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Abstract
This work focuses on the application of Machine Learning techniques for Music Emo-
tion Recognition, particularly focusing on children’s music. The first step was to cre-
ate a specialized dataset for children’s music, which includes songs of varied emotions
and cultural backgrounds, annotated by experts in child psychology, education, and
Machine Learning Engineers. A Support Vector Machine was employed as a baseline
model for the prediction task, processing a range of handcrafted audio features. Con-
cerning more advanced models, Convolutional Neural Networks and a Dual-Stream
architecture model, integrating both Convolutional and attention-based Long Short-
Term Memory networks were evaluated. This approach offers a comprehensive anal-
ysis of children’s music by examining both spectrograms and music transcription se-
quences. Models were evaluated using the Probabilistic EmotionAlignment to compare
model posteriors with the probability distribution of expert annotations. Moreover,
models evaluated using the established Machine Learning metrics, indicating that dif-
ferent modalities are able to enhance the predictive capacity for emotion recognition.

Thesis Supervisor: Theodoros Giannakopoulos
Title: Principal Researcher

3



Acknowledgments

Θαήθελα να ευχαριστήσωτον κ. ΘεόδωροΓιαννακόπουλο, επιβλέπων της διπλωματικής
εργασίας, για την στήριξη και την καθοδήγησή του κατά την διάρκεια της εκπόνησης
της εργασίας. Επιπλέον, θα ήθελα να ευχαριστήσω τον κ. Ευθύμιο Παπατζίκη για την
άριστησυνεργασίαπου είχαμε και τηνμεγάλη τουσυνεισφοράστηνσυλλογήδεδομένων,
την κατεύθυνση της μεθοδολογίας και την ερμηνεία των αποτελεσμάτων. Πρόσθετα
θέλω να ευχαριστήσω τον κ. Γεώργιο Βούρο που αποδέχτηκε την πρόσκληση να συμ-
μετέχει στην εξεταστική επιτροπή.

Ακόμη, θα ήθελα να ευχαριστήσω την ομάδα του κ. Γιαννακόπουλου, τα παιδιά από
το εργαστήριοMagCIL, αλλά και ταπαιδιά πουσυνεργάζονται με τον κ. Παπατζίκηπου
βοήθησαν στο annotation των δεδομένων.

Ένα μεγάλο ευχαριστώ στην οικογένεια μου, τον πατέρα μου Χρήστο, την μητέρα
μου Αναστασία και την αδερφή μου Αργυρώ, για την απεριόριστη στήριξη κατά την
διάρκεια των σπουδών μου στο μεταπτυχιακό πρόγραμμα και όχι μόνο.

Ένα τεράστιο ευχαριστώ στην Δέσποινα για την υποστήριξη τόσο σε ερευνητικό,
όσο και σε προσωπικό επίπεδο.

4



Contents

Acknowledgments 4

List of Figures 7

List of Tables 9

1 Introduction 11
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Construction of Music Emotion Recognition datasets . . . . . . . 14
1.3.2 Music Emotion Recognition using Machine Learning . . . . . . . 15

2 Background: Audio data processing and Machine Learning 17
2.1 Audio Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Low-level audio features . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 High-level audio features . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 Symbolic music representation and transcription . . . . . . . . . 24

2.2 Machine Learning and Deep Neural Networks . . . . . . . . . . . . . . . 24
2.2.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Perceptron and Artificial Neural Networks . . . . . . . . . . . . . 26
2.2.3 Training Strategies in Deep Neural Networks: Backpropagation

and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.5 Loss Function in Neural Networks . . . . . . . . . . . . . . . . . . 33
2.2.6 Overfitting and Regularization Techniques . . . . . . . . . . . . . 33

2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Convolution operation and basic hyperparameters . . . . . . . . . 35
2.3.2 Spatial pooling operations . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Convolutional block and CNN Architecture . . . . . . . . . . . . . 38
2.3.4 Established Convolutional architectures . . . . . . . . . . . . . . 39

2.4 Sequential models and Attention mechanism . . . . . . . . . . . . . . . . 44
2.4.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 45
2.4.2 Gated Recurrent Units . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.3 Long Short-Term Memory Networks . . . . . . . . . . . . . . . . 47
2.4.4 Attention mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5



3 Methodology 51
3.1 Support Vector Machines for Music Emotion Recognition . . . . . . . . . 51
3.2 Convolutional Neural Networks for Emotion Recognition in Children’s

Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Workflow and model architecture . . . . . . . . . . . . . . . . . . 54
3.2.2 Model Adaptation and Hyperparameter Optimization . . . . . . . 58

3.3 Children Music emotion recognition with a Dual-Stream architecture . . 59
3.3.1 Workflow and model architecture . . . . . . . . . . . . . . . . . . 59
3.3.2 Model Adaptation and Hyperparameter Optimization . . . . . . . 63

4 Music in the crib dataset 65
4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Music emotion recognition task . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Annotation process . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2 Annotations aggregation process . . . . . . . . . . . . . . . . . . . 68

5 Results 72
5.1 Codebase instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Experimental Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Metrics for the evaluation of Machine Learning models . . . . . . 75
5.3.2 Permutation tests for assessing classifier significance . . . . . . . 77
5.3.3 Probabilistic Emotion Alignment . . . . . . . . . . . . . . . . . . 77

5.4 Analysis of audio features . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1 Audio Features for Genre Classification . . . . . . . . . . . . . . . 79
5.4.2 Audio Features for children music emotion recognition . . . . . . 80

5.5 Machine Learning models results . . . . . . . . . . . . . . . . . . . . . . 82
5.5.1 Support Vector Machine results . . . . . . . . . . . . . . . . . . . 82
5.5.2 Convolutional Neural Networks Results . . . . . . . . . . . . . . . 87
5.5.3 Dual-stream model . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.4 Comparisons, ablation study and emotion alignment . . . . . . . 98

6 Conclusions 100

7 References 102

Appendices 111

6



List of Figures

1 Temporal Segmentation and Aggregation in Audio Feature Extraction. . 18
2 Spectogram example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Venn diagram illustrating the relationship between AI, ML, and DL. . . . 25
4 Perceptron functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Basic MLP architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 The fundamental activation functions for DNNs . . . . . . . . . . . . . . 31
7 Convolution operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8 Convolution operation in an RGB image. . . . . . . . . . . . . . . . . . . 36
9 Spatial pooling operations example: Max and Average pooling. . . . . . . 38
10 Convolutional layer example. . . . . . . . . . . . . . . . . . . . . . . . . . 38
11 A simple example of CNN architecture. . . . . . . . . . . . . . . . . . . . 39
12 The architecture of AlexNet. . . . . . . . . . . . . . . . . . . . . . . . . . 40
13 The architecture of VGG-16 (top) and VGG-19 (bottom). Adopted from [1]. 41
14 The architecture of ResNet. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
15 An Inception module in the Inception network. . . . . . . . . . . . . . . . 42
16 Inception v4 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
17 Depthwise separable convolution in MobileNet [2]. . . . . . . . . . . . . 44
18 Squeeze-and-Excitation (SE) block structure. Adopted from [3]. . . . . . 45
19 A simple example of RNN layer. Adopted from this link. . . . . . . . . . . 46
20 A simple example of Bidirectional RNN layer. Adopted from this link. . . 47
21 Visual representation of reccurent, GRU and LSTM units. Adopted from

this link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
22 Schematic representation of the SVMmodel development. . . . . . . . . 52
23 Illustrative depiction of the CNN model development workflow. . . . . . 55
24 A detailed exposition of the CNN architecture adopted in this thesis. . . . 56
25 Illustrative depiction of the Dual-Stream model development workflow. . 60
26 Basic pitch architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
27 Dual-Stream Deep Learning model architecture. . . . . . . . . . . . . . . 64
28 Annotation environment created using Label studio. . . . . . . . . . . . . 68
29 Box plot of the 10 most important features for genre classification: Chil-

dren or Non-children music. . . . . . . . . . . . . . . . . . . . . . . . . . 81
30 Box plot of the 10 most important features for children music emotion

classification: Music energy/arousal. . . . . . . . . . . . . . . . . . . . . 83
31 Box plot of the 10 most important features for children music emotion

classification: Music valence. . . . . . . . . . . . . . . . . . . . . . . . . . 84
32 Evaluation curves for SVM in Music Arousal Recognition. . . . . . . . . . 86
33 Evaluation curves for SVM in Music Valence Recognition. . . . . . . . . . 87
34 Evaluation curves of CNN for Music arousal. . . . . . . . . . . . . . . . . 91

7



35 Evaluation curves of CNN for Music valence. . . . . . . . . . . . . . . . . 92
36 Evaluation curves of Dual-stream model for Music Arousal. . . . . . . . . 96
37 Evaluation curves of Dual-stream model for Music Valence. . . . . . . . . 97

8



List of Tables

1 Comprehensive list of audio features extracted using the pyAudioAnaly-
sis library [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2 Distribution of songs across various categories. . . . . . . . . . . . . . . . 66
3 Information about annotators. . . . . . . . . . . . . . . . . . . . . . . . . 67
4 Music emotion classes: Categorical to numerical mapping. . . . . . . . . 69
5 Annotation aggregation details . . . . . . . . . . . . . . . . . . . . . . . . 70
6 Annotation Aggregation: Per class details for arousal . . . . . . . . . . . 70
7 Annotation Aggregation: Per class details for valence . . . . . . . . . . . 71
8 Confusion Matrix of SVM in Music Arousal Recognition. . . . . . . . . . 82
9 Confusion Matrix of SVM in Music Valence Recognition. . . . . . . . . . 85
10 Class-wise Performance Metrics for SVM in Music Arousal Recognition. 85
11 Class-wise Performance Metrics for SVM in Music Valence Recognition. 85
12 Overall performance of SVM classifier. . . . . . . . . . . . . . . . . . . . 87
13 Cross validation results of CNN for Music Arousal . . . . . . . . . . . . . 88
14 Cross validation results of CNN for Music Valence . . . . . . . . . . . . . 89
15 Confusion Matrix of CNN in Music Arousal Recognition. . . . . . . . . . 89
16 Confusion Matrix of CNN in Music Valence Recognition. . . . . . . . . . 90
17 Class-wise Performance for CNN in Music Arousal Recognition . . . . . 90
18 Per Class Metrics for Music Valence. . . . . . . . . . . . . . . . . . . . . . 91
19 Overall performance of CNN model. . . . . . . . . . . . . . . . . . . . . . 92
20 Cross validation results of Dual-Streammodel for Music Arousal Recog-

nition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
21 Cross validation results of Dual-Streammodel for Music Valence Recog-

nition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
22 Confusion Matrix of Dual-Stream model in Music Arousal Recognition. . 94
23 Confusion Matrix of Dual-Stream model in Music Valence Recognition. . 95
24 Class-wise Performance of Dual-Stream model in Music Arousal Recog-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
25 Class-wise Performance for Dual-Streammodel inMusic Valence Recog-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
26 Overall performance of Dual-Stream model. . . . . . . . . . . . . . . . . 98
27 Comparisons with other model using PMEmo Dataset [5]. . . . . . . . . 98
28 Ablation Study Results for Music Arousal and Valence Recognition . . . 99
29 Aggregated results of Machine Learning models. . . . . . . . . . . . . . . 100
30 Cross validation results of CNN for Music Arousal Recognition . . . . . . 112
31 Cross validation results of CNN for Music Valence Recongition . . . . . . 113
32 Cross validation results of Dual - Streammodel forMusic Arousal Recog-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9



33 Cross validation results of Dual - Streammodel forMusic Valence Recog-
nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10



1 Introduction

This thesis consists of an in-depth exploration of Deep Learning (DL) application tech-
niques for Music Emotion Recognition (MER), with a specific focus on children’s mu-
sic. The research intersects the critical disciplines of musicology, cognitive science, and
Artificial Intelligence (AI), extending its implications to educational and therapeutic
contexts since this genre can potentially influence the cognitive and emotional devel-
opment of children.

The initial phase of the proposed methodology was the creation of a specialized
dataset for children’s music, meticulously collected from a variety of sources, includ-
ing educational and entertainment platforms, aiming to create an inclusive dataset that
contains songs of different ambiance and culture. The track selection includes songs
suitable for various age groups, belonging in several musical styles, and transmitting
different emotions. Expert annotations for emotional content were provided by pro-
fessionals in child psychology, education, and Machine Learning (ML) engineers with
expertise inMusic InformationRetrieval (MIR). This innovative dataset forms the foun-
dational component of the training and evaluation of the DL models.

In the preliminary phase, a Support Vector Machines (SVM) classifier was utilized
as a baseline for the MER task, due to its high efficiency in managing complex and
high-dimensional data. The classifier processed a wide range of handcrafted audio fea-
tures, such asMel-Frequency Cepstral Coefficients (MFCCs) and Chroma features. The
next stage entailed the deployment of Convolutional Neural Networks (CNN) andDual-
Stream DL model, that were selected for their exceptional pattern recognition capabil-
ities in image and audio processing. On one hand, the CNN models were specifically
adapted to analyze the spectrogram representations of the audio tracks enabling the
identification of audio signal properties, crucial for discerning the emotional context
in children’s music. The CNN models were then enhanced by implementing various
Transfer Learning configurations, to optimize their effectiveness in classifying the emo-
tional content of children’s music. On the other hand, the Dual-StreamDLmodel com-
bines both CNN and attention-based Long Short-Term Memory (LSTM) networks, to
process both spectrograms andmusic transcription sequences. This approach provides
a comprehensive perspective on the emotional aspects of children’s music by capturing
information from both data types.

A comparative analysis was also conducted among the SVM and DL models for the
evaluation of their effectiveness in accurately identifying and categorizing the emotional
content of children’s music. Evaluationmetrics, such as accuracy, precision, recall, and
the F1 score, were used to provide a detailed assessment of each model’s performance.
Additionally, a novel metric named Probabilistic Emotion Alignment is proposed to
compare the model’s posteriors with the emotional assessments of expert annotators.
This work significantly contributes to the creation of an interdisciplinary knowledge
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base of the domains ofmusicology, cognitive science, andAI, while leveraging advanced
DL models to offer a new perspective on the emotional dimensions of children’s music
and thus potentially impacting the understanding of its effects on the developing brain.

1.1 Problem Statement

Children’s music is an intersection of cultural anthropology, cognitive science, and ed-
ucational theory and consequently plays a pivotal role in the cognitive, emotional, and
cultural development of children [6, 7]. Nevertheless, the exploration of emotional con-
tent in children’smusic via advanced computational models remains underrepresented
in cognitive neuroscience. This gap in scientific literature highlights a missed oppor-
tunity to harness the capabilities of Data Science and Machine Learning (ML) in ad-
dressing the complexity and variability of musical data. This thesis aims to fill this gap
by exploring the patterns, structures, and attributes of children’s songs using diverse
datasets and sophisticated ML algorithms.

The emotional dimension of musical compositions is not limited to subjective inter-
pretations, but is also a quantifiable attribute. Based on the nombrable nature ofmusic,
MER was developed as a specialized field dedicated to the detailed analysis and classi-
fication of emotions inmusical tracks. The advancements inML andDL have provoked
significant changes inMER [8], since they are exceptional for discerning and interpret-
ing the complex emotional signals inmusic. MLmodels are capable of extracting useful
information from audio signals, like music or speech, using a comprehensive spectrum
of audio features derived from both the time and frequency domains of an audio sig-
nal. These features serve as inputs of traditional ML classifiers and more advanced DL
architectures, such as CNNs and Recurrent Neural Networks (RNNs) [9].

In general, the construction of a MER dataset involves overcoming numerous chal-
lenges, particularly due to the subjective nature of emotion recognition, and thus it re-
quires a refined labeling process. The diversity within musical genres and cultural con-
texts further complicates the accurate capture of a song’s emotional essence. During
the labeling process, experts categorize each track based on two emotional dimensions,
namely valence (i.e., happy, sad, neutral) and arousal (i.e., strong, weak or neutral). To
ensure label accuracy, statistical aggregation methods were employed to the votes of
multiple annotators to reduce individual bias and to generate discrete labels [10]. The
criteria for including or excluding music samples were the clarity of emotional expres-
sion and the level of reliability or disagreement among annotators.

