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Περίληψη

Αυτή η διπλωματική εργασία αναλύει σε βάθος την διαδικασία επιθέσεων του πυρήνα

του λειτουργικού συστήματος Linux, γνωστό ως Kernel. Αρχικά, εξετάζουμε τη δομή

του Linux kernel, εστιάζοντας στα βασικά του στοιχεία όπως ο διαχειριστής

διεργασιών, η διαχείριση μνήμης και το σύστημα αρχείων. Στη συνέχεια, αναλύονται

μέτρα και εργαλεία που αποτελούν τεχνικές προστασίας του πυρήνα. Παράλληλα,

επεξηγείται η διαδικασία δημιουργίας ενός εικονικού περιβάλλοντος για την

πραγματοποίηση δοκιμών με ασφάλεια. Έπειτα, εξερευνάται συγκεκριμένες τεχνικές

επιθέσεις στον πυρήνα, ξεκινώντας με την "υπερχείλιση στοίβας" (“stack overflow”)

όπου πραγματοποιούνται και τα βήματα για την εκμετάλλευσή της. Ακόμη,

εξετάζεται η ευπάθεια "Use After Free" παρουσιάζονται τρόπου εκμετάλλευσης της.

Τέλος, αναλύονται κάποια πιο προχωρημένα θέματα, όπως τα σφάλματα

"null-dereferences" και τα "double-fetch bugs", τα οποία είναι πιο σύνθετα, αλλά

διερευνώνται για να κατανοηθεί η λειτουργία τους.
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Abstract

This thesis explores the ins and outs of hacking into the Linux operating system’s

core, known as the kernel. We start by understanding how the Linux kernel is built,

looking at its different parts like the scheduler, memory management, and file system.

Next, we dive into making the kernel more secure and setting up a safe virtual

environment. We examine different security measures and tools that can protect the

kernel. We also learn how to create a virtual space to test things out without causing

harm. Then, we look at specific ways to break into the kernel. First, we examine a

problem called a ”stack buffer overflow,” going through the steps of how to exploit it.

After that, we check out another issue called ”Use After Free” and see how it can be

exploited. Finally, we explore some advanced topics, like finding and exploiting

mistakes in the kernel called ”null-dereferences” and ”double-fetch bugs.” These are

more complicated, but we break them down to understand how they work.
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Chapter 1

Linux Kernel Internals

1.1 Introduction

In modern operating systems, the kernel is responsible for the things you normally take for

granted: virtual memory, hard-drive access, input/output handling, and so forth. Generally

larger than most user applications, the kernel is a complex and fascinating piece of code that

is usually written in a mix of assembly, the low-level machine language, and C. In addition,

the kernel uses some underlying architecture properties to separate itself from the rest of the

running programs. Most Instruction Set Architectures (ISA) provide at least two modes of

execution: a privileged mode (that the kernel takes advantage of), in which all of the

machine-level instructions are fully accessible, and an unprivileged mode, in which only a

subset of the instructions are accessible.

Moreover, the kernel protects itself from user applications by implementing separation at

the software level. When setting up the virtual memory subsystem, the kernel ensures that it

can access the address space (i.e., the range of virtual memory addresses) of any process, and

that no process can directly reference the kernel memory. We refer to the memory visible

only to the kernel as kernel-land memory, and the memory a user process sees as user-land

memory. Code executing in kernel land runs with full privileges and can access any valid

memory address on the system, whereas code executing in user land is subject to all the

limitations we described earlier. This hardware- and software-based separation is mandatory

to protect the kernel from accidental damage or tampering from a misbehaving or malicious

user-land application.

To facilitate the management and security of the system, users are assigned various levels

of privileges. A special user, known as the super user, is granted higher privileges and is

responsible for essential administrative tasks such as managing other users, setting usage

limits, and configuring the system. In the Windows environment, this user is called the

Administrator, while in UNIX-based systems, this role is traditionally referred to as root,

typically assigned a user ID (userid) of 0. The super user also has the power to modify the

kernel itself, which is crucial for system updates, such as fixing bugs or adding support for
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new hardware. Reaching super-user status is often the ultimate goal of an attacker, as it

provides full control over the machine.

Protecting the kernel from other running programs is the first step toward a secure and

stable system, but this alone is not sufficient: some degree of protection must also exist

between different user-land applications. In a typical multiuser environment, users expect to

have a 'private' area on the file system where they can store their data, and they expect that

applications they launch, such as their mail client software, cannot be stopped, modified, or

spied on by another user. For a system to be usable, there must also be ways to recognize,

add, and remove users or to limit the impact they can have on shared resources. For instance,

a malicious user should not be able to consume all the available space on the file system or all

the bandwidth of the system’s Internet connection. These user protections are implemented in

software by the kernel.

1.2 Overview of the Linux kernel

1.2.1 Linux development model

The Linux kernel1 is a massive open-source project, one of the largest globally, involving

thousands of contributors who modify millions of lines of code for each version released. It is

covered by the GPLv2 license2, which ensures that modifications made to the kernel in

software distributed to customers are also accessible to them, though it is common for

companies to not publicly share the source code. A wide array of contributors, including

companies, academics, and independent developers, play a role in its development. The

current development strategy of the Linux kernel follows a fixed schedule, usually spanning

three to four months per release cycle. New enhancements are added during an initial merge

window that lasts one or two weeks, followed by the issuance of weekly release candidates

(rc1, rc2, etc.).

1.2.2 Linux kernel code layout

The Linux kernel has a highly structured code base that is essential to the kernel's ability

to manage hardware and software interactions across a wide range of systems. This structure

ensures that the Linux kernel remains adaptable and scalable. The top-level directories serve

2 https://github.com/systemd/systemd/blob/main/LICENSE.GPL2
1 https://kernel.org/
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as the framework for the kernel's functionality, and they are essential for providing the

specific components that allow the kernel to operate efficiently and securely. The following

list provides an overview of these directories and their role in the Linux kernel code layout.

● arch - contains architecture specific code; each architecture is implemented in a

specific subfolder (e.g. arm, arm64, x86).

● block - contains the block subsystem code that deals with reading and writing data

from block devices: creating block I/O requests, scheduling them (there are several

I/O schedulers available), merging requests, and passing them down through the I/O

stack to the block device drivers.

● certs - implements support for signature checking using certificates.

● crypto - software implementation of various cryptography algorithms as well as a

framework that allows offloading such algorithms in hardware.

● Documentation - documentation for various subsystems, Linux kernel command line

options, description for sysfs files and format, device tree bindings (supported device

tree nodes and format)

● drivers - driver for various devices as well as the Linux driver model implementation

(an abstraction that describes drivers, devices buses and the way they are connected)

● firmware - binary or hex firmware files that are used by various device drivers.

● fs - home of the Virtual Filesystem Switch (generic filesystem code) and of various

filesystem drivers

● include - header files.

● init - the generic (as opposed to architecture specific) initialization code that runs

during boot.

● ipc - implementation for various Inter Process Communication system calls such as

message queue, semaphores, shared memory.

● kernel - process management code (including support for kernel thread, workqueues),

scheduler, tracing, time management, generic irq code, locking.

● lib - various generic functions such as sorting, checksums, compression and

decompression, bitmap manipulation, etc.

● mm - memory management code, for both physical and virtual memory, including the

page, SL*B and CMA allocators, swapping, virtual memory mapping, process address

space manipulation, etc.
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● net - implementation for various network stacks including IPv4 and IPv6; BSD socket

implementation, routing, filtering, packet scheduling, bridging, etc.

● samples - various driver samples.

● scripts - parts the build system, scripts used for building modules, kconfig the Linux

kernel configurator, as well as various other scripts (e.g. checkpatch.pl that checks if a

patch is conform with the Linux kernel coding style).

● security - home of the Linux Security Module framework that allows extending the

default (Unix) security model as well as implementation for multiple such extensions

such as SELinux, smack, apparmor, tomoyo, etc.

● sound - home of ALSA (Advanced Linux Sound System) as well as the old Linux

sound framework (OSS).

● tools - various user space tools for testing or interacting with Linux kernel

subsystems.

● usr - support for embedding an initrd file in the kernel image.

● virt - home of the KVM (Kernel Virtual Machine) hypervisor.

Figure 1.1: Kernel Source Code Layout [3]

1.3 Kernel Architecture

The architecture of a kernel is inherently modular, with a set of interdependent

components whose collective purpose is to efficiently allocate system resources and ensure

seamless interaction within the operating system. At the heart of the Linux kernel are several

basic subsystems, each with a distinct function:
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● The Process Scheduler

● The Memory Management Unit (MMU)

● The Virtual File System (VFS)

● The Networking Unit

● Inter-Process Communication Unit

1.3.1 Scheduler

The scheduler is a critical subsystem within the kernel that is tasked with fairly

distributing CPU time and resources among all running processes and applications. Its

fundamental goal is to maintain a balance where no single process monopolizes CPU

resources, allowing multiple applications to run concurrently without impacting each other's

performance. By implementing complex scheduling algorithms-including round-robin,

priority-based, and multi-level feedback queues-the process scheduler achieves fairness,

efficiency, and responsiveness. This ensures that the system can meet the needs of a wide

variety of applications, from those that require fast response times to those that require more

processing power.

1.3.2 Memory Management Unit

The Memory Management Unit (MMU) plays a critical role in managing the system's

memory resources. Its tasks include the judicious allocation and distribution of memory to

various processes and applications, thereby preventing potential problems such as crashes or

kernel-mode failures due to memory shortages. Through sophisticated management, the

MMU ensures that processes and applications get the memory they need, minimizing the risk

of memory-related errors.

1.3.3 The Virtual File System (VFS)

Within the kernel, the Virtual File System (VFS) subsystem is tasked with providing a

unified interface to the plethora of file systems present on a computer and facilitating the

retrieval of data stored within these systems. It effectively masks the specific characteristics

of different file systems, such as ext4, NTFS, or FAT, and provides a unified file I/O interface

for user-level applications. The VFS ensures that, regardless of the file system used,
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applications are able to perform file operations - including opening, reading, writing, and

closing files - with consistency.

1.3.4 The Networking Unit

The Networking Unit, nested in the kernel space of the Linux operating system, is

fundamental to enabling communication across networks, regardless of whether the hosts are

directly connected. It is instrumental in the client-server exchange within the X-Windows

system, allowing applications to interface across network boundaries. The networking stack

of the Linux kernel is adept at managing the flow of packets and orchestrating their

progression from layer 2, the data link layer, through to the network layer.

