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Περίληψη 
 

Είναι γεγονός ότι στον 21ο αιώνα, τα δεδομένα αποτελούν θεμέλιο της σύγχρονης 

κοινωνίας, ενσωματώνοντας την ουσία του ψηφιακού κόσμου και των διαφόρων 

αλληλεπιδράσεών μας με αυτό. Η συλλογή δεδομένων διαδραματίζει καίριο ρόλο στην ανάλυση 

και την εξαγωγή πολύτιμων πληροφοριών. Σήμερα, οι τελευταίες τεχνολογικές εξελίξεις έχουν 

δημιουργήσει τεράστιες βάσεις δεδομένων με την ικανότητα να ανανεώνονται αυτόματα σε 

σύντομα χρονικά διαστήματα, σε ένα ευρύ φάσμα επιστημών, μεταξύ αυτών και της υγείας. Πιο 

συγκεκριμένα τα δεδομένα του πραγματικού κόσμου και οι τεχνικές μηχανικής μάθησης 

διαδραματίζουν ολοένα και σημαντικότερο ρόλο στον τομέα της βιοπληροφορικής, 

επαναστατώντας στις πρακτικές υγειονομικής περίθαλψης, την έρευνα και ανάπτυξη 

φαρμακευτικών δοκιμών. Η παρούσα εργασία εξετάζει το πολυδιάστατο τοπίο των εφαρμογών 

αυτων των δεδομένων στο κλάδο της υγείας, διερευνώντας τις ευκερείες και τους κινδύνους που 

μπορεί να ελλοχεύουν. Εξερευνώντας τις προκλήσεις που παρουσιάζουν τα πραγματικά 

δεδομένα, αναλύουμε στρατηγικές για την αξιοποίηση τους, μέσω από οργανισμούς που 

προσπαθούν καθημερινά να αναπτύξουν την διατήρηση και χρήση αυτων των βάσεων δεδομένων. 

Επιπλέον, εξετάζουμε πώς τα πραγματικα δεδομένα διευκολύνουν την ανάπτυξη φαρμάκων μέσω 

καινοτόμων τεχνικών μοντελοποίησης και πώς επιτρέπουν την εξατομικευμένη ιατρική μέσω 

μεθόδων όπως η κοινωνική ακρόαση. Επίσης, η εργασία συζητά την μελλοντική πορεία της 

ενσωμάτωσης αυτων του είδους δεδομένων, τονίζοντας τον ρόλο του στη βελτιστοποίηση της 

κλινικής ανάπτυξης και στη μετάβαση από τα δεδομένα σε εφαρμόσιμες πραγματικές γνώσεις 

παρουσιάζοντας πληροφορίες από τη βιβλιογραφία της φαρμακευτικής έρευνας, υπογραμμίζει τη 

σημασία της μηχανικής μάθησης στην εξαγωγή πολύτιμων πληροφοριών, αναλύοντας διάφορες 

μεθοδολογίες από την ταξινόμηση έως τη μείωση διαστάσεων. Συνολικά, η εργασία αυτή ρίχνει 

φώς στο μεταμορφωτικό στην αξία των πραγματικών δεδομένων και της μηχανικής μάθησης και 

στη διαμόρφωση του μέλλοντος της υγειονομικής περίθαλψης. 
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Abstract 
 
     In today’s era, data stands as the cornerstone of modern society, encapsulating the 

essence of the digital landscape and our myriad interactions within it. The collection of 

data marks a pivotal role in the analysis and extraction of invaluable insights. Today, 

technological advancements have birthed vast databases across a spectrum of 

disciplines, among them healthcare, each reservoir of information fostering the growth 

of knowledge and innovation. Real-World Data and Machine Learning techniques are 

increasingly pivotal in the field of bioinformatics, revolutionizing healthcare practices 

and pharmaceutical research and development. This paper delves into the multifaceted 

landscape of RWD applications, navigating through its distinctions from real-world 

evidence and its regulatory implications. Exploring the challenges and opportunities 

presented by RWD, it scrutinizes strategies for harnessing its potential, such as the 

Observational Medical Outcomes Partnership framework and Health Technology 

Assessment. Furthermore, it investigates how RWD facilitates drug development 

through innovative modeling techniques, and how it enables personalized medicine 

through methods like Social Listening and Quantitative Systems Pharmacology. 

Additionally, the paper discusses the future trajectory of RWD integration, emphasizing 

its role in optimizing clinical development and transitioning from data to actionable 

real-world insights. Presenting insights from library literature in pharmaceutical 

research, it underscores the significance of ML in extracting valuable insights from 

RWD, detailing various methodologies from classification to dimensionality reduction. 

Overall, this paper illuminates the transformative potential of RWD and ML in 

advancing bioinformatics and shaping the future of healthcare. 
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1 CHAPTER 

Introduction  
 

1.1 Initial Framework  

 

The present thesis aims to investigate and analyze the role of Real-World Data 

(RWD) and the applications of them to improve the modern healthcare sector. The study 

begins with an overview of the current landscape of machine learning and its 

intersection with health sciences, setting the stage for a comprehensive analysis of how 

these technologies can revolutionize patient care. RWD refers to health-related 

information collected outside the context of randomized controlled trials, encompassing 

a wide range of sources such as electronic health records, electronic medical records, 

medical claims, and patient registries. While Real World Evidence (RWE) is derived 

from the analysis of RWD and provides insights into patient experiences and treatment 

outcomes in real-world settings. This distinction is crucial as RWE informs clinical and 

regulatory decisions, enhancing the relevance and applicability of healthcare research. 

 

The thesis elaborates on the roles of major regulatory bodies, including the European 

Medicines Agency and the Food and Drug Administration. These organizations 

leverage RWD to support drug development and approval processes, ensuring that new 

therapies are both safe and effective. The study also introduces the Observational 

Medical Outcomes Partnerships and Health Technology Assessment initiatives, which 

aim to harmonize health data and facilitating more robust and reliable knowledge of 

evidence. Additionally, the European Health Data & Evidence Network is discussed for 

its efforts in integrating diverse health data sources across Europe. Also, one of the 

critical applications of RWD examined in this thesis is its contribution to the 

development of pharmacokinetic, pharmacodynamic, and models. These models are 

instrumental in predicting drug behavior and optimizing therapeutic strategies, 

ultimately leading to more personalized and effective treatments. 

 

Beyond the foundational concepts, this thesis includes a comprehensive review of 

the existing literature in pharmaceutical research and development. It explores various 

machine learning techniques and their applications in advancing healthcare. Specific 

examples are provided within the fields of arthroplasty, acoustics, cardiology, and the 

COVID-19 spectrum. These case studies illustrate how machine learning models can 

be utilized to enhance research outcomes, optimize treatment strategies, and improve 

patient care. By presenting these examples, the thesis demonstrates the practical 

implications and transformative potential of integrating machine learning with real-

world data in diverse medical domains. 

 

Subsequently, the thesis examines the intricate relationship between machine 

learning and statistical methods, highlighting how machine learning serves as an 

overarching framework that incorporates and enhances traditional statistical 

techniques. This chapter provides an in-depth analysis of the primary categories within 

machine learning: supervised learning, which includes classification and regression 

methods, and unsupervised learning, which encompasses clustering methods and 

dimensionality reduction techniques. The discussion covers some of the most widely 
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used methodologies, such as logistic regression, linear regression, and support vector 

machines. Additionally, the chapter explores artificial neural networks, detailing their 

architecture and applications in processing complex datasets. By thoroughly examining 

these techniques, the thesis underscores their significant role in advancing healthcare 

research and development. 

 

Building on this theoretical foundation, the thesis progresses to the practical 

application of these methodologies. In a dedicated chapter, we apply our knowledge to 

a dataset of diabetes participants, utilizing various machine learning techniques and 

artificial neural networks to predict the likelihood of diabetes. Diabetes stands as one 

of the most prevalent metabolic disorders, casting its shadow over millions worldwide. 

The term "diabetes" traces its origins back to the Greek physician Aretaios, who coined 

it from the Greek verb "διαβαίνω», meaning "to pass through." Aretaios observed that 

individuals affected by this condition experienced excessive urination, causing fluids 

to pass through the body undiluted, leading to the characteristic symptom of frequent 

and copious urination. Thus, the name "diabetes" aptly captures the essence of the 

disease as a condition where fluids pass through the body in an unrestrained manner, 

highlighting its defining feature in ancient medical terminology. This empirical analysis 

aims to demonstrate the effectiveness and comparative performance of different 

approaches in identifying individuals at risk of diabetes, thereby providing valuable 

insights into their practical utility and potential impact on healthcare outcomes. 

 

Finally, the thesis presents the general outcomes of the analysis and discusses how 

RWD can revolutionize modern healthcare. By exploring various machine learning 

techniques, the study underscores the potential of these methods to enhance early 

disease detection and improve healthcare outcomes. 
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2 CHAPTER 

Introducing the Real-World Data 
 

2.1 Defining Real-World Data  

 

Nowadays, it’s no secret that the most popular trend in the health and life science 

companies is known as Real-World Data (RWD), or someone may even hear it as Real-

World Evidence (RWE). The ability to extract information and expertise from new 

types of data, mining technologies or electronic health records, is now possible and it 

gains more and more popularity. With the use of them, we can detect side effects, or 

long-term outcomes, as well as the costs, advantages, and risks of medical treatments, 

by Togo and Yonemoto (2022). 

The pharmaceutical companies are under unprecedented pressure mostly because of 

austerity measures and price reductions. Manufacturers are required to give data on 

clinical and financial value in addition to safety, appropriate usage, and effectiveness. 

Although Randomized clinical trials (RCTs) are widely regarded as the cornerstone of 

clinical tests, Eduardo Valencia (2017), the generalizability of results from RCTs is 

constrained by things like different responses to a drug in real life, failure to finish a 

prescription, or taking unapproved medication before or during the trial. 

One of the most widely cited definitions of RWD originates from the field of 

Pharmacoeconomics Garrison et al., 2007, the ISPOR (International Society for 

Pharmacoeconomics and Outcomes Research) defines as: 

«Data used for decision making that are not collected in conventional randomized 

controlled trials. » 

In the spectrum of bioinformatics, we frequently employ the terms "Real World 

Data" and "Real World Evidence" interchangeably, yet it is essential to note that they 

do not carry identical meanings, the term "Data" refers to «factual information, serving 

as raw material», while "Evidence" refers to «that the organization intends to utilize the 

information to formulate a conclusion or judgment» Eduardo Valencia (2017). 

According, to the United States Food and Drug Administration (FDA), RWE is the 

proof obtained from combining and analyzing real-world data parts. On the other hand, 

RWD is information gathered from sources other than conventional clinical trials. As a 

result, we set up the analytical procedures that enable us to turn data into evidence. 

 

 

FIGURE 2.1 : Explaining the RWD&RWE connection (source: 

https://www.meaningcloud.com/blog/real-world-evidence) 

https://www.meaningcloud.com/blog/real-world-evidence
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The term RWD is frequently used in the healthcare industry to describe patient-level 

data acquired outside of the typical clinical trial environment. Such information may be 

created during routine clinical treatment, the processing of administrative claims, or it 

may come directly from patients. Illustrative instances encompass information sourced 

from a variety of outlets such as patient charts, clinical reports, prescription refills, 

history of patients treated both on- and off-label, data derived from multiple clinical 

trials, survey responses, and inputs from mobile health devices. Additionally, other 

pertinent data from established secondary sources are utilized to inform decisions 

related to safety, quality, care coordination, coverage, and reimbursement, in 

The amount, sources, and use of RWD have increased dramatically because of 

evolutionary breakthrough in technology, data science and healthcare policies, with the 

gathering of bigger and a wider variety of data sets. The increasing adoption of digital 

technologies, such as mobile devices, wearables, sensors, social media and online 

patient communities, has not only introduced new data sources but has also enhanced 

the methods for capturing, storing, and analyzing longitudinal RWD pertaining to 

patients. Massive variety and complexity characterize the present RWD landscape as 

we can see and from the (Figure 2.2) below. 

 

 

It includes both organized and unstructured data from a variety of heterogeneous 

sources, going beyond conventional sources like chart reviews, prescriptions, or claims 

data. Also, patients themselves can fill reports about the therapy results and prospective 

registries. Additional unique sources of previously inaccessible patient-level data can 

be found in mobile health devices or, wearable apps. These technologies that we further 

examine later, provide capabilities for continuous monitoring, data collecting, and real-

time transmission that are uncommon in ordinary clinical care as we knew it, Izmailova 

(2018). 

 

FIGURE 2.2 : Types of RWD (source: 

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-022-01768-6) 

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-022-01768-6
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2.1.1 Electronic Health Records and Medical Records  
 

In the healthcare industry, healthcare information systems (HIS), often known as 

electronic health or e-health, are used to improve patient data, individual patient 

experiences, and drug information. The conversion of paper-based health and medical 

data into electronic formats marked only the beginning of the digitization of healthcare 

services. But thanks to technological breakthroughs like big data, the Internet of Things, 

and 5G networks, patient empowerment is now a crucial component of e-health, where 

patients actively engage in their healthcare decisions and activities. Electronic Health 

Records (EHRs) are digital versions of patients' paper charts and are real-time, patient-

centered records that make information available instantly and securely to authorized 

users. They contain the medical and treatment histories of patients and are designed to 

go beyond standard clinical data collected in a provider’s office and can be inclusive of 

a broader view of a patient’s care. In the following paragraphs, we will examine further 

the terms of EHRs and Electronic Medical Records (EMRs), which often cause 

confusion when referring to these two e-health formats Anshari (2019). 

To begin with, EMRs are digital medical records that include patient information, 

medical conditions, histories, checkup reports, medications, and treatment records. 

Although they are easily stored, the data in EMR does not always easily leave the 

organization. It’s possible that the person’s record would have to be copied and sent to 

experts or other organizations. Thus, EMR is not so different from common paper files. 

On the contrary, EHRs are digital health information of the person as it contains 

much more than what is already included in EMR, Anshari (2019).. To be specific, 

EHRs are a superset of EMRs containing retrospective, concurrent, and prospective 

patient data in digital form, stored securely so it can be sharable to authorized users to 

support integrated health.  

Overall, EHRs aim to gradually increase efficiency, improve the quality of care, 

promote evidence-based medicine, and predict new relationships between patients and 

healthcare. Although we should mention that access to EMRs and EHRs by patients is 

limited in many cases, as they are not primarily intended for customer accessibility. The 

upcoming shift in healthcare aims to change this as it wants to start treating patients as 

partners in care, and healthcare organizations need tools and strategies to manage and 

empower these relationships.  

 

2.1.2 Real World Evidence 
 

To get back on topic, the outcome of «real-world data analysis» is known as «real-

world evidence» and it is used to develop insights utilizing suitable research design and 

scientific methodologies to assist healthcare stakeholders in making decisions. 

Therefore, producing evidence from RWD requires not only gathering "big data" but 

also skillfully fusing these various and frequently unrelated kinds of data to provide 

insightful conclusions. For instance, a smartphone could count the meters traveled by a 

user to examine the fitness level of the user. In contrast, Miksad & Abernethy, 2018 

asserted to exclude data from clinical research settings such as in EHRs from their 

definition of RWE. In the same way, the definition of real-world evidence was most 
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recently expanded by the FDA in a publication, which stated that any data "generated 

from any study design including RCTs as long as the data source is from routine care 

and the design is highly pragmaticT, U.S. FDA (2018), meaning the trial design and 

conduct closely approximate the eventual use of the product in clinical practice" is now 

considered RWE. 

As we previously mentioned the majority of RWD are not always gathered for 

research objectives, the data collection is episodic, reactive, and sometimes provides 

partial information at best. Real-world evidence is therefore typically messy and sparse, 

necessitating the use of rigorous and reliable statistical techniques to clean the data and 

fix errors. Precision treatments in oncology, where vital information regarding 

molecular biomarkers or end-points data can frequently be lacking, require careful data 

curation employing both structured and unstructured data. Linking to additional data 

sources may be needed to complete any missing information in the data. 

Analysts need to pinpoint and account for confounding factors, including 

demographics, socioeconomic, insurance, severity, concomitant medications, and 

genetic predispositions to specific conditions, prior to conducting additional analyses, 

Swift (2018). RWE is always susceptible to selection bias, given that cohort selection 

and treatment decisions in clinical practice are non-random. Consequently, adhering to 

established guidelines for the design and validation of RWE studies can mitigate some 

of the sources of bias and inconsistencies. 

All major markets are heavily emphasizing the use of RWE to assist and enhance 

healthcare decisions. Nevertheless, the acceptance and utilization of RWE for decision-

making vary globally. The FDA has a longstanding interest in gaining more insights 

about medical items, particularly drug safety, using healthcare data produced in the real 

world, Breckenridge (2019). Considering this, the FDA introduced the Sentinel project 

in 2008, which enables RWD from sources like EHRs, insurance claims data, and 

registries to be used for monitoring the safety of FDA-regulated products. To offer 

insight into recent developments, we present a visual representation (Figure 2.3) 

highlighting key moments that underscore the significance of RWE over the past few 

years. 

 

FIGURE 2.3: Most important breakthroughs in the RWE in the recent-past (source: 

https://pubmed.ncbi.nlm.nih.gov/29768712/) 

https://pubmed.ncbi.nlm.nih.gov/29768712/
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2.1.3 Regulatory approvals in the healthcare industry 
 

In today's rapidly evolving healthcare landscape, regulatory oversight plays a pivotal 

role in ensuring the safety, efficacy, and accessibility of medical products Togo and 

Yonemoto (2022). The importance of regulatory agencies cannot be overstated, as they 

are tasked with evaluating and monitoring medicinal products, pharmaceutical 

innovations, and novel therapies. As we delve deeper into the evolving landscape of 

healthcare regulation, we'll explore the steps that have already been made for the legal 

and transparent development of therapies and medicines, and how these changes hold 

promise for the future of healthcare in general. 

A. The role of European Medicines Agency 
 

The European Medicines Agency (EMA) serves as a decentralized agency within 

the European Union, primarily tasked with the scientific evaluation, supervision, and 

safety monitoring of medicinal products across the EU. It was established in 1995 and 

is headquartered in Amsterdam, Netherlands. The EMA (formerly EMEA) played a 

significant role in the regulation of biosimilar medicines by creating the legal 

framework and regulatory approval pathway in 2005. When the bio-originators' patents 

and exclusivity periods end, the creation of medications can expand the biotherapeutic 

industry and enhance patient outcomes by making biological therapies more accessible. 

And one year later, in 2006 by approving the first biosimilar, Omnitrope (somatotropin). 

Biosimilars (BS) are biological medicines that are extremely like an already-approved 

biologic, known as the reference product (RP) Gherghescu & Delgado-Charro (2021). 

They are known as similar biotherapeutic products (SBPs) by the World Health 

Organization (WHO), which defines them: «highly similar to an original biotherapeutic 

product». 

The Pharmaceutical industry has witnessed a surge in the process of BS, and various 

regulatory bodies worldwide have authorized these medicines. To be specific, EMA 

approved 55 BS over 13 years, while the FDA only approved 26  in the past 5 years, 

Gherghescu & Delgado-Charro (2021). The developmental pathway for BS 

encompasses comparative Phase I and case-by-case Phase III clinical studies, aiming 

to establish the similarity of the two molecules with respect to their pharmacokinetic 

and pharmacodynamic properties. It’s important to note that, EMA works by evaluating 

the scientific data submitted by pharmaceutical companies in support of their 

applications for marketing authorization for new medicinal products while also 

monitoring the safety of medicinal products after they have been marketed, to protect 

public health if any safety concerns arise. Yet, the genuine economic and clinical 

advantages of these medications will only be known when they achieve broader 

availability in the market and become seamlessly integrated into clinical practice. 

Furthermore, for BS to make a meaningful difference in patient healthcare and 

healthcare systems, they need to become widely available and gain the trust of doctors 

who prescribe them. The growing BS market, along with the pharmaceutical industry's 

strong interest in developing these medicines and changing regulations, looks 

promising for the future of BS. Nevertheless, additional research is necessary to 

meticulously evaluate the tangible impact of these medicinal products on the broader 
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public health landscape and patient outcomes, particularly as BS market penetration 

experiences ongoing global expansion. 

 

B. The role of Food and Drug Administration  
 

The value of RWD and RWE for the FDA and the health sciences sector has 

increased since the «21st Century Cures Act» was passed into law in 2016. The Cures 

Act prioritizes RWE- and RWD-driven decision-making to hasten the development and 

innovation of medical products. RWE is defined by Congress as information about a 

drug's use and any potential advantages or dangers from sources other than clinical 

trials for instance, randomized trials and observational studies. 

RWD, as defined by Congress, is information about patient health status and care 

delivery that is regularly gathered from EHRs, claims and billing, patient-generated 

data, and other sources. With the increased usage of computers, mobile devices, and 

wearables, RWE and RWD are expanding in both volume and depth. They are also 

becoming more useful as new analytics capabilities, such as AI and machine learning, 

offer more individualized and useful insights. 

In 2018, the FDA took a proactive stance by publishing the Framework for FDA's 

Real-World Evidence Program. This document intricately outlines the utility of RWD 

in trials for new therapies. The evolving focus of RWD is shifting towards an innovative 

approach, encompassing pragmatic trials and synthetic cohorts, Breckenridge (2019). 

The adoption of pragmatic trials is particularly noteworthy as they have the potential to 

significantly reduce both costs and timelines. Life science companies that adeptly 

embrace these methodologies are poised to emerge as frontrunners in their respective 

fields. 

As several organizations seek to enroll patients in both conventional research and 

cutting-edge studies that use data-driven methodologies, key RWD & RWE challenges 

are emerging surrounding access to health systems and patients, Stukpa (2019). Also, 

life science businesses must ensure that breakthroughs in clinical development assist 

health systems reach goals, which means they must do more than just use data to their 

advantage, they must also clearly demonstrate value for both patients and providers. 

Overall, clinical strategies that comes together with clinical trials standards of care, will 

certainly lead us to the correct direction. Lastly, selecting trials that both the patient and 

the health industry could benefit from, would be beneficial in the future. 

 

2.2 Strategies for confronting the dangers of Real-World Data 

 

In the previous section, we presented some important terms of RWD, RWE and the 

roles of regulatory bodies such as the EMA and FDA in shaping healthcare decisions. 

Building on this foundation, we now examine HTA which extends the principles of 

RWE, as a comprehensive form of policy research that evaluates the social, economic, 

and ethical impacts of health technologies. This section will explore its role in guiding 

policy recommendations and its integration into regulatory frameworks. Additionally, 
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we will address the challenges and dangers associated when dealing with RWE and 

RWD, and the efforts to harmonize health data using frameworks like OMOP. Through 

this exploration, we aim to provide a deeper understanding of how HTA contributes to 

the sustainability and improvement of healthcare systems globally. 

 

2.2.1 Health Technology Assessment   
 

It is well known that throughout history, physician assessment has had an important 

role in the selection of therapy of the patient. The term HTA was used by the U.S. 

Congressional Office of Technology Assessment (OTA) in 1972. The general definition 

of technology assessment used was: ‘‘a comprehensive form of policy research that 

examines the short- and long-term social consequences of the application or use of 

technology’’. In the health field, OTA established that assessment would symbolize 

‘efficacy’, since the goal of health care is to improve health. The scope of this definition 

highlights how pervasive technology is and how it can be beneficial as we merge it in 

our everyday life with the right way. HTA can be seen as an extension of RWE, as it 

utilizes data to assess the effectiveness and safety of health technologies. RWE provides 

a rich source that reflects the actual experiences of patients and healthcare providers, 

enabling a more comprehensive and realistic evaluation of health interventions. 

Furthermore, HTA can be also considered an umbrella term of Health Economics 

studies as it encompasses economic evaluations, such as cost-effectiveness analyses, 

and a broader analysis of the social and ethical implications of health technologies. 

Through this approach, HTA helps policymakers make informed decisions that promote 

efficiency, equity in healthcare and address the growing costs of it by identifying the 

most effective and efficient treatments, ultimately contributing to the sustainability of 

health systems globally.  

In its early reports, OTA invested plenty of time and work on defining the field and 

principles of HTA. Simultaneously, OTA conducted numerous evaluations of health 

technology, starting with short case studies, and progressing to longer assessments. 

Since its beginnings, the primary use of ΗΤΑ has been in the formulation of policy 

recommendations. The problem of medicine regulation provided an attractive model 

for official policymaking. For instance, to market an innovative medicine in the US, a 

business must apply to the FDA, which then authorizes it to conduct human drug testing 

Banta, (2002). The results are submitted to the FDA when the experiments, which 

traditionally have been well-controlled studies, are finished. 

After evaluating the data, the agency determines if the medication can be marketed 

or not. Thus, assessment is integrated into the regulatory and policy-making process. It 

might be utilized, like blood products, vaccinations, and medical devices even if most 

of these areas haven't been subject to as strict regulations as the pharmaceutical 

industry. Nevertheless, the approach applies less well to medical and health care 

practice. The primary substitute has been to connect payment decisions with 

assessment. Increasing research, for instance, demonstrates that health insurance 

decision-making is becoming more connected to official evaluation in both the United 

America and Europe. 

In recent years, there appears to be a growing interest in social and ethical issues, 

according to the latest HTA reports. HTA is a wide concept with a variety of features 
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and blurry borders from country to country both in its focus and method. Probably a 

significant part of the variations in HTA by country has depended on the goals of 

societal groups by Banta, 2002: 

1) Policymakers: Broad problems, like the value for income perspective. 

2) Insurers: Overriding worries for expenditures and their management. 

3) Clinical physicians: Generally interested in quality, not much attention 

to costs or other public policy issues. 

4) Epidemiologists and other researchers: Interest in the poor state of 

research and the ways that can evolve it, including attention to 

systematic reviews and dissemination of information. 

5) Industry: Overriding worries for profits, however, competition forces 

growing interest in efficacy and cost-effectiveness. 

6) The general public: Access to personal care of acceptable quality. 

 

Differences in HTA from country to country hamper its development internationally. 

An HTA can be a technical assessment of a medical device completed for regulatory 

purposes, a pharmacoepidemiologic study of a drug conducted or funded by industry 

with the primary goal of receiving reimbursement, an academic study of the potential 

health effects of a specific medical practice, such as a randomized trial, or a systematic 

review of any or all facets of a specific medical practice conducted by an HTA agency. 

Although this variety has advantages, it also makes generalization hard, and hampers 

change. 