Traditional methods of emotion recognition in music often rely on limited sets of
rules or human interpretation, which are not always fitting for capturing the full spec-
trum of emotional expressions. This work addresses the challenges in accurately rec-
ognizing emotions in music by leveraging more sophisticated methods, like ML and
DL. Considering the challenges and domain-specific characteristics of MER, the major

12



contribution of this work can be summarized as follows:

• Development of a specialized dataset for children’s music while encompassing
a broad spectrum of emotions and cultural diversity, based on multi-discipline
expert annotations.

• Applications of CNNmodels inMER: Customization and training of CNNmodels,
initially trained to recognize emotions in western music, using diverse Transfer
Learning configurations.

• Introduction of an innovative Dual-Stream model: A dual-stream architecture
combining CNN with attention-based LSTM networks, processing both spectro-
grams and symbolic music representation sequences as part of a holistic analysis.

1.2 Thesis structure

This thesis is structured as follows:

• The introduction in Section 1 focuses on the importance ofMER in children’s mu-
sic. It outlines the problem statement and accurately describes the main objec-
tives of this research. Furthermore, this section includes a brief overview of the
proposed methodology and a review of related work.

• Section 2 focuses on audio data processing and ML principles, such as audio fea-
ture extraction as well as DL algorithms and architectures in order to provide fur-
ther insight to the technical components of this work.

• The proposedmethod is explained in detail in Section 3. More precisely, the com-
plete workflow of this work is analyzed. Since three algorithmswere employed for
this problem, each step of every algorithm is described using diagrams and code
snippets.

• Section 4 focuses onMusic in the crib dataset creation, starting from the data col-
lection and the comprehensive description of data annotation steps for the MER
task.

• The results presented in Section 5 incorporate the outcomes of the experiments,
the evaluationmetrics, the audio feature analysis, and all the performance results
of the three ML models.

• Finally, the conclusions in Section 6 provide a summary of this work’s findings,
their implications, and suggestions for future research in the field of MER, espe-
cially in the field of in children’s music.

13



1.3 Related work

Recently, the methods for MER have experienced significant advancements driven by
the rapid development in AI technologies. This chapter encompasses differentmethod-
ologies forMER, each providing this field with unique findings in the complex relation-
ship between music and emotions. A critical component of the research done in said
domain involves the construction of specialized datasets, which serve as the foundation
for training and evaluating various MERmodels. Moreover, the application of ML and
multimodal learning techniques inMER are vital for highlighting different features and
modalities to enhance the recognition and classification of emotions in music.

1.3.1 Construction of Music Emotion Recognition datasets

The successful development of MER frameworks is fundamentally reliant on the cre-
ation of comprehensive and accurately annotated datasets for the facilitation of the
training and validation of ML frameworks. This dataset construction process involves
several steps, with themost essential being the compilation of music tracks, annotation
of emotional content, and precise assignment of labels.

CAL500, developed by Turnbull et al., features a collection of popular western mu-
sic spanning five decades. This dataset was annotaded by sixty-six undergraduate stu-
dents, who divided them into 18 different categories based on emotion on a three-point
scale [11]. In addition, theMoodSwings dataset by Kim et al., that is created from pop
music tracks, is unique in its approach to studying time-varying emotional perceptions.
Its annotationutilizes a game-like interface, enabling ”players” tomark emotionswithin
a continuous arousal-valence space [12].

Focusing on film soundtracks, the Soundtracks dataset by Eerola and Vuoskoski
aims to mitigate biases commonly associated with well-known songs. Its annotations,
that were created bymusicologists and university students, encompass both categorical
and dimensional emotions [13]. Furthermore, the AMG1608 dataset, which contains
contemporary western music, offers annotations for arousal and valence, providing a
comprehensive view of mood categorizations in western music [14].

Emotify, constructed byAljanaki, covers a variety of genres including rock, classical,
pop, and electronic. This dataset employs the GEMS scale for annotations, introducing
nine distinct emotional categories [15].

A pioneering approach is seen in the DEAP dataset by Koelstra et al., which incor-
porates electroencephalography (EEG) and physiological signals in its annotations of
YouTube and Last.FM videos. providing dimensional ratings of arousal, valence, and
dominance [16]. Moodo, created byPesek et al., gathers samples fromelectronic, ethno,
and popular music, that are annotated using choosing colors that correspond to the
emotional perception of the music [17].

CH818, curated by Hu and Yang, features Chinese Pop songs annotated for arousal
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and valence by experts with a Chinese cultural background [18]. Likewise, the 4Q Emo-
tion Dataset by Panda et al., derived from the AllMusic API, categorizes songs into four
quadrants based on arousal and valence [19].

The MediaEval Database by Soleymani et al. utilizes royalty-free music across a
variety of genres. Its crowd-sourced annotations provide time-continuous arousal and
valence ratings [20]. Another simmilar dataset is PMEmo by Zhang et al., that com-
prises of songs from international music charts, including time-continuous arousal and
valence ratings as well as physiological data [5].

Lastly, the EMOPIA dataset, introduced by Hung et al., is notable for its focus on
symbolic-domain music analysis and generation. This multi-modal dataset, that incor-
porates both audio andMIDI formats, enriches vailable for music emotion analysis and
generation resources a [21].

1.3.2 Music Emotion Recognition using Machine Learning

MER has experienced a paradigm shift with the integration of ML techniques. Initially,
this task relied on rule-based and fuzzy systems, but the onset of ML has enhanced its
capacity to interpret complex emotional cues in music [22]. The applications of ML
in MER began with conventional classifiers like K-Nearest Neighbors (KNN) and SVM
[23]. Such models require handcrafted audio features extracted from the time and fre-
quency domains of an audio signal, such as zero-crossing rate, energy, Mel-Frequency
Cepstral Coefficients (MFCCs), rhythm-based features, and harmony-based features,
like Chroma. In addition, lyrics and symbolic features, i.e., midi information, can ob-
tain significant representations as well. The selection of these features is critical in de-
termining the accuracy of the emotion recognition process [9]. Li et al. developed a
SVM classifier using timbre, rhythmic and pitch features [24]. According to their find-
ings, this classifier is not confident for certain classes. One of the first multimodal ap-
proaches is proposed by Laurier et al., who fused audio and lyrics to train a SVM and
a Random Forest (RF) classifier, implicating that feature fusion enhances MER perfor-
mance [25]. Amore advancedmultimodal approach for SVM is proposed in [26], where
features obtained by audio and lyrics are combined by different feature fusionmethods,
showing that Late Fusion by Subtask Merging (LFSM) was the most precise method.
Liu et al. [27] extracted emotion similarity embeddings combined with calibrated label
ranking (CLR) for MER. Apart from these methods, conventional ML regressors have
aslo been used to implement dimentional MER [28, 29, 30, 31, 32].

The domain of MER has evolved significantly with the arival of Deep Learning DL.
Traditional ML methods, while groundbreaking, faced challenges in handling the high
dimensionality and subjective nature of music data. Moreover, the time complexity
of handcrafted feature extraction methods posed additional difficulties. DL models,
however, have revolutionized MER frameworks by offering sophisticated data repre-
sentation and streamlining feature extraction processes. Recently, Liu et al. presented
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a novel CNN-based approach for emotion classification inmusic. They utilized spectro-
grams for visual representation, bypassing the complex feature extraction process and
outperforming existing techniques on benchmark datasets like CAL500 [33]. Follow-
ing this paradigm, Koops et al. demonstrated the incorporation of mid-level perceptual
features into DL models, specifically the VGG architecture a few years later. This inte-
gration not onlymaintained predictive performance, but also enhanced the explainabil-
ity of MERmodels [34]. The same year, Er and Aydilek explored the use of pre-trained
CNNmodels, including AlexNet and VGG-16, for obtaining visual features, followed by
classification through SVMand softmax classifiers [35]. Additionally, Dong et al. intro-
duced a Bidirectional Convolutional Recurrent Sparse Network (BCRSN), combining
CNNs with Recurrent Neural Networks (RNNs), achieving significant improvements in
accuracy and efficiency [36].

He et al. developed an innovative end-to-end DL framework that utilized raw audio
signals as input tomulti-view CNNs and Bidirectional LSTM (Bi-LSTM) networks. This
approach effectively captured dynamic emotional content in music [37]. Rajech et al.
focused on the influence of instrument types in MER, combining time and frequency
domain features with RNNs to enhance accuracy in emotion identification [38]. Sarkar
et al. modified the VGGNet to work with short audio segments and introduced a novel
post-processing technique for aggregated emotion recognition in track level [39]. Yang
et al. presented an improved backpropagation neural network, significantly enhancing
themodel’s accuracy and speed in recognizing complex emotional dimensions [40]. Hi-
zlisoy et al. aimed to refine the MER task by applying a combined CNN-LSTM model,
incorporating log-mel filterbank energies andMFCCs along with standard acoustic fea-
tures [41]. The most recent work in this domain is the one by Gupta et al. that intro-
duced a novel approach using L3-Net deep audio embeddings and an attention-based
neural network model with positional encoding. This method achieved notable results,
while demonstrating the efficacy of attention mechanisms in MER without extensive
feature engineering [42].

Transfer learning has also played a pivotal role in the evolution of MER. CNNmod-
els that are pre-trained in large vision tasks like ImageNet have shown strong general-
ization capacity in audio tasks, including MER [43]. The versatility of CNNs that are
initially trained formusic tagging, enhance their application to a variety of othermusic-
related tasks, resulting in outstanding performance compared to traditional methods,
and thus offering broad spectrum applications in MER [44]. Furthermore, the use of
adversarial architectures for data augmentation and transfer learning techniques from
other music domains and genres has demonstrated the superiority of DL models over
traditional ML methods in classifying multiple emotional dimensions in music [45].
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2 Background: AudiodataprocessingandMachine
Learning

This section focuses on audio data processing and ML principles, which constitute the
basic background of this thesis. At first, a diverse range of audio feature extraction
methods are explored, indicating their significance in obtaining informative represen-
tations. Subsequently, the focus shifts to the ML domain, specifically unraveling the
architectures and algorithms that form the core of the proposed MER system. This ex-
ploration covers both traditional ML approaches and advanced DL methods.

2.1 Audio Features

The process of extracting informative representations from audio signals stands as a
fundamental aspect in the audio data analysis domain. The primary goal of this pro-
cess is to convert raw audio waveforms to numerically efficient formats suitable for
computer-based recognition. Audio feature extraction methods capture informative
characteristics of the audio signal that are crucial for domain-specific computational
tasks such as speech recognition, music genre classification, and audio event detection
[46].

2.1.1 Low-level audio features

Low-level audio features serve as the foundational layer in audio signal processing pipelines.
These features include descriptors in both the time and frequency domains, such as zero
crossing rate, spectral centroid, andMel-FrequencyCepstral Coefficients (MFCCs), among
others.

Techniques for Temporal Segmentation in audio feature extraction [4]

The partitioning of audio signals into temporally delimited segments, typically ranging
from 20 to 100milliseconds in duration, is necessitated for short-term analysis. Within
these segments, features are extracted across both time and frequency domains, result-
ing in a series of feature vectors. The segmentation strategy is determined by the spe-
cific requirements of the application: overlapping frames, where the step size is less
than the frame duration, or non-overlapping frames, characterized by a step size equiv-
alent to the frame length. For mid-term analysis, this method is extended by utilizing
larger temporal windows, generally spanning 1 to 10 seconds. These larger segments
incorporatemultiple short-term frames. A composite feature vector for each segment is
derived through statistical aggregation (e.g., mean and standard deviation) of the fea-
tures calculated at the frame level. In contexts involving audio recordings of substantial
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duration, long-term statistical aggregation techniques are applied to generate compa-
rably informative features. This involves averaging the aggregated statistics across all
mid-term segments, effectively condensing the extensive audio data into a singular, rep-
resentative feature vector. This process is illustrated graphically in Figure 1.

Figure 1: Temporal Segmentation and Aggregation in Audio Feature Extraction.

Time-domain features

Time-domain features provide a direct analysis of audio waveforms in the temporal
axis. Such features are:

• Zero-Crossing Rate measures the sign changes rate of the waveform. In other
words, this featuremeasures how quickly the signal changes from positive to neg-
ative amplitude and vice versa:

ZCR(n) =
1

T − 1

T−1∑
t=1

|sgn(x(t))− sgn(x(t− 1))| (1)

sgn(x) =


1, if x > 0

0, if x = 0

−1, if x < 0
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• Energy serves as an essential time-domain feature in audio signal processing,
deeply rooted in the signal’s physical characteristics. Formally defined, for a sig-
nal x[n] with N samples in a given frame, the energy E can be articulated as:

E =
1

N

N−1∑
n=0

|x[n]|2 (2)

• Energy Entropy measures the measure of sadden changes in the signal’s energy
across different sub-frames within a given frame. For a given frame of a signal,
it can be calculated by dividing the frame into M sub-frames, each with its own
calculated energy Ei, and a cumulative frame energy E given by:

E =
M∑
i=1

Ei (3)

The Energy EntropyH is then defined as:

H = −
M∑
i=1

(
Ei

E
log2

Ei

E

)
(4)

Frequency-domain features

Understanding audio signals necessitates the analysis of both the time and frequency
domains. While time-domain features offer insights into the signal’s temporal struc-
ture, frequency-domain features provide information about the spectral component.
The transformation from time to frequency domain ismost commonly facilitated by the
Fast Fourier Transform (FFT). This algorithmic implementation of the Fourier Trans-
form was specifically designed to ensure computational efficiency. The FFT algorithm
transforms a sequence ofN time-domain samples into an equivalent representation in
the frequency domain. Mathematically, this transformation is expressed as:

X(f) =
N−1∑
n=0

x(n) · e−j2πfn/N (5)

The foundamental frequency-domain features in audio data processing are:

• Spectral Centroid is often called as the ”center of mass” of the spectrum, and is
defined as the weighted mean of the frequencies present in a signal. Mathemati-
cally, it is calculated as:
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C =

∑N−1
n=0 f(n) · |X(f(n))|∑N−1

n=0 |X(f(n))|
(6)

Where f(n) is the frequency at bin n, andX(f(n)) is the FFT of the signal.

• Spectral Spread measures the bandwidth of the spectral content around its cen-
troid, defined mathematically as:

Spread =

√∑N−1
n=0 (f(n)− C)2 · |X(f(n))|∑N−1

n=0 |X(f(n))|
(7)

• Spectral Entropy quantifies the amount of information contained in a spectrum
and is defined as:

E = −
N−1∑
n=0

P (n) log2 P (n) (8)

Where P (n) = |X(f(n))|∑N−1
n=0 |X(f(n))| is the normalized spectral magnitude at bin n.

• Spectral Flux quantifies the rate of change in the spectral magnitude between two
successive frames and is given by:

F =

√√√√N−1∑
n=0

(|Xt(f(n))| − |Xt−1(f(n))|)2 (9)

Where Xt(f(n)) and Xt−1(f(n)) are the magnitudes of the FFT in the current
frame t and the previous frame t− 1, respectively.

• Spectral Rolloff is the frequency below which a specified percentage of the total
spectral energy falls. Mathematically, for a given percentage α, it is calculated as:

R = f(r) where
r∑

n=0

|X(f(n))| = α
N−1∑
n=0

|X(f(n))| (10)
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Mel-Frequency Cepstral Coefficients (MFCCs)

Mel-Frequency Cepstral Coefficients (MFCCs) are a representation of the short-term
power spectrum of sound. The process for calculating MFCCs consists of several key
steps:

• Compute Discrete Fourier Transform (DFT) for each frame, given as:

Xt(k) =
N−1∑
n=0

x(n) · e−j 2πkn
N (11)

whereXt(k) represents the k-th DFT coefficient and x(n) is the time-domain sig-
nal.