1.3.5 Inter-Process Communication Unit

Inter-process communication (IPC) is engineered to facilitate the exchange of data and

messages between various processes or threads in an operating system. Linux supports

several IPC mechanisms, with signals and pipes being among the most prevalent.

Additionally, it incorporates System V IPC tools, named after the Unix™ version where they

were initially introduced.

1.4 Device Drivers

Device drivers serve as the kernel's conduit for communication with I/O devices. These

drivers, embedded within the kernel, comprise both data structures and the necessary

functions to manage various devices — from hard disks to input devices like keyboards and
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mice, and even network interfaces or peripherals linked via an SCSI bus. Interaction between

each driver and the rest of the kernel, including other drivers, occurs through a designated

interface.

This method presents several benefits:

● Device-specific code can be encapsulated in a specific module.

● Vendors can add new devices without knowing the kernel source code; only the

interface specifications must be known.

● The kernel deals with all devices in a uniform way and accesses them through the

same interface.

● It is possible to write a device driver as a module that can be dynamically loaded in

the kernel without requiring the system to be rebooted. It is also possible to

dynamically unload a module that is no longer needed, therefore minimizing the size

of the kernel image stored in RAM.

1.4.1 Memory management

In Linux, memory management is the process of managing the computer's memory

resources, which includes the allocation, deallocation, and oversight of memory used by

applications, the operating system, and system processes.

The ability of multiple applications to run concurrently on Linux without overlap is

facilitated by its use of a virtual memory model. This model maps memory addresses used by

a program to physical memory locations. The Linux kernel plays a crucial role in this system
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by handling the allocation and deallocation of memory. It also ensures that each process has

the necessary memory resources to function effectively. This entire system of oversight and

resource management is referred to as memory management in Linux.

Virtual Memory Primer

Virtual memory is a method that enables a computer to utilize more memory than is

physically available by leveraging hard disk space to extend physical memory. In Linux, this

is achieved through a paging mechanism that breaks memory into smaller segments called

pages, which can be allocated or freed up as required.

When an application demands more memory than the available physical memory, the

Linux kernel employs the hard disk to extend this memory, a process known as using swap

space. This approach not only helps in managing memory more efficiently in Linux but also

aids in preventing memory-related system crashes and enhancing overall system stability.

Concept of Memory Pages

In the Linux operating system, memory pages serve as the basic units for memory

allocation and management. On most contemporary hardware architectures, these pages

consist of contiguous memory blocks, typically 4KB in size. The Linux kernel segments the

system's available physical memory into these pages, assigning each a unique physical

address.

These pages are subsequently mapped to virtual addresses, enabling each process to

maintain its own address space that corresponds to actual physical memory locations. The

responsibility of managing this allocation falls to the Virtual Memory Manager within the

kernel. Memory pages are crucial to Linux's memory management strategy, facilitating

efficient allocation and management of memory resources for the various processes running

on the system.

Huge Pages

In Linux, huge pages are oversized memory pages that can enhance system performance

by minimizing the management overhead associated with smaller memory pages. These

pages are usually either 2MB or 1GB in size and can be set up dynamically by the kernel or

manually by system administrators.
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Huge pages are especially beneficial in the memory management of Linux for applications

that require large working sets, like databases or scientific computing applications. They

streamline memory management by reducing the number of page table entries needed for a

specific amount of memory. This efficiency leads to quicker data access, lower CPU

utilization, and overall enhanced system performance.

Zones

In Linux, zones are logical categorizations of memory pages grouped by similar attributes

such as access permissions or physical location. The kernel manages each zone

independently, assigning them for distinct purposes, like memory allocation for user

processes or for kernel operations itself. Various zone types exist in Linux, including user

zones, kernel zones, and I/O zones, each governed by its own memory management policies

and potentially subdivided into smaller zones for more precise control.

The use of zones in Linux enhances memory allocation efficiency and helps mitigate

memory fragmentation, which can degrade performance. Additionally, zoning in Linux

memory management affords greater flexibility and control over how memory is utilized,

enabling system administrators to tailor memory distribution to suit specific applications or

operational demands.

Page Cache

In Linux, the page cache is a strategy used to cache disk data in memory, enhancing access

speeds. When data is fetched from a disk, it is initially stored in the page cache, allowing for

quick re-access when needed. This mechanism significantly boosts system performance by

minimizing disk read operations. The kernel oversees the page cache, dynamically allocating

memory to it and purging data as necessary to free up memory for other uses. While

primarily utilized for file system operations, the page cache also supports other I/O activities,

such as network I/O, playing a crucial role in optimizing system performance and reducing

I/O delays.

Nodes

In Linux memory management, a node is a physical or logical cluster of memory

characterized by a unique system address. Each node is managed independently by the kernel
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and designated for specific uses, like accommodating user processes or kernel activities.

Nodes partition system memory into distinct sections, with each node handling its own

memory allocations. This structure is particularly advantageous in multiprocessor systems

where processors can access memory within their own node more swiftly than memory

located in other nodes.

Anonymous Memory

Anonymous memory in Linux is dynamically allocated by the kernel during runtime and

is not linked to any specific file or device. This type of memory is employed by processes to

hold data that doesn't require permanent storage on a disk, such as the memory used for

program stacks and heaps. The flexibility of anonymous memory allows processes to manage

memory allocation and deallocation efficiently, without concern for the memory's physical

location. This reduces the likelihood of memory fragmentation. Furthermore, anonymous

memory supports interprocess communication by enabling shared memory, allowing multiple

processes to access the same data concurrently. This not only enhances performance but also

cuts down on memory overhead by reducing the dependency on network-based interprocess

communication.

1.5 Process and Process Management

1.5.1 Process

Within the Linux kernel, a process is represented by a rather large structure called task

struct. This structure contains all of the necessary data to represent the process, along with a

plethora of other data for accounting and to maintain relationships with other processes

(parents and children). A full description of the task struct is beyond the scope of this thesis

but a portion of task struct is shown in the code below. Note that task struct resides in

./linux/include/linux/sched.h.
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In the figure, you can see several items that you’d expect, such as the state of execution, a

stack, a set of flags, the parent process, the thread of execution (of which there can be many),

and open files. I explore these later in the article but will introduce a few here. The state

variable is a set of bits that indicate the state of the task. The most common states indicate

that the process is running or in a run queue about to be running (TASK RUNNING),

sleeping (TASK INTERRUPTIBLE), sleeping but unable to be woken up (TASK

UNINTERRUPTIBLE), stopped (TASK STOPPED), or a few others. A complete list of these

flags is available in ./linux/include/linux/sched.h.

The flags word defines a large number of indicators, indicating everything from whether

the process is being created (PF STARTING) or exiting (PF EXITING), or even if the process

is currently allocating memory (PF MEMALLOC). The name of the executable (excluding

the path) occupies the comm (command) field.

Each process is also given a priority (called static prio), but the actual priority of the

process is determined dynamically based on loading and other factors. The lower the priority

value, the higher its actual priority.

The tasks field provides the linked-list capability. It contains a prev pointer (pointing to

the previous task) and a next pointer (pointing to the next task).

The process’s address space is represented by the mm and active mm fields. The mm

represents the process’s memory descriptors, while the active mm is the previous process’s

memory descriptors (an optimization to improve context switch times).
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Finally, the thread struct identifies the stored state of the process. This element depends on

the particular architecture on which Linux is running, but you can see an example of this

in./linux/include/asm-i386/processor.h. In this structure, you’ll find the storage for the

process when it is switched from the executing context (hardware registers, program counter,

and so on).

1.5.2 Process Management

Now, let’s explore how you manage processes within Linux. In most cases, processes are

dynamically created and represented by a dynamically allocated task struct. One exception is

the init process itself, which always exists and is represented by a statically allocated task

struct. You can see an example of this in ./linux/arch/i386/kernel/init task.c.

All processes in Linux are collected in two different ways. The first is a hash table, which

is hashed by the PID value; the second is a circular doubly linked list. The circular list is ideal

for iterating through the task list. As the list is circular, there’s no head or tail; but as the init

task always exists, you can use it as an anchor point to iterate further. Let’s look at an

example of this to walk through the current set of tasks.

The task list is not accessible from user-space, but you can easily solve that problem by

inserting code into the kernel in the form of a module. A very simple program is shown in

Listing 2 that iterates the task list and provides a small amount of information about each task

(name, pid, and parent name). Note here that the module uses printk to emit the output. To

view the output, you need to view the /var/log/messages file with the cat utility (or tail -f

/var/log/messages in real time). The next task function is a macro in sched.h that simplifies

the iteration of the task list (returns a task struct reference of the next task).
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You can compile this module with the Makefile shown in the Makefile. When compiled,

you can insert the kernel object with insmod procsview.ko and remove it with rmmod

procsview.

After insertion, /var/log/messages displays output as shown below. You can see here the

idle task (called swapper) and the init task (pid 1).

Note that it’s also possible to identify the currently running task. Linux maintains a

symbol called current that is the currently running process (of type task struct). If at the end

of init module you add the line:

We would see:
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Note that the current task is insmod, because the init module function executes within the

context of the execution of the insmod command. The current symbol actually refers to a

function (get current) and can be found in an arch-specific header (for example,

./linux/include/asm-i386/current.h).

1.6 Interrupts and system calls

1.6.1 Interrupts

Linux interacts with a variety of hardware components, each designated for specific

functions. For instance, video devices control monitors, while IDE devices manage disk

operations. A synchronous operation method, where the system sends an operation request

like writing memory to a disk and waits for completion, is possible but highly inefficient. It

would result in the operating system spending much time inactive, waiting for each task to

finish.

A more efficient approach involves sending the operation request and then continuing

with other tasks, allowing the system to be interrupted by the device once the request has

been completed. This asynchronous method enables multiple simultaneous requests to

various devices, enhancing system efficiency.

For this to function, hardware support is essential for devices to interrupt the ongoing

processes of the CPU. Most general-purpose processors, such as the Alpha AXP, utilize a

method where specific physical pins on the CPU react to voltage changes (e.g., from +5v to

-5v) that prompt the CPU to halt its current tasks and execute special interrupt handling code.

