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ABSTRACT

Today, our digital lives are increasingly governed by decentralized systems that manage

massive amounts of sensitive and non-sensitive data. The vast diffusion of IoT is shaping net-

works of multiple interconnected devices that provide services and collect data by interacting

with each other. This technology has paved the way for increased efficiency, automation and

data-driven decision-making in manufacturing, healthcare, and supply chain, among other

industries. Multi-authority and multi-domain ecosystems are becoming increasingly com-

mon in these decentralized systems, as different organizations and domains collaborate to

provide more comprehensive and efficient services.

The integration of multiple authorities and domains in decentralized systems presents

significant security and trust challenges. With data and services distributed across several

nodes and domains, these systems are vulnerable to security and trust threats, including

unauthorized access, data breaches, identity theft, ransomware exploits. Cybercriminals find

the management of large amounts of personal and business information lucrative, making

these systems a prime target for attacks. Furthermore, the requirement for greater inter-

operability and fine-grained information sharing among participants further multiplies these

risks. Therefore, Trust Management (TM) is essential to ensure trustworthy data fusion

and mining, certified services, and improved user privacy and information security in such

complex ecosystems.

However, traditional TM infrastructures are unable to resolve issues such as the need for

fine-grained access control based on automated enforcement of defined policies due to the

cyber-physical and decentralized nature of these systems. As a result, novel TM solutions

that take advantage of techniques such as blockchain are necessary to enable automated

and trustworthy interactions between participants while incorporating privacy-preserving
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mechanisms.

The shift from centralized to decentralized multi-authority and multi-domain environ-

ments presents unique challenges that must be addressed. To facilitate secure and reliable

communication and information exchange, it is crucial to have a distributed trust manage-

ment system in place. This system must be capable of managing trust between multiple

domains, each with its own set of authorities, policies, and security requirements. As the

digital landscape becomes increasingly complex, and the threat of cyber attacks continues

to rise, it is imperative to have a robust and secure trust management system that can

protect against malicious actors and prevent unauthorized access to sensitive data. Using

the principles of distributed systems, a trust management system can provide a higher level

of security, scalability, and dependability, making it an indispensable component of modern

digital infrastructures.

The main research goal of this Ph.D. thesis is to contribute to the understanding of

the security requirements of multi-authority and multi-domain ecosystems and also propose

novel security mechanisms that support trust among the participants.

The Thesis has four sections, each of which includes several chapters. In Section I the in-

troduction (Chapter 1) and the review of the relevant literature (Chapter 2) are introduced,

in order to present the current state-of-the-art and the open research challenges related to

the distributed Trust Management for multi-authority and multi-domain ecosystems. Sec-

tion II (Chapters 3-4-5-6) presents the novel hierarchical multi-blockchain solution for trust

management and access control for multi-authority and multi-domain environments. In

particular, in Chapter 3 we describe the Hierarchical Multi-Blockchain Access Control (HM-

BAC) model, in Chapter 4 we present the system design, in Chapter 5 we dive deeper into

the implementation aspects of HMBAC presented in the previous chapter by introducing the

Janus framework. In Chapter 6, we present the security and performance analysis of Janus.

In Section III, we describe two additional security features for the Janus framework, which

extend the novel solution presented in Section II. Specifically, in Chapter 7 we propose a

x



distributed self-sovereign identity (SSI) infrastructure for device authentication. In Chapter

8, we present an extension to connect the proposed framework with legacy ERP systems.

Section IV (Chapter 9), summarizes the results of this thesis that are related to the solutions

presented in Sections II and III and their validation, along with open research challenges

that require additional future work, respectively.
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Σήμερα, η ψηφιακή μας ζωή διέπεται όλο και περισσότερο από αποκεντρωμένα συστήματα

που διαχειρίζονται τεράστιες ποσότητες ευαίσθητων και μη ευαίσθητων δεδομένων. Η τεράσ-

τια διάδοση του IoT διαμορφώνει δίκτυα πολλαπλών διασυνδεδεμένων συσκευών που παρέχουν

υπηρεσίες και συλλέγουν δεδομένα αλληλοεπιδρώντας μεταξύ τους. Αυτή η τεχνολογία έχει

ανοίξει το δρόμο για αυξημένη αποδοτικότητα, αυτοματοποίηση και λήψη αποφάσεων βάσει

δεδομένων στη μεταποίηση, την υγειονομική περίθαλψη και την εφοδιαστική αλυσίδα, μεταξύ

άλλων κλάδων. Τα οικοσυστήματα πολλαπλών αρχών και τομέων γίνονται όλο και πιο συνηθισ-

μένα σε αυτά τα αποκεντρωμένα συστήματα, καθώς διαφορετικοί οργανισμοί και τομείς συνεργά-

ζονται για την παροχή πιο ολοκληρωμένων και αποτελεσματικών υπηρεσιών. Η ενσωμάτωση

πολλαπλών αρχών και τομέων σε αποκεντρωμένα συστήματα παρουσιάζει σημαντικές προκλή-

σεις ασφάλειας και εμπιστοσύνης. Με δεδομένα και υπηρεσίες κατανεμημένα σε πολλαπλούς

κόμβους και τομείς, τα συστήματα αυτά είναι ευάλωτα σε διάφορες απειλές ασφάλειας και εμ-

πιστοσύνης, όπως μη εξουσιοδοτημένη πρόσβαση, παραβίαση δεδομένων και κλοπή ταυτότη-

τας. Οι εγκληματίες του κυβερνοχώρου βρίσκουν ελκυστική τη διαχείριση μεγάλου όγκου

προσωπικών και επιχειρηματικών πληροφοριών, καθιστώντας τα συστήματα αυτά πρωταρχικό

στόχο για επιθέσεις. Επιπλέον, η απαίτηση για μεγαλύτερη διαλειτουργικότητα και λεπτομερή

ανταλλαγή πληροφοριών μεταξύ των συμμετεχόντων πολλαπλασιάζει περαιτέρω αυτούς τους

κινδύνους. Ως εκ τούτου, η διαχείριση εμπιστοσύνης (ΔΕ) είναι απαραίτητη για την εξασφάλιση

αξιόπιστης σύντηξης και εξόρυξης δεδομένων, πιστοποιημένων υπηρεσιών και βελτιωμένης ιδι-

ωτικότητας και ασφάλειας πληροφοριών των χρηστών σε τέτοια πολύπλοκα οικοσυστήματα.

Ωστόσο, οι παραδοσιακές υποδομές διαχείρισης εμπιστοσύνης δεν είναι σε θέση να επιλύσουν

ζητήματα όπως η ανάγκη για λεπτομερή έλεγχο πρόσβασης με βάση την αυτοματοποιημένη επι-

βολή καθορισμένων πολιτικών λόγω της κυβερνο-φυσικής και αποκεντρωμένης φύσης αυτών

των συστημάτων. Ως αποτέλεσμα, απαιτούνται νέες λύσεις διαχείρισης εμπιστοσύνης που θα αξ-
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ιοποιούν τεχνικές όπως η αλυσίδα μπλοκ (blockchain) για να επιτρέψουν αυτοματοποιημένες και

αξιόπιστες αλληλεπιδράσεις μεταξύ των συμμετεχόντων, ενσωματώνοντας παράλληλα μηχανισ-

μούς διατήρησης της ιδιωτικότητας. Η μετάβαση από κεντρικά σε αποκεντρωμένα περιβάλλοντα

πολλαπλών αρχών και πολλαπλών τομέων παρουσιάζει μοναδικές προκλήσεις που πρέπει να αν-

τιμετωπιστούν. Για τη διευκόλυνση της ασφαλούς και αξιόπιστης επικοινωνίας και ανταλλαγής

πληροφοριών, είναι ζωτικής σημασίας η ύπαρξη ενός κατανεμημένου συστήματος διαχείρισης

εμπιστοσύνης. Το σύστημα αυτό πρέπει να είναι ικανό να διαχειρίζεται την εμπιστοσύνη μεταξύ

πολλαπλών τομέων, ο καθένας με το δικό του σύνολο αρχών, πολιτικών και απαιτήσεων ασ-

φαλείας. Καθώς το ψηφιακό τοπίο γίνεται ολοένα και πιο πολύπλοκο και η απειλή των επιθέσεων

στον κυβερνοχώρο συνεχίζει να αυξάνεται, είναι επιτακτική ανάγκη να υπάρχει ένα ισχυρό και

ασφαλές σύστημα διαχείρισης εμπιστοσύνης που να μπορεί να προστατεύει από κακόβουλους

φορείς και να αποτρέπει τη μη εξουσιοδοτημένη πρόσβαση σε ευαίσθητα δεδομένα. Χρησι-

μοποιώντας τις αρχές των κατανεμημένων συστημάτων, ένα σύστημα διαχείρισης εμπιστοσύνης

μπορεί να παρέχει υψηλότερο επίπεδο ασφάλειας, επεκτασιμότητας και αξιοπιστίας, καθιστών-

τας το απαραίτητο συστατικό των σύγχρονων ψηφιακών υποδομών. Ο κύριος ερευνητικός

στόχος αυτής της διδακτορικής διατριβής είναι να συμβάλει στην κατανόηση των απαιτήσεων

ασφάλειας σε οικοσυστήματα πολλαπλών αρχών και πολλαπλών τομέων και επίσης να προτείνει

νέους μηχανισμούς ασφάλειας που υποστηρίζουν την εμπιστοσύνη μεταξύ των συμμετεχόντων.

Η διατριβή διαρθρώνεται σε τέσσερις ενότητες, καθεμία από τις οποίες περιλαμβάνει αρκετά

κεφάλαια. Στην Ενότητα Ι παρουσιάζεται η εισαγωγή (Κεφάλαιο 1) και η ανασκόπηση της

σχετικής βιβλιογραφίας (Κεφάλαιο 2), προκειμένου να παρουσιαστούν η τρέχουσα κατάσταση

και οι ανοικτές ερευνητικές προκλήσεις που σχετίζονται με την κατανεμημένη διαχείριση εμπ-

ιστοσύνης για οικοσυστήματα πολλαπλών αρχών και περιοχών. Στην Ενότητα ΙΙ (Κεφάλαια

3-4-5-6) παρουσιάζεται η νέα ιεραρχική λύση πολλαπλών αλυσίδων μπλοκ για τη διαχείριση

εμπιστοσύνης και τον έλεγχο πρόσβασης για περιβάλλοντα πολλαπλών αρχών και πολλαπλών

τομέων. Ειδικότερα, στο Κεφάλαιο 3 περιγράφουμε το μοντέλο Hierarchical Multi-Blockchain

Access Control (HMBAC), στο Κεφάλαιο 4 παρουσιάζουμε τον σχεδιασμό του συστήματος,
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στο Κεφάλαιο 5 εμβαθύνουμε στις πτυχές υλοποίησης του HMBAC που παρουσιάστηκαν στο

προηγούμενο κεφάλαιο, παρουσιάζοντας το πλαίσιο Janus. Στο Κεφάλαιο 6, παρουσιάζουμε

την ανάλυση ασφάλειας και επιδόσεων του Janus. Στο Κεφάλαιο III, περιγράφουμε δύο πρόσ-

θετα χαρακτηριστικά ασφαλείας για το πλαίσιο Janus, τα οποία επεκτείνουν τη νέα λύση που

παρουσιάστηκε στο Κεφάλαιο II. Συγκεκριμένα, στο Κεφάλαιο 7 προτείνουμε μια κατανεμη-

μένη υποδομή αυτοκυριαρχούμενης ταυτότητας (Self Sovereign Identity - SSI) για τον έλεγχο

ταυτότητας συσκευών. Στο Κεφάλαιο 8, παρουσιάζουμε μια επέκταση για τη σύνδεση του

προτεινόμενου πλαισίου με παλαιά συστήματα ERP.
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CHAPTER 1

INTRODUCTION

The Internet of Things (IoT) represents a rapidly evolving frontier, characterized by a vast

and complex network of interconnected devices, systems, and networks. This proliferation

of IoT devices has revolutionized our ability to collect and analyze data from a multitude of

sources in real time. However, this enhanced connectivity also introduces significant security

challenges, notably expanding the attack surface and causing numerous trust issues. These

challenges are particularly pronounced in environments governed by multiple authorities and

domains, such as healthcare, supply chain management, and finance, necessitating robust

measures to ensure the security and safe operation of these interconnected systems.

The evolution of the Internet has fundamentally transformed the landscape of resource

sharing, shifting from closed, centrally managed, and relatively static local computing envi-

ronments to open, decentralized, autonomous, and dynamically collaborative inter-domain

computing environments. These transformations have introduced a host of challenges, partic-

ularly in terms of access to shared resources. Issues such as user authentication management,

authorization policy formulation, and other trust management tasks have become increas-

ingly complex, making trust management and security paramount in dynamic, distributed

multi-domain environments.

In multi-authority and multi-domain contexts, ensuring trust and security is of utmost

importance. Diverse organizations, each with its own objectives, policies, and security pro-

tocols, are required to collaborate and share information, often leading to conflicting security

and trust requirements. This complexity complicates the protection of confidentiality, pri-
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vacy, and the integrity of sensitive data. For example, in the healthcare sector, the sharing of

medical data between different organizations and domains introduces significant vulnerabili-

ties to privacy and security. In supply chain management, the integration of IoT devices and

systems in various domains increases security vulnerabilities and obscures the visibility of

the supply chain, challenging the assurance of the authenticity and traceability of the prod-

uct. Similarly, in the financial sector, the incorporation of IoT technologies into financial

transactions raises the risks of fraud and financial crimes.

This Thesis seeks to tackle the intricate challenges of security and trust in multi-authority

and multi-domain environments through the exploration of distributed security and trust

management solutions. Our research is centered on the design, implementation, and eval-

uation of a hierarchical multi-blockchain access control model, aimed at facilitating secure

and efficient trust management across environments with multiple stakeholders. In addition,

we introduce two novel security enhancements to augment the proposed system. The first

enhancement involves a distributed self-sovereign identity (SSI) framework for users and

devices, which serves as an advanced identity management module. The second, is a com-

prehensive solution for the integration of the proposed system with existing legacy systems,

incorporating a crucial adaptation phase. Overall, the proposed framework is designed to

secure device connectivity and thwart attacks by leveraging the hierarchical multi-blockchain

architecture, thereby offering a comprehensive solution to the emerging security threats in

IoT ecosystems.

1.1 A Paradigm Shift: From Centralized to Distributed Multi-authority and

Multi-domain Environments

The evolution of digital systems, marked by the transition from centralized architectures

to distributed, multi-authority, and multi-domain environments, represents a paradigm shift

that has fundamentally altered how data are managed, shared, and secured. This transfor-

mation is characterized by a move away from monolithic, single-entity-controlled systems
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towards more collaborative, decentralized networks that involve multiple stakeholders.

Historically, the centralized model dominated the digital landscape, offering a straight-

forward but limited approach to system management. These centralized systems, while easy

to manage, suffered from significant drawbacks such as scalability issues, susceptibility to

single point of failure, and lack of flexibility, which became increasingly untenable with the

growth in data volume and user base. The limitations of centralized systems catalyzed

the shift towards more distributed architectures, a change enabled by breakthroughs in dis-

tributed computing, blockchain technology, and advancements in cryptographic techniques

and consensus algorithms. This shift heralded a new era of digital systems, characterized by

a dispersion of control and collaborative operation across diverse entities.

In distributed multi-authority and multi-domain environments, the architecture is fun-

damentally decentralized, distributing control across multiple nodes or entities that operate

under their own authority but work collaboratively. This decentralization mitigates the risks

associated with single points of failure and enhances the system’s resilience. Each domain

within such an environment retains autonomy over its data, policies, and security measures,

enabling a customized approach that meets specific needs or regulatory requirements. De-

spite their diverse and autonomous nature, these systems are designed for interoperability,

facilitating seamless data exchange and collaboration between different domains and author-

ities. This scalability and flexibility allow the systems to easily accommodate growth and

adapt to changing conditions without centralized coordination.

The transition to distributed multi-authority and multi-domain systems offers several no-

table advantages. Enhanced security emerges from the distribution of trust among multiple

entities, reducing the vulnerability inherent in centralized systems, such as the single point

of failure. The decentralized structure makes it more challenging for attackers to compro-

mise the entire network, offering a robust defense against cyber threats. Interoperability is

another significant benefit, as it enables entities across different domains to share informa-

tion and collaborate more effectively, driving innovation and improving service delivery. The
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resilience of these systems is markedly improved, with their ability to maintain continuous

operation and reliability in the face of attacks, failures, or disruptions. Furthermore, the

inherent flexibility of distributed architectures allows for more agile responses to changes

in regulatory environments, technological advancements, and evolving user requirements,

providing a dynamic framework for future digital ecosystems.

This paradigm shift towards distributed, multiauthority, and multidomain environments

not only addresses the shortcomings of centralized models, but also paves the way for a

future characterized by more open, collaborative, and secure digital interactions. As these

environments continue to develop, they promise to fundamentally alter the landscape of

digital systems, offering a foundation for innovation, efficiency, and scalability that will

shape the digital age.

The transition to distributed multi-authority and multi-domain systems, while offering

numerous advantages over traditional centralized models, introduces a unique set of chal-

lenges, particularly in the realms of security and trust. These systems, by their very nature,

involve a complex web of interactions among various entities, each with their own objectives,

policies, and security requirements. This complexity necessitates novel approaches to enforce

trust and ensure secure access to shared data among participants who may not inherently

trust each other.

One of the main challenges in these environments is ensuring the security of the inter-

actions and transactions that take place in this distributed landscape. The decentralized

nature of these systems, although beneficial for resilience and reducing single points of fail-

ure, complicates the enforcement of uniform security policies and practices. Each entity in

the network may employ different security protocols, leading to potential vulnerabilities at

the interfaces where these diverse systems interact. Furthermore, the open and distributed

architecture makes it challenging to detect and mitigate security threats, such as unautho-

rized access or data breaches, which can proliferate rapidly across the network due to its

interconnected nature.
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Trust management is another significant challenge in distributed multi-authority and

multi-domain systems. In an environment where participants are autonomous and may not

have pre-existing trust relationships, establishing a framework for mutual trust becomes

critical. Traditional centralized trust models, which rely on a single trusted authority, are

not applicable in this decentralized context. Instead, there is a need for mechanisms that can

dynamically establish and manage trust among a multitude of untrusted parties, taking into

account the varying degrees of trustworthiness and the changing dynamics of the network.

Addressing these challenges requires the development of innovative mechanisms that can

both enforce trust and provide secure, fine-grained access control over shared data. These

mechanisms must be capable of operating in a decentralized environment, where they can

facilitate secure interactions without relying on a central authority. A promising approach is

the use of distributed ledger technologies, such as blockchain, which can provide a transparent

and immutable record of transactions, thus underpinning trust among participants. However,

blockchain alone may not address all security and trust issues, particularly in terms of fine-

grained access control and dynamic management of trust relationships.

To overcome these limitations, there is growing interest in advanced cryptographic tech-

niques, such as attribute-based encryption (ABE), which can offer more nuanced access

control mechanisms. ABE enables data encryption in such a way that only users with spe-

cific attributes or credentials can decrypt and access the information, allowing fine-grained

control over who can see what data. Additionally, the development of decentralized iden-

tity and reputation systems can further enhance trust management by providing verifiable

and portable identities for participants, along with mechanisms to assess and establish the

trustworthiness of entities based on their behavior and interactions within the system.

As a result of the preceding discussion, more emphasis is required on innovative, decen-

tralized, interoperable, and adaptable trust management systems. The following are two

motivational examples.

Example 1: Fine-grained access to healthcare data. The medical sector exemplifies a
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complex, multi-authority and multi-domain ecosystem, encompassing a diverse array of do-

mains including regulatory bodies, healthcare facilities, manufacturing entities, and insur-

ance providers. This sector’s structure is inherently intricate due to the interdependencies

and interactions among these varied stakeholders, each of whom plays a critical role in the

healthcare delivery matrix. At the same time, privacy-sensitive health-related data may

be created by various medical IoT devices, such as health monitoring devices (e.g., glucose

level, blood pressure, or sleep monitoring systems) or treatment devices (e.g., medical in-

fusion pumps). Users of one authority may require granular access to data maintained by

multiple authorities (stakeholders) and domains. For example, while a doctor is on duty,

they may require access to the full medical history data maintained in multiple hospital

databases, for a patient under emergency treatment, or an administrator of a medical de-

vice manufacturer may require access to the configuration data of connected medical devices

installed in different hospitals. In addition, regulators may require that the data be acces-

sible from a single entrance platform, to log all data access requests, and monitor privacy

violations. At the same time, new sectors or stakeholders can dynamically join or leave the

system. Note that users who are simultaneously members of multiple authorities may require

special access. For example, a doctor in a hospital may also be a researcher at a university.

This doctor would also require access to (statistical) health data maintained in all hospitals,

for research purposes.

Example 2: Fine-grained access to data in a multi-domain supply chain. Another typical

example is the supply chain environment. Consider a distributed supply chain tracking sys-

tem, collectively used by supply chain stakeholders for collecting, integrating, and analyzing

data from a variety of sources. The various stakeholders have different requirements for data

access. For example, a container shipping company requires access to data on cargo weight

and quantity, while a retail end-user requires access to data on product provenance, storage,

and transportation conditions (especially for sensitive merchandise). These systems must

be interoperable, but also provide granular access to data. In addition, authorities such
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as customs or other governmental agencies may also require a single point of access for all

queries to data, for global access verifiability, i.e., it must be possible for any entity, either

inside or outside the system, to verify all access attempts to the data (either successful or

not).

1.2 Trust and Security Requirements in Multi-Authority and Multi-Domain

Environments: Research Gaps and Thesis Contribution

The proliferation of distributed multi-authority and multi-domain environments neces-

sitates a reevaluation of traditional trust and security paradigms. As these environments

become increasingly prevalent, they reveal significant research gaps that must be addressed

to ensure their secure and trustworthy operation and also cover the synchronous needs. This

section outlines key areas where existing research falls short, linking to relevant chapters

that delve deeper into proposed solutions.

Research Gap 1: Secure Interoperability of Trust Infrastructures in Multi-

Authority and Multi-Domain Environments ”A primary concern in environments with

multiple authorities and domains is the lack of secure interoperability among diverse trust

infrastructures and untrusted parties. These environments are characterized by the coexis-

tence of multiple trust models, which can lead to inconsistencies and vulnerabilities at the

intersections of these systems.”

Our Contribution: To address this gap, we propose a system that uses multiple

blockchains that leverage cryptographic mechanisms to ensure seamless and secure inter-

operability among different trust infrastructures. The system allows all stakeholders to

manage trust within their domain in a distributed and self-sustaining fashion. For example,

it is possible for each stakeholder to internally manage the issuing, updating, or revoking

of access credentials. At the same time, the system allows credential interoperability, i.e.

credentials issued from independent authorities are mutually trusted, without assuming a

globally trusted root authority. For a detailed exploration of this solution, refer to Chapters
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3 and 4, where we discuss the architectural and protocol design.

Research Gap 2: Self-managed Identities and Credentials. ”Traditional identity

management systems, often centralized, pose significant risks in Multi-Authority and Multi-

Domain environments, including privacy concerns and single points of failure. There is a

clear need for mechanisms that allow individuals and devices to manage their identities and

credentials autonomously, enhancing privacy and control.”

Our Contribution: Our research introduces a model for self-managed identities based

on decentralized identity technologies, such as blockchain and decentralized identifiers (DIDs).

This model supports the secure and autonomous management of digital identities, enabling

entities to control their credentials without relying on a central authority. Chapter 7 delves

into the technical underpinnings of this model, including the cryptographic techniques that

ensure privacy, and the protocols for identity verification and credential exchange.

Research Gap 3: Fine-Grained Access, Privacy-Preserving Encryption, and

Immutable Logging ”Ensuring fine-grained access control, while preserving privacy and

maintaining an immutable record of transactions, presents a complex challenge in Multi-

Authority and Multi-Domain environments. Existing solutions often fail to adequately bal-

ance these requirements, leading to either overly restrictive access controls or insufficient

privacy guarantees.”

Our Contribution: To bridge this gap, we propose an integrated solution that com-

bines attribute-based encryption (ABE) and blockchain technology to ensure that all en-

tities/stakeholders have granular access to data and services at a domain level (inter and

cross-domain) and at a role level. In addition, temporal access is possible for cases that may

need to allow temporary full access to specific data for a specific type of user (e.g. a doctor

working in the emergency department). This temporal access is easily revocable. Finally,

the system also includes access controls that bypasses avoidance mechanisms and immutable

logging of access and transactions. This approach ensures that only authorized entities can

access specific data, while also safeguards the privacy of sensitive information and creates a
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tamper-proof audit trail. Chapters 5 and 6 provides an in-depth analysis of this integrated

solution, including its implementation and evaluation in real-world scenarios.

Research Gap 4: Interconnection with legacy system.: In many ecosystems char-

acterized by the presence of multiple authorities and domains, established systems to auto-

mate services are already in place. The introduction of new, decentralized systems—despite

their considerable advantages—tends to be met with skepticism by businesses and organiza-

tions. This reluctance is primarily attributed to concerns regarding the potential financial

outlays and the prospect of entirely replacing existing infrastructures. Current solutions fre-

quently prove inadequate in addressing these apprehensions, posing a significant barrier to

the widespread adoption of innovative technologies.

Our Contribution: This research contributes to the field by developing a blockchain-

based architecture designed to integrate seamlessly with existing Enterprise Resource Plan-

ning (ERP) systems, thereby addressing the significant gap in the adoption of decentralized

systems within multi-authority ecosystems. By building on top of established ERP infras-

tructure, our approach mitigates the primary concerns associated with the introduction of

new technologies—namely, the substantial costs and the potential need for a complete infras-

tructure overhaul. Our work not only extends the capabilities of traditional systems with the

benefits of decentralization but also offers a practical pathway for the adoption of blockchain

technology, thereby overcoming a crucial barrier to its wider implementation. This strategic

integration exemplifies a forward-thinking response to the complexities of modern business

ecosystems, showcasing a scalable model that balances innovation with operational continu-

ity. The proposed architecture is presented in Chapter 8.

By addressing these research gaps with innovative solutions, this thesis aims to advance

the field of trust and security in multi-authority and multi-domain environments, laying the

groundwork for more secure, efficient, and user-centric digital ecosystems.
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1.3 Thesis Structure

In the following paragraphs, we describe from a high-level the layout of the Thesis. For

a better understanding, we have structured our work into ten Chapters that are grouped in

four main Sections. In particular:

Section I: Foundations and Related Work

- In Chapter 1, we delineate the extensive scope of our research, which investigates com-

plex ecosystems characterized by multiple principles and domains. This section elucidates

the comprehensive range of knowledge gaps identified within the field and articulates the

specific contributions of the thesis to bridging these gaps. By establishing a clear framework

for our study, we set the foundation for a detailed exploration of the interdependencies and

dynamics within multifaceted systems, highlighting how our findings advance the existing

body of knowledge and propose practical solutions to longstanding challenges.