• Mel-Scale Filter Bank Application The next step applies a bank of filters, typically
20-40, to the DFT coefficients. These filters are distributed across the frequency
axis according to the Mel scale.

• Compute Filter Bank Output Power (Ok) of each filter using:

Ok =
N−1∑
f=0

|Xt(f)|2 ·Hk(f) (12)

whereHk(f) is the k-th Mel filter and |Xt(f)|2 is the power spectral density.

• Discrete Cosine Transform: The next step is to compute the log power spectrum
followed by the Discrete Cosine Transform (DCT):

c(m) =

√
2

N

N−1∑
k=0

log(Ok) cos
[
πm(k − 0.5)

N

]
(13)

Typically, the first 13 coefficients are chosen for further analysis.

• Generalized Cepstrum: The general cepstrum is obtained by applying an inverse
FFT to the logarithm of the spectrum, given by:

c(n) = F−1 {log (|F{x(t)}|)} (14)
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Chroma vector

The Chroma Vector serves as a 12-element frequency-domain representation designed
to capture the 12 different pitch classes characteristic of ”Western Music”. A critical
step in the calculation of the Chroma Vector involves the partitioning of the Discrete
Fourier Transform (DFT) coefficients into 12 distinct bins. Each of these bins corre-
sponds to one of the 12 equal-tempered pitch classes found in ”Western Music”. The
mathematical representation for the binning process is:

Bk =
∑
f∈Sk

|X(f)|, (15)

where Bk is the amplitude of the k-th bin, and Sk is the set of frequencies grouped
into that bin. The bins are spaced in semitone intervals, closely aligning with the fre-
quency structure of westernmusical scales. Sk is defined as the set of frequencies for the
k-th bin, and it represents specific DFT coefficients. The set Sk is essentially a gathering
of all the DFT frequencies that fall under the k-th pitch class.

Sk = {f |f is a DFT frequency and f belongs to k-th pitch class} (16)

The practical application of these low-level audio features in MER is significant for the
identification of the emotional content embedded within musical compositions. For
instance, the Zero-Crossing Rate, often reflective of the rhythm and texture of music,
is utilized in distinguishing energetic tracks, thus contributing to the understanding of
arousal in emotional contexts. Similarly, spectral features like the Spectral Centroid
and Spectral Flux are employed to provide insights into the timbral quality of music,
which is essential for the identification of emotions such as happiness or sadness. Fur-
thermore, MFCCs and Chroma Vectors are instrumental in capturing the tonal charac-
teristics of music, which are closely tied to the perception of mood and affect. By ef-
fectively analyzing these features, emotional states conveyed by music can be classified
and predicted byMER systems, thereby offering invaluable tools for the corresponding
applications.

2.1.2 High-level audio features

High-level audio features, such as Spectrograms andMel-based features, provide intri-
cate representations of audio data, crucial for advanced audio processing tasks. These
features, offering detailed frequency-time representations, are pivotal in tasks requir-
ing a deep analysis of audio signals, such as in MER. Their ability to visually represent
a music signal makes them invaluable in Digital Image Processing and Computer Vi-
sion pipelines, where they assist in the informative interpretation of emotional content
in music. Figure 2 illustrates an example of a spectrogram, showcasing how these fea-
tures encapsulate the dynamic nature of audio signals.
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Figure 2: Spectogram example.

Spectrograms

Spectrogram serves as a visual representation of the spectrumof frequencies in an audio
signal as they vary with time. As a result, x-axis is the corresponding time vector and
in y-axis the frequency. Mathematically, a Spectrogram S is defined as the squared
magnitude of the Short-Time Fourier Transform (STFT):

S(t, f) = |STFT (t, f)|2 (17)

Typically, Mel Spectrogram is used for more advanced DL applications. The con-
version to Mel scale is accomplished through the application of a Mel filter bank on the
Fourier Transform of the audio signal:

M(f) = 1127 ln(1 +
f

700
) (18)

While the Mel Spectrum provides a more perceptually relevant representation, tak-
ing the logarithm of it (Log - Mel Spectrum) further approximates the nonlinear at-
tributes of loudness and pitch:

LogMel(f) = log(1 +M(f)) (19)
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2.1.3 Symbolic music representation and transcription

Music transcription, an essential facet in the field of MIR, involves the complex pro-
cess of converting raw audio signals into symbolic musical representation. This task
aims to convert music tracks into a structured, digital format, mainly represented in
the Musical Instrument Digital Interface (MIDI) protocol. MIDI is more than a digital
representation; it’s a language that encapsulates the essence of music in terms of dis-
crete events, each event consisting of a note’s starting time (s), pitch (p), and duration
(d), formalized as:

MIDI Event = (s, p, d) (20)

The journey of automatic music transcription is marked by the challenge of cap-
turing the multifaceted nature of music, from the simplest melodies to the most com-
plex harmonies. It employs advanced algorithms, such as Harmonic-Percussive Source
Separation (HPSS) and Multiple Fundamental Frequency (F0) Estimation, which dis-
sect audio into its constituent components. These algorithms operate across both time
and frequency domains, meticulously extracting details thatmake up themusical piece.
Furthermore, advancements in DL have significantly enhance the capabilities of auto-
matic music transcription, enhancing its accuracy and efficiency.

2.2 Machine Learning and Deep Neural Networks

Artificial Intelligence (AI) serves as the umbrella term encompassing techniques and al-
gorithms aimed at enablingmachines tomimic human-like cognitive functions. Within
the domain of AI liesMachine Learning (ML), a specialized subset that leverages sta-
tistical methods and principles of Computer Science to design models with the ability
to learn correlations and patters from data [47]. As an evolution of ML, Deep Learn-
ing (DL) focuses on the simulation of human brain neural structure, offering advanced
models like Deep Neural Networks for more complex problem-solving [48]. Figure 3
represents the hierarchical relationship among these three fields in the form of a Venn
diagram.

Types of Learning in Machine Learning

Machine learning offers a diverse range of learning paradigms, each characterized by
its unique attributes and applicability. The principal categories are Supervised, Unsu-
pervised, Semi-supervised, Reinforcement, and Self-learning. Specialized techniques
like Transfer Learning and Adversarial Learning are also noteworthy.

• Supervised learning algorithms aim to establishmathematicalmodels incorporat-
ing both input features and corresponding output labels. In the realm of Super-
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Figure 3: Venn diagram illustrating the relationship between AI, ML, and DL.

vised Learning, a Deep Learning (DL) model is trained using paired input-output
data. The model’s output can be either a continuous variable, typical for a Re-
gression Task, or a discrete value representing the category to which the input
data belongs, generally seen in Classification Tasks.

• Unsupervised Learning strives to discover patterns and relationships within un-
labeled data, with no requirement for supervision.

• Semi-supervised Learning is an integration of both supervised and unsupervised
methodologies, benefiting from a smaller labeled dataset alongside a larger unla-
beled dataset to enhance model efficiency.

• Reinforcement Learning involves training agents to make decisions that maxi-
mize a cumulative reward function, generally in an interactive environment. Such
a type of learning is commonly used in robotic systems.

• Self-supervised learning is a paradigmwhere amodel learns representations from
the data itself without requiring supervision. Instead, the model generates labels
or targets from the input data, enabling it to learn meaningful representations
through tasks such as pretext tasks or generative modeling.
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2.2.1 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning algorithm extensively utilized
for classification and regression tasks. It operates by identifying a hyperplane in an N-
dimensional space (N being the number of features) that distinctly separates different
classes of data points. Given a set of labeled data (xi, yi), i = 1, . . . , n where xi ∈ Rd and
yi ∈ {−1, 1}, the optimization problem for SVM can be solved as:

min
w,b

1

2
∥w∥2

s.t. yi(w · xi + b) ≥ 1, i = 1, . . . , n
(21)

In scenarios where the data is not linearly separable, SVM utilizes the kernel trick to
map input vectors to a higher-dimensional space. A kernel function K(x, z) is respon-
sible to perform this type of mapping without loosing discriminative information and
without having to compute the coordinates in the higher-dimensional space. Among
the variety of kernel functions such as linear, polynomial, and sigmoid kernels, the Ra-
dial Basis Function (RBF) kernel stands out for its efficiency in handling non-linear
data. It is mathematically defined as:

K(x, z) = exp(−γ∥x− z∥2) (22)

Where γ is a hyperparameter which can be adjusted to control the complexity of the
model, and ∥.∥ denotes the Euclidean norm.

2.2.2 Perceptron and Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models used for pattern recog-
nition, whose structure and functionality resemble that of a biological neural network.
They consist of a collection of neurons, each of which undergoes a specific computa-
tional process [49]. A neuron in the human brain receives electrical signals through
dendrites, which are transmitted within the cell body. The signals that emanate from
the cell body pass through the axon and propagate to other neurons through synapses.
The structure and function of the Perceptron neuron, as depicted in Figure 4, are in-
spired by this particular procedure.

Its input Xn carries numerical data to the central body after being multiplied by
certain weightsWn and the summation is calculated in the cell body, as follows:

Summation step:

z =
n∑

i=1

wi · xi + b (23)

Activation step:
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Figure 4: Perceptron functionality.

a =

{
1 z ≥ threshold

0 otherwise
(24)

In the summation step, z represents the weighted sum of inputs xi with correspond-
ing weights wi, plus a bias term b. The activation step applies a threshold function to
the summation result z, where a is the activation output. If z is greater than or equal
to a specified threshold, the activation output is 1; otherwise, it is 0. Considering these
computational steps, the final version of Eq. 23 is:

z = f(
n∑

i=1

wi · xi + b) (25)

The Perceptron is often considered the progenitor of Artificial Neural Networks
(ANNs) and serves as a fundamental building block of a key topology known as the
Multilayer Perceptron (MLP). MLP is a subclass of Feed-Forward Neural Networks
(FFNNs) and comprises Perceptron neurons organized into three distinct layers: the
Input Layer, Hidden Layer, and Output Layer, as illustrated in Figure 5. Contempo-
rary ANNs are characterized by increased computational complexity. This entails the
incorporation of additional layers in the Hidden Layer equipped with nonlinear Acti-
vation Functions, as well as a larger volume of training data. These enhancements sig-
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nificantly elevate performance metrics, enabling ANNs to learn more intricate patterns
[50]. Deep Neural Networks (DNNs), an extension of this paradigm, are employed for
a myriad of applications including image and speech recognition, Music Information
Retrieval (MIR) and Natural Language Processing (NLP).

Figure 5: Basic MLP architecture.

2.2.3 Training Strategies inDeepNeuralNetworks: Backpropagation and
Optimization

Deep Neural Networks (DNNs) have become instrumental in a myriad of applications,
where the linchpin of their performance is the training process. This training paradigm
is fundamentally bifurcated into twophases: ForwardPropagation andBackwardProp-
agation [51, 48].

1. Forward Propagation: This phase involves the feed-forward mechanism of the
neural network, where the network processes the input data to generate predic-
tions. The mathematical formulation can be represented by the equations:

nj =
∑
i

xiwji (26)

yj = f(nj) (27)
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Where xi are the inputs, wji are the weights, and yj is the output of hidden layers.
Further, extending this to the output layer can be denoted as:

zk = f

(∑
j

wkjf

(∑
i

xiwji

))
(28)

2. Backward Propagation andOptimization: The end objective is theminimization
of a designated cost function E(w, b), which is inherently non-linear and depen-
dent on the network parameters w and b. This is achieved using optimization
techniques like Gradient Descent, expressed mathematically as:

∆w = −η∇E(w) = −η
∂E(w, b)

∂w
(29)

Here, η represents the learning rate, and∇E(w) is the gradient of the cost function
with respect to w.

The gradients are calculated using the Chain Rule of Calculus, and in the case of
a multi-layered network, can be generalized as:

∂E

∂wkj

=
∂E

∂nk

∂nk

∂wkj

(30)

∂E

∂wji

=
∂E

∂yj

∂yj
∂nj

∂nj

∂wji

(31)

In practice, numerous variants of the basic Gradient Descent algorithm have been
devised to address its limitations, such as susceptibility to local minima and inefficient
learning rates [52, 53]. Prominent among these are Stochastic Gradient Descent (SGD)
and its momentum-enhanced version, as well as adaptive methods like Adagrad [54],
AdaDelta [55], and Adam [56]. These advanced algorithms leverage techniques such
as adaptive learning rates and first-order and second-order moments to facilitate more
effective and efficient optimization:

1. Stochastic Gradient Descent (SGD): This extension of SGD lies in the utilization
of a single data point, or mini-batch, to calculate the gradient at each iteration
[57]. This introduces a level of stochasticity that allows the algorithm to escape
local minima, at the expense of a noisier convergence path. Mathematically, SGD
is represented as:

wt+1 = wt − η∇E(wt; xi) (32)
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where xi is a randomly chosen data point or mini-batch.

2. Momentum-basedMethods: Toalleviate the oscillations causedbySGD,momentum-
based variants such as SGDwithmomentum introduce a velocity component [58].
This allows the algorithm to build up ”momentum” in directions with consistent
gradients, leading to faster convergence. The update equation becomes:

vt+1 = µvt + η∇E(wt) (33)

wt+1 = wt − vt+1 (34)

where µ is the momentum coefficient.

3. Adaptive Methods: Algorithms like Adagrad [54], Adadelta [55], and Adam [56]
extend the basic Gradient Descent by incorporating adaptive learning rates for
each parameter. Adam, for instance, combines the benefits of both momentum
and adaptive learning rates:

mt = β1mt−1 + (1− β1)∇E(wt) (35)

vt = β2vt−1 + (1− β2)∇E(wt)
2 (36)

wt+1 = wt −
ηmt√
vt + ϵ

(37)

Here, β1 and β2 are hyperparameters that control the decay rates of first and sec-
ond moment estimates, respectively.

Each of these variants contributes unique attributes thatmake themmore suited for
specific types of optimization landscapes. In particular,momentumand adaptivemeth-
ods often outperformbasicGradientDescent andSGD innon-convex, high-dimensional
optimization problems commonly encountered in Deep Learning [59]. Empirically,
Adam has shown superior performance across a wide range of ANN architectures and
their applications. Its ability to efficiently adapt makes it particularly useful for scenar-
ios requiring optimization on large-scale training datasets.
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Figure 6: The fundamental activation functions for DNNs

2.2.4 Activation Functions

Activation functions are a basic component DNNs and play an important role by intro-
ducing non-linearity, enabling themodel to learn from the error andmake adjustments.
Figure 6 depicts the fundamental activation functions commonly employed in DLmod-
els.

1. Rectified Linear Unit (ReLU): ReLU is among the most widely used activation
functions due to its computational efficiency and capability to combat the vanish-
ing gradient problem [60]. Mathematically, it is defined as:

f(x) = max(0, x) (38)

While effective, it suffers where neurons become inactive and no longer update
during training if their output is zero.

2. Leaky Rectified Linear Unit (Leaky ReLU): To address the limitations of ReLU,
Leaky ReLU was introduced [61]. It allows a small, non-zero gradient when the
input is less than zero.
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f(x) = max(αx, x) (39)

where α is a small constant.

3. Sigmoid Function: The sigmoid activation function has historical significance
but is less frequently used in contemporary models due to the vanishing gradi-
ent problem [62]. However, this function is used in the end of a DNN in order to
map the output vector to probabilities. It is defined as:

f(x) =
1

1 + e−x
(40)

4. Tanh Function: Similar to the sigmoid but rescaled to range between -1 and 1, the
tanh function offers steeper gradients, facilitating backpropagation.

f(x) = tanh(x) =
ex − e−x

ex + e−x
(41)

5. Soft-max Function: Soft-max is widely used in multi-class classification prob-
lems. It takes a vector of real numbers and transforms it into a probability distri-
bution.

σ(z)i =
ezi∑K
j=1 e

zj
(42)

where z is the input vector andK is the number of classes.