Some pins might connect to an interval timer, triggering an interrupt every millisecond, while

others connect to different system devices, like a SCSI controller, to manage these

interruptions.

Systems commonly employ an interrupt controller to consolidate device interrupts before

directing them to a single CPU interrupt pin. This approach not only conserves interrupt pins

on the CPU but also adds design flexibility. The interrupt controller utilizes mask and status

registers to manage these interrupts. Activating specific bits in the mask register either

enables or disables the interrupts, while the status register indicates which interrupts are

active at any given time.

In some instances, interrupts are permanently set, such as the real-time clock's interval

timer, which might be hard-wired to pin 3 on the interrupt controller. However, the function

of other pins may vary depending on the type of controller card installed in a particular ISA
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or PCI slot. For instance, pin 4 on the interrupt controller could connect to PCI slot number 0,

which might alternately house an Ethernet card or a SCSI controller. This demonstrates that

each system's interrupt routing can vary, and the operating system needs to be adaptable to

these configurations.

Most modern general-purpose microprocessors handle interrupts similarly. Upon a

hardware interrupt, the CPU halts its current tasks and jumps to a specific memory location

that contains the interrupt handling code or a directive that points to it. This interrupt

handling typically occurs in a special CPU mode, interrupt mode, where normally no other

interrupts are processed, though some exceptions exist. For example, some CPUs prioritize

interrupts, allowing higher priority interrupts to occur during handling of a lower one. Thus,

the primary interrupt handling code must be meticulously crafted, often employing its own

stack to preserve the CPU's state—storing all regular registers and context—before

addressing the interrupt.

Once the interrupt is managed, the CPU's original state is restored, and the interrupt is

cleared. The CPU then resumes its previous activities. It is crucial for the interrupt processing

code to be highly efficient and for the operating system to avoid blocking interrupts

unnecessarily or for extended periods.

1.6.2 Initializing the Interrupt Handling Data Structures

The kernel's interrupt handling structures are configured by device drivers as they claim

control over the system's interrupts. To manage this, device drivers employ a suite of Linux

kernel services designed to request, enable, and disable interrupts.

Device drivers utilize these services to register their specific interrupt handling routines.

Some interrupts are predetermined by the PC architecture standards, allowing drivers to

simply request their required interrupts upon initialization. For example, the floppy disk

device driver always requests IRQ 6. However, situations may arise where a device driver

does not know which interrupt it will use. This issue does not affect PCI device drivers as

they are always aware of their interrupt numbers. Conversely, ISA device drivers face

challenges in identifying their interrupt numbers. To overcome this, Linux permits device

drivers to probe for their interrupts.

The probing process involves the device driver initiating an action on the device that

triggers an interrupt. Subsequently, all unassigned interrupts in the system are enabled,

allowing the device's pending interrupt to be processed through the programmable interrupt
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controller. Linux then checks the interrupt status register and conveys the results back to the

device driver. A non-zero result indicates that one or more interrupts occurred during the

probe. Following this, the driver discontinues probing, and all unassigned interrupts are

disabled again.

If an ISA device driver successfully identifies its IRQ number through this method, it can

then formally request control of it as usual.

PCI-based systems offer significantly more flexibility than ISA-based systems. In ISA

devices, the interrupt pin is often determined by hardware jumpers and fixed in the device

driver. Conversely, in PCI systems, interrupts are dynamically allocated by the PCI BIOS or

the PCI subsystem during system initialization. Each PCI device may connect to one of four

designated interrupt pins—A, B, C, or D—with most devices defaulting to pin A. These

interrupt lines are routed from the PCI slots to the interrupt controller; for example, Pin A

from PCI slot 4 might connect to pin 6 on the interrupt controller, and so forth.

The specific routing of PCI interrupts is unique to each system, requiring setup code that

understands the PCI interrupt routing structure. On Intel-based PCs, this setup is managed by

the BIOS at boot time, whereas on systems without a traditional BIOS, such as those based

on Alpha AXP, the Linux kernel handles this setup.

During setup, the system writes the interrupt controller pin number into the PCI

configuration header of each device, determining the interrupt pin number based on the PCI

slot and the device’s assigned interrupt pin. This information is stored in the interrupt line

field of the PCI configuration header for later use by the device driver. When activated, the

device driver reads this information to request control of the interrupt from the Linux kernel.

In systems where PCI-PCI bridges are used, the number of PCI interrupt sources might

exceed the interrupt pins available on the system’s programmable interrupt controllers,

leading to shared interrupts. Linux facilitates this by allowing the first device requesting an

interrupt to declare if it can be shared. Shared interrupts link several irqaction data structures

to a single entry in the irq action vector. When a shared interrupt is triggered, Linux calls the

interrupt handlers for all associated sources. PCI device drivers, therefore, must be capable of

handling calls to their interrupt routines even when their specific device has not issued an

interrupt.

One of Linux's key responsibilities in interrupt handling is to route interrupts to the

appropriate handling routines, which are architecture-specific due to varying interrupt

structures across systems. The irq action vector contains pointers to irqaction data structures

that detail each interrupt handler, including the routine's address.
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When an interrupt occurs, Linux identifies its source by reading the status register of the

programmable interrupt controller, mapping this source to a specific handler in the irq action

vector. If no handler exists for an interrupt, the kernel logs an error; otherwise, it invokes the

corresponding interrupt handling routines.

When called, the device driver must quickly determine the cause of the interruption and

respond accordingly. For instance, a floppy controller might signal the completion of head

positioning over the correct floppy disk sector. If further action is required, Linux provides

mechanisms to defer this work, preventing the CPU from spending excessive time in interrupt

mode.

1.6.3 System Calls

A system call is a procedure that provides the interface between a process and the

operating system. It is the way by which a computer program requests a service from the

kernel of the operating system. Different operating systems execute different system calls.

In Linux, making a system call involves transferring control from unprivileged user mode

to privileged kernel mode; the details of this transfer vary from architecture to architecture.

The libraries take care of collecting the system-call arguments and, if necessary, arranging

those arguments in the special form necessary to make the system call.

System calls are divided into 5 categories mainly:

● Process Control

● File Management

● Device Management

● Information Maintenance

● Communication
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Process Control:

These system calls are responsible for managing process activities such as creation and

termination. The relevant Linux system calls include fork(), exit(), and exec():

● fork(): This system call creates a new process. The new subprocess created by fork()

continues to execute the same program as the original (parent) process without

starting a new program. Fork() is one of the most frequently used system calls in

process management.

● exit(): Used by a program to end its execution, the exit() system call signals the

operating system to reclaim any resources that were being used by the process. This

effectively cleans up after the process has completed.

● exec(): This system call replaces the current running program with a new program. It

does not necessitate the creation of a new process beforehand; instead, any existing

process can execute exec() at any time. Upon execution, the currently running

program is terminated immediately, and the new program begins execution within the

same process context.

File Management:

The file management functions in Linux are handled through several system calls that

facilitate file operations such as creation, reading, writing, and closing. Key system calls in

this category include open(), read(), write(), and close():

● open(): This system call is used to open a file. It simply opens the file without

performing any operations. To read from or write to the file, subsequent system calls

are required.

● read(): This system call opens a file specifically for reading. It does not allow editing

of the file. Multiple processes can use the read() system call to access the same file at

the same time.

● write(): This system call opens a file for writing, allowing modifications to the file's

contents. However, unlike the read() system call, multiple processes cannot execute

the write() system call on the same file concurrently.

● close(): This system call is used to close an open file, effectively ending the session

that was initiated with open().
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Device Management:

Device management does the job of device manipulation like reading from device buffers,

writing into device buffers, etc. The Linux System calls under this is ioctl().

● ioctl(): ioctl() is referred to as Input and Output Control. ioctl is a system call for

device- specific input/output operations and other operations which cannot be

expressed by regular system calls.

Information Maintenance:

The operating system (OS) manages information and facilitates its transfer between itself

and user programs. It also maintains details about all running processes, and system calls are

utilized to access this information. Key system calls for managing process information

include getpid(), alarm(), and sleep():

● getpid(): Short for "Get the Process ID," this function returns the process ID of the

process that invokes it. The getpid() function is always successful, and it does not

reserve any return value to signify an error.

● alarm(): This system call sets up an alarm clock to deliver a signal at a specified time.

It schedules a signal to be sent to the process that issued the call, functioning

essentially as a timer for the process.

● sleep(): This system call halts the execution of the current process for a specified

duration, allowing the operating system to allocate execution time to another process

during this interval. This provides a simple way to pause process operations

temporarily.

Communication:

These system calls facilitate inter-process communications (IPC), which utilize two main

models:

1. Message Passing: Processes exchange messages with each other.

2. Shared Memory: Processes communicate by sharing a specific region of memory.

The system calls associated with these IPC models include pipe(), shmget(), and mmap():
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● pipe(): Used primarily for inter-process communication, the pipe() system call creates

a unidirectional data channel that allows different Linux processes to communicate. It

does so by opening file descriptors that processes can use to read and write data.

● shmget(): Short for "get shared memory," shmget() is crucial for shared memory

communication. This system call is employed to allocate a shared memory segment

and to access it, enabling processes to communicate by reading from and writing to a

common memory area.

● mmap(): This function maps files or devices into the memory space of a process. The

mmap() system call facilitates the mapping of file contents directly into the virtual

memory area of a process, allowing for efficient file and device handling.
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Chapter 2

Kernel Security Mitigations & Virtual Environment

Set Up

In this chapter, we will introduce our virtual environment and the relevant files required to

build our kernel challenge files, such as the filesystem and the exploits.

2.1 Kernel Modules

In Linux, a module is a segment of code that can be dynamically integrated into the kernel

during runtime, allowing for on-the-fly modifications without needing to reboot. The kernel,

which is at the heart of the Linux operating system, manages hardware interactions, offers

essential services, and interfaces with software applications. Modules enhance the kernel by

adding new functionalities seamlessly.

Key Aspects of Linux Modules:

● Dynamic Loading and Unloading: Modules can be added to or removed from the

active kernel as needed. This capability is beneficial for implementing or withdrawing

features without interrupting the overall system operations.

● Enhancing Kernel Capabilities: By incorporating modules, the kernel's capabilities

can be broadened with additional drivers, file systems, or services. For instance, a

module could enable support for a new type of hardware or a different network

protocol.