The study that follows assessed different challenges, related to this increasingly 

complex environment of new health technologies, make the acceptance of RWD most 

likely, Hogervorst et al.2022. Thirty-three HTA organizations that are members of 

EUnetHTA were given the questionnaire, with the twenty-two answering, (67%) total, 

from twenty-one different countries. The questions centered on approved data sources, 

conditions that made RWD acceptability possible, and obstacles to acceptability. To 

begin with, acceptance of RCTs was reported by all. The distribution of organizations 

across Europe was even, with the Nordic region slightly overrepresented. Moreover, 

pharmaceutical assessments were the responsibility of twenty-one responding 

organizations (95%) out of which nine (41%) assessed just pharmaceuticals. The 

questionnaire devoted to RWD covered mainly three topics: the general willingness to 

use and accept RWD, probability to accept RWD challenging circumstances and the 

obstacles to approve RWD. 

First, respondents could highlight whether they experienced the need for broader 

systematic use of RWD and whether they experienced a willingness among assessors, 

among decision makers or even both, as both affect the ultimate reimbursement 

conclusion Hogervorst et al. (2022). Second, the respondents indicated the categories 

of data sources that their organization approved for evaluation in a binary form (yes/no). 

Third, using a 5-point Likert scale, respondents stated how likely they were to accept 

RWD sources in specific difficult situations. Respondents were allowed to explain any 

further situations they came across that would enable the acceptance of RWD in HTA 

in the fourth and only open question, guaranteeing the questionnaire's confidential 

nature. Finally, a list of obstacles to accepting RWD for HTA was ranked by the 

respondents. 
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Regarding the willingness to use and accept RWD sources in HTA, the results 

showed that 18 out of 22 representatives indicated that there is a need for wider 

systematic use of RWD in HTA decisions than in the current stage. Furthermore, sixteen 

representatives said they sense willingness from both assessors and decision-makers, 

while two said they sense willingness from assessors alone, and one only from decision-

makers. The remainder indicated no knowledge about the willingness at all. The top 

three approved data sources for HTA in Europe were found to be the traditional sources 

like “meta-analyses”, “systematic reviews”, and “RCTs”. It’s important to note that all 

three were embraced by all participating organizations. On the other hand, the least 

popular RWD sources were “case reports”, “unpublished data”, “editorial and expert 

opinions”, which were all accepted via only one third of the organizations. 

We then look at how likely people are to embrace RWD under challenging 

circumstances. With a score of 4.3 on a 5-point Likert scale, the evaluation of “orphan 

drugs or other treatments with small patient populations” was shown to be the scenario 

most likely to accept RWD sources. Organizations would be less inclined to embrace 

RWD in HTA if the data originated from countries other than their own, even if it 

represents the sole available data source. Among “orphan drugs” and employing “RWD 

from outside its country's region”, the first and last rated situations we can see small 

difference in probabilities of accepting RWD all above 3 (the scores varied from 3.2 to 

4.3). Based on the open question mentioned earlier, seven companies reported 

additional situations in which RWD may be approved. Several stated that RWD would 

not be received as the sole source of evidence, though could be supplementary to 

traditional RCT evidence. Overall, the findings show that, in these situations, there is a 

greater tendency for positive than opposing views regarding RWD acceptance. 

After examining the section concerning “Barriers to accepting RWD”, the responses 

from the HTA organizations this time displayed significant diversity. As shown in 

(Figure 2.4), an organization's average mean rank for the most significant obstacle to 

embrace RWD in HTA was “lacking necessary RWD sources”. Also, this was followed 

by “existing policy structures or information governance,” which had a mean rank of 

3.5. On the contrary, “lack of statisticians or other relevant analysts” and “financial 

reasons” came in last. The exception is “lack methods to use RWD,” where there is an 

uneven distribution of rankings. Additionally, “No possibility to interpret or verify data, 

or that it was challenging to do so” has the smallest variance among all reasons.  
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FIGURE 2.4: (A) Accepted sources in HTA, N = 22 (B) Mean Likert-scores, of the possibility to accept 

RWD in emergency circumstances (C) Boxplots of the barriers to accepting RWD in HTA, in order of their 

median score (source: https://www.frontiersin.org/articles/10.3389/fphar.2022.837302/full) 

 

2.2.2 The obstacles emerge when deriving RWE from RWD  
 

After explaining the vital role of EMA and FDA we will try to answer the one 

question that comes to all of us when we previously talked about the link of RWD with 

RWE. For a comprehensive grasp, it is crucial to provide insight into the business-

related risk exposure associated with RWD. The risks related to RWD can be classified 

into three main groups as it is simplified in (Figure 2.5). These aggregated risks are 

related to "Compliance Controversies," "Registration Failure," and "Business Model 

Disruption," as examined throughout time and ranging from short to long term, 

Schneider  (2019). 

 

https://www.frontiersin.org/articles/10.3389/fphar.2022.837302/full
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FIGURE 2.5 : Risk fields in the context of RWD (source: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339486/) 

 

The «data-related risks» that could result in compliance violations, for instance when 

specific requirements cannot be met during an audit, are addressed in the inner layer of 

the image. The model's intermediate layer focuses on "approval-related" risks 

associated with the development of new medicines and therapies, for instance when 

certain process improvements created using RWD are insufficient. The outer layer of 

risk categorization is "business model related," and it deals with the potential of RWD 

to disrupt the life science industry, for instance, when new competitors enter the market 

with superior RWD, Grimberg, et al. (2021) for instance, from health apps combined 

with wearables, like smartwatches. 

The grouping of RWD hazards into three "layers" helps to comprehend how RWD 

can be exposing the health sciences industry to an ever-increasing business exposure 

over time. However, this abstracted model does not intend to overlook or omit risks that 

may arise approval-related risks may be one of the firsts, following later in time 

multiple risks connected to data clarity. 

We will now examine and categorize the main difficulties risk managers are likely 

to experience when dealing with RWD. Next, we provide a criteria schema (Figure 2.6), 

in a form of a Radar, that will assist in our comprehension, Grimberg et al., 2021. The 

foundation of the RWD Challenges Radar rests on three pivotal categories, delineating 

the landscape within the information systems discipline, recognized as «confluence of 

people, organizations and technology» Grimberg, et al. (2021). Each category has 

several subcategories that were determined through the literature search. In fact, the 

size of each subcategory is meant to represent the importance or range of the current 

discussion surrounding that topic, the broader the field, the more significant the topic 

seems to be. 

As we already know nowadays, risk is a part of business, and in a world where 

tremendous amounts of the data are being processed at increasingly rapid rates, we can 

safely say that identifying and minimizing risks is a challenge for any organization 

Robert B. Hirth Jr. (2017). Since the radar is an abstract illustration of a very specific 

part of RWD risk, this specific focus will be helpful to unveil the challenges associated. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339486/
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FIGURE 2.6: RWD Challenges Radar (source: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339486/) 

Additionally, based on the underlying observations of the Radar, a RWD Challenges 

Cockpit can be developed. Such a dashboard-type solution would automatically 

capture, classify, assess, and visualize the quality of certain RWD. The use of the RWD 

Challenges Radar fits the different stages of the drug development process and will 

allow the RWD users to be fully aware of the challenges and risks related to the data 

while they fully utilize the potential of RWD. In the following sections, three main 

categories and related parameters of the RWD Challenges Radar are discussed: 

 

❖ Expertise: 

To rely on evidence from RWD, one must first understand the data, analyze it and 

extract vital information that can be found useful in a decision-making process. 
However, research shows that these skills are not only in “abundant supply within the 

pharmaceutical industry”measure , but in domain knowledge, healthcare information 

technology, and methodological and technical knowledge as well Wise et al. (2018). An 

additional survey where interviews were healthcare stakeholders, stated that there is a 

shortage of expertise in the RWD analysis domain, giving the example of “innocent 

misinterpretation” in which analysts misunderstood relationships as causality. It is 

crucial to note that an excellent understanding of accessible databases supports the 

assumptions of the validity of these databases. Research also mentions the absence of 

elite education on data analytics and the insufficient research in the challenges that 

RWD may be facing. However, several projects try to combine information technology 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339486/
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and medical skills to examine various databases and promote productive 

communication across other HCPs. 

 

❖ Bias: 

Accurate evidence generated from RWD must be high quality and without any form 

of bias. The selection bias is still recognized as the most well-known and difficult 

danger that is preventing the adoption of RWD, Grimberg, et al. (2021), even when the 

quality is confirmed, and privacy concerns are resolved. Previous studies revealed proof 

of reporting bias in several disease areas, such as depression, bipolar disorder, and 

several others through refusing study data of drug manufacturing and regulatory bodies. 

As a result, bias has been a problem in data analysis for many years. 

In other words, additional types of bias, such as information bias, may become 

apparent in observational studies, in addition to choose and reporting bias. The FDA 

has stated within this context that randomization serves as the preventive measure 

against bias by ensuring a balance in study groups concerning risk factors for the 

intended outcome. 

 

❖ Complexity: 

The diversity in data formats among different sources and nations poses aslso a 

technological challenge that impedes the progress of RWD advancement. We already 

talk about the FDA recognizing the importance of having a common data model, along 

with the standard representations like coding schemes and common terminologies, to 

maximize the utility of RWD. Several companies, like the «Institute for Clinical and 

Economic Review», have already begin asking the organizations to provide RWD in 

certain structure with the goal to maximize the integration of different types of data. In 

comparative research, combining data formats from observational databases can be 

helpful to find the causes of observed effects as well as give answers to related issues. 

The Observational Health Data Science and Informatics has introduced a common data 

model called Observational Medical Outcomes Partnership (OMOP), which enables a 

distinct database to be carefully analyzed. 

 

2.2.3 Harmonizing health data for the future. 
 

RCTs, or explanatory trials, as we already have mention, generally measure efficacy, 

that is, the benefit a treatment produces under ideal conditions, often using carefully 

defined subjects in a research clinic and aims primarily to further scientific knowledge 

Mahajan (2015). RWD can influence RCT design from a scientific, what might be 

measured, for example, and logistical, where can we locate the patients to participate 

in the trial, perspective. As a hypothetical scenario, if one wanted to test a candidate 

therapy to address a particular medical need, they would need to find potential subjects 

who had that need, perhaps within a particular age range, with inclusion and exclusion 

criteria based on medical history and current medications. To make it easy to 

understand, RCTs is research in which various similar people are randomly assigned to 

two, or more groups to test a specific drug, treatment, or other intervention, Wise, et al. 
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(2018). One group, the experimental group, has the intervention being tested, the other, 

the comparison or control group, has an alternative intervention, a dummy intervention, 

placebo, or no intervention at all. On the other hand, Practical trials measure 

effectiveness, or the advantage a treatment has in everyday clinical practice. The design 

of a pragmatic trial reflects the variations between patients that occur in real clinical 

practice and aims to inform choices between treatments.  

Nevertheless, evaluating the effectiveness of different therapy combinations would 

require multiple research efforts if RCTs were employed. To analyze all conceivable 

combinations of just five therapies, 32 distinct study arms would be required. The costs 

would be unaffordable under such a strategy. ‘Platform trials’ allow numerous 

treatments to be evaluated simultaneously and ‘offer flexible features such as dropping 

treatments for futility, choosing one or more treatments superior, or adding brand-new 

treatments to be tested throughout the course of a trial Mahajan (2015).  

 The significance of reusing health data for research has been clearly shown by the 

IMI project EH4CR. The EHR4CR project (Figure 2.7) has developed a robust and 

scalable platform that can make use of deidentified data from hospital EHR systems, in 

full compliance with the moral, legal, and data safety regulations and requirements of 

every single involved nation. The EHR4CR created the ‘The Champion Programme’, 

which sets out to establish the value of RWD for clinical research and has also 

developed i~HD its sustainability model is in the European Institute for Innovation 

through Health Data. 

 

FIGURE 2.7 : The Electronic Health Records Systems for Clinical Research 

(source: https://www.imi.europa.eu/projects-results/project-factsheets/ehr4cr) 

 

Also, the European Health Data and Evidence Network (EHDEN) aspires to become 

the reliable system of observational research to support improved health care, Almeida 

https://www.imi.europa.eu/projects-results/project-factsheets/ehr4cr
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(2018). The goal is to establish a new standard for the gathering, analyzing, and sharing 

of health data across Europe by creating a huge, sustainable, federated network of 

sources that are standardized to a specific data model. At the main domains of EHDEN 

first is the OMOP Common Data Model (CDM), to unify data structure and semantics 

and facilitate cross-source analysis and second encourage the use of analytical tools 

developed by the Observational Health Data Sciences and Informatics (OHDSI), 

Quiroz (2022) which could start a huge collaboration in the field. 

OMOP is a framework for conducting observational studies and evidence-based 

research using large and diverse health datasets, including EHRs, administrative data, 

clinical registries, and more. EHDEN's challenge is to harmonize 100 million 

anonymized health records from multiple sources. The adoption of services and tools 

that carry out data standards, enable data discovery, and carry out analytical pipelines, 

as well as facilities that promote the sharing of study results, support this effort, 

Almeida (2018). Efficiency, transparency, reproducibility, and scalability are probably 

the main factors influencing the conversion of various health data types to OMOP 

CDM. This will help, cut expenses, and produce breakthroughs faster than anticipated. 

It also makes it possible to reuse analytical tools, compare results across different data 

sources without exchanging raw data, and conduct studies across numerous locations. 

Although there is an urgent need to convert datasets to OMOP, doing so takes a lot 

of time and resources, hence the attention of researchers demands tools for mapping 

data to OMOP the best way possible. Furthermore, it is imperative to highlight that, 

owing to challenges related to data dictionaries and structural disparities, the utilization 

of OMOP has not been as extensive as its potential merits. This constraint is 

compounded by the prevalent issue of data loss that often occurs during the conversion 

process, Quiroz (2022). 

It is certain that more work is required to build confidence in its use and 

encouragement by the industry to motivate more examples for it to be effective in 100% 

of its potential. With a standard data format, data interoperability and analytics across 

numerous data sets become more effective, allowing new worries to be resolved. Lastly, 

both the FDA and EMA have already expressed a great deal of interest in OMOP and 

CDM, and regulatory expectations of enforcement may present one chance to expand 

its use. 

 

2.3 How the Real-World Data contribute to the art of drug 

development 

 

Its widely recognized particularly as highlighted in by Stupka (2019) that drug 

development process spans 8 to 15 years, with costs reaching up to $11 billion. 

Typically, it heavily relies on an expensive clinical trials process, yielding sparse and 

costly data, often claims data, and above all that still fails to offer a comprehensive view 

of patient health. For instance, while claims data may reveal a filled prescription, it 

lacks insights into side effects, or other information that may be crucial. 

By collaborating with a healthcare transformation firm to access and utilize 

expanded RWD and RWE, life science companies may enhance this process and reduce 
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costs while better understanding the populations utilizing their products and their 

outcomes. Today's healthcare sector has a significant opportunity since, for the first 

time, major industry actors are aligned on the same crucial objectives. Thus, the 

urgency to provide the appropriate treatment to the appropriate patient, as determined 

by real-world results and monitoring, is being driven by regulatory, financial, and 

reimbursement demands. This means that overcoming identical problems such as 

identifying patients with lower risk and highest benefit from treatment “X” or managing 

patient population to drive overall balance between clinical and financial outcomes can 

be beneficial for manufacturers, payers, and providers equally, Stupka (2019). 

Moreover, predict, identify, minimize, monitor, and measure drug safety problems or 

even ensure high standards of treatment adherence, patient education, support, can 

maximize outcome potential. That’s why we will examine next the role of some models 

and techniques which can be ideal for this role. Moreover, we discuss about the new 

terms that we all keep hearing by the name of Precision Medicine and Social Listening 

and in what way the new technologies can play a significant role in the evolution of this 

technique.  

 

2.3.1 Pharmacokinetic–Pharmacodynamic–Pharmacoeconomic 

models for early predictions 
 

As we already know traditional clinical trials and regulatory approval processes 

target primally on “does the drug actually work?” under an ideal design. This is 

reasonable, but it might not give enough details about how the medication performs in 

various situations (such polypharmacy or comorbidities) and with numerous patient 

subpopulations. As a result, there is now a greater emphasis on including RWD in 

healthcare choices as well as in the creation and marketing of new medications. 

Pharmaceutical companies are also under constant pressure to show the value of new 

treatments in the context of their habitual use due to the increasing attention on value-

based pricing. 

In the subsequent paragraphs we discuss mainly for PK-PD and PE models although 

these terms are usually use together, they are not the same. Moreover, Pharmacokinetic 

models (PK) are defined by how a compound is absorbed, distributed, metabolized, and 

excreted, while Pharmacodynamic models (PD) are all about the measure of a 

compound's ability to interact with its intended target leading to a biologic effect. In 

addition to the above, Pharmacoeconomic models (PE) are usually sets of equations 

that identify the economic factors that influence the prices and sales of imports and 

competing domestic products in the industry. It is more crucial than ever, to evaluate 

the worth of new medications early in the research using cutting-edge predictive 

techniques like (PK-PD-PE) models. Through the use of PK-PD modeling to guide 

go/no-go decisions by integrating adherence rates from RWD as we show in the next 

(Figure 2.8), dose and response data from RCTs were modeled using the PK-PD 

modeling approach, Swift et al. (2018). 
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FIGURE 2.8 :Illustrative application in the context of medication adherence 

(source: https://pubmed.ncbi.nlm.nih.gov/29768712/) 

 

Separately, RWD on patient adherence from a large database with prescription refill 

history was turned into a patient-level database at the individual level by making some 

assumptions to bring it into the same format as the PK-PD database to enable 

simulations using the PK-PD modeling program. To replicate the clinical responses 

under various levels of adherence in the real-world scenario, the PK-PD model based 

on RCT was then applied to the individual patient database built from the prescription 

refill history. In order to determine the level of adherence improvement that would lead 

to clinically significant improvements in clinical outcomes that are also cost-effective, 

these response forecasts were input into a health economic model, Swift (2018). 

These methods can be used to evaluate the demand for further information as well 

as the economic benefit of therapeutic measures aimed at enhancing adherence. Before 

a medicine is made available to a larger population, predictive analytics may be the 

only way to predict how it will operate in actual-life scenarios. To promote realistic 

future value during clinical development, such model-based outputs for future 

performance can be efficiently used. 

Furthermore, the ability to collect data in both a healthy and diseased condition could 

enable generation of new hypotheses during clinical trials. For instance, real-time 

tracking of activity, vitals, sleep, speech, and other factors can be help us to better 

understand both beneficial and harmful effects of the selected medications. It can also 

be used to demonstrate how different medications differ from one another.  

Pharmacometric (quantitative pharmacology) methods are used in model-based clinical 

drug development to optimize compound development processes. As we have already 

mention, this can be done through the combination of PK, PD, and clinical data using 

empirical or mechanism-based modeling to predict efficacy and safety outcomes from 

simulated clinical trials. With the aim of lowering late-stage failure and increasing the 

effectiveness of drug development, such methods have been used to explore the effects 

of various dosing regimens, consider particular populations, adjust for nonadherence 

and dropout, and provide useful insights for upcoming studies. 

https://pubmed.ncbi.nlm.nih.gov/29768712/
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Linking with PE models (Figure 2.9) that take resource restrictions of payers of 

health care into account is a natural extension to pharmacometrics analyses, utilizing 

the structural relationship between dose and response and accounting for statistical 

uncertainty. These models can all be categorized as PK-PD-PE models. The 

incremental costs per quality-adjusted life year (QALY) obtained for a particular 

intervention are evaluated by PE models. If the cost per QALY is below a predefined 

threshold (often £30,000; €50,000; $100,000 per QALY in the United Kingdom, EU 

and USA, respectively) then the intervention is considered cost-effective. Someone can 

find more interesting facts in this field if just have a look at, Pink et al., (2012). 

 

FIGURE 2.9 : Simple skeleton of a pharmacometric-pharmacoeconomic                                                                                                                              

model (source: https://pubmed.ncbi.nlm.nih.gov/29768712/) 

This evaluation methodology offers advantages over conventional (empirical) PE 

models during phase II and phase III of clinical drug development and has the potential 

to enhance approaches for strategic, clinical, and pricing choices. If there is no chance 

of attaining a value-based pricing, it may be appropriate to stop the development of a 

medicine. For example, the assessment of a value-based price will indicate whether 

continued development is commercially viable. As an alternative, one might perform a 

value of information analysis while utilizing the PK/PD uncertainty and economic 

parameters generated by RWE. This can assist in go/no-go decisions, providing insights 

into whether undertaking a trial is justified by evaluating the expected net trade-off 

between the trial's benefits and costs. 

PK-PD-PE models, exemplified by applications like rituximab for lymphoma and 

guided warfarin dosing, demonstrate potential benefits. While still in its early stages, 

the use of pharmacometrics in pharmacoeconomic evaluation shows promise, 

especially in early-stage assessments using RWE. This approach offers early insights 

into cost-effectiveness, guides future research, assesses subgroups, informs strategic 

decisions, and estimates the cost-effectiveness of complex interventions like 

pharmacogenetics testing. 

However, overcoming different modeling paradigms in pharmacometrics and health 

economic evaluation, the requirement for increased acceptance of model-based drug 

development through pricing and reimbursement to inform critical-stage decision-

making, and the need for additional evidence on the validity and reliability of complex 

and computationally intensive models are key obstacles to the further advancement of 

PK-PD-PE model development and application. These obstacles could be removed by 

https://pubmed.ncbi.nlm.nih.gov/29768712/
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fostering closer integration and cooperation between the disparate fields of clinical 

pharmacology, health economics, and outcomes research. This could be done by 

colocating the relevant experts and providing them with the necessary training. In the 

long run, this should result in a broader acceptance of model-based drug development, 

notably RWE and PK-PD-PE integration in the drug development process.  

 

2.3.2 QSP: Bridging the gap between Biology and Pharmacology 
 

We continue our research by exploring the quantitative systems pharmacology, or 

else QSP modeling, that aims to help us understand the biological system and disease, 

facilitate early and more thorough in silico testing of drug candidates, and lastly support 

rational decision making to cut both development cost and time. In other words, QSP 

is an umbrella term for modeling approaches that combine a mathematical 

representation of the biological system with pharmacological information regarding a 

medicine of interest to facilitate enhanced understanding of human pharmaceutical 

reactions, Wise, et al. (2018). What is the difference though with the PK-PD-PE 

modeling we previous talk about? 

PK-PD-PE modeling is a set of interconnected models that focus on different aspects 

of drug development and utilization. PK deals with how drugs move within the body, 

including absorption, distribution, metabolism, and excretion. PD focuses on the 

relationship between drug concentration and its effects on the body. PE involves 

evaluating the economic aspects of drug use, such as cost-effectiveness and health 

outcomes. QSP on the other, is a modeling and simulation approach that focuses on 

understanding the underlying biological and physiological processes in a quantitative 

way. It targets to integrate data from different sources to build comprehensive models 

of drug actions and disease progression. QSP models are often used to predict the effects 

of drugs on complex biological systems and can be beneficial in optimize drug 

development strategies. 

QSP aims to enrich the process to detect and examine targets, reveal possible 

biomarkers, support drug design, tell dose and regimen selection, and aid proactively 

identify responders and non-responders. In more straightforward terms, QSP is used 

both for drug discovery and development, with a focus on understanding the 

mechanisms of action, optimizing dosing regimens, and predicting clinical outcomes. 

Although, it is very promising, QSP is a potent translational science tool that requires 

quantified patient data. 

However, RWE, derived from RWD, at the moment mostly providing contextual 

input, with qualitative insights into disease, epidemiological patterns, and effects of 

therapy. Some people in the industry already envision more quantitative data sets to 

come directly from patients in the future via electronic devices, namely wearables (like 

the IMI RADAR-CNS project). Because this type of data is quantitative and can be 

utilized for modeling and simulation in complex illness models, it will considerably 

expand what can be accomplished with RWD. This kind of data is required for QSP 

modeling in both preclinical and clinical pharmacology in order to them to flourish. 
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2.3.3 The importance of Social Listening and Precision Medicine 
 

The practice of health care is advancing from classifying and then treating patients 

based to coarse-grained and traditionally defined illnesses to a stratified medicine, or 

cohort-based medicine, or more typically but somewhat misleadingly titled 

‘personalized medicine’, which is based on identifying subgroups of patients with 

distinct mechanisms of disease, or responses to treatments, Wise, et al. (2018). Precision 

medicine, ‘an arising approach for disease treatment and avoidance that takes into 

consideration human being variation in genetics, surroundings, and lifestyle for each, 

is gradually being viewed as the strategic path for medical care. Because of underlying 

variations in their genes, different patients respond to the same medications differently. 

RWD, along with its associated methodologies of QSP can be exploited better to 

understand these vital molecular biology differences among patients. If the 

biopharmaceutical industry can deploy classified medicine and precision medicine 

approaches that prove to the regulator and the consumer a therapeutic worth proposition 

that identifies those patients who will respond to a treatment and, conversely, those 

patients who will not respond then the effectiveness and the safety will upgrade its 

value, and the potential of a listing in the pharmacopoeia enhanced. 

To identify individuals who will respond well to specific medications, the Royal 

Marsden Hospital in London is examining the viability of employing genetic 

sequencing, Wise et al. (2018). Up to 200 patients with advanced gastrointestinal 

tumors, including as stomach, pancreas, intestine, and esophageal cancers, are being 

recruited for its FOrMAT research. Additionally, this experiment intends to build the 

technical and logistical infrastructure necessary for the routine easy identification of 

patients in this manner. Genomics England's 100,000 Genomes Project is an illustration 

of how RWD/RWE is applied to further knowledge in both science and clinical 

practice that way patients with rare diseases or cancers have their genomes investigated. 

A closer understanding of this data can result in more accurate diagnoses, which in turn 

can lead to more precise treatment approaches. 

To make sure that data stored in EHRs which by nature itself can be chaotic can be 

mined effectively, two approaches are now being promoted Wise et al. (2018). The first 

is expanding the structure in such documents while using controlled vocabularies while 

the second has to do with using Natural Language Processing (NLP) to unstructured or 

semi structured health data. In this part we ought to make clear that improvements in 

NLP depend on the amount and quality of biomedical data sets use to train such 

algorithms. For instance, smart watches, Fitbits, and other wearable devices can collect 

a plethora of patient generated RWD without requiring the patient to enter a clinical 

care setting. The capacity to combine data from many wearables and identify trends has 

already altered the way we gather data, but there are still no clear standards that would 

enable seamless interoperability and data exchange for such wearables.  

The mining of social media, or social listening, has the potential to give beneficial 

information into a patient’s real-life use of therapeutics and combine all of these. 

Biopharmaceutical companies, regulators, and others are now actively researching 

social listening as a unique and extra technique of pharmacovigilance. Social listening 

is frequently used by commercial organizations to acquire brand insight. These data's 

accessibility and immediate nature could offer information on negative outcomes and 
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non-compliance. For instance, social listening can be used to monitor the most 

prevalent causes of patients changing treatments, Risson et al., 2016.  

Overall, this method can with no-doubt described as a powerful, low-cost, real-time 

data source, but there are still some restrictions on how the information may be utilized. 

Although there are several problems like data validation, source verification, managing 

the complexities of large unstructured datasets, discerning meaningful signals amidst 

noise, and interpreting free text that includes elements like misspellings, and local 

dialects. While these challenges are not insurmountable, they do call for robust 

applications of natural language processing and advanced AI-tools. Nevertheless, to 

fully leverage the substantial benefits offered by social media data, the establishment 

of universally accepted practices concerning privacy and regulatory guidance becomes 

imperative. 

 

2.4 Leveraging Real-World Data to maximize the clinical 

development results  
 

For the majority of the previous decades, clinical drug development inefficiencies 

resulted in higher costs for the pharmaceutical industry from research to launch as well 

as worse overall outcomes for patients who were subjected to a rigid, artificial clinical 

trial environment (e.g., being placed in a placebo arm for the trial's design's sake rather 

than the patient's sake or being excluded from promising trials due to the complexity of 

trial designs) by Elia (2019). Life science firms can add significant value to their 

pipeline (Figure 2.10) by utilizing extended RWD/RWE, which enables them to spend 

less, increase the speed of clinical studies and time to market, develop a digital 

marketing plan that is more intelligent or even improve drug matching with patients. 

To get the point, we attach a visual representation of the subject matter at hand. 

 

FIGURE 2.10 : Data uses across the life science pipeline (source: 

https://www.healthcatalyst.com/insights/real-world-data-chief-driver-drug-development) 

 

https://www.healthcatalyst.com/insights/real-world-data-chief-driver-drug-development
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RWD presents an opportunity to innovate in the traditional drug development 

paradigm changing from the RCT, to gain regulatory approval to an all-encompassing 

collection of real-world evidence in the context of a therapeutic solution Karamehic 

(2013). Other future perspectives for leveraging RWD, is in the traditional drug 

discovery/development model. In the conventional model, obtaining regulatory 

permission for a "pill-in-a-bottle" is the first step, and then real-world factors are 

considered (Figure 2.11). The suggested new approach makes use of big data 

innovations like sensor devices, technologies, imaging, and other pertinent data from 

the health ecosystem, wellness applications, social networking to obtain the RWE while 

still obtaining the data required for regulatory approval. Also, pharmaceutical 

companies may be able to transform the product identity from simply selling pills in 

bottles to providing an all-inclusive therapeutic solution thanks to the new sorts of data. 

In other words, the new goal of drug developers should be to develop an integrated 

therapeutic strategy that takes into consideration real-world usage of a therapeutic 

solution in the context of digital devices, behavioral interventions, and other therapeutic 

options, which is equally possible to include a pill or exclude it. 

 

 

FIGURE 2.11: Comparison the old and the new stages of drug                                                     

discovery/development model (source: https://pubmed.ncbi.nlm.nih.gov/29768712/) 

 

However, a major portion of the early data was generated from shallow, big claims 

datasets. These databases pose several difficulties for clinical trials such as, claims 

conversion into visits and a clear patient history or recognizing the datasets 

completeness or incompleteness. In the same context how service locations and 

providers are categorized (provenance tracing) and how choosing the most beneficial 

measurements for expenditures and usage may pose a challenge for clinical trials. 

Particularly for some diseases like cancer, deeper EHR-derived databases from 

specialist businesses or from specific locations, payers came up. However, most of 

these databases are not deep and broad enough, and they are frequently just loosely 

linked. As it makes sense healthcare analytics vendors are now expanding their 

offerings to meet the demand for integrated data from numerous sources (e.g., labs, 

https://pubmed.ncbi.nlm.nih.gov/29768712/
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consumer behavior, etc.) that capture the breadth of patient health. Offerings have 

started to grow around specific therapeutic areas. 

 

 

FIGURE 2.12 : Life science companies are collecting now a complex of data (source: 

https://www.healthcatalyst.com/insights/real-world-data-chief-driver-drug-development) 

 

2.4.1 The Future: Real-World Data to Real-World 
 

As we know from healthcare transformation companies, only 8 percent of the needed 

data resides in the HER, Stupka (2019). This means that the industry has to gain access 

in the rest 92% of data remaining outside of the EHR to complete understand the patient 

condition. Having access to significant claims data and a portion of EHRs represents 

just the initial step in the broader outcomes’ measurements for both population and 

personalized health. Oncology and cardiology specialty EHRs, for example, fill in 

certain marketable gaps but leave out the information that influences public health, such 

as costs, patient satisfaction, or lab findings. Extended RWD/RWE calls for broader 

sources to completely comprehend patients’ life science firms can have access to this 

information by collaborating with an established healthcare transformation firm. 

For a healthcare company to produce extended RWD its crucial to describe her the 

following capabilities, by Stupka, 2019: 

1. Ability to evaluate outcomes in the actual world. 

2. Ability to direct and secured trusted relationships with patients across the 

continuum of health, versus one area.  

3. Ability to make the transition from practical insight to practical action (for 

instance, through patient- and population-level treatments). 

4. Ability to address issues and provide practical answers, one needs access to 

the spectrum of expertise spanning data, and clinical trials. 

 

 

https://www.healthcatalyst.com/insights/real-world-data-chief-driver-drug-development)
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Overall, it’s wise to say that RWD and RWE is only just the begging, life science 

corporations must possess the capability to translate those kinds of data into provider-

level actions that benefit both patients and the corporations. This involves 

implementing initiatives such as conducting important clinical studies, patient 

education programs, adherence, or safety programs, and more. By integrating 

businesses with various healthcare systems, patients, and the data that decides whether 

hypotheses are operational and lead to improvement, the correct healthcare 

transformation organization enables life sciences to achieve real-world action. For 

instance, a company can forecast drug response, identify patterns, and generate insights 

with shallow data, but it cannot fully comprehend the impact of the drug until it is used 

in a hospital environment.  

By working together, both the life science industry and the right healthcare 

transformation companies can drive change, monitor, and measure drug performance. 

This concludes the real-world action circle, with five key points that are mentioned 

detailed in the following figure. 

 

 

FIGURE 2.13 : The five key goals that will make life science 

companies thrive (source: https://www.healthcatalyst.com/insights/real-

world-data-chief-driver-drug-development) 

 

As a result of this alliance life science companies can improve in two major fields. 

First in core capabilities because as we said a leading healthcare transformation 

company is always looking ways to improve outcomes, by providing essential 

capabilities to the drug procedure, from start to finish, the three fundamental pillars of 

best practice, analytics, and adoption not only contribute to outcomes improvement but 

also wield a significant influence on the effective framework in drug development. And 

finally, we can have improvement in the Strategic consulting and professional services 

offerings skills around statistics, analytics and data manipulation that have special data 

to quickly find solutions, leverage technologies for data ingestion, visualization, and 

https://www.healthcatalyst.com/insights/real-world-data-chief-driver-drug-development)
https://www.healthcatalyst.com/insights/real-world-data-chief-driver-drug-development)
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complement it with deep operational expertise to contextualize the human factors and 

processes that drive success, Stupka (2019). By ensuring a trusted network of providers, 

life science companies can merge data and professional skills and refine a solution until 

it can function and scale across providers.  

The next step for the life science sector is to scale those insights into actions, much 

like how payers and regulators have recognized the usefulness of extended RWD for 

critical decisions involving regulatory clearances and payments. The life science 

industry is accustomed to using data to provide specific insights. Life science 

companies can adopt meaningful outcomes-driven strategies for the development, 

regulation, reimbursement, and monitoring of new therapies through partnerships with 

organizations dedicated to healthcare transformation. This collaborative approach 

involves the utilization of extended-RWD, insights from real-world scenarios, trusted 

provider networks, population health management, and the establishment of clear 

definitions alongside real-time measurements of real-world outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

3 CHAPTER 

Literature Review in Pharmaceutical Research and Development 

3.1 Exploring different ways Real-World Data can improve our 

health-system. 

 

In the next chapter we try to provide insights through the entire spectrum of 

biological research. We already talked about how the real-world data encompasses a 

broad canvas such as, spanning DNA sequences and protein structures to clinical 

records and epidemiological datasets. These data repositories are not static archives but 

dynamic narratives of life itself, unfolding the intricate interplay of genetics, diseases, 

and evolutionary processes. As we venture into the literary landscape exploring real-

world data in bioinformatics, we embark on a journey to decipher the hidden techniques 

in the domain of pharmaceutical research and development, with the utilization of 

Artificial Intelligence, Deep and Machine Learning (Section 3.1).  

In our exploration, we'll traverse through a series of compelling case studies (Section 

3.1) that demonstrate the profound impact of RWD on diverse aspects of 

bioinformatics. Additionally, we'll delve into the intriguing synergy between artificial 

intelligence and arthroplasty (Section 3.2), highlighting how real-world data-driven AI 

technologies are revolutionizing orthopedic surgery by optimizing patient outcomes 

and prosthetic implant designs. Turning our attention to the broader spectrum of AI 

applications, we'll explore how RWD and ML are addressing acoustic problems in the 

everyday environment (Section 3.3). With the impactful aid of hearing aids and 

wearables, AI algorithms are reshaping the way we collect and interact with audio data, 

enhancing the quality of soundscapes and communication systems. 

Moreover, in (Section 3.4) we'll focus on how a large real-world registry TREVO 

2000 aids in the treatment of acute ischemic stroke, where real-world data-driven 

machine learning models are proving instrumental in early diagnosis and treatment 

planning, potentially saving countless lives. Finally, we examine a study which aimed 

to predict COVID-19 severity (Section 3.5). The research focus on the occurrence of 

acute respiratory distress syndrome (ARDS) within four months of the initial diagnosis 

using different machine learning techniques. In each of these domains, RWD emerges 

as a critical catalyst, propelling bioinformatics into an era of unprecedented discovery 

and innovation. With these powerful tools at our disposal, we find ourselves at the 

precipice of a new era in medicine a future where data driven insights empower us to 

improve healthcare outcomes, ultimately benefiting patients worldwide. 

Even though, the growth of this news techniques represents major technological 

breakthroughs, the results that we gather could be misleading if we are not able to 

separate the confounding factors, use the correct algorithms, examine the correct data, 

and fully comprehend the clinical questions behind the endpoints. It is vital to train ML 

algorithms accurately to have reliable performance in practice using multiple data 

scenarios. Furthermore, not all research questions can be answered by ML and AI 

especially when there is unpredictability or bad quality data, under-representation of 

certain patient groups, or even flawed trial design. Under-representation is a problem 

that should be taken seriously into account because it may result in systematic bias.  
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3.1.1 Harnessing Deep Learning for insights into protein structure 

 

The functional mechanism of a protein is dictated by its three-dimensional 

configuration, which is intricately encoded within its linear sequence of amino acids. 

Utilizing insights into protein structures aids in comprehending their biological 

functions and contributes to the exploration of novel therapeutic approaches for either 

inhibiting or activating proteins to address specific diseases. Anomalies in protein 

folding play a pivotal role in various disorders, encompassing type II diabetes, 

Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Also, the disparity between 

the one-dimensional amino acid sequence of proteins and their intricate three-

dimensional structures, has substantial merit in devising accurate methods for 

predicting these structures. Such advancements not only facilitate drug discovery but 

also enhance our comprehension of diseases linked to protein misfolding. 

An AI network called AlphaFold, created by DeepMind (Google), uses a protein's 

amino acid sequence to identify the protein's three-dimensional form Senior et al. 

(2020). It applied a DL method to estimate the protein's structure based on its sequence. 

The central aspect of AlphaFold is a convolutional neural network that was trained on 

the Protein Data Bank structures to forecast the distances among every pair of residues 

in a protein sequence, with a probabilistic distance map of a 64 × 64 region. To create 

a protein structure that complies with the distance predictions, these sections are then 

tiled together to produce distance predictions for the full protein. 

The first results come in 2020, when AlphaFold released the structure predictions of 

five understudied SARS-CoV-2 targets including SARS-CoV-2 membrane protein, 

Nsp2, Nsp4, Nsp6, which will hopefully enlighten us in the domain of under-studied 

biological systems. 

Moving next to Molecule Transformer-Drug Target Interaction (MT-DTI), which 

mention also by Beck et al., 2020 and in a few words can described as a deep learning-

based drug-target interaction prediction model that predicts binding affinities based on 

chemical and amino acid sequences of a target protein, without their structural 

information. It can be used to find powerful FDA-approved medications that may 

inhibit the functions of SARS-CoV-2's  proteins by Beck et al.(2020), computationally 

discovered several known antiviral substances, such as atazanavir, remdesivir, 

efavirenz, ritonavir, and dolutegravir, which are estimated to demonstrate an inhibitory 

potency against SARS-CoV-2 3C–like proteinase and can be possibly repurposed as 

candidate treatments of SARS-CoV-2 infection in clinical trials. 

 

3.1.2 The role of machine learning for developing predictive 

biomarkers 

 

Various case studies have lately been presented that the biomarkers derived by the 

ML predictive models were applied to stratify patients in clinical development. 

Predictive models were created to see if they might be used to foretell patient response 

to the treatments erlotinib, which is used to treat non-small cell lung or pancreatic 

cancer, and sorafenib, which is used in kidney, liver, and thyroid cancer. The models 
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use the IC50 values as a dependent variable and gene expression data from untreated 

cells as independent. The training dataset was the whole-cell line panel, and the testing 

dataset was the gene expression data gathered from tumor samples of patients who had 

taken similar medication. 

The training data for the drug sensitivity predictive models did not include any 

information from the testing dataset. Furthermore, one must consider that to evaluate 

how well the drug sensitivity predictive models developed using cell line data, the 

BATTLE clinical trial data was used as an independent testing dataset. In that way we 

could determine the IC50s that define the model-predicted drug-sensitive and drug-

resistant groups and after choosing the best models. Moreover, by B. Li et al., 2015 

employed a predictive model to stratify patients in the erlotinib arm from the BATTLE 

trial. The median Progression-Free Survival (PFS) for the erlotinib-sensitive patient 

group was predicted by the model to be 3.84 months, while the PFS for the erlotinib-

resistant patient group was predicted by the model to be 1.84 months. This indicates 

that the erlotinib-sensitive patients predicted by the model had a PFS advantage of more 

than twice as much as erlotinib-resistant patients. 

In a comparable manner the model-predicted sorafenib-sensitive group had a median 

PFS benefit of 2.66 months over the sorafenib-resistant group with (p-value= 0.006 and 

hazard ratio=0.32). For the model-predicted sorafenib-sensitive and sorafenib-resistant 

groups, the median PFS was 4.53 and 1.87 months, in each case. 

 

3.1.3 When to choose each method to optimize pharmaceutical 

research 

 

According to research, by Hwang (2016) phase 3 studies with innovative treatments 

failed in clinical development in 54% of cases, with 57% of those failures being related 

to insufficient efficacy. Failure to correctly identify the target patient population with 

the appropriate dosing regimen, including the proper dose levels and combination 

partners, is a very significant reason for this. A possible solution approach could be a 

systematic model utilizing ML applied to (a) build a probabilistic model to forecast 

odds of success (b) identify subgroups of patients with a higher chance of therapeutic 

benefit. This will make it possible to match patients with the proper therapy in the best 

possible way, maximizing both patient benefit and resource benefit. 

The training datasets are restricted to the same class of medications and may 

comprise all current early-phase and published data. Determining endpoints that can be 

used to calculate therapeutic effect most effectively is a significant difficulty in 

developing the probabilistic model. Early-phase clinical trials particularly in oncology 

use various primary efficacy endpoints in contrast with confirmatory pivotal trials due 

to a relatively shorter monitoring and need for faster decision-making. For instance, 

typical oncology objectives are overall response rate or complete response rate in phase 

I/II and progression-free survival (PFS) and/or overall survival both measured over an 

extended period benefit in pivotal phase III studies. 

For instance, if we focus on Phase I/II trials in oncology we frequently use single 

arm settings to establish proof of concept and generate the treatment benefit hypothesis, 
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whereas pivotal trials, particularly randomized phase III trials with a control arm, are 

intended to show superior treatment benefit over currently prescribed therapies. This 

modification in the targeted endpoints from the very early phase to late phase makes 

the estimation of POS in the pivotal trial, using early-phase data, quite difficult at times. 

Training datasets using previous trials for medications with a similar procedure and/or 

evidence can encourage determining the relationship among the short-term and long-

term endpoints, which eventually defines the success of drug development. 

Additionally, unsupervised learning can be used to cluster patients. Case in point, 

nonparametric Bayesian hierarchical models by executing the Dirichlet process enables 

patient grouping, without pre-specified number of clusters, with key predictive or 

prognostic variables, to symbolize various benefits. In conclusion this strategy is 

certain, that will increase efficiency in the clinical development of precision medicine 

over the next few years. 

To sum it up, now that we take a first taste of several techniques and where they can 

be beneficial, we have to mention that knowing when Deep Learning, Artificial 

Intelligence, Machine Learning, and traditional inference are most effective in 

pharmaceutical research and development is also crucial. We try to suggest in the 

(Figure 3.1) that follows below based on the dataset's dimensionality. 

 

 
FIGURE 3.1: Choosing the most suitable technique based on the size of the data 

(source: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/34984579) 

 

In a similar way we try to distinguish the methods (Figure 3.2), but this time it is 

based on numerous factors of medication development. Even though many ML 

algorithms are capable of handling big data with the “Large p, Small n” issue, the 

increased number of variables/predictors continues to be a difficult task. To be specific, 

as the irrelevant variables increases, the weight of the noise becomes greater, resulting 

in the reduced predictive performance of most ML algorithms Kolluri et al. (2022). 

https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/34984579
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FIGURE 3.2: Choosing the most suitable technique based on various aspects 

of drug development(source: 

https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/34984579) 

 

 

3.2 How can we elevate arthroplasty using Real-World Data 

 

In this unit we will examine how we can harness the information from big data and 

computing power, so we can upgrade the knowledge in the field of Arthroplasty. To be 

specific scientists have tried to establish a Machine Learning Arthroplasty Laboratory 

(MLAL) to examine the usage of AI to musculoskeletal medicine. Furthermore, in the 

next paragraphs, we focus on the two core objectives of the MLAL as they relate to the 

practice and progress of orthopedic surgery: (1) patient-specific, value-based care and 

(2) human movement. 

To illustrate in the field of orthopedics the success of a procedure can be determined 

not only by the anatomical restoration on an X-ray or the improved motion of a joint, 

but also by the patient's subjective experience of the procedure. This has caused a 

paradigmatic change in orthopedic practice and prompted an organized effort to gather 

information on patient-reported outcomes. Over the past two decades, arthroplasty 

research has used numerous outcome metrics and registries. Machine learning aids to 

that cause, through the use of algorithms can be trained to assist humans with little to 

no human continuous effort. 

 

3.2.1 The role of MLAL and how to utilize it 

 

In 2018 the MLAL was established to make computer-based algorithms demonstrate 

the primary sustainable way for the future of orthopedic surgeons and take advantage 

of all available data to find the best possible outcomes for patients, Ramkumar et al., 

2019. Orthopedic care and the MLAL operate on 2 crucial planes: system-based and 

practice based. At the system level, results and expenses are the two main determinants 

https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/34984579
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for value-based care. However, what some patients consider to be highly valuable could 

not apply to other people. This is more obvious when comparing total hip arthroplasty 

(THA) patients who want to run a marathon with those who just want to have a walk in 

the park. Since "value" in medicine varies from patient to patient, machine learning 

gives the opportunity to take these patient-level factors into account and provide value-

based care that is tailored to the patient’s needs. In conclusion, the major objective of 

MLAL is to identify and implement machine-learning solutions that enhance the normal 

practice of orthopedic medicine by prioritizing the patient, supporting the doctor, and 

benefiting key stakeholders (e.g., hospitals, institutions, and payers). 

For instance, to test the viability of predicting LOS (length of stay) and inpatient 

payments, a Naive Bayesian classifier algorithm was used to a statewide administrative 

database of over 260,000 primary total hip and knee arthroplasty (THA) and (TKA) 

patients. Representing a rudimentary form of machine learning, the Naïve Bayesian 

classifier is capable to analyze a large dataset, examine patterns based on the outcome 

variable of interest (ie, cost and LOS), and estimate what predetermined "bucket" to 

identify a new patient outside the studied dataset would likely resemble (i.e., <$12,000, 

$12,000- 24,000, >$24,000 or <3 nights, 3-5 nights, or >5 nights) based on patterns 

from the earlier introduced dataset. 

This had as a result for primary TKA patients, reimbursement tiers warrant increases 

of 3%, 10%, and 15% for moderate, major, and extreme comorbidities. While for 

primary THA patients, reimbursement tiers warrant increases of 3%, 12%, and 32% for 

moderate, major, and extreme comorbidities. Nonetheless, the limitation of this model 

centered on the use of just one database population, creating homogeneity bias, and the 

inability of a Naïve Bayesian model to output a specific value rather than an LOS or 

cost “bucket.” 

Moving on from the model we just discussed, we shift our interest in simple Naïve 

Bayesian approaches, which fall under the category of “supervised learning.” With this 

method, larger human participation is needed than “unsupervised learning,” in order 

artificial neural network (ANN) function well. Such ANNs provide the chance to 

increase algorithm accuracy and include external data in various forms. As an 

illustration, ANNs are a subtype of machine learning that can analyze a database full of 

radiographs labeled with implant designs, try to find a correlation between the 

radiograph patterns and associated label, and then, if the implant has already been 

"learned," recognize the implant from a new radiograph. 

In simple speaking, these ANNs represent a microcosm of experience-based learning 

and are even schematically organized after the individuals with several processing 

“nodes” densely linked in an axonal fashion. Like a neuron, one node may receive 

information from several other "dendritic" nodes while only sending information in one 

direction. The weight of the entering variable must be high enough to stimulate more 

nodes and create a correlational relationship before a node can "fire" or send data. When 

an ANN is being trained, all weights and thresholds are originally set to random values. 

Training data are provided to the input layer, and it passes through the succeeding 

layers, getting multiplied and added together in complex ways, until it eventually 

arrives, radically transformed, at the output layer. Weights and thresholds are 

continuously changed throughout training until training data with identical labels 

consistently produce results that are similar. 
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By applying a cohort study of 175,042 primary TKA patients with 15 preoperative 

input parameters, the ANN predicted LOS, charges, and discharge disposition with a 

discriminatory power of 74.8%, 82.8%, and 76.1%, respectively, based on the area 

under the curve. For moderate, significant, and severe comorbidities, the model showed 

increased reimbursements of 2.0%, 21.8%, and 82.6%, respectively. Similarly, an ANN 

developed for primary THA demonstrated area under the curves of 82.0%, 83.4%, and 

79.4% for LOS, charges, and disposition, respectively, with charges increasing by 2.5%, 

8.9%, and 17.3% for moderate, major, and severe comorbidities, respectively. These 

ANNs are capable of further learning and changes when new data is acquired in the 

future, which will enhance their predicting powers. 

 

3.2.2 Remote patient monitoring through mobiles 

 

It is well known that any huge dataset can be processed using ML. Apart from the 

extensive outcome datasets stored in registries, our mobiles record and store vast 

quantities of "small data," which also requires examination for clinically relevant 

insights. Smartphones and other mobile gadgets, including wearables, are now popular 

for this particular use. Except for the instant connectivity offered by cellular networks 

and the Internet, these devices also serve as sensors capable of maintaining enormous 

amounts of personal health data “mHealth”. 

Of course, all EMR that rely on remote servers, maintaining Health Insurance 

Portability and Accountability Act compliance with standard regulation supervision 

must be guaranteed before clinical adoption. Once the “small data” of a given 

individual’s minute-by-minute step count or heart rate are correct measured they 

transform into big data. Furthermore, the user interface needs to be simple and employ 

real-time feedback to encourage bilateral involvement between the patient and doctor. 

To address this, the MLAL has teamed up with Focus Motion, a developer of 

proprietary data-driven orthopedic solutions, in Santa Monica, California, to develop a 

remote patient monitoring system that uses open architecture to harness the power of 

mHealth data, AI algorithms to "learn" human movements, and real-time feedback. 

For the system to "learn" a movement, an activity must be labeled (for example, 

"straight leg raise"), carried out while using the wearable, and then all positional signals 

from the sensors must be processed and "taught" that a specific movement belongs to 

this action. The algorithm starts to recognize and give feedback on an activity after 

enough variations and repeats of that activity. This remote patient monitoring system is 

broadly scalable, freely available, and interoperable with any consumer mobile device 

in contrast to other platforms.  

By providing a knee sleeve that pairs to the patient’s smartphone we managed to 

collect data from TKA patients about home exercise plan compliance, daily step count 

(i.e., activity level), daily knee range of motion, weekly patient-reported outcome 

scores, and opioid use. To be more specific we illustrate an example of a patient in the 

next (Figure 3.3). 
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FIGURE 3.3: Summative dashboard data of a patient recovering from TKA who 

found the remote patient monitoring platform “highly motivating (source: 

https://pubmed.ncbi.nlm.nih.gov/31280916/) 

 

No patient had uninterrupted data collection at the time the trial was completed 90 

days after surgery, proving an outstanding connectivity. All 22 of the 25 patients who 

were available for follow-up interviews also considered the system to be inspiring and 

interesting. Daily home exercise program compliance with automatic notification was 

62% within the first 90 days postoperatively. This platform among numerous mobile 

apps being used across the globe to perioperatively assess and communicate with TKA 

patients. Opioid use typically stopped by postoperative fifth day, and mean mobility 

returned to baseline at approximately 6 weeks. This research tackles a critical obstacle 

in the captivity of results and therapy compliance data that have been previously limited 

by patient access, discontinuous data, high overhead cost, and capable technology. 

By constantly studying RWD and importing them into clinical workflow, we might 

accomplish “high performance medicine.” soon. This calls for continuing to be at the 

cutting edge of information regarding the benefits and drawbacks of these developing 

technologies for orthopedics, and large volume subspecialties like arthroplasty as we 

examined. Finally, allowing automation should not automatically trigger suspicions 

because some time-consuming processes, such as "clicks" in the electronic medical 

record, may in fact call for automation. 

 

3.3 Improve our acoustics everyday with the power of Real-World 

Data  

 

By utilizing data collected from hearing aid we might evolve the customization of 

hearing aid processing for each user according to hearing circumstances they face 

everyday life. Prior studies describing hearing aid users’ auditory environments have 

examined mean sound pressure levels and proportions of environments relying on 

classifications. The diversity of auditory environments experienced by hearing aid users 

will be quantified in the following paragraphs (3.3.1 & 3.3.2) by introducing entropy 

as an extension of these methodologies. Participants from four different groups wore 

https://pubmed.ncbi.nlm.nih.gov/31280916/
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research hearing aids and answered evaluations on a smartphone for one week. The 

smartphone was set up to offer an ecological momentary evaluation every 40 minutes 

and to sample the hearing aids' processing state every 10 minutes. 

Next, we'll delve into a second, even more captivating study (3.3.3 & 3.3.4) that 

explores the correlation between the everyday acoustic environment (the real-world 

data once more has been gathered from hearing aids and wearables) and human heart 

rate. The focus of the following study is to examine the short-term association among 

multidimensional acoustic characteristics of everyday ambient sound and continuous 

mean heart rate. 

 

3.3.1 The sequential steps for investigating our acoustic 

environments 

 

In today’s era we have grown a huge interest in understanding the everyday 

soundscapes or auditory environments that hearing aid users encounter. To begin with 

we could combine the auditory environments users as well as their unique hearing needs 

in certain environments with the information from hearing aid selection, signal 

processing, counseling, and aural rehabilitation. 

For instance, hearing aid users who lead more active lifestyles may benefit more 

from cutting-edge hearing aid technologies than listeners who lead fewer active 

lifestyles since they are more likely to experience a variety of auditory settings. 

Technological improvements have enabled new techniques for acquiring real-world 

data for example the use of hearing aids that can collect data about the environment, 

including the sound pressure level (SPL), hearing aid environment classification, and 

the hearing aid processing state. However, how to utilize these data the most to 

characterize the environments users experience and draw conclusions is still a 

challenge, Jorgensen et al., 2023. The common approach has been to outline averages 

and proportions, typically average sound pressure levels and proportions of 

environment styles. This method though offers a restricted glimpse into the auditory 

habits of hearing aid users. 

The ability of contemporary hearing aids to adapt to environments, and even, with 

the help of machine learning, to modify their processing, is one of their primary features 

hearing aids can offer. Thus, it is of interest to find data that describes how different a 

hearing aid user’s auditory environments are, how they shift over time, and what 

lifestyle variables might forecast these metrics. In that study, younger individuals with 

normal hearing and older participants with hearing loss living in urban or rural settings, 

were compared in terms of auditory environments and the activation of hearing aid 

features. 

Furthermore, entropy values for sound pressure levels, environment classifications, 

and ecological momentary evaluation reactions were calculated for each member to 

measure the diversity of auditory environments encountered over the course of the 

week. Entropy can be described as a measure of the number of ways a system can be 

arranged, often taken to be a measure of "disorder" (the higher the entropy, the higher 

the disorder). Additionally, to validate the use of entropy as a measure of auditory 
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environment diversity, entropy measured from hearing aid data will be compared to 

self-report data from ecological momentary assessments (EMA) surveys taken on a 

mobile device during each day. Only EMA responses where the subject proved that they 

were actively listening were included in the evaluation. With the participants' 

permission, GPS coordinates were also added to EMA surveys (Figure 3.4). 

 

 

FIGURE 3.4: EMA questions and potential answers (source: 

https://www.frontiersin.org/articles/10.3389/fdgth.2023.1141917/full) 

The final point to equally examine has to do with the data set used for this research. 

To be specific, 46 participants were enrolled in that study (data collection took place 

from 2017–2019 ), divided as we said into four groups: younger listeners with normal 

hearing from an urban area (YNH-U), younger listeners with normal hearing from a 

rural area (YNH-R), and older listeners with hearing loss from both urban and rural 

areas (OHL-U).The agricultural area was eastern Iowa, focused around Iowa City, and 

the urban area was the greater San Francisco Bay Area, centered around Berkeley, 

California. Older was arranged as the age of 35 and beyond while participants with 

normal hearing had to show audiometric thresholds less than 25 dB HL at all 

audiometric frequencies. Users with hearing loss had to have acquired, mild-to-

moderate sensorineural hearing loss and be experienced hearing aid users. Additionally, 

OHL groups although were retired, they participated in various volunteer, social, 

religious, or community groups or held part-time employment also, the YNH consisted 

of students and working professionals, with a majority expressing involvement in a 

diverse array of social and community activities. 

 

https://www.frontiersin.org/articles/10.3389/fdgth.2023.1141917/full
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3.3.2 Conclusive findings and research techniques from the study  

 

This study focusses on the use of entropy to quantify auditory environment diversity 

through SPL and environment classification data from hearing aids. It is well known 

that entropy can be calculated in a straightforward manner and can be validated from 

hearing aid data, as a measure of auditory environment diversity by comparing SPL and 

environment class between multiple listeners and comparing these differences to EMA 

results. To illustrate, SPL and environment class entropy was significantly higher for 

the YNH than the OHL participants, with the largest differences observed between the 

YNH-U and OHL-R groups. Similarly, the YNH participants had significantly higher 

EMA entropy than the OHL participants. Finally, this research aimed to compare 

entropy measured from hearing aid data to entropy from EMA. Significant, moderate 

correlations were observed among SPL and environment class entropy and between 

SPL-EMA entropy, providing further evidence for the validity of entropy as a measure 

of auditory environment diversity. 

When considered collectively, the results of this study indicate that younger listeners 

experience a greater variety of auditory environments than older listeners, that this 

variety can be captured using hearing aid data and measured using entropy, and that 

entropy calculated using objective hearing aid data broadly corresponds with entropy 

measured from self-report EMA data. We should take also into account that the research 

indicates that age is a more robust predictor of auditory environment diversity than 

geographic location, and with a relatively small sample, the clearest differences 

emerged when groups were combined along age. Overall, entropy could be a vital 

metric for a hearing aid to examine the auditory environment diversity of different 

participants with different needs and make processing changes based on individual 

users’ auditory environment diversity. 

Finally, as it comes to the methods used, we briefly mention that parts of the analysis 

were performed comparing all groups and other part for groups that were combined 

according to age and hearing ability. One-way Analysis of Variance (ANOVA) was used 

to examine group differences. Significant omnibus statistics were followed when 

appropriate by a priori pair QSP comparisons with Tukey p-value corrections for 

multiple comparisons. Model assumptions were analyzed by visually studying the data 

distribution and residuals, and no evidence of violating model assumptions was 

detected. Pearson-product moment correlation was used to evaluate the correlations 

between the different entropy measures. 

 

3.3.3 Connecting different acoustic environments with heart rate  

 

In this paper the sound environment is defined through four different criteria: sound 

pressure level (SPL), sound modulation level (SML), signal-to-noise ratio (SNR) and 

last soundscape class, demonstrating distinct characteristics of the slight sound 

immersion. SPLs are the most widely used measure of sound wave strength and 

describe sound intensity. Moreover, it is essential to emphasize SPL and the loudness 

that individuals perceive are highly correlated. On the other hand, SMLs are used to 
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describe temporal amplitude modulation, which is the degree of oscillation in the sound 

wave amplitude across brief time intervals that is present in speech and music. In other 

words, SML represents the sound wave's short-term dynamics. Moving next to the 

SNRs someone can say that, represent a spectral dimension of the sound by 

differentiating among the level of background sound relative to the level of the signal 

in decibels, Christensen, et al. (2021). In more straightforward terms, a more positive 

value indicates less noise relative to the signal. Finally, soundscapes are a qualitative 

dimension of the acoustic environment assumed to relate to how effortful it is to listen 

to speech-like sources in the presence of different levels of background noise. 

To give a quick glimpse of the dataset used for this study, 1.115.332 acoustic 

environment data logs and 522.715 heart rate logs were collected, which represents 

almost 9.000 h of bilateral hearing aid use and 61.000 h of data from wearables, 

respectively. Only data logged during 06.00 and 24.00 were considered legitimate to 

prevent confounds from night-time logs that were possibly gathered when neither the 

hearing aids nor wearables were being used Christensen et al., 2021.  

Data have been studied in two separate phases. The auditory environment was first 

described using all observations, independent of temporal overlap with HR logs, to 

make the most of the data that was available. Second, the data were pre-processed to 

guarantee complete overlap between auditory variables and HR logs for further 

statistical modeling. During pre-processing, time frames of 5 minutes before each HR 

log were chosen, and the arithmetic average of each acoustic variable was calculated 

within that window. As a result, the data records with totally overlapping data have each 

acoustic data variable's value calculated from the same time window as the running 

mean HR logs. To prevent potential confounds from low-incident HRs, the records 

under 5th and above 95th percentile of the group mean were excluded. These 

eliminations ensured that the residuals in statistical modeling were normal, while also 

did not influence the regression coefficients' order or the statistical significance of the 

included statistical models. Also due to the unbalanced samples per individual and 

hierarchical multi-level nature of the data documents, associations across variables 

were estimated using linear mixed-effect (LME) models. The 'nlme—Linear and 

Nonlinear Mixed-Effects Models' package (v. 3.1) was used for the application of 

mixed-effects models. 

 

3.3.4 Linking sound to heart rate and exporting final conclusions 

 

 To begin with LME models were executed separate for associating mean heart 

rate with either the categorical soundscape or the acoustic data SPL, SML and SNR, 

Christensen, et al. (2021). The random effect’s structure has been modified for baseline 

offsets in heart rates caused by time of day, week nested within individuals, and unique 

variations in baseline sensitivity to each fixed effect (i.e., random intercepts and slopes). 

In separate models, modification for the movement was used by including an additional 

nested random effect equal to the estimated movement quantified into 10 equal-sized 

bins (deciles). 

The movement we already mention, was estimated within the database to examine 

the possible confounding effect on the relationship between HRs and acoustic 
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environment data and later extracted for analysis. Specifically, the distance in meters 

between two consecutive latitude and longitude coordinates was computed using the 

haversine method. Using this method, for each pair of subsequent latitude (φ1, φ2) and 

longitude (λ1, λ2) coordinates the distance between them in meters, d, is calculated as: 

d = 2 r arcsin ( √𝑠𝑖𝑛2(
𝜑2−𝜑1

2
) + cos⁡(𝜑1)cos⁡(𝜑2)𝑠𝑖𝑛2(

𝜆2−𝜆1

2
)) 

 with r being equal to the radius of the earth. Movement in m s−1 was then computed 

by dividing d with the 1 min time-window among each observation and averaging 

across the 5 min time-window preceding each heart rate ratio. To ensure that only 

movement through physical activity were included, data that exceeded cycling speed 

(10 m s−1 ) were not take into consideration.  

To conclude the study findings, indicate that variations in heart rate were highly 

correlated with parameters of the auditory environment. Higher SPL and SML values 

were linked to higher HRs, but more favorable (higher) SNR values were linked to 

lower heart rates. Moreover, the documented associations among acoustic data and 

heart rate were higher in simple listening soundscapes (such as ‘Quiet’ and ‘Speech’) 

compared with soundscapes classified as containing noise, while marginal means 

revealed that heart rate moderation by SMLs and SNRs were distinct, depending on the 

decibels. Also, a positive but smaller association between HR and SML appeared. 

Sound that is highly modulated is commonly recognized by rapid oscillations in SPLs, 

serving as a characteristic sign of either speech or music. One could consider that the 

positive association between SMLs and HRs are a result of conversational task demand. 

That is, in highly modulated noise environments, speech and listening needs are more 

demanding, which leads to increased sympathetic autonomic nervous system activity. 

This study is the first to use longitudinal data to investigate the relationship between 

actual human heart rates and various aspects of the ambient auditory environment. 

According to the study, heart rates and ambient sound intensity are positively 

correlated. Additionally, the study results indicate that lower HRs are linked to real-

world ambient signal-to-noise ratios, which suggests that the human cardiovascular 

system is less burdened by sound conditions that reduce auditory perceptual load and 

listening effort. This finding is empowered by a documented effect of soundscape on 

the strength of the association between acoustic characteristics and autonomic nervous 

system reactions. In other words, auditory properties have the strongest correlation with 

changes in heart rate under favorable listening settings. 

In closing, but not any less crucial, our results indicate a mixed influence of everyday 

sounds on cardiovascular stress, and that the relationship is more complicated than is 

seen from an evaluation of sound intensity alone, Christensen, et al. (2021). Our results 

also demonstrate that data logging with commercially available devices can be used to 

study how ecological everyday acoustic environments affect human physiological 

reactions and emphasize the significance of including exposure to ambient sound in 

models predicting human physiology. 
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3.4 TREVO 2000: Real-World Data registry in cardiology 

 

Recent RCTs demonstrate the usefulness of thrombectomy for stroke patients with 

major vascular blockage. Real-world data contribute to evaluating reproducibility of 

results outside of clinical trials. A multicenter, worldwide, prospective research called 

the Trevo Retriever Registry was created to evaluate patient outcomes over a huge 

cohort of patients Binning et al. (2018). It is no secret that stroke accounts for 9% of 

the total deaths around the world and is the second-leading killer after ischemic heart 

disease. Strokes can have an ischemic origin and be caused by embolic or thrombotic 

etiologies in up to 87% of incidents. In patients who report within 4.5 hours of the onset 

of stroke symptoms, intravenous thrombolysis with tissue plasminogen activator has 

historically been the first choice of treatment Binning et al. (2018). However, recent 

multicenter, RCTs have shown that selected patients with large vessel arterial 

occlusions are observed to have higher recanalization rates and better results when 

intravenous thrombolysis with tissue plasminogen activator is applied in conjunction 

with mechanical thrombectomy. 

 

3.4.1 Data insights from the mechanical thrombectomy research 

 

The Trevo stent retriever (Stryker Neurovascular) is a third generation mechanical 

thrombectomy machine used to incorporate and discard arterial thrombus in patients. 

The Trevo Retriever Registry is a prospective, real-world registry that gathered data 

from platforms that performed thrombectomy based on their regional protocols. The 

largest data collection on patients undergoing mechanical thrombectomy utilizing a 

stent retriever as the first-line device is in this cohort Binning et al. 2018). In other 

words, the Trevo Registry is a prospective database of individuals with large vessel 

occlusion treated with the Trevo as the first device. Revascularization based on the 

modified Thrombolysis in Cerebral Infarction score is the major end point, while other 

end points include the modified Rankin Scale at 90 days, mortality at 90 days, 

neurological worsening at 24 hours, and adverse events related to the device or surgery. 

A total of 2008 patients were enrolled during the enrollment period from 76 centers 

internationally. From the intention-to-treat population, the 1365 (68%) were enrolled in 

the USA whereas 643 (32%) were enrolled outside USA. In the following (Figure 3.5), 

more patient characteristics are presented. 
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FIGURE 3.5: Patients Characteristics (source: 

https://pubmed.ncbi.nlm.nih.gov/30561262/) 

 

For the statistical analyses, patient baseline characteristics and procedural data were 

examined at first glance using meters such as frequency, mean, SD, and median. Then, 

t test or Wilcoxon sum test was used to compare groups, while Fisher's exact test was 

used to compare dichotomous variables. Also, Clopper–Pearson CIs were constructed 

for inferences of key results. Additionally, both, uni- and multivariate logistic 

regression was executed on the intention-to-treat cohort to determine predictors of good 

results. Lastly when used chi-square p-value was set at 0.05. SAS software was used to 

perform these analyses and in patients with missing 90- day mRS, last observation 

carried forward was utilized.  

 

3.4.2 TREVO 2000: Study findings and concerns about the future 

 

Median admission National Institutes of Health Stroke Scale was 16 (interquartile 

range, 11–20). To talk with numbers, occlusion sites included the internal carotid artery 

17.8%, middle cerebral artery 73.5%, posterior circulation 7.1%, and distal vascular 

locations 1.6%. In 92.8% of procedures, a modified Thrombolysis in Cerebral 

Infarction 2b or 3 was achieved, and at three months 55.3% of patients attained a 

modified Rankin Scale 2. At the same time, three months, patients who underwent 

thrombectomy and met the updated 2015 American Heart Association (AHA) criteria, 

had a modified Rankin Scale 0 to 2 of 59.7%, as opposed to 51.4% of patients who 

received treatment in violation of the AHA guidelines. Also, the risk of symptomatic 

cerebral bleeding was 1.7%. 

On the other hand, we should mention that the analysis is subject to noteworthy 

limitations that warrant some attention and consideration. In total, we will enumerate 

and discuss five of these limitations. To begin with, this single-arm registry, which does 

not include a control arm, represents a sizable cohort of stent-retriever patients gathered 

https://pubmed.ncbi.nlm.nih.gov/30561262/
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in the real world. Secondly, thrombectomy cases were not consecutively gathered at 

each hospital. It would not have been possible to obtain sequential patient data during 

this time because there were open clinical trials and competitive device registries. 

Furthermore, permission was received within 7 days of the treatment, and there is a 

chance that patients with less-than-desirable outcomes won't be enrolled because it 

would be awkward to contact families after the procedure. Moreover, local sites or 

investigators reported 3-month mRS, this assessment may have led to a greater number 

of patients who had good or exceptional clinical outcomes.  

Last but certainly not least, there were inconsistencies in the imaging data. The fact 

that our results fall within the same range as the HERMES (Highly Effective 

Reperfusion Evaluated in Multiple Endovascular Stroke Trials) pooled analysis, with 

equivalent mortality rates (14% versus 15.3%) and autonomous results (55.7% versus 

46%) at 90 days despite a slightly smaller stroke severity (median baseline National 

Institutes of Health Stroke Scale 15.5 versus 17), minimizes fears regarding selection 

bias, which are a natural byproduct of the structure of any registry. In order to decrease 

the bias for outcomes related to reperfusion and hemorrhagic complications, the Trevo 

registry also maintained a central core lab for reviewing angio- and radiographic 

imaging. 

To sum it up the Trevo Retriever Registry represents real-world data through stent 

retriever. The registry indicates similar reperfusion rates and results in the community 

when compared with rigorous centrally adjudicated clinical trials. Results from clinical 

trials for stroke appear to be reproducible in the real world for a variety of occlusion 

sites, stroke severity, onset times, and patient comorbidities, according to outcome data. 

Keeping in mind also that, future subgroup analyses of this cohort will help identify 

potential study topics. 

 

3.5 Leveraging big data to forecast COVID-19 severity cases  

 

The COVID-19 pandemic has placed enormous pressure on worldwide medical 

systems, with varying degrees of symptom severity among infected individuals. 

machine learning is being used as a powerful tool for forecasting and controlling the 

severity of COVID-19 cases. ML techniques, such as XGBoost, Artificial Neural 

Networks, Random Forest, and deep learning, have been utilized to identify risk factors 

as well as create predictive models for COVID-19 severity, including hospitalization, 

ICU admission, ventilation needs, and mortality. These models frequently make use of 

a range of clinical data sources, including EHR and Medicare/Medicaid data, to give 

helpful information for healthcare professionals in managing and allocating resources. 

This study is about to examine Lazzarini et al., 2022 introduces a robust Machine 

Learning model for predicting COVID-19 severity, specifically defined as the 

development of acute respiratory distress syndrome (ARDS) within four months of 

initial infection. This model was created utilizing a large dataset of almost 290,000 

COVID-19 patients, encompassing over 800 diagnosis codes, in contrast to several 

prior studies with limited data. This extensive dataset guarantees a realistic 

representation of both severe and non-severe cases, leading to a more reliable predictive 

model. The model's performance was later validated on an independent test set, and its 
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predictions were compared to five clinicians. Additionally, advanced interpretability 

techniques were employed to identify key risk factors influencing ARDS development 

in COVID-19 patients. 

 

3.5.1 Evaluating machine learning models for COVID-19 

 

To begin with, this study, aimed to predict COVID-19 severity, specifically the 

occurrence of ARDS within four months of the initial diagnosis. It is important to 

mention that the cohort consisted of patients who were first diagnosed with COVID-19 

in April 2020, ensuring they had no prior COVID-19 diagnoses or ARDS cases between 

October 2015 and January 2020. This cohort consisted of 289,351 patients as we said, 

with 10,793 progressing to severe COVID-19 and 278,558 not experiencing severe 

outcomes. 

To construct a feature space for each patient, we delved into their claim history 

within a predefined "lookback" period, extending from the introduction of the ICD-10 

code system in October 2015 to January 2020. Furthermore, ICD-10 code system refers 

to the tenth edition of the International Classification of Diseases, which is a medical 

coding system chiefly designed by the WHO to catalog health conditions by categories 

of similar diseases. This lookback period was essential for capturing comorbidities and 

medical history. Also, a gap of several months was included between the end of the 

lookback and the patient selection period in April 2020 to avoid incorporating features 

correlated with the COVID-19 infection that might have manifested earlier. For each 

patient, was generated 817 boolean comorbidity features, representing the presence or 

absence of specific diseases within the lookback window for example age and gender 

were included as input features. 

The dataset was meticulously divided into training, validation, and test sets, with 

proportions of 80%, 10%, and 10% each, always making sure that the original positive-

to-negative patient ratio of 1:26 was preserved in all subsets. To maximize the power 

of the predictive models, three widely used machine learning algorithms were selected: 

Logistic Regression, Random Forest, and LightGBM. Moreover, Bayesian 

optimization, facilitated by Hyperopt, was employed to fine-tune hyperparameters and 

maximize the Area Under the Curve of Precision-Recall (AUCPR), a comprehensive 

metric that balances precision and recall across various decision thresholds. Finally, the 

credibility of the model was strengthened by comparing its predictions with 

assessments made by five experienced clinicians, thus ensuring real-world relevance 

and practicality.  

Additionally, it is crucial to recognize that the model performance was evaluated 

using mainly two metrics, the Receiver Operating Characteristic (ROC) curve and the 

Precision-Recall (PR) curve. ROC curve captures the balance between the true positive 

rate and false positive rate across various probability thresholds, whereas the PR curve 

emphasizes the compromise between the true positive rate (recall) and the positive 

predictive value (precision). To further quantify performance, examination of AUC the 

(Area Under the Curve) for the ROC curve and AUPRC (Area Under Precision Recall 

Curve) for the PR curve, was enlighten. Also, it is important to notice that, due to the 

imbalanced nature of the dataset, where negative samples were predominant, ROC 
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curves were recognized as potentially misleading due to their sensitivity in this 

imbalances Saito & Rehmsmeier, (2015). In contrast, precision remained a more robust 

performance metric independent of the dataset balance.  

 

  

        FIGURE 3.6: Performance evaluation of the three machine learning models measured using a ROC curve 

(left) and (right) a PR curve (source: https://pubmed.ncbi.nlm.nih.gov/35901089/) 

 

Hyperopt was employed to optimize the hyperparameters for the models in this 

study. The chosen hyperparameters were those that yielded the highest performance on 

the training dataset, evaluated using a standard 5-fold cross-validation approach. 

Subsequently, the final models were constructed using the entire training dataset, and 

their performance was assessed on a separate test dataset, which was not utilized during 

the model training process. 

In (Figure 3.6), the performance of each model was compared using both ROC 

curves and PR curves because of this analysis, the LightGBM model shown superior 

performance both times. The result above, aligns with existing literature, which has 

consistently shown that Gradient Boosted Decision Trees excel in healthcare situations. 

To speak with numbers, first in ROC curves, the LightGBM model reach an AUC of 

0.695, leaving behind the values of 0.679 and 0.676 obtained by the Random Forest 

and Logistic Regression models, respectively. It is also essential to mention that all 

models shown values significantly above the baseline of AUC which is 0.5. Similar 

results were observed in PR curves, where the LightGBM model again emerged as the 

top-performing model, with an AUPRC of 0.0730. The AUCPR was again higher than 

the other models: 0.0671 for Random Forest and 0.0637 for Logistic Regression. The 

PR curve results imply that the selected model successfully extracted meaningful 

patterns, enabling accurate predictions of ARDS in patients from the test dataset. 

It is also worth noting that the prevalence of ARDS in the study was lower than that 

reported in most published related works. This variation can be attributed to the 

inclusive method mentioned, which encompassed a broader spectrum of COVID-19 

patients using IQVIA's claims data, as opposed to focusing solely on a specific subset. 

However, it is important to emphasize one more time the 1:26 positive-to-negative class 

ratio to mitigate the introduction of bias in the metrics. This ensured that the distribution 

of patient types in our test set remained consistent with the real-world. Taking into 

https://pubmed.ncbi.nlm.nih.gov/35901089/


54 

 

consideration the performance of the LightGBM model, it would be a mistake to not 

concentrate exclusively on this model for the remainder of our analysis. 

 

3.5.2 Conclusions and promises for the future 

 

 In the research, we embarked on an extensive exploration of machine learning 

models for predicting COVID-19 severity, with LightGBM, a powerful Gradient 

Boosted Decision Tree model, emerging as the frontrunner in terms of performance 

Saito & Rehmsmeier, (2015). To assess the efficacy of the models, both ROC (Receiver 

Operating Characteristic) and PR (Precision-Recall) curves were utilized. These curves 

provided a clear demonstration of improved performance compared to a classifier based 

solely on acute respiratory distress syndrome prevalence within the cohort. To make it 

simple, LightGBM can translate meaningful patterns, resulting in more accurate 

predictions. Additionally, we subjected the model's performance to rigorous evaluation 

by comparing it with the clinical expertise of five healthcare professionals. 

Impressively, the models exhibited similar precision and recall values to these experts, 

demonstrating its clinical utility. The model's interpretability was enhanced by SHAP 

(Shapley Additive Explanations), which allowed to clarify, Age (0.5) and Gender (0.2) 

(mean |SHAP value|) as the most significant constants. These results support previously 

known information about COVID-19 severity risk factors, further supporting the 

validity. Also, the feature selection process was unbiased, utilizing all available ICD 

(International Classification of Diseases) codes from patients' medical histories. 

While the study showcases the potential of machine learning models in forecasting 

COVID-19 severity, it has some limitations. The use of claims data may cause sample 

bias, as it might not represent patients with limited or no access to the healthcare system.  

Equally noteworthy is the fact that, potential data reporting delays by extending the 

timeframe utilized for identifying severity. However, the prevalence of ARDS in the 

cohort was in the same page with published literature Matthay et al. 2020. 

Future research projects will evaluate models trained on EMR, broaden the COVID-

19 patient selection window to cover an even larger cohort, and then compare the 

existing model with available predictive tools. This way we could be in position to 

investigate vaccine efficacy and explore potential long-term side effects. Ultimately, 

the aim is to optimize vaccination strategies by individual’s segments based on age or 

other important variables Saito & Rehmsmeier, (2015). To sum it up, employing 

machine learning with claims data can aid in predicting which COVID-19 patients are 

at higher risk. This way can eventually enhance the allocation of hospital resources and 

prioritize patient care. 
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4. CHAPTER 

MACHINE LEARNING 

 

4.1 Types of Machine Learning 

This next chapter explores the various categories of machine learning, emphasizing 

their significance and how they work. By leveraging complex algorithms, machine 

learning provides sophisticated tools for uncovering patterns, making predictions, and 

driving decision-making processes. These advanced methodologies extend the 

capabilities of classical statistics, enabling more nuanced and accurate insights across 

diverse applications. As we explore the different facets of machine learning, we will 

highlight the important of statistics and its profound impact on various occasions. 

Diverse approaches to problem-solving are offered by mainly three primary types of 

machine learning: supervised, unsupervised and reinforcement learning Sapoval et 

al.,2022. Supervised learning is used for tasks like picture classification and regression 

since it relies on labeled datasets. Conversely, unsupervised learning finds uses in 

dimensionality reduction and clustering by uncovering hidden patterns and structures 

within unlabeled data. Reinforcement learning, which has been successful in fields like 

game play and autonomous systems, presents the idea of an agent interacting with an 

environment and adopting the best approaches, by trial and error. The agent receives 

feedback in the form of rewards or punishments based on the actions it takes and aims 

to collect the most rewards possible each time. 

 

 
FIGURE 4.1: The main types of machine learning (source: 

https://www.researchgate.net/publication/359672214_Current_progress_and_open_

challenges_for_applying_deep_learning_across_the_biosciences) 

 

Apart from the types we just mentioned (Figure 4.1), new kinds are emerging such 

as: transfer, semi-supervised, and self-supervised learning that provide innovative 

solutions to problems in different fields. To be specific, semi-supervised learning 

leverages both labeled and unlabeled data to improve model accuracy. While self-

supervised learning empowers models to generate their own labels, this way the model 

is trained to predict parts of the input data from other parts, creating a pseudo-

supervised learning scenario, this mainly works efficiently for pre-training tasks. 

Transfer learning, on the other hand, can reuse the knowledge gained from one task to 

https://www.researchgate.net/publication/359672214_Current_progress_and_open_challenges_for_applying_deep_learning_across_the_biosciences
https://www.researchgate.net/publication/359672214_Current_progress_and_open_challenges_for_applying_deep_learning_across_the_biosciences
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improve the results on another, this may be crucial when dealing with limited labeled 

data and can save computational resources and time. The ongoing development of these 

methods emphasizes how dynamic machine learning is and how important a role it 

plays in forming the field of artificial intelligence. 

Data preprocessing is a critical step in all types of machine learning that includes 

handling missing values, normalization, and outlier detection. Raw data is often 

inconsistent, incomplete, and unreliable, making it unsuitable for direct use in machine 

learning algorithms or statistical models. Through data preprocessing, we can enhance 

the quality of the data, making it more accurate and reliable, while reducing the 

likelihood of errors in the subsequent analysis Mehmed Kantardic (2020). Overall, data 

preprocessing is a crucial step in any data analysis task that can lead to better insights 

and results. 

 

4.1.1 Preprocessing Steps  

Preprocessing is a critical phase in data analysis that ensures the data is clean, well-

formatted, and suitable for analysis. One of the first steps in preprocessing is data 

cleaning, which involves identifying and correcting errors, inconsistencies, and 

anomalies in the dataset. This step is crucial for maintaining the quality and integrity of 

the data, as even small errors can significantly skew the results. Data cleaning can 

include tasks such as correcting typos, standardizing formats, and resolving duplicates. 

Ensuring that the data is accurate and consistent lays a solid foundation for subsequent 

analysis. 

Another important preprocessing step is data integration, where data from multiple 

sources is combined into a single, coherent dataset. This process often involves aligning 

different data formats, which is particularly important when dealing with large and 

diverse datasets, as it provides a comprehensive view of the information. Data reduction 

is also a key preprocessing step, aimed at simplifying the dataset without losing 

significant information. Data reduction helps in mitigating the dimensionality, 

improving the efficiency of the analysis, and enhancing the interpretability of the 

results. By focusing on the most informative features, data reduction enables more 

effective modeling and analysis, ensuring that the insights derived are meaningful. 

Moreover, handling missing values is a significant step in data preprocessing 

because incomplete data can impact the accuracy and reliability of our analysis. First, 

an analyst with a professional, can modify samples with empty registries and enter an 

appropriate, or believed value based on the experience of each. The technique is 

relatively easy for small numbers but, the danger of adding noise into the data must be 

taken into consideration if there are a lot of missing values.  

The next method is even simpler. It is based on a formal, often automatic 

replacement of missing values with constants, such as: 

 

1. Replace all missing values with a single global constant (depends highly on the 

application). 

2. Replace a missing value with its feature mean. 

3. Replace a missing value with its feature mean for the given class (mainly for 
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classification problems where samples are classified in advance). 

 

The last approach, typically chosen when dealing with a large amount of data, 

involves removing rows or columns that contain missing values from the dataset. 

However, this can result in data loss and may not be practical for datasets with many 

missing values. Although these solutions are tempting, the selection of the methodology 

for handling missing values depends on the specific characteristics of the data set and 

the goals of our research. The method we choose should be carefully considered, as it 

can have a significant impact on the results of our analysis. 

 

4.1.2 Data Scaling and Normalization 

Moving on to normalization there are certain methods, particularly those relying on 

distance computations in an n-dimensional space, often necessitate normalized data for 

optimal results. Normalization involves scaling measured values to a specific range, 

such as [-1, 1] or [0, 1]. Failure to normalize may result in distance measures 

overweighting features with, on average, larger values. Several effective techniques for 

normalizing data exist, with three notable methods outlined below: 

 

(a) Decimal Scaling: Decimal scaling involves moving the decimal point while 

preserving most of the original digit value. The values are typically maintained within 

a range of -1 to 1. The scaling process is described by the equation: 𝑣′(𝑖) =
𝑣(𝑖)

10𝑘
, where 

𝑣(𝑖) is the value of the feature 𝑣 for case i and 𝑣(𝑖) is the scaled value for the smallest 

k such that max(|𝑣′(𝑖)|) < 1. First, the maximum |𝑣′(𝑖)| is found in the data, and then, 

the decimal point is moved until the new, scaled maximum absolute value is less than 

1. The divisor is then used to all other 𝑣(𝑖).For instance, if 455 is the biggest value and 

–834 the smallest, then the maximum absolute value of the feature becomes 0.834, and 

the divisor for all 𝑣(i) is 1000 (k = 3). 

 

(b) Min–Max Normalization: Suppose now that the data for a feature 𝑣 are in a range 

between 150 and 250. Then, the previous method of normalization will give all 

normalized data between 0.15 and 0.25 but it will accumulate the values on a small 

subinterval of the entire range. To obtain better distribution of values on a whole 

normalized interval, e.g., [0, 1], we can use the min–max formula 

𝑣′(𝑖) =
(𝑣(𝑖) − min(𝑣(𝑖)))

(max(𝑣(𝑖)) − min(𝑣(𝑖)))
 

where the minimum and the maximum values for the feature 𝑣 are computed on a set 

automatically or they are estimated by an expert in the domain. Similar transformation 

may be used for the normalized interval [−1,1]. The automatic computation of min and 

max values requires one additional search through the entire data set, but, 

computationally, the procedure is simple. On the other hand, expert estimations of min 

and max values may cause unintentional accumulation of normalized values. 

 

(c) Standard Deviation Normalization: Normalization by standard deviation usually 

works well with distance measures but makes the data unrecognizable from the original 

form. For a feature 𝑣, the mean value mean (𝑣) and the standard deviation sd (𝑣) are 
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computed for the entire data set. Then, for a case 𝑖, the feature value is transformed 

using the equation  

𝑣 ∗ (𝑖) =
(𝑣(𝑖) − 𝑚𝑒𝑎𝑛(𝑣))

sd(𝑣)
 

For example, if the initial set of values of the attribute is 𝑣 = {1, 2, 3}, then mean(𝑣) = 

2, sd(𝑣) = 1, and the new set of normalized values is 𝑣 ∗ = { −1, 0, 1 }. In machine 

learning, data scaling and normalization is an essential preprocessing step that has a big 

impact on the efficacy and accuracy of models and algorithms. It is crucial to give 

careful thought to which scaling strategy is best for the dataset and analysis being done. 

 

4.1.3 Outlier Detection 

In machine learning, outlier detection is the process of identifying data points or 

observations that significantly differ from others in a dataset Smiti (2020). Specifically, 

outliers can result from errors in data collection and entry, or they may represent 

genuinely unusual or rare events. Additionally, outliers can be removed from the dataset 

if they are deemed incorrect or transformed to mitigate their impact. Some simple ways 

to achieve this include taking the logarithm or square root of the value examined. In 

general, outliers can be of particular interest, and their impact on the analysis should be 

carefully examined each time.  

Outliers are very different from noisy data, while noises are useless and must be 

removed like erroneous data values 999 instead of 99 for ‘‘age’’ attribute or incorrect 

data type (string type entered for a numeric attribute). On the contrary, outliers can 

provide both useless and interesting information. To make it clear we give a definition 

by the statistician, Hawkins 1980, «An observation which deviates so much from other 

observations as to arouse suspicions that it was generated by a different mechanism». 

Stated differently, outliers are data points that significantly vary from clearly defined 

norms within a data set or from predetermined notions of expected behavior. Sometimes 

they are helpful and should be kept, but other times we would like to eliminate them 

because they mislead our analysis. Outlier detection approaches can be categorized 

based on different criteria. For our thesis we briefly mention four principal methods: 

Statistical-based, Distance-based, Clustering based and Density-based. 

 
FIGURE 4.2: Outlier detection methods (source: 

https://www.sciencedirect.com/science/article/pii/S1574013720304068) 

https://www.sciencedirect.com/science/article/pii/S1574013720304068
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Outlier detection through statistical methods, has two main categories parametric 

and non-parametric and aim to identify outliers by assessing how significantly a data 

point deviates from a standard distribution. Parametric methods, such as Gaussian-

based and regression-based techniques, rely on predefined distribution knowledge. 

Gaussian-based methods, exemplified by box plots and mean-variance calculations, 

offer a visual representation of data distribution characteristics, allowing for the 

identification of outliers. Regression-based methods, on the other hand, involve 

constructing models during the training phase and testing data points against these 

models during the test phase. Non-parametric methods, such as histogram-based and 

kernel-based approaches, provide alternatives for cases where the data distribution is 

unknown.  

 

      Although outlier detection is an interesting topic, we will not delve further to all the 

categories mentioned above. If someone wants to search more, he can start by reading 

the paper of Abir Smiti, 2020. We briefly mention only that Statistical-based methods 

may be effective for given distribution models, but they cannot be used when this 

distribution is not known. Distance-based techniques avoid this issue by being 

independent of data distribution yet, they may be very expensive when dealing with 

multivariate and high dimensional data. Density-based methods are more efficient, but 

they remain inappropriate for huge amounts of data and data streaming. While on the 

other hand, cluster-based techniques can manage data streams but require an excessive 

number of parameters. 

 

Even though outlier detection has been the subject of numerous studies, there are 

still certain drawbacks with each approach. New outlier detection methods could be 

proposed, or existing methods could be improved. 

 

4.2 Classification Methods  

In machine learning, selection of the appropriate algorithm and the optimization of 

its performance depends on the type and characteristics of the available data, as well as 

on the nature of the problem faced Mehmed Kantardic (2020). Therefore, understanding 

the basic algorithms in both supervised and unsupervised learning is crucial. In the next 

units we will examine the two main categories of problems, each type is suitable, for 

supervised learning we have the classification (4.2) and regression (4.3) problems while 

for unsupervised learning clustering (4.4) and dimensionality reduction (4.5).  

 
FIGURE 4.3: Boxplot that visualizes outliers (source: 

https://www.sciencedirect.com/science/article/pii/S1574013720304068) 

 

https://www.sciencedirect.com/science/article/pii/S1574013720304068
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To begin with we start with classification, which is a fundamental problem in 

machine learning and involves predicting the class or category of data. The 

classification methods are algorithms that use labeled data to learn a boundary decision 

that can be used to classify new, unlabeled data into one or more predefined classes. An 

example of a real-world classification problem is when a doctor wants to decide, based 

on some specific characteristics, whether patients are suitable to have a surgery. 

Overall, classification methods are powerful tools for addressing various real-world 

problems and can provide valuable insights for complex datasets. In this unit, we will 

try to analyze the methods mentioned below: 

 

• Logistic Regression (4.2.1) 

• Linear Discriminant Analysis (4.2.2) 

• K-Nearest Neighbours (4.2.3) 

• Support Vector Machines (4.2.4) 

 

4.2.1 Logistic Regression 

Continuous-value functions can be modeled using linear regression. Generalized 

regression models symbolize the theoretical basis on which the linear regression can be 

used to model categorical response parameters. Logistic regression is a popular form of 

generalized linear model. The chance of an event occurring as a linear function of a set 

of predictor variables can be calculated by logistic regression. It was developed to 

describe properties of population growth in ecology, rising quickly and maxing out, is 

presented in next figure Abdulhussein et al., (2021). Any real number can be mapped 

onto this S-shaped curve (Figure 4.4) to represent a value between 0 and 1. 

 

 
FIGURE 4.4: Logistic Regression S-curve (source: 

http://pen.ius.edu.ba/index.php/pen/article/viewFile/2507/1023) 

 

Logistic regression is only applied when the output variable of the model can be 

categorized as a categorical binary variable, Kantardzic (2020). On the contrary, there 

is no reason why any of the inputs should not also be quantitative, and, thus, logistic 

regression can support a wide general input data set.  

http://pen.ius.edu.ba/index.php/pen/article/viewFile/2507/1023
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For instance, output Y has two possible categorical values 0 and 1. Based on the 

available data we can compute the probabilities for both values for the given input 

sample: 𝑃(yj = 0) = 1 − pj and 𝑃(pj = 1) = pj. The model that we will fit these 

probabilities is accommodated linear regression: 

 

𝑙𝑜𝑔 (
pj

1−pj
) = 𝑎 + 𝛽1X1j + 𝛽2X2j + 𝛽3X3j +⋯+ 𝛽nXnj  

 

This equation is known as the linear logistic model. The function 𝑙𝑜𝑔(
pj

1−pj
) is usually 

symbolized also as logit(p). The main reason for using the logit form of output is to 

prevent the predicting probabilities from becoming values out of required range [0, 1]. 

Assume that a linear equation represents the estimated model that was created using the 

linear regression process and one training data set give us the result below: 

𝐴 = 𝑙𝑜𝑔𝑖𝑡(𝑝) = ⁡1.5⁡– ⁡0.6⁡x1 ⁡+ ⁡0.4⁡x2⁡– ⁡0.3⁡x3 

 

and further assume that the input values for the new sample for classification are 

{x1,⁡x2,⁡x3} = {1, 0, 1}. It is simple to calculate the probability of the output value 1, 

(P(Y = 1)) for this sample using the linear logistic model. First, finding the 

corresponding 𝑙𝑜𝑔𝑖𝑡(𝑝) = 1.5⁡– ⁡0.6⁡1⁡ + ⁡0.4⁡0⁡– ⁡0.3⁡1⁡ = ⁡0.6⁡⁡and then the 

probability of the output value 1 for the given inputs:  
 

𝑙𝑜𝑔 (
𝑝

1 − 𝑝⁡
) ⁡= ⁡0.6⁡ => ⁡𝑝⁡ = ⁡𝑙𝑜𝑔 (

𝑒0.6

1 + 𝑒0.6⁡
) = 0.65 

 

We may determine that the output value Y = 1 is more likely than the other 

categorical value Y = 0 based on the final value for probability p usually, if the estimated 

probability is greater than 0.50 (threshold value), then the prediction is closer to YES. 

Logistic regression is a simple yet effective classification tool, as even this basic 

example demonstrates. One piece of data (the training set) can be used to create a 

logistic regression model, and another set of data (the testing set) can be used to assess 

how well the model predicts categorical values. 

Logistic regression offers numerous advantages, including simplicity, 

interpretability, and the ability to handle numerical and categorical independent 

variables. However, it also comes with certain limitations, such as assuming linearity 

between independent variables and the logarithmic odds of the dependent variable, as 

well as sensitivity to extreme values and multicollinearity. Nevertheless, logistic 

regression remains a widely utilized and valuable tool in data analysis and machine 

learning. 

 

4.2.2 Linear Discriminant Analysis  

When there are categorical, nominal or ordinal, independent variables and metric 

dependent variables, linear discriminant analysis (LDA) is used to solve classification 

problems. The objective of LDA is to create a discriminant function that produces 

different scores when calculated with data from different output classes. The form of a 

linear discriminant function is z⁡ = ⁡w1⁡x1 +⁡w2x2 +⁡…⁡+⁡wkxk⁡ where x1,x2, … xk are 
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independent variables. Moreover, z is named discriminant score and w1w2, … ,wk 

weights. The discriminant score (Figure 4.5) for a data sample represents its projection 

onto a line defined by the set of weight parameters as it demonstrated below. 

 

 
FIGURE 4.5: Geometric interpretation of the discriminant score, Kantardzic 2020 

 

Finding a group of weight values wi that maximizes the ratio of the discriminant 

score between-class to within-class variance for a pre classified set of samples is the 

crucial step in creating the discriminant function z. Once constructed, the discriminant 

function z is used to forecast the class of a new non-classified sample. Cutting scores 

operate as the criteria against which each individual discriminant score is assessed the 

choice of cutting scores depends upon a distribution of samples in classes. Letting za 

and zb be the mean discriminant scores of pre classified samples from class A and B, 

respectively, the optimal choice for the cutting score zcut-ab is given as Zcut-ab =
(Ζ𝛼−𝛧𝑏)

2
 

when the two classes of samples are of equal size and are distributed with uniform 

variance. A new sample will be classified to one or another class according to its score 

z > Zcut-ab⁡or z <Zcut-ab. While a weighted average of mean discriminant scores is implied 

when the group of samples for each of the classes is not the same size.  

𝑧𝑐𝑢𝑡−𝑎𝑏 =
(𝑛𝑎 ⋅ 𝑧𝑎 + 𝑛𝑏 ⋅ 𝑧𝑏)

(𝑛𝑎 + 𝑛𝑏)
 

na and nb indicate how many samples there are in each class. Although a single 

discriminant function z with a few discriminant cuts could distinctly sample into 

multiple classes, multiple discriminant analysis is preferred. Moreover, multiple 

discriminant analysis is employed in situations when separate discriminant functions 

are constructed for each class. In these circumstances, we choose the class whose 

discriminant score is the highest. 
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FIGURE 4.6: Classification process in multiple discriminant analysis,              

Kantardzic 2020 

 

To conclude, LDA has several advantages, its ability to handle multiple classes and 

its tendency to produce more stable and interpretable results compared to other 

dimensionality reduction methods, are the worthiest mention. Also, the assumption that 

the data follow a normal distribution, which is a common one in many statistical 

models. However, LDA has certain limitations, such as its sensitivity to outliers and its 

assumption of equal covariance matrices across all classes. Additionally, we must 

highlight that it may be less effective when the number of classes is high or are not well 

separated. 

 

4.2.3 K-Nearest Neighbours  

The k-Nearest Neighbours (k-NN) technique provides a straightforward and 

understandable way for determining a molecule's class, property, or rank from its 

nearest training examples in the feature space by Lavecchia, (2015). K-NN is a form of 

lazy learning or instance-based learning in which all computations are postponed until 

classification and the function is only locally as it is shown in the proceeding table. 

Also, k-NN can be used for regression. 

 

 
FIGURE 4.7: K-Nearest Neighbors on a 2D data set (source:     

https://www.sciencedirect.com/science/article/pii/S1359644614004176) 

 

To clear things up, all that is needed for the k-NN classifier to determine distances 

in n-dimensional space is a metric measure, a set of labeled training samples, and a 

parameter k, Kantardzic (2020). The following steps are often the cornerstone of the k-

NN classification process: 

• Find the number of nearest neighbors, or parameter k. 

• Determine the distance between every training sample and every testing 

sample. 

• Using the kth threshold, sort the distance and identify the closest neighbors. 

• Determine the category (class) for each of the nearest neighbors. 

• Use simple majority of the category of nearest neighbors as the prediction 

value of the testing sample classification. 

https://www.sciencedirect.com/science/article/pii/S1359644614004176
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FIGURE 4.8: Trade-off between model complexity and the amount of data: (a) too 

simple (b) too complex (c) appropriate, Kantardzic 2020 

 

These distance metrics aid in shaping decision boundaries that separate the studied 

points into different categories. Various distance measures have created, to optimize 

this process with the most frequent used listed below: 

• Euclidean Distance: This distance metric is limited to vectors of real values. 

Using the formula below, it measures a straight line between the point under 

study and another reference point. 

ⅆ(𝒙, 𝒚) = √∑(𝒙𝒊 − 𝒚𝒊)𝟐
𝒏

𝒊=𝟏

 

 

• Manhattan Distance: Another popular distance metric, that calculates the 

absolute value between two points. It is also referred to as "taxicab distance" or 

"city block distance," as it is often represented on a grid, depicting how one can 

navigate from one address to another through city streets. 

 

ⅆ(𝒙, 𝒚) = (∑|𝒙𝒊 − 𝒚𝒊|⁡)

𝒎

𝒊̇=𝟏

 

 

• Minkowski Distance: This distance metric is the generalized form of Euclidean 

distance and Manhattan distance. In the formula below, the parameter p allows 

the creation of other distance metrics. When p=2, Minkowski Distance 

corresponds to the Euclidean distance, while p=1 corresponds to the Manhattan 

distance. 

 

ⅆ(𝒙, 𝒚) = (∑|𝒙𝒊 − 𝒚𝒊|

𝒏

𝒊̇=𝟏

)

𝟏/𝒑

 

 

There are numerous methods for enhancing k-NN functionality and speed. Selecting 

a subset of the training data for classification is one way. Analytically, the idea of the 

condensed nearest neighbor (CNN) is to choose the smallest subset Z of training data 

X such that when Z is used instead of X, error in classification of new testing samples 

does not increase. k-NN (with k=1) is used as the nonparametric estimator for 

classification. It approximates the classification function in an individually linear 

manner with only the samples that define the classifier need to be kept. Since they are 

members of the same class, samples inside regions do not require storage. An example 



65 

 

of CNN classifier in 2D space is given in the table here after (Figure 4.9). Greedy CNN 

algorithm is defined from the steps listed below: 

 

• Begin with a blank set Z. 

• Passing samples from X one at a time in a random order to see if they can be 

accurately sorted by Z instances. 

• If a sample is misclassified, it is added to Z if it is correctly classified, Z is 

unchanged. 

• Continue using the training data set several times until Z remains the same. 

The algorithm does not ensure that Z has a minimum subset. 

 

 
FIGURE 4.9: CNN classifier in 2D space, Kantardzic 2020 

 

Finally, k-NN has many advantages for classification tasks, including simplicity and 

its ability to handle non-linear relationships between features and the target variable. 

However, k-NN also has its limitations, such as the sensitivity of k selection, which 

may affect the performance of the algorithm. It is also computationally expensive and 

memory intensive, especially when dealing with big data. Nevertheless, k-NN remains 

a widely used and useful tool in machine learning especially for classification tasks and 

it is highly useful for complex attributes and target variables. 

 

4.2.4 Support Vector Machines    

Supervised machine learning methods (SVMs) were created mainly by Vapnik, 2000 

and enable compound classification, ranking, and regression-based property value 

prediction. SVMs are typically employed for binary property or activity predictions, 

such as differentiating between chemicals with or without a particular activity or 

between drugs and non-drugs. 

SVM needs a relatively small number of samples for training, and experiments 

showed that it is insensitive to the number of sample’s dimensions. The program first 

tackles the broad issue of learning to distinguish between individuals belonging to two 

classes that are represented as n-dimensional vectors. The function can be a 

classification function the output is binary, or the function can be a general regression 

function. The idea of decision planes, which specify the boundaries between decision 
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classes for samples, is the cornerstone of SVM function. A basic example is given 

below. 

 

 
FIGURE 4.10: (a) A decision plane in 2D space is a line (b) How to select optimal 

separating line (hyperplane), Kantardzic 2020 

 

The decision boundary should be as far away from the data points of both classes as 

possible, according to the fundamental notion. In other words, finding the ideal 

hyperplane to divide classes of n-dimensional vectors is the aim of SVM modeling in 

n-dimensional domains. 

Next, we will examine the Kernel Trick which involves representing the data points 

in a higher-dimensional space compared to the original dimensions Kantardzic (2020). 

For instance, a 1D data point can be elevated to a 2D representation in space, and 

similarly, a 2D dataset can be projected into a 3D space, and so on. SVM adeptly 

handles non-linear data points by utilizing various kernel functions, making it seem as 

though the data has undergone a transformation. The SVM then identifies the optimal 

separating hyperplane in this higher-dimensional space. It is crucial to note that despite 

this apparent transformation, the underlying data points remain unchanged. The kernel 

trick allows SVM to intelligently navigate non-linearities without physically altering 

the data. Some of the most known, kernel functions are presented next (Figure 4.11)  

 

Name of the Kernel Function 

Linear   k(x,y)=xTy 

Polynomial              k(x,y)⁡=⁡(xT, y)
P
⁡or 

k(x, y) = (xTy + 1)p⁡ 
𝑤ℎ𝑒𝑟𝑒⁡𝑝⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙⁡𝑑𝑒𝑔𝑟𝑒𝑒 

RBF(Gaussian) 
φ(x)= exp(−

x2

2σ2
) ⁡ , σ > 0 
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FIGURE4.11: a) Most known Kernel Functions b) Altering data perception (source:   

https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-

98a98db0961d) 

 

Numerous benefits are provided by the SVM for classification tasks. Because kernel 

functions are used, it can handle separable data that is both linear and nonlinear. Also, 

because SVM aims to optimize the margin between classes rather than tightly fitting 

the data, it is also less prone to overfitting than other techniques. SVM does, however, 

have several drawbacks, such as its sensitivity to the selection of the kernel function 

and algorithm hyperparameters, such as the kernel parameters and regularization 

parameter. Additionally, SVM can be computationally expensive, particularly for 

complex kernel functions or when dealing with big data. Lastly, because the hyperplane 

of the high-dimensional feature space might not exactly match a straightforward 

decision boundary in the original feature space, making the understanding of SVM 

findings a difficult task. 

 

4.3 Regression Methods  

Regression methods are a category of machine learning techniques used to model 

the relationship between a dependent variable and one or more independent variables. 

The goal of regression analysis is to find the parameters of the model that better predict  

the dependent variable for a set of input variables. Regression methods are commonly 

employed for prediction, forecasting, and understanding the relationship between 

variables in a dataset. 

In supervised learning, regression methods involve training a model on a labeled 

dataset, where the algorithm learns from input-output pairs to make predictions on new, 

unseen data. The selection of regression method depends on the characteristics and the 

assumptions that align with the underlying relationships between variables.  

Overall, regression methods are crucial in extracting meaningful insights and 

making accurate predictions in various fields. In the upcoming unit, we examine the 

following methods as it shows: 

 

• Linear Regression (4.3.1) 

• Ridge Regression (4.3.2) 

• Lasso Regression (4.3.3) 

• Partial Least Square Regression (4.3.4) 

https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
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4.3.1 Linear Regression  

Linear regression is a statistical technique used to model the linear relationship 

between a dependent and one or more independent variables. It is a simple and widely 

used regression method that assumes a linear relationship between variables. There are 

two types of linear regression: the simple and the multiple. In simple linear regression 

the goal is to locate the best-fitting line to describe the relationship between the 

independent and dependent variable. While in the multiple linear regression we search 

for the best-fitting hyperplane. In linear regression, the relationship between 

independent variables and the dependent variable is modeled using a linear equation of 

the form: 𝑌 = 𝑎 + 𝛽𝑋𝑖. The Y is the dependent variable, x1,x2, … , xn are the independent 

variables, β0 is the intercept, and β1,β2, … , βn  are the slope coefficients representing the 

change in y for a unit change in each of the independent variables. 

 

The equation that needs to be minimized is:∑ 𝜀𝑖
2𝑣

𝑖=1
=∑ (𝑦𝑖 − 𝑎 ± 𝛽𝑥𝑖)

2𝑣

𝑖=1
 

 

     The values of α and β that minimize the above equation are called unbiased 

estimators of least squares and are calculated using: 𝑦̅ =
1

𝑣
(

𝑣
∑ 𝑦𝑖𝑖=1

) , 𝑥̅ =
1

𝑣
(

𝑣⁡
∑ 𝑥𝑖𝑖=1

) the 

following relationships with: 𝑎̂ = 𝑦̅ − 𝛽̂𝑥̅ and  

𝛽̂ =
𝑣 ∑ 𝑥𝑖𝑦𝑖

𝑣
𝑖=1 − (∑ 𝑥𝑖

𝑣
𝑖=1 )(∑ 𝑦𝑖

𝜈
𝑖=1 )

𝑣∑ 𝑥𝑖
2𝑣

𝑖=1
− (∑ 𝑥𝑖

𝑣
𝑖=1 )

2  

 
The goal of linear regression is to estimate the values of coefficients that minimize 

the sum of squared differences between the predicted values and the actual values of 

the dependent variable also known as the method of least squares. Linear regression is 

the best solution if you want simplicity, interpretability, and robustness to outliers. It is 

also a useful tool for making predictions and understanding the relationship between 

variables. However, linear regression has also its drawbacks, such as the assumption of 

linearity, which may not hold for certain datasets, and its inability to capture non-linear 

relationships between variables. Linear regression is employed mainly for prediction, 

forecasting, and hypothesis testing. 

 

4.3.2 Ridge Regression  

Next, we move to ridge regression, which shrinks the regression coefficients by 

imposing a penalty on their size. Ridge regression is usually used when the independent 

variables are highly correlated, thus we avoid overfitting, and we improve the accuracy 

of our model. Also, the ridge coefficients minimize a penalized residual sum of squares. 

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage: the larger 

the value of λ, the greater the amount of shrinkage Hastie et al., 2009. 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛

{
 
 

 
 

∑(𝑦𝑖 − 𝛽0 −∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆∑𝛽𝑗
2

𝑃

𝑗=1

}
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Therefore, ridge regression tries to balance between, fitting the data well and keeping 

the model's complexity in check. Furthermore, ridge regression can handle situations 

where the number of predictors is greater than the number of observations or when the 

predictors exhibit multicollinearity. In such cases, the ordinary least squares (OLS) 

method may lead to unstable and unreliable coefficient estimates. Ridge regression 

mitigates this problem by introducing regularization, which stabilizes the model and 

prevents the coefficients from becoming overly sensitive to small changes in the data. 

By minimizing the penalized residual sum of squares, ridge regression offers a more 

robust and reliable solution for linear regression problems with correlated predictors. 

One benefit of ridge regression is that it helps mitigate multicollinearity, a common 

problem when dealing with independent variables in a regression model that are highly 

correlated. Moreover, ridge regression introduces a regularization term that prevents 

the coefficients from becoming too large, thus stabilizing the model, and improving its 

overall performance. On the other hand, one limitation of ridge regression is that it 

assumes all independent variables that are significant for the model. In practice, some 

variables may be irrelevant or have a negligible impact on the outcome. For these 

problems, a more advanced method is preferred called Lasso regression, which we will 

discuss shortly. 

 

4.3.3 Lasso Regression  

 

The Least Absolute Shrinkage and Selection Operator (LASSO) is a shrinkage 

method like Ridge, with subtle but important differences. This method is proposed by 

statistician Robert Tibshirani in 1996 and is defined by:  

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛

{
 
 

 
 

∑(𝑦𝑖 − 𝛽0 −∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆∑|𝛽𝑗|

𝑃

𝑗=1

}
 
 

 
 

 

     Notice the similarity to the ridge regression equation: the L2 ridge penalty ∑ 𝛽𝑗
2

𝑃

𝑗=1
  

is replaced by the L1 lasso penalty  ∑ |𝛽𝑗|
𝑃

𝑗=1
.  

 

In the context of an orthonormal input matrix X, both methods (Lasso & Ridge) have 

explicit solutions involving transformations to the least squares estimate β𝑗. Ridge 

regression achieves proportional shrinkage, while the lasso employs soft thresholding 

by translating each coefficient with the λ and truncating at zero. In the visualizations 

that follows, illustrate the differences between lasso and ridge regression. For two 

parameters, ridge regression's constraint region is depicted as a disk, while lasso as a 

diamond. Both methods identify the first point where elliptical contours of the residual 

sum of squares intersect the constraint region. The diamond's corners, unique to lasso, 

signify instances where one parameter (β𝑗) equals zero. As the number of parameters 

(p) increases, the diamond becomes a rhomboid, providing more opportunities for 



70 

 

estimated parameters to be precisely zero. We can generalize Lasso & Ridge and view 

them as Bayes estimates with q ≥ 0 consider the criterion:  

𝛽̃ = 𝑎𝑟𝑔𝑚𝑖𝑛

{
 
 

 
 

∑(𝑦𝑖 − 𝛽0 −∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆∑|𝛽𝑗|
𝑞

𝑃

𝑗=1

}
 
 

 
 

 

 

 

 

 
FIGURE 4.12: Estimation picture for the lasso (left) and ridge regression (right) 

(source:https://hastie.su.domains/Papers/ESLII.pdf) 

 

    4.3.4 Partial Least Squares Regression  

Partial Least Squares (PLS) regression is a designed for situations where the number 

of predictors is large relative to the number of observations, a scenario often referred to 

as the "small N large P problem." Its primary goal is to analyze or predict a set of 

dependent variables from a set of independent variables or predictors by Abdi, (2010). 

In other words, the primary objective of PLS regression is to predict Y from X and 

describe their common structure usually is preferred when traditional multiple 

regression becomes impractical cause multicollinearity is prevalent. 

A briefly overview of how the algorithm works is shown right below: 

• Simultaneous Decomposition: PLS simultaneously decomposes both X and Y 

into latent vectors and specific loadings. 

• Latent Vectors: PLS identifies a set of latent vectors, often called latent 

variables or components, that capture the maximum covariance between the 

predictor and response variables. 

• Score and Loading Matrices: X is decomposed into a score matrix (T) and a 

loading matrix (P), while Y is estimated as a product of a score matrix (U), 

regression weights (B), and a weight matrix (C). 

• Regression Step: The latent vectors obtained from X are then used to predict Y 

through a regression step, involving regression weights and the weight matrix. 

https://hastie.su.domains/Papers/ESLII.pdf
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• Optimal Covariance: PLS aims to find latent vectors that explain as much as 

possible of the covariance between X and Y. This makes PLS effective in 

situations where there are more predictors than observations, and it provides a 

means of predicting the dependent variables. 

 

Therefore, PLS regression is particularly effective in situations where 

multicollinearity is present, a common challenge when dealing with many predictors. 

Also, it excels when predicting a set of dependent variables from a large set of 

independent variables, making it suitable for modern data analysis domains like 

bioinformatics and data mining. PLS regression has found applications in various 

fields, including economics, chemometrics and social sciences. Tus it has become a 

versatile tool in both experimental and nonexperimental data analysis. Despite its 

strengths, PLS regression also has some limitations. One drawback is the potential for 

overfitting, especially when the number of predictors is much larger than the number 

of observations. Overfitting may lead to a model that performs well on the training data 

but generalizes poorly to new, unseen data. Another limitation lies in the interpretability 

of the latent vectors. While PLS regression excels in predictive modeling, the 

interpretability of the latent vectors may be challenging, making it less suitable for 

scenarios where a clear understanding of the underlying relationships is essential. 

 

 

4.4 Clustering Methods  

 

Grouping data sensibly is a fundamental aspect of learning. Cluster analysis, is the 

formal examination of methods and algorithms for the natural grouping of objects based 

on intrinsic characteristics or similarity, is integral to this process. In other words, 

clustering, which is the most prevalent unsupervised learning task, involves identifying 

a finite set of categories or clusters to describe data. Overall, the final clusters are 

defined by general characteristics, and the solutions can be different according to which 

clustering technique we choose. Following the clustering process, new samples can be 

assigned to previously identified clusters based on their similarity to the cluster 

characteristics. Clustering poses a significant challenge as data can unveil clusters of 

different shapes and sizes within an n-dimensional data space. 

Each type of clustering algorithm has its own strengths and weaknesses, and the 

choice often depends on the specific problem and the characteristics of the data. There 

are several types of clustering algorithms and in this section, we will briefly examine 

the following: 

• Hierarchical Clustering (4.4.1) 

• K-means Algorithm (4.4.2) 

• DBSCAN Algorithm (4.4.3) 

 

4.4.1 Hierarchical Clustering 

In hierarchical cluster analysis, we do not specify the number of clusters as a part of 

the input. In particular, the input to a system is (X, s), in which X is a set of samples 
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and s is an index of similarity. Therefore, most hierarchical clustering processes are not 

based on the idea of optimization but instead, they aim to discover a roughly suboptimal 

solution by repeatedly improving the divisions until convergence. Overall hierarchical 

cluster analysis algorithms fall into two main categories: agglomerative and divisible 

algorithms. 

 To begin with, a divisible algorithm starts from the entire set of samples X and 

divides it into a partition of subsets, then divides each subset into smaller sets, and so 

on. As a result, a divisible algorithm produces a series of partitions ordered from coarser 

one to a finer one. On the other hand, in an agglomerative algorithm, every object serves 

as an initial cluster at the beginning. The clusters are combined into a coarser partition, 

and this merging process is continued until the result is the trivial partition, which 

consists of one big cluster containing all the objects. This clustering procedure separates 

data from a finer to a coarser level in a bottom-up method. Since agglomerative 

algorithms are more commonly employed in practical settings than divisible 

algorithms, we will dive into more detail on the agglomerative methods. 

Most agglomerative hierarchical clustering algorithms are variants of the single-link 

or complete-link algorithms. These two algorithms vary only in the way they define the 

similarity between a pair of clusters. For instance, the single-link approach calculates 

the distance between two clusters as the minimum of all the pairs of samples (one from 

each of the two clusters, one from each element) that are selected from them. While in 

the complete-link algorithm, the distance between two clusters is the maximum of all 

distances between all pairs drawn from the two clusters. To further understand we 

present a relevant graphic. 

 
FIGURE 4.14: (a) Single-link distance & (b) Complete-link distance, Kantardzic 

2020 

   

Now that we discuss their differentiation, we can examine the agglomerative-

clustering fundamental steps that are the same for both.  

 

• Arrange the samples into separate clusters. Construct the list of inter-cluster 

distances for all distinct unordered pairs of samples and sort this list in 

ascending order. 

• Proceed through the sorted list of distances, creating a graph of the samples 

where pairs of samples closer than dk are joined to form a new cluster by a 

graph edge for each unique threshold value dk. If all the samples are members 

of a connected graph, stop. If not, go back and do this again. 

• The output of the algorithm is a nested hierarchy of graphs, which can be cut at 

the desired dissimilarity level forming a partition (clusters) identified by 

            simple connected components in the corresponding subgraph. 
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Agglomerative clustering offers several benefits, making it a versatile method for 

exploring data relationships. One notable advantage is its intuitive hierarchy, 

represented through a dendrogram, facilitating a clear understanding of the hierarchical 

structure of clusters. Another strength lies in its flexibility regarding the number of 

clusters, as users can determine the appropriate quantity based on the dendrogram. The 

method's adaptability to different linkage methods and its insensitivity to the shape and 

size of clusters further enhance its applicability to diverse datasets. 

 

 
FIGURE 4.15: Agglomerative and Divisible algorithms steps 

(source:https://www.researchgate.net/figure/Hierarchical-clustering-structure-1-

Divisive-Hierarchical-Clustering-Algorithm-Division_fig5_315747115) 

 

However, agglomerative clustering comes with its set of disadvantages as it is 

computationally expensive, limiting its scalability for large datasets. Additionally, the 

method may struggle with noisy data and outliers, as their influence can significantly 

impact the resulting clusters. Moreover, the non-reversibility of mergers poses a 

challenge for adjusting or refining clustering later in the analysis. These factors mainly 

highlight the trade-offs involved in choosing agglomerative clustering for data analysis. 

 

4.4.2 K-means Algorithm 

One of the most often used clustering techniques is the K-means algorithm. The aim 

of the K-means algorithm is to partition the data into K clusters so that the within-group 

sum of squares is minimized. The simplest form of the K-means algorithm is based on 

alternating two steps. The assignment of objects to groups is the first. In general, an 

object is placed in the group whose mean is the closest in Euclidean sense. The second 

action is the calculation of new group means based on the assignments. For each cluster 

we calculate the mean with the following type:    

 

Kj =
1

nj
∑ xi
xi→Kj

 

 

When moving an item to a different group does not result in a decrease in the within-

group sum of squares, the process comes to an end. 

https://www.researchgate.net/figure/Hierarchical-clustering-structure-1-Divisive-Hierarchical-Clustering-Algorithm-Division_fig5_315747115
https://www.researchgate.net/figure/Hierarchical-clustering-structure-1-Divisive-Hierarchical-Clustering-Algorithm-Division_fig5_315747115
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There are many variants of the K-means algorithm that improve its efficiency in 

terms of reducing the computing time and achieving a smaller error. Some algorithms 

allow new clusters to be created and existing ones to be deleted during the iterations. 

Others may move an object to another cluster based on the best improvement in the 

objective function, by Larrañaga et al., 2006. Alternatively, the first encountered 

improvement while passing by the dataset could be used. 

The algorithm is easy to apply and can handle large datasets. Moreover, the number 

of K-clusters can be adjusted depending on the problem at hand, allowing flexible 

clustering based on the desired level of detail. However, K-means clustering also has 

some limitations such as the sensitivity to the initial selection of means, which can lead 

to the formation of different clusters depending on the starting point. Therefore, 

multiple runs to ensure stability is a necessity. In addition, the K-means clustering 

assumes that the clusters are spherical and have similar deviations, which may not 

always be the case. 

 

4.4.3 DBSCAN Algorithm  

The algorithm Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) targeting low-dimensional data is the major representative in the category 

of density-based clustering algorithms, Kantardzic (2020). DBSCAN can recognize the 

clusters mainly because within each cluster, we have a typical density of points that is 

considerably higher than outside of the cluster. 

DBSCAN, is grounded in the principles of density reachability and density 

connectivity, guided by two crucial parameters: the neighborhood size (ε) and the 

minimum points in a cluster (m). The algorithm operates on the premise that for each 

point in a cluster, its ε neighborhood must encompass at least m points to surpass a 

predefined density threshold. This ensures that the density of points within the 

neighborhood is sufficiently high. Furthermore, if a point like p has only two neighbors 

within its ε radius, while another point q has eight, the density around q is deemed 

higher than around p, forming the basis for cluster identification. 

The density reachability concept dictates that two points, p1 and p2, are considered 

density reachable if they are close (distance (p1, p2) < 𝜀) and if there are enough points 

in the ε neighborhood of p2 (distance (𝑟,p
2
) > 𝑚), where r denotes other database 

points. Building upon this, density connectivity establishes relationships between 

points, declaring points p0  and pn  as density connected if there exists a sequence of 

density reachable points (p0,p1, p2,…) from p0 to pn, where each subsequent point (p
i
+

1) is density reachable from the previous one. This way forms the fundamental steps 

for DBSCAN clusters, representing sets of all density-connected points and enabling 

the algorithm to uncover clusters of varying shapes while handling noise. 

If a point has more than a certain number of points (m) within neighborhood ε, it is 

considered a core point (points in a cluster's interior). A border point is located close to 

a core point but has fewer than m points in its neighborhood (ε). Any point that is neither 

a border nor a core point is considered a noise point. To illustrate this, we attach the 

next diagram. 
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FIGURE 4.16: Examples of core, border, and noise points, Kantardzic 2020 

 

In an ideal world, we would have to know each cluster's proper parameters, ε and m, 

but there is no simple way to find out in advance. Thus, DBSCAN uses the same values 

for all the clusters. Beyond that, studies show that, although the approach requires 

significantly more calculations, DBSCAN clusters for m > 4 do not differ significantly 

from m = 4. For low-dimensional databases, we can therefore set the parameter to 4 to 

eliminate it in practice. The DBSCAN algorithm's key phases are: 

 

• Random pick a point, p. 

• Get every point density that may be reached from p in connection with ε and m. 

• A new cluster is created, or an existing cluster is expanded if p is a core point. 

• If p is a border point, and no points can be densely reached from p, then move on 

the next point. 

• Once every point in the database has been processed, continue the procedure with 

the remaining points. 

• Since DBSCAN uses global values for ε and m, two clusters may be merged into 

one cluster if the distance between is less than ε. 

 
FIGURE 4.17: DBSCAN builds clusters of different shapes, Kantardzic 2020 

 

 

The DBSCAN clustering algorithm presents several distinct advantages firstly, it 

eliminates the need to determine the number of clusters beforehand, setting it apart from 

clustering methods like K-means, Kantardzic (2020). Additionally, DBSCAN excels in 

identifying clusters with arbitrary shapes, a feature not shared by many popular 

clustering algorithms. Moreover, it incorporates a concept of noise, effectively 

removing outliers from clusters. Furthermore, the algorithm's simplicity is evident in 
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its requirement for just two parameters, displaying robustness against variations in the 

order of points within the database. 

On the contrary, DBSCAN is not without its drawbacks. The algorithm's complexity 

remains notably high, posing a challenge for certain applications. Specifically, the 

operation of finding neighbors relies on distance calculations, often using Euclidean 

distance, and this may exacerbate the curse of dimensionality problem, particularly in 

high-dimensional datasets. Consequently, while DBSCAN proves advantageous in 

handling low-dimensional real-world data, its application to high-dimensional datasets 

may be limited. 

 

4.5 Dimensionality Reduction  

Dimensionality reduction techniques are employed when dealing with high-

dimensional datasets to make them more manageable while preserving the integrity of 

the data. One commonly used method in data preprocessing is Principal Component 

Analysis (PCA). In unsupervised learning, reducing dimensionality involves decreasing 

the number of features or variables in a dataset while retaining crucial information. This 

process is valuable for visualizing high-dimensional data in a lower-dimensional space. 

Although there are various other methods, PCA is the most famous technique for 

dimensionality reduction. The choice of technique depends on the specific dataset and 

problem at hand, but PCA is usually preferred at most cases and in the next paragraph 

we will examine why. 

 

4.5.1 PCA 

PCA is considered to be the best linear dimension reduction method as we said, 

mainly because it uses the covariance matrix of the features. In simple terms, PCA seeks 

to decrease the dimension of the data by locating a few orthogonal linear combinations 

of the original features with the largest variance. It is preferred to first normalize each 

variable to have a mean equal to zero and a standard deviation one, because the variance 

depends on the scale of the variables. After the standardization, the original variables 

with potentially different units of assessing are all in similar units. 

The fundamental theory is as follows, a set of n-dimensional vector samples X = 

{x1,x2, … , xm} should be transformed into another set Y= {y1,y2, … , ym} of the same 

dimensionality, but Y have the property that most of their information content is stored 

in the first few dimensions. This will minimize the information loss, while we are 

reducing the data dimensions. Thus, if we want to reduce a set of input dimensions X 

to a single dimension Y, we should transform X into Y as a matrix computation (Y = A 

× X) choosing A such that Y has the largest variance possible for a given data set. The 

single dimension Y is known as the first principal component. An axis pointing in the 

direction of maximum variance makes up the first main component. As seen in Figure 

3, which shows the transformation of a two-dimensional space into a one-dimensional 

space where the data set has the maximum variance, it minimizes the distance of the 

sum of squares between data points and their projections on the component axis. 
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FIGURE 4.18: The first principal component is an axis in the direction of maximum 

variance, Kantardzic 2020 

 

In practice, it is not possible to determine matrix A directly, and therefore we 

compute the covariance matrix S as a first step in feature transformation. Matrix S is 

defined as:⁡ 

0nxn
⁡⁡S =

1

(n − 1)
[∑(xj − x

′)
T

n

j=1

(xj − x
′)] 

 
To continue, we calculate the eigenvalues of the covariance matrix S for the given 

data. Finally, the m eigenvectors corresponding to the m largest eigenvalues of S define 

a linear transformation from the n-dimensional space to an m dimensional space in 

which the features are uncorrelated. 

Furthermore, determining the optimal number of principal components is a necessity 

for a meaningful representation of the data. To address this, analyzing the proportion of 

variance becomes crucial. By dividing the sum of the first m eigenvalues by the total 

sum of variances (all eigenvalues), we obtain a measure of the representation quality 

based on the first m principal components. This result, expressed as a percentage, can 

be satisfactory if it is more than 90% of the total variance. 

𝑅 =
(∑ 𝜆i)

𝑚

𝑖=1

(⁡∑ 𝜆i
𝑛
𝑖=1 )

 

 

Although PCA offers advantages such as simplifying complex datasets, aiding in 

visualization, and facilitating dimensionality reduction, which can enhance 

computational efficiency and mitigate the risk of overfitting. It is important to note that 

PCA assumes that the data is related linearly and may not work well with non-linear 

data. Furthermore, interpretation of principal components can be difficult, especially 

when dealing with large data sets with many variables. 

4.6 Neural Networks  

Neural networks (ΝΝ) are designed as computational models to replicate the 

functioning of the brain. The brain consists of small functional units known as neurons, 

each comprising a cell body, multiple short dendrites, and a single long axon. Neurons 

connect to one another through dendrites and axons. Dendrites serve as inputs to the 

neuron, receiving signals from other neurons. These inputs either increase or decrease 
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the electrical potentials of the cell body, and if a threshold is reached, an electrical pulse 

is transmitted down the axon. This output then becomes the input for several other 

neurons. 

Likewise, an artificial neural network (ANN) is constructed from computational 

units, often referred to as neurons. There are linkages connecting these units, and each 

link has a weight. Long-term memory is analogous to weights. Like a real neuron, each 

unit gets information from input links. Next, each unit determines the weighted total a 

final value that serves as the unit's output is transformed using a transfer function and 

the input values. Next, figure depicts a basic neural network model.  

The block diagram, which is a model of an artificial neuron, consists mainly of three 

basic elements: 

1. A set of connecting links from different inputs xi (or synapses), each of which is 

characterized by a weight or strength wki. The first index refers to the neuron in 

question, and the second index refers to the input of the synapse to which the weight 

refers. In general, the weights of an ANN may lie in a range that includes negative 

as well as positive values. 

2. An adder for summing the input signals xi weighted by the respective synaptic 

strengths wki. The operation described here constitutes a linear combiner. 

3. An activation function f for limiting the amplitude of the output yk of a neuron.  

 

The model of the neuron given in Figure 4.19 also has an externally applied bias, 

symbolized bk. The bias has the effect of increasing or lowering the net input of the 

activation function, depending on whether it is positive or negative. To make it simple, 

an artificial neuron is an abstract model of a natural neuron, and its processing 

capabilities are formalized using the following notation. First, there are several inputs 

xi⁡𝑖 = 1,…𝑚. Each input xi is multiplied by the corresponding weight wki where k is 

the index of a given neuron in an ANN. The weights represent the biological synaptic 

strengths in a natural neuron. 

 

 
FIGURE 4.19: Representation of a basic neural network model , Kantardzic 2020   

4.6.1 Architecture of Neural Networks 

In general, network architecture is defined by the total amount of inputs to the 

network, the quantity of outputs, the whole number of elementary nodes that are usually 

equal processing elements for the entire network, and their organization and 

interconnections. Based on the kind of connections, neural networks are typically 

divided into two groups: feedforward and recurrent. 
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The network is feedforward if the processing propagates from the input side to the 

output side unanimously, lacking any cycles or feedback. In a layered representation of 

the feedforward neural network, there are no links among nodes in the same layer; 

outputs of nodes in a specific layer are always linked as inputs to nodes in succeeding 

layers. On the other hand, A network is considered recurrent if a feedback connection 

creates a cyclical path within it, sometimes with a delay element acting as a 

synchronization component. The most popular model in terms of real-world 

applications is the multilayer feedforward network with a backpropagation-learning 

mechanism, even though many neural-network models have been published in both 

categories. 

 

 
FIGURE 4.20 (a) Feedforward network (b) Recurrent network, Kantardzic 2020 

 

There are several common network architectures used in bioinformatics which have 

unique application. Perceptron is for example is the simplest form of neural network 

which has only two layers, the input layer, and the output layer. Because they can only 

be used to categorize patterns into one of two classes, perceptron has very limited 

applications, Kantardzic (2020). Moving to multi-layer perceptron (MLP) perceptron 

with more than two layers of neurons. MLP has an input layer, one or more hidden 

layers and an output layer. Normally, the hidden and output layer's transfer function is 

either a logistic or sigmoid function. A fully linked network is typically made up of all 

the neurons in the layer above it, however there are occasionally exceptions. By 

dividing the data into separate sections using hyper-planes, MLP can classify the given 

data set. 
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FIGURE 4.21: A multilayer-perceptron architecture with n  hidden layers, (source: 

https://pubmed.ncbi.nlm.nih.gov/33198233/) 

 

Next there is the architecture of the radial basis function, which is quite alike with 

the MLP, but the principle of action and training is different from MLP. The data can 

be clustered into a limited number of ellipsoid areas using the radial basis function. 

Normally, a transfer function is one of Splice, Gaussian, or other quadratic functions. 

Each hidden unit of the network acts as the center of the region. Inputs to these units 

are not a weighted sum but a distance measure with the Euclidean function being the 

most often used. After that, the output is calculated by the hidden unit as a function of 

the input vector and its center. 

Compared to earlier networks, Kohonen self-organizing maps (SOM) are 

significantly different. While Kohonen self-organizing maps feature an input layer, they 

lack an output or hidden layer. A grid of discrete units is connected to input layer units. 

They have complete connections and links connected with weights. By calculating the 

distance matrix for each grid point and selecting the point that most closely matches the 

input, the input vectors are transferred to one of the grid points. 

In other words, SOMs are construed as unsupervised neural networks designed to 

address clustering problems through cluster visualization. Through a learning process, 

SOM serves as a crucial tool for visualization and data reduction, providing a 

comprehensive overview of the data. This involves transforming similar data items into 

a lower dimension, automatically grouping them together for enhanced understanding 

and analysis. Therefore, SOMs suits best if we want to reduce dimensions and display 

similarities.  

The primary benefits of SOM technology include results that are straightforward to 

comprehend and interpret, simplicity in implementation, and effectiveness in 

addressing numerous practical issues. However, there are drawbacks as well. SOMs 

involve significant computational costs, exhibit high sensitivity to similarity measures, 

and are not suitable for real-world datasets containing missing values. 

 
FIGURE 4.22. SOM with 2D input and 3 × 3 output, Kantardzic 2020 

 

 

 

 

https://pubmed.ncbi.nlm.nih.gov/33198233/
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5 CHAPTER 

Application of Machine Learning Techniques   
 

5.1 Purpose of the Analysis  

In contemporary society, diabetes looms as a pervasive health concern, with its 

prevalence reaching alarming heights. The modern lifestyle, characterized by sedentary 

habits and diets rich in processed foods, has fueled an epidemic of both type 1 and type 

2 diabetes. Type 2 diabetes has seen a surge in cases, often attributed to factors such as 

obesity, poor dietary choices, and blood pressure. This rise not only places a significant 

strain on healthcare systems but also underscores the urgent need for widespread 

awareness and proactive measures to mitigate its effects. 

Diabetes, characterized by elevated levels of blood sugar resulting from either 

insufficient insulin production or ineffective insulin utilization, poses a significant 

challenge to global health. Its impact reverberates through communities, affecting 

individuals of all ages and backgrounds. Symptoms of this conditions manifest in 

various forms, from increased thirst and frequent urination to persistent fatigue, often 

disrupting daily life and potentially leading to severe complications if left unmanaged. 

Despite the absence of a definitive cure, the management of diabetes encompasses an 

array of treatment options aimed at mitigating symptoms and regulating blood sugar 

levels, offering hope and improved quality of life for those affected by this pervasive 

condition. 

 

Moreover, the impact of diabetes extends far beyond individual health, permeating 

societal and economic spheres. The condition contributes substantially to healthcare 

expenditures, with costs associated with diabetes management, complications, and 

related conditions skyrocketing. Furthermore, diabetes poses formidable challenges in 

terms of productivity losses due to disability, premature mortality, and diminished 

quality of life for affected individuals and their families. As such, addressing diabetes 

comprehensively is not merely a matter of health but also an imperative for sustainable 

healthcare systems and economic prosperity. In this context, efforts to combat diabetes 

must be multifaceted and proactive, spanning prevention, early detection, and effective 

management strategies 

The purpose of analyzing this dataset is to develop predictive models for identifying 

individuals at risk of diabetes based on various health-related attributes. Utilizing 

machine learning algorithms and statistical techniques, we aim to create robust models 

that can accurately classify individuals into those with or without diabetes. This will 

facilitate early diagnosis and personalized treatment strategies, ultimately contributing 

to improved healthcare outcomes for individuals at risk of diabetes. This dataset, 

sourced from the National Institute of Diabetes and Digestive and Kidney Diseases, 

serves a critical objective to predicting the likelihood of diabetes. All variables are 

numerical and are presented below in detail. 
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5.2 Presentation of the Dataset and Descriptives Statistics 

Before starting the presentation of the dataset (Figure 5.1) which consists of 2.728 

records, it's essential to understand the key attributes and their significance. Each entry 

in the dataset is uniquely identified by an 'Id'. The features include 'Pregnancies', 

indicating the number of times pregnant, 'Glucose', representing plasma glucose 

concentration over a 2-hour oral glucose tolerance test, 'BloodPressure', which denotes 

diastolic blood pressure in mm Hg, 'Skin Thickness', measuring triceps skinfold 

thickness in mm, 'Insulin', indicating 2-Hour serum insulin in mu U/ml, 'BMI' (Body 

Mass Index), 'Diabetes Pedigree Function', a genetic score of diabetes, and 'Age' in 

years. Finally, the 'Outcome' column provides a binary classification indicating the 

presence (1) or absence (0) of diabetes, serving as the target variable for predictive 

modeling. Understanding these attributes lays the foundation for meaningful analysis 

and interpretation of the dataset. 

 

Variable Name Description Role 

Id Unique identifier for each data entry. Feature 

Pregnancies Number of times pregnant. Feature 

Glucose Plasma glucose concentration over 2 hours in an oral glucose tolerance test. Feature 

BloodPressure Diastolic blood pressure (mm Hg). Feature 

Skin Thickness Triceps skinfold thickness (mm). Feature 

Insulin 2-Hour serum insulin (mu U/ml). Feature 

BMI Body mass index (weight in kg / height in m^2). Feature 

Diabetes Pedigree Function Diabetes pedigree function, a genetic score of diabetes. Feature 

Age Age in years. Feature 

Outcome Binary classification indicating the presence (1) or absence (0) of diabetes. Target  

FIGURE 5.1: Structure of our Dataset 

 
 

5.2.1 The Feature Variables 
 

In the following figures, the density plots of all variables are presented (Figure 5.2)  

along with their respective box plots (Figure 5.3), providing this way a comprehensive 

insight into their distributions and variability. 
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FIGURE 5.2: Boxplots of the Variables  

 

    It's evident from our data that most of our participants exhibit blood pressure readings 

within the range of 60 to 80. BMI values are predominantly clustered around 30, 

indicating a significant proportion of individuals with this body mass index. Regarding 

the age distribution of our participants, the majority fall within the range of 25 to 40 

years old, with the mean age being 29. These insights offer valuable glimpses into the 

characteristics of our dataset, paving the way for more nuanced analysis and 

interpretation. A more detailed picture of what we examine is presented with the density 

plots below for every variable.   

 

  

  

FIGURE 5.3: Density plots of the Variables     
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    Upon inspecting the dataset for missing values, we found 

none (Figure 5.4). Following this, we employed a technique 

known as Synthetic Minority Over-sampling Technique 

(SMOTE) due to the observed class imbalance in the target 

variable. Subsequently, we conducted normalization, an 

essential preprocessing step for machine learning algorithms 

that we will conduct later. 

 

 

 

 

5.2.2 The Target Variable 

 
Continuing our presentation, with the target variable 'Outcome', which serves as a 

binary classification indicating the presence (1) or absence (0) of diabetes, as described 

in the dataset. We observe that we have 1816 instances labeled as (0) and 952 instances 

labeled as (1). In graphical representation (Figure 5.5), this corresponds to a pie chart 

where we depict proportions. Specifically, we see that 65.6% of the dataset corresponds 

to the absence of diabetes, while 34.4% corresponds to the presence of diabetes. This 

distribution provides insight into the prevalence of the outcome categories within our 

dataset, highlighting the imbalance between the two classes. 

 

  
     FIGURE 5.5: Describe of the Target Variable: Outcome  

 

Next, we will present (Figure 5.6) the target variable alongside with the density plots 

of the variables according to the values (0 or 1 of the Outcome) to better understand the 

structure of our dataset. 

 
  FIGURE 5.4: Missing Values 
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FIGURE 5.6: Density plots of each Variable according to the Target Variable 

 

5.2.3 Correlation-Matrix  

 
The correlation matrix (Figure 5.7) reveals the relationships between different 

variables within our dataset. Each value represents the correlation coefficient between 

the corresponding variables. Positive values indicate a positive correlation, while 

negative values indicate a negative correlation. The closer the value is to 1 or -1, the 

stronger the correlation, whereas values close to 0 indicate weak or no correlation. 
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FIGURE 5.7: Correlation Matrix 
 

Specifically, we observe a moderate positive correlation of 0.46 between "Glucose" 

levels and the "Outcome" variable. This suggests that higher levels of glucose in the 

blood may be associated with a higher likelihood of the Outcome. Additionally, we note 

a correlation coefficient of 0.28 between BMI and the Outcome, indicating a moderate 

positive relationship. However, the correlations of the other variables with the Outcome 

are relatively low, ranging from 0.23 to 0.07, with the lowest correlation observed for 

BloodPressure at 0.07. These insights into the correlation structure provide valuable 

information for understanding the interplay between different variables. 
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5.2.4 Scatterplots   

 

 

 

 
FIGURE 5.8: Scatterplots: 

(a) Age – BMI 

(b) Blood Pressure – Insulin Level 

(c) Blood Pressure – Glucose Level 

 

 

Next, we examine some of the most 

important scatterplots (Figure 5.8) that we find 

in our research. Scatterplots, serve as visual 

tools for uncovering relationships between 

variables within our dataset. These plots provide 

a graphical representation of how two variables 

are distributed relative to each other, offering 

valuable insights into potential patterns, trends, 

and correlations. By plotting each data point on 

a graph with one variable on the x-axis and the 

other on the y-axis, we can visually assess the 

nature of their relationship. These visualizations 

play a crucial role in identifying any discernible 

associations or dependencies between variables, 

thereby enhancing our understanding of the 

underlying data structure. 

 

In the initial scatterplot featuring Age and 

BMI variables, we discern a notable trend: 

participants above the age of 30 tend to exhibit 

higher incidences of diabetes, particularly those 

with a BMI exceeding 30. Moving to the second 

scatterplot, we observe a distinct pattern 

indicating that elevated levels of Insulin and 

Blood Pressure are strongly associated with a 

higher likelihood of diabetes. 

 

Lastly, in the third scatterplot, we have a 

clear separation between individuals with and 

without diabetes, arguably the most discernible 

thus far. Those with diabetes predominantly 

cluster on the right side, while those without are 

concentrated on the left. Specifically, for 

glucose levels, the distinguishing threshold 

appears to hover around 125, offering a clear 

demarcation between the two groups. 
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5.3 Statistics Methods and Techniques  

When dealing with imbalanced data, relying solely on accuracy for evaluation can 

be misleading. Instead, the F1 score proves to be a more reliable metric. Unlike 

accuracy, the F1 score considers both precision and recall, providing a balanced 

assessment, especially in situations where class distribution is uneven. In binary 

classification, results fall into four categories: True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN). Accuracy and F1 metrics take 

into account these categories to gauge the performance of the model. Below, we provide 

a more detailed exposition of the types of calculations involved in the metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 and 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2⁡ ×⁡
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Precision and Recall can be found according to,    

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
Moreover, we use K-fold cross-validation which is a widely used technique for 

model selection and hyperparameter tuning. In this method, the dataset is divided into 

k equal-sized parts, or folds. During each iteration, one of these folds is held out as the 

test set while the remaining k-1 folds are used for training. This process is repeated until 

each fold has been used as a test set exactly once. The final performance metric is then 

computed by averaging the results of all k iterations. However, when dealing with 

imbalanced data, traditional k-fold cross-validation may lead to biased results as it 

doesn't consider the class distribution. To address this issue, stratified k-fold cross-

validation is employed. Like k-fold, it partitions the data into k folds, but it ensures that 

the ratio of each class within each fold closely matches the original dataset, thus 

providing a more accurate evaluation of model performance. 

In this study, an initial analysis of all variables within the dataset is conducted, 

followed by a thorough examination of the obtained results. Subsequently, a 

comparative analysis is performed where extreme values are extracted, and only the 

interquartile range (25th to 75th percentiles) is retained to assess the performance of 

our models under altered conditions. Lastly, we engage in a rigorous Principal 

Component Analysis (PCA), an analytical technique employed to distill the dataset's 

multitude of variables into a more manageable subset, thereby elucidating the nuanced 

impact of variable reduction on our analytical framework. 

 

5.3.1 The Statistical Analysis without PCA  
 

After ensuring that the data is properly formatted and arriving at our final dataset, 

we perform the technique SMOTE which is a statistical technique for increasing the 

number of cases in our dataset in a balanced way to address the imbalance observed in 
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the target variable (Figure 5.5). Subsequently, we proceed with normalization and 

splitting the dataset into training and testing sets, with proportions of 80% and 20% 

respectively, which is essential for machine learning algorithms.  

The supervised classification algorithms that we will examine next are Logistic 

Regression, Support Vector Machines, k-Nearest Neighbors, Linear Discriminant 

Analysis, Random Forest, and Extreme Gradient Boosting. Evaluation of the models 

was performed using metrics such as Accuracy, Precision, Recall, F-score, and AUC. 

Notably, a 10-fold cross-validation technique was applied, followed by the computation 

of the mean and standard deviation across the 10 repetitions. 

 

Model Accuracy(%) Precision(%) Recall(%) F-score(%) AUC(%) 

Logistic Regression 0.752(0.025) 0.759 (0.036) 0.729(0.035) 0.743 (0.026) 0.752 (0.025) 

LDA 0.754 (0.025) 0.762 (0.038) 0.728 (0.030) 0.744 (0.024) 0.753 (0.025) 

SVM 0.754 (0.026) 0.759 (0.037) 0.735 (0.037) 0.746 (0.026) 0.754 (0.026) 

KNN 0.832 (0.022) 0.809 (0.024) 0.862 (0.026) 0.835 (0.021) 0.833 (0.022) 

RF 0.864 (0.017) 0.837 (0.025) 0.898 (0.024) 0.866 (0.016) 0.864 (0.017) 

XGB 0.911 (0.016) 0.898 (0.014) 0.923 (0.021) 0.910 (0.016) 0.911 (0.016) 

TABLE 5.1: Results of Statistical Analysis without PCA 

 
At first, we examine Logistic Regression which proves reliable, offering consistent 

performance across metrics. Next, we have LDA that shows competitiveness, 

particularly excelling in precision and F-score. SVM impresses with its commendable 

results, especially in precision and recall. K-NN stands out for its high accuracy and 

recall, making it suitable for healthcare classification tasks. Moreover, RF exhibits 

robust performance, notably excelling in precision and recall. However, Extreme 

Gradient Boosting (XGB) emerges as the standout performer, consistently surpassing 

others across all metrics, making it an excellent choice for high-stakes healthcare 

applications. 

 

Overall, XGB outperforms other models, as we just saw, across all metrics, 

exhibiting the highest accuracy, precision, recall, F-score, and AUC. More analytical, 

for each meter we had: 

 
1. Accuracy: All models achieve relatively high accuracy, ranging from 75.2% to 

91.1%. XGB (Extreme Gradient Boosting) demonstrates the highest accuracy 

among all models, achieving 91.1%. 

 

2. Precision: Precision measures the percentage of true positive predictions out of 

all positive predictions made by the model. The precision values range from 

75.9% to 89.8%, with XGB achieving the highest precision of 89.8%. 

 

3. Recall: Recall, also known as sensitivity, measures the percentage of true 

positive predictions out of all actual positive instances in the dataset. The recall 

values range from 72.9% to 92.3%, with XGB achieving the highest recall of 

92.3%. 
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4. F-score: The F-score is the harmonic mean of precision and recall and provides 

a balance between the two metrics. F-score values range from 74.3% to 91.0%, 

with XGB again demonstrating the highest F-score of 91.0%. 

 

5. AUC: AUC measures the model's ability to discriminate between positive and 

negative instances. All models achieve AUC values above 0.75, indicating good 

discriminative performance. XGB has the highest AUC of 91.1%. 

 
Considering the nature of health-related application, where identifying an individual 

at risk is crucial, it's worth noting that recall, which indicates the model's ability to 

correctly identify positive cases, is particularly important. In this regard, XGB's 

superior performance also in recall suggests its suitability for this diabetes application 

where accurately identifying individuals with diabetes is paramount. 

 

5.3.2 The Statistical Analysis after the removal of extreme values  
 

After removing extreme values, the dataset initially comprising 2,728 records was 

reduced to 2,264 records. The 'DiabetesPedigreeFunction' is a function that scores the 

probability of diabetes based on family history, with a realistic range of 0.08 to 1 most 

of the times. In our case we come across some values reaching extremes such as 1000 

or even 2000. Recognizing these outliers, we opted to exclude values below the 25th 

percentile and above the 75th percentile to obtain a more accurate representation of the 

data. Through this adjustment, reflected in the presented boxplot, we ensure that all 

values of the variable fall within the expected range of 0.08 to 1, providing a clearer 

and more meaningful depiction of the dataset.  

 

  
FIGURE 5.9: The change of the variable, Diabetes Pedigree Function after the 

extreme values has been removed  

 

    Subsequently, we repeated the procedure, yielding improved results, as demonstrated 

below. 
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Model Accuracy(%) Precision(%) Recall(%) F-score(%) AUC(%) 

Logistic Regression 0.745 (0.014) 0.758 (0.024) 0.722 (0.031) 0.739 (0.015) 0.745 (0.014) 

LDA 0.748 (0.013) 0.766 (0.024) 0.720 (0.038) 0.741 (0.016) 0.748 (0.013) 

SVM 0.747 (0.015) 0.769 (0.030) 0.710 (0.032) 0.737 (0.015) 0.747 (0.015) 

KNN 0.892 (0.022) 0.850 (0.027) 0.953 (0.024) 0.898 (0.020) 0.891 (0.022) 

RF 0.974 (0.010) 0.965 (0.020) 0.984 (0.012) 0.974 (0.010) 0.974 (0.010) 

XGB 0.987 (0.007) 0.985 (0.015) 0.988 (0.010) 0.987 (0.006) 0.987 (0.007) 

TABLE 5.2: Results of Statistical Analysis after the removal of extreme values 

 
Logistic Regression, LDA, and SVM models experienced slight decreases in 

accuracy compared to their pre-processed counterparts, although these changes were 

within a small margin. Also, the KNN model showcased a significant enhancement in 

accuracy, precision, recall, F-score, and AUC, indicating a substantial improvement in 

its predictive capabilities. 

Remarkably, RF and XGB models exhibited remarkable improvements in all 

performance metrics, with both achieving high accuracy, precision, recall, F-score, and 

AUC values. These outcomes underscore the effectiveness of removing extreme values 

in enhancing the predictive performance of the models, particularly evident in the 

notable enhancements observed in the RF and XGB models. 

 

5.3.3 The Statistical Analysis with PCA  

 
In our next steps, we'll follow a similar approach to our previous analysis, but with 

a notable difference: this time, we'll meticulously select features to account for 95% of 

the variance using Principal Component Analysis PCA. By opting for PCA, we aim to 

streamline the dataset's dimensionality, particularly crucial as we're dealing with a 

sizable dataset of 2800 patients and all the features. Additionally, PCA offers the 

potential to transform correlated variables into a set of linearly uncorrelated ones, 

enhancing the interpretability of our data. Moreover, given that we haven't yet verified 

whether each algorithm's assumptions are met (particularly regarding linear 

independence for linear discriminant analysis) incorporating PCA might further refine 

our analysis results. 



92 

 

 

FIGURE 5.10: Plot for the PCA  

 

The PCA plot we see above offers a concise representation of the multidimensional 

nature of our dataset. Through dimensionality reduction, it projects the original 

variables onto a lower-dimensional space while preserving the maximum variance 

within the data. Notably, the first principal component explains approximately 84% of 

the variance, indicating a strong explanatory power in capturing the underlying 

structure of the dataset. As we progress along subsequent principal components, the 

explained variance increases significantly, with the second component reaching 98% 

and the third component attaining 100%.  

This suggests a gradual refinement in capturing the remaining variance within the 

data, ultimately resulting in a comprehensive representation of the dataset's variability. 

Due to the discernible structure revealed by the PCA analysis, we opt to select the top 

two principal components for further analysis, as they offer a balanced trade-off 

between dimensionality reduction and explanatory power. 

Furthermore, employing fewer variables not only reduces the resource-intensive 

nature of data preparation but also cuts down on costs and time commitments. 

Therefore, achieving comparable scores with only 2 variables compared to the initial  

would signify a significant success in our analysis journey. 
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FIGURE 5.11: Pairplot Analysis Colored by Outcome 

 

The pairplot above presents an extensive view of the interrelationships among all the 

features in our dataset. Each scatter plot illustrates the correlation between two 

variables, while the diagonal plots depict the distributions of individual features. The 

incorporation of color coding based on the 'Outcome' variable enables us to discern the 

distribution of classes across the feature space. This visualization approach facilitates 

the detection of potential patterns or correlations between features and the target 

variable, thereby enriching our analytical understanding. 

Up next, we presented the results of statistical analysis for each model separately, 

this time with the PCA. Despite the reduction to only two variables, the models perform 

remarkably similarly to those analyzed in our initial assessment without PCA. This 

observation underscores the robustness of the models and suggests that the essential 

information captured by the original feature set is effectively retained in the reduced 
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dimensional space. By leveraging the insights gained from PCA, we are able to 

streamline our analysis without sacrificing predictive performance, thereby enhancing 

the efficiency and interpretability of our modeling approach. 

 

TABLE 5.3: Results of Statistical Analysis with PCA 

 
We also add below two graphs to demonstrate how the models are learning and how 

the Cross-Validation procedure works with CV=10.   

 

  
FIGURE 5.12: Plots of how the models work a) Learning Curves b) Cross-Validation 

results for cv-score = 10 

 

 
To be precise, we further enhance our understanding of the models' performance by 

incorporating two insightful graphical representations. First, the learning curves 

provide a visual depiction of how the models are learning over time, offering valuable 

insights into their convergence behavior and potential for overfitting or underfitting. 

Secondly, the cross-validation results, conducted with a 10-fold cross-validation 

procedure, offer a comprehensive evaluation of model performance across multiple 

subsets of the data. These plots serve as indispensable tools for assessing the robustness 

and generalization capabilities, providing another view of their performance under 

varying conditions. By integrating these graphical analyses into our analysis, we gain 

Model Accuracy(%) Precision(%) Recall(%) F-score(%) AUC(%) 

Logistic Regression 0.700 (0.029) 0.697 (0.028) 0.694 (0.039) 0.695 (0.031) 0.700 (0.029) 

LDA 0.698 (0.027) 0.694 (0.027) 0.695 (0.039) 0.694 (0.030) 0.698 (0.028) 

SVM 0.698 (0.028) 0.694 (0.028) 0.693 (0.031) 0.693 (0.031) 0.698 (0.028) 

KNN 0.846 (0.016) 0.835 (0.021) 0.857 (0.033) 0.846 (0.018) 0.846 (0.016) 

RF 0.923 (0.014) 0.914 (0.023) 0.932 (0.018) 0.923 (0.013) 0.923 (0.014) 

XGB 0.805 (0.029) 0.800 (0.037) 0.809 (0.033) 0.804 (0.027) 0.805 (0.029) 
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deeper insights about how the CV works and the learning process that has been applied 

in general. 

Generally, we observe that classification models without PCA in this classification 

problem performed better, although there are no significant differences between the 

metrics. After applying PCA, we observe a decrease in accuracy for each model 

examined except, RF that it showed an increase. However, the accuracy remains 

marginally in good levels, so the predictions can still be considered acceptable. In fact, 

the best-performing model appears to be the Random Forest with an accuracy of 0.923 

this time. On the other hand, the model with the biggest accuracy reduction is the 

Extreme Gradient Boosting with accuracy from 0.911without PCA went to 0.805 with 

PCA. 

 

5.4 Artificial Neural Network 

The dataset has been partitioned into training and testing subsets, with proportions 

of 80% and 20% respectively. The neural network undergoes two iterations: one 

employing the conventional approach of dividing the data into training and testing sets, 

and another utilizing the 10-fold cross-validation technique. 

 

 
FIGURE 5.13: Architecture of the ANN 

 

The architectural configuration of this neural network model is as follows: an input 

layer comprising 8 neurons, followed by the first hidden layer with 32 neurons, the 

second hidden layer with 16 neurons, and finally, the output layer with a single neuron. 

The rectified linear unit (ReLU) activation function is applied in both hidden layers to 

introduce non-linearity, enabling the model to capture intricate patterns within the data. 

The sigmoid activation function is employed in the output layer, facilitating the 
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mapping of the network's output to a probability value between 0 and 1, given that our 

neural network is designed to address a binary classification task. 

 

 

The results, displayed in the table below, demonstrate 

considerable efficacy. Furthermore, the comprehensive 

performance evaluation is illustrated in the graph presented 

subsequently. 

 

 

 
     FIGURE 5.14: Performance of  ANN and results  

 
The metrics obtained using the 10-fold cross-validation technique is presented in the 

final table. It includes accuracy and loss metrics for the neural network model. 

The cross-validation accuracy of 99.62% indicates a high level of model 

performance across multiple validation folds. This highlights, the neural network's 

ability to generalize to unseen data. Additionally, the cross-validation loss of 0.02 

further corroborates the effectiveness of the model, with minimal error incurred during 

training and validation. 

 

 

 

 
TABLE 5.5: Comparison of the results of ANNs 

Accuracy 0.910 

Precision 0.874 

Recall 0.922 

F1-score 0.914 

AUC-ROC 0.910 

 

TABLE 5.4: Results of ANN 
 

Cross-validation accuracy 99.62% (+/- 0.00%) 

Cross-validation loss 0.02 (+/- 0.00) 
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5.5 Conclusion of the Analysis  

To sum it up, we present a comprehensive overview of the statistical analysis 

conducted throughout our study and summarize the key findings. Our analysis 

encompasses various aspects, including descriptive statistics, model evaluation metrics, 

and validation techniques. 

The initial exploration of the dataset revealed important insights into the distribution 

and variability of the feature variables. Through visualizations such as boxplots, density 

plots, and scatterplots, we gained valuable understanding of the data characteristics and 

how they interact with each other. Preprocessing steps such as handling missing values, 

normalization, and outlier removal were essential for ensuring data quality and 

enhancing model performance. Techniques like SMOTE addressed class imbalance, 

while dimensionality reduction via PCA streamlined the dataset for modeling. 

The evaluation of predictive models was conducted using a range of metrics, 

including accuracy, precision, recall, F1-score, and area under the receiver operating 

characteristic curve AUC-ROC. These metrics provided comprehensive look into 

model performance across different aspects of classification tasks, guiding model 

selection and examining it from different views.  

Overall, our analysis highlights the effectiveness of machine learning algorithms in 

predicting diabetes risk based on health-related attributes. The comparison of models 

highlights the superior performance of XGB and RF algorithms, particularly after 

preprocessing steps like outlier removal and dimensionality reduction. 

In addition to our analysis of traditional machine learning algorithms, we also 

explored the efficacy of ANN in predicting diabetes risk. The ANN, with its intricate 

architecture and ability to capture complex patterns within data, yielded promising 

results in our study. Through two iterations—one employing conventional training and 

testing sets, and another utilizing a 10-fold cross-validation technique—we observed 

consistently high levels of accuracy, precision, recall, and F1-score. The architectural 

configuration of the ANN, comprising multiple layers with varying numbers of neurons 

and activation functions, enabled the model to effectively learn and generalize from the 

data. Notably, the ANN exhibited remarkable performance in both training and 

validation phases, with cross-validation accuracy reaching an impressive 99.62% and 

minimal loss incurred during training. These results underscore the potential of neural 

network models in healthcare analytics, offering a complementary approach to 

traditional machine learning algorithms and further enriching our understanding of 

diabetes risk prediction. 

Through the above statistical analysis and evaluation, we have gained valuable 

insights into the predictive modeling of diabetes risk. Our findings underscore the 

importance of RWD and how to process them to make decisions that previously would 

take more time and money to make. Also, crucial role played each time, the model 

selection in developing accurate and reliable models.  

As our understanding of diabetes continues to evolve, so too does our approach to 

its management and treatment. The complex interplay of genetic predisposition, 

lifestyle factors, and environmental influences underscores the multifaceted nature of 

diabetes. Research endeavors tirelessly seek to unravel its mysteries, for innovative 



98 

 

therapies and preventative strategies to confront this global health challenge head-on. 

Amidst the ongoing quest for breakthroughs, the imperative remains to empower 

individuals with diabetes with knowledge, support, and access to comprehensive care. 

By fostering awareness, advocating for equitable healthcare policies, and fostering 

collaborative efforts across disciplines, we can strive towards a future where the burden 

of diabetes is alleviated, and the promise of optimal health and well-being is within 

reach for all. 
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6 CHAPTER 
 

6.1 Discussion 

Overall, this study stands as a thorough examination of the vast potentials residing 

within RWD and its profound impact on healthcare. While embracing the opportunities 

it presents, the study also acknowledges the complexities and challenges that must be 

addressed with diligence and strategic foresight. Through our investigation, we've 

discerned that RWD holds immense potential in reshaping healthcare practices, but its 

integration requires meticulous navigation and strategic planning. One of the 

fundamental distinctions we've established is between RWD and RWE. While RWD 

serves as the raw material, RWE emerges from the analysis and interpretation of this 

data, offering valuable insights into real-world patient outcomes, treatment patterns, 

and the overall effectiveness and safety of medical interventions. Regulatory bodies 

such as the EMA and the FDA play pivotal roles in shaping the landscape of healthcare 

approvals. Understanding their functions and regulations is essential for harnessing the 

potential of RWD in informing decision-making processes. 

Moreover, we've identified various strategies for confronting the inherent challenges 

associated with RWD, from harmonizing health data through initiatives like the OMOP 

to embracing HTA as a tool for evaluating the value of healthcare interventions. Also, 

as it comes to the next steps in drug development, RWD offers a paradigm shift through 

innovative approaches like PK–PD–PE modeling, enabling early prediction and 

differentiation in clinical trials. Additionally, the integration of Social Listening and 

other innovative strategies facilitates a more personalized approach to medicine, 

bridging the gap between biology and pharmacology. 

Looking towards the future, the leveraging of RWD holds promise in maximizing 

clinical development results and driving advancements in pharmaceutical research and 

development. From improving healthcare systems to elevating specific fields like 

arthroplasty and acoustics, the potential of RWD is vast and far-reaching. Furthermore, 

the synergy between RWD and machine learning presents exciting opportunities for 

enhancing predictive biomarkers, designing clinical trials, and optimizing 

pharmaceutical research. By embracing machine learning methodologies and 

leveraging the power of advanced analytics, we can unlock new insights and accelerate 

the pace of discovery in healthcare, ushering in a new era of data-driven decision-

making and personalized medicine. 

As established in our Literature Review, the diverse applications and transformative 

potential of RWD in the health sector are both profound and far-reaching. Our review 

underscored how RWD, encompassing everything from genetic sequences and protein 

structures to clinical records and epidemiological datasets, functions as a continuously 

evolving record of biological processes. This extensive scope of data enables a more 

comprehensive understanding of the intricate relationships between genetics, diseases, 

and therapeutic interventions. By integrating insights from various studies, we observed 

that RWD significantly enhances pharmaceutical research and development through the 

application of AI, DL, and ML. These technologies leverage vast datasets to uncover 

hidden patterns, optimize treatment protocols, and predict disease outcomes with 

remarkable accuracy. Moreover, the real-world applicability of these data-driven 

approaches in diverse medical fields, such as orthopedic surgery and stroke treatment, 
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demonstrates their critical role in improving patient outcomes and advancing 

personalized medicine. Ultimately, the Literature Review elucidated how RWD not 

only drives innovation in bioinformatics but also empowers healthcare professionals to 

make more informed decisions, thereby fostering a more effective and responsive 

health system. 

In summary, our exploration of RWD and its profound impact on healthcare signifies 

not just a shift in methodology, but a revolution in the very fabric of medical practice. 

As we stand at the nexus of data-driven decision-making and precision medicine, the 

possibilities are limitless. By embracing innovation, ethical principles, and 

collaborative efforts, we have the opportunity to harness the full potential of RWD to 

revolutionize patient care, drive advancements in medical research, and ultimately, 

improve the lives of individuals worldwide. 

This journey is not without its challenges, but with perseverance and dedication, we 

can overcome obstacles and chart a course towards a future where healthcare is not just 

reactive, but proactive and personalized. As we continue to refine our understanding 

and utilization of RWD, let us remain steadfast in our commitment to ethical 

stewardship, ensuring that patient privacy and welfare are paramount in all endeavors. 

The RWD is not a vision for the future of healthcare it has already arrive and is here to 

stay, evolve and expand before our eyes. This ever-changing landscape, marked by 

rapid advancements in technology and data analytics, must keep us vigilant and attuned 

to the ongoing developments reshaping the healthcare sector. From the innovative 

applications of machine learning to the intricacies of data-driven decision-making, 

every stride forward propels us closer to a future where healthcare is not just reactive 

but anticipatory and personalized. 
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Code in Python 
 

 #Import Data  

 df = pd.read_excel('Healthcare-Diabetes(new).xlsx') 

 df=pd.DataFrame(df) 

 # print the shape of data 

 df.shape 

 # print the columns of the data 

 df.columns.to_list() 

 # describe the columns in the data set 

 df.describe() 

 variables = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',       '     

BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'] 

 num_variables = len(variables) 

 

#Scatterplot 1 

sns.scatterplot(data=df, x='Glucose', y='BloodPressure', hue='Outcome', 

palette='coolwarm', marker='o', edgecolor='k') 

plt.title('Relationship: Glucose & Blood Pressure by Diabetes Status') 

plt.xlabel('Glucose Level') 

plt.ylabel('Blood Pressure') 

plt.legend(title='Outcome', loc='best', labels=['Diabetes', 'No Diabetes']) 

plt.grid(True, linestyle='--', alpha=0.7) 

plt.tight_layout() 

plt.show() 

#Scatterplot 2 

sns.scatterplot(data=df, x='Insulin', y='BloodPressure', hue='Outcome', 

palette='coolwarm', marker='o', edgecolor='k') 

plt.title('Relationship: Insulin & Blood Pressure by Diabetes Status') 

plt.xlabel('Insulin Level') 

plt.ylabel('Blood Pressure') 

plt.legend(title='Outcome', loc='best', labels=['Diabetes', 'No Diabetes']) 

plt.grid(True, linestyle='--', alpha=0.7) 

plt.tight_layout() 

plt.show() 

#Scatterplot 3 

sns.scatterplot(data=df, x='BMI', y='Age', hue='Outcome', palette='coolwarm', 

marker='o', edgecolor='k') 

plt.title('Relationship: BMI & Age by Diabetes Status') 

plt.xlabel('BMI (Body Mass Index)') 

plt.ylabel('Age') 

plt.legend(title='Outcome', loc='best', labels=['Diabetes', 'No Diabetes']) 

plt.grid(True, linestyle='--', alpha=0.7) 

plt.tight_layout()  # Adjust layout to prevent overlap 

plt.show() 
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# Calculate the number of rows and columns needed 

num_rows = (num_variables + 1) // 2 

num_cols = 2 

 

# Create subplots 

fig, axs = plt.subplots(num_rows, num_cols, figsize=(15, 20)) 

      # Flatten the axs array 

axs = axs.ravel() 

 

# Histograms for each variable 

for i, var in enumerate(variables): 

axs[i].hist(df[var], bins=20, color='skyblue', edgecolor='black', linewidth=1.2) 

axs[i].set_title(var, fontsize=14, fontweight='bold') 

axs[i].set_xlabel(var, fontsize=12) 

axs[i].set_ylabel('Frequency', fontsize=12) 

axs[i].tick_params(axis='both', which='major', labelsize=10) 

axs[i].spines[['top', 'right']].set_visible(False) 

# Hide any empty subplots 

for j in range(num_variables, len(axs)): 

axs[j].axis('off') 

plt.tight_layout() 

plt.show() 

# Define the number of variables 

num_variables = len(variables) 

# Calculate the number of rows needed 

num_rows = (num_variables + 1) // 2 

# Create subplots with smaller size and nicer layout 

fig, axs = plt.subplots(num_rows, 2, figsize=(12, 10)) 

# Flatten the axs array 

axs = axs.ravel() 

 

# Boxplots for each variable 

for i, var in enumerate(variables): 

axs[i].boxplot(df[var], vert=False) 

axs[i].set_title(var, fontsize=12, fontweight='bold') 

axs[i].set_xlabel(var, fontsize=10) 

axs[i].tick_params(axis='both', which='major', labelsize=8) 

axs[i].spines[['top', 'right']].set_visible(False) 

# Hide any empty subplots 

for j in range(num_variables, len(axs)): 

axs[j].axis('off') 

plt.tight_layout() 

plt.show() 

outcome_counts = df['Outcome'].value_counts() 

plt.figure(figsize=(6, 4)) 

plt.bar(outcome_counts.index, outcome_counts.values, color=['skyblue', 'salmon']) 

plt.title('Count of Outcome', fontsize=14, fontweight='bold') 

plt.xlabel('Outcome', fontsize=12) 

plt.ylabel('Count', fontsize=12) 

plt.xticks(outcome_counts.index, ['0', '1']) 
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plt.grid(axis='y', linestyle='--', alpha=0.7) 

plt.gca().spines[['top', 'right']].set_visible(False) 

for i, count in enumerate(outcome_counts.values): 

plt.text(i, count, str(count), ha='center', va='bottom', fontsize=12, fontweight='bold') 

plt.show() 

outcome_counts = df['Outcome'].value_counts() 

labels = outcome_counts.index 

sizes = outcome_counts.values 

colors = ['skyblue', 'salmon'] 

explode = (0.1, 0)  # explode the first slice 

 

# Plot for Target Variable: Outcome 

plt.figure(figsize=(4, 5)) 

plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', 

startangle=140, shadow=True) 

plt.title('Distribution of Outcome', fontsize=18, fontweight='bold') 

plt.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle. 

# Display 

plt.tight_layout() 

plt.show() 

 

 

num_list=['Id','Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 

'BMI', 'DiabetesPedigreeFunction', 'Age'] 

fig = plt.figure(figsize=(15,25)) 

for i in range(len(num_list)): 

plt.subplot(6,3,i+1) 

plt.title(num_list[i]) 

sns.histplot(data=df,x=df[num_list[i]],hue='Outcome') 

plt.tight_layout() 

 

# Corellation Matrix 

cor = df.drop(["Id"],axis=1).select_dtypes(include='number').copy() 

corr = cor.corr() 

fig , ax = plt.subplots(figsize=(10 , 10)) 

sns.heatmap(corr ,annot= True , ax=ax , cmap= 'Blues'); 

corr = df.corrwith(df['Outcome']).sort_values(ascending=False) 

plt.figure(figsize=(8, 6)) 

sns.heatmap(pd.DataFrame(corr , columns=['correlation']), annot=True, 

cmap='coolwarm', fmt=".4f", linewidths=.5) 

plt.title('Correlation with Outcome') 

plt.show() 

 

X=df.drop(["Id", "Outcome"],axis=1) 

y=df["Outcome"] 

 

# Check for missing values 

print(df.isnull().mean()) 

# Choose the best number of components based on the explained variance ratio 

cumulative_variance_ratio = np.cumsum(variance_ratio_all) 
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n_components = np.argmax(cumulative_variance_ratio >= 0.95) + 1 

print(f"Best number of components: {n_components}") 

# Perform PCA with the chosen number of components 

pca_best = PCA(n_components=n_components).fit(df) 

df = pca_best.transform(df) 

 

# Balance dataset 

sm = SMOTE(random_state = 1234) 

X, y = sm.fit_resample(X, y) 

# Print the class distribution of the resampled dataset 

print('Resampled class distribution: ', Counter(y)) 

# Scale the features 

scaler = StandardScaler() 

X = scaler.fit_transform(X) 

      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

 

# Fit the logistic regression model on the training set 

model = LogisticRegression(penalty="l2", C=1, solver="lbfgs", max_iter=500) 

model.fit(X_train, y_train) 

 

# Fit the LDA model on the training set 

model = LinearDiscriminantAnalysis() 

model.fit(X_train, y_train) 

 

# Fit the SVM model on the training set 

model = SVC(kernel='linear', C=1, random_state=1234) 

model.fit(X_train, y_train) 

 

# Fit the KNN model on the training set 

model = KNeighborsClassifier() 

model.fit(X_train, y_train) 

 

# Define XGBoost classifier model 

params = {'objective': 'binary:logistic', 'n_estimators': 300, 'learning_rate': 0.05, 

'max_depth': 10, 'min_child_weight': 1, 'gamma': 0.1, 'subsample': 0.8, 

'colsample_bytree': 0.8, 'scale_pos_weight': 1, 'seed':42} 

model = xgb.XGBClassifier(**params) 

model.fit(X_train, y_train) 

 

# Define Random Forest classifier model 

model = RandomForestClassifier(n_estimators=500, max_depth=10, 

random_state=1234) 

model.fit(X_train, y_train) 

 

# Models performance 

# Predict on the test data 

y_pred = model.predict(X_test) 

# Print the classification report and AUC score 

print(classification_report(y_test, y_pred, digits=4)) 

print('AUC score:', roc_auc_score(y_test, y_pred)) 



105 

 

scorers = {'accuracy': make_scorer(accuracy_score), 

'precision': make_scorer(precision_score, pos_label=1), 

'recall': make_scorer(recall_score, pos_label=1), 

'f1': make_scorer(f1_score, pos_label=1), 

'auc': make_scorer(roc_auc_score)} 

cv_results = cross_validate(model,X_train, y_train,cv=10,  scoring=scorers) 

print('Accuracy: {:.3f} ({:.3f})'.format(np.mean(cv_results['test_accuracy']), 

np.std(cv_results['test_accuracy']))) 

print('Precision: {:.3f} ({:.3f})'.format(np.mean(cv_results['test_precision']), 

np.std(cv_results['test_precision']))) 

print('Recall: {:.3f} 

({:.3f})'.format(np.mean(cv_results['test_recall']),np.std(cv_results['test_recall']))) 

print('F1 Score: {:.3f} ({:.3f})'.format(np.mean(cv_results['test_f1']), 

np.std(cv_results['test_f1']))) 

print('AUC: {:.3f} ({:.3f})'.format(np.mean(cv_results['test_auc']), 

np.std(cv_results['test_auc']))) 

# Assuming y_true and y_pred are the true and predicted labels respectively 

cm = confusion_matrix(y_test, y_pred) 

print("Confusion matrix:") 

print(cm) 

print("Total samples:", np.sum(cm)) 

print("True positives:", cm[1, 1]) 

print("False positives:", cm[0, 1]) 

print("True negatives:", cm[0, 0]) 

print("False negatives:", cm[1, 0]) 

 

#Handling Extreme Values 

def outliers(df,ft): 

q1 = df[ft].quantile(0.25) 

q3 = df[ft].quantile(0.75) 

iqr = q3 - q1 

lower_limit = q1 - iqr *1.5 

upper_limit = q3 + iqr *1.5 

ls = df.index[(df[ft]<lower_limit) | (df[ft]>upper_limit)] 

return ls 

index_list = [] 

num = ['Id', 'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 

'BMI', 'DiabetesPedigreeFunction'] 

for feature in num: 

index_list.extend(outliers(df,feature)) 

def remove(df,ls): 

ls = sorted(set(ls)) 

df = df.drop(ls) 

return df 

df = remove(df,index_list) 

df.shape 

sns.boxplot(data=df, x="DiabetesPedigreeFunction") 

plt.title('Boxplot of Diabetes Pedigree Function', fontsize=14, fontweight='bold') 

plt.xlabel('Diabetes Pedigree Function', fontsize=12) 

plt.ylabel('Value', fontsize=12) 
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plt.grid(axis='y', linestyle='--', alpha=0.7) 

plt.gca().spines[['top', 'right']].set_visible(False) 

plt.show() 

 

#Perform PCA 

pca = PCA() 

pca.fit(df) 

plt.figure() 

plt.plot(range(1, pca.n_components_ + 1), 

np.cumsum(pca.explained_variance_ratio_), marker='o', linestyle='-', color='r') 

plt.xlabel('Number of Components') 

plt.ylabel('Cumulative Explained Variance Ratio') 

plt.title('Cumulative Explained Variance') 

plt.show() 

#Plot for the PCA 

pca = PCA(n_components=2) 

 

# Pairplot for all the Variables 

sns.pairplot(df.drop(columns=['Id']), hue='Outcome', diag_kind='kde', height=1.5) 

plt.suptitle("Pairplot of features colored by Outcome", y=1.02) 

plt.show() 

 

# Plotting Learning Curves 

train_sizes, train_scores, test_scores = learning_curve(model, X_train_pca, y_train, 

cv=10, scoring='accuracy') 

train_scores_mean = np.mean(train_scores, axis=1) 

train_scores_std = np.std(train_scores, axis=1) 

test_scores_mean = np.mean(test_scores, axis=1) 

test_scores_std = np.std(test_scores, axis=1) 

plt.figure(figsize=(10, 6)) 

plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean 

+ train_scores_std, alpha=0.1, color="r") 

plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + 

test_scores_std, alpha=0.1, color="g") 

plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") 

plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") 

plt.title("Learning Curves") 

plt.xlabel("Training examples") 

plt.ylabel("Score") 

plt.legend(loc="best") 

plt.grid(True) 

plt.show() 

 

# Plotting cross-validation results 

plt.figure(figsize=(10, 6)) 

plt.plot(range(1, cv_results['test_accuracy'].shape[0] + 1), cv_results['test_accuracy'], 

marker='o', label='Accuracy') 

plt.plot(range(1, cv_results['test_precision'].shape[0] + 1), cv_results['test_precision'], 

marker='o', label='Precision') 
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plt.plot(range(1, cv_results['test_recall'].shape[0] + 1), cv_results['test_recall'], 

marker='o', label='Recall') 

plt.plot(range(1, cv_results['test_f1'].shape[0] + 1), cv_results['test_f1'], marker='o', 

label='F1 Score') 

plt.plot(range(1, cv_results['test_auc'].shape[0] + 1), cv_results['test_auc'], marker='o', 

label='AUC') 

plt.title('Cross-Validation Results') 

plt.xlabel('Fold') 

plt.ylabel('Score') 

plt.xticks(range(1, cv_results['test_accuracy'].shape[0] + 1)) 

plt.legend() 

plt.grid(True) 

plt.show() 

 

 

# Code for the ANN 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

# Define the model 

model = Sequential() 

model.add(Dense(32, input_dim=8, activation='relu')) 

model.add(Dense(16, activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

# Compile the model 

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

# Train the model 

history = model.fit(X_train, y_train, epochs=100, batch_size=32, 

verbose=1,validation_data = (X_test, y_test)) 

# Evaluate the model on test data 

y_pred = model.predict(X_test) 

y_pred = (y_pred > 0.5).astype(int) 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

auc_roc = roc_auc_score(y_test, y_pred) 

print('Test accuracy:', accuracy) 

print('Test precision:', precision) 

print('Test recall:', recall) 

print('Test F1-score:', f1) 

print('Test AUC-ROC:', auc_roc) 

plot_model(model, show_shapes=True) 

 

# Plot loss and accuracy over epochs 

plt.figure(figsize=(8, 6)) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.plot(history.history['accuracy'], label='Training Accuracy') 

plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

plt.title('Model Performance') 

plt.xlabel('Epochs') 
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plt.ylabel('Performance') 

plt.legend() 

plt.show() 

 

# 10-fold Cross-Validation 

kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=1234) 

# Initialize lists to store cross-validation results 

acc_scores = [] 

loss_scores = [] 

# Perform 10-fold cross-validation 

for train_index, test_index in kfold.split(X, y): 

 X_train, X_test = X[train_index], X[test_index] 

 y_train, y_test = y[train_index], y[test_index] 

 # Train the model on the current fold 

 history = model.fit(X_train, y_train, epochs=100 , batch_size=32, verbose=1, 

validation_data=(X_test, y_test)) 

# Evaluate the model on the current fold 

loss, acc = model.evaluate(X_test, y_test, verbose=0) 

acc_scores.append(acc) 

loss_scores.append(loss) 

 

# Print the cross-validation results 

print("Crossvalidation accuracy: {:.2f}% (+/- 

{:.2f}%)".format(np.mean(acc_scores)*100, 

np.std(acc_scores)*100)) 

print("Crossvalidation loss: {:.2f} (+/- {:.2f})".format(np.mean(loss_scores), 

np.std(loss_scores))) 
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Abbreviations and Acronyms 
 

RWE Real-World Evidence 

RWD Real-World Data 

RCTs Randomized Clinical Trials 

EHRs Electronic Health Records 

HIS Healthcare Information Systems 

EMRs Electronic Medical Records 

FDA Food and Drug Administration 

EMA European Medicines Agency 

WHO World Health Organization 

RP Reference Product 

SBPs Similar Biotherapeutic Products 

AI Artificial Intelligence 

HTA Health Technology Assessment 

OTA Office of Technology Assessment 

EUnetHTA European network for Health Technology Assessment 

PHM Population Health Management 

PK Pharmacokinetic 

PD Pharmacodynamic 

PE Pharmacoeconomic 

QALY Quality-Adjusted Life Year 

IMI Innovative Medicines Initiative 

EH4CR Electronic Health Records for Clinical Research 

NLP Natural Language Processing 

FOrMAT FOCUS4 Molecularly Stratified Trial 

RADAR-CNS Remote Assessment of Disease and Relapse - Central Nervous System 

ML Machine Learning 

DL Deep Learning 

TREVO Thrombectomy Revascularization of Large Vessel Occlusions 

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 

MT-DTI Molecule Transformer-Drug Target Interaction 

IC50 Half-maximal Inhibitory Concentration 

BATTLE Biomarker Approaches of Targeted Therapy for Lung Cancer Elimination 

PFS Progression-Free Survival 

BHMM Bayesian Hierarchical Mixture Model 

EXNEX Exchangeability-Non-exchangeability Model 

COVID-19 Coronavirus Disease 2019 

POS Probability of Success 

MLAL Machine Learning Arthroplasty Laboratory 

THA Total Hip Arthroplasty 

BS Biosimilars 

TKA Total Knee Arthroplasty 

LOS Length of Stay 

ANN Artificial Neural Network 

SPL Sound Pressure Level 

SML Sound Modulation Level 

SNR Signal to Noise Ratio 
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YNH-U Younger listeners with normal hearing from an urban area 

YNH-R Younger listeners with normal hearing from a rural area 

OHL-U Older listeners with hearing loss from an urban area 

OHL-R Older listeners with hearing loss from a rural area 

ANOVA Analysis of Variance 

LME Linear Mixed-Effects 

HR Heart Rate 

NIH National Institutes of Health 

AHA American Heart Association 

CI Confidence Interval 

mRS Modified Rankin Scale 

ARDS Acute Respiratory Distress Syndrome 

ICD-10 International Classification of Diseases, 10th Edition 

AUCPR Area Under Precision-Recall Curve 

ROC Receiver Operating Characteristic 

PR Precision-Recall 

SHAP Shapley Additive Explanations 

LDA Linear Discriminant Analysis 

k-NN k-Nearest Neighbours 

SVM Support Vector Machines 

OLS Ordinary Least Squares 

CNN Condensed Nearest Neighbor 

PLS Partial Least Squares 

PCA Principal Component Analysis 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

MLP Multi-layer Perceptron 

SOM Self-Organizing Map 

TP True Positives 

TN True Negatives 

FP False Positives 

FN False Negatives 

SMOTE Synthetic Minority Oversampling Technique 

ReLU Rectified Linear Unit 
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