6. Swish Function: Introduced as a self-gated activation function, Swish offers the
benefits of ReLU and sigmoid and mitigates their individual limitations [63].

f(x) = x · σ(x) (43)

Swish has been shown to outperform ReLU in deeper architectures due to its
smoother gradient, which helps in backpropagation.

The choice of an activation function can dramatically influence the performance and
training dynamics of a neural network. ReLU and its variants are often preferable for
tasks where computational efficiency is crucial, while sigmoid and tanh may find spe-
cific applications in architectures requiring bounded activations [48].

32



2.2.5 Loss Function in Neural Networks

Loss function is as a quantitative measure for evaluating the deviation of predicted val-
ues from the actual ground truth during the training stage of a DNN. Network’s opti-
mization process strongly depends on this function and as a consequence it influences
the model’s overall accuracy. The choice of this function is equivalent to the task the
model is designed to perform. More precisely, these are the most common loss func-
tions for classification tasks:

• Binary Cross-Entropy quantifies the difference between two probability distri-
butions:

BCE(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (44)

• Categorical Cross-Entropy can be used when the classification task is not bi-
nary:

CCE(y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij) (45)

On the other hand, the most common Loss Functions for Regression tasks are:

• Mean Squared Error Loss computes the average squared difference between the
predicted and ground-truth output values:

MSE(y, ŷ) =
1

N

N∑
i=1

(ŷi − yi)
2 (46)

• Mean Absolute Error calculates the average absolute difference between the pre-
dicted and actual values:

MAE(y, ŷ) =
1

N

N∑
i=1

|ŷi − yi| (47)

2.2.6 Overfitting and Regularization Techniques

Overfitting occurs when a ML model a model performs well on the training data but
poorly on unseen or test data. This phenomenon typically indicates a failure in the
model’s generalization capability, leading to higher variance and lower bias. There
are certain methodologies applied to avoid overfitting during model development and
training.
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Dropout Dropout is an effective and widely used regularization technique. Dropout
operates by stochastically setting a fraction p of the neurons to zero in each training
iteration for a given layer. As a result, Dropout enforces the remaining neurons to adapt
more robustly to the input, reducing the model’s sensitivity to overfitting.

L1andL2Regularization L1 andL2are regularization techniques that add apenalty
term to the loss function. For a givenweightmatrixW, the L1 and L2 penalties are given
by:

L1 Penalty = λ
∑
i

|wi| (48)

L2 Penalty = λ
∑
i

w2
i (49)

where λ is the regularization coefficient. L1 regularization tends to produce sparse
weight matrices, while L2 forcing weights to be small but not zero.

Early Stopping Early Stopping involves monitoring the validation loss or metric
during training. The training process is terminated once the selected validation loss
or metric stops improving, typically after a certain number of epochs. The latter num-
ber is called patience.

DataAugmentation DataAugmentation expands the training dataset throughmodality-
based transformations. This increases the diversity of the training data and allows the
model to generalize better to unseen data. For instance, rotation, scaling, or cropping
are typical transformations applied to image data.

Normalization Methods like Batch Normalization are also employed to avoid over-
fitting. These techniques normalize the inputs of a layer, making themodel more stable
and faster.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a specialized architecture within the
Deep Neural Networks (DNNs) designed primarily for image recognition and classifi-
cation tasks [64]. Analogous to how ANNs emulate a network of biological neurons in
their computational process, CNNs draw inspiration from the functioning of the hu-
man visual cortex in information acquisition and subsequent recognition [65]. Conse-
quently, CNN architectures can be broadly partitioned into twomain components. The
first component focuses on feature extraction and learning in images through the con-
volution operation employing specialized filters. Following this, the spatial information
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gleaned is passed to the second structural component, which consists of a set of fully
connected neurons responsible for the final image classification task.

2.3.1 Convolution operation and basic hyperparameters

The convolution operation represents a specialized application of spatial filters on im-
ages. In this operation, a filter ormask is defined and thenmoved across the image. The
sum of the products between this filter and the pixel values for each localized region is
computed [66], as illustrated in Figure 7

Figure 7: Convolution operation

It is universally acknowledged that a majority of real-world problems demand im-
ages with a greater number of channels than a singular unit. For this reason, the filter
is configured such that its depth matches the corresponding depth of the image. In
this manner, convolution is executed independently for each dimension, and the final
outcomes are subsequently aggregated as depicted in Figure 8.

Understanding and defining the hyperparameters of a Convolutional Neural Net-
work (CNN) are critically pivotal for their effective construction and optimization. Ini-
tially, the number of filters in a convolutional layer holds considerable importance, pri-
marily because an increase in the filter count directly corresponds to an elevation in the
neuron count. This, in turn, enhances the network’s capacity for detecting more intri-
cate patterns. Furthermore, the weights of these filters, as determined during the train-
ing phase, signify the salience of the features they capture in the output image. For this
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Figure 8: Convolution operation in an RGB image.

reason, the dimensions of the filters are of paramount importance. Commonly, these
dimensions are square, typically 3x3 or 5x5, and in rarer instances, 7x7. In a gener-
alized context, smaller-sized filters are adept at capturing more localized information,
thereby detailing finer aspects of the image. In contrast, filters with larger dimensions
offer a more generalized, albeit less detailed, view of the image.

Two additional fundamental parameters in the convolution operation within CNNs
arePadding and Stride. Padding refers to the practice of augmenting the image perime-
ter with zero-values. This is generally employed to prevent the drastic reduction of
output dimensions following the convolution operation. Additionally, padding ensures
that the center of the filter traverses the edge pixels of the image, thereby enabling the
capture of complete spatial features [67]. On the other hand, Stride represents the step
size or the distance between two successive positions of the filter as it moves across
the image. Stride is instrumental for the effective subsampling of features, adjusting
the granularity of the feature mapping. The Stride parameter is critical in determin-
ing the spatial dimensions of the output, given the dimensions of the input image and
the applied filter. Consequently, if the image has dimensions di × di and the filter has
dimensions df × df , the resulting convolutional output will have dimensions:
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di − df + 2× padding

stride
+ 1 (50)

The strategic incorporation of padding and stride parameters serves as a pivotal
lever for controlling the spatial dimensions of convolutional outputs, thereby profoundly
affecting the feature representation and computational efficiency of a CNN. Simulta-
neously, the selection of other hyperparameters such as the number of filters count
dimensions fundamentally determines the CNN’s capability to generalize and adapt
to increasingly complex pattern recognition tasks. Given the high-stakes impact of
these hyperparameters, leveraging advanced optimization techniques like grid search
or Bayesian optimization becomes imperative for empirically determining themost effi-
cacious settings. This confluence of thoughtful hyperparameter tuning is indispensable
for constructing robust and efficient CNN architectures, positioning them as viable so-
lutions for a diverse array of machine learning challenges.

2.3.2 Spatial pooling operations

In pursuit of effective sampling while simultaneously reducing the size of the Convo-
lution Output, often referred to as the Feature Map, the technique of Spatial Pooling
becomes imperative. This entails a moving window that traverses the Feature Map in
both dimensions—length and width—to selectively extract specific spatial information,
which varies according to the type of pooling employed. An example of Spatial Pooling
operations is presented in Figure 9. The most popular methods are:

• Max Pooling filter slides across the Feature Map and selects the maximum el-
ement in each step while the remaining information is eliminated. This method
provides a form of invariance tominor changes, captures themost salient features
and extracts a downscaled feature map. The max pooling layer also involves hy-
perparameters, in this case the dimensions and stride of the pooling window. The
dimensions of the extracted feature map can be determined by setting stride = 0
in Eq. 50.

• Average Pooling calculates the mean of all elements in the selected area, which
tends to smooth out the Feature Map and offers a generalized representation.

• Sum Pooling computes the sum of all elements in the chosen window, offering
yet another form of aggregating spatial information, although it is less commonly
employed compared to Max and Average Pooling.

• Global Average Pooling performs average pooling over the entire feature map,
reducing it to a single value per channel. This operation captures the global con-
text of the featuremap, providing a highly compressed representation that is often
used before the classification layer in various architectures.
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• Global Max Pooling operates similarly but selects the maximum value from the
entire feature map for each channel. Like Global Average Pooling, this offers a
global context but focuses on capturing the most salient features across the entire
spatial extent.

Figure 9: Spatial pooling operations example: Max and Average pooling.

2.3.3 Convolutional block and CNN Architecture

The architecture of a CNN intrinsically involves Convolutional Layers as its basic struc-
tural component. A typical Convolutional Layer is comprised of multiple Feature Maps
to facilitate effective feature learning from the input image. An example of a Convolu-
tional block is presented in Fig 10. The basic CNN components are:

Figure 10: Convolutional layer example.
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• Filters and Kernels: These are initialized based on certain pre-defined patterns
and adapt during the training phase via backpropagation [48].

W ′ = W − α
∂L

∂W
(51)

• Non-linearity: Activation functions are applied post-convolution to introduce
non-linearity into the model. The ReLU activation function is commonly em-
ployed [60].

• Pooling: Following activation, pooling techniques are often used to reduce the
dimensionality of the FeatureMaps, enhancing the network’s ability to generalize.

• Flattening and Fully Connected Layers: As the CNN architecture deepens, the
Feature Maps are flattened to a one-dimensional array, which is then fed into
Fully Connected Layers for final feature extraction and classification [68].

A simple example of the CNN architecture, which contains all the basic components
mentioned above, is illustrated in Figure 11

Figure 11: A simple example of CNN architecture.

2.3.4 Established Convolutional architectures

Yann LeCun’s development of LeNet in 1998 marked a significant milestone in the do-
mains of DL and computer vision[69]. As one of the CNNs successfully applied to dig-
ital image processing, particularly in digit recognition, LeNet paved the way for the
widespread adoption of CNNs in various domains. In addition, LeNet delineated the
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basic CNN structure and thus configurations and variations implemented to develop a
series of established architectures.

AlexNet, developed by Krizhevsky et al. in 2012, emerged as a groundbreaking ar-
chitecture in the field of DL [68]. The remarkable performance of this model in the
ImageNet Large Scale Visual Recognition Challenge demonstrated the superiority of
convolutional models over traditional image processing approaches and as a result re-
vitalized the research in Neural Networks. AlexNet’s architecture introduced several
innovative concepts that were critical in its performance. These include five convolu-
tional layerswith varying filter sizes and depths, the introduction of theReLUactivation
function that was important for the reduction of the training time, Local Response Nor-
malization (LRN) which enhancedmodel generalization, three Fully Connected Layers,
a dropout rate of 50% to mitigate overfitting and the final soft-max layer for classifica-
tion into 1000 distinct classes. A diagrammatic representation of the architecture can
be seen in Figure 12.

Figure 12: The architecture of AlexNet.

The VGG (Visual Geometry Group) models, developed by Simonyan and Zisserman
from theUniversity of Oxford, represent a significantmilestone in the evolution of CNN
architectures. Introduced in 2014, these models are renowned for their deep yet sys-
tematically structured layers, which have set a new benchmark in image classification
tasks, particularly in the ImageNet challenge. The VGG family primarily includes two
models: VGG-16 and VGG-19, differentiated by their depth.

Both VGG-16 and VGG-19 employ layers of 3 × 3 convolutional filters with a stride
of 1, uniformly throughout the network. This consistency in filter size simplifies the
network design and improves feature learning capabilities. VGG-16 comprises 16 lay-
ers, while VGG-19 extends to 19 layers. These models showcased that increased depth,
with small and consistent filter sizes, can effectively enhance the network’s learning
capacity. Each model concludes with three fully connected layers, where the first two
consist of 4096 neurons each, and the third performs the final classification. Similar
to AlexNet, VGG models employ ReLU activation functions after each convolutional

40



layer to introduce non-linearity and accelerate training. VGG’s primary innovation was
the application of the Batch Normalization technique prior to layer input, enhancing
model stability. In addition, they established design principles for deep architectures
and influenced the development of subsequent CNN models, including those designed
for tasks other than image classification. Inmany applications, pretrained VGGmodels
can be used for efficient feature extraction. A diagrammatic representation of VGG-16
and VGG-19 can be illustrated in Figure 13.

Figure 13: The architecture of VGG-16 (top) and VGG-19 (bottom). Adopted from [1].

ResNet, introduced byHe et al. in 2015, represented a significant leap forward in the
field of DL, particularly in addressing the challenges associated with training very deep
models [70]. This architecture introduced residual learning technique and enabled the
development of networks that were substantially deeper than previous architectures.
Residual blocks incorporated shortcut connections that skip one or more layers. These
connections perform identity mapping, and their outputs are added to the outputs of
the stacked layers. The primary advantage of this design is that it allows the network
to learn residual functions with reference to the layer inputs, thereby facilitating the
training of deeper networks. ResNet models come in various sizes, the most common
being ResNet-50, ResNet-101, and ResNet-152, referring to the number of layers in
each. ResNet achieved remarkable success, most notably winning the ImageNet Large
Scale Visual Recognition Challenge in 2015. The introduction of residual learning not
only solved the vanishing gradient problem but also set a new standard for the depth of
networks, influencing a wide array of subsequent CNNmodels. A diagrammatic repre-
sentation of the ResNet architecture, showcasing the skip connections, can be found in
Figure 14.

Inception Net, initially known as GoogLeNet, introduced by Szegedy et al. in 2014,
marked a significant advancement in the field of deep CNNs [71]. The primary goal of
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Figure 14: The architecture of ResNet.

Inception Net was to optimize the utilization of computing resources within the net-
work, allowing for more efficient and deeper architectures. Model consists of several
Inceptionmodules, a novel design that allowed for parallel processing throughmultiple
filter sizes within the same layer. This design not only improved the network’s ability to
capture information at various scales but also significantly reduced computational cost
due to the fact that the usage of 1x1 convolutions for dimensionality reduction enhanced
computational efficiency. Beside that improvements, Auxiliary Classifiers was intro-
duced in intermediate layers to combat the vanishing gradient problem. The result of
them was contributing to the final loss function. Over time, the Inception architecture
evolved throughmultiple iterations, from Inception V1 to themore sophisticated Incep-
tion V4 and Inception-ResNet combinations. An illustration of the Inception module
and the evolution of Inception Net versions is provided in Figures 15 and 16.

Figure 15: An Inception module in the Inception network.

The first component of Inspection v4 is the StemBlock. The input stem of Inception
v4 designed to reduce the grid size while maintaining a rich feature representation. It
consists of a series of convolutions, max-pooling, and average pooling layers. This idea
paved the way for the development of more accurate object detection models too. The
core of Inception v4 consists of several updated Inception modules, which include a
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Figure 16: Inception v4 architecture

variety of convolutions with different filter sizes to capture diverse feature representa-
tions. These modules are categorized into Inception-A, Inception-B, and Inception-C
blocks, each with a unique arrangement of convolutional layers. Transitioning between
different Inception blocks, reduction blocks are used to reduce the grid size of the fea-
ture maps. These blocks apply a combination of convolutional and pooling layers to
efficiently downsample the feature maps. Inception v4 integrates residual connections
to facilitate training of deeper networks by addressing the vanishing gradient problem.

MobileNet, introduced by Howard et al., is a series of CNN architectures specifi-
cally designed for mobile and edge devices, emphasizing efficiency and compactness
[72]. The central innovation of MobileNet lies in its ability to maintain a balance be-
tween accuracy and computational cost, making it suitable for applications where re-
sources are limited. At the core of MobileNet’s architecture are depthwise separable
convolutions. This technique divides a standard convolution into two parts: a depth-
wise convolution and a pointwise convolution. This split significantly reduces the com-
putational load and model size without a substantial decrease in performance. Such
operations are depicted in Figure 17. MobileNet has evolved through various versions,
i.e., MobileNetV2, andMobileNetV3, each introducing improvements in efficiency and
performance. MobileNetV3 introduces the use of Squeeze-and-Excitation (SE) blocks,
a form of lightweight attentionmechanism that enhances the representational power of
the network. Another significant innovation is the use of platform-aware Neural Archi-
tecture Search (NAS), optimizing the network’s structure for different hardware con-
straints. SE block architecture is presented in Figure 18.
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Figure 17: Depthwise separable convolution in MobileNet [2].