● Development of Kernel Modules: Crafting a kernel module requires a deep

understanding of the kernel’s architecture and its internal APIs (Application

Programming Interfaces), which developers use to interact with the kernel’s core

functions.

● Managing Dependencies: Modules may rely on other modules, and the kernel’s

module system manages these dependencies automatically, ensuring that required

modules are loaded together.
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● Security Implications: The ability to dynamically load modules can also pose

security risks. Erroneous or malicious modules have the potential to destabilize or

compromise the system. As a result, many Linux distributions have implemented

stringent security protocols to regulate the loading of modules.

2.2 Security Mitigations

Several security mechanisms exist in the Linux kernel to mitigate against kernel exploits.

Some of the knowledge can be directly applied to Windows kernel exploits, as there are

security mechanisms at the hardware level, such as NX, which appeared in userland.

What we’re talking about here are kernel-specific protections security mechanisms like

Stack Ca- nary also exist in device drivers, but they’re not worth mentioning.

2.2.1 SMEP (Supervisor Mode Execution Prevention)

Representative kernel security mechanisms are SMEP (Supervisor Mode Execution

Prevention) and SMAP (Supervisor Mode Access Prevention). SMEP is a security

mechanism that prevents user space code from suddenly running while kernel space code is

running. The image is similar to NX.

SMEP is a mitigation mechanism and is not a strong defense on its own. For example,

suppose an attacker takes advantage of a vulnerability in the kernel space and steals RIP. If

SMEP is disabled, shellcode prepared in user space will be executed as shown below.

However, if SMEP is enabled, attempting to execute shellcode prepared in user space as

shown above will cause a kernel panic. This increases the possibility that an attacker will not

be able to escalate privileges even if they capture the RIP.

SMEP is a hardware security mechanism. Setting the 21st bit of the CR4 register enables

SMEP.
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2.2.2 SMAP (Supervisor Mode Access Prevention)

For security reasons, it's clear that user space cannot directly access or modify kernel

space memory. However, there's also a protective mechanism in place called SMAP

(Supervisor Mode Access Prevention), which prevents the kernel space from reading or

writing to user space memory. To safely transfer data between user space and kernel space,

functions like copy_from_user and copy_to_user must be used. But why is there a restriction

on the kernel, which operates with higher privileges, from accessing user space memory?

There are two primary advantages to using SMAP. Firstly, SMAP helps to prevent a

technique known as Stack Pivoting. In scenarios similar to those addressed by SMEP

(Supervisor Mode Execution Prevention), even if an attacker manages to control the RIP

(Instruction Pointer), they cannot execute shellcode directly. However, due to the extensive

amount of machine code in the Linux kernel, there's always the possibility of finding a ROP

(Return-Oriented Programming) gadget that could be exploited.

Whatever value goes into ESP, RSP will be changed to that value when this ROP gadget is

called. On the other hand, such a low address mmap can be secured from userland, so even if

SMEP is enabled, an attacker can simply take the RIP and execute a ROP chain as follows.

If SMAP is enabled, the data mmapped in user space (ROP chain) cannot be seen from

kernel space, so the stack pivot command will ret cause a kernel panic. In this way, by

enabling SMAP in addition to SMEP, ROP attacks can be mitigated.

The second benefit of SMAP is the prevention of bugs that tend to occur in kernel

programming. This is related to kernel-specific bugs caused by programmers such as device

drivers. Let’s say your driver wrote code like this: (You don’t need to understand the meaning

of function definition for now).

memcpy in this case is used to copy data to a global variable called buffer.

If you use this module from user space as follows, it will store 0x10 bytes of data.
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This is no big deal if you are used to user space programming. The size of is also fixed, so

there doesn’t seem to be any particular problem.

However, if SMAP is disabled, calls like the following would also be allowed:

0xffffffffdeadbeef is an invalid address in user space, but let’s assume that this is an address

that contains secret data in the Linux kernel. Then the device driver is able to read secret data.

If you use an address received from user space without any checks as in this example, you

will be able to read and write arbitrary addresses in kernel space from user space. This

vulnerability is very difficult to notice for those who are not familiar with kernel

programming, but the impact is significant because it allows AAR/AAW. SMAP is also

useful in preventing such mistakes.

Like SMEP, SMAP is a hardware security mechanism. Setting the 22nd bit of the CR4

register enables SMAP.

2.2.3 KASLR/FGKASLR

In user space, Address Space Layout Randomization (ASLR) randomizes memory

addresses to improve security. Similarly, the Linux kernel and its device drivers benefit from

a mitigation technique known as Kernel ASLR (KASLR), which randomizes the addresses of

kernel code and data areas. KASLR is applied once at boot time because the kernel’s location

in memory does not change after loading. If an attacker manages to leak any specific kernel

function or data address, they can potentially deduce the base address of the kernel.

Since early 2020, a more robust form of KASLR, called Function Granular KASLR

(FGKASLR), has been introduced. Although typically disabled by default as of 2022,

FGKASLR enhances security by randomizing each kernel function’s address independently.

Therefore, even if an address of a function is leaked, the base address of the kernel remains

obscured.
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However, FGKASLR does not randomize the data section; thus, if data addresses are

leaked, the base address can still be discovered. Although this does not allow for pinpointing

specific function addresses, it could facilitate specialized attack vectors that might emerge.

It is important to note that kernel space addresses are consistent across the entire kernel

space. Therefore, even if one device driver is secured against exploits through KASLR, a

vulnerability in another driver that leads to a kernel address leak could compromise the entire

system’s security.

2.2.4 KPTI (Kernel Page-Table Isolation)

In 2018, a significant side-channel vulnerability known as Meltdown 3was identified in

CPUs from Intel and other manufacturers. This section won’t delve into the specifics of this

vulnerability, but it's important to note that it allows for the reading of kernel space memory

from user privileges, effectively circumventing protections like KASLR.

To counteract the Meltdown vulnerability, recent Linux kernels have implemented a

security measure called Kernel Page-Table Isolation (KPTI), formerly known as KAISER.

KPTI segregates the page tables used for translating virtual addresses to physical addresses

between user mode and kernel mode. This isolation is specifically designed to thwart the

Meltdown exploit.

It's worth mentioning that KPTI is solely a protective mechanism against Meltdown and

does not generally interfere with normal kernel operations. However, if KPTI is active, issues

may arise when returning to user space from kernel space during operations like

Return-Oriented Programming (ROP) in the kernel. This could potentially complicate

exploitation processes that involve transitioning between these modes.

2.2.5 KADR (Kernel Address Display Restriction)

In the Linux kernel, the /proc/kallsyms file provides access to function names and their

corresponding addresses. Additionally, some device drivers use the printk function to send

various debugging information to a log, which can be viewed by users through the dmesg

command. To prevent unintentional leaks of sensitive information such as function addresses,

data, and heap details within kernel space, a mechanism referred to in some literature as

Kernel Address Display Restriction (KADR) exists, although it isn’t officially named as such.

3 https://meltdownattack.com/
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This security feature is controlled by the setting in /proc/sys/kernel/kptr_restrict. If

kptr_restrict is set to 0, there are no restrictions on displaying kernel addresses. If it is set to

1, kernel addresses are visible only to users with the CAP_SYSLOG capability. When

kptr_restrict is set to 2, kernel addresses are hidden from all users, regardless of their

privilege level.

If KADR is disabled, kernel addresses are more accessible, which might make the system

easier to exploit. Therefore, checking the status of KADR might be a crucial first step when

assessing system vulnerability.

2.3 Virtual Environment

The Linux kernel module used for this training requires a virtual environment where we

can build our kernel with a specific version and load our modules for testing. Fortunately,

Pwn College4 has an open-source helper environment for kernel development and

exploitation.

QEMU and BusyBox are required to build and launch our session.

2.3.1 Qemu

QEMU5 (Quick Emulator) is a versatile open-source software tool for virtualization and

emulation, enabling users to run and test operating systems and applications across different

hardware architectures. It simulates various computing environments, including processors

and peripherals, making it invaluable for development, testing, and virtualization. Here's a

closer look at some of the key functionalities and applications of QEMU:

● Processor Emulation: QEMU can emulate multiple processor architectures such as

x86, ARM, PowerPC, and others, facilitating the execution of software intended for

one architecture on a completely different one.

● System Emulation: The tool can simulate entire computer systems, including virtual

machines equipped with their own CPUs, memory, and peripherals. This feature is

particularly useful for operating system and software development.

5 https://meltdownattack.com/
4 https://pwn.college/
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● User Mode Emulation: QEMU supports the execution of binaries for one

architecture on a host with a different architecture, enabling application testing

without a full virtual machine setup.

● Snapshot Support: Users can save and restore the state of a virtual machine at any

given point, enhancing the efficiency of testing and debugging processes.

● Networking: QEMU supports various network configurations, allowing virtual

machines to communicate with each other and with the host system. It can also

simulate network devices.

● Disk Image Support: The software supports multiple disk image formats, which is

crucial for creating, managing, and running virtual hard disks in a simulated

environment.

● KVM Integration: On Linux systems, QEMU can integrate with the Kernel-based

Virtual Machine (KVM) to provide near-native virtualization performance.

● Cross-Platform Compatibility: QEMU is cross-platform, operating on various host

systems including Linux, Windows, and macOS.

● Development and Testing: It is extensively used in software development and

testing, especially for validating software across multiple hardware architectures

without physical hardware.

QEMU's comprehensive feature set makes it an essential tool for developers and testers

working in diverse computing environments.

2.3.2 BusyBox

BusyBox6 is a streamlined software suite that consolidates multiple Unix utilities into a

single executable, making it ideal for embedded systems and other environments where

resources are limited. It integrates commonly used command-line utilities like sh (shell), ls

(list files), cp (copy), mv (move), rm (remove), and more, into one compact binary.

Key Attributes and Features of BusyBox:

● Compact Design: BusyBox is engineered to be small, housing numerous

functionalities within a single executable to conserve space. This compactness is

particularly advantageous in environments with limited resources, such as embedded

systems or minimalist Linux distributions.

6 https://busybox.net
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● Modularity: Although compact, BusyBox maintains a modular design. It is

comprised of individual applets within the main binary, allowing users to select

specific functionalities to include or exclude based on their needs.

● Range of Utilities: BusyBox provides a wide array of common Unix tools, offering a

familiar command-line interface for file manipulation, text processing, and system

administration tasks.

● Unified Binary: The main BusyBox executable acts as the gateway to numerous

commands. It detects the requested command and launches the appropriate applet

contained within its binary.

● Utility in Embedded Systems: BusyBox is frequently employed in embedded Linux

systems where keeping software footprints minimal is essential. It equips developers

with vital command-line tools without excessive resource consumption.

● Open Source: As an open-source project, BusyBox is distributed under the GNU

General Public License (GPL), ensuring it is freely available for use, modification,

and distribution.

These characteristics make BusyBox a fundamental tool for developers working in

resource-sensitive computing environments.

2.3.3 Build Script Overview

In this section, the build.sh script of the pwn college virtual environment will be explained

line by line.

First the script sets the environment variables.

These lines define environment variables for the Linux kernel version and BusyBox version

to be used throughout the script.

This section checks for and installs necessary dependencies using the apt package manager.

Downloads the Linux kernel source code and extracts it if not already done.

28



Configures and builds the Linux kernel with specific configuration options.

Downloads the BusyBox source code and extracts it if not already done.

Configures, builds, and installs BusyBox.

Creates a basic filesystem structure and copies BusyBox installation files to the filesystem.

Builds kernel modules and copies them to the filesystem.

2.3.4 Launch Script Overview

The launch script is responsible for the creation and the configuration of the QEMU session.

This block of code performs the following tasks:

● pushd fs: Changes the current directory to ’fs’.

● find . -print0 | cpio --null -ov --format=newc | gzip -9 > ../initramfs.cpio.gz:
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Finds all files in the current directory and its subdirectories, then creates a cpio

archive (with newc format), and compresses it using gzip. The resulting compressed

archive is saved as ’initramfs.cpio.gz’ in the parent directory.

● popd: Restores the previous working directory.

The following script launches QEMU with the specific options:

● -m 128M: Sets the amount of RAM to 128 megabytes.

● -cpu kvm64,+smep,+smap: Configures the CPU with specific features.

● -no-reboot: Prevents QEMU from rebooting after the kernel panics.

● -kernel linux-5.4/arch/x86/boot/bzImage: Specifies the kernel image to be used.

● -initrd $PWD/initramfs.cpio.gz: Specifies the initial ramdisk image.

● -fsdev local,security model=passthrough,id=fsdev0,path=$HOME: Configures a local

filesys- tem device for sharing files with the guest OS.

● -device virtio-9p-pci,id=fs0,fsdev=fsdev0,mount tag=hostshare: Specifies a Virtio 9p

file sys- tem device.

● -nographic: Disables graphical output.

● -monitor none: Disables the monitor.

● -s: Enables the gdb server.

● -append ”console=ttyS0 kaslr nopti smep smap panic=1”: Appends kernel

command-line parameters.

First, I need to execute the build script to download the required kernel version and

busybox. Afterward, I can run the launch script to create the virtual environment. I will then

be able to load my training modules into the environment, interact with them, and ultimately

exploit them.
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Chapter 3

Stack Buffer Overflow kernerland

Now that we have explained and set up my virtual environment, we can load, interact with,

and exploit our vulnerable modules. In this chapter, a vulnerable module susceptible to a

buffer overflow vulnerability will be analyzed, explained, and exploited.

3.1 Module description

Firstly, let’s analyze the module which will be loaded as a character device driver to the

kernel.

These are the standard Linux kernel header files needed for kernel module development,

including those for handling file systems and user-space communication.

This section provides information about the module, such as its license, author, and a brief

description.

This structure defines the file operations that can be performed on the device. It associates

these operations with corresponding functions defined later in the module.
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These functions are called when the device is opened (device open) and closed (device

release).

They print messages to the kernel log.

device read: Reads data from the device and copies it to the user space.

device write: Writes data from the user space to the device.

init module: Called when the module is loaded. It registers the character device and prints

relevant information to the kernel log.

cleanup module: Called when the module is unloaded. It unregisters the character device.

3.2 Interaction with the module

There is a file called init, which is the first process executed in user space after the kernel is

loaded.
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Basically, this script Loads a kernel module named ”r3dsh3rl0ck.ko” located in the ”/kern

modules/” directory.

Creates character device nodes for ”r3dsh3rl0ck” in the /dev directory.

Sets permissions on /dev/r3dsh3rl0ck to allow broad access (666). Finally, executes the

subsequent commands as the user ”ctf” by switching to its login shell.

Figure 3.1: Initialization Script Result

Before exploiting the vulnerability, let’s write a program that uses this kernel module

normally and check that it works.
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This is a simple C program that opens a character device file (/dev/r3dsh3rl0ck) and prints a

message if the open operation is successful.

Declares an integer variable fd to store the file descriptor and opens the character device file

in read and write mode using open. The file descriptor is a non-negative integer, and if the

open operation fails, the program exits with a status of -1.

3.3 Exploit Vulnerability

In this section, we will identify, analyze, and ultimately exploit the vulnerabilities present

in the modules. The vulnerability is a straightforward stack buffer overflow in read and write

operations, as there are no checks on the data we read or write. Therefore, we can read and

write as much data as we want. For this demonstration, we will disable KASLR (Kernel

Address Space Layout Randomization), as we will refer to it in the next chapter, but all other

mitigations will remain in place.

The module takes and writes data from the user to an internal buffer with a length of 256

bytes. However, we can read and write beyond the buffer boundary.

The complete exploit will be divided and explained, with each section accompanied by the

appropriate code snippets.
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3.3.1 Stack cookie

The first concern is the stack cookie, but we can leak it since we have unlimited read data.

Therefore, we can write code to identify it.

By utilizing malloc, we can allocate sizable chunks of memory in the heap. Subsequently,

we divide this data into 8-byte segments and display it on the screen. After some testing, we

identified the stack cookie at offset 16. Next, the function loops through the buffer, printing

its content in hexadecimal format. It specifically identifies and labels the stack cookie when

its position (cookie offset) is reached. The identified stack cookie is then stored. The

allocated memory for the buffer is freed, and finally, the function returns the stack cookie.

Figure 3.3: Location of the stack cookie
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3.3.2 Kernel key function

The next step is to get a couple key addresses for our kernel exploit. When we can control

execution of the kernel, we are interested in calling commit creds(prepare kernel

cred(NULL)); which will create a new credential struct with root credentials and then assign

our process that new set of credentials!

The classic process of doing this is by reading /proc/kallsyms. We can open and read this

file looking for entries for both those addresses and add them into our exploit. The code

below will read kallsyms looking for commit creds and prepare kernel cred and then store the

values found into two global variables.

This code defines a function named get kernel addresses that retrieves the addresses of

specific kernel symbols by parsing the ”/proc/kallsyms” file. The symbols of interest are

”prepare kernel cred,” ”commit creds,” and ”startup 64.” The function opens the

”/proc/kallsyms” file using the fopen function and then reads it line by line using getline. For

each line, it checks if it contains the desired symbols using strstr (string search). If a match is

found, the corresponding address is extracted using strtoul (string to unsigned long) and

stored in global variables prepare kernel cred, commit creds, and kernel base.
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3.3.3 Saving Program State

To move from kernel mode execution to user space execution either a sysretq or iretq

instruction needs to be executed. iretq is the easier method and requires that the stack has 5

registers available on it for : RIP CS RFLAGS SP SS . When executing programs there are

two sets of these registers in use, one set is used for the kernel and the other are for the user

mode program.

3.3.4 ROP chain to root!

The final step to exploit this module and elevate our permissions is to create a ROP chain

and initiate a new shell session as the root user.

Let’s break down and explain the code.
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pop rdi ret, mov rax rdi, swapgs popfq ret, and iretq are addresses of specific gadgets in

the kernel code. These gadgets perform various operations such as popping values from the

stack, moving values between registers, and returning from interrupts.

We can find the gadgets by using the ROPgadget tool and put it in a file and the grep the

specific gadget

More specifically swapgs exchange the current value of the GS register with the value of

the shadow GS base MSR. Popfq Pop the value of the flags register from the stack, restoring

the processor’s state.

The overwrite pc function aims to overwrite the Program Counter (PC) in the kernel stack

frame, allowing the attacker to execute arbitrary code with elevated privileges.

To overwrite the return address, we need to fill the buffer with padding up to the canary, fol-

lowed by the canary value. After these two values, we can then overwrite the return address

with our ROP chain.

The ROP chain focuses on calling commit creds(prepare kernel cred(NULL));, which

consti- tutes the initial part of the ROP chain. The subsequent part involves invoking the

swapgs gadget to modify the GS segment, followed by the iretq instruction to trigger an

interrupt (to perform a controlled transfer of control flow from kernel space back to user

space.). Afterward, the RIP is set to a function that spawns a shell with specific permissions.
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The function that spawns a new shell session is shown below.

Bypassing KPTI & SMAP

By employing a ROP chain, we were able to bypass SMEP. However, what about KTPI,

which is documented as a countermeasure to shared userspace and kernel space attacks like

Meltdown? The technique I focused on to bypass it involves using a signal handler. Since our

process is sent a segfault, we can register a signal handler to manage that segfault and invoke

our spawn shell function. I have just added this.

Another technique is called KPTI trampoline. The idea behind this technique is to lever-

age the kernel’s existing method of transitioning between userspace and kernel space page

tables in our exploit, allowing for a smooth transition to our spawn shell function. The

function swapgs restore regs and return to usermode is utilized to move between these two

pages, and with an appropriate leak, we can incorporate this function into our ROP chain.

This technique will not be covered but is worth mentioning.

Supervisor Mode Access Prevention is a mitigation introduced by intel to prevent the CPU

executing in kernel mode from executing usermode instructions. There is a SMAP bit in the

CR4 control register that dictates whether user-space memory is allowed to be accessed while

in a privileged mode. If the bit is set and the processor attempts to access a userspace region

of memory, then a page fault will trigger a SMAP violation and result in OOPS. This means

that a ROPChain can’t be stored in userspace, or else a SMAP violation will occur.

Throughout this exploit series, the chain has been stored in kernel space, so the existing

exploit will still work when adding the SMAP protection.

Now that we have divided and explained the full exploit, let’s take a look at the final step,

how to call these functions in main.

40



Firs we need to create a file descriptor to interact with the module, then we should call the do

leak for leaking the stack cookie, then we need to find the kernel address for the privilege

escalation phase, before we do some exploitation we need to save the state and move from

kernel space to user space smoothly, the for bypassing the KPTI we use signal handling so if

we have a segmentation fault a shell will spawn, finally we send our ROPchain.
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As we can see, the exploitation was successful.
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Chapter 4

Use After Free in Kernel Space

In this chapter, we will interact with dynamically allocated data, explore how allocators in

kernel space work, and exploit a use-after-free-vulnerable module.

4.1 Allocators in Kernel Space

In the kernel, as in user space, you may want to dynamically allocate an area smaller than

the page size. The simplest allocator is to allocate in page size units like mmap, but it creates

a lot of unnecessary space and wastes memory resources.

Similar to malloc in user space, kmalloc is also available in kernel space. This uses an

allocator installed in the kernel, but mainly SLAB, SLUB, or SLOB is used. The three types

are not completely independent and have some common parts in terms of implementation.

These three are collectively called the slab allocator. It’s confusing because the notation is the

difference between Slab and SLAB.

4.1.1 SLAB Allocator

Within the kernel, similar to user space, there may be a need to dynamically allocate

memory regions smaller than a page size. While the simplest method might be to allocate

full-page units via something akin to mmap, this approach can lead to substantial wastage of

memory resources.

In kernel space, kmalloc is used for memory allocation, analogous to malloc in user space.

It relies on one of the allocators installed in the kernel: SLAB, SLUB, or SLOB. These three

are not entirely distinct and share some implementation features, collectively referred to as

the slab allocators. It’s worth noting that the terminology—Slab versus SLAB—can be

confusing:

● Slabs: These are memory blocks segmented into fixed-size slots, each capable of

storing a single kernel object.

● Caches: Each cache is tailored to a specific object size and contains slabs for that

size, dynamically created as needed.
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● Objects: These are kernel structures or data requiring dynamic allocation, with

objects of the same size sourced from their respective cache.

The SLAB allocator operates on a three-tiered structure:

● Slab Layer: Manages the entire slabs and their allocation status.

● Cache Layer: Organizes slabs according to their size.

● Object Layer: Manages the individual objects contained within a slab.

The allocation process searches for a suitable slab within a cache. If an appropriate slab

isn’t available, a new one is allocated from the slab layer, and objects are allocated from this

new slab as required.

The advantage of using SLAB is its efficiency in managing objects that are frequently

created and destroyed, as it helps minimize fragmentation and overhead. However, SLAB

might encounter fragmentation issues when dealing with objects of varying sizes.

4.1.2 SLUB Allocator
Introduced as a refinement of the SLAB allocator, the SLUB (Simplified SLAB Allocator)

aims to improve upon its predecessor by simplifying its structure and enhancing efficiency.

The SLUB allocator's key features include:

● Simplification: SLUB reduces the complexity found in SLAB, streamlining

maintenance and making the system easier to manage.

● Single List Management: Unlike SLAB, which uses separate lists for fully occupied

and partially filled slabs, SLUB manages both using a single list. This approach

simplifies the paths for both allocation and deallocation.

● Per-CPU Object Caching: SLUB incorporates a per-CPU object cache, which

decreases locking requirements during memory operations and enhances performance

by reducing contention.

● Scalability: Designed with multicore systems in mind, SLUB’s per-CPU caches

diminish contention and enhance cache locality, making it highly scalable.

● Reduced Overhead: By eliminating certain data structures and lists that were part of

SLAB, SLUB cuts down on memory overhead.

● Efficient Object Reuse: SLUB prioritizes efficient reuse of objects, particularly

beneficial in scenarios where objects of a specific size are frequently used and

released.
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While SLUB offers significant benefits like improved performance and simplicity, it’s

optimized for specific scenarios. In cases where SLUB may not provide the best efficiency,

alternatives like the traditional SLAB allocator or SLOB might be more appropriate.

4.1.3 SLOB Allocator

The SLOB (Simple List Of Blocks) allocator is another memory allocation approach within

the Linux kernel, distinct from the SLAB and SLUB allocators. SLOB is crafted to be

simpler and more space-efficient, making it particularly well-suited for environments with

limited memory, such as embedded systems.

Key Features of the SLOB Allocator:

● Simplicity: SLOB prioritizes straightforward design and minimalism in code size and

memory usage, ideal for resource-limited embedded systems.

● Single List Management: Unlike SLAB and SLUB, which segregate memory into

caches and utilize per-CPU object caches, SLOB manages memory using a single,

unified global free list for all objects.

● Compact Code Footprint: SLOB is designed to be compact and easy to comprehend

and maintain. It opts for simplicity over complex performance optimizations.

● Fragmentation Management: SLOB reduces both internal and external

fragmentation by consolidating adjacent free blocks where feasible, crucial in settings

where memory fragmentation can significantly impact performance.

● Optimized for Small Systems: SLOB is typically employed in scenarios demanding

minimal memory management overhead and fragmentation, such as in embedded

devices with constrained RAM.

While SLOB excels in simplicity and low overhead, it may not deliver the same performance

as SLAB or SLUB in situations involving frequent allocations and deallocations of objects of

various sizes.

4.2 Module Overview
For this module, I utilized the vulnerable module from @ptr yudai’s blog for Linux kernel

exploitation. It is chosen for its ease of targeting the bug and its clearer explanation.
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Let’s divide and explain the module.

● Allocates memory for the buffer using kzalloc.
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● Checks if the allocation was successful.

● If allocation fails, prints an error message and returns an out-of-memory error code.

kzalloc is a function in the Linux kernel that is used to dynamically allocate memory. It is

specifically designed for kernel modules and provides a convenient way to allocate memory

with the added feature of initializing the allocated memory to zero.

Here’s a brief description of kzalloc:

Parameters

The size of the memory block to allocate. The allocation flags specifying characteristics like

memory reclaim behavior.

Return Value

Returns a pointer to the allocated memory block. Returns NULL if the allocation fails.

This structure defines the operations that can be performed on the character device. Each

field in the structure corresponds to a file operation, such as reading (read), writing (write),

opening (open), and closing (release). These operations are implemented in the respective

functions.
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● alloc chrdev region: Allocates a range of character device numbers. In this case, it

reserves one device number for our character device.

● cdev init: Initializes the character device structure with the file operations defined

earlier.

● cdev add: Adds the character device to the system. If this fails, it prints a warning

message and cleans up resources.

● static ssize _t module read(struct file *file, char user *buf, size t count, loff_t *f

pos): This is the implementation of the read operation for the character device. It is

called when a user-space process reads from the character device.

● printk(KERN INFO ”module read called”): This line prints a message to the kernel

log, indicating that the read operation is being called. This can be useful for

debugging and tracking the execution flow.

● if (count >BUFFER SIZE): Checks if the requested number of bytes to read (count)

is greater than the size of the buffer (BUFFER SIZE). If so, it prints an error message

to the kernel log and returns an error code (invalid argument). A heap overflow

cannot occur with this kernel module because the provided size is compared to the

declared size.

● if (copy to user(buf, g buf, count)) ... : Uses the copy to user function to copy data

from the kernel buffer (g buf) to the user space buffer (buf). It takes into account the

specified count of bytes to copy. If the copy operation fails (e.g., due to insufficient

permissions), it prints an error message to the kernel log and returns an error code

-EINVAL.
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● return count;: If the copy to user operation is successful, it returns the number of

bytes successfully read. This is the normal path for a successful read operation.

● static ssize t module write(struct file *file, const char user *buf, size t count,

loff t *f pos): This is the implementation of the write operation for the character

device. It is called when a user-space process writes to the character device.

● printk(KERN INFO ”module write called”): This line prints a message to the

kernel log, indicating that the write operation is being called. This can be useful

for debugging and tracking the execution flow.

● if (count >BUFFER SIZE): Checks if the requested number of bytes to write

(count) is greater than the size of the buffer (BUFFER SIZE). If so, it prints an

error message to the kernel log and returns an error code -EINVAL (invalid

argument). With this comparison, we can prevent a heap overflow bug as well.

● if (copy from user(g buf, buf, count)): Uses the copy from user function to copy

data from the user space buffer (buf) to the kernel buffer (g buf). It takes into

account the specified count of bytes to copy. If the copy operation fails (e.g., due

to insufficient permissions), it prints an error message to the kernel log and returns

an error code -EINVAL.

● return count;: If the copy from user operation is successful, it returns the number

of bytes successfully written. This is the normal path for a successful write

operation.
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4.2.1 UAF bug and Bypassing KASLR

In close function, the modules uses kfree to free the allocated data, but g_buf the pointer

still remains. But after close we won’t be able to read and write so it’s useless. let’s recall the

characteristics of programs that run in kernel space.

Kernel space allows multiple programs to share the same resources. Holstein modules can

also run multiple programs (or one program) multiple times, rather than just one program. So,

what would happen if you used it like this:

The first instance, g _buf allocated, is opened, but in the subsequent instance, g _buf is

replaced with a new buffer. (The old g _buf remains unreleased, leading to a memory leak.) It

is now freed using close for the next step. Although it is no longer usable at this stage, it is

still valid, allowing both reading and writing. Consequently, you can observe that the object,

which should have already been released, can still be manipulated, resulting in a

Use-after-Free condition.

KASLR acts as a kernel space mitigation to make control flow jacking attacks harder by

ran- domizing the base address of the kernel on boot. By randomizing the base address, we

can no longer hard code values to jump to in kernel memory. Just like userspace ASLR, we

need some form of leak to know where to jump to next.

We don’t always have access to /proc/kallsyms . Often, we need to leak out a useful

address to determine the kernel base address. A very popular address to leak is the tty

operations address through the tty struct . We can leak this address when our problem/module

will allocate an object around 0x2e8 in size and performs an overread.
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The important thing to note with this module is that we allocate 0x400 bytes. We can

trigger a leak by calling read on the file descriptor, but without knowing what’s next to it, we

can’t be certain that we’re leaking anything useful.

That’s where /dev/ptmx comes into play! This handy character device allocates a struct

through kmalloc and places in the heap with a function pointer that we can leak right near the

beginning of it. The struct looks a little something this:

The pointer operations can assist us in leaking a kernel address, enabling the calculation of

the kernel base address. This information is crucial for identifying the gadgets needed for our

Return-Oriented Programming (ROP) chain.

Let’s examine a code snippet from our exploit for the kernel base leak.
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Sprays tty struct objects by opening multiple /dev/ptmx files and storing file descriptors in

the spray array. Then we are able to read data from fd2 to obtain kernel base (kbase) and

global buffer (g _buf) addresses.

4.2.2 Exploitation Phase

For this module, we need to launch a slightly different launch script with all security

mitigations enabled, as shown below.

bzImage is a compressed Linux kernel image that is typically used as the bootable kernel

in many Linux systems. The name ”bzImage” stands for ”big zImage,” and it is an extension

of the original ”zImage” format.

To create our ROP chain, we need to extract the Linux image to a file and then identify

useful gadgets for building our ROP chain.

The script I used was:
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At this time we have sprayed the heap with tty strtuct structures, an exploit to destroy this

object with the Use After Free bug and control the program flow as we pleased

We calculated KASLR with the ops pointer (+0x18) but now we need to find a way to

control rip. opsis a function table, not a function pointer, so it needs to point to a fake

function table in order to control RIP.

To avoid SMAP, we need to leak a heap address because it allows us to write data to the

kernel.

The pointer around offset 0x38 is a pointer to a doubly-listed list provided by Linux.

Because they are created when using mutexes, etc., they exist in many objects in the kernel

and are useful for heap address leaks.

First, prepare a fake and perform a stack pivot to the ROP chain. However, it is a

Use-after-Free scenario, and the area that can currently be utilized is tty struct overlapped.

When using ioctl with tty operations, there are many variables in tty struct that are not

referenced in tty operations, and you can use them as ROP chain areas or fakes. However,

destroying most of the structure that is about to be used in an attack may create unintended

bugs later on and impose significant restrictions on the size and structure of the ROP chain.
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It is also important to note that tty struct should be secured in a separate area if possible.

Therefore, this time, we will trigger a second Use-after-Free. Since there is only one g buf,

first write a fake ROP chain to the g buf address that you already know. Next, initiate

Use-after- Free separately and rewrite the function table in tty struct. This way, only the

function table in tty struct is rewritten, allowing for stable exploitation.
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The ROP chain is similar to the previous task, except for the gadget rop push rdx xor eax

415b004f pop rsp rbp. This gadget aids in manipulating the tty operations structure.

Subsequently, we trigger another Use-After-Free bug for the reasons explained earlier. We

cal- culate the address of buf, and ultimately, by employing ioctl to spray the heap, we

overwrite RIP with our ROP chain.

As such, vulnerabilities such as Heap Overflow and Use-after-Free are often easier to

exploit in kernel space than the same vulnerabilities in user space. This is because the kernel

heap is shared, and various structures with function pointers etc. can be used in attacks.

Conversely, if you can’t find a structure that can be exploited in the same size range as the

object that causes Heap BOF or UAF, it will be difficult to exploit.
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Chapter 5

Advanced topics in Kernel Exploitation

In this chapter, we will take a look at advanced topics in Linux kernel exploitation, such as

at- tacks specific to kernel space, along with a brief overview of eBPF. This will not contain

practical challenges but is worth mentioned for further research in this topic.

5.1 Exploiting null-dereferences in the Linux kernel
For a considerable period, null-dereference (null-deref) bugs represented a major

vulnerability within the kernel. During earlier times, when the kernel had unrestricted access

to userland memory and userland programs could map the zero page, exploiting null-deref

bugs was relatively straightforward. However, the landscape has changed with the advent of

advanced exploit mitigations like Supervisor Mode Execution Prevention (SMEP) and

Supervisor Mode Access Prevention (SMAP), coupled with mmap_min_addr settings that

block unprivileged programs from mapping low memory addresses. As a result, null-deref

bugs are no longer viewed as a significant security concern in contemporary kernel versions.

5.1.1 Kernel oops overview
Currently, if a null-dereference (null-deref) occurs within a process context in the Linux

kernel, it results in an oops, which is different from a kernel panic. A panic happens when the

kernel finds it impossible to safely continue operations, leading to a complete halt. However,

an oops does not stop all system operations; the kernel attempts to recover and keep running.

Specifically, it involves discarding the existing kernel stack and terminating the affected task,

a process referred to as "make task dead," which triggers a call to do_exit. During this event,

the kernel also logs a "crash" log and a kernel backtrace in dmesg, showing the kernel’s state

at the time of the oops. This approach is chosen to make kernel bugs easier to detect and log,

operating under the belief that a functioning system is easier to debug than a non-operational

one.

A drawback of this oops recovery path is that the kernel may not perform the typical

cleanup associated with syscall error recovery. Thus, any locked locks remain in place,

reference counts stay incremented, and any temporarily allocated memory continues to be
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held. However, the process that caused the oops, along with its kernel stack, task structure,

and related components, is usually released, which means, depending on the circumstances,

there may be no actual memory leakage. This aspect is crucial for understanding potential

exploitation risks.

5.1.2 Reference count mismanagement overview
Reference count mismanagement is a well-documented and exploitable issue. If software

incorrectly reduces a reference count, it can lead to a use-after-free (UAF) vulnerability.

Conversely, failing to decrement a reference count can result in a leak, which is also

exploitable. Moreover, if an attacker manages to cause repeated improper increments to a

reference count, it may eventually overflow. Once overflowed, the software loses track of

how many references are held on an object, allowing the attacker to potentially destroy the

object by manipulating the reference count back to zero while still maintaining accessible

references to the object’s memory. This is especially risky with 32-bit reference counts,

which are susceptible to overflow. It's crucial that each increment in the reference count

should ideally not allocate physical memory, as even small allocations can become significant

if repeated numerous times.

5.1.3 Example null-deref bug
When a kernel oops unceremoniously ends a task, any refcounts that the task was holding

remain held, even though all memory associated with the task may be freed when the task

exits. Let’s look at an example - an otherwise unrelated bug I coincidentally discovered in the

very recent past:
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This file is intended simply to print a set of memory usage statistics for the respective

process. Regardless, this bug report reveals a classic and otherwise innocuous null-deref bug

within this func- tion. In the case of a task that has no VMA’s mapped at all, the task’s mm

struct mmap member will be equal to NULL. Thus the priv-¿mm-¿mmap-¿vm start access

causes a null dereference and consequently a kernel oops. This bug can be triggered by

simply read’ing /proc/[pid]/smaps rollup on a task with no VMA’s (which itself can be stably

created via ptrace):
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This kernel oops will mean that the following events occur:

● The associated struct file will have a refcount leaked if fdget took a refcount (we’ll try

and

● make sure this doesn’t happen later)

● The associated seq file within the struct file has a mutex that will forever be locked

(any future reads/writes/lseeks etc. will hang forever).

● The task struct associated with the smaps rollup file will have a refcount leaked

● The mm struct’s mm users refcount associated with the task will be leaked

● The mm struct’s mmap lock will be permanently readlocked (any future write-lock

attempts will hang forever)

Each of these conditions is an unintentional side-effect that leads to buggy behaviors, but

not all of those behaviors are useful to an attacker. The permanent locking of events 2 and 5

only makes exploitation more difficult. Condition 1 is unexploitable because we cannot leak

the struct file refcount again without taking a mutex that will never be unlocked. Condition 3

is unexploitable because a task struct uses a safe saturating kernel refcount7 t which prevents

the overflow condi- tion. This leaves condition 4.

The mm users refcount still uses an overflow-unsafe atomic t and since we can take a

readlock an indefinite number of times, the associated mmap read lock does not prevent us

from increment- ing the refcount again. There are a couple important roadblocks we need to

avoid in order to repeatedly leak this refcount:
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● We cannot call this syscall from the task with the empty vma list itself - in other

words, we can’t call read from /proc/self/smaps rollup. Such a process cannot easily

make repeated syscalls since it has no virtual memory mapped. We avoid this by

reading smaps rollup from another process.

● We must re-open the smaps rollup file every time because any future reads we

perform on a smaps rollup instance we already triggered the oops on will deadlock on

the local seq file mutex lock which is locked forever. We also need to destroy the

resulting struct file (via close) after we generate the oops in order to prevent untenable

memory usage.

● If we access the mm through the same pid every time, we will run into the task struct

max refcount before we overflow the mm users refcount. Thus we need to create two

separate tasks that share the same mm and balance the oopses we generate across both

tasks so the task refcounts grow half as quickly as the mm users refcount. We do this

via the clone flag CLONE VM

● We must avoid opening/reading the smaps rollup file from a task that has a shared file

de- scriptor table, as otherwise a refcount will be leaked on the struct file itself. This

isn’t difficult, just don’t read the file from a multi-threaded process.

Our final refcount leaking overflow strategy is as follows:

● Process A forks a process B

● Process B issues PTRACE TRACEME so that when it segfaults upon return from

munmap it won’t go away (but rather will enter tracing stop)

● Proces B clones with CLONE VM— CLONE PTRACE another process C

● Process B munmap’s its entire virtual memory address space - this also unmaps

process C’s virtual memory address space.

● Process A forks new children D and E which will access (B—C)’s smaps rollup

file respectively

● (D—E) opens (B—C)’s smaps rollup file and performs a read which will oops,

causing (D—E) to die. mm users will be refcount leaked/incremented once per

oops

● Process A goes back to step 5 ˜232 times

The above strategy can be rearchitected to run in parallel (across processes not threads,

because of roadblock 4) and improve performance. On server setups that print kernel logging
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to a serial console, generating 232 kernel oopses takes over 2 years. However on a vanilla

Kali Linux box using a graphical interface, a demonstrative proof-of-concept takes only

about 8 days to complete! At the completion of execution, the mm users refcount will have

overflowed and be set to zero, even though this mm is currently in use by multiple processes

and can still be referenced via the proc filesystem.

5.1.4 Exploitation
Once the mm users refcount has been set to zero, triggering undefined behavior and memory

cor- ruption should be fairly easy. By triggering an mmget and an mmput (which we can very

easily do by opening the smaps rollup file once more) we should be able to free the entire mm

and cause a UAF condition:

Unfortunately, since 64591e8605 (“mm: protect free pgtables with mmap lock write lock

in exit mmap”), exit mmap unconditionally takes the mmap lock in write mode. Since this

mm’s mmap lock is permanently readlocked many times, any calls to mmput will manifest as

a perma- nent deadlock inside of exit mmap.
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However, before the call permanently deadlocks, it will call several other functions:

1. uprobe clear state

2. exit aio

3. ksm exit

4. khugepaged exit

Additionally, we can call mmput on this mm from several tasks simultaneously by

having each of them trigger an mmget/mmput on the mm, generating irregular race

conditions. Under normal execution, it should not be possible to trigger multiple

mmput’s on the same mm (much less concurrent ones) as mmput should only be called

on the last and only refcount decrement which sets the refcount to zero. However, after

the refcount overflow, all mmget/mmput’s on the still- referenced mm will trigger an

mmput. This is because each mmput that decrements the refcount to zero (despite the

corresponding mmget being why the refcount was above zero in the first place) believes

that it is solely responsible for freeing the associated mm.

This racy mmput primitive extends to its callees as well. exit aio is a good candidate for

taking advantage of this:
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While the callee function kill ioctx is written in such a way to prevent concurrent execution

from causing memory corruption (part of the contract of aio allows for kill ioctx to be called

in a concurrent way), exit aio itself makes no such guarantees. Two concurrent calls of exit

aio on the same mm struct can consequently induce a double free of the mm-¿ioctx table

object, which is fetched at the beginning of the function, while only being freed at the very

end. This race window can be widened substantially by creating many aio contexts in order to
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slow down exit aio’s internal context freeing loop. Successful exploitation will trigger the

following kernel BUG indicating that a double free has occurred:

Note that as this exit aio path is hit from mmput, triggering this race will produce at least two

permanently deadlocked processes when those processes later try to take the mmap write

lock. However, from an exploitation perspective, this is irrelevant as the memory corruption

primitive has already occurred before the deadlock occurs. Exploiting the resultant primitive

would probably involve racing a reclaiming allocation in between the two frees of the

mm-¿ioctx table object, then taking advantage of the resulting UAF condition of the

reclaimed allocation. It is undoubtedly possible, although I didn’t take this all the way to a

completed PoC.

5.2 Double-Fetch bug
In this section, we will delve into the theoretical aspects of the double-fetch bug. We’ll take a

closer look at its intricacies and explore key concepts related to this vulnerability.

Additionally, we’ll provide a comprehensive understanding of the underlying principles

involved in the double-fetch bug.
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5.2.1 Memory Access Drivers
Device drivers are essential kernel components tasked with enabling communication

between the kernel and various hardware devices connected to the system. These drivers

support both synchronous and asynchronous operations and can be accessed multiple times.

Their importance to system security is profound, as flaws in drivers can lead to significant

vulnerabilities, potentially giving attackers control over the entire system. Additionally,

drivers frequently handle the transfer of messages of varying types and lengths from user

space to hardware. As we will discuss later, these operations often result in double-fetch

scenarios, which can introduce security vulnerabilities.

In Linux, each device is represented as a file within the /dev directory, allowing user space

processes to interact with the hardware's drivers through file input/output system calls.

Drivers implement all related file operations, such as read() and write(). These functions

require the driver to either fetch data from user space (during write operations) or copy data

to user space (during read operations). To perform these transfers, drivers utilize specific

transfer functions, where any repeated data fetching (double-fetch) could lead to multiple

invocations of these functions, increasing the risk of vulnerabilities.

5.2.2 Double-fetch overview
A double-fetch is a type of race condition that occurs during memory access interactions

between the kernel and user space. This issue was first highlighted by Serna, who reported

vulnerabilities related to double-fetch scenarios in Windows. In essence, a double-fetch

occurs when a kernel function, typically a syscall invoked by a user application, accesses the

same memory location in user space twice: initially to verify the data and subsequently to use

it. During the interval between these two accesses, if a user thread alters the data at the

memory location, the kernel function might retrieve a modified value on its second fetch.

This discrepancy can lead not only to erroneous outcomes in computations but also to more

severe issues like buffer overflows, null-pointer crashes, or other critical faults.
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Benign double fetch: A benign double fetch is a case that will not cause harm, owing to

additional protection schemes or because the double-fetched value is not used twice.

Harmful double fetch: A harmful double fetch or a double-fetch bug is a double fetch

that could actually cause failures in the kernel in specific situations, e.g., a race condition that

could be triggered by a user process.

Double-fetch vulnerability: A double-fetch bug can also turn into a double-fetch

vulnerabil- ity once the consequence caused by the race condition is exploitable, such as

through a buffer overflow, causing privilege escalation, information leakage or kernel crash.

Even though benign double fetches are currently not vulnerable, some of them can turn into

harmful ones when the code is changed or updated in the future (when the double fetched

data is reused). Moreover, some benign double fetches them can cause performance

degradation when one of the fetches is redundant. Double-fetch vulnerabilities occur not only

in the Windows kernel [14], but also in the Linux kernel. The code below shows a

double-fetch bug in Linux 2.6.9, which was reported as CVE-2005-2490. In file compat.c,

when the user-controlled content is copied to the kernel by sendmsg(), the same user data is

accessed twice without a sanity check at the second time. This can cause a kernel buffer

overflow and therefore could lead to a privilege escalation. The function cmsghdr from user

compat to kern() works in two steps: it first examines the parameters in the first loop (line

151) and copies the data in the second loop (line 184). However, only the first fetch (line 152)

of ucmlen is checked (lines 156–161) before use, whereas after the second fetch (line 185)

there are no checks be fore use, which may cause an overflow in the copy operation (line

195) that can be exploited to execute arbitrary code by modifying the message. Plenty of

approaches have been proposed for data race detection at memory access level. Static

approaches analyze the program without running it. However, their major disadvantage is that

they generate a large number of false reports due to lack the full execution context of the

program. Dynamic ap- proaches execute the program to verify data races [31, 16, 15],

checking whether a race could cause a program failure in executions. Dynamic approaches

usually control the active thread scheduler to trigger specific interleaving to increase the

probability of a bug manifestation [41]. Nevertheless, the runtime overhead is a severe

problem and testing of driver code requires the support of spe- cific hardware or a dedicated

simulation. Unfortunately, none of the existing data race detection approaches (whether static
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or dynamic) can be applied to double-fetch bug detection directly, for the following reasons:

(1) A double-fetch bug is caused by a race condition between kernel and user space, which is

different from a common data race because the race condition is separated by the kernel and

user space. For a data race, the read and write operations exist in the same address space, and

most of the previous approaches detect data races by identifying all read and write operations

accessing the same memory location. However, things are different for a double-fetch bug.

The kernel only contains two reads while the write resides in the user thread. Moreover, the

double-fetch bug exists if there is a possibility that the kernel fetches and uses the same

memory location twice, as a malicious user process can specifically be designed to write

between the first and second fetch. (2) The involvement of the kernel makes a doublefetch

bug different from a data race in the way of accessing data. In Linux, fetching data from user

space to kernel space relies on the specific parameters passed to transfer functions (e.g., copy

from user() and get user()) rather than dereferencing the user pointer directly, which means

the regular data race detection approaches based on pointer dereference are not applicable

anymore.

Moreover, a double-fetch bug in Linux is more complicated than a common data race or a

double- fetch bug in Windows. A double-fetch bug in Linux requires a first fetch that copies

the data, usually followed by a first check or use of the copied data, then a second fetch that
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copies the same data again, and a second use of the same data. Although the double fetch can

be located by matching the patterns of fetch operations, the use of the fetched data varies a

lot. For example, in addition to being used for validation, the first fetched value can be

possibly copied to somewhere else for later use, which means the first use (or check) could be

temporally absent. Besides, the fetched value can be passed as an argument to other functions

for further use. Therefore, in this paper, we define the use in a double fetch to be a

conditional check (read data for comparison), an assignment to other variables, a function call

argument pass, or a computation using the fetched data. We need to take into consideration

these double fetch characteristics. For these reasons, identifying double-fetch bugs requires a

dedicated analysis and previous approaches are either not applicable or not effective.
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Chapter 6

Outcomes/Conclusion

In-depth research into the internals of the Linux kernel has reinforced a solid

understanding of its architectural details and operational mechanics. The exploration ranged

from the kernel's scheduling mechanisms and memory management units to its sophisticated

device drivers and process management techniques, as described in the early chapters. These

fundamental elements not only underscore the complexity of the Linux kernel, but also

highlight its vast capabilities and the critical role it plays in system operation and security.

The analysed security measures, such as Supervisor Mode Execution Prevention (SMEP),

Supervisor Mode Access Prevention (SMAP), Kernel Address Space Layout Randomization

(KASLR), Function Granular KASLR (FGKASLR), and Kernel Page-Table Isolation (KPTI),

are integral to protecting the kernel from various attack vectors. These measures are critical

to defeating potential exploits by complicating an attacker's ability to predict or manipulate

memory layouts and execution flows. In addition, the implementation of Kernel Address

Display Restriction (KADR) is critical in preventing information leaks that could otherwise

be exploited to bypass these protections.

The practical application and examination of vulnerabilities - specifically stack buffer

overflows and use after free (UAF) vulnerabilities - demonstrate their potential to

compromise the integrity of the kernel. These vulnerabilities are described in detail,

illustrated in a virtual environment, and exploited to compromise the kernel despite the

safeguards in place. The development and analysis in the virtual environment was performed

using tools such as QEMU and BusyBox to replicate real-world attack scenarios, thereby

enhancing the understanding of these vulnerabilities and the effectiveness of corresponding

defences.

In addition, advanced exploitation techniques such as null dereferences and double fetch

bugs were explored to demonstrate the complexity of modern cyber-attacks and the constant

need for evolving security strategies. These topics provide insight into the types of race

conditions and memory corruption issues that can still affect even well-protected systems.

They highlight the constant battle between system defenders and attackers.

This thesis makes a significant contribution to the field of cybersecurity by demonstrating

the complexities involved in securing the Linux kernel against an ever-evolving threat
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landscape. By synthesizing these findings, the research provides actionable information for

improving kernel security and developing robust defences that can be adapted to protect

against both known and emerging threats.

Ultimately, the knowledge obtained from this in-depth study provides developers, system

administrators, and cybersecurity professionals with the tools and understanding necessary to

strengthen Linux systems. It also serves as a foundation for future research and development

in the area of operating system security, encouraging a proactive approach to defence

strategies and a deeper exploration of potential vulnerabilities within complex software

systems.

In conclusion, the work accomplished in this thesis not only deepens the theoretical

knowledge of the Linux kernel architecture and its associated vulnerabilities, but also

improves practical security practices, advancing the capabilities and security postures of

modern computing environments.
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