– In Chapter 2, we provide a detailed exposition of the technological underpinnings per-

tinent to our research. Specifically, we delve into critical aspects of blockchain technology,

focusing on the functionalities and implications of Smart Contracts. Furthermore, we exam-

ine the two principal blockchain networks employed in our study: Ethereum and Hyperledger.

This discussion is complemented by a thorough analysis of the extant literature within key re-

search domains relevant to our investigation, namely fine-grained access control, distributed

trust management, and privacy-preserving encryption. These areas are explored in the con-

text of the ecosystems under consideration, ensuring a comprehensive understanding of how

these technologies interact and the challenges they address. This foundational knowledge

sets the stage for subsequent chapters, where the application of these technologies in complex

multi-domain environments is articulated.

Section II: Hierarchical Multi Blockchain

– In Chapter 3, we introduce a novel Hierarchical Access Control Model specifically engi-

neered to manage access effectively within environments characterized by multiple authorities

and domains. This model capitalizes on the decentralized attributes of blockchain technolo-
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Sections Chapter Title
Contributing

paper(s)
Contribution

I.Foundations
and related

work
1 Introduction

Describes the
landscape of multi-
authority and multi-
domain systems

2
Review of the
literature

[1, 2, 3]

Presents back-
ground information
about the blockchain
and also survey of
existing studies.

3
HMBAC
model

[4]

Presents the
hierarchical multi-
blockchain access
control model

4 System design [1, 5]

Analyzes the var-
ious components and
the design methodol-
ogy

II.Hierarchical
Multi

Blockchain
5 Implementation [4]

Develops the
HMBAC system,
describes of the tech-
nical aspects

6

Security
Analysis and
Performance
Analysis

[4, 5]

Validates the so-
lution’s effectiveness
and provides a secu-
rity analysis.

III.Other
security
features

7
Self-sovereign

identity
[6]

Develops an SSI
addition to the main
system for handling
identities

8
Interconnection
with legacy
systems

[7, 8, 9]

Presents a
blockchain-based
solution to inter-
connect legacy ERP
systems

IV.Conclusions
and future

work
10

Conclusion
and future

work
[4, 6, 10]

Concludes our
work and presents
the limitations of
the thesis and future
work.

Table 1.1: Thesis structure with the corresponding published papers
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gies, incorporating a structured hierarchical framework to enhance efficiency, scalability, and

security in access control operations.

– In Chapter 4, we delineate the architectural design of the proposed hierarchical multi-

blockchain framework, which is predicated on the HMBAC model. This chapter details the

principal components of the system and outlines the fundamental security features inherent

in the architecture.

– In Chapter 5, we delve deeper into the implementation details of the proposed framework,

describing the system’s functionality through an in-depth presentation of the relevant APIs

and Smart Contracts. This chapter provides a comprehensive examination of how these

components interact to support and enhance the framework’s operational capabilities.

– In Chapter 6, we present the results of the security and performance analyzes carried

out in the proposed framework. Initially, we explore the scalability of the system with re-

spect to its management capabilities. Subsequently, we benchmark the system performance

in various configurations and access request rates, providing a thorough evaluation of its

operational efficiency.

Section III: Other security features

– In Chapter 7, we propose a self-sovereign identity management subsystem, designed to

effectively handle device IDs in distributed environments. This subsystem is introduced as

a complementary addition to the framework presented in Section II, enhancing its ability to

manage identities autonomously.

– In Chapter 8, we present a novel architecture that integrates blockchain technology with

legacy Enterprise Resource Planning (ERP) systems. The proposed architecture enhances

these legacy systems by incorporating a blockchain service layer atop the existing infras-

tructure. This addition facilitates improved interconnection of shareable data and enhances

trust among multiple stakeholders.

Section IV: Conclusions and future work

– In Chapter 9, we summarize the key findings of our research and the implications of the
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proposed hierarchical multi-blockchain access control model. We also outline the limitations

encountered during the study. Building upon this groundwork, we propose future research

directions to extend and refine the capabilities of our framework, highlighting potential areas

for technological advancement and practical application.
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CHAPTER 2

LITERATURE REVIEW

In this thesis, we introduce a novel distributed trust management and access control

framework tailored for multi-domain and multi-authority settings. This framework lever-

ages the robust security features of blockchain technology, augmented by the deployment of

Smart Contracts across a distributed network. Furthermore, it incorporates Multi-Authority

Attribute-Based Encryption (MA-ABE) cryptographic schemes to enhance access control.

This chapter provides essential background information on the primary technology under-

pinning the development of the distributed trust management and access control frame-

work, namely blockchain. Additionally, it includes a comprehensive literature review on

fine-grained access control and distributed trust management mechanisms, as well as on en-

cryption methods apt for environments characterized by multiple authorities and domains.

2.1 Background

This section explores the fundamental principles underlying blockchain technology. Ini-

tially, we elucidate the operational mechanisms of these distributed networks and present

their taxonomy based on their access permissions and governance models. Subsequently, we

highlight the transformative introduction of Smart Contracts, which automate the enforce-

ment and execution of contractual terms upon the fulfillment of predetermined conditions.

Furthermore, we outline the principal characteristics of two well known blockchain networks:

Ethereum and Hyperledger.

This foundational knowledge is essential for a thorough comprehension of the chapters
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that follow, wherein the developed mechanisms are examined in depth. The objective of

establishing this context is to augment the reader’s understanding of the complex functions

and subtleties of the proposed system as detailed in subsequent sections.

2.1.1 Blockchain fundamentals

In 1991, Stuart Haber and W. Scott Stornetta laid the groundwork for blockchain tech-

nology with the development of a cryptographically secure chain of blocks, documented in

[11]. Their collaboration with Bayer in the subsequent year introduced Merkle trees into

the design, enhancing the system’s efficiency by allowing the aggregation of multiple doc-

uments in a single block [12]. This foundational work was further advanced in 2008 with

the emergence of the modern distributed blockchain architecture by an anonymous entity

known as Satoshi Nakamoto. Nakamoto’s seminal whitepaper, ”Bitcoin: A Peer-to-Peer

Electronic Cash System” [13], effectively resolved the Byzantine Generals Problem (BGP).

This problem is crucial in the field of distributed computing and systems. It encapsulates a

situation where participants in a network must agree on a single strategy to avoid failure, but

some participants may be unreliable or malicious. This problem is metaphorically likened

to a group of generals of the Byzantine army encircling a city, needing to agree on a com-

mon battle plan. However, due to the presence of traitors within their ranks, establishing

trust and a unanimous decision is complex. The BGP fundamentally addresses the issue

of achieving consensus in an environment where communication might be untrustworthy. n

the context of blockchain technology, the BGP is highly relevant because blockchains are

decentralized networks that rely on consensus mechanisms to validate transactions and add

new blocks. Solving the BGP ensures that all nodes in the network agree on the valid state

of the blockchain, even in the presence of nodes that may act maliciously or spread false

information. Blockchain addresses the BGP through innovative consensus mechanisms, such

as Proof of Work (PoW) and Proof of Stake (PoS).

The architectural components of blockchain include (i) nodes, (ii) transactions, (iii)

blocks, and (iv) the consensus mechanism. At its core, the blockchain comprises trans-
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actions that are digitally signed, representing either agreements or asset transfers. These

transactions are rigorously validated by entities known as nodes, which are essentially partic-

ipants in the blockchain network. Among them, the full nodes play a vital role, as they are

responsible for verifying adherence to all blockchain rules [14]. These full nodes are crucial

in maintaining the integrity of the blockchain; they not only validate transactions but also

incorporate them into blocks. This decentralized system operates without a central data

storage manager, and instead, distributes data uniformly across all network nodes.

Transactions are the fundamental building blocks of a blockchain system. They typically

consist of a recipient address, a sender address, and a value. The owner initiates a transfer

by digitally signing a hash, which is created by combining the previous transaction with

the public key of the receiver. Once created, the transaction is publicly announced to the

network. Each node in the network independently maintains its own copy of the blockchain,

and the current state of the system is determined by sequentially processing each transaction

as it appears in the blockchain. Transactions are grouped together and transmitted to each

node in the form of a block. As new transactions are disseminated across the network, each

node independently verifies and processes them, with each transaction being time-stamped

and recorded in a block. For signing and validating transactions, public key cryptography is

used, where all transactions submitted to the blockchain are signed by a user’s private key

and are verified in the blockchain using the user’s public key.

In the blockchain ecosystem, blocks serve as fundamental data structures that encapsulate

two core elements: a block header and a set of transactions. The block header, functioning as

metadata, plays a pivotal role in ascertaining the block’s validity. It includes the block’s hash,

the hash of the preceding block, and other crucial elements like the timestamp and nonce.

The second component, the body, houses a collection of transactions, each representing a

discrete operation within the blockchain network. These blocks are not only created by

miners through a process known as mining — which involves the creation and validation

of blocks — but are also replicated across all nodes in the network, ensuring a consistent
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and decentralized ledger. All blocks on the Blockchain are indexed using a Merkle Tree,

which is a lightweight digital fingerprint of all transactions within a block. The structural

composition of these blocks, along with the Merkle tree structure, is illustrated in Figure

2.1, showcasing the interplay between the block’s constituents and its role in the overarching

blockchain framework.

A block can be thought of as a digital ledger page that records a number of transactions.

Each block is securely linked to its predecessor, forming a chain of blocks, hence the term

”blockchain”. The block header is akin to a block’s identity card, and contains several crucial

information but not the transactions themselves. Each block has a header which ensures the

block is in the correct sequence and securely connected to the blockchain. In addition, the

block hash which is a unique identifier for each block, is generated from the block header’s

information through a cryptographic process known as hashing. This hash is a digital fin-

gerprint for the block, ensuring its integrity and immutability, where even if a single bit of

the block’s data changes, the hash will change entirely, signaling a tampering attempt.

Block header

Block hash

Previous block hash

Version Nonce

Merkle root Timestamp

Difficulty target

Block body

List of transactions

Block N-1

Block header

Block hash

Previous block hash

Version Nonce
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Difficulty target

Block body

List of transactions

Block N
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Block hash
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Version Nonce
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Hash (𝑇𝑇𝑇𝑇0, 𝑇𝑇𝑇𝑇1) Hash (𝑇𝑇𝑇𝑇2, 𝑇𝑇𝑇𝑇3)

𝑇𝑇𝑇𝑇0 𝑇𝑇𝑇𝑇1 𝑇𝑇𝑇𝑇2 𝑇𝑇𝑇𝑇3

Figure 2.1: Block structure and Merkle trees
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In blockchain systems, the consensus protocols are mechanisms that ensure unanimity

across a decentralized network, validating each transaction and maintaining the integrity

of the ledger. For the blockchain to remain secure, it must have a mechanism to prevent

a malicious user or group from taking over a majority of validation. These protocols are

fundamental in resolving the inherent challenges of distributed computing, particularly in

achieving agreement in a trustless environment, and help to overcome challenges like double-

spending of digital assets. There are a number of Blockchain consensus mechanisms but

regardless of the consensus type used, it is important to note that all transaction data on a

chained block is assumed to be trustworthy and the chained data has not been tampered with

due to the validation of data by group consensus. Among the various consensus mechanisms,

Proof of Work (PoW) and Proof of Stake (PoS) are most prevalent.

Proof of Work (PoW), as employed by Bitcoin, involves a computationally demanding

process where miners vie to solve cryptographic puzzles. This system, essentially a cryp-

tographic proof, requires one party (the prover) to demonstrate to others (the verifiers)

that substantial computational effort has been expended. This verification is efficiently con-

firmable by the verifiers with minimal exertion [15]. In PoW, the problem is inherently

non-computational, with random guessing being the most effective strategy. Miners attempt

to determine the correct ”nonce” to validate a block. This involves processing all block

data and the nonce through a cryptographic hash function. If the output aligns with the

network’s current ”difficulty” level, the miner succeeds. The network dynamically adjusts

this difficulty to maintain equilibrium with the system’s overall load. It is important to note

that, adding a node to the network increases security by 1/N (where N is the number of

nodes on the network) and also increases transaction time by 1/N .

This protocol, while robust in security, faces criticism for its substantial energy consump-

tion and potential environmental impact. It also raises concerns regarding centralization, as

entities with significant computational power can dominate the mining process. In contrast,

Proof of Stake (PoS) offers a more energy-efficient alternative. PoS removes the guessing
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game from the validation of blocks so mining no longer requires powerful and specialized

hardware, therefore, it requires less energy for processing. It selects validators based on

their stake in the network, i.e., the amount of cryptocurrency they hold and are willing to

’lock up’ as collateral. This method reduces the energy requirement and democratizes the

validation process to an extent, as it doesn’t require substantial computational power.

Other notable protocols include Delegated Proof of Stake (DPoS), which introduces

a democratic voting system to elect validators, and Practical Byzantine Fault Tolerance

(PBFT), designed for systems with fewer nodes, focusing on transaction speed and system

throughput. Each consensus protocol reflects a trade-off between various factors like secu-

rity, decentralization, scalability, and energy efficiency. The choice hinges on the specific

network’s objectives, size, and desired operational efficiency, and also the type of blockchain.

2.1.2 Types of Blockchain

The configuration of a blockchain profoundly influences the nature of the content stored

within its blocks, as well as the spectrum of activities undertaken by its diverse participants.

Typically, blockchains are architected with distinct objectives in mind, leading to a bespoke

design that delineates the types of access and range of tasks allocated to users. This nuanced

approach to blockchain design not only tailors the technology to its intended application but

also defines the roles and capabilities of its participants, ensuring alignment with the overar-

ching purpose of the blockchain network. In the burgeoning field of blockchain technology,

various types of blockchains have emerged, each characterized by distinct features and ap-

plications. Predominantly, these types can be categorized into public, private and hybrid

blockchains [16]. The basic distinction between the different types is the permission that

users have to append and/or read information from the shared ledger. An overview of the

architecture for each type is depicted in Fig. 2.2.

When we characterize a blockchain as public, we describe fully open public ledgers with

the absence of any restrictions on reading and writing permissions for the users. Such per-

missionless systems permit any individual to connect, access, and contribute to the network,
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fostering a truly decentralized environment [17]. The intrinsic open nature of these ledgers

necessitates the reliance on cryptoeconomic mechanisms within the consensus protocol, a

critical process that validates and integrates new blocks while ensuring consistency with the

existing chain. Protocols like Bitcoin1, Ethereum2, and Monero3, grounded in Proof of Work

(PoW) algorithms, exemplify this model. These platforms allow anyone to download the

code, run a public node, and partake in the consensus process. Moreover, public blockchains

guarantee the inclusion of valid transactions from any global participant, coupled with the

transparency of transactions on public block explorers. Despite this transparency, the sys-

tem maintains anonymity or pseudonymity for its users, striking a balance between openness

and privacy.

Public blockchain Private blockchain Hybrid blockchain

Figure 2.2: Blockchain types high-level architecture

On the other hand, private blockchains represent a paradigm markedly distinct from

their public counterparts, characterized by restricted reading and writing permissions and a

1https://bitcoin.org/en/
2https://ethereum.org/en/
3https://www.getmonero.org/
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more centralized control mechanism. Such permissioned systems, typically limit the mod-

ification, addition, or access to information to a select group of participants, often within

a single organization [18]. The necessity for a consensus protocol in private blockchains is

often obviated by the inherent trust among the nodes. Private ledgers are lauded for their

capabilities in facilitating rapid access to information, reducing transaction costs, and offer-

ing customizable privacy levels. These systems find pertinent applications in areas such as

database management and auditing, predominantly within the confines of a singular entity.

The need for public readability is often non-essential in these applications, though in certain

instances, public auditability may be desirable. Private blockchain platforms like Monax4

and Multichain5 exemplify the utilization of blockchain technology in creating closed ecosys-

tems where transaction verification is internal. While this approach mirrors centralized

systems, potentially inheriting similar security vulnerabilities, it offers notable advantages in

terms of scalability and compliance with data privacy regulations and other legal mandates.

This duality presents a complex landscape where the benefits of blockchain technology are

harnessed in a controlled environment, yet it requires careful navigation to mitigate inherent

risks.

Another type is hybrid blockchains, which may also be called Federated or Consortium,

that incorporate elements of both public and private ledgers. This innovative model delin-

eates a consensus protocol that is typically pre-established and governed by a predetermined

consortium of institutions. In such a system, decision-making might, for instance, be dis-

tributed among 10 institutions, each controlling a node, with the stipulation that a new block

must garner approval from a majority, say 6 institutions, to attain validity. This structure

renders the consortium blockchain partially decentralized. The consortium ledger offers a

flexible approach to reading permissions, which can be either publicly accessible or confined

to a select group of participants. This duality extends to the information itself, where certain

data might be made public while other portions remain private. Federated Blockchains, ex-

4https://content-blockchain.org/research/monax/
5https://multichain.xyz/

22



emplified by platforms such as R36 for banking, EWF7 for energy and Corda, operate under

the auspices of a selected group. These structures restrict participation in the transaction

verification process to members of the consortium, excluding general Internet users. This

type of Blockchains, characterized by enhanced speed and heightened transaction privacy,

predominantly finds its application in the banking sector. The consensus process is meticu-

lously controlled by a pre-selected set of nodes, and the blockchain’s readability may either

be open to the public or limited to consortium members [19]. This configuration reflects

a strategic blend of centralization and decentralization, aiming to leverage the strengths

of both public and private blockchain systems. Usually, with the term hybrid we refer to

a blockchain controlled by one authority while with the term consortium, we characterize

blockchains controlled by a group of authorities.

2.1.3 Smart Contracts

Smart contracts represent a significant innovation in blockchain technology. Smart Con-

tracts were conceived initially by American cryptographer Nick Szabo in 1994. These au-

tonomous computer programs are self-executing codes designed to automatically enforce the

terms of a contract, ensuring compliance and execution of agreed-upon conditions. Smart

contracts are digitally signed agreements between parties, enforced by virtual software agents,

thus removing the need for intermediaries in contract execution [20].

A smart contract’s code is deterministic, immutable, and verifiable. Determinism en-

sures that the contract, when executed on multiple nodes, yields the same outcome for any

given input, thereby maintaining consistency and reliability. The immutable nature of the

code, once deployed, means it cannot be altered, thus embedding trust but also presenting

challenges such as bug fixes and demanding thorough validation. Verifiability allows parties

to inspect and confirm the contract code prior to engagement, ensuring transparency.

The advantages of smart contracts over traditional contracts are manifold. The im-

mutability of blockchain technology ensures that contracts cannot be altered once issued,

6https://r3.com/
7https://www.energyweb.org/
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mitigating risks such as financial fraud. By removing intermediaries, smart contracts signif-

icantly reduce administrative and service costs. Furthermore, they enhance the efficiency of

business processes, exemplified in automated financial settlements in supply chain manage-

ment upon meeting contractual conditions.

Block Block Block Block Block… …

Smart Contract

Status Value

Preset trigger conditions
(specific time and events)

Preset response rules
(specific transactions or actions)

Condition 1 : Response 1

Condition 2 : Response 2

Condition N : Response N

…

Figure 2.3: Smart Contract operation

The functional mechanism of smart contracts is delineated in Fig. 2.3. Typically, fol-

lowing the endorsement of the smart contracts by all relevant parties, these contracts are

integrated into the blockchain as program codes. Subsequent to their propagation through

the peer-to-peer (P2P) network and to their validation by blockchain nodes, they are recorded

within the blockchain system. A smart contract is composed of a set of pre-defined states

and transition rules. It includes specific scenarios that initiate contract execution, such as

the occurrence of a designated time or event, along with predetermined responses to each

scenario. The blockchain system actively monitors the real-time status of these smart con-

tracts [21]. Upon the fulfillment of certain predefined conditions – the triggers for contract

execution – the blockchain initiates the execution of the contract as per the stipulated terms.

The lifecycle of a smart contract comprises creation, deployment, execution, and com-

pletion. Initially, the contract is collaboratively developed by stakeholders, lawyers, and

software engineers, and then translated from natural language into a computer-readable for-
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mat. Upon validation, it is deployed on a blockchain platform, with involved parties’ digital

assets being locked. The execution phase involves constant monitoring for triggering con-

ditions, leading to automated execution of transactions, recorded on the blockchain. The

process concludes with the contract’s completion, where the updated states and transactions

are recorded, and digital assets are transferred accordingly.

2.1.4 The Ethereum Blockchain Network

Ethereum represents a pivotal innovation in the blockchain domain, introducing pro-

grammability into the blockchain universe through its smart contract capabilities. Conceived

by Vitalik Buterin and launched in 2015, Ethereum has transcended its initial role as a

cryptocurrency platform to become a foundational technology for decentralized applications

(dApps). Unlike its precursor, Bitcoin, which is primarily a digital currency, Ethereum’s

hallmark is its Ethereum Virtual Machine (EVM), an abstracted, global computer that al-

lows developers to write and deploy smart contracts - self-executing contracts with the terms

of the agreement between buyer and seller being directly written into lines of code. These

contracts run on the blockchain, offering a level of transparency, security, and efficiency pre-

viously unattainable with traditional contracts. Ethereum’s native cryptocurrency, Ether

(ETH), serves a dual purpose: it acts as a digital currency and is used to compensate partic-

ipants who perform computations and validate transactions on the network, thus maintaining

the ecosystem’s security and efficiency.

The concept of Ethereum was proposed in late 2013 by Vitalik Buterin, a programmer

and co-founder of Bitcoin Magazine, who was intrigued by Bitcoin but felt its potential

was limited by its lack of a scripting language for application development. The Ethereum

white paper was published in 2014, laying out the vision for a blockchain that could support

not only a digital currency but also a wider range of decentralized applications. In 2014,

Ethereum conducted a public sale of Ether, raising over $18 million, which was one of the

largest crowdfunding events at the time and helped fund the project’s development. The

Ethereum network officially went live on July 30, 2015, marking the birth of the world’s pro-
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grammable blockchain. Since its launch, Ethereum has undergone several upgrades, known

as ”hard forks,” aimed at improving the platform’s scalability, security, and functionality.

Notable upgrades include Homestead, Metropolis, and Constantinople. Each upgrade has

brought Ethereum closer to its envisioned state as a decentralized platform that enables

developers to create applications that run exactly as programmed without downtime, fraud,

or interference. The most significant ongoing development in Ethereum’s history is the tran-

sition from a Proof of Work (PoW) consensus mechanism to Proof of Stake (PoS) through

the Ethereum 2.0 upgrade, also known as Serenity. This transition aims to address scalabil-

ity and energy consumption issues associated with PoW. Ethereum’s versatile platform has

enabled a myriad of use cases beyond simple transactions, such as Decentralized Finance

(DeFi), Non-Fungible Tokens (NFTs), Decentralized Autonomous Organizations (DAOs).

At the heart of Ethereum’s architecture are smart contracts, which are programs that

automatically execute the terms of a contract when predetermined conditions are met. These

contracts are stored on the blockchain, making them tamper-proof and transparent. Smart

contracts can be used for a wide range of applications, from simple transactions to complex

decentralized applications. The EVM is the runtime environment for smart contracts in

Ethereum. It is completely isolated, making it a secure environment for executing code.

Every node in the Ethereum network runs an EVM instance, which allows them to agree on

executing the same instructions.

2.1.5 The Hyperledger Blockchain Framework

Hyperledger is an umbrella project of open-source blockchains and related tools, started in

December 2015 by the Linux Foundation, and has received contributions from IBM, Intel, and

other big industry players. Unlike Ethereum, which is public and permissionless, Hyperledger

focuses on permissioned blockchain networks for enterprises, emphasizing privacy, scalability,

and security.

Hyperledger was launched with the aim of supporting collaborative development of

blockchain-based distributed ledgers. With no native cryptocurrency, Hyperledger provides
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a neutral, open-source infrastructure to support various industry applications, from finance

and banking to healthcare and supply chains.The project has grown significantly since its in-

ception, incorporating multiple frameworks and tools designed to facilitate the development

of blockchain applications. Some of the key frameworks under the Hyperledger umbrella

include Hyperledger Fabric, Sawtooth, Besu, and Indy.

Hyperledger projects are designed with privacy and confidentiality in their core, offer-

ing features like channels and private data collections that enable transactions to be pri-

vate between relevant parties. Its permissioned nature allows for more scalable and high-

performance solutions compared to public blockchains, as it can manage consensus more

efficiently and process a higher volume of transactions. However, the flexibility and power

of Hyperledger come with a steep learning curve. Setting up and managing a Hyperledger

blockchain can be complex, requiring a good understanding of the platform and its compo-

nents.

The key components of Hyperledger’s architecture include:

• Ledger: The Hyperledger Fabric maintains a ledger for recording transactions. The

ledger consists of two parts: the world state and the transaction log. The world

state represents the current state of the ledger, while the transaction log records all

transactions that have resulted in the current world state.

• Smart Contracts (Chaincode): In Hyperledger Fabric, business logic is encapsu-

lated in smart contracts, known as chaincode. Chaincode is written in general-purpose

programming languages like Go, Java, or Node.js.

• Peer Nodes: The network is made up of peer nodes, which execute Chaincode,

access ledger data, endorse transactions, and interface with applications. Peers can be

endorsers, committers, or both, depending on their role in the transaction flow.

• Ordering Service: The ordering service is a component that batches transactions

into blocks and delivers them to peer nodes for validation and commitment. It ensures
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consistency and finality of the ledger.

• Channels: Fabric introduces the concept of channels, allowing a group of partici-

pants to create a separate ledger of transactions. This feature supports privacy and

confidentiality, as transactions on a channel are only visible to its participants.

• Membership Service Provider (MSP): The MSP manages identity and authenti-

cation of participants, enforcing access controls in the network. It enables the creation

of a permissioned network, where participants have known identities.

Unlike traditional blockchain systems that use a single consensus model, Hyperledger

Fabric employs a pluggable consensus mechanism. This allows the network to choose the

consensus protocol that best suits its specific needs. The consensus process in Fabric is

broken down into three phases, Endorsement, Ordering and Validation.

In the Endorsement phase, transaction execution is performed by endorsers, ensuring

that transactions are endorsed according to a policy defined by the network (e.g., endorsed

by a specific number or set of peers). Then at the Ordering phase, ordering service batches

endorsed transactions into blocks, ensuring that transactions are in a consistent order across

the network. At the final phase, peer nodes validate transactions against the endorsement

policy and the current state of the ledger, ensuring that transactions are consistent and not

in conflict with each other.