Each of these architectures not only advanced the technical capabilities of DNNs
but also broadened their applicability across a spectrum of real-world scenarios. The
continuous evolution of CNNs illustrates the dynamic nature of this field, wherein each
innovation builds upon the last, pushing the boundaries of what is possible in ML. The
exploration of these architectures sets the stage for further research and development,
encouraging the pursuit of more optimized, effective, and innovative solutions in DL
domain.

2.4 Sequential models and Attention mechanism

Sequential models are important for analyzing and interpreting data that is inherently
ordered, such as time series, speech, or textual data. These models, capable of captur-
ing temporal structure, have been fundamental in numerous applications across vari-
ous domains. The advent of attentionmechanisms has further revolutionized this field,
enhancing the capability of sequential models to focus on relevant parts of the input se-
quence, thereby improving their performance, especially in complex tasks. This section
focuses on the principles of RecurrentNeural Networks (RNNs), GatedRecurrent Units
(GRUs), and Long Short-Term Memory (LSTM) Networks, each representing a funda-
mental architecture in the development of sequential models. Additionally, the section
unfolds the concept and impact of the attention mechanism, a breakthrough that has
significantly influenced the implementation of DL models.
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Figure 18: Squeeze-and-Excitation (SE) block structure. Adopted from [3].

2.4.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) designed to process sequences of inputs by incor-
porating memory elements to capture temporal dynamics in data, a feature absent in
traditional feedforward networks [73]. At their core, RNNs consist of a network of
neuron-like units, each passing a sequence of inputs through a looped network archi-
tecture. This design enables them to retain information over time. Mathematically, an
RNN can be described as:

ht = f(Whhht−1 +Wxhxt), (52)

where ht is the hidden state at time t, xt is the input at time t, andW are the weights.
A simple example of RNN layer is presented in Figure 19

InRNNs, forwardpropagation involves processing sequenceswhere the output from
previous steps is fed into the current step. This process effectively captures temporal
dependencies in the data. Each time step’s output is determined by both the current
input and the previously hidden state. The loss in RNNs is computed at each time step,
reflecting the prediction error for that particular instance in the sequence. For tasks
like sequence generation, the loss is often accumulated over all time steps to gauge the
model’s overall performance on the sequence. Backpropagation Through Time involves
unrolling the RNN through time and applying the chain rule to compute gradients.
However, it often encounters challenges like vanishing or exploding gradients due to
the repeated multiplication of gradients through time.
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Figure 19: A simple example of RNN layer. Adopted from this link.

RNNs can be categorized based on their input-output structure: One-to-Many for
scenarios like image captioning (single input, sequence output), Many-to-One for tasks
like sentiment analysis (sequence input, single output), andMany-to-Many for applica-
tions like machine translation (sequence input, sequence output). RNNs have evolved
into various forms to overcome challenges like vanishing gradients and to enhance per-
formance. Bidirectional RNNs process data in both forward and backward directions,
providing a richer context. In addition deep RNN architectures, with multiple hidden
layers, capturemore complex features. An example of a Bidirectional layer is presented
in Figure 20.

2.4.2 Gated Recurrent Units

Gated Recurrent Units (GRUs) are an advanced variant of the basic RNN architecture,
introduced to mitigate the vanishing gradient problem existed in traditional RNNs.
They achieve this by employing a gating mechanism that regulates the flow of infor-
mation. GRUs utilize two mechanisms, known as update and reset gates. The update
gate’s role is to determine the extent to which information from previous time steps
should be carried forward. Conversely, the reset gate is responsible for deciding the
proportion of past information that should be disregarded or forgotten. These gates
are crucial in handling large amount of information contain in large sequences.

The operations of a GRU can be represented by the following equations:
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Figure 20: A simple example of Bidirectional RNN layer. Adopted from this link.

zt = σ(Wz · [ht−1, xt]), (53)

rt = σ(Wr · [ht−1, xt]), (54)

h̃t = tanh(W · [rt ∗ ht−1, xt]), (55)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t, (56)

where zt and rt are the update and reset gates respectively, h̃t is the candidate hidden
state, ht is the final hidden state, σ represents the sigmoid function, andW denotes the
weight matrices.

2.4.3 Long Short-TermMemory Networks

Long Short-Term Memory Networks (LSTMs) are an advanced type of RNNs specifi-
cally designed to overcome the limitations of traditional RNNs, particularly the vanish-
ing gradient problemand to enhance the effectiveness ofGRUs [74]. LSTMs comprising
different gates: the input gate, the forget gate, and the output gate, alongside a cell state.
The later stores relevant information during the sequence passing and gates control the
flow of information into and out of the cell state. Thus, network handles information in
a dynamic manner and can select of discard parts of sequences.
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The operation mentioned above can be described as follows:

ft = σ(Wf · [ht−1, xt] + bf ) (57)

it = σ(Wi · [ht−1, xt] + bi) (58)

C̃t = tanh(WC · [ht−1, xt] + bC) (59)

Ct = ft ∗ Ct−1 + it ∗ C̃t (60)

ot = σ(Wo[ht−1, xt] + bo) (61)

ht = ot ∗ tanh(Ct), (62)

where:

• Forget gate: ft

• Input gate: it

• Cell state update: C̃t

• Final cell state: Ct

• Output gate: ot

• Final hidden state: ht

• Sigmoid function: σ

• Weights and biases:W and b

Avisual representation of bothLSTMandGRUcells is presented inFigure 21. LSTMs
are particularly adept at capturing long-range dependencies in data, a capability that is
crucial for tasks involving complex sequences. They effectively address both vanishing
and exploding gradients, which enhances their training efficiency and model perfor-
mance. LSTMs have awide range of applications, including but not limited to, language
modeling and translation in NLP, speech recognition and synthesis, anomaly detection
in time series data, image captioning and video data processing.
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Figure 21: Visual representation of reccurent, GRU and LSTMunits. Adopted from this
link.

2.4.4 Attention mechanism

Attention mechanisms have emerged as a groundbreaking concept in the realm of neu-
ral networks, particularly revolutionizing sequence modeling tasks [75]. They were de-
veloped as a response to the limitations of traditional models like RNNs and LSTMs in
processing long sequences. At its core, attention is a technique that enables models to
focus selectively on parts of the input sequence that are more relevant to desired task.

In practice, attention mechanisms are integrated into neural network architectures
to dynamically weigh the significance of different inputs. They have been notably suc-
cessful when combined withmodels like RNNs, LSTMs, and particularly Transformers,
where attention serves as the backbone of the architecture.

The essence of attention can be captured in the equation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (63)

, where Q, K, and V represent queries, keys, and values, respectively, and dk is the
dimension of the keys. In this thesis, a type of type of self-attention used to handle
sequential data. Given an input sequence h ∈ Rn×d, where n is the number of tokens in
the sequence and d is the dimensionality of each token:

1. First Linear Transformation: The first operation in the self-attentionmechanism
is a linear transformation of the input h using weight matrixWs1 ∈ Rd×da.

h′ = hWs1

This results in a transformed input h′ ∈ Rn×da.

2. Activation Function: The transformed input h′ is then passed through the tanh
activation function element-wise:

a = tanh(h′)
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3. Second Linear Transformation: Next, the activated sequence a undergoes an-
other linear transformation using weight matrixWs2 ∈ Rda×r:

a′ = aWs2

This produces a′ ∈ Rn×r, where r is typically the number of desired attention
heads or contexts.

4. Softmax Activation: The Softmax function is applied along the first dimension
(axis=1) to normalize the weights of the sequence, ensuring they sum up to 1:

A = softmax(a′)

Here, A ∈ Rn×r represents the attention scores for each token in the sequence.

The applications of attention mechanisms are diverse, including natural language
processing tasks like translation and summarization, speech recognition and image
captioning. In addition, this method is a core component of advanced multimodal and
Large Language models.

2.5 Transfer Learning

Transfer Learning is a powerful technique in ML domain, where a model developed for
one task is reused as the starting point for amodel on a second task [76]. This approach
is particularly beneficial in scenarios where labeled data is scarce or when training a
large model from scratch is computationally intensive.

Transfer learning typically involves using pre-trainedmodels that have been trained
on large datasets. These models can either be used as they are (feature extraction) or
can be fine-tuned on a new task with some additional layers being trained. Transfer
learning has found extensive applications in various domains, notably in NLP for tasks
like sentiment analysis and language translation, in computer vision for image clas-
sification and object detection, and even in areas like medical image and audio data
analysis where labeled data is limited.
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3 Methodology

DL technologies have undergone significant advancements, offering effective solutions
across diverse domains, including audio data processing,medical applications, andnat-
ural language understanding [77]. The rapid progress ofDLmodels is attributed to their
capacity to acquire hierarchical features from data, leading to state-of-the-art perfor-
mance on several tasks.

The first step of the proposed method delves into the development of a SVMmodel
for recognising emotions in children’s music, specifically focusing on arousal and va-
lence. Both classification tasks employed time and frequency domain handcrafted au-
dio features. Thesemodels provided a foundational comprehension of the complexities
inherent in such tasks, serving as a strong baseline for the subsequent DL algorithms.

Transitioning from SVMs, the following experiments focus on CNNs combined with
Transfer Learning techniques for feature extraction and subsequent classification tasks
[78]. Among the range of audio data representation techniques, Log - Mel spectro-
grams emerged as themost informative representation of audio signals, offering an effi-
cient alternative feature set suitable for CNN input [79]. Particular emphasis was given
to varying layer freezing configurations, investigating the impact of different transfer
learning strategies on model efficiency and generalisation capabilities [80].

Further exploration of DL applications involved the assessment of LSTM networks
[81], augmentedby an attentionmechanism, for handlingmusic transcription sequences.
This model was fused with the previously discussed CNN within a Dual - Stream archi-
tecture to evaluate the contribution of music transcription information to the emotion
classification task [82]. In summary, this work aims to evaluate the efficiency, advan-
tages, and limitations of each model, supported by a series of experimental configura-
tions and evaluations.

3.1 Support VectorMachines forMusic EmotionRecognition

The decision to utilise Support Vector Machines (SVM) for audio classification in this
thesis was predicated on its efficiency to handle non - linear dependencies among fea-
tures, particularly within audio analysis pipelines. The primary objective encompasses
the classification of emotional expressions in children’smusic. The experimental frame-
work, illustrated inFigure 22, provides amethodical approach to these objectives, thereby
enabling a discernible baseline for potential deep learning methodologies in future in-
vestigations.

The feature extraction phase played an important role in enhancing the efficiency
of the Support Vector Machine (SVM) classifier. In this context, handcrafted audio
features were extracted from mono-WAV files by leveraging the functionality provided
by the pyAudioAnalysis library [4]. The selection of these features was supported by

51



Figure 22: Schematic representation of the SVMmodel development.

their capability to capture both spectral and temporal characteristics of audio samples.
Among these features are the Mel-Frequency Cepstral Coefficients (MFCCs), Chroma
Vector, and an array of Spectral features. A comprehensive breakdown of them is pre-
sented in Table 1. Extracted features were standardized before the training step to en-
hance computational efficiency. Such transformation was implemented by employing
the following formula:

Xscaled =
X − µ

σ
(64)

In this equation,X represents the original feature vector, µ signifies themean, and σ
denotes the standard deviation of the feature vector. This standardization process was
exclusively applied to the training subset of the dataset, wherebyµ andσwere computed
and subsequently employed for normalizing the validation and test subsets.

The SVM model was trained using a Radial Basis Function (RBF) kernel. This ker-
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Table 1: Comprehensive list of audio features extracted using the pyAudioAnalysis li-
brary [4].

Index Name Description

1 Zero Crossing Rate
The rate of sign-changes of the signal during the duration
of a particular frame.

2 Energy
The sum of squares of the signal values, normalized by
the respective frame length.

3 Entropy of Energy
The entropy of sub-frames’ normalized energies. It can
be interpreted as a measure of abrupt changes.

4 Spectral Centroid The center of gravity of the spectrum.
5 Spectral Spread The second central moment of the spectrum.

6 Spectral Entropy
Entropy of the normalized spectral energies for a set
of sub-frames.

7 Spectral Flux
The squared difference between the normalized
magnitudes of the spectra of the two successive frames.

8 Spectral Rolloff
The frequency below which 90% of the magnitude
distribution of the spectrum is concentrated.

9–21 MFCCs
Mel Frequency Cepstral Coefficients form a cepstral
representation where the frequency bands are
not linear but distributed according to the mel-scale.

22–33 Chroma Vector
A 12-element representation of the spectral energy
where the bins represent the 12 equal-tempered
pitch classes of western-type music (semitone spacing).

34 Chroma Deviation The standard deviation of the 12 chroma coefficients.

nel trick has been widely used in audio classification tasks [83], primarily due to its
capability in nonlinear mapping of feature spaces, which ensures the recognition of in-
formative discrimination patterns. The hyperparameters of the model, including the
regularisation parameter C and the kernel parameter γ, were optimised using a grid
search approach and a validation set. The selected model was re-trained with the most
optimal hyperparameters and was used to predict the classes of unknown music sam-
ples.

The previously discussed workflow was implemented using the functionality pro-
vided by pyAudioAnalysis library. In order to provide a comprehensive perspective,
we’ve detailed the specific implementation in the code snippet below. The code out-
lines two primary phases. The first phase entails the extraction of features from the
audio data, model development, and tuning, while in the subsequent phase, the model
was used for predictions and evaluation on the test portion of the dataset.

1

53



2 from pyAudioAnalysis import audioTrainTest as aT
3 ...
4

5 aT.extract_features_and_train(train_dir_list), 1.0, 1.0, aT.
shortTermWindow , aT.shortTermStep , "svm_rbf", model_path , False)

6

7 ...
8

9 for k,v in self.testDF.iterrows():
10 filePath = ...
11

12 class_id, probability , classes = aT.file_classification(filePath,
self.model_path , "svm")

3.2 Convolutional Neural Networks for EmotionRecognition
in Children’s Music

Over the past two decades, CNNs have emerged as the key player for image recogni-
tion tasks. They are applied across a broad spectrum of audio signal processing tasks,
achieving competitive results in speech recognition, music genre classification, and au-
dio event detection [84]. More specifically, the capability of CNNs to recognise patterns
within spectrogram representations of audio signals paved the way for their adoption
in music emotion recognition. This thesis aims to utilise CNNs for emotion recogni-
tion, specifically within a collection of children’s music tracks. The research goal was
to modify CNN architectures previously optimised for emotion recognition in popular
Westernmusic genres and to assess their performance and adaptability within a collec-
tion of children’s music songs.

3.2.1 Workflow and model architecture

Elaborating on themethodology represented in Figure 23, the research process was ini-
tiatedwith a series of audio pre-processing steps. The selected audio samples, primarily
sourced in MP3 format, were converted to 8KHz mono WAV files. In order to ensure
pre-trained model adaptability and dataset invariability, music tracks were segmented
into consistent 10-second non-overlapping audio segments. The segmentation method
was applied to both training and test subsets.

The input feature of CNN was the Mel-scale spectrogram, a visual representation of
the audio signal that closely aligns with human auditory perception [79]. During the
data loading process, spectrograms were generated with respect to pre-trained model
sampling parameters and image dimensions. Thus, the resulting spectrograms were
forwarded in the DL model as images with a dimensionality of 128× 51.
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Figure 23: Illustrative depiction of the CNN model development workflow.

The code base utilised for these steps was largely derived from the deep audio fea-
turesPython library, and feature extractionwas performed via the librosa package [85].
Below is an excerpt of the code for Mel-spectrogram extraction within data loaders:

1

2 WINDOW_LENGTH = 50 * 1e-3
3 HOP_LENGTH = 50 * 1e-3
4

5 class FeatureExtractorDataset(Dataset):
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6 ...
7 feature = sound_processing.get_melspectrogram(
8 signal, fs=fs, n_fft=int(WINDOW_LENGTH * fs),
9 hop_length=int(HOP_LENGTH * fs))
10 ...

1

2 def get_melspectrogram(...):
3 ...
4 spectrogram = librosa.feature.melspectrogram(y=x, sr=fs,
5 n_fft=n_fft, hop_length=hop_length)
6

7 spectrogram_dB = librosa.power_to_db(spectrogram , ref=np.max)
8 ...

Figure 24: A detailed exposition of the CNN architecture adopted in this thesis.

The architectural backbone of the CNN, demonstrated in Figure 24, comprises four
convolutional blocks. Each is accompanied by Batch Normalization and Leaky ReLU
activation, followed by a 2 × 2 Max-Pooling operation. The channel depth escalates
exponentially (32, 64, 128, 256) across the layers. A fully connected (FC) block, com-
prising three layers, performs the final classification, outputting the probability dis-
tribution over the emotion categories. The output dimensions for these FC layers are
systematically configured as 1024, 256, and the number of target emotion classes.

CNN developed using the following code section:

1 class CNN(nn.Module):
2 def __init__(self, height, width, output_dim , first_channels=32,

kernel_size=5, stride=1, padding=2):
3

4 super(CNN, self).__init__()
5 self.num_cnn_layers = 4
6 self.cnn_channels = 2
7
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8

9 height = int(self.height / (2 ** (self.num_cnn_layers)))
10 width = int(self.width / (2 ** (self.num_cnn_layers)))
11 kernels = (self.cnn_channels ** (self.num_cnn_layers - 1)) *\
12 self.first_channels
13

14 flatten_dim = kernels * height * width
15

16 self.conv_layer1 = nn.Sequential(
17 nn.Conv2d(1, first_channels , kernel_size=kernel_size ,
18 stride=stride, padding=padding),
19 nn.BatchNorm2d(first_channels),
20 nn.LeakyReLU(),
21 nn.MaxPool2d(kernel_size=2))
22

23 self.conv_layer2 = nn.Sequential(
24 nn.Conv2d(first_channels , self.cnn_channels*first_channels ,
25 kernel_size=kernel_size , stride=stride, padding=

padding),
26 nn.BatchNorm2d(self.cnn_channels*first_channels),
27 nn.LeakyReLU(),
28 nn.MaxPool2d(kernel_size=2))
29

30 self.conv_layer3 = nn.Sequential(
31 nn.Conv2d(self.cnn_channels * first_channels ,
32 (self.cnn_channels ** 2) * first_channels ,
33 kernel_size=kernel_size , stride=stride, padding=

padding),
34 nn.BatchNorm2d((self.cnn_channels ** 2) * first_channels),
35 nn.LeakyReLU(),
36 nn.MaxPool2d(kernel_size=2))
37

38 self.conv_layer4 = nn.Sequential(
39 nn.Conv2d( (self.cnn_channels**2) * first_channels , (self.

cnn_channels**3) * first_channels , kernel_size=kernel_size , stride=
stride, padding=padding),

40 nn.BatchNorm2d((self.cnn_channels ** 3) *
first_channels),

41 nn.LeakyReLU(),
42 nn.MaxPool2d(kernel_size=2)
43 )
44

45 self.linear1 = nn.Sequential(
46 nn.Dropout(0.75),
47 nn.Linear(flatten_dim , 1024),
48 nn.LeakyReLU()
49 )
50

51 self.linear2 = nn.Sequential(
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52 nn.Dropout(0.5),
53 nn.Linear(1024, 256),
54 nn.LeakyReLU()
55 )
56 self.linear3 = nn.Sequential(
57 nn.Dropout(0.2),
58 nn.Linear(256, output_dim),
59 nn.LeakyReLU()
60 )
61

62 def forward(self, x):
63 out = self.conv_layer1(x)
64 out = self.conv_layer2(out)
65 out = self.conv_layer3(out)
66 out = self.conv_layer4(out)
67

68 out = out.view(out.size(0), -1)
69 out = self.linear1(out)
70 out = self.linear2(out)
71 out = self.linear3(out)
72

73 return out

Dropout layers [86] were strategically placed after each Max Pooling operation as
a regularisation technique to reinforce model generalisation capacity. The optimisa-
tion objective for the CNNmodel was the Cross Entropy Loss combined with the corre-
sponding class weights to handle imbalance. This loss function measures the dissimi-
larity between the predicted emotion probability distributions and the true labels [48].
To dynamically adjust the learning rate during training, ReduceLROnPlateau strategy
was employed. If the model’s validation performance plateaus for a specified number
of epochs, the learning rate is reduced by a factor ensuring efficient training and bet-
ter convergence rates [87]. Another technique integrated into the training process was
Early Stopping. This approach monitors a chosen metric and terminates training if it
observes no improvement over a predefined number of epochs, reducing the risk of
overfitting, as the model stops training before it starts memorising the training data
[88].

3.2.2 Model Adaptation and Hyperparameter Optimization

In the pursuit of optimizing model performance for the MER task, a systematic ap-
proach was undertaken through the application of grid search cross-validation, em-
ploying a k-fold method where k = 5. In each fold, the dataset was split among full
tracks and not in segments, with the aim of reducing model bias. This methodological
framework was designed to meticulously determine the optimal settings for batch size,
learning rate, and specific layer-freezing scenarios within the pre-trained CNNmodels.
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The configurations for layer-freezing scenarios were presented as follows:

• Scenario 0 (S0): It was determined that all layers within the model should re-
main trainable, thus allowing the entire network to adapt its weights in response
to the unique characteristics of the dataset, as identified.

• Scenario 1 (S1): Attention was exclusively directed towards the linear layers of
the model by freezing the Convolutional blocks. The objective was to refine the
decision-making aspects of the network, while the integrity of the feature extrac-
tion layers was maintained.

• Scenarios 2 to 4 (S2-S4): A progressive freezing strategy was implemented for
the initial one to three layers, thereby restricting adjustments in the early layers.
This approach was based on the assumption that the foundational feature detec-
tion capabilities, acquired through previous training, were universally applicable,
including for the task of identifying emotional cues within music.

Hyperparameter selection was comprised of batch sizes of 16, 32, and 64, coupled
with learning rates of 0.001 and 0.002. This strategy was carefully crafted with the aim
of achieving a consistent trade-off between the rate of model learning and computa-
tional efficiency. The main goal was identified as enhancing model performance and
robustness, while simultaneously averting the risks associated with overfitting.

3.3 Children Music emotion recognition with a Dual-Stream
architecture

3.3.1 Workflow and model architecture

The goal of this model was to build a unified model that can process and combine in-
formation from multiple types of data. In this project, a Dual-Stream architecture that
combines CNNs and LSTM networks with attention mechanisms is proposed for the
task of children’s MER. The CNN is responsible for processing spectrogram images,
while the attention-based LSTM, handles the sequential aspects of symbolic music rep-
resentation sequences. Total workflow is presented in Fig. 25.

Music transcription information obtained by the Basic Pitch tool [89] proposed by
Spotify researchers. Basic pitch is a lightweight Automatic Music Transcription (AMT)
model designed to transcribe polyphonic recordings from a single class of instruments,
such as a solo piano, an ensemble of violins, and vocals, among others. Model trained
to predict frame-level onset, multi-pitch, and note posteriorgrams. The input audio is
first transformed into a Constant-Q Transform (CQT) representation with 3 bins per
semitone and a hop size of approximately 11 ms. The Harmonic CQT (HCQT) is then
computed to align harmonically related frequencies along a third dimension, thereby
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Figure 25: Illustrative depiction of the Dual-Stream model development workflow.

enabling the use of small convolutional kernels to capture this information. The model
architecture, as illustrated in Fig. 26, comprises a total of 16,782 parameters. It em-
ploys a fully convolutional network that generates three distinct posteriorgrams: the
onset of a note (Yo), a note that is active (Yn), and a pitch that is active (Yp). These are
binary matrices used as targets during training, generated from note and pitch anno-
tations. The posteriorgrams are post-processed to create note events, which are then
used for MIDI information extraction. These features are also extracted in the form of
multivariate time series for onset, contour, and note events.
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Figure 26: Basic pitch architecture.

As described in Sec. 3.2, all audio tracks from the dataset were converted to a stan-
dard format of 8 kHzWAVand segmented into 10-second duration tracks. Twoprimary
features were extracted from the segmented tracks:

1. Spectrogram Calculation: Each segment underwent a spectrogram calculation,
resulting in time-frequency representations that capture the energy distribution
over frequencies.

2. Basic Pitch Transcription Sequences: This entails deriving sequences that repre-
sent the onset, contour, and note information, which are significant for capturing
melodic patterns. The Basic Pitch tool provides the essential programming inter-
face for ATM task:

1 ...
2 from basic_pitch.inference import predict_and_save
3

4 predict_and_save(
5 segments_list ,
6 targetDir ,

61



7 model_or_model_path = ICASSP_2022_MODEL_PATH ,
8 save_midi=False,
9 save_model_outputs=True,
10 save_notes=False,
11 sonify_midi=False
12 )
13 ...

The proposed model comprises two main components: a CNN for processing spec-
trogram data and a sequential model that combines onset, contour, and note features
through a Long Short-Term Memory (LSTM) network coupled with a self-attention
mechanism. The outputs of these networks are subsequently combined and passed
through a dense classification layer. The spectrogram recognition branch is the CNN
described in Section 3.2 without using the last two linear layers. The sequential model
receives as input three vectors with the following dimensions: 858x88 for onset and
note and 858x264 for contour, with the first dimension representing the time step.
Transcription branch processes combine onset, contour, and note features using a bidi-
rectional LSTM cell with a hidden state dimension of 128. A self-attention mechanism
was integrated after LSTM to weigh the sequence of outputs, allowing the model to fo-
cus on the most relevant temporal patterns for emotion recognition. The operational
characteristics as well as themathematical implementation of this mechanismwere de-
scribed in Section 2.4.4. This information passes through the final linear layer to result
in the transcription embedding vector. The attention-based LSTM model was imple-
mented using the following code snippet:

1 class SelfAttention(nn.Module):
2 def __init__(self, input_dim , attn_hidden , heads):
3 super(SelfAttention , self).__init__()
4 self.fc1 = nn.Linear(input_dim , attn_hidden , bias=False)
5 self.fc2 = nn.Linear(attn_hidden , heads, bias=False)
6

7 def forward(self, h: torch.Tensor) -> torch.Tensor:
8 attn_mat = F.softmax(self.fc2(torch.tanh(self.fc1(h))), dim=1)
9 return attn_mat.permute(0, 2, 1)
10

11 class Seq_Model(nn.Module):
12 def __init__(self, heads=8, input_size_onset=88, input_size_contour

=264, input_size_note=88,
13 lstm_hidden=128,
14 hidden = 256):
15

16 super(Seq_Model , self).__init__()
17 input_dim = input_size_onset + input_size_contour + input_size_note
18 self.hidden = hidden
19 self.emb_dim = lstm_hidden*heads*2
20 # LSTM layer to process the combined input vector
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21 self.lstm = nn.LSTM(input_size=input_dim , hidden_size=lstm_hidden ,
batch_first=True, bidirectional=True)

22

23 # Self-attention layer
24 self.attention = SelfAttention(input_dim=lstm_hidden*2, attn_hidden

=128, heads=heads)
25

26 self.linear1 = nn.Sequential(
27 nn.Dropout(0.5),
28 nn.Linear(lstm_hidden*heads*2, hidden),
29 nn.LeakyReLU(),
30 )
31

32 def forward(self, x):
33 lstm_out, _ = self.lstm(x)
34 features = self.attention(lstm_out)
35 weighted_features = torch.bmm(features, lstm_out)
36 weighted_features = weighted_features.view(weighted_features.size

(0), -1)
37 output = self.linear1(weighted_features)
38 return output

Representations resulted by CNN and the attention-based LSTMmodel were fused
and then passed into the final classification fully connected network, as illustrated in
Figure 27. This fusion scheme enables the model to extract a combined representation
after modality-specific processing. The final classification is performed using two fully
connected layerswith output dimensions of 128 and the number of classes, respectively.

Dropout layers [86] were incorporated after each Max Pooling step and after atten-
tion output as a regularization strategy to enhance themodel’s generalization capability.
The optimisation goal for the Dual - Stream model was set to minimize the Cross En-
tropy Loss, which was adjusted for class imbalance by integrating corresponding class
weights. This loss function quantifies the divergence between the predicted probability
distributions of emotions and the actual labels [48]. To dynamically adjust the learning
rate during the training process, the ReduceLROnPlateau strategy was employed. This
approach reduces the learning rate by a factor when the validation performance of the
model plateaus for a predefined number of epochs, ensuringmore efficient training and
improved convergence rates [87]. Additionally, the training protocol incorporated the
Early Stopping technique, which terminates trainingwhen no improvement is observed
on amonitoredmetric over a specified number of epochs. This strategy reduces the risk
of overfitting by preventing the model from memorising the training data [88].

3.3.2 Model Adaptation and Hyperparameter Optimization

The optimization of the Dual-Stream model commenced with an essential phase in
which grid search cross-validation was deployed to determine the optimal number of
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Figure 27: Dual-Stream Deep Learning model architecture.

attention heads alongside foundational hyperparameters. The k-fold method, with k =
5, facilitated this phase, ensuring that in each fold, the dataset was divided among full
tracks rather than segments to mitigate model bias. This initial stage involved a rigor-
ous assessment of the impact that various quantities of attention heads, specifically, 2,
4, 8, and 16, have on the model’s efficacy. Additionally, this examination was extended
to incorporate the evaluation of different hyperparameter configurations, namely batch
sizes of 16 and 32, and learning rates of 0.001 and 0.002. The aim was to ascertain
the combination that most significantly improves the model’s overall performance. In
alignment with the practices established for the Convolutional branch of the architec-
ture, this process included the application of pre-trained weights and themost effective
fine-tuning strategies previously identified during the CNN model’s development, as
documented in Section 3.2.

64



4 Music in the crib dataset

In this section, the steps of constructing theMusic in the Crib dataset are described in
detail. The proposed dataset is a comprehensive collection designed specifically for the
analysis of children’s music. The following sections offer a comprehensive view of the
dataset’s creation, ranging from data collection strategies to the annotation process for
the MER task.

4.1 Data Collection

To address the challenges of children’s music analysis, a dataset comprising 5055 songs
with a focus on both genre diversity and data integrity was constructed. The data col-
lection process was organised into three strategic phases, each designed to contribute
distinct attributes to the composite dataset:

• Phase A - Expert-Labelled Corpus: This phase utilised a carefully curated dataset
of children’s songs, collected and annotated in terms of sub-genre by child psy-
chology researchers fromOsloMetUniversity. Each entrywas characterised across
multiple musical dimensions, such as melody, tempo, and content, to produce a
multi-faceted feature set. Special attention was given to mitigating the subjec-
tivity associated with certain labels, by employing a consensus approach among
domain experts.

• PhaseB -Platform-SourcedData: This phase incorporated curated Spotify playlists
selected by experts in child education and musicology. Each playlist served as a
distinct category, enabling a rich, context-aware feature space that extended be-
yond traditional musical attributes.

• Phase C - Dynamic Data Ingestion: In this final phase, an incoming data repos-
itory was established to facilitate continual updates throughout the project dura-
tion.

Understanding the structure of the dataset serves as a first step towards its analysis.
The song categories within the music corpus provide essential insights into its organi-
zation. Table 2 enumerates the frequency distribution of these categories:

• Lullabies:With 2683 entries, the prevalence of lullabies underscores their endur-
ing cultural and cognitive importance. Historically utilised in bedtime routines,
the lullabies genre is both a comfort representative and an introduction to cultural
auditory landscapes.
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Table 2: Distribution of songs across various categories.

Category Count
Lullaby 2683
Nonverbal_Songs 650
Classical 601
Jazz 267
Rhymes 226
Relaxing 47
Verbal_Songs 44
Songs_for_Babies 39
Movement 32
Songs_for_Toddlers 23
Total 5055

• Instrumental against Verbal Songs: The dataset reveals a preference for non-
verbal compositions, as evident from the 650 entries under Nonverbal Songs.
When coupled with other instrumental categories, such as rhymes and classical
songs, this bias is amplified. This suggests that the absence of lyrics may offer
universal accessibility.

• Genre Diversity: The classical and jazz genres demonstrate the dataset’s vari-
ety, with 601 and 267 songs, respectively. Classical compositions often provide
foundational musical exposure, while the nature of jazz engages and stimulates
children’s creativity.

• Functional Categories: Categories like Relaxing, Movement, Songs for Babies,
and Toddlers depict the role of music in children’s developmental stages. They
highlight the intricate ways music is adapted to various needs, moods, and devel-
opmental milestones.

This categorical distribution allows for fine - grained analysis, accommodating a
plethora of interpretations towards the cognitive, emotional, and physical dimensions
of children’s development.

4.2 Music emotion recognition task

Music has the unique ability to elicit a wide range of emotions. The objective of this
phase was to identify the emotional patterns within the corpus of children’s songs. To
accomplish this, a MER dataset that utilizes two predominant emotional dimensions
was developed. Each emotion dimension, i.e., arousal and valence, is classified using a
3-class approach as described by Posner et al. [90]:
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• Arousal: Categorised as Low (Weak), Medium (Neutral), and High (Strong).

• Valence: Classified into Negative, Neutral, and Positive.

These dimensions were chosen for their robustness and applicability in capturing
a broad spectrum of emotional states, especially beneficial in the context of children’s
music. To carry out the MER task, 447 songs were selected from the complete dataset
as introduced in Section 4.1, hereafter referred to as the Complete Collection (CC). This
subset was selected to capture a diverse range of musical elements, genres, and moods.
This strategy aimed to provide a comprehensive view of the emotional spectrum em-
bedded in these songs.

4.2.1 Annotation process

To guarantee the robustness and diversity of the annotations, a heterogeneous group of
10 annotators was engaged. Their demographic information is summarized in Table 3.
An aspect worth-noting is the intentional variability in the volume of songs assigned to
each annotator. While three of them undertook the comprehensive task of evaluating
all 447 songs, the remaining seven were assigned approximately 50 songs each, chosen
at random. This stratified approach aimed to mitigate potential bias and offer a more
expansive emotional assessment.

Table 3: Information about annotators.

Annotator ID Age Nationality Area of Expertise
0 18-25 Europe Formal Science
1 18-25 Europe Formal Science
2 25-30 Europe Other
3 Over 30 Europe Formal Science
4 Over 30 Europe Formal Science
5 25-30 Europe Formal Science
6 25-30 Asia Natural Science
7 25-30 Europe Other
8 Over 30 Europe Other
9 25-30 Europe Formal Science

The foundation for any data-driven research lies in a structured and efficient anno-
tation process. In this study, Label Studio [91] was employed to create an intuitive and
user-friendly annotation environment, as illustrated in Figure 28. This platform was
selected for its flexibility and ease of customisation, allowing annotators to listen to
selected song snippets and to assign appropriate labels for each emotional dimension.
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Figure 28: Annotation environment created using Label studio.

4.2.2 Annotations aggregation process

Despite the fact that categorical labels were crucial in guiding the annotators, for the
sake of computational approaches, emotion classes were mapped to numerical labels
according to the guidelines of Table 4. This conversion facilitated the subsequent stages
of data analysis, especially in computing the level of disagreement among annotators
and in aggregating annotations for final label assignment.

The fundamental post-annotation step was to adopt a specific statistical approach
in order to find the final emotion labels and assess annotator agreement. Firstly, the
mean and standard deviation for each song were calculated. The final label assignment
was performed by mapping the continuous mean value into a discrete category. On the
other hand, the computed standard deviation provided insights into the reliability of
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Table 4: Music emotion classes: Categorical to numerical mapping.

Arousal Valence Numerical Label
Weak/Low Negative 1

Neutral/Medium Neutral 2
Strong/High Positive 3

the final label.
For the annotation aggregation process in our MER task, mean values were com-

pared with two predefined label decision thresholds, and each song was classified into
one of the three emotion categories per dimension. These threshold values were chosen
based on careful analysis and consideration of the domain-specific emotional distribu-
tion. Thresholds were determined as follows:

• If µ < T1 = 1.66, it’s classified as “Weak” for arousal or “Negative” for valence.

• If T1 ≤ µ ≤ T2 = 2.33, it’s classified as “Neutral”.

• If µ > T2, it’s classified as “Strong” for arousal or “Positive” for valence.

One of the most important steps of the post-annotation procedure was to capture
the level of disagreement among the annotators. This is essential to understanding the
consistency and reliability of the annotations. Songs that displayed high deviations in
labels, indicating a significant disagreement among annotators, were excluded. As a
consequence, along with the average values of arousal and valence annotations used
for assigning the final labels through the previously mentioned thresholding process, a
deviation threshold is also applied to eliminate annotations that have high variability.
In this context, for each sample, theMeanAbsoluteDeviation (MAD) of the annotations
is determined for both tasks using the formula:

MADs = E (|Xs,α − E(Xs,α)|) (65)

To further refine annotations, the following elimination strategy was used by com-
paringMAD with these thresholds:

• For Arousal: IfMADs > Tmad1 = 0.7.

• For Valence: IfMADs > Tmad2 = 0.57.

Tomeasure the inter-annotator agreement, consider the annotation of the i-th sam-
ple by annotator a, represented by Ai,a. This annotation value lies within the range of
1 to 3. LetM be the total number of annotators. The deviation of Ai,a from the mean
annotation value for the same sample is computed as the absolute difference:
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ui,a =

∣∣∣∣∣Ai,a −
1

M

M∑
j=1

Ai,j

∣∣∣∣∣ (66)

Annotation aggregation details are depicted in Table 5. Upon applying the 0.7 de-
viation threshold, 362 samples were retained from the initial 447 for the arousal task.
Conversely, the threshold of 0.59 yielded 381 valid samples for valence. The division
into training and test samples was also influenced by this thresholding, ensuring bal-
anced representations in both datasets. It’s noteworthy that the average disagreement,
post-thresholding, was slightly lower (0.39) for Valence task. On the other hand, the
average disagreement on the arousal task was 0.43.

Table 5: Annotation aggregation details

Arousal Valence
Deviation Threshold

Value
0.7 0.59

Total number of samples
before deviation thresholding

447 447

Total number of samples
after deviation thresholding

362 381

Training samples 189 214
Test samples 173 167

Average disaggrement 0.43 0.39

In addition, annotation aggregation results for each emotional dimension and the
corresponding class are presented in Table 6 for Arousal and in Table 7 for Valence.

Table 6: Annotation Aggregation: Per class details for arousal

Emotional Arousal Mean Threshold Value Samples per Class
Weak µ < 1.66 153
Neutral 1.66 ≤ µ ≤ 2.33 168
Strong µ > 2.33 41

Ensuring the robustness of the test set was of paramount importance. Therefore, all
songs that received more than four annotations were auto-included in the test subset.
This criteria ensured that the selected songs had undergone a comprehensive emotional
assessment. To sum up, the annotations, when processed, would not only help in un-
derstanding the emotional landscape of the chosen songs but also serve as a crucial
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Table 7: Annotation Aggregation: Per class details for valence

Emotional Valence Mean Threshold Value Samples per Class
Negative µ < 1.66 85
Neutral 1.66 ≤ µ ≤ 2.33 170
Positive µ > 2.33 126

component for subsequent modeling and prediction tasks. The diverse set of annota-
tors, with their varied backgrounds, promises a rich and multidimensional perspective
on the emotional content of the songs.

71



5 Results

In this section of the thesis, the detailed analysis and outcomes of the experiments con-
ducted are presented. Subsequent subsections delve into the experimental hardware
setup and the evaluation metrics used to assess model performance, providing insights
into the criteria for success and areas for improvement. The analysis of audio features
follows, highlighting the key characteristics that distinguish children’s music and its
emotional content. The chapter progresses to discuss the results of variousMLmodels,
including SVM and CNN-based models applied to the MER framework. Each model’s
performance is meticulously evaluated, with emphasis on its strengths and limitations.
This comprehensive presentation of results not only validates the research methodol-
ogy but also sets the stage for potential future advancements in the domain.

5.1 Codebase instructions

For the successful completion of the MSc thesis on the ”Music in the Crib” project, a
structured approach in managing the project’s codebase has been adhered to. The code
used in this thesis is available in this Github Repository. It is ensured that Python
3.8 is installed, as it is the primary programming language for this project. All nec-
essary dependencies have been installed by executing the command pip install -r
requirements.txt in the terminal. This step prepares the environment with all the li-
braries needed for the project. You can exclude pytorch and Tensorflow to ensure the
compatibility with the correct version which will match for your system. Additionally,
FFmpeg, which is crucial for handling audio files, has been installed.

Once the environment setuphas been completed, focus has been shifted to the dataset
construction and manipulation for the research. The directory ‘.data_project‘ has been
navigated to, where the data, including MP3 files, annotations, and metadata, are or-
ganized. Links to download data are available in repository. The command python
data_project/constructor.py has been executed to process these files into a struc-
tured format suitable for analysis. This script consolidates the data into a new direc-
tory structure under ‘mic_dataset‘, which includesWAV files, extracted audio features,
and formatted annotations essential for music emotion recognition tasks. Particular
attention has been paid to the exploratory data analysis (EDA), conducted using the
eda.ipynbnotebook to understanddata distributions andpotential biases, which is cru-
cial for preliminary data analysis. Additionally, scripts like src/utils/preprocessing.py
have been provided to prepare the data for deep learning models, which involve seg-
menting audio files and organizing them by emotional valence and energy levels, essen-
tial for training the models effectively. Consistency in data handling and preprocessing
has been maintained to ensure the reliability of the machine learning models, which is
pivotal for the empirical section of the thesis.
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Script src/ml_pipeline.py is used as to run theworkflow for the training and evalu-
ation ofMLmodels, including the SVMbaseline, the CNN and theDual - Streammodel.
Core functions are presented bellow:

1

2 # SVM
3

4 from trainers.svm_trainer import SVM_Trainer
5 from evaluation.test_model import SVM_Tester
6

7 trainer = SVM_Trainer(task, results_dir , wav_dir, infoFile)
8 trainer.train()
9

10 tester = SVM_Tester(task, results_dir , wav_dir, infoFile, full_annot_file)
11 cm_df, perClassDF , roc_curve , pr_curve , overall = tester.test()

1

2 # CNN
3

4 from trainers.cnn_trainer import CNN_Trainer
5

6 from evaluation.evaluate_cv import evaluate_deep_model_cv
7 from evaluation.test_model import Deep_Tester
8

9 # Cross validation
10 run_cnn_cv(task, scenarios , hyps, cnn_cv_results_file , ptModelPath ,

results_dir , train_dirs , test_dirs , wav_dir, infoFile)
11 cnn_cv_results_df = evaluate_deep_model_cv(cnn_cv_results_file)
12

13 # Train selected model
14 cnn_trainer = CNN_Trainer(task=task,
15 scenario=scenarios[scenario],
16 batch_size=batch_size ,
17 learning_rate=learning_rate ,
18 ptModelPath=ptModelPath ,
19 resultsDir=results_dir ,
20 trainDirs=train_dirs ,
21 testDirs=test_dirs ,
22 wavDir=wav_dir,
23 infoFile=infoFile)
24

25 res = cnn_trainer.train_model()
26

27 print("Model trained successfully:")
28 print(res)
29

30 m_idx = input("Select model index: ")
31

32 cnn_trainer.select_model(m_idx)
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33

34 # Test model
35 cm_df, perClassDF , roc_curve , pr_curve , overall = Deep_Tester(task=task,
36 results_dir=results_dir ,
37 model_name="cnn",
38 test_dirs=test_dirs ,
39 wav_dir=wav_dir,
40 info_file=infoFile ,
41 full_annot_file=full_annot_file).

test_model()

1

2 # Dual - Stream model
3

4 from trainers.ds_trainer import DS_Trainer
5

6 from evaluation.evaluate_cv import evaluate_deep_model_cv
7 from evaluation.test_model import Deep_Tester
8

9

10 if task == "music_energy":
11 cnn_conf = {
12 "strategy":None,
13 "layers_freezed":3
14 }
15 elif task == "music_valence":
16 cnn_conf = {
17 "strategy":None,
18 "layers_freezed":0
19 }
20

21 # Cross validation
22 run_ds_cv(task, cnn_conf , heads, hyps, ds_cv_results_file , ptModelPath ,

results_dir , train_dirs , test_dirs , wav_dir, infoFile ,midi_dir)
23 ds_cv_results_df = evaluate_deep_model_cv(ds_cv_results_file , mode="ds")
24

25 # Train selected model
26 ds_trainer = DS_Trainer(task=task,
27 cnn_conf=cnn_conf,
28 head=head,
29 batch_size=batch_size ,
30 learning_rate=learning_rate ,
31 ptModelPath=ptModelPath ,
32 resultsDir=results_dir ,
33 trainDirs=train_dirs ,
34 testDirs=test_dirs ,
35 wavDir=wav_dir,
36 infoFile=infoFile,
37 midi_dir=midi_dir)
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38

39 res = ds_trainer.train_model()
40

41 print("Model trained successfully:")
42 print(res)
43

44 m_idx = input("Select model index: ")
45

46 ds_trainer.select_model(m_idx)
47

48 # Test model
49 cm_df, perClassDF , roc_curve , pr_curve , overall = Deep_Tester(task=task,
50 results_dir=results_dir ,
51 model_name="ds",
52 test_dirs=test_dirs ,
53 wav_dir=wav_dir,
54 info_file=infoFile ,
55 full_annot_file=full_annot_file

).test_model()

5.2 Experimental Hardware Setup

The experiments were conducted on two distinct hardware configurations. System 1
was a Mac system running macOS, equipped with an M1 Pro processor and 16 GB of
RAM, optimised for efficient CPU-based computations. System 2 was an Ubuntu 20
machine with an AMD 8-core CPU, 16 GB of RAM, and an NVIDIA RTX 2060 TI with 6
GB of GPUmemory, providing a suitable environment for tasks that required both CPU
and GPU acceleration. Both systems were rigorously maintained to ensure uniformity
in the software environment, which included library dependencies and operating sys-
tem parameters.

5.3 Evaluation metrics

5.3.1 Metrics for the evaluation of Machine Learning models

It was essential to establish a robust evaluation framework in order to assess the classi-
fication of emotional attributes within the proposed dataset. The evaluative framework
encompassed basic error metrics, composite metrics, and methodologies for segment-
level and full track-level evaluations. The basic building blocks of performance evalua-
tion are the number of correctly classified samples as well as Type I and Type II errors
[92]: True Positives (TP), True Negatives (TN), False Positives (FP), and False Nega-
tives (FN). These metrics were derived from the comparison of the model’s predictions
against the ground truth labels.
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• True Positives (TP): Correctly identified positive instances.

• True Negatives (TN): Correctly identified negative instances.

• False Positives (FP): Incorrectly identified positive instances.

• False Negatives (FN): Incorrectly identified negative instances.

The Confusion Matrix encapsulates the distribution of error metrics, offering an in-
tuitive visualization of a model’s performance:

Predicted
Positive Negative

A
ct
u
al Positive TP FN

Negative FP TN

Derived metrics such as Accuracy, Precision, Recall, and F1 Score are significant for
a comprehensive assessment of a model’s performance:

• Accuracy: The ratio of correctly classified instances to the total instances.

Acc =
TP + TN

TP + TN + FP + FN

• Precision: The ratio of correctly predicted positive observations to the total pre-
dicted positives.

Precision =
TP

TP + FP

• Recall: The ratio of correctly predicted positive observations to the all observa-
tions in actual class.

Recall =
TP

TP + FN

• F1 Score: The harmonic mean of Precision and Recall.

F1 = 2 · Precision ·Recall

Precision+Recall

TheReceiverOperatingCharacteristic (ROC) curve is a graphical plot that illustrates
the prediction capacity of a model by depicting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings. The Area Under the Curve (AUC)
score quantifies the overall ability of the model to discriminate between positive and
negative classes. A higher AUC score indicates better model performance as well as a
higher generalisation capability.
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TPR =
TP

TP + FN
, FPR =

FP

FP + TN

These metrics, evaluated at both segment-level and full track-level, provide an en-
riched assessment of models in the MER task. Transitioning from segment-level to full
track-level evaluation entails aggregating segment-level predictions to obtain the emo-
tional attributes of the entire track. A probabilistic aggregation method was employed
to obtain full track-level predictions.

5.3.2 Permutation tests for assessing classifier significance

Permutation tests, a non-parametric statistical tool, offer a robust framework for evalu-
ating MLmodels by assessing the significance of features in model predictions without
making assumptions about the underlying data distribution [93]. This method is par-
ticularly suited for comparing the empirical distribution of model accuracies under the
null hypothesis, which posits no difference in performance between models.

Given two models, A and B, with observed accuracy sets X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn} respectively, where n represents the number ofmeasurements (e.g.,
accuracy scores from cross-validation folds), the permutation test evaluates the null
hypothesis H0 : µX = µY against the alternative Ha : µX ̸= µY without assuming
normal distributions of accuracies. The test statistic used is the difference in means
between the two sets, ∆ = |x̄ − ȳ|, where x̄ and ȳ are the sample means of X and Y ,
respectively.

The permutation test involves randomly shuffling the combined dataset Z = X ∪ Y
and reallocating it into two new sets X ′ and Y ′ of sizes equal to X and Y . This resam-
pling process is repeatedM times (e.g., 10,000 permutations), each time calculating the
difference in means∆m = |x̄′− ȳ′| for the permuted sets. The p-value is then computed
as the proportion of permutations where∆m ≥ ∆, providing ameasure of the probabil-
ity of observing a test statistic as extreme as, or more extreme than, the observed under
the null hypothesis.

This method offers a robust framework for comparing classifiers by effectively con-
trolling for Type I error rates without reliance on the assumptions required by tradi-
tional parametric tests. By employing permutation tests, the significance of perfor-
mance differences between ML models can be assessed by providing a solid statistical
foundation for our comparative analysis.

5.3.3 Probabilistic Emotion Alignment

Theuniversal emotional impact ofmusic poses a substantial challenge in quantification,
necessitating robust approaches for emotion recognition. Conventional methods often
rely on direct label comparisons against true labels, as seen in the preceding sections.
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However, this section introduces an alternative probabilistic framework for model as-
sessment. Specifically, rather than utilizing aggregated annotations for songs, individ-
ual annotations are re-collected and processed to construct probability distributions
that represent the emotional content within musical tracks.

By leveraging the annotation distributions associated with each music sample, a
comparative analysis is facilitated, contrasting them with the probability distributions
derived from the model’s posterior predictions through the adoption of a divergence-
based similarity metric. A higher similarity score indicates a higher alignment between
the model’s predictions and the human emotional perception in musical tracks. The
Jensen-Shannon divergence, a symmetrized and smoothed variant of the Kullback-
Leibler divergence, is employed to quantify the dissimilarity between probability dis-
tributions. The Jensen-Shannon divergence (JSD) is defined between two probability
distributions P and Q as:

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (67)

where M = 1
2
(P + Q), and D(P ||M) represents the Kullback-Leibler divergence

between P andM . The JSD is inherently symmetric and possesses a finite value. The
square root of JSD defines a metric known as the Jensen-Shannon distance.

To transform the Jensen-Shannon divergence into a similarity score, an exponential
function is employed:

SJS(P,Q) = e−JSD(P ||Q) (68)

This transformation ensures that the similarity score SJS(P,Q) lies within the range
of 0 to 1, where 1 denotes identical distributions and 0 signifies maximal dissimilarity.
To derive a single similarity measure across the dataset, individual similarity scores are
aggregated using the arithmetic mean:

S̄JS =
1

N

N∑
i=1

SJS(Pi, Qi) (69)

Here, N denotes the number of tracks in the dataset, while Pi and Qi represent the
model and annotator probability distributions for the i-th track, respectively. Themean
similarity score S̄JS provides a holistic assessment of the extent to which the model’s
emotion predictions align with human annotations, on average.

5.4 Analysis of audio features

In the ever-evolving domain of audio signal processing, the extraction and interpreta-
tion of informative features serve as significant steps for a range of applications, such as
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music genre classification and emotion recognition. Information encoded within audio
signals demands an exhaustive analysis of features that can effectively represent this
complex data. This work aims to unravel the discrimination capacity of audio features
in two specific tasks:

• Discrimination between children’s and non-children’s audio data.

• Emotion recognition within children’s audio data.

The proposed methodological approach relies on a phased strategy. Initially, Anal-
ysis of Variance (ANOVA) [94] was employed to investigate the distribution of each
feature across the different classes for both tasks. This statistical technique affords us
the capability of understanding which features are statistically significant in separating
the classes. Subsequently, feature selection procedures are undertaken, with a prelim-
inary consideration given to retaining the top 10 features based on their F-values in
the ANOVA test. Nevertheless, the number of features to retain (k) remains an open
question and will be revisited in the context of potential ML model performance.

5.4.1 Audio Features for Genre Classification

Within the domain of music genre classification, the task of discriminating between
children’s and non-children’s audio data presents notable challenges. The study and
interpretation of the relevant audio features not only contribute to the present analy-
sis but also carry substantial implications for future explorations within the children’s
audio data corpus. Utilizing the Analysis of Variance (ANOVA) as the principal metric,
a set of statistically significant features was identified. Each feature captured signifi-
cant discriminative information between the two classes. To augment the robustness
of the statistical analysis, box plots of these select features for each class are presented
in Figure 29.

To begin with, the mean spectral spread is higher for non-children’s music in com-
parison with children’s music, and their boxes have a significant discrimination mar-
gin. Spectral spread measures the distribution and spread of energy around the mean
frequency of an audio signal. The slight elevation in the spectral spread mean for non-
children’s music indicates a more expansive frequency distribution due to the complex
instrumentation and richer harmonics typically found in non-children’s music. On the
other hand, the distribution of this feature in children’s music is equivalent to the sim-
ple and repetitive melody patterns found in such music.

In terms of other frequency domain features, there are notable differences in the dis-
tributions of spectral entropy and roll-off. Spectral entropy measures the randomness
of a frequency spectrum. The standard deviation of spectral entropy is lower for chil-
dren’s music, implying that there is less variability in spectral complexity across differ-
ent children’s songs. However, these results were anticipated due to the genre diversity
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within theWesternmusic dataset. Spectral rolloff is the frequency belowwhich a speci-
fied percentage of the total spectral energy lies. The standard deviation of this feature is
significantly higher for non-children’s music, suggesting major variances in frequency
distribution cutoffs. As a consequence, the delta standard deviations of these two fea-
tures are informative for music genre discrimination. More particularly, the variability
in the changes in spectral entropy and roll-off is more noticeable for non-children’s
music.

Zero Crossing Rate (ZCR)measures the rate at which a signal changes from positive
to negative or vice versa. The delta standard deviation of ZCR emerges as a signifi-
cant descriptor for rhythmic dynamics, effectively capturing rapid changes in the audio
signal. The variability in ZCR changes (delta) appears to be more pronounced in non-
children’s music, indicating that it may have more rapid fluctuations in sound energy.

As far as Mel Frequency Cepstral Coefficients (MFCCs) are concerned, the mean
of MFCC-3 and standard deviation of MFCC-9 represent a distinct separation between
children andnon-childrenmusic. The thirdMFCC coefficient has higher values for non-
children’s music, and this difference suggests variations in the timbral texture between
the two categories. However, the range of children’s music box plots is significantly
higher, indicating texture diversity. On the other hand, the ninth MFCC coefficient’s
standard deviation is higher for children’s music. This suggests more variability in the
spectral shape of children’s music, potentially hinting at the diverse range of sounds
within children’s songs. Finally, the standard deviations of Delta Chroma 3 and Delta
Chroma 7 serve as primary indicators for variations in the 3rd and 7th chroma bands,
closely related to harmonic complexities and key modulations. Their mean values and
the associated range of values are higher for Western songs.

5.4.2 Audio Features for children music emotion recognition

In the domain of emotion recognition within children’s audio data, highlighting fea-
tures that accurately capture the essence of various emotional dimensions stands as a
crucial task. In this step, analysis focuses on two specific emotional dimensions: music
energy/arousal and music valence. Selected using the ANOVA method, these features
have shown significant discrimination capacity for classifying music emotions.

The features imperative for discerningmusic arousal encompass various spectral at-
tributes and their derivatives, according to Figure 30. Mean of Spectral Spread, Stan-
dard Deviation of Spectral Entropy, and Standard Deviation of Spectral Rolloff serve
as robust indicators of spectral complexity and the spread of energy across frequency
bands. Additionally, the Delta Standard Deviations of Zero Crossing Rate (ZCR), Spec-
tral Entropy, and Spectral Rolloff provide insights into the rhythmic and spectral tran-
sitions, essential for understanding energetic attributes. Unique to this task are the
Delta StandardDeviations of the 10th through 13thMel-frequency Cepstral Coefficients

80



C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
050.
1

0.
150.
2

0.
250.
3

C
hi
ld
re
n

N
on

C
hi
ld
re
n

−
2.
5

−
2

−
1.
5

−
1

−
0.
50

0.
51

1.
5

C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
2

0.
4

0.
6

0.
81

1.
2

C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
35

C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

0.
14

0.
16

C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
45

C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

0.
14

C
hi
ld
re
n

N
on

C
hi
ld
re
n

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

0.
14

0.
16

sp
ec

tr
al

_s
pr

ea
d_

m
ea

n
m

fc
c_

3_
m

ea
n

sp
ec

tr
al

_e
nt

ro
py

_s
td

sp
ec

tr
al

_r
ol

lo
ff
_s

td
m

fc
c_

9_
st

d

de
lt
a 

zc
r_

st
d

de
lt
a 

sp
ec

tr
al

_e
nt

ro
py

_s
td

de
lt
a 

sp
ec

tr
al

_r
ol

lo
ff
_s

td
de

lt
a 

ch
ro

m
a_

3_
st

d
de

lt
a 

ch
ro

m
a_

7_
st

d

F
ig
u
re
29
:
B
ox
p
lo
t
of
th
e
10
m
os
t
im
p
or
ta
n
t
fe
at
u
re
s
fo
r
ge
n
re
cl
as
si
fi
ca
ti
on
:
C
h
il
d
re
n
or
N
on
-c
h
il
d
re
n
m
u
si
c.

81



(MFCCs), which capture intricate timbral and textural nuances pivotal for differentiat-
ing energy levels.

Concerning music valence classification, the feature set partially overlaps with that
of music energy, emphasising the interconnections of these emotional dimensions. The
Mean of Energy Entropy and Mean of Spectral Spread, along with the Standard Devia-
tions of Spectral Entropy and Spectral Roll-off, are retained for their capacity to depict
the spectral landscape and energy distribution. Unique to this task are the Delta Stan-
dard Deviations of Spectral Centroid and the 11th and 13th MFCCs, which capture tim-
bral information and spectral shifts crucial for the assessment of valence. These results
can be evaluated in the box plots in Figure 31.

5.5 Machine Learning models results

5.5.1 Support Vector Machine results

In this study, the utilities of SVM were explored to establish a baseline algorithm for
MER task, focusing on two key emotional dimensions: arousal and valence. The initial
step involved employing SVM without parameter optimization to establish a founda-
tional performance benchmark. Recognizing the importance of model tuning, a grid
search techniquewas applied to ascertain the optimal regularizationparameterC, which
resulted in a selection of C = 5 for both arousal and valence recognition tasks. This pa-
rameter tuning is crucial as it balances the trade-off betweenmodel complexity and the
degree of deviations for individual data points.

For a more granular understanding of model performance, predictions on the test
dataset were evaluated through Confusion Matrices. The matrices for arousal and va-
lence (Tables 8 and 9, respectively) offer insights into the model’s predictive capabili-
ties across different emotional intensities. For arousal, themodel showed a tendency to
confuse neutral arousal with weak, highlighting potential areas for model refinement.
In contrast, SVM miss-classified a significant percentage of positive valence songs as
neutral. Moreover, a considerable proportion of neutral samples classified as negative.

Table 8: Confusion Matrix of SVM in Music Arousal Recognition.

Predicted Label
Actual Label Weak Neutral Strong
Weak 69 9 0
Neutral 23 50 5
Strong 3 9 5
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Table 9: Confusion Matrix of SVM in Music Valence Recognition.

Predicted Label
Actual Label Negative Neutral Positive
Negative 31 10 0
Neutral 23 35 4
Positive 0 33 31

The strengths and weaknesses of the model were further elucidated by class-wise
performance metrics. In the domain of music arousal recognition, high precision, re-
call, and F1-score for the weak class were observed, indicating the model’s proficiency
in identifying less intense emotional states. Conversely, lower scores were recorded
for the strong class, highlighting a potential area for enhancement in recognizing high
arousal levels, as indicated in Table 10. With regard to valence recognition, the chal-
lenges outlined in the analysis of Confusion Matrices were corroborated by the class-
wise performance metrics in Table 11. Although a high precision rate for the positive
class was achieved, a low recall was observed in the recognition of this class. The re-
call and F1 score for the negative class suggest that improvements can be made for the
model to consistently identify this specific class.

Table 10: Class-wise Performance Metrics for SVM in Music Arousal Recognition.

Class Precision Recall F1-Score
Weak 0.726 0.885 0.798
Neutral 0.735 0.641 0.685
Strong 0.5 0.294 0.370

Table 11: Class-wise Performance Metrics for SVM in Music Valence Recognition.

Class Precision Recall F1-Score
Negative 0.574 0.756 0.653
Neutral 0.449 0.565 0.500
Positive 0.886 0.484 0.626

For the task of music emotion recognition with respect to arousal, the analysis of
the ROC-AUC curve reveals varying degrees of performance across different classes.
More specifically, AUC scores of 0.88, 0.87, and 0.76 were observed for the strong,
weak, and neutral classes, respectively. These scores indicate a generally good ability of
the classifier to distinguish between classes, especially for weak arousal levels, while its
performance on the neutral class is notably lower. Conversely, the analysis of Precision-
Recall curves indicates a need for improvement in the recognition of strong arousal
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levels. Recalibration of the decision threshold could potentially enhance the classifier’s
performance metrics and ensuring a more balanced trade-off between sensitivity and
specificity. Both sets of curves are presented in Figure 32.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Class Strong (AUC=0.88)
Class Weak (AUC=0.86)
Class Neutral (AUC=0.76)
Random/No Skill

Multiclass ROC Curve: music_energy

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(a) ROC Curve

0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

Precision
Recall
Precision
Recall
Precision
Recall

Multiclass Precision-Recall Curve: music_energy

Threshold

P
re

ci
si

on
/R

ec
al

l

Strong Weak Neutral

(b) Precision/Recall vs Threshold

Figure 32: Evaluation curves for SVM in Music Arousal Recognition.

In the evaluation of valence, as illustrated by the curves in Figure 33, it is shown
that the classifier possesses a pronounced ability to differentiate between classes, with
AUC values recorded at 0.95 for positive, 0.89 for negative, and 0.65 for neutral. The
high AUC value for positive valence indicates an excellent capability of the classifier in
identifying positive emotions in music, which significantly surpasses its performance
in identifying neