitioners and researchers aiming to harness the full potential of big 

data analytics in real-world applications. 

  



58 
 

6 Future Upgrades 
 

Future upgrades to the NoDA API could significantly enhance its 

performance and versatility, positioning it as a more robust solution for 

big data processing in NoSQL environments. One major upgrade could 

involve developing a lightweight join framework within the NoDA API that 

bypasses the need for Apache Spark. By eliminating this dependency on 

external libraries, the NoDA API could achieve improved performance, 

especially in environments with limited resources. This would be 

particularly beneficial in scenarios where the overhead of managing and 

operating Spark is not justified, allowing the NoDA API to operate more 

efficiently and with lower resource consumption. 

Additionally, expanding the existing hash join algorithm to support a 

wider range of join types, such as left, right, and full outer joins, would 

further increase the API’s versatility. Currently, many join operations are 

limited in scope, but by enabling more comprehensive join capabilities, 

the NoDA API could handle a broader array of data processing tasks. This 

would be especially useful for complex data integration scenarios where 

different types of joins are required to merge datasets effectively. 

Another promising direction for enhancing the NoDA API is the 

incorporation of machine learning techniques to optimize join strategies 

based on dataset characteristics and query patterns. Machine learning 

could analyze historical data and query performance to identify the most 

efficient join strategies, adapting dynamically to changing data 

conditions. This approach could lead to significant performance 

improvements by reducing the time and computational resources 

required for join operations. For example, by learning from past queries, 

the system could predict the best join method for a given set of data, 

optimizing execution plans and improving overall efficiency. 

Integrating real-time data processing capabilities is another critical 

upgrade that could greatly broaden the applicability of the NoDA API. By 

enabling the API to handle streaming data, it could support real-time 

analytics and decision-making scenarios. This capability is increasingly 

important in today's fast-paced data environments, where timely insights 

can provide a competitive edge. Real-time processing would allow users 

to analyze data as it arrives, making it possible to detect trends, 



59 
 

anomalies, and other important metrics instantly. This would be 

invaluable in applications such as financial services, healthcare, and IoT, 

where real-time data analysis is crucial for operational effectiveness. 

Furthermore, enhancing the NoDA API to support real-time data 

processing would involve developing efficient mechanisms for ingesting 

and processing streaming data. This could include integrating with 

popular streaming platforms such as Apache Kafka or Apache Flink, which 

are designed to handle high-throughput, low-latency data streams. By 

combining these technologies with the NoDA API, users could build robust 

data pipelines that support both batch and real-time processing, 

providing a unified platform for comprehensive data analysis. 

These upgrades would not only enhance the functionality and efficiency 

of the NoDA API but also solidify its position as a comprehensive solution 

for big data processing in NoSQL environments. By reducing dependency 

on external libraries, supporting a wider range of join types, leveraging 

machine learning for optimization, and enabling real-time data 

processing, the NoDA API could become an indispensable tool for data 

engineers and analysts. These improvements would address current 

limitations and open up new possibilities for innovative data processing 

solutions, ensuring that the NoDA API remains at the forefront of big data 

technology. 

Ultimately, these enhancements would make the NoDA API a more 

powerful and flexible tool for managing and analyzing large datasets. They 

would provide users with the ability to perform complex data operations 

more efficiently, adapt to changing data environments, and derive 

valuable insights in real-time. As data continues to grow in volume and 

complexity, these upgrades will be essential for maintaining the relevance 

and effectiveness of the NoDA API in meeting the evolving needs of the 

data processing landscape. 

  



60 
 

7 References 
 

➢ [1] Nikolaos Koutroumanis, Christos Doulkeridis, Akrivi Vlachou:  

Tearing Down the Tower of Babel: Unified and Efficient Spatio-temporal 

Queries for NoSQL Stores. 

➢ [2] Abraham Silberschatz, Henry Korth, S. Sudarshan 

Database System Concepts 

➢ [3] Jean-Georges Perrin 

Spark in Action 

➢ [4] Chuck Lam 

Hadoop in Action 

➢ [5] Fabian Hueske, Vasiliki Kalavri 

Stream Processing with Apache Flink 

➢ [6] Neha Narkhede, Gwen Shapira, Todd Palino 

O’Reilly | Kafka: The Definitive Guide 

➢ [7] Jonathan Leibiusky, Gabriel Eisbruch, Dario Simonassi 

Getting Started with Storm 
 

 

 

 