2.1.6 Self-Sovereign Identity

The problem of identity management has been a major concern for the scientific commu-

nity for several years. In particular, the combination of identity management with the full

implementation of the GDPR has raised new problems about how to confirm the identity

of users without sharing unnecessary information. In this regard, the use of Self Sovereign

Identities has been gaining momentum in recent years as a solution that allows for keeping

identities secure while proving them to verifiers without revealing unnecessary details. The

problem of managing electronic identities is a structural issue that stems from the initial
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conception of the World Wide Web. The Internet’s addressing system is based on the identi-

fication of physical network endpoints (computer machines) and not people. Therefore, the

Internet cannot uniquely identify users and the identification process is handled by websites

and applications. The absence of a secure, portable, and user-controlled identity has dire

repercussions. It signifies that a person’s identity and personal information exist only within

the context of each website or application that he or she uses [22]. This has a significant

impact on both the security issue and the increased costs required to set up and maintain

multiple identity management mechanisms.

The evolution of identity management mechanisms tries to meet 3 main requirements:

(i) security, by ensuring that the relevant information must be protected from unintended

disclosure, (ii) control, by ensuring that only the owner is the one who controls who can

access it and for what purpose, and (iii) portability, in the sense that the user is not tied to

a single vendor.

There are four stages in the development path of digital identities. Centralized identity is

the first stage where identities are owned and controlled by a single entity and therefore users

don’t own their identity record. At a more complex level, it can allow different services to

securely share user details without prior knowledge. Federated identity is the second stage

of evolvement that answers some of the problems of centralization. Even at the simplest

implementation it gives a certain degree of portability compared to the previous approach.

For example, a user is able to login into one service using credentials of another. At a more

complex level it can allow different services to share details about the user. The User-Centric

identity is most frequently manifested in the form of independent personal data stores at

one end of the spectrum and large social networks at the other end [23]. However, the

entire spectrum still relies on the user selecting an individual identity provider and agreeing

to their often one-sided adhesion contracts. The latest advancement on identities is Self -

Sovereign Identity (SSI) which gives users the ability to exercise control over the information

that is associated with their digital identities and the capability to demonstrate to websites,
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services, and applications across the internet that they are who they say they are. The SSI

is defined as the digital movement, which states that individuals should own and manage

their digital identity without the need for intermediate authorities. In real life, the proof for

various things is provided by showing a certificate, a card or a piece of paper that is kept by

the identity holder in a safe place or a wallet. SSI applications essentially digitize this whole

process.

In the sections that follows, we present the main components of SSI, along with a novel

SSI management framework that can expand the proposed HMAC system.

2.1.7 The distributed DDI ecosystem

Distributed Self-Sovereign Identity (SSI) is a digital movement that enables individuals

and organizations to have sole ownership and control over their identity and personal data,

allowing them to interact in the digital world with the same level of trust and freedom as

they do offline. SSI enables entities to demonstrate control over their identifiers without the

use of intermediaries and provides the flexibility to choose which information or claims are

disclosed to third parties. SSI seeks to address flaws in existing procedures that fail to protect

personal and sensitive information from unauthorized access or data breaches. Leveraging

the Distributed Ledger Technology (DLT), SSI can improve security, trust, and efficiency

while supporting the privacy of user data, which is crucial for businesses managing customer

and employee authorizations and the increasing demand for inter-domain communications

and cross-organizational authorization.

A distributed SSI system is based on blockchain technology, which provides a decentral-

ized and secure platform for storing and managing identity data. These blockchain-based

systems enable users to maintain control over their personal information by creating and

managing their own digital identities, without requiring a central authority to verify or au-

thenticate their identities by keeping a centralized record for all users. Instead, all data

are distributed across a network of nodes, with each node maintaining its own copy of the

blockchain. Because there is no central point of failure, it is difficult for adversaries to
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compromise the system.

In the SSI ecosystem, specific roles of basic actors are defined that interconnect in order to

establish trust. An overview of the SSI’s core entities and their relationships are presented in

Fig. 2.4, where a logical triangle of trust is shaped among them. Issuer, Holder, and Verifier

are the three primary entities of the system where each role has specific responsibilities

and functions to ensure the security, privacy, and efficiency of the system. The Issuer is

responsible for creating and verifying VCs, the Holder can create and manage the digital

identity using decentralized identifiers (DIDs) and store their VCs in a secure and private

manner and the Verifier is the entity that request the VCs from the Holder, which are

verified by the Issuer. Additionally, a Verifiable Data Registry (VDR) is required for the

ecosystem to function. VDR is accountable for creating and validating identifiers, keys, and

other pertinent data required and used by verifiable credentials, such as credential schemas,

revocation registries, issuer public keys, etc.

Issuer

Register DID’s 
Use Schema
Countersigns VC’s

Verifiable 
Credentials Verifiable 

Presentation

VP

Defines schema 
and credentials 

Signs VC’s

Checks schema
Verifies VC’s

Stores identifiers 
and Schemas

Verifier

Holder

Verifiable Data 
Registry

Figure 2.4: SSI triangle

In the process of Self-Sovereign Identity (SSI), the Holder initiates a request for a cre-

dential from the Issuer, and then presents it to the Verifier. The Verifier then accepts the

credential and proceeds to verify it through the Verifiable Data Registry (VDR). Upon com-
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pletion of the verification process, the Verifier is able to place trust in the verifiable credential,

which has been signed by the Issuer, just as it would with the Issuer itself.

A distributed SSI system can reduce the cost and complexity of identity management.

Since there is no central authority managing the system, there are no intermediaries to

pay and no complicated authentication procedures to navigate. This improves the system’s

efficacy and cost-effectiveness, and can also aid in preventing fraud and identity theft. By

leveraging blockchain technology and SSI-specific solutions such as DIDs, VCs, and DLT,

these systems enable individuals and organizations to have greater control over their personal

data, while simultaneously reducing the risks of data breaches and unauthorized access.

2.1.8 SSI Main Components

Verifiable Credentials (VCs) and Verifiable Presentations (VPs) are crucial components

of Distributed SSI systems. VCs are digital records containing information related to iden-

tifying the subject of the credential (e.g., a person or organization), the issuing authority,

and/or the type of credential, which have been previously validated by a trusted party. VPs

are digital artifacts that enable subjects to selectively disclose VCs to others based on the

transaction context and their personal preferences. In a decentralized SSI system, VCs are

stored on a DLT, such as a blockchain, which ensures that they cannot be altered or tam-

pered with, providing a secure method of verifying a subject’s identity or other attributes

without the need for intermediaries or centralized authorities. The holders of verifiable cre-

dentials are able to create verifiable presentations, which they can then share with verifiers

to prove that they possess verifiable credentials with specified attributes. A subject may

wish to share proofs of eligibility for accessing specific data without disclosing unrelated

personal information. In contrast to traditional identity management systems, VCs, allow

for the flexible and user-centric sharing of information. VCs and VPs are managed using

a combination of blockchain technology and cryptographic protocols in a distributed SSI

system. Digital Identity Decentralized Identifiers (DIDs) are used to uniquely identify in-

dividuals and organizations, whereas Verifiable Data Registry (VDR) is used to store and
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manage VCs. To verify the authenticity and integrity of VCs and VPs, digital signatures and

Zero-Knowledge Proofs (ZKPs) are utilized. Note, however, that verifiability of a credential

does not imply that the validity of claims encoded within can be evaluated; however, the

issuer can add values to the evidence property to help the verifier apply their business logic

to determine whether the claims have sufficient veracity for their purposes.

Verifiable Data Registries (VDR) are decentralized data storage systems that can be

used to store VC’s that represent various attributes of an individual identity (e.g. name,

age, role and access attributes). Through the application of cryptographic techniques, these

properties can be validated by third parties of trust.

One of the primary benefits of adopting VDRs in a system of self-sovereign identity

is that they enable complete control over personal data. Instead of relying on centralized

identity providers to store and manage their data, all data can be stored in a safe and

decentralized VDR, with access granted on an case-by-case basis. This not only provides

users with more control over their data, but also minimizes the likelihood of data breaches

and identity theft. Moreover, the use of VDRs can facilitate increased compatibility between

various identification systems. Since VDRs are based on open standards, they may be used

to store and exchange verified credentials across many identity systems, allowing individuals

to access services and apps across several platforms with ease.

To ensure the security and integrity of VDRs, a number of essential elements are required.

They include robust encryption and cryptographic techniques, as well as mechanisms for

protecting data privacy and preventing illegal access. In addition, VDRs should be highly

available and robust, with redundant storage and backup systems to ensure that data is

constantly accessible and recoverable in the event of a breakdown.

Decentralized identifiers (DIDs) are a new type of identifier that enables digital identity

to be self-owned and controlled by the user. DIDs are unique identifiers that are anchored

on decentralized networks like blockchain or distributed ledgers, making them tamper-proof,

immutable, and independent of centralized identity providers. In distributed self-sovereign
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identity (SSI), DIDs are used to provide a user-centric approach to identity management.

This means that individuals have complete control over their identity and personal data, and

they can choose to selectively disclose their identity attributes to others without relying on a

third party. DIDs enable the creation of verifiable credentials, which are digital representa-

tions of identity attributes that can be cryptographically signed by the issuer and verified by

the recipient. This creates a secure and transparent way to share personal data and verify

identity claims without the need for a centralized intermediary. DIDs also provide privacy

by design as they do not rely on a centralized identity provider or a single point of failure.

Instead, DIDs use peer-to-peer networks and decentralized storage systems to ensure that

personal data is not held in a single location, reducing the risk of data breaches or identity

theft.

2.2 Related Work

2.2.1 Fined-grained Access Control Mechanisms

Fine-grained access control mechanisms play a pivotal role in multi-authority and multi-

domain environments, where security and privacy concerns are paramount. These environ-

ments are characterized by their complexity, involving multiple stakeholders with varying

degrees of authority and distinct domain-specific security requirements. Fine-grained access

control is designed to address these challenges by enabling precise specification and enforce-

ment of access policies at a highly detailed level. This approach allows for the delineation

of access rights not just by user role or group, but also by specific actions, resources, and

context conditions, thus providing a more nuanced control over sensitive information.

Central to the implementation of fine-grained access control in such heterogeneous envi-

ronments is the Attribute-Based Access Control (ABAC) model. ABAC utilizes attributes

related to users, resources, and the environment to make access decisions, allowing for dy-

namic policy enforcement that can adapt to changes in user roles, resource classifications,

or environmental conditions. Furthermore, cryptographic techniques such as Ciphertext-
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Policy Attribute-Based Encryption (CP-ABE) are increasingly integrated to ensure secure

and efficient access control in distributed settings. These mechanisms enable organizations

to enforce access policies that reflect their complex operational and security requirements,

enhancing data protection and compliance across diverse domains. Through the adoption

of fine-grained access control, multi-authority and multi-domain environments can achieve

a balance between flexibility and security, ensuring that only authorized entities can access

the specific resources they need, under appropriate conditions.

Several frameworks have been proposed in the literature for fine-grain authorized access to

centralized sensitive resources, for example healthcare data [24, 25, 26, 27, 28] and healthcare

records [29, 30, 31, 32, 33, 34, 35, 36, 37]. Studies related to secure access for IoT-enabled

smart healthcare devices are limited. For example, in [38] the authors propose a novel access

control architecture that provides fine-grain access to IoT medical devices. In [39] a fine-

grain data access control mechanism is combined with the implementation of fog computing

to provide high-level privacy for IoT medical device applications. A cloud-based fine-grain

health information access control framework for lightweight IoT devices with data dynamics

auditing and attribute revocation functions is provided in [40].

Sharing electronic health records among healthcare stakeholders is essential since typi-

cally more than one healthcare provider is involved in a patient’s treatment [41, 42]. Al-

though the above approaches may provide elegant solutions for granular access control, they

are not concerned with forensics characteristics such as provenance, which are required in

distributed environments. Another line of research addresses authorization for retrieving in-

formation through cryptographic techniques such as searchable encryption, e.g. [43, 44, 45].

Recently blockchain technology has been proposed as a mechanism for granular access

control to information. Most of the available studies in the literature focus on the develop-

ment of blockchain-enabled authorization frameworks of decentralized record management

systems for handling electronic records [46] but they do not cover access to IoT devices. For

example, in [47] a medical data access and permission management framework is provided
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which allows specific authorizations. A patient-centric healthcare data management system

based on blockchain technology is proposed in [48] which takes into account authorization ac-

cess to individual patient health data. In [49], a system for identity and access management

using blockchain technology to support authorization of entities is proposed. A blockchain-

based conceptual framework with secure cryptographic user management properties and

hierarchical authorizations to healthcare medical records is proposed in [50]. A blockchain-

based framework using users’ cryptographic keys and identities is proposed in [51], where

authorized queuing requests may be performed. In [52], a cloud storage scheme to man-

age and share personal medical data with authorized access control based on blockchain is

proposed. Finally, a blockchain-based electronic medical records architecture with different

levels of granularity for authorization is proposed in [53].

During the last few years, several research attempts have tried to provide fine-grained

access control in the dynamic multi-authority and multi-domain setting, while maintaining

interoperability [54]. Some of these works have focused on decentralization and privacy-

preserving encryption [55, 56, 57]. Such targeted solutions enable adequate compatibility

and fine-grained access control; however, they fail to combine credentials issued by indepen-

dent authorities. Other solutions rely on privacy-preserving encryption, such as ABAC. For

example, Ref. [58] proposes a decentralized MA-ABAC (DMA-ABAC) scheme for multi-

domain healthcare ecosystems. In this work, even though authorities can independently

control their security settings and enforce cross-domain policies, the lack of a mechanism

obliging users to use the system for accessing the data, in combination with the absence of

global verifiability, leads to strong trust assumptions. In [59], an ABAC solution is designed

for the shared multi-owner setting, assuming a distributed setting with multiple authorities.

The authorities own pieces of data and may issue attribute keys that users may combine to

access data belonging to different authorities. Even though the proposed solution strength-

ens the restrictions for accessing data, it falls short on addressing the challenge of inter- and

cross-domain policy enforcement, i.e., dynamically defining access policies both to control
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access for all authorities within a domain or for all authorities belonging in different do-

mains. Many works try to solve this problem by using Multi-Authority Ciphertext Policy

Attribute-Based Encryption (MA-CP-ABE).

In [60], a MA-CP-ABE scheme is proposed that supports range policy, which, however,

maintains the need for a trusted central authority. In [61], the authors adopt the idea of

hybrid encryption to reduce the computational overhead of data encryption, using a symmet-

ric key to encrypt data and a MA-CP-ABE mechanism to encrypt the symmetric key. The

authors in [62], also propose a MA-CP-ABE scheme combined with outsourced decryption

and zero-knowledge proof for the Internet of mobile things. In [63], another MA-CP-ABE

scheme is proposed as suitable for IoT applications and devices with low computational

capabilities. Decryption operations are outsourced to fog for efficiency reasons, but no pol-

icy management is supported. The authors of [64] introduce a token-based access control

scheme that uses smart contracts and blockchain to generate decryption keys according to

verified user attributes. In [65], Elliptic Curve Cryptography (ECC) and MA-CP-ABE are

combined to create an access control system that supports the setting of multiple author-

ities, but the addition or removal of authorities remains inefficient. In [66], the authors

propose a privacy-preserving MA-CP-ABE scheme for blockchain-based applications in the

supply chain. This model achieves fine-grained access control and versatile authorization

and also protects the user’s private key from leakage even when some attribute authorities

fail. However, in most of the above solutions, trust expectations about global transaction

verifiability persist. Strong trust assumptions are required to ensure that all access transac-

tions to encrypted data are immutably logged and may be globally verified by all entities.

In [67], the authors also suggest an access model based on CP-ABE for IoT in healthcare,

and although they achieve the collaboration of independent authorities, they do not solve

the need for inter- and cross-domain policy management. In [68], an Attribute-based Sign-

cryption (ABSC) scheme is proposed that relies on a central certificate authority to verify

the attribute authorities and thus maintains strong trust assumptions.
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Other works use hierarchical attribute-based access models, e.g., [69, 70, 71, 72, 73].

For example, in [72], the author present a hierarchical Multi-Dimensional Access Control

(MD-AC) model for the authorization of multiple participants in the cloud. Furthermore,in

[73], the authors present a Cross-Domain Access Control (CD-AC) model based on a trusted

third party (TTP) and an attribute mapping center (MC) that incorporates CP-ABE to

provide granular access to users. Both works use the cloud for efficiency reasons, assuming

strong trust. In general, although hierarchical attribute-based access models are flexible and

scalable, they are not suitable for multi-authority, multi-domain environments, where roles

may not have a global and strict hierarchy.

The current state-of-the-art leverages blockchain technology to provide a variety of fully

autonomous and hybrid solutions [74, 75]. Although blockchain technology is more difficult

to administer and may introduce efficiency issues, it provides, by design, global verifiability

of data access transactions. An immutable ledger can ensure the integrity of transactions and

data while also enforcing trust among multiple untrustworthy parties [14]. For example, in

[76], the authors propose a fine-grained access control scheme for transportation ecosystems

based on blockchain, that embraces the multi-owner setting with the use of CP-ABE. The

system provides global verifiability and data integrity, but cannot support dynamic joins and

leaves of nodes, or dynamic policy management. Hybrid solutions move some of the services

previously supported by cloud providers to the blockchain. While this approach resolves

some of the issues (e.g., data integrity), others problems, such as strong trust assumptions for

the cloud operator, remain [77, 78, 79]. Although autonomous solutions are entirely based

on the Blockchain, they are still limited by the level of efficiency that can be supported

[1, 57, 76, 80]. In addition, the scalability of fine-grained access control mechanisms in

such complex scenarios also necessitates the deployment of decentralized identity and access

management systems. These systems facilitate interoperability and trust across different

domains and authorities without compromising on security or privacy.

In conclusion, fine-grained access control mechanisms are crucial for securing multi-
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authority and multi-domain environments. Through the judicious application of ABAC

models, cryptographic techniques and decentralized systems, these mechanisms can offer ro-

bust, dynamic, and scalable solutions to meet the intricate security demands of such ecosys-

tems. Blockchain technology, offers a promising solution by providing a tamper-proof and

transparent platform that can handle identities and access permissions. Through smart

contracts, blockchain can automate the enforcement of access policies, reducing the adminis-

trative overhead and enhancing the responsiveness of access control systems. As technologies

evolve, further advancements in access control strategies will continue to strengthen the se-

curity and privacy of information in complex and interconnected digital landscapes.

2.2.2 Distributed Trust Management Mechanisms for Complex Ecosystems

Distributed trust management mechanisms are another essential component for uphold-

ing the integrity, security, and operability of complex ecosystems, particularly in scenarios

that span multiple domains requiring robust certification management. These environments,

which can range from digital economies and decentralized platforms to intricate IoT frame-

works, are defined by their extensive diversity, vast scale, and the imperative for seamless

interoperability amongst a plethora of stakeholders. A fundamental challenge within such

settings is to establish and maintain trust without the reliance on centralized authorities.

Distributed trust management mechanisms cater to this need by fostering a decentralized

model for trust verification and decision-making, with a significant focus on certification

management and cross-domain certification interoperability.

Certificate-based user authentication stands as a cornerstone for secure communications

and access control in distributed systems, especially when it comes to complex ecosystems in-

volving numerous stakeholders. This method of authentication leverages digital certificates,

which are issued by trusted Certificate Authorities (CAs), to verify the identity of users and

devices. The essence of certificate-based authentication lies in its ability to provide a secure

and scalable means of verifying identities across diverse systems and networks, eliminating

the reliance on traditional, less secure methods such as passwords. In the existing litera-
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ture, several scholars have contributed to the development of architectures that integrate

Public Key Infrastructure (PKI) with the aim of enhancing security in various contexts. For

instance, the authors in [81] propose the PKIoT architecture, which facilitates secure Inter-

net of Things (IoT) transactions while also reducing energy consumption. This architecture

is distinguished by its introduction of compact certificates, which are specifically designed

to support efficient communication within IoT environments. In a related vein, the study

presented in [82] extends traditional role-based access control mechanisms by incorporating

PKI for role assignment, thus enhancing the security framework within organizational set-

tings. Additionally, in [83], the authors develop a distributed security policy management

architecture that leverages PKI to address the challenges of decentralized access control and

authorization policies. This architecture is particularly noteworthy for its ability to enforce

security policies across disparate systems in a cohesive and secure manner.

For stakeholders within these ecosystems, the need to maintain an individual infras-

tructure that issues certificates for their users is paramount. This infrastructure, typically

revolving around a robust PKI, enables the generation, distribution, and management of

digital certificates. By having their own PKI, organizations can tailor the certificate is-

suance process to meet specific security policies and compliance requirements, thus ensuring

a higher level of control over access to resources and data. Furthermore, an individualized

PKI infrastructure facilitates the swift revocation of certificates when necessary, enhancing

the system’s ability to respond to security breaches or compromised credentials.

However, the efficacy of certificate-based user authentication in multi-stakeholder envi-

ronments hinges not only on the ability of entities to issue their own certificates but also on

the establishment of a mechanism that provides trust for certificates issued by different au-

thorities. This cross-certification or trust bridging is crucial for enabling secure interactions

and interoperability across domains and organizational boundaries. Without such mecha-

nisms, the recognition and validation of certificates issued by external CAs would be fraught

with complexity and security risks, undermining the seamless operation of distributed sys-

40



tems.

To overcome this challenge, numerous studies have proposed certificate-free solutions.

For example, in [84], the authors introduce a system designed to facilitate the sharing of

patient data between cooperative organizations while preserving privacy, which is based on

roles and signatures. In [85], an authenticated asymmetric group key agreement protocol is

presented, featuring a self-certification mechanism for keys that allows participants to verify

the correctness of the group keys. Furthermore, the researchers in [86] propose a cloud-

based architecture for cross-domain data sharing. Although these solutions mark progress

towards establishing cross-domain trust, the absence of certificates may compromise trust

among participants and pose scalability challenges for trust management mechanisms. There

remains a pressing need for trust management systems that provide interoperability among

various authorities and can fulfill the demands of real-world applications.

To address this challenge, blockchain technology is often presented in the literature as

a promising solution to improve trust in certificate-based user authentication. By storing

certificate revocation lists (CRLs) or issuing certificates on a blockchain, stakeholders can

leverage its immutable and transparent nature to ensure the integrity and verifiability of

certificate statuses across different authorities. Blockchain-based systems can also automate

the external certificate validation process, reducing operational overhead and improving the

efficiency of trust management practices. For example, the authors in [87], leverage a con-

sortium blockchain to achieve cross-domain authentication and privacy protection for IoT

devices with limited computing capabilities. For instance, the authors in [87], utilize a

consortium blockchain to facilitate cross-domain authentication and privacy protection for

IoT devices with limited computing capabilities. In [88], a blockchain-based PKI identity

management system is proposed, utilizing smart contracts to streamline certificate man-

agement and enhance cross-domain authentication efficiency. Moreover, in [89], a flexible

blockchain-assisted secure authentication mechanism is presented for cross-domain indus-

trial IoT applications. This solution allows devices from different administrative domains
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to authenticate each other while preserving anonymity. Although these solutions address

certain challenges, they still exhibit limitations within complex real-world ecosystems, with

ongoing concerns related to scalability, efficiency, and security.

In conclusion, distributed trust management mechanisms, with a focus on certification

management and cross-domain certification interoperability, are indispensable for the secure

and efficient functioning of complex ecosystems. Using decentralized technologies and estab-

lishing common standards, these mechanisms provide a foundation for trust that transcends

domain boundaries without the reliance on central authorities. As ecosystems continue to

evolve and interconnect, the development and refinement of distributed trust management

strategies will remain a critical area of focus, ensuring the security and prosperity of digital

and physical networks alike.

2.2.3 Privacy Preserving Encryption for MA-MD environments

In the digital age, the need for privacy-preserving encryption in multi-authority and multi-

domain environments has become more critical than ever. As organizations and systems

increasingly interact across various domains and jurisdictions, ensuring the confidentiality

and integrity of sensitive information while maintaining user privacy is crucial.

In multi-authority and multi-domain environments, data is often shared across different

entities, each with its own governance, policies, and security protocols. The complexity of

these interactions exacerbates the risk of data breaches, unauthorized access, and privacy

violations. Privacy-preserving encryption addresses these concerns by enabling secure data

sharing and processing without compromising the privacy of the underlying data. It ensures

that sensitive information remains encrypted during transmission and storage, only accessible

to authorized parties with the decryption keys.

Several studies have proposed the implementation of privacy-preserving encryption, each

specifically tailored to the unique requirements of multi-authority and multi-domain envi-

ronments. Some of these studies have focused on homomorphic encryption schemes. The

first fully homomorphic encryption scheme was introduced by G. Gentry in [90], yet ad-
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vancements in this field have been modest. Homomorphic encryption enables computations

on encrypted data, producing an encrypted result that, once decrypted, matches the result

of operations performed on the plaintext. This allows entities to perform data analysis and

processing without accessing the raw data, thereby preserving user privacy. Although these

schemes are valuable, they impose significant restrictions on the range of actions that can be

performed on the data [91]. Current homomorphic encryption schemes remain impractical

for most real-time or large-scale applications due to their substantial computational over-

head. To achieve efficient trust management while controlling access to data, these schemes

should be integrated with other cryptographic methods.

Other studies, propose Attribute-Based Encryption which is a flexible encryption scheme

where access to encrypted data is based on attributes (e.g., user roles, location, or time)

rather than the identity of the user. In ABE, policies can be integrated into the encryption

process, ensuring that only users with matching attributes can decrypt the data. This

method is ideal for multi-authority environments, as it allows for fine-grained access control

across different domains without the need for a central authority.

ABE schemes can be broadly classified into two categories: Key-Policy Attribute-Based

Encryption (KP-ABE) and Ciphertext-Policy Attribute-Based Encryption (CP-ABE). In

KP-ABE, the encryptor defines a set of attributes for the data, and the keys issued to users

are associated with access policies. If a user’s policy matches the data’s attributes, they

can decrypt the information. Conversely, CP-ABE reverses this approach by associating

access policies with the data itself, and users are given keys based on their attributes. If

the user’s attributes satisfy the data’s policy, decryption is permitted. This flexibility allows

organizations to implement detailed access control mechanisms that reflect their operational

and security requirements accurately.

In the first category, several researchers have proposed KP-ABE schemes tailored to meet

the needs of MA and MD ecosystems. For example, in [92], the authors have developed a

scheme that incorporates a cryptographic reverse firewall, designed to facilitate secure and
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efficient data sharing in cloud environments. This method effectively addresses the challenges

of decentralized attribute management. Similarly, [93] introduced a decentralized KP-ABE

scheme that uses blockchain technology for smart grid applications, which mitigates trust is-

sues in distributed authorization and reduces computational costs associated with traditional

ABE schemes, while utilizing blockchain for enhanced security and transparency. However,

KP-ABE schemes involve complex user certificate verification and secret key distribution pro-

cesses managed by a single attribute authority, which can create performance bottlenecks

and place an undue burden on resource-limited devices. This is particularly problematic in

distributed multi-authority systems where efficiency and scalability are critical. Moreover,

these schemes often lack adaptive security in standard models, which restricts their flexibility

and applicability in dynamic environments.

Other studies, focused on CP-ABE schemes, which is a form of encryption that enables

access control over encrypted data through the use of policies and attributes. In CP-ABE

schemes, the encryptor defines a policy, typically expressed as a logical combination of at-

tributes, which determines the decryption capabilities. Each user is issued a set of attributes

embedded in their secret keys. When a user attempts to decrypt a ciphertext, the decryption

process checks whether the user’s attributes satisfy the policy associated with the ciphertext.

If the policy is satisfied, the decryption succeeds; otherwise, it fails. Recent works have in-

troduced significant improvements in CP-ABE schemes, particularly in terms of security and

efficiency. For instance in [94], the authors developed a CP-ABE scheme based on lattice

LWE, focusing on security analysis to establish its robustness against common cryptographic

attacks. In [95] the authors propose an efficient and revocable CP-ABE schemes with out-

sourcing decryption, specifically designed for IoT applications, to reduce the computational

load on devices. However, revoking attributes in CP-ABE is problematic because it often

requires re-encrypting the existing data or re-distributing new keys to all affected users. This

process can be computationally expensive and difficult to scale in large systems.

A particular CP-ABE scheme seems to stand out as the most suitable for MA and
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MD environments. Multi-authority ciphertext-policy Attribute-Based Encryption (MA-CP-

ABE), unlike traditional encryption methods, which rely on a single authority to manage

encryption and decryption keys, allow multiple authorities to govern access control. MA-CP-

ABE was initially proposed in [96] as an application of Attribute-Based Encryption in which

any party can become an authority with no global coordination requirements. However,

the scheme required a trusted central authority to collect all master private keys from all

Attribute Authorities (AA) to compute the collective secret terms for system initialization.

MA-CP-ABE was later extended by [97] introducing fully decentralized CP-ABE systems for

both composite-order and prime-order groups by utilizing the user’s Global Identifier (GID)

in the key to resist collusion attempts. Several other works have extended the features of

the scheme to allow fine-grained data access with attribute revocation for cloud data storage

[98], improved efficiency [99] and storage space saving by using hierarchical attributes to

compress redundant ciphertext information ([100, 101]).

With a MA-CP-ABE scheme, multiple authorities agree on a set of global parameters GP

and, based on these parameters, each authority X generates a public/secret key pair PKX ,

SKX . Datam can then be encrypted based on a mutually agreed access policy P (in the form

of a matrix), using the public keys of all the authorities, i.e., ct = Enc(m,P,GP, {PK}).

With MA-CP-ABE schemes, any party can become an authority, and there is no requirement

for a global root authority. More importantly, users can combine attributes issued by different

authorities, provided that each user has a unique global identity GID. Any authority X may

issue to any user U , attribute keys for an attribute attr, using its private key, the global

parameters, and the user identifier:

KU,attr = KeyGen(GIDU,GP, attr, SKX).

Finally, users can combine their attribute keys, issued by multiple authorities, to decrypt

an ABE-encrypted ciphertext ct, provided that their set of attributes satisfies an access rule

45



within P, i.e.,: m = Dec(ct,GP, {KU,attr}). Although the scheme enables a combination of

attributes issued by different authorities, it remains collision-resistant, meaning that different

users cannot combine their attributes, since each attribute key is assigned to a different GID.

An example of MA-CP-ABE from the medical ecosystem is illustrated in Figure 2.5.

CBA D

User 1 (GID1) User 2 (GID2) User 3 (GID3)

KGID2, B_Doctor
KGID2, Researcher

KGID1, A_Doctor KGID3, RemoteAdmin

Hospitals Research 
Institutes

Medical Device 
Manufacturers

Figure 2.5: MA-ABE attribute binding and key generation

Several organizations belonging to different domains may agree on inter-domain or cross-

domain access policies. A domain-wise policy for hospitals may be, for example, to allow

access to patient health for doctors at any hospital, if the patient is under emergency treat-

ment. A cross-domain policy for the hospital domain may be to allow access to anonymized

data to researchers, or to access the configuration data of medical devices to authorized

manufacturer admins. Users may be given attribute keys from different organizations (au-

thorities) and combine them since each attribute key is linked to the global identifier of a

user. However, keys issued to different users cannot be combined.

However, implementing the MA-CP-ABE scheme presents several challenges, particu-

larly in creating an architecture that supports efficient decentralization and distribution of

decryption functionality. One of the primary challenges is achieving interoperability among

multiple authorities without compromising security or privacy. Each authority operates in-

dependently, issuing keys based on its own set of policies and attributes. Ensuring that

these disparate systems work seamlessly requires a robust framework that can handle at-

46



tribute and policy management across different domains. Moreover, scalability becomes a

significant concern as the number of authorities and users grows, necessitating efficient key

distribution mechanisms and minimal overhead in decryption processes.

Another critical challenge in deploying MA-CP-ABE systems is maintaining privacy and

security in a decentralized setting. In addition, the system must be resilient to various secu-

rity threats, including compromise of authority and insider threats. Developing an architec-

ture that addresses these challenges while ensuring an efficient and practical implementation

of MA-CP-ABE could prove difficult.
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SECTION II

Hierarchical Multi-blockchain
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CHAPTER 3

HIERARCHICAL MULTI-BLOCKCHAIN MODEL

In the evolving landscape of blockchain technology, the integration of access control

mechanisms that are both scalable and secure across multiple domains remains a paramount

challenge. In this chapter, we present a novel Hierarchical Multi-Blockchain Access Con-

trol Model designed to seamlessly manage access within multi-authority and multi-domain

environments. This model takes advantage of the decentralized nature of blockchains while

introducing a structured hierarchy to improve efficiency, scalability, and security in access

control operations. As pointed out in Chapters 1 and 2, traditional centralized access control

systems often struggle with transparency and are prone to single points of failure, making

them unsuitable for the trustless MA and MD environment. Conversely, existing decentral-

ized solutions typically offer greater transparency but face significant challenges in terms of

scalability and complex management in multi-stakeholder scenarios. Our proposed Hierar-

chical Multi-Blockchain Access Control Model addresses these issues by establishing a tiered

access structure, where different blockchains with varying levels of authority and function

are integrated under a unified framework. This architecture allows for a clear demarcation

of roles and responsibilities, reducing the risk of unauthorized access while enhancing the

overall system’s ability to scale and adapt to new requirements.

3.1 Requirements

Interoperable data access in MA and MD ecosystems must provide the required func-

tionality for the involved entities, and at the same time maintain security and privacy. Such
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requirements should be closely related to the needs of the ecosystem stakeholders and the

very nature of the data handled (shareble or sensitive data). Clearly, the security and func-

tional requirements should be combined and context-specific, as described below.

Decentralized, interoperable and adaptable trust management. The system must allow all

stakeholders to manage trust within their domain in a distributed and self-sustained fash-

ion. For example, it must be possible for each stakeholder to internally manage the issuing,

updating or revoking of access credentials. At the same time, the system must allow creden-

tial interoperability, i.e. credentials issued from independent authorities should be mutually

trusted, without assuming a globally trusted root authority. Finally, trust management

should be adaptable, i.e. allow for dynamic joins and leaves of trust authorities. For exam-

ple, it must be possible to add a trust authority within the relevant domain, provided there

is consensus among the existing stakeholders, in a flexible but also secure manner.

Fine-grained access control. The system must ensure that all entities/stakeholders have

granular access to medical data and services at a domain level (inter and cross domain) and

at a role level. For example, hospitals may allow doctors from other hospitals to have access

to statistical medical data; or hospitals may grant access to maintenance personnel of device

manufacturers, for reading device state information. In addition, temporal access should be

possible. For example, hospitals may need to allow temporarily full access to the medical

history of a particular patient, to a doctor that is currently treating this patient in an accident

and emergency department. In the supply chain ecosystem, a logistic service provider may

allow temporal access to a technician for accessing device data. Such temporal access should

be easily revocable. Finally, the system must ensure access control that bypasses avoidance

mechanisms.

Distributed, efficient, and privacy-preserving encryption. The system must allow each

stakeholder to independently encrypt and store its data in a privacy-preserving way, and at

the same time allow interoperable access. Crypto primitives such as Attribute Based En-

cryption (ABE) may be employed for this, since the data can be independently encrypted by
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each stakeholder, following some commonly agreed encryption policy. However, encryption

should not require a globally trusted ABE key authority. In addition, the system should sup-

port efficient decryption, especially for those devices that are not strong enough to perform

‘expensive’ crypto operations. One way to achieve this would be to distribute the decryp-

tion functionality among the end user and the system in a secure way. Finally, the system

should support the efficient revocation of the decryption functionality, without the need to

re-distribute the ABE decryption keys to all the users.

Expressive and decentralized access policies. A mechanism should be used to enforce

decentralized policies, and allow mutually untrusted stakeholders to manage their data in

an expressive and autonomous way. Colluding stakeholders should not affect the execution

of system services. In the event of disagreement on the context of a transaction, a consensus

mechanism could be used (typically, a Proof of Stake (PoS)).

Tailored forensics. The system should provide a strong forensics-by-design mechanism,

capable of providing transaction integrity, i.e. all actions (data access or even requests for

data access) should be globally traced. This requirement, besides the demand for account-

ability, is also critical for proving device vigilance. For example, the timeline of device

maintenance transactions or for instantly reporting critical security vulnerabilities will be

traceable. Finally, the forensics mechanism should be able to withstand collisions, even of a

significant portion of compromised stakeholders.

3.2 Hierarchical Multi-blockchain Access Control Model (HMBAC)

At a high level, the goal of HMBAC is to allow users belonging to different stakeholders

(authorities) from different domains to have controlled access to data owned by multiple

stakeholders. Moreover, the model must support interoperable use of credentials issued by

different authorities, while the inter- and cross-domain policy management must be con-

trolled at a domain level. Hierarchical multi-blockchains play a central role in the HMBAC

model. The Proxy Blockchain layer answers the first goal by allowing the interoperable use
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and verification of credentials issued and managed independently by different authorities and

domains. Then, the various Domain Blockchains answer the second goal by allowing author-

ities belonging to different domains to define inter- and cross-domain policies for their data

and to manage the authority membership in their domain, without affecting other domains.

Following the approach in Malamas et al. [5], we define the HMBAC model by representing

the logical relations among the access control components, as shown in Figure 3.1. A user

(U) belonging to one or more authorities (Au) (for example, a hospital if it is for the medical

ecosystem or a transportation company if it is for supply chain) is assigned attributes from

a pool of attributes (UA). One or more authorities may issue attributes to users, which is

depicted as the attribute authority (AA) relation in Figure 3.1. Each authority is associated

with a single domain (D) and each domain contains multiple Au. A key element in the

HMBAC model is the hierarchical multi-blockchain. All domains, and thus all authorities,

constitute the proxy blockchain (PBc), i.e., these are the stakeholders for the first layer of

the multi-blockchain. Then, at the second layer, various domain blockchains (DBc) can be

constructed. Each group of authorities with similar characteristics forms a different DBc

(e.g., one DBc is constructed by the hospital stakeholders, while another DBc is constructed

by the manufacturers). Objects (OB), representing data or services accessible by users and

operated by subjects (S), are encrypted with attribute keys (AK) created by the UA pool.

With the terms user attribute authorities (UAA) and subject attributes (SA), we represent

the logical connection between users and subjects with the UA pool.

For a user to gain access to encrypted data, three checkpoints must be met. First, an

attribute verification function (AVF) executed on the PBc will verify the validity of the user

attributes. Then, the authorization function (AF), placed in the DBc, will verify whether

the attributes of the presented user are sufficient, based on the relevant inter-domain (IDP)

and cross-domain (CDP) policies, to authorize the access request. Finally, the decryption

function (DF) also executed in the relevant DBc of the data owner, will partially decrypt

the data, which will be fully decrypted by the user, with the proper user attribute keys.
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Figure 3.1: HMBAC access model: element sets and relations.

Table 3.1, summarizes the basic sets and functions of the proposed HMBAC model, as

well as a formal analysis of the three functions specified for data access and decryption.

Users, objects, and keys can be assigned attribute values directly from an attribute function

att from a set of values in the range, denoted Range(attu), Range(attOB), Range(attK),

respectively. Users are assigned to multiple authorities (defined by many to many functions

directUAu) and also authorities are assigned to one domain (defined by one to many functions

directDAu).
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Table 3.1: Basic sets and functions of the HMBAC model

Basic Sets and Functions

-U , Au, S, K, D: finite sets of users, authorities, subjects, keys, domains

-UA, OA, AK: finite sets of user, object, and keys attribute functions

- PBc, DBc: fine sets of Proxy and Domain blockchain services

-IDP , CDP : fine sets of inter and cross domain policies

-OB, OP , DAS: fine sets of objects, operations and data services

-attType : UA = {set}, defines user attributes to be set valued only.

-attType : AK = {set}, defines keys attributes to be set valued only

Each attribute attU in UA maps users or authorities to a set of attribute

values in Range(attU). Formally, attu : U ∪ Au → 2Range(attU )

Each attribute attOB in OA maps objects in OB to attribute values.

Formally, attOB : OB → 2Range(attOB)

Each attribute attK in AK maps keys in K to attribute values.

Formally, attK : K → 2Range(attK)

Direct UAu : U → 2Au , mapping each user to a set of authorities.

Direct DAu : D → 2Au , mapping each domain to a set of authorities.

Effective Attributes of Users, Subjects and Keys

For each attribute attU in UA, effectiveAu attU : Au → 2Range(attU )

For each attribute attU in UA, effectiveU attU : U → 2Range(attU )

US : S → U , mapping each subject to a user

For each attribute attU in UA, effectiveS attU : S → 2Range(attU ) ,

mapping each subject to a set of values for its effectiveU attU .

For each attribute attK in AK, effectiveK attK : K → 2Range(attK) .
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The three functions are defined as follows:

Definition 1. (Attribute Verification Function) A subject s ∈ S, is allowed to perform op ∈ OPAVF

on a service sr ∈ PBc, if effectiveSattv ∈ UA. Formally, OPAVF(s : S, sr : PBc) = True

Definition 2. (Authorization Function) A subject s ∈ S, is allowed to perform op ∈ OPAF on

a service sr ∈ DBc, if effectiveSattv , satisfies the policies stated in AuthDBc(s : S, sr : IDP ∪ CDP).

Formally, AuthDBc(s : S, sr : IDP ∪ CDP) = True

Definition 3. (Decryption Function) A subject s ∈ S, is allowed to perform op ∈ OPDF on

an object ob ∈ OB, in data access services ds ∈ DAS, if

OPAVF(s : S, sr : PBc) ∩ AuthDBc(s : S, sr : IDP ∪ CDP) = True and has keys k ∈ K such as

OPDF(ob ∈ OB|obk ∈ K|sk ∈ K) = True.

3.3 Example Scenarios

In this section we will describe the operation of HMBAC through two examples, in the

Supply Chain and Medical Ecosystems.

Pharmaceutical supply chains are typical examples of multi-authority and multi-domain

ecosystems. In these ecosystems, various roles with often contradictory interests exist, like

manufacturers aiming for rapid production while regulators enforce stringent quality controls.

The HMBAC model is adept at managing the complex requirements of access permissions

within such environments.

Assume, for example, that there are two authorities: the Regulatory Authority and the

Customs Authority. The Regulatory Authority ensures compliance with health and safety

standards, requiring access to manufacturing records and audit trails to verify adherence to

laws. The Customs Authority manages import/export controls and needs access to ship-

ping logs and batch records to ensure that prohibited substances are not transported across

borders.

In the domains of Manufacturing, Distribution, and Retail:
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• Manufacturing involves employees who need access to production data and control

systems but should not access financial sales data.

• Distribution includes logistics providers who require access to shipping information to

efficiently route products but do not need access to detailed manufacturing processes.

• Retail involves pharmacy staff who need access to inventory data and sales records but

should have no access to manufacturing details.

Each user and object in the HMBAC system is assigned specific attributes:

• Users receive attributes based on their role, domain, and specific operational conditions.

• Objects like data files and systems are categorized by sensitivity and type, with corre-

sponding access requirements.

Effective attribute derivation functions, such as effectiveUAu for users and effectiveSattu

for subjects, dynamically adjust attributes based on contextual information such as time or

location. The Attribute Verification Function (AVF) initially verifies that a user’s attributes

comply with the policies associated with the desired access. Subsequently, the Authorization

Function (AF) determines if the adjusted attributes meet all the conditions set by cross-

domain policies and current operational requirements. For example, a logistics provider

that attempts to access shipping logs may have their attributes verified and authorized only

during their operating hours under secure conditions.

Furthermore, a Decryption Function (DF) ensures that sensitive data, such as encrypted

batch records, can only be accessed by authorized personnel under proper conditions. This

protects against unauthorized access and ensures data integrity throughout the supply chain.

In general, the HMBAC model facilitates a flexible, yet secure framework that supports

the varying needs of each stakeholder in the pharmaceutical supply chain, ensuring that

access is granted appropriately based on real-time conditions, roles, and compliance require-

ments.
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Medical ecosystems are complex networks involving multiple authorities and domains,

where secure and precise access control is critical. These ecosystems consist of diverse roles,

such as healthcare providers seeking to offer timely medical interventions, insurance compa-

nies assessing claims, and regulatory bodies overseeing compliance and patient privacy laws.

The HMBAC (Hierarchical Model-Based Access Control) model effectively manages these

intricate requirements of access permissions.

Consider, for example, three primary stakeholders: Hospital Administration, Health In-

surance Companies, and Regulatory Authorities:

• Hospital Administration: that manages clinical and administrative data, requiring

granular access control to protect sensitive patient information while ensuring that

healthcare providers have timely access to medical records.

• Health Insurance Companies: that need access to certain patient data for claim process-

ing and fraud prevention but must do so in a manner that respects privacy regulations.

• Regulatory Authorities, such as the Health Department or Privacy Protection Agencies,

that need oversight access to ensure compliance with health care standards and privacy

laws.

In this medical ecosystem, domains such as Clinical Operations, Billing Departments,

and Patient Records are established:

• Clinical Operations involve doctors, nurses, and medical technicians who require real-

time access to patient health data but should not access financial billing details.

• Billing Departments handle insurance claims and patient billing; staff in this domain

need access to treatment details and insurance policy information but not to in-depth

medical diagnostics.

• Patient Records are managed to ensure confidentiality and integrity, with access strictly

controlled to prevent unauthorized viewing or tampering.
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The HMBAC model in this setting would involve, (i) Attribute Assignments: Users

(e.g., doctors, billing clerks) and objects (e.g., digital health records, insurance claim files)

are assigned attributes based on their roles, domains, and the data’s sensitivity and (ii)

Effective Attribute Derivation Functions: Functions like effectiveUAu dynamically adjust

user attributes based on factors such as current location (e.g., hospital wards, administration

offices) or time (e.g., during a medical emergency).

Initially, the AVF, checks to ensure that a user’s attributes match the access policies

associated with healthcare data or systems they wish to use. Then the AF checks that the

user’s context-adjusted attributes meet all necessary conditions imposed by inter-domain

policies and operational needs. For example, a doctor in the emergency department may be

granted expedited access to patient records during a critical situation. DF, guarantees that

particularly sensitive data, such as psychiatric evaluations or personal health information,

can be accessed only under strict conditions, thus safeguarding patient confidentiality.
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CHAPTER 4

SYSTEM DESIGN

The system architecture is designed with real-world requirements in mind, notably these

of supply chain and medical sector. Note, however, that other digital environments can

easily be supported. The hierarchical multi-blockchain access control model discussed in

the previous chapter sets the stage for this chapter, where we delve into the architectural

nuances and the comprehensive design of the system. This chapter, aims to meticulously

outline three critical building blocks that constitute the core of the HMBAC system. The

first building block of our system is the user interaction component, called Frontend Layer,

which is the gateway through which users interact with the system, performing operations

such as submitting data access queries and receiving responses. The second, is the Blockchain

Infrastructure, which is foundational to the operation of the access control system and con-

sists of the Proxy Blockchain and several Domain Blockchains. This infrastructure not only

supports the security services but also hosts the Smart Contracts that govern interactions

within the system. The third and final building block of our system is the Data Layer.

This layer contains the individually managed databases where the actual data resides. It is

crucial for the storage, retrieval, and management of data in a secure, efficient, and scalable

manner. Each of these components is designed to seamlessly integrate with others, ensuring

robust security and efficient performance while facilitating user interaction and data man-

agement within a decentralized environment. In order to describe the proposed architecture

in a coherent way, we shall follow the guidelines proposed in ISO/IEC/IEEE 42010:2011.
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4.1 High Level Description

The goal of the proposed architecture is to develop an efficient system for managing data

in MA and MD ecosystems throughout their life-cycle. In our design, we take into account

the requirements of real-world environments and stakeholders,for example for the healthcare

ecosystem we consider hospitals, medical device manufacturers and insurance companies,

while for the supply chain logistic, transportation and retail companies. In addition, we

consider various types of users or devices that may need to read or write related data.

The system is based on the novel hierarchical multi blockchain access control model pre-

sented in Chapter 3. At the user layer, an API allows all users (and devices) to interact with

the system. The user API interacts with a permissioned blockchain, the Proxy Blockchain

(PBC), acting as a request-proxy between users and services (the lower layer blockchains)

that processes the requests. Besides acting as a proxy, the role of the PBC is to register users,

update their trust relations with the stakeholders, and act as a global distributed transaction

logger. All the functionalities of the PBC are implemented with smart contracts. The nodes

of the PBC are operated by the stakeholders of the system and a Proof-of-Stake mechanism

is used for consensus.

The provision of the actual services is divided into multiple domains. Each stakeholder

category forms its own domain and maintains a Domain Blockchain (DBC). In the example

of the medical ecosystem, the hospitals participating in this system will operate a Hospital

DBC, while the medical device manufacturers will run a Manufacturer DBC. Consequently,

each stakeholder acts as a node for two blockchains; the PBC and its DBC. An example is

shown in Fig. 4.1. In the proposed architecture, the DBCs are subordinate blockchains and

cannot communicate directly with users. The PBC preprocesses all the requests and forwards

each request to the appropriate DBC, so that the DBC can process the request and enforce

the corresponding access control policy for its domain. For example, a patient’s request

to access their medical record maintained in a hospital’s database will be handled by the

Hospital DBC. Besides handling the access requests and enforcing access control, the DBC
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will handle the required data encryption/decryption process, by implementing an appropriate

privacy-preserving encryption technology. All the functionalities are implemented through

smart contracts.
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Figure 4.1: High level architecture design for the healthcare use case

The data layer is the lowest layer. Every stakeholder is allowed to maintain its data in its

own database in its domain, provided the data has been appropriately encrypted. To enforce

fine-grained access to the data, Attribute Based Encryption (ABE) is used, before the data

is stored in the appropriate database. However, each stakeholder is allowed to independently

manage the ABE keys of its own database. For example a device manufacturer is able to

encrypt configuration data so that: (a) only its own technical staff can access it; and (b) the

hospital’s technical staff can access the device software update log (to verify the vigilance of

the device maintenance process). In short, users and devices can only register and interact

with DBCs through the Proxy PBC. The PBC will handover a transaction initiated by a

user/device to the appropriate DBC and smart contract. The PBC is maintained by all the
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stakeholders, while each DBC is independently maintained by the domain’s stakeholders.

4.2 Assumptions and Setup

The proposed architecture is based on the following assumptions regarding the deploy-

ment, data management and user management.

Infrastructure deployment. Before system deployment, we assume that a set of stakehold-

ers from one or more domains have agreed to collaboratively operate the infrastructure, in

order to support mutual access to their data, under a predefined access policy. Each stake-

holder operates one node for the Proxy Blockchain and one node for its Domain Blockchain.

Since all blockchains are permissioned and the addition of new nodes is controlled, it is

reasonable to assume that in all the chains each stakeholder will roughly have the same

processing power. After initial deployment, the system should be able to support dynamic

changes of stakeholders’ participation, both at the domain and the proxy layer.

Distributed data storage. We assume that all stakeholders independently maintain their

data off-chain on their own systems. Thus each stakeholder will have full control and respon-

sibility for the proper maintenance of their data. To support granular access to the data, each

stakeholder has already encrypted their data using an Attribute Based Encryption scheme

(ABE).

ABE key management. In ABE a data owner is able to encrypt her data and specify

access to the data as a Boolean formula over a set of attributes. In our system, we chose

the Lewko-Waters’ Multi- Authority CP-ABE (MA-CP-ABE) scheme [97], since it has many

desired properties for our application. The main goal of MA-CP-ABE is to allow multiple

authorities to generate ABE key hierarchies, and at the same time allow users to combine

attribute keys issued to them by different authorities. MA-CP-ABE requires the existence of

global identities, say GID, for the users1. The Lewko-Waters MA-CP-ABE scheme prevents

1We address this requirement in our system by using a global registration mechanism at the Proxy
Blockchain layer.
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collusion of attributes issued to different users, by linking every user’s private keys with

their global identifier GID, to include a distinct noise. Combining keys issued to one user

(i.e. with the same GID) by different authorities will be possible since the noise is cancelled

out; however the noise will not be cancelled for combinations of keys of different users. In

short, MA CP-ABE is comprised of well-defined algorithms for global setup, authority setup,

encryption, key generation and decryption, an example from the medical ecosystem is shown

in Fig. 4.2 .
V. Malamas et al.: Hierarchical Multi Blockchain for Fine Grained Access to Medical Data

FIGURE 2. A high-level description of the MA-CP-ABE scheme of [52], employed in our system.

denote by CERTX and CRLX the ‘root’ certificate and the
signed certificate revocation list of X .

All users/devices possess public/private key pairs, which
have been certified independently by the trust authorities of
the system stakeholders. Let certAX be the certificate issued
by stakeholder X to user A. Besides the public key, the user
certificate will contain all long-term attributes that X has
assigned to A in the form of static roles,2 to be later used
for requesting access to the corresponding ABE keys. Users
may have obtained certificates by more than one stakeholder.
In that case, when users register, a certificate update process
will ensure that all credentials of a user are linked to a globally
unique user identifier GID. This will enable the users to
issue ABE keys corresponding to their static roles issued by
different authorities, in a way that enables the combination of
ABE keys issued to the same user.

For the case of temporal roles however, managing their
assignment with certificates is not effective, since these are
dynamically assigned to users. For this reason, we assume
that each stakeholder maintains and continuously updates a
signed temporal access control list TempACLX , containing
entries with temporal assignment of attributes to entities.

6) COMBINING CREDENTIALS WITH ABE KEYS
Fig. 3 presents an example for the independent trust man-
agement and ABE key assignment of two hospitals. Each
hospital is responsible for issuing certificates to its users,
where each certificate may include the long-term roles given
to the user by the issuing authority. The only requirement for
the participating hospitals is to agree on a common hospital
domain policy, mapping roles to specific access attributes as
discussed above. As shown in Fig. 3, user A has been certified
with the role ‘Doctor’ by hospital X, while in hospital Y he
has access only to statistical data, by using the certified role
‘Researcher’. Both certificates have been updated to include

2Revoking static roles is performed at authority level, by revoking the
corresponding user certificate (discussed in Section III-D1).

the unique global identifier GIDA during the initial user reg-
istration. When doctor A is on duty for emergency incidents,
hospital X will temporarily assign to A the role ‘onDuty’,
through a signed temporal access list TempACLX , to allow A
access to the complete medical history of all patients that are
currently in emergency treatment. Each hospital X is respon-
sible to independently update, sign and publish TempACLX .
Each entry in the temporal access list will contain the global
user identifier, the temporal role assigned to the user and the
effective time period.

Registered users are able to request their ABE keys outside
the system, independently from each ABE Key Authority.
The only requirement is that the ABE key authorities of
all stakeholders within a domain agree on the global ABE
parameters GP. In our example, user A will receive the
keys KGIDA,Doctor(X) and KGIDA,Researcher(Y) from X and Y
respectively. In addition, if at some time doctor A is on
emergency duty, he will be allowed use of the temporal key
KGIDA,onDuty(X) (obtainable from TempACLX ). Note however
that the actual ABE key KGIDA,onDuty(X) that corresponds to
the temporal role is not given to the user, since this would
imply that the user would continue to have access to this
key even after the expiration of the temporal role. Instead,
all temporal ABE keys are stored in an isolated environment
(container) and the user is only granted access to some func-
tion of the key through a smart contract, as explained later in
Section III-E2.

D. THE PROXY BLOCKCHAIN (PBC)
Since no central trust authority exists, the system must sup-
port the distribution and dynamic update of the trust anchors,
independently managed by each stakeholder. To achieve this,
the root certificates CERTX , the revocation lists CRLX and
the temporal access lists TempACLX of the stakeholders are
stored in the PBC. Fig. 4 describes the storage, updating and
indexing of the root certificates
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Figure 4.2: A high level description of the MA-CP-ABE scheme employed in the system

As observed in Fig. 4.2, encrypting data with MA-CP-ABE encryption requires that the

authorities have a commonly agreed access policy, both inside a domain (e.g. access between

hospitals) and among domains (e.g. between hospitals and device manufacturers).We assume

that such a policy has been agreed among the stakeholders, taking into consideration all

legal and regulatory privacy constraints. For each domain, the stakeholders must agree on a

domain-wise list of roles and the relevant attributes that will be assigned to each role. For

example in the hospital domain, the role ‘Doctor’ in some hospitals may allow a doctor to

access Medical Health Records maintained in these hospitals’ databases, but only for those

patients that this particular doctor has treated in the past. Besides the roles that are ‘long-
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term’ (e.g. Doctor), we assume that the stakeholders in each domain have agreed on some

temporal roles that may be assigned (and grant additional access) to users for short time

periods. Note that the use of a temporal role must be always bounded to the corresponding

long-term role, so that access will not be granted to users with only temporal roles. Although

the role ‘Doctor’ is static, the role ‘Emergency Doctor’ is temporal since different doctors

may be on duty for emergency incidents at different times. We assume that an ’Emergency

Doctor’ (e.g. doctor AND on duty) is allowed to access the medical history maintained in

any hospitals’ database for a patient under emergency treatment. As an example, we present

the following access rules as part of an agreed inter-domain policy among hospitals:

1. IF α.isDoctorAtHospital(X) AND α.isTreating(β) THEN
(
X.allow(α, MHR(β)), ∀

MHR(β) ∈ DBX

)
2. IF α.isDoctorAtHospital(∗)AND α.onDuty(∗)THEN

(
X.allow(α, MHR(β)), ∀MHR(β)

∈ DBX

)
The first rule allows a doctor α at hospital X to have access to the medical record of

any patient in hospital X that she is treating. In the second access rule, the use of the

temporal role onDuty allows a doctor to gain access to all the medical records from any

hospital database that are related to patients under emergency treatment. In addition, the

stakeholders must agree on the intra-domain access policies. For example, manufacturers

may have the role ‘Maintenance-Admin’ that will allow users with this role to update the

configuration data for all medical devices of a particular manufacturer, for all hospitals

implementing this policy.

Distributed trust management. Our system does not require a centralized trust authority,

a typical constraint for multi-authority ABE schemes. In contrast, one of the main system

goals is to support the interoperability among independent trust domains. We assume that

each (initial) stakeholder is responsible to independently manage the ABE keys as well as

the authentication keys of its users. Thus each stakeholder will operate as an ABE and
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as a certificate authority, to manage the encryption and authentication keys of its users,

respectively.

Let X be a stakeholder. We denote by (pkX, skX) the public/private authentication

key pair of X (to avoid confusion we use capitals for encryption keys and lowercase for

authentication keys). We also denote by CERTX and CRLX the ‘root’ certificate and the

signed certificate revocation list of X .

All users/devices possess public/private key pairs, which have been certified indepen-

dently by the trust authorities of the system stakeholders. Let certAX be the certificate

issued by stakeholder X to user A. Besides the public key, the user certificate will contain

all long-term attributes that X has assigned to A in the form of static roles,2 to be later used

for requesting access to the corresponding ABE keys. Users may have obtained certificates

by more than one stakeholder. In that case, when users register, a certificate update process

will ensure that all credentials of a user are linked to a globally unique user identifier GID.

This will enable the users to issue ABE keys corresponding to their static roles issued by

different authorities, in a way that enables the combination of ABE keys issued to the same

user. For the case of temporal roles however, managing their assignment with certificates is

not effective, since these are dynamically assigned to users. For this reason, we assume that

each stakeholder maintains and continuously updates a signed temporal access control list

TempACLX , containing entries with temporal assignment of attributes to entities.

Combining credentials with ABE keys. Fig. 4.3 presents an example for the independent

trust management and ABE key assignment of two hospitals. Each hospital is responsible for

issuing certificates to its users, where each certificate may include the long-term roles given

to the user by the issuing authority. The only requirement for the participating hospitals is

to agree on a common hospital domain policy, mapping roles to specific access attributes as

discussed above.

2Revoking static roles is performed at authority level, by revoking the corresponding user certificate.
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FIGURE 3. Credential issuing and ABE key generation: Each stakeholder operates a trust management
authority for assigning long-term and temporal roles (upper layer) and an ABE key authority for issuing
ABE keys that correspond to each role (lower layer).

(a similar process is used for the CRLs and temporal
ACLs). During the initial system bootstrap, the root certifi-
cates of all stakeholders are uploaded to the PBC, say in
blocki. A special counter-index Ind 0

CERT is also maintained.
Any update, such as adding a root certificate for a new stake-
holder, or refreshing/revoking an existing root certificate,
must be appended to the PBC. Blocks storing root certificates
of stakeholders, will also store an index to the previous block
containing certificate information, to create a linked list. In
a similar way, the revocation lists CRL and the temporal
access control lists TempACL are maintained and updated in
the PBC, as well as the corresponding indexes IndCRL and
IndTempACL .

As pointed out in section III-B, the main goals of the PBC
are to support the interoperability of users from different
stakeholder domains, and act as a gateway between the users
and the domain blockchains DBC. The functionality of the
PBC is implemented by the following smart contracts:

1) TRUST MANAGEMENT SMART CONTRACT (TMSC)
The TMSC handles the functionality related to the dynamic
update of trust anchors (involving CERT s, CRLs and
TempACLs) and the trusted authorities as well as with the
validation of the user credentials by trust anchors. The TMSC
continuously tracks the blocks that contain the latest indexes
IndCERT , IndCRL and IndACL of the linked lists (in the above
example this is blockl for the root certificates). The TMSC
implements the following three functions:

a: UPDATE TRUST ANCHORS
This function is only accessible by users with a special role
‘CA-Admin’, for each stakeholder. It allows stakeholders

to distribute and update their trust anchors and maintain
the required indexing. Calling this function will instruct the
TMSC to append the updated signed trust anchors to the
PBC and if needed, to update the relevant indexes. As shown
in Fig. 4, the root certificate of X is updated in blockj. A CA-
Admin may independently update any trust anchor. Temporal
access lists are expected to be updated more frequently than
CRLs and root certificates.

b: ADD/REMOVE A STAKEHOLDER
This function allows current stakeholders to add new or
remove existing stakeholders. Only users with the role ‘CA-
Admin’ can access this function. Executing it is possible only
if there is a consensus of stakeholders in the corresponding
domain (e.g. a sufficient number of signatures by CA-Admin
is received). As shown in Fig. 4, new root certificates can
be added to new blocks (e.g. CERTZ in blockj) or existing
ones can be revoked (e.g. the certificate of stakeholder Y is
revoked in blockl). Again, root CA revocation is valid only if
the revocationmessage is signed by a threshold of CA-Admin
stakeholders.

c: VALIDATE USER CREDENTIALS
Any user requesting access will provide credentials, such
as attribute certificates and temporal roles. For long-term
attributes, this function will search the PBC, using the indexes
IndCert and IndCRL to verify that the corresponding user
certificate has been signed by the appropriate authority and
not been revoked (is not included in the latest CRL list of
the issuing stakeholder X ). In the same way, by using IndACL ,
the function will search for the latest signed list TempACLX of
the relevant stakeholder, to verify a temporal role assignment.
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Figure 4.3: Credential issuing and ABE key generation

As shown in Fig. 4.3, user A has been certified with the role ‘Doctor’ by hospital X, while

in hospital Y he has access only to statistical data, by using the certified role ‘Researcher’.

Both certificates have been updated to include the unique global identifier GIDA during

the initial user registration. When doctor A is on duty for emergency incidents, hospital

X will temporarily assign to A the role ‘onDuty’, through a signed temporal access list

TempACLX , to allow A access to the complete medical history of all patients that are

currently in emergency treatment. Each hospital X is responsible to independently update,

sign and publish TempACLX . Each entry in the temporal access list will contain the global

user identifier, the temporal role assigned to the user and the effective time period.

Registered users are able to request their ABE keys outside the system, independently

from each ABE Key Authority. The only requirement is that the ABE key authorities of

all stakeholders within a domain agree on the global ABE parameters GP. In our example,

user A will receive the keys KGIDA,Doctor(X) and KGIDA,Researcher(Y) from X and Y respectively.
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In addition, if at some time doctor A is on emergency duty, he will be allowed use of the

temporal key KGIDA,onDuty(X) (obtainable from TempACLX). Note however that the actual

ABE key KGIDA,onDuty(X) that corresponds to the temporal role is not given to the user, since

this would imply that the user would continue to have access to this key even after the

expiration of the temporal role. Instead, all temporal ABE keys are stored in an isolated

environment (container) and the user is only granted access to some function of the key

through a smart contract.

Since no central trust authority exists, the system must support the distribution and

dynamic update of the trust anchors, independently managed by each stakeholder. To

achieve this, the root certificates CERTX , the revocation lists CRLX and the temporal

access lists TempACLX of the stakeholders are stored in the PBC. Fig. 4.4 describes the

storage, updating and indexing of the root certificates (a similar process is used for the CRLs

and temporal ACLs).

V. Malamas et al.: Hierarchical Multi Blockchain for Fine Grained Access to Medical Data

FIGURE 4. Indexing trust anchors in the Proxy Blockchain.

2) REGISTRATION SMART CONTRACT (RSC)
This smart contract handles user (or device)3 registration.
User A will send a registration request through a user API,
to be handled by the RSC. This will trigger the Logging Smart
Contract (discussed below) to log the request and process it.
The request includes a valid user certificate certAX , issued
by the CA root authority of stakeholder X , along with a
proof of knowledge of the corresponding private key (e.g. a
signed challenge message with skAX ). The RSCwill assign to
this request a unique global blockchain identifier for user A,
GIDA, and send it to A encrypted with A’s public key pkAX .
The RSC will send to the Logging Smart Contract the newly
assigned GIDA and the user’s certificate(s), so that the link
between these credentials and GIDA is logged on the PBC.

As an out-of-band process, user A will then request from
the ABE key authority of the corresponding stakeholder X to
generate and securely send the relevant ABE keys {Ki,GIDA}

for A’s certified attributes {i}. If user A can obtain an attribute
certificate from another CA authority, say Y , then A will
prove possession of the global identifier GIDA, which will
be included in the new certificate certAY . This will allow
user A to request ABE keys from the key authority of Y
with the same global identifier GIDA, and eventually combine
ABE keys issued by different authorities. For user certificates
that have been previously issued, a certificate refresh can be
requested. As discussed above, user certificate management
and ABE key management are independently processed by
each stakeholder. The goal is to support the secure interoper-
ability of such credentials.

3) PROXY SMART CONTRACT (PSC)
Registered users may request access to data only through the
PSC. The PSC will verify the log-in credentials and trigger
the Logging Smart Contract (discussed below) to log the
request. Then the PSCwill pre-process the request, in order to
identify the appropriate Domain Blockchain that will process
this request. When a response is received from the Domain
Blockchain, the PSC will send the response to: i) the user,
encrypted with the user’s public key; and ii) the Logging
Smart Contract to log the transaction.

3For simplicity we use the term ‘user’ both for people and devices.

4) LOGGING SMART CONTRACT (LSC)
The role of the LSC is tomaintain a global transaction log that
cannot be tampered, provided that a majority of stakeholders
from all domains is honest. As observed above, the Logging
Smart Contract is triggered any time a transaction is pro-
cessed. When a user request is received, the PSC will trigger
the LSC to open a transaction log. A logging verification
variable is attached to each request, forcing the logging of
every event, processed either in the PBC or in a Domain BC.
To avoid maintaining open logs in the PBC until a response
is received by the appropriate DBC, the Logging SC caches a
request when this is received; when a transaction is complete,
then the LSC will store the complete transaction details in the
PBC.

E. HOSPITAL DOMAIN BLOCKCHAIN
We describe in detail the functionality of a Hospital DBC.
Examples for other domains are provided in Section III-F).
As explained in III-B, the stakeholders of each domain (e.g.
hospitals, manufacturers, insurance companies) maintain a
different DBC whose function is to provide controlled and
fine-grained access to its data, according to the predefined
inter-domain and intra-domain policies. This structure allows
different domains to define commonly agreed, domain-wise
access policies, taking into consideration business, regulatory
and other constraints. For example, the access control policy
for the hospital domain should be compliant with the relevant
privacy regulations (e.g. GDPR or HIPAA). Through smart
contracts the Hospital DBCwill be able to enforce such a pol-
icy. Setting up or updating the policy within each domain (and
eventually the corresponding smart contracts) will require the
active involvement of the domains’ stakeholders, in order to
collaboratively configure the Hospital DBC nodes.

Through smart contracts, the Hospital DBC supports the
following functionalities: a) enforcing fine-grained access
control, by utilizing both long-term and temporal attributes
from multiple CA root authorities, and b) ensuring the secure
use of the ABE keys corresponding to temporal attributes
and roles. The following smart contracts are implemented to
provide these functions.

1) ACCESS CONTROL SMART CONTRACT (ACSC)
The ACSC enforces the predefined access policy, before
granting access to encrypted data. To do this, the ACSC takes
as input the verified credentials of a user (recall that the Trust
Management Smart Contract has already verified both the
long-term and temporal user credentials) and will approve
further processing of the request, if the verified credentials are
sufficient according to the access policy rules. If the policy
allows the requested access, then the ACSC will send the
query to the relevant database. The database will return the
data, encrypted with the corresponding ABE keys.

If needed (see section bellow) the ACSC will inter-
act with the Key Store Smart Contract to pre-process the
encrypted data and will finally return the encrypted data to
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Figure 4.4: Indexing trust anchors in the Proxy Blockchain

During the initial system bootstrap, the root certificates of all stakeholders are uploaded

to the PBC, say in blocki. A special counter-index Ind 0
CERT is also maintained. Any update,

such as adding a root certificate for a new stakeholder, or refreshing/revoking an existing root

certificate, must be appended to the PBC. Blocks storing root certificates of stakeholders,
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will also store an index to the previous block containing certificate information, to create a

linked list. In a similar way, the revocation lists CRL and the temporal access control lists

TempACL are maintained and updated in the PBC, as well as the corresponding indexes

IndCRL and IndTempACL.

4.3 System Architecture

Taking into account all the assumptions and prerequisites described previously, Figure 4.5

describes the proposed HMBAC architecture, as well as its mapping to the generic HMBAC

model (presented in Figure 3.1). The architecture is comprised of three building blocks.

The Frontend Layer, is a web application which allows authorized users to interact with the

system and post data access queries. It consists of a web user interface (UI) and front-end

services that support the communication between the front-end and the rest of the system.

The Blockchain Infrastructure is a middleware that implements all system services and

provides controlled access to data, which are maintained off-chain individually by each

stakeholder. It implements the hierarchical multi-blockchain, which consists of one Proxy

Blockchain (PBC) and one or more Domain Blockchains (DBCs). The PBC acts as a sin-

gle access point for users, while the DBCs enable the management, implementation, and

enforcement of flexible and granular access policies at the domain level. The integration of

the blockchain components is supported by special-purpose APIs both for inter-blockchain

synchronization (Inter-BC API), user interaction (Frontend API), and data (Database API).
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Figure 4.5: The proposed HMBAC architecture combined with the HMBAC model of Figure

3.1.

Finally, Data Layer contains the individually managed databases that store all data

off-chain and ABE encrypted. As the data are encrypted with ABE and the decryption

process requires partial decryption through the corresponding DBC, the system enforces

data access through the HMBAC system. Note that CA management at the stakeholder

level is managed outside our system and our main goal is to offer credential interoperability,

i.e., credentials issued from independent authorities are mutually trusted, without assuming

a globally trusted root authority. In the following subsection, we describe in detail the

services provided by each building block.

Delving deeper in the various components, Frontend Layer is a web interface enables

users to log in to the system and post data access queries. To access the system, two-factor

authentication is enforced: the user must provide valid login credentials (e.g., a password)
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and a valid attribute certificate issued by a stakeholder. We assume that user credentials

are managed individually and stored securely by each user. The communication between

the front-end layer and the blockchain infrastructure services is realized by endpoints imple-

mented as Frontend Services and Frontend API. Finally, when the user eventually receives

the partially decrypted response data via the Frontend API, the Frontend Services will grant

access to the user of the attribute keys needed to fully decrypt the data.

Data Layer is the components responsible on how the stakeholders manage their data

off-chain. Recall that data are MA-ABE encrypted on the basis of predefined domain or cross-

domain policies. To enforce access to data only through HMBAC, for each domain a distinct

domain attribute key pair is assigned. During the ABE data encryption, all policies are

modified by applying an additional ‘AND’ rule with the corresponding domain attribute key.

Lets assume for example two domains hospitals and medical device manufacturers. Hospitals

may involve users with various roles such as doctors, emergency doctors, or researchers.

Similarly, manufacturers may support various roles, such as device technicians. According

to the access control policies that may be defined within a domain or cross-domain, granular

access may be allowed. For example:

• Access Rule 1: A doctor on duty may access all medical records in all hospitals of a

patient under emergency treatment (hospital domain access rule).

• Access Rule 2: A manufacturer’s support technician may read or update the firmware

of supported medical devices installed in any hospital (cross-domain access rule).

ForAccess Rule 1, for decryption, would require the following attribute keys: Kdoctor, KonDuty,

and Khospitals. The key Kdoctor corresponds to a long-term attribute and KonDuty to a tempo-

ral attribute. TheKhospitals is the hospital domain attribute key, generated using the hospital

domain’s attribute key pair PKH , SKH .

Finally, is the Hierarchical Blockchain Infrastructure. As seen in Fig. 4.5, the Proxy

Blockchain (PBC) receives user requests through the Frontend API and implements three
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main services through smart contracts. User requests along with the provided attribute

certificate(s) are handled by Proxy Smart Contract (PSC). The PSC will first trigger a

certificate validation process, executed by Trust Management Smart Contract (TMSC). The

TMSC will validate the long-term (and possible temporal) attributes assigned to users via

a typical challenge-response signature verification process. Note that users can access the

HMBAC services only via an authenticated channel (the Frontend API) and after successful

attribute authentication (by the PBC). If user attributes are verified, the PSC will then

forward the request to the relevant Domain Blockchain for further processing and wait to

receive the response via Inter-BC API. The response will eventually be sent back to the

user via the Frontend API. The transaction history is recorded on the PBC. The Logging

Smart Contract (LSC) creates a log for each incoming user request until the transaction is

completed.

Domain Blockchains (DBC) may receive user requests only from the PBC via the Inter-

BC API and implement the following services. Each DBC contains an Access Control Smart

Contract (ACSC) that enforces the access control policy of the particular domain. This

includes both intra-domain and cross-domain access policies that control access to data

maintained by the domain’s stakeholders. The ACSC checks if the user attributes (already

validated in the PBC) are sufficient for the specific request, according to the predefined access

policy. In this case, the request is forwarded to the relevant database(s) via Database API.

Note that depending on the request, the API can retrieve ABE-encrypted data from multiple

sources, for example, when a user is requesting data from multiple stakeholder databases.

When the encrypted data return from the Data Layer, the Database API passes them

to Key Store Smart Contract (KSSC), which has access to the relevant domain’s attribute

public/private key pair (e.g., PKH , SKH in the case of the Hospital DBC). The KSSC will

first use the private key SKH to generate the hospital domain attribute key (Khospitals) based

on the GID of the requesting user, to partially decrypt the data. The partially decrypted

data will be forwarded to the PBC (via the Inter-BC API) and eventually to the user (via
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the Frontend API). The user must finally apply his attribute keys to fully decrypt and access

the data (i.e., the attribute keys Kdoctor and KonDuty in our example).

4.4 Smart Contracts Design

The functionality of the system is implemented by Smart contracts that are published on

the relevant blockchains (PBC, DBCs). In this section we define, from a design perspective,

these smart contracts in accordance with the requirements of the system and describe their

functionality per Blockchain.

4.4.1 Proxy Blockchain Smart Contracts

The PBC maintains three Smart Contracts accessible for all stakeholders of the ecosys-

tem, namely the Trust Management Smart Contract (TMSC), the Registration Smart Con-

tract (RSC), the Proxy Smart Contract (PSC) and Logging Smart Contract (LSC).

The TMSC handles the functionality related to the dynamic update of trust anchors

(involving CERT s, CRLs and TempACLs) and the trusted authorities as well as with the

validation of the user credentials by trust anchors. The TMSC continuously tracks the blocks

that contain the latest indexes IndCERT , IndCRL and IndACL of the linked lists (in the above

example this is blockl for the root certificates). The TMSC implements the following three

functions:

• Update trust anchors: This function is only accessible by users with a special role ‘CA-

Admin’, for each stakeholder. It allows stakeholders to distribute and update their

trust anchors and maintain the required indexing. Calling this function will instruct

the TMSC to append the updated signed trust anchors to the PBC and if needed, to

update the relevant indexes. As shown in Fig. 4.4, the root certificate of X is updated

in blockj. A CA-Admin may independently update any trust anchor. Temporal access

lists are expected to be updated more frequently than CRLs and root certificates.

• Add/remove a stakeholder: This function allows current stakeholders to add new or
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remove existing stakeholders. Only users with the role ‘CA-Admin’ can access this

function. Executing it is possible only if there is a consensus of stakeholders in the

corresponding domain (e.g. a sufficient number of signatures by CA-Admin is received).

As shown in Fig. 4.4, new root certificates can be added to new blocks (e.g. CERTZ in

blockj) or existing ones can be revoked (e.g. the certificate of stakeholder Y is revoked

in blockl). Again, root CA revocation is valid only if the revocation message is signed

by a threshold of CA-Admin stakeholders.

• Validate user credentials: Any user requesting access will provide credentials, such as

attribute certificates and temporal roles. For long-term attributes, this function will

search the PBC, using the indexes IndCert and IndCRL to verify that the corresponding

user certificate has been signed by the appropriate authority and not been revoked (is

not included in the latest CRL list of the issuing stakeholder X ). In the same way,

by using IndACL, the function will search for the latest signed list TempACLX of the

relevant stakeholder, to verify a temporal role assignment.

The RSC handles the user (or the device)3 registration. User A will send a registration

request through a user API, to be handled by the RSC. This will trigger the Logging Smart

Contract (discussed below) to log the request and process it. The request includes a valid

user certificate certAX , issued by the CA root authority of stakeholder X , along with a proof

of knowledge of the corresponding private key (e.g. a signed challenge message with skAX).

The RSC will assign to this request a unique global blockchain identifier for user A, GIDA,

and send it to A encrypted with A’s public key pkAX . The RSC will send to the Logging

Smart Contract the newly assigned GIDA and the user’s certificate(s), so that the link

between these credentials and GIDA is logged on the PBC.

As an out-of-band process, user A will then request from the ABE key authority of the

corresponding stakeholder X to generate and securely send the relevant ABE keys {Ki,GIDA
}

for A’s certified attributes {i}. If user A can obtain an attribute certificate from another

3For simplicity we use the term ‘user’ both for people and devices.
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CA authority, say Y , then A will prove possession of the global identifier GIDA, which will

be included in the new certificate certAY . This will allow user A to request ABE keys from

the key authority of Y with the same global identifier GIDA, and eventually combine ABE

keys issued by different authorities. For user certificates that have been previously issued,

a certificate refresh can be requested. As discussed above, user certificate management and

ABE key management are independently processed by each stakeholder. The goal is to

support the secure interoperability of such credentials.

Registered users may request access to data only through the PSC. The PSC will verify

the log-in credentials and trigger the Logging Smart Contract (discussed below) to log the

request. Then the PSC will pre-process the request, in order to identify the appropriate

Domain Blockchain that will process this request. When a response is received from the

Domain Blockchain, the PSC will send the response to: i) the user, encrypted with the

user’s public key; and ii) the Logging Smart Contract to log the transaction.

The role of the LSC is to maintain a global transaction log that cannot be tampered,

provided that a majority of stakeholders from all domains is honest. As observed above,

the Logging Smart Contract is triggered any time a transaction is processed. When a user

request is received, the PSC will trigger the LSC to open a transaction log. A logging

verification variable is attached to each request, forcing the logging of every event, processed

either in the PBC or in a Domain BC. To avoid maintaining open logs in the PBC until a

response is received by the appropriate DBC, the Logging SC caches a request when this is

received; when a transaction is complete, then the LSC will store the complete transaction

details in the PBC.

4.4.2 Domain Blockchains Smart Contracts

As explained in 4.3, the stakeholders of each domain (e.g. hospitals, manufacturers, in-

surance companies) maintain a different DBC whose function is to provide controlled and

fine-grained access to its data, according to the predefined inter-domain and intra-domain

policies. This structure allows different domains to define commonly agreed, domain-wise
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access policies, taking into consideration business, regulatory and other constraints. For

example, the access control policy for the hospital domain should be compliant with the

relevant privacy regulations (e.g. GDPR or HIPAA). Through smart contracts the Hospital

DBC will be able to enforce such a policy. Setting up or updating the policy within each do-

main (and eventually the corresponding smart contracts) will require the active involvement

of the domains’ stakeholders, in order to collaboratively configure the DBC nodes.

Through smart contracts, the DBC supports the following functionalities: a) enforcing

fine-grained access control, by utilizing both long-term and temporal attributes from mul-

tiple CA root authorities, and b) ensuring the secure use of the ABE keys corresponding

to temporal attributes and roles. Two smart contracts are implemented to provide these

functions, namely, the Access Control Smart Contract (ACSC) and the Key Store Smart

Contract (KSSC).

Before granting access to encrypted data, the ACSC enforces the predefined access policy.

To do this, the ACSC takes as input the verified credentials of a user (recall that the Trust

Management Smart Contract has already verified both the long-term and temporal user

credentials) and will approve further processing of the request, if the verified credentials are

sufficient according to the access policy rules. If the policy allows the requested access, then

the ACSC will send the query to the relevant database. The database will return the data,

encrypted with the corresponding ABE keys.

If needed (see the Section) below the ACSC will interact with the Key Store Smart

Contract to pre-process the encrypted data and will finally return the encrypted data to the

requesting Proxy SC of the PBC. In addition, the ACSC will store all transaction details in

the Hospital DBC, to assure the auditability of all access requests and responses.

As pointed out earlier, ABE keys that correspond to temporal roles should not be given

to the user, since this would either imply that users would be able to use these keys after

the role has expired or would require to continuously update the temporal ABE keys. In our

system, ABE keys corresponding to temporal roles are not given to the users (as it is the
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case for the long-term roles). Instead, these are generated by the ABE key authorities and

securely stored in the Hospital DBCs. The Key Store Smart Contract is the only component

that has access to these keys. Since temporal roles are always used in combination with the

corresponding long-term roles , the decryption is performed as a two-step process, as shown

in Fig. 4.6.

V. Malamas et al.: Hierarchical Multi Blockchain for Fine Grained Access to Medical Data

the requesting Proxy SC of the PBC. In addition, the ACSC
will store all transaction details in the Hospital DBC, to assure
the auditability of all access requests and responses.

2) KEY STORE SMART CONTRACT (KSSC)
As pointed out in Section III-C6, ABE keys that correspond
to temporal roles should not be given to the user, since this
would either imply that users would be able to use these keys
after the role has expired or would require to continuously
update the temporal ABE keys. In our system, ABE keys
corresponding to temporal roles are not given to the users
(as it is the case for the long-term roles). Instead, these are
generated by the ABE key authorities and securely stored in
the Hospital DBCs. The Key Store Smart Contract is the only
component that has access to those keys. Since temporal roles
are always used in combination with the corresponding long-
term roles (see Section III-C4), the decryption is performed
as a two-step process, as shown in Fig. 5.

Suppose that a doctor on duty is requesting access to
the medical records in all hospital databases for a patient in
emergency treatment. Since the ABE access matrix includes
such a policy, by combining the relevant keys, it is pos-
sible to perform the decryption. In our system, the KSSC
will first perform a partial decryption by applying the key
KGIDA,onDuty(X ), and then will send the result to the user
to finish the decryption by using the key KGIDA,Doctor(X ).
The use of the MA CP-ABE [52] encryption scheme allows
sequential data decryption.

FIGURE 5. Distributing the decryption functionality among users and the
KSSC.

By distributing the decryption process between the users
and the KSSC when temporal roles are involved, there is
no need to refresh or update/revoke the temporal ABE keys,
since they are never given to the users. Finally, since the
KSSC does not have full decryption capabilities (the ABE
keys corresponding to the long-term attributes are not stored
in the KSSC), there is no need to fully trust the KSSC in
relation to the decryption of the data.
Remark: The distribution of the decryption functionality

between the users and the KSSC could be extended for all
accesses to data, to ensure that the users cannot bypass the

system in order to access the data out of band. This could be
implemented by adding a special role ‘System’ and then by
modifying all access rules to include an AND policy with this
special role. The corresponding ABE keys for the ‘System’
role would be created by all ABE key authorities for all their
users and would be stored in the KSSC.

3) TRANSACTION FLOWS
All the services provided by the proposed system can be
described as transaction flows between the users and the
blockchains/smart contracts.

We describe the workflows for two main services: (a)
issuing user certificates and (b) requesting access to data.
A graphical representation is shown in Fig. 6. It is essential
to mention that the function sequence follows a timeline e.g.
issuing a user certificate and the relevant ABE keys precedes
the data request access. For our example we assume that a
doctor A from hospital X has been issued a temporal role on
duty which is active within a specific time-frame. The doctor
has been provided with a key KGIDA,Doctor(X ) according to his
role, granting him access to the patients he treats in hospital
X, and also the hospital’s CA-Admin has added him to the
updated TempACLX . When the doctor request access to data
for a patient of hospital B the TMSC will cross-check the
attributes according to the provided certAX and TempACLX
and the PSC will forward the query along with the verified
attributes to the ACSC of the hospital blockchain for policy
enforcement. The query will be sent to the KSSC which will
retrieve the two-layered encrypted data from the database.
The KSSC using the Temporal keys will proceed to a partial
decryption and then forwards them to the user who can then
decrypt them with the Attribute-based keys he owns.

F. BLOCKCHAINS FOR OTHER DOMAINS
As in the case of the Hospital DBC, it is possible to con-
struct DBCs to implement specific domain-wise access poli-
cies. For example, insurance companies may allow access to
statistical data to other insurance companies. Based on the
specified domains, it is then possible to modify the domain-
specific blockchains and their smart contracts, to allow the
implementation of intra-domain access policies. Some useful
examples are described bellow.

1) Allow administrators of device manufacturers to
update/patch medical devices installed in the premises
of hospitals. For example allow manufacturers’ admin-
istrators to upload signed firmware updates that will
be then pulled by the devices. Since all actions will be
logged in the PBC, this will allow the manufacturers
to prove that they are compliant with vigilance regu-
lations, while the hospitals will be able to prove due
diligence for the maintenance of their equipment.

2) Allow insurance companies to access statistical hospi-
tal treatment data. Since all access is controlled and
logged by the PBC, the insurance companies and the
hospitals will be able to prove that the privacy of
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Figure 4.6: Distributing the decryption functionality among users and the KSSC

Suppose that a doctor on duty is requesting access to the medical records in all hospital

databases for a patient in emergency treatment. Since the ABE access matrix includes such a

policy, by combining the relevant keys, it is possible to perform the decryption. In our system,

the KSSC will first perform a partial decryption by applying the key KGIDA,onDuty(X ), and

then will send the result to the user to finish the decryption by using the key KGIDA,Doctor(X ).

The use of the MA CP-ABE [97] encryption scheme allows sequential data decryption.

By distributing the decryption process between the users and the KSSC when temporal

roles are involved, there is no need to refresh or update/revoke the temporal ABE keys, since

they are never given to the users. Finally, since the KSSC does not have full decryption
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capabilities (the ABE keys corresponding to the long-term attributes are not stored in the

KSSC), there is no need to fully trust the KSSC in relation to the decryption of the data.

Remark. The distribution of the decryption functionality between the users and the

KSSC could be extended for all accesses to data, to ensure that the users cannot bypass the

system in order to access the data out of band. This could be implemented by adding a

special role ‘System’ and then by modifying all access rules to include an AND policy with

this special role. The corresponding ABE keys for the ‘System’ role would be created by all

ABE key authorities for all their users and would be stored in the KSSC.

4.4.3 Transaction Flows

All the services provided by the proposed system can be described as transaction flows

between the users and the blockchains/smart contracts.
V. Malamas et al.: Hierarchical Multi Blockchain for Fine Grained Access to Medical Data

FIGURE 6. Access Control sequence diagram.

personal health records is preserved. Any modification
attempt in the allowed access at a domain level (e.g.
modify the relevant Access Control Smart Contract)
will also be logged and traced in the Proxy Blockchain,
which is controlled by all the stakeholders.

IV. IMPLEMENTATION DESIGN
Following the architecture design presented in Section III,
we will analyze the most important aspects of the imple-
mentation design. In particular we provide implementation
details related to: isolation and orchestration between the
blockchains (Section IV-A); caching and inter-blockchain
synchronization (Section IV-B); smart contract implementa-
tion (Section IV-C); and distributed ABE decryption (IV-D).
The testing environment of the proposed system, is set on a

local Ethereum-based private blockchain with six Smart Con-
tracts simulating the system functionalities. API’s are used
for the inter-blockchain communication and the whole infras-
tructure is placed inside dockers [55] in order to achieve iso-
lation and therefore increase the security among the untrusted
participants. Finally code has been developed in order to
simulate the multi-authority ABE with a two-step decryption
mechanism.

A. ISOLATION AND INTER-BLOCKCHAIN
COMMUNICATION
The proposed system is implemented in two Ethereum-based
blockchains with Proof of Stake (PoS) as the underlying
mechanism to achieve consensus. Different consensus mech-
anisms can be used as the two blockchains are fully inde-
pendent. Implementing isolation is an important security

requirement, to assure that no participant can intervene during
the processes of retrieving data or logging transactions in
the blockchain. Such intervention could lead to unauthorized
access to sensitive information or tampering logs before the
storing sequence is concluded. Isolation is based on the well
known Dockers technology that uses containers with Linux
Kernel features like namespaces and control groups. With
the use of namespaces, which act as a first layer of isolation,
processes running within a container cannot read or alter
processes running in another container or in the host system.
Furthermore, a container gets its own network stack, meaning
that a container does not get privileged access to the sock-
ets or interfaces of another container. It is worth noting that
from a security aspect, the use of Dockers does not solve
the problem of deprecated third party libraries even though
no functional problem will occur since the dependencies are
already included.
Docker orchestration is based on Kubernetes [56]. For

efficiency, Kubernetes adds redundancy to the system by
enabling the dynamic use ofDockers and by balancing system
resources with dynamic allocation. The proposed implemen-
tation is shown in Fig. 7. In order to control the functional
components of the system (e.g the API’s, Blockchains and
internal Databases), the system is placed inside a Kubernetes,
with the components implemented in separate Dockers. Five
Dockers are used to simulate the components described in
Section III. The first Docker includes an API for interacting
with users (front-end) and devices (back-end), a PBC node
and an Inter-blockchainAPI. This API acts as a global, unique
entry point and performs two main actions: receiving and
forwarding requests from users/devices and also balancing
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Figure 4.7: Access Control sequence diagram

We describe the workflows for two main services: (a) issuing user certificates and (b)

requesting access to data. A graphical representation is shown in Fig. 4.7. It is essential to

77



mention that the function sequence follows a timeline e.g. issuing a user certificate and the

relevant ABE keys precedes the data request access.

For our example we assume that a doctor A from hospital X has been issued a temporal

role on duty which is active within a specific time-frame. The doctor has been provided with

a key KGIDA,Doctor(X) according to his role, granting him access to the patients he treats in

hospital X, and also the hospital’s CA-Admin has added him to the updated TempACLX .

When the doctor request access to data for a patient of hospital B the TMSC will cross-

check the attributes according to the provided certAX and TempACLX and the PSC will

forward the query along with the verified attributes to the ACSC of the hospital blockchain

for policy enforcement. The query will be sent to the KSSC which will retrieve the two-

layered encrypted data from the database. The KSSC using the Temporal keys will proceed

to a partial decryption and then forwards them to the user who can then decrypt them with

the Attribute-based keys he owns.

4.5 Blockchains for Other Domains

As in the case of the Hospital DBC, it is possible to construct DBCs to implement

specific domain-wise access policies. For example, insurance companies may allow access to

statistical data to other insurance companies. Based on the specified domains, it is then

possible to modify the domain-specific blockchains and their smart contracts, to allow the

implementation of intra-domain access policies. Some useful examples are described bellow.

1. Allow administrators of device manufacturers to update/patch medical devices in-

stalled in the premises of hospitals. For example allow manufacturers’ administrators

to upload signed firmware updates that will be then pulled by the devices. Since all

actions will be logged in the PBC, this will allow the manufacturers to prove that they

are compliant with vigilance regulations, while the hospitals will be able to prove due

diligence for the maintenance of their equipment.
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2. Allow insurance companies to access statistical hospital treatment data. Since all

access is controlled and logged by the PBC, the insurance companies and the hospitals

will be able to prove that the privacy of personal health records is preserved. Any

modification attempt in the allowed access at a domain level (e.g. modify the relevant

Access Control Smart Contract) will also be logged and traced in the Proxy Blockchain,

which is controlled by all the stakeholders.
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CHAPTER 5

IMPLEMENTATION OF THE HIERARCHICAL MULTI BLOCKCHAIN
SYSTEM

Following the architecture design presented in Chapter 4, in this chapter we analyze the

implementation of Janus system in Malamas et al. [4] which is an integrated system for trust

management and access control, suitable for MA and MD environments based on HMBAC

model. The building blocks of the system are presented along with the most important

aspects of the implementation design related to: isolation and orchestration between the

blockchains.

The implementation of the system relies on the integration of various technologies. For

implementing the Frontend component, an Electron [102] application was developed, while

blockchains (PBC and DBCs) were developed on the Hyperledger Fabric platform, with Raft

[103] as the underlying consensus mechanism. The functionality is implemented through

Smart Contracts developed in Javascript (the full open-source implementation can be found

in Malamas et al. [104] as a reproducible artifact).

Janus orchestration is based on Kubernetes [105]. For security and design modularity, all

the components of the multi-blockchain infrastructure were developed in distinct Kubernetes

Pods, thus providing software isolation and containerization. In particular, each smart con-

tract, as well as the Frontend, the Inter-BC and the Database APIs are executed as separate

Pods. To secure the interaction between Pods, an Ingress API supports TLS termination

between the Pods.

To support the deployment of independent certificate infrastructures, each participating

stakeholder establishes and maintains a Certificate Authority (CA), responsible for issuing
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and revoking certificates for their users who interact with the system. To simplify the deploy-

ment, one CA is considered to be a mutually trusted authority and is responsible for issuing

certificates used by the system components (e.g., for Pods’ TLS connections). Although this

is not a strong requirement (e.g., it can be removed by applying cross-certification between

the stakeholders), it simplifies the deployment process and it is a reasonable assumption for

multi-domain environments. For example, in the healthcare sector, the ministry of health

could play the role of mutually trusted authority or the Ministry of Transportation for the

supply chain sector accordingly. In our system, we use Hyperledger Fabric Certificate Au-

thority (provided by the Hyperledger platform) to implement the CAs of the stakeholders.

Each CA runs as an instance for each entity in a separate Kubernetes Pod.

Hashicorp Vault [106] is used as an external application to issue, manage and store user

and authority credentials and keys. Although it is an off-the-shelf solution, we designed an

ABE plugin for Vault, written in Golang, to implement a two-step ABE decryption and

support the partial decryption process via the KSSC. Additionally, we run different Vault

instances, one for simulating user-side attribute key Vault storage and another for storing

domain attribute keys, which is accessible only by the KSSC of each Domain blockchain.

Finally, the Frontend and the Inter-BC APIs use an instance of RabbitMQ [107] software,

also executed in a separate pod, to temporarily store requests that remain pending in queues.

The Janus implementation design is depicted in Figure 5.1 and is described in detail in the

following subsections.
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Figure 5.1: The Janus implementation design based on the HMBAC architecture.

5.1 Frontend Application

Frontend, is a client-side Electron application, running locally by each user. The User

Interface (UI) implements the presentation layer through a web-based interface developed in

React.js. enables users to log into the system using their appropriate credentials and, upon

successful validation, to submit their requests. In addition, the Electron app implements

various support frontend services, developed in Node.js and running in the background at

the client side. The Blockchain-Related Mechanisms, encompass all the functionality required

for a user to communicate with the middleware. These mechanisms enable a user to create

and sign a query and commit it to generate a new transaction.

The Authentication Mechanisms supports user authentication to the system. To authen-

ticate the credentials (attribute certificates) of a user, the Certificate Authority (CA) of the

relevant stakeholder must be involved. The frontend authentication mechanisms pass the

credentials along with a signed challenge to the Frontend API, which communicates with

the relevant CA in order to issue a token for the user and establish communication. The

authentication mechanisms also support communication with the user’s Vault instance, se-
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curely storing the user-side attribute keys. Finally, Endpoints represent the communication

points between the UI and the Frontend API. Any traffic towards the API will be handled

by Kubernetes and the Ingress web server.

5.2 Frontend API

The main challenge of the Frontend component, is to implement a secure and authenti-

cated communication channel per stakeholder, allowing users to communicate with the PBC

via the Frontend application. In this way, users with valid credentials may login to the

Janus services, only via the organisation’s authenticated channel. To achieve this, for each

stakeholder, an instance is created including information about the node (Peer Information),

the corresponding stakeholder’s gateway (HF BC Gateway) and the instance of the CA (HF

Certificate Authority) where the stakeholder’s certificates are stored. Furthermore, Client-

related Authorization Mechanisms, generate the authentication token issued by the CA to

which the user belongs. This token is used to establish connections between the user and

the PBC.

When a user submits a request, the request is received by the Routes module and then

queued in the Main Queue until served. The Queue Handler is responsible for the storage

and retrieval of data to and from the Main Queue. When the Queue Handler authorizes the

request to be forwarded, the request is retrieved from the Main Queue, and Ticket Manager

generates a ticket for the user. Note that the Ticket Manager constantly checks for expired

tickets.

The Frontend API is a RESTful API developed in Node.js using the Express framework.

Since the Frontend API is running on a distinct Kubernetes Pod, its services are accessible

to other Pods via the Kubernetes-exposed ports. In order to expose services on the web, an

Ingress controller is used, and the communication is TLS encrypted. For increased security,

the TLS session is encrypted end-to-end between the Frontend application and the Frontend

API. Thus, TLS is terminated on the Frontend Pod itself instead of the Ingress controller of
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the API.

5.3 Inter-Blockchain API

The goal of the Inter-Blockchain API is to enable the interaction between the Proxy and

the Domain Blockchains. This however raises performance and management challenges at

the implementation level. Handling and prioritizing requests between different blockchains

is a difficult task, as it may result in a significant performance decrease or even system

failure. To deal with this issue we have implemented a novel queuing mechanism for Request

Handling and Prioritization. In addition, reaching management decisions for blockchain

actions that require the agreement of stakeholders at a domain or at a global level (e.g.,

adding/removing stakeholders or domains) requires a distributed and asynchronous decision

support mechanism. To achieve this, we have implemented an efficient voting management

mechanism, integrated into this layer. The implementation of these key Inter-Blockchain

mechanisms is described below. Note that the Inter-Blockchain API is also developed in

Node.js. Each stakeholder runs a different instance, executed on a distinct Kubernetes Pod,

while its services are accessible to other Pods via the Kubernetes-exposed ports.

(a) Request Handling and Prioritization To manage requests, the Inter-BC API,

utilizes two general types of queue. The Proxy Queue, for every request that needs to be

forwarded to the PBC and Domain Queues, for requests that need to be forwarded to one

or more DBCs. Every DBC has its own Domain Queue, and thus their number depends on

the number of DBCs. The request handling flow is illustrated in Figure 5.2 and is described

below.
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Figure 5.2: Inter Blockchain API Flow.

Step1: Listen and acquire. When an organization (Stakeholder instance in the Inter-

Blockchain API) receives an event, it first verifies if it is the intended recipient. Next, it

forwards the user query, say Qi, to Queue Manager in order to temporarily save the message

and process it later when it is ready for consumption.

Step2: Get the request Qi and forward it to the relevant DBC. When it is time

for a request Qi to be consumed by the appropriate DBC, the Queue Manager receives it

(from the relevant Domain Queue of the Inter-BC API) and forwards it to the instance of the

organization to which the requesting user belongs. The organization instance then forwards

Qi to the DBC of which the organization is a member. Upon completing the request, the

response that was received from the DBC is then, again, sent to the Queue Manager in order

to queue the new message and consume it, i.e., forward the response to the PBC when ready.

The Queue Manager also sends an Acknowledgment message (ACK) to RabbitMQ to inform

it that the message was successfully consumed. RabbitMQ receives the ACK and removes
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the message from the Domain Queue.

Step3: Get the response Ri and forward it to the PBC. When the response Ri

to the query Qi is received from the relevant DBC, it is ready to be consumed. The Queue

Manager receives it through Proxy Queue and forwards it to the appropriate organization

instance. The organization then receives the response and forwards it to the PBC to continue

processing the response. When forwarding Ri back to the PBC, the Queue Manager sends

an ACK to RabbitMQ to inform it that the message was successfully consumed. RabbitMQ

receives the ACK and removes the message from the Proxy Queue. To maintain the flow

healthy and avoid Denial-of-Service errors or attacks on the Proxy BC, a Queue Supervisor is

utilized. The Queue Supervisor constantly monitors the Proxy Queue for spikes/congestion

in the network. As shown in Table 5.1, we define five types of congestion, each of which is

chosen based on the current level of congestion (CL).

Table 5.1: Types of congestion.

Congestion Types

Scale Congestion Level (CL) Monitor Interval Throttle Multiplier

Normal 2 ≤ CL 5 s 1

Low 1 ≤ CL < 2 4 s 0.7

Medium 0.5 ≤ CL < 1 3 s 0.4

High 0.3 ≤ CL < 0.5 2 s 0.1

Extreme CL < 0.3 1 s 0.01

Depending on the type of congestion, the system adjusts, in order to handle requests,

avoiding DoS, and assuring that all requests will be served. The Congestion Level CL is

calculated using the formula:
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CL =
max#ConcurrentRequests

#QueuedRequests

This means that, for example, if the PBC receives 1500 requests and accepts 400 con-

current requests, then 1100 of them will be pending in queue. The congestion level is then:

CL = 400/1100 = 0.36, which is High according to Table 5.1. The system willlower monitor

interval from 5 s to 2 s, and throttle requests sent from IBC-API to PBC will be recalculated

with multiplier 0.1. If the default value is 400, then 40 concurrent requests will be sent until

the PBC is discongested.

(b) Voting Management. To reach management decisions that require agreement be-

tween stakeholders, an asynchronous voting mechanism is implemented through smart con-

tracts (described in Section 5.4 below). The Inter-Blockchain API enables the execution of

this asynchronous model through the following components. As each stakeholder runs an in-

stance of the Inter-Blockchain API, it deploys an instance of an Event Manager and a Voting

Manager. The Event Manager continuously checks for new events related to active voting

processes and expired elections. The Voting Manager fetches all the active elections related

with the relevant stakeholder running the Inter-Blockchain instance, and it constantly awaits

to receive relevant data (e.g., new votes). It also keeps a log of the submitted votes for each

Election ID, and communicates with the PSC chaincode when majority is reached or time

expiration occurs for a particular election.

5.4 Smart Contracts Implementation

As described in Chapter 4, the blockchain services are implemented through smart con-

tracts. Five smart contracts utilize all system’s functionality, at both the global and domain

level. The PSC, TMSC, and LSC are stored at the Proxy Blockchain and shared among all

stakeholders, while the ACSC and KSSC are stored at each Domain Blockchain and provide
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domain-specific functionality (see the relevant artifacts provided in [104] for details). Fol-

lowing the system design, smart contracts are able to interact with each other through the

relevant APIs, as depicted in Figure 5.1. In particular, a logical connection between users

and the PSC is achieved through the Frontend API while a similar connection among the

Proxy BC’s smart contracts and the Domain BCs is achieved through the Inter-BC API.

In the following paragraphs we present the technical analysis for each smart contract along

with the main services supported.

Proxy Smart Contract (PSC), integrates the functions for user validation, stakehold-

ers’ voting and request forwarding. For user validation, the validateUser() function takes as

input an array of userCerts provided by the user at login, and triggers the getUserV alidation()

function stored on the TMSC, in order to validate the certificate(s) provided. Based on the

outcome of the validation, the PSC returns the validated user’s roles (short- and long-term).

The voting mechanism is a crucial component of the system. Through this mechanism,

stakeholders can reach management decisions including: a) adding/removing domains (and

the relevant DBCs); b) adding/removing stakeholders to an existing DBC; c) modifying a

cross-domain access policy; and d) giving access to logs for external auditors. Other processes

that require broader consent can also be supported. For each stakeholder, the stakeholder

administrator or a delegated external auditor may invoke the majorityConsentInit() func-

tion to propose a new election. It first checks if another election with the same payload

is active and then calculates the ElectionID based on the provided payload. A new Elec-

tion instance is created and added to the ledger and also a ballot for each stakeholder.

With majorityClientV ote(), the administrator of each stakeholder votes in an Election by

signing with the organizations’ private key. The updateElection() function checks if the

Election has been finalized based either on the predefined majority rules or the timeout set.

The requestAccess() function handles two processes. First, it constructs the requestDetails,

which is sent to the LSC for logging. Then, sends a requestForward event to the Inter-BC

API to complete the request.
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Trust Management Smart Contract (TMSC), contains the functions that support

trust management services. The initLedger() function is responsible for handling the cer-

tificates and revocation lists of each stakeholder. It takes an initPayload argument and

appends the corresponding data to the PBC. Additionally, it creates empty Access Control

List (ACL) files for each organization. The getUserV alidation() function takes as input

either an ACL file (to verify temporal roles assigned to users) or a certificate (to verify

long-term user roles). Note that users may have obtained certificates issued by different

stakeholders, provided that all certificates of a user include the same unique global identifier

(GID). In addition, it allows for the efficient revocation of user access through attribute cer-

tificate revocation lists issued by the relevant authorities, instead of applying costly attribute

key revocation techniques. Finally, it communicates with the LSC in order to record the

transaction on the blockchain. To allow for interoperability of credentials issued by different

stakeholders, all root certificates of all stakeholders are stored in the PBC. For the addi-

tion or removal of CAs, the functions addCA() and removeCA() are triggered accordingly.

Note that both functions require agreement between current stakeholders through the vot-

ing mechanism. Only after agreement has been achieved through the voting mechanism, the

function updateTrustAnchors() will update the stakeholders’ certificates in the PBC. The

majorityUpdate(), invoked by the PSC, is called when an election ends (either by majority

agreement or by timeout) to inform the TMSC.

Access Control Smart Contract (ACSC) main function is to enforce the predefined

access policy when users request access to data stored within the domain. The Inter-BC

API forwards the request and triggers the policyEnf() function. Using the data ID and the

roles provided in the payload, it determines whether or not to grant access and forward the

request to the KSSC.

Logging Smart Contract (LSC), enforces single source of truth in our system. For

each data access request, the requestLog() function is automatically triggered by the requestAccess()

function of the PSC. Two main processes are supported by the LSC, registration and re-
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trieval of the logs. Log registration is utilized with the functions: updateLog(), for updating

the details of uploaded stakeholders’ certificates and temporal ACLs; updateRequestLog()

for updating existing request records; and majorityUpdate() for updating election records.

The getUserRequestLog() function implements log retrieval for users who want to access

their request record. The retrieveLogInit() and retrieveLogs() functions are utilized for

starting an access-granting Election, when an auditor requests access to the logs stored on

PBC and the log retrieval accordingly.

Key Store Smart Contract (KSSC), enforces the single point of access property

in our system in the following way. As described in Section 4.4.2, data are MA-CP-ABE

encrypted, based on predefined access policies, which are modified to additionally require

decryption with the domain attribute key. The KSSC is the only component that may

access the domain’s attribute private key. The requestData() function is invoked by the

ACSC to initiate the process, only after the user’s roles have been verified and connects to

the Database API to forward the data ID of requested data.

5.5 Distributed ABE Decryption Implementation

As described in Section 4.2, our goal is to cryptographically enforce a single point of entry

for the system users; which means that even if a user has all the roles required for accessing

some data, an extra layer of encryption will prevent access to the data outside the Janus

system. The challenge, from an implementation perspective, is to create a cryptographic

mechanism that will force users to access the data only through the application while ensuring

fined-grained access according to predifined access policies and at the same time will remain

resistant to collissions. To achieve this, we modified the implementation of the MA-CP-ABE

scheme of [97], by distributing the decryption functionality between the user and the domain

blockchain. We used as a basis the Python implementation of the original scheme in the

Charm encryption library.

Since directly applying ABE encryption and decryption is not efficient, we have applied
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a hybrid encryption approach, where the data are symmetrically encrypted, while the sym-

metric keys are ABE encrypted. In each stakeholder database, each data item, say di, is

initially encrypted with a distinct symmetric (AES) key ki as: ci = AES(di, ki). Then,

each data encryption key ki is encrypted by ABE, based on all access policies that allow

access to the particular item, which are extended to include the domain attribute key of the

relevant domain. For example, assume that personal information di of a patient should be

available to the patient’s family doctor or any doctor in the case of emergency treatment of

the patient. In that case, the key ki would be encrypted by ABE as follows:

e1=Enc
(
ki,P,GP, {PKdoctor, PKfDoctor, PKH}

)
e2=Enc

(
ki,P,GP, {PKdoctor, PKonDuty, PKH}

)
Each symmetrically encrypted data item ci is sent to the DBC through the Database

API, along with all ABE encryptions of ki, in this example e1, e2. The KSSC has access to

the domain’s vault, where the hospital domain attribute key pair PKH , SKH is stored. Using

SKH it will generate on-the-fly, the hospital domain attribute key for the requesting user,

i.e., KU, hospitals = KeyGen(GIDU,GP, attr:hospitals, SKH) and use it to partially decrypt

the data. The user will be able to actually decrypt the data, only if: (i) the KSSC has

partially decrypted the data with the domain attribute key and (ii) the user has the relevant

attribute keys for (at least) one of the above access policies, i.e., {KU, doctor, KU, fDoctor} or

{KU, doctor, KU, onDuty}.

We implemented the MA-ABE decryption scheme of [97] in Go as a Hashicorp Vault

plug-in and integrated this into KSSC. The KSSC may trigger sysDecrypt(), executed in

the domain’s Vault instance, which generates the domain attribute key for a given GID and

uses it to perform partial ABE decryption. In this way, the domain attribute key is accessible

only for requests that have already been authorized by ACSC. At the same time, it is never

given to users, to prevent off-system data access.
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5.6 Isolation and Inter-Blockchain Communication

Implementing isolation is an important security requirement, to assure that no participant

can intervene during the processes of retrieving data or logging transactions in the blockchain.

Such intervention could lead to unauthorized access to sensitive information or tampering

logs before the storing sequence is concluded. Isolation is based on the well known Dockers

technology that uses containers with Linux Kernel features like namespaces and control

groups. With the use of namespaces, which act as a first layer of isolation, processes running

within a container cannot read or alter processes running in another container or in the host

system. Furthermore, a container gets its own network stack, meaning that a container does

not get privileged access to the sockets or interfaces of another container. It is worth noting

that from a security aspect, the use of Dockers does not solve the problem of deprecated

third party libraries even though no functional problem will occur since the dependencies

are already included.

Docker orchestration is based on Kubernetes [108]. For efficiency, Kubernetes adds re-

dundancy to the system by enabling the dynamic use of Dockers and by balancing system

resources with dynamic allocation. The proposed implementation is shown in Fig. 5.3.

In order to control the functional components of the system (e.g the API’s, Blockchains

and internal Databases), the system is placed inside a Kubernetes, with the components

implemented in separate Dockers. Five Dockers are used to simulate the system components.

The first Docker includes an API for interacting with users (front-end) and devices (back-

end), a PBC node and an Inter-blockchain API. This API acts as a global, unique entry

point and performs two main actions: receiving and forwarding requests from users/devices

and also balancing the rate at which data is forwarded to the PBC. The inter-blockchain

API takes as input the output of the PBC and routes the requests to the appropriate DBC.

It also works as a throttle to control the rate of data send to the DBCs and keep the flow

constant.
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Figure 5.3: Isolation and Inter-Blockchain communication

Each stakeholder runs two nodes, one for participating in the PBC and one for the

relevant DBC. The nodes of each DBC (Hospital, Manufacturer and Insurance Company)

are also placed in separate Dockers. All these lower layer blockchains are connected with

Docker 1 (the PBC) through the inter-Blockchain API, while they are connected with the

physical databases through the Database API placed in Docker 5. It is worth mentioning

that using a single database API for all the DBCs does not pose security issues due to the

isolation achieved with the use of dockers.
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CHAPTER 6

SECURITY AND PERFORMANCE ANALYSIS

Since HMBAC is targeted to fine-grained access for multi-auhority, multi-domain envi-

ronments, a practical implementation must be scalable to the number of authorities and

domains. First, we analyze the scalability of the system in terms of system management.

Then, we benchmark the performance of Janus for different configurations and access request

rates. All measurements can be reproduced through the Janus github repository (Bench-

marks are fully reproducable via an automated script – see the ‘System Benchmark’ section

of the ‘readme’ document on Janus repository [104]).

6.1 Security Analysis

Threat model. We consider both internal and external attackers. Internal attackers

may be compromised nodes of the HMBAC system or compromised users. Compromised

nodes may attempt to illegally modify the access policies or the domain’s stakeholders’ set.

Compromised users may attempt to bypass access control policies and gain unauthorized

access. External attackers may attempt to gain unauthorized access to the system.

Assumptions. We shall assume in our analysis that the underlying software compo-

nents such as the orchestration engine (Kubernetes) and the isolation mechanisms (Pods and

Hashicorp Vault) are trusted. Instead of requiring a fully trusted authority, we relax our

trust assumptions to a majority of trusted stakeholders for each domain. We assume that the

majority of the participants in the consensus and voting protocols behave in a trusted way.

We assume that the encryption and authentication mechanisms used (AES and MA-ABE)
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are secure (cannot be compromised by a probabilistic polynomial-time Turing machine). Fi-

nally, we assume that the user credentials are securely managed on the user side. As the

main goal of HMBAC is to provide access control, we will first examine security against

unauthorized access attacks and then other security characteristics of the proposed system.

6.1.1 Secure Data Access

The security of HMBAC-controlled data access is based on several security building blocks

(as detailed in Section 4.3). First, data are encrypted with ABE with the keys assigned to

users based on their roles, by applying the MA-ABE scheme in [97]. Then, an additional

layer of ABE encryption is performed, with an attribute key assigned to the Key Store

Smart Contract (KSSC). This is implemented by applying an additional ‘AND’ rule on top

of the predefined encryption policy. This forces all requests to be performed via the HMBAC

system; otherwise, the data retrieved by users will still be partially encrypted. The BC-side

attribute keys are securely stored in a Vault and are accessible only by the KSSC.

Besides the encryption layer, the user must be authenticated by the system to send

queries, and also by the user-side Vault to access the attribute keys, to decrypt the received

partially encrypted data. System authentication is performed through the proxy blockchain

using the Trust Management Smart Contract (TMSC). An authenticated user may then

send a data access request, which in turn will be validated at the domain blockchain layer,

via the Access Control Smart Contract (ACSC), in order to verify that the user has the re-

quired roles based on the access policy. The KMSC performs the required partial decryption.

Finally, users need access to their attribute certificates, issued by the relevant stakeholder-

s/authorities, to verify their roles with the ACSC (Note that the attribute certificates may

also be stored in a user-side Vault for protection).

To formalize our analysis of unauthorized access attacks, we use attack trees as in [109].

Attack trees [110] is a conceptual design used to describe attacks on system assets. We

distinguish two types of attack nodes, and-nodes and or-nodes : the children of an and-node

should all be executed to reach the goal of their parent, while any one of the children of an
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or-node needs to be executed to reach the goal of its parent. An attack on the system is

then modeled by a multi-set of compromised nodes.

Definition 4. Let C be a set of attack components of a system. An attack is a finite non-

empty multi-set of C and an attack suite is a finite set of attacks. Denote the universe of

attacks by A = M+(C) and the universe of attack suites by S = P(A).

The attack tree for unauthorized data access attacks in HMBAC is shown in Figure 6.1.

Our goal is to analyze all possible attack paths for an adversary, external and/or internal,

to compromise the access control mechanism and gain unauthorized data access. As defined

in our threat model, accessing the data in ways that are outside the HMBAC system is out

of scope, e.g., accessing the data before they are ABE encrypted or before their entry into

the system.

To construct the attack tree, first, we observe that unauthorized data access requires

an adversary to concurrently bypass the security mechanisms that: validate a data access

query posted to the PBC (denoted by node A), and access all the attribute keys used to

encrypt the data (denoted by node B). Note that despite the actual attack that may be

applied to achieve the above conditions, simultaneously achieving the attack components A

and B are necessary and sufficient conditions for any successful attack on unauthorized data

access against an HMBAC system. Then for each level-1 node, we continue our analysis

of identifying all possible sets of system components that must be successfully attacked to

achieve each goal of the relevant parent node. The same holds for all nodes of the attack

trees, including the leaf nodes.
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Figure 8. Unauthorized data access attack tree for the HMBAC architecture.

Note that for all nodes, including leaf nodes, we did not examine the actual attack
techniques that may be used to achieve the relevant goal. For example, for node C there exist
various implementations of attacks to obtain user credentials for the HMBC service, such
as phishing, spoofing, or brute force. The goal of the attack tree analysis is to exhaustively
list all possible sets of necessary attack steps (i.e., concurrently compromised security
components) to succeed in the attack.

For this tree, the set of identified attack components (nodes) is:
C = {A, B, C, D, E, F, G, H, I, J, K, L}, with seven leaf nodes (for clarity, the leaf nodes

are underlined).
Leaf nodes are vulnerable components that an attacker can exploit to initiate an attack.

Any attack suite must contain such nodes, as well as the target node T.
We examine the attack suites of the unauthorized data access attack tree of the HM-

BAC, with respect to the successful attack steps required by an adversary. We consider the
following cases:

Case 1. Fully compromised user: all user credentials (BC credentials or PBC access (C or D),
user-side Vault credentials (G or H) and attribute certificates (K)) are compromised. We get
the attacks: {C, A}, {D, A}, {G, E, B}, {H, E, B} and {K, I, F, B}, that when combined give
us the attack suites:

S1cgk = {C, A, G, E, K, I, F, B, T},
S1dgk = {D, A, G, E, K, I, F, B, T},
S1chk = {C, A, H, E, K, I, F, B, T},
S1dhk = {D, A, H, E, K, I, F, B, T}.

The attacker will then be able to post to the system all queries available to the target user.
However, this attack does not leak data from other users.

Case 2. Partially compromised user: at least one of the required user credentials C, D, G, H
and K is secure. In this case, from the attacks: {C, A, G, E}, {D, A, G, E}, {C, A, H, E},
{D, A, H, E}, and {K, I, F}, {L, I, F}, {J, F}, we obtain the attack suites:

S2cgk = {C, A, G, E, K, I, F, B, T},
S2cgl = {C, A, G, E, L, I, F, B, T},
S2cgj = {C, A, G, E, J, F, B, T},
S2dgk = {D, A, G, E, K, I, F, B, T},
S2dgl = {D, A, G, E, L, I, F, B, T},
S2dgj = {D, A, G, E, J, F, B, T},
S2chk = {C, A, H, E, K, I, F, B, T},
S2chl = {C, A, H, E, L, I, F, B, T},
S2chj = {C, A, H, E, J, F, B, T},
S2dhk = {D, A, H, E, K, I, F, B, T}.
S2dhl = {D, A, H, E, L, I, F, B, T},
S2dhj = {D, A, H, E, J, F, B, T}.

Figure 6.1: Unauthorized data access tree for the HMBAC architecture

Note that for all nodes, including leaf nodes, we did not examine the actual attack tech-

niques that may be used to achieve the relevant goal. For example, for node C there exist

various implementations of attacks to obtain user credentials for the HMBC service, such

as phishing, spoofing, or brute force. The goal of the attack tree analysis is to exhaus-

tively list all possible sets of necessary attack steps (i.e., concurrently compromised security

components) to succeed in the attack.

For this tree, the set of identified attack components (nodes) is:

C = {A,B,C,D,E, F,G,H, I, J,K, L}, with seven leaf nodes (for clarity, the leaf nodes

are underlined).

Leaf nodes are vulnerable components that an attacker can exploit to initiate an attack.

Any attack suite must contain such nodes, as well as the target node T .

We examine the attack suites of the unauthorized data access attack tree of the HM-

BAC, with respect to the successful attack steps required by an adversary. We consider the

following cases:

Case 1. Fully compromised user : all user credentials (BC credentials or PBC access (C or

D), user-side Vault credentials (G or H) and attribute certificates (K)) are compromised.
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We get the attacks: {C,A}, {D,A}, {G,E,B}, {H,E,B} and {K, I, F,B}, that when com-

bined give us the attack suites:

S1cgk = {C,A,G,E,K, I, F,B, T},

S1dgk = {D,A,G,E,K, I, F,B, T},

S1chk = {C,A,H,E,K, I, F,B, T},

S1dhk = {D,A,H,E,K, I, F,B, T}.

The attacker will then be able to post to the system all queries available to the target user.

However, this attack does not leak data from other users.

Case 2. Partially compromised user : at least one of the required user credentials C,D, G,H

and K is secure. In this case, from the attacks: {C,A,G,E}, {D,A,G,E}, {C,A,H,E},

{D,A,H,E}, and {K, I, F}, {L, I, F}, {J,

F}, we obtain the attack suites:

S2cgk = {C,A,G,E,K, I, F,B, T},

S2cgl = {C,A,G,E, L, I, F,B, T},

S2cgj = {C,A,G,E, J, F,B, T},

S2dgk = {D,A,G,E,K, I, F,B, T},

S2dgl = {D,A,G,E, L, I, F,B, T},

S2dgj = {D,A,G,E, J, F,B, T},

S2chk = {C,A,H,E,K, I, F,B, T},

S2chl = {C,A,H,E, L, I, F,B, T},

S2chj = {C,A,H,E, J, F,B, T},

S2dhk = {D,A,H,E,K, I, F,B, T}.

S2dhl = {D,A,H,E, L, I, F,B, T},

S2dhj = {D,A,H,E, J, F,B, T}.

Again, these attacks only affect the data of the compromised users.
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Case 3. Fully compromised PBC (D) and DBC (L). Here, unauthorized queries are posted

due to a compromised Proxy BC (bypassing the TMSC), while access to the BC-side keys

assumes a compromised domain BC (bypassing the ACSC control and utilizing the BC-side

attribute keys via the KSSC). However, a successful attack suite requires additional access

to the user attribute keys, either by compromising the user-side Vault (H) or by getting the

user credentials (G). We obtain the attack suites:

S3dhl = {D,A,H,E, L, I, F,B, T},

S3dgl = {D,A,G,E, L, I, F,B, T}.

Case 4. Fully compromised Vault. Here both the user- side and BC-side Vaults (H and J)

are compromised. Again, a successful attack requires additionally a partially compromised

user (C) or Proxy BC (D). We obtain the attack suites:

S4chj = {C,A,H,E, J, F,B, T},

S4dhj = {D,A,H,E, J, F,B, T}.

Case 5. All entities partially compromised. Here the user credentials/certificates (C,K),

blockchains (D,L) and vault storage (G,H, J) are all partially compromised. We get the

attack suites:

S5chl = {C,A,H,E, L, I, F,B, T},

S5dgj = {D,A,G,E, J, F,B, T},

S5dhk = {D,A,H,E,K, I, F,B, T}.

We now have:

Proposition 1. Compromised user credentials (either fully or partially) cannot affect the

data access of other users.

Proof. This follows directly from Cases 1 and 2.
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Proposition 2. The system can resist unauthorized data access even if both the proxy and

the domain blockchains are compromised, provided that the user attribute keys are secure.

Proof. This follows directly from Case 3.

Proposition 3. The system can resist unauthorized data access if at least one of the system

entities (users, blockchains, key Vaults) is secure.

Proof. This follows directly from Cases 4 and 5.

6.1.2 Secure Blockchain Management

The security of critical management decisions that could compromise the system’s se-

curity relies on (i) the voting mechanism implemented on the Proxy blockchain, (ii) the

blockchain consensus mechanism, (iii) the transaction replication implemented by all the

blockchains, and (iv) the execution isolation supported by the use of Kubernetes and inde-

pendently managed Pods. As explained in Section 6.2 the voting mechanism, implemented

by the PSC, enables stakeholders to make management decisions. Any stakeholder may

start an election. Voters’ eligibility and vote integrity are ensured since the private key of a

stakeholder is required to sign a vote for an election. Different thresholds and eligible voters

can be defined for different elections.

The blockchain consensus mechanism is also related to secure system management. Since

smart contracts in both blockchain layers implement critical functionality of the system,

modifying those smart contracts either at the PBC or the DBCs could compromise the

security of policy enforcement. However, since smart contracts are implemented in the

initial blocks of each blockchain, their integrity is strongly protected.

Since the underlying consensus mechanism of Fabric (Raft) does not support Byzantine

tolerance, a malicious leader might attempt to forge the blockchain(s) logic by adding modi-

fied smart contracts, e.g., to compromise the access policy. However, such an attack would be

easily detected by the other stakeholders because of the blockchain replication mechanism

and the lack of integrity (valid signatures by the stakeholders’ majority) of the modified
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smart contracts. Finally, the encapsulation of all the distributed components in replicated

independent Pods, executed by different stakeholders and orchestrated by Kubernetes, also

protects system integrity.

6.1.3 Secure Key Storage/Management

The use of Hashicorp Vault provides secure key storage. For each DBC, an independent

vault instance is used to store and securely access the domain’s attribute key. In addition,

users may also deploy vault instances to protect their attribute keys and attribute certificates.

Finally, certificate management at the stakeholder level is implemented by independent in-

stances of Hyperledger Fabric CA running on different Pods. These are accessible by the

TMSC through encrypted and authenticated Kubernetes ports.

6.2 System Scalability and Management

The modular design of the HMBAC architecture allows for scalable and efficient system

management. Adding or removing users in Janus is handled independently by each organiza-

tion (stakeholder). Each organization is able to issue attribute certificates and give access to

the corresponding attribute keys to allow its users to: (i) post queries that will be accepted

by the ACSC, based on the user’s roles; and (ii) fully decrypt a response that has been

partially decrypted by the KSSC. Adding/removing stakeholders within an organization, or

changing the access policy of the domain, is handled at the domain level. Due to the use

of independent DBCs per domain, managing functions within a domain will not cascade to

affect the other domains. The use of the voting mechanism enables setting up elections at a

domain level and in addition to define a majority threshold at the domain level for decisions

affecting a particular DBC. Finally, adding new DBCs will require a majority vote by all

stakeholders and will affect all domains, as this will require updating the smart contracts in

the PBC.
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6.3 Benchmarks

We conducted our evaluation on two different hardware configurations with varying re-

sources, using the Linode cloud infrastructure. As depicted in Table 6.1, in the first H/W

setup (S1), an AMD EPYC 7501 32-core processor @2GHz with 64 GB RAM is used. The

second H/W setup (S2) is an environment with higher resources, based on an AMD EPYC

7702 64-core processor running at @2GHz with 512 GB RAM. As our implementation Janus

utilizes eight (8) Kubernetes pods, where each Pod corresponds to an independently man-

aged server, setup S1 (resp. S2) corresponds to four cores/8GB RAM (resp. 8 cores/64GB

RAM) per server.

Table 6.1: H/W specs for testing.

CPU (# Cores) RAM (GB)

Total Per Pod Total Per Pod

Setup S1 32 4 64 8

Setup S2 64 8 512 64

Both sets of configuration run Ubuntu 20.04.1 LTS OS and Kubernetes 1.20.11 was used

for container orchestration. The multi blockchain components were developed in Hyperledger

Fabric 2.4 beta with Raft as the underlying consensus algorithm and also fabric-ca-client

2.2.6, fabric-network 2.2.9 and fabric-gateway 0.1.0 were used for establishing communica-

tions.

Following the two access rule examples for the medical ecosystem, mentioned in Section

4.3, we created both inter-domain queries (e.g., “Retrieve the medical record for patient P

from all hospital databases” and cross-domain queries (e.g., “Update the firmware for medical

device D of manufacturer M at all hospitals”). Each database was running on a separate

Pod and data were ABE encrypted. The initial ABE decryption was performed by the KSSC

running in the relevant BC domain of the requesting user, as described in Section 5.5.
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We measured the average end-to-end query response time for various sizes of queries,

ranging from 2 up to 300 concurrent queries (req/sec), with an approximately even portion

of inter-domain and cross-domain queries. Fig. 6.2 shows the average execution time for all

scenarios tested. In addition, the table presents the time needed for the main subprocesses

of the query–response process.
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Table 5. Detailed performance evaluation for various scenarios of concurrent requests and h/w
setups (time in s).

# of Concur. Requests 2 10 20 40 60 80 100 200 300

H/W Setups S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Ticketing 0.004 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.003 0.005 0.025 0.008 0.018 0.015 0.015 0.024 0.032 0.02
Endorse 0.08 0.07 0.25 0.12 0.24 0.17 0.16 0.23 0.22 0.15 0.48 0.55 0.44 0.18 0.55 0.3 0.82 1.44
Commit 0.006 0.007 0.006 0.004 0.005 0.005 0.006 0.005 0.005 0.005 0.008 0.008 0.008 0.025 0.010 0.010 0.014 0.020
BC_RTT 2.19 2.2 2.41 2.22 2.47 2.07 2.95 2.49 3.19 2.76 3.33 2.74 4.22 3.76 6 4.63 8.09 5.62
Average 2.27 2.27 2.67 2.35 2.72 2.25 3.12 2.73 3.43 2.92 3.85 3.32 4.69 3.98 6.58 4.97 8.96 7.12

Min 2.26 2.27 2.58 2.28 1.88 2.1 2.02 2.92 1.62 1.61 1.88 1.98 2.04 2.45 1.74 1.54 1.65 2.33
Max 2.29 2.27 2.72 2.39 2.91 2.58 3.88 4.05 4.86 3.66 5.14 5.31 5.71 5.22 9.2 7.84 12.77 10.39

Ticketing, refers to the time required by the system to issue a ticket for a user. Endorse,
is the time it takes for peers to receive a request and sign the result. Commit, is the time
required by the orderer nodes to create a new block. Finally, BC_RTT is the time needed
to execute all the required BC functions (smart contracts) and inter-BC communication.
In addition, the minimum and maximum time required for a query is presented in each
scenario, to exhibit the deviation from the average time. As expected, the most resource-
intensive process is BC_RTT, which encompasses all subsystems, from Proxy BC up to
the retrieval of encrypted data from the independently managed databases, as well as the
partial decryption process using the domain keys.

However, the overall time increase is linear (see Figure 7), which indicates the scalabil-
ity of the HMBAC design.
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Figure 7. System Efficiency.

Adding new authorities will increase the number of users and, consequently, the
number of requests. At the same time, it will also increase the overall system resources,
as the new authorities will devote resources to become stakeholders of the Proxy and of
their Domain blockchain. The system’s performance is linearly dependent on the available
resources, which means that as resources increase, the overall time decreases. Note that
in both system setups the system presents zero errors per requests, due to the queuing
module integration.

6. Security Analysis

Threat model. We consider both internal and external attackers. Internal attackers
may be compromised nodes of the HMBAC system or compromised users. Compromised
nodes may attempt to illegally modify the access policies or the domain’s stakeholders’ set.
Compromised users may attempt to bypass access control policies and gain unauthorized
access. External attackers may attempt to gain unauthorized access to the system.

Assumptions. We shall assume in our analysis that the underlying software compo-
nents such as the orchestration engine (Kubernetes) and the isolation mechanisms (Pods
and Hashicorp Vault) are trusted. Instead of requiring a fully trusted authority, we relax
our trust assumptions to a majority of trusted stakeholders for each domain. We assume

Figure 6.2: Deatailed performance evaluation for variouys scenarios of concurrent requests

and h/w setups (time in s)

Ticketing, refers to the time required by the system to issue a ticket for a user. Endorse,

is the time it takes for peers to receive a request and sign the result. Commit, is the time

required by the orderer nodes to create a new block. Finally, BC RTT is the time needed

to execute all the required BC functions (smart contracts) and inter-BC communication. In

addition, the minimum and maximum time required for a query is presented in each scenario,

to exhibit the deviation from the average time. As expected, the most resource-intensive

process is BC RTT, which encompasses all subsystems, from Proxy BC up to the retrieval of

encrypted data from the independently managed databases, as well as the partial decryption

process using the domain keys.

However, the overall time increase is linear (see Figure 6.3), which indicates the scalability

of the HMBAC design.
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Figure 6.3: System Efficiency.

Adding new authorities will increase the number of users and, consequently, the number

of requests. At the same time, it will also increase the overall system resources, as the

new authorities will devote resources to become stakeholders of the Proxy and their Domain

blockchain. The system’s performance is linearly dependent on the available resources, which

means that the overall time decreases as resources increase. Note that in both system setups,

the system presents zero errors per requests, due to the queuing module integration.
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Other security features
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CHAPTER 7

IMPLEMENTING DISTRIBUTED SELF-SOVEREIGN IDENTITY
MANAGEMENT

The implementation of Self-Sovereign Identity (SSI) within the Janus multi-blockchain

platform represents a pivotal advancement in managing the identities of users and devices.

This SSI component is meticulously designed to ensure robust, secure, and user-centric

identity management. It supports selective disclosure, allowing identity holders to share only

the minimum necessary information, thereby enhancing privacy and control. Additionally,

the component integrates Zero-Knowledge Proof (ZKP) capabilities, enabling the verification

of certain attributes, such as age, without disclosing the underlying information, such as the

date of birth.

Beyond the basic functions of issuing and presenting credentials, the SSI component

in Janus extends its utility to proactive identity management. It includes features such as

notifying holders about revoked credentials and facilitating secure message exchanges. These

capabilities ensure that the Janus platform not only provides a secure and efficient identity

management system but also fosters enhanced interoperability and user engagement in a

multi-authority and multi-domain environment.

7.1 SSI Component Architecture Design

In the proposed architecture we consider that the process of authentication starts when

a user or a authority gets a new device and ends when the device can be treated as an

authorized device and can securely exchange data with the system. For this purpose, a
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unique public/private key pair is certified for each device, to secure communications between

devices, the IoT gateway or the central system.

High level description of the proposed architecture. The proposed architecture

gives the identity holder the ability to use their digital wallet and authenticate their iden-

tity using their credentials. The main concept behind decentralized identity applications is

the Verifiable Credential (VC) model, which creates trust in these applications. The most

important feature of verifiable credentials and the one that makes this technology suitable

for our implementation, i.e., the authentication of IoT devices, is that credentials and their

presentations are not simple plain text documents. They are cryptographically built to con-

tain all the credentials’ basic key attributes (who issued the credential, if the credential data

hasn’t been changed, etc.). The presented credentials’ verification uses data written to a

distributed immutable ledger (blockchain), making forgery practically impossible.

The system consists of six types of entities. Distributed Ledgers, which are essentially

distributed databases that contain all transactions in the network. Gateways (GW), which

are middle devices between end devices and authority (e.g. smartphones, tablets, IoT).

Manufacturers of the devices that are used as Gateways in the network called Gateway

Vendors, IoT Devices, end devices that record and transmit data, Device vendors describing

the manufacturers of these devices. Authorities that participate in the network and collect

data from the devices.

Authentication process: Before a device authenticates to the system there are certain

steps that need to take place, as seen in Figure 7.1. The GW’s and Device’s vendors issue

credentials to the GW and Device accordingly, register their DIDs and publish the needed

Credential Schemas (CS) to the ledger. The GW publishes a CS to the ledger for later use

in the credential issuance procedure of the Devices and the Authorities. At this stage the

device can authenticate to the system.

We present an example of the proposed architecture for the medical sector, where the

devices are Internet of Medical Things (IoMT) and the authority/stakeholder is a hospital.
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Figure 7.1: High level architecture

The full process, is depicted schematically in Figure 7.2 and is completed in three phases

following the numbering. In the demonstrated scenario, Hospital initiates a connection with

the corresponding Gateway using the registered Decentralized Identifier (DID) on the ledger.

Once a connection is established, Hospital sends a proof-from-vendor request. Gateway sends

the credential and if proof is verified, Hospital issues a credential using the CS previously

published to the ledger. Gateway is now considered trusted.

Figure 7.2: Device authentication process

Then it is Gateway’s turn to initiate a connection with the Device that we want to
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authenticate (scan an embedded QR code, input device’s invitation data manually etc.).

Once a connection is established, Gateway requests proof-from-vendor from Device. If the

proof is verified, it then issues an authentication credential using the previously published

CS. Gateway also sends Device invitation data to the Hospital so that it can initiate a

connection with the Device.

In this stage, the Device owns credentials from both its vendor and a trusted Gateway.

Hospital initiates a connection with the Device and requests proof-from-vendor and proof-

from-gateway. Device sends the credentials and Hospital verifies them. If proofs are valid,

Hospital issues an authentication credential to the Device. Authentication is completed.

Authorization after authentication: When a device is authenticated, it owns a credential

issued by the hospital or a central system. Assuming there is a central blockchain or a

Decentralized Ledger Technology (DLT) infrastructure to which the devices send data and,

therefore authenticate, a medical device will have to initiate a connection with this system.

Every time a device asks for a connection, the central blockchain will have to grant or deny

access by verifying a proof that only legitimate devices will be able to construct by owning

a credential from the hospital.

Revocation: As mentioned before, our approach is based on credentials. Credentials are

presented and verified so that an entity can authenticate to another entity. There is also the

case that an entity should not have access to the system or be authorized under a certain

gateway or hospital. This can be scheduled to happen automatically after a certain period

of time or it may be triggered by an event (e.g. a device changes owner, a device located

in a clinic changes ward and therefore must be authenticated through a different gateway).

Entities that issue credentials ( Device’s vendor, the Gateway’s vendor, the Gateway or the

Hospital (issuers)) publish revocation registries along with the credentials they issue.
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7.2 SSI Implementation Details

For the implementation needs of the proposed model, we used Linux Foundation’s Hy-

perledger Identity Stack (HIS), which consists of a basic framework, Hyperledger Indy and

two tools, Hyperledger Aries and Ursa. HIS is a project that puts the concepts of SSI into

practice and is quite suitable for the use-case scenario examined. We should note that, to

date, Hyperledger Aries functions as an independent system that operates alongside the pri-

mary application, integrating Self-Sovereign Identity (SSI) capabilities. This configuration

increases management and operational costs and complicates interoperability. In this thesis,

we modified the Aries Verifiable Data Registry (VDR) to enable interaction with Hyperledger

Fabric as a ledger, facilitating the development of SSI applications on the main Hyperledger

Fabric platform, Janus.

Our implementation was based on the Hyperledger Aries Cloud Agent Python (ACA-

Py)1 foundation. More specifically, the Faber/Alice demo was modified and extended in

a way that it meets the specifications and functioning of the architecture described in the

previous section. The Verifiable Organizations Network2 is also used as a public distributed

ledger running locally for the sake of testing, its code being available on github3.

A script called run demo is executed with the proper argument (device, devicevendor,

gateway, gatewayvendor, hospital) in order to initiate an agent for the corresponding entity

(Medical Device, Device vendor, Gateway, Gateway vendor, Hospital). The script also cre-

ates Docker images for each entity and assigns ports to the agents. There is a controller for

each entity written in Python, all of which are using methods from the agent.py controller

provided by ACA-Py. In this implementation, the gateway is operated from a terminal,

although in the high-level architecture it is described as a mobile device (smartphone, tablet

etc.). This is to avoid any further technical complexity and because of limitations in the

mobile framework of Aries at the time.

1https://github.com/hyperledger/aries-cloudagent-python
2https://vonx.io/
3https://github.com/bcgov/von-network
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CHAPTER 8

INTERCONNECTION WITH LEGACY SYSTEMS

Companies typically view Enterprise Resource Planning (ERP) systems as a crucial com-

ponent of their business operations. Inventory management, order fulfillment, transportation

management and forecasting are just some of the many logistics processes that can be man-

aged and streamlined with the help of an ERP system [111]. With the help of ERP systems,

businesses can monitor their Supply Chains (SC), allowing them to respond to fluctuations in

demand and supply. Furthermore, ERP systems can integrate with warehouse management

or transportation systems to facilitate communication and coordination throughout the SC

at every stage. Arguably, ERP systems provide several benefits to all SC stakeholders such

as cost reduction, increased efficiency, better customer service and enhanced quality con-

trol [112, 113]. ERP systems are especially useful in today’s globalized SC context, where

companies must deal with the complexities of managing vast, multi-entity SC networks and

relevant information flows.

Blockchain technology and applications within the SC management domain have at-

tracted considerable attention in recent years [114, 115]. In particular, blockchain technology

offers increased transparency and traceability since it enables the creation of an immutable

record of transactions, thus making it easier to track the movement of goods throughout

the SC. Blockchain technology uses cryptographic techniques to ensure that data cannot be

altered or tampered with, providing a high-security level for sensitive SC information. By

eliminating the need for intermediaries and enabling real-time data sharing, blockchain can

reduce the time and effort required to exchange information within the SC. Besides, the us-
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age of smart contracts can automate numerous operations resulting in additional benefits in

terms of efficiency and cost reduction. Most importantly, blockchain can be integrated with

ERP systems to provide a single source of truth for SC data, therefore, enabling informa-

tion sharing and more efficient operations. Other benefits from integrating blockchain and

ERP systems include improved data accuracy and reliability, enhanced security, increased

efficiency and traceability, and enhanced collaboration among multiple SC stakeholders [116].

8.1 Introduction

Despite their significant benefits, ERP systems present several limitations such as their

inability to provide extended enterprise functionality across organizational boundaries, their

difficulty in adapting to the evolving demands of the SC, their inability to perform any

tasks other than transaction management, and their closed, non-modular system architecture

[117]. Some of the above-mentioned ERP limitations are partly ameliorated by the usage of

cloud-based ERP systems. However, cloud-based ERP systems present also limitations such

as integration and functionality limitations as well as data migration, data integrity and

security challenges [118, 119]. Arguably, legacy ERP systems present limited integration

capabilities and may not have the ability to seamlessly integrate with other systems and

technologies, a significant barrier hindering the flow of information across different parts of

the SC. In addition, legacy ERP systems support inefficient data management schemes which

are unable to effectively manage granular access control to SC data, leading to inefficiencies

and difficulties in accessing and using relevant information, especially granular information

within multi-entities. Besides, current SC networks face a multitude of challenges, especially

with respect to proper information sharing in a multi-entity global SC environment while

taking into account data integrity, fine-grained access control requirements and granularity

in information sharing.

Blockchain technology has the potential to improve information sharing in the SC by pro-

viding a secure, decentralized platform for storing and sharing SC-related data. Based on the
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various challenges described above, we propose a blockchain-enabled high level architecture

for enhancing information interoperability among multiple SC stakeholders by integrating

ERP systems and blockchain technology. In particular, the proposed architecture enables the

secure, fine-grained information sharing within the SC ecosystem, while taking into account

information integrity guarantees, distributed trust management requirements, fine-grained

cross domain access control policies and auditing features. The proposed blockchain archi-

tecture acts as a service layer on top of existing ERP systems to achieve fine-grained intra-

and cross-domain access control. A private blockchain is combined with four fully functional

Smart Contracts to enable access control and trust management services, a data handler

service, ensuring data integrity for both insiders and outsiders, and an audit mechanism.

The access control scheme employs a mechanism that grants access to users with certificates

issued by different authorities, based on the various roles and access levels determined by

the access policies agreed upon by all parties.

8.2 High-level Description of the Proposed Architecture

The proposed architecture aims to solve the problem of secure fine-grained information

sharing in the Supply Chain ecosystem, which could significantly improve and automate

several procedures and enhance decision-making, privacy and data integrity. It should be

noted that the inherent complexities of today’s business environment require system inte-

gration solutions that offer multi-domain granular access to data while taking into account

distributed trust management prerequisites [120, 121, 122]. This proposed solution focuses

specifically on the synergistic potential between blockchain and ERP integration. In partic-

ular, our system consists of a blockchain service layer that resides on top of multiple ERP

systems using a fine-grained access mechanism and a trust management infrastructure re-

sponsible for handling certificates issued by different SC authorities. We have additionally

incorporated an integrity control mechanism into the system to address the requirement for

strong integrity guarantees, especially for data retrieved from external sources. This data in-
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Figure 8.1: Blockchain service layer architecture

tegrity assurance mechanism was developed as a separate mechanism for increased usability,

as it can function as a stand-alone service. The central component of this architecture (see

Fig. 8.1) is a Hyperledger Fabric private blockchain that maintains four smart contracts for

the various services. Note that we designed the architecture by considering the complexity

of various SC types and the unique requirements for each case. In this sense, our model is

generic and may require further refinement for each scenario.

8.3 Blockchain Layer Services and Actors

SC networks may include various types of organizations, each of which may have numer-

ous types of users who must access various information types, both within the organization

and the data shared by other organizations. In the current state of the SC ecosystem, users

obtain a public/private key pair that has been validated by a trusted Public Key Infrastruc-

ture (PKI) and is used to provide granular access to each organization’s ERP system. For
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instance, an employee responsible for a company’s warehouse will be granted access to ERP

data for the warehouse based on the attributes depicted on their certificate. A trust anchor

for each type of certificate should exist on the blockchain to provide the same level of access

for cross-domain data. In this way, if company A has issued a certificate for user X, then

this certificate should also be verifiable from the system to control the access for shared data

from company B. In the subsections below, we present the main services of the proposed

architecture.

8.3.1 Interoperable and Decentralized Certificate Management

Each stakeholder should be able to independently manage the trust for their organization,

while certificates issued by different authorities should be interoperable and accepted by

all parties. Such an approach enables the development of certificate-based access policies

for various user roles within and outside organisations. For instance, an accountant at

organization A may require access to information stored in the database of organization B.

To gain access, a valid certificate should be presented (which will be validated by the Trust

Management mechanism) before the request is forwarded to the access control mechanism

(which will grant him access according to the pre-defined access policies). In addition,

trust management should be adaptive, allowing for the dynamic addition and removal of

organizations. For instance, it must be possible to add a new stakeholder, assuming consent

among existing stakeholders.

8.3.2 Inter-domain and Cross-domain Access Control

The system must ensure that all stakeholders in a specific Supply Chain network have

granular access to inter-domain and cross-domain ERP data based on predefined access

policies agreed upon at the role level by the stakeholders. For instance, a supplier of raw

materials must be aware of the current stock of its materials in the warehouses of the factory

it provides. However, some data must remain confidential and should not be shared outside

the organization (for example, information regarding employees’ personal data). Therefore,

the system should guarantee that only specific types of data are shareable and only among
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those who have the permission rights (according to the policies) to do so.

8.3.3 Data Integrity Assurance

Database centralization offers several advantages concerning corporate data by providing

a single point of contact and has been proven efficient over the years for data management

inside an organization. At the same time, the fact that complete control over all processes

is given to a database administrator is a critical drawback for information sharing across

multiple organizations. False data retrieved from an external source may lead to erroneous

decisions, highlighting the importance of integrity and reliability of mutually shared infor-

mation. For instance, if a product is transported in unsuitable conditions, the manufacturer

may recall it to preserve consumers’ confidence. Additionally, the organization could file a

claim for compensation with the transport company. In such cases, the participants may

have conflicting interests, and one or more companies may wish to conceal the truth. From

this perspective, the system must provide a service that enforces participants’ trust in the

accuracy and integrity of the provided data by preventing even the data owner from altering

them.

8.3.4 Auditing

A blockchain stores all transactions in chronological order along the chain. To meet

the needs of the Supply Chain, however, a mechanism is required to allow external users

to verify the actions taken so that no one can later disclaim responsibility for them. The

system should provide a service that permits the retrieval of transactional information at a

granular level only for users with the required permissions.

8.4 Implementation

Following the discussion of the proposed architecture’s requirements and services in sub-

Section 8.3, in this subsection, we focus on the technical aspects of our blockchain service

layer. Our blockchain is based on the Hyperledger Fabric platform v2.2 and utilizes smart
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contracts to automate the abovementioned processes. The system’s architecture consists of

a network of nodes running an Hyperledger Fabric client on each stakeholder. The nodes

communicate with each other to propagate transactions and maintain the integrity of the

blockchain. The consensus algorithm used is Raft1, which allows for a decentralized and

trustless system. Assuming that all users have obtained an attribute certificate from their

organisation for accessing specific data according to their role, we used the Hyperledger

Fabric CA v1.5.6 for managing all system certificates.

To facilitate the integration of our system with the underlying ERP systems of each

stakeholder, we used an API that allows for easy communication with the blockchain (de-

picted in Fig. 8.1). Each stakeholder has its unique API, depending on the type of ERP

used. The API components are used to add transactions, query the blockchain and interact

with the smart contracts providing routing and forwarding for user requests. We assume

that all data transmitted from the ERP systems are in json format (the most common file

format used by ERP systems). We have implemented the Hyperledger Fabric gateway v1.1

as the intermediate mechanism.

As shown in Fig. 8.2, each organization i transmits its root certificate, R−Crt i, to the

blockchain during the initialization phase, where it is stored in the current block. Each

organization is responsible for issuing employee certificates; only the root certificate is stored

on the chain. In addition, while all shareable data are sent to an organization’s ERP for

storage, they are also hashed, Hash(Datai(k)), and the output is sent to the blockchain, as

a commitment, creating a link with the specific data based on a global id.

The access policies that define the access rights to the shared data are jointly agreed

upon by the participants based on consensus and published on the blockchain. When the

organizations need to change the access policy, a newer version is published on the blockchain,

and a pointer is assigned to indicate the latest version.

All services at the blockchain layer are implemented through four smart contracts, self-

1https://raft.github.io/
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Figure 8.2: Storing root certificates and hashed data on the blockchain

executing programs published on the Blockchain, each of which incorporates a unique set of

features. With smart contracts, we can only achieve the logical interconnection of indepen-

dent ERP systems for this data that must be shared with other parties. In particular:

Trust Management Smart Contract (TMSC): integrates three services for updating

root certificates, adding or removing a Certificate Authority and validating user certificates

through the operation of the corresponding functions (cert updt, add CA, remove CA, cert vld).

Access Control Smart Contract (ACSC): is the first point of contact for every user

who wants to access the shared data taking as input the {data id} and the {usr crt}, which

TMSC validates. Then, based on the assigned attributes, this smart contract enforces the

predefined policy (following an access list published on the blockchain) and grants or denies

access to the shared data. An updated policy can be published on the blockchain with

the upd policy function only if majority agreement is reached among the stakeholders by

assigning an indicator for the most recent version. The request is sent to the appropriate

API if the policy permits access.
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Data Handler Smart Contract (DHSC): implements all services pertaining to the

management of only-sharable data. When a new data registry is created on the ERP’s

database, the corresponding API calculates the hash, stores the data on the blockchain

using the {store data} and generates a logical array for mapping the data. When a user

is granted access to data, the {data vld} function is invoked to validate their integrity by

recalculating their hash on-the-fly.

Audit Smart Contract (ASC): is responsible for maintaining an immutable global ac-

cess log, provided that most stakeholders are trustworthy. The ASC is enabled whenever a

new access request is processed. When a new user request is received, the ACSC calls the

store log function of the ASC to record a new transaction log on the blockchain containing

the request’s details (e.g. user-id, organization, data-id etc.). A retrieve log function is also

implemented, the activation of which requires the consensus of the majority of stakeholders

to grant an external third party access to transaction logs.

Cross-domain Access to Shareable ERP Data: In Fig. 8.1 we have depicted in Red

the basic steps made by the system when a user wants to retrieve data from an external

ERP. As a first step, the user accesses the system by presenting an attribute certificate

(issued independently by their organization). The certificate is received by the ACSC and

is forwarded to TMSC for validation and attribute assignment (Steps 3 and 4). At the same

time, ACSC triggers store log function of the ASC for creating a new log. Then ACSC

checks if the user has permission to access these data according to their attributes and the

pre-defined policy and forwards the request (Org:A, Data id: X) to the appropriate API

Step 6). Before the data is sent back to the user, they are hashed on-the-fly, and the output

is compared with the hash stored on the chain (Step 8) to ensure integrity. Finally, the

requested data reach the user through the API of their organization (Step 9 and 10).

119



SECTION IV

Conclusions and Future work
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this Chapter, we synthesize the key insights and contributions derived from our extensive

research on distributed security and trust management in MA and MD environments with

a specific focus in healthcare and supply chain management systems. This thesis aimed to

address significant knowledge gaps in the fields of trust management, access control and

secure data management within complex, multifaceted ecosystems by providing innovative

solutions that advance the current state of the art and offer practical applications for real-

world challenges.

9.1 Concluding Remarks

Our research commenced with a thorough examination of the foundational principles

in blockchain technology, particularly focusing on the functionalities and implications of

Smart Contracts within Ethereum and Hyperledger networks and also the related work

for distributed trust management, fine-grained access control and encryption mechanisms

(Chapters 1 and 2). By establishing this groundwork, we set the stage for the introduction

of our novel Hierarchical Multi-Blockchain Access Control Model (HMBAC) in Chapter

3. This model addresses the complexities of managing access in environments governed

by multiple authorities and domains, leveraging the decentralized nature of blockchain to

enhance efficiency, scalability, and security.

The architectural design of the hierarchical multi-blockchain framework, detailed in Chap-

ter 4, builds upon the HMBAC model. This design incorporates fundamental security fea-

tures and outlines the system’s principal components, which are crucial for ensuring robust

access control operations. Chapter 5 further elaborates on the implementation details, pro-

viding an in-depth analysis of the relevant APIs and Smart Contracts that underpin the

framework’s functionality.

Chapter 6 presents a comprehensive evaluation of the proposed framework’s security and

performance. Through rigorous scalability and benchmarking analyses, we demonstrate the
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system’s operational efficiency and its capacity to manage access requests across various

configurations. These results validate the effectiveness of our approach in addressing the

challenges inherent in complex multi-domain environments.

Beyond the primary focus on hierarchical access control, our research also explores ad-

ditional security features. In Chapter 7, we propose a self-sovereign identity management

subsystem designed to autonomously handle device IDs in distributed environments, thereby

enhancing the framework’s identity management capabilities. Chapter 8 introduces a novel

architecture that integrates blockchain technology with legacy Enterprise Resource Planning

(ERP) systems, facilitating improved data interconnection and trust among stakeholders.

Our research identified and addressed several critical gaps in the existing body of knowl-

edge regarding trust and security in multi-authority and multi-domain environments. In

particular:

• Secure Interoperability of Trust Infrastructures: Traditional trust models struggle with

interoperability in environments with multiple authorities and domains. We addressed

this gap by proposing a system that employs multiple blockchains and cryptographic

mechanisms to ensure seamless and secure interoperability. This system allows for the

distributed and self-sustaining management of trust, enabling credential interoperabil-

ity without a globally trusted root authority. Details of this solution are discussed in

Chapters 3 and 4.

• Fine-Grained Access, Privacy-Preserving Encryption, and Immutable Logging: Bal-

ancing fine-grained access control with privacy and immutable logging is challenging.

We proposed an integrated solution combining attribute-based encryption (ABE) and

blockchain technology to ensure granular access control while preserving privacy and

maintaining a tamper-proof audit trail. This approach is thoroughly analyzed in Chap-

ters 5 and 6.

• Self-Managed Identities and Credentials: Centralized identity management systems

pose significant risks in multi-authority environments. Our contribution includes a

model for self-managed identities based on decentralized identity technologies, such

as blockchain and decentralized identifiers (DIDs). This model supports secure and

autonomous identity management, enhancing privacy and control. Chapter 7 provides

an in-depth exploration of this model.

• Interconnection with Legacy Systems: The integration of new decentralized systems

with existing ERP systems poses significant challenges. We developed a blockchain-

based architecture that integrates seamlessly with legacy ERP systems, mitigating
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concerns about costs and infrastructure overhaul. This strategic integration is detailed

in Chapter 8.

In conclusion, this thesis has made significant strides in advancing the field of blockchain-

based access control by introducing innovative models, architectures, and implementations.

Our research provides a solid foundation for future studies and practical applications, aim-

ing to harness the full potential of blockchain technology in managing access and security

within multifaceted ecosystems, that have special requirements both in terms of operation

and security. The proposed hierarchical multi-blockchain framework and its complemen-

tary subsystems represent a significant contribution to both academic research and industry

practices, paving the way for more secure and efficient digital infrastructures.

9.2 Limitations and Future Work

The findings of this research have significant implications for the development and deploy-

ment of secure, scalable, and efficient blockchain-based access control systems. By addressing

the identified knowledge gaps and presenting practical solutions, our work contributes to the

advancement of blockchain technology in managing complex ecosystems.

However, our study also encountered certain limitations that warrant further investiga-

tion. For instance, the scalability of our framework in extremely large-scale environments

and the integration of additional privacy-preserving mechanisms are areas that require deeper

exploration. Moreover, the dynamic nature of blockchain technology and its rapidly evolving

landscape present ongoing challenges and opportunities for future research.

In light of these considerations, we propose several directions for future work:

• Extending the capabilities of our hierarchical multi-blockchain framework:

In the context of this PhD thesis, the medical and supply chain ecosystems were investi-

gated. Supporting more diverse and complex use cases would enhance the framework’s

applicability. By accommodating a wider range of applications, the framework can

become more versatile and robust.

• Exploring advanced cryptographic techniques and integrating machine learn-

ing algorithms for predictive access control: In the context of this PhD thesis,

we modified the MA-CP-ABE scheme of [97], to achieve fine-grained access control.

Incorporating cutting-edge cryptographic methods and leveraging machine learning

can further strengthen the system’s security and performance. These techniques can

provide more sophisticated and adaptive security measures.
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• Investigating the socio-economic impacts of deploying such frameworks in

real-world scenarios: Understanding the broader implications of blockchain deploy-

ment, including social and economic effects, will provide valuable insights that can

guide future implementations and policy-making.

• Hardware and Software Trusted Computing (Hardware Immutability): The

proposed framework presented in this thesis should be combined with trusted hard-

ware components in order to achieve an ever greater level of security. Future research

should focus on developing and integrating trusted computing bases that guarantee

hardware integrity and prevent tampering. This includes exploring hardware-based

security modules and secure boot processes to create a more secure foundation for

blockchain operations.

• Extension of SSI in the Metaverse: Future research on the implementation of

Self-Sovereign Identity (SSI) in the metaverse holds significant promise for advanc-

ing digital identity management in immersive virtual environments. Research could

explore innovative approaches to integrating SSI with augmented reality (AR) and

virtual reality (VR) technologies, focusing on enhancing privacy and trust in digital

interactions. Additionally, investigating the scalability of SSI solutions to support mil-

lions of users and devices in a decentralized manner will be crucial. This research could

also delve into developing advanced cryptographic techniques, such as homomorphic

encryption and decentralized identifiers (DIDs), to further enhance the security and

functionality of SSI in the metaverse, ultimately paving the way for a more secure and

user-centric digital future.

• Interoperability with Different Blockchains: Achieving seamless interoperabil-

ity between different blockchain networks remains a significant challenge. Future

work should investigate standardized protocols and frameworks that enable diverse

blockchains to communicate and transact with each other effectively. This includes

exploring cross-chain communication protocols, atomic swaps, and blockchain bridges

to facilitate interoperability and enhance the overall ecosystem’s functionality.

By tackling these challenges, future work can build upon the foundations laid in this

study, ultimately leading to more robust, secure, and versatile solutions. The continuous

evolution of this research will not only enhance our understanding but also contribute to

the practical applications and real-world impact of enhanced security in multi authority and

multi domain environments.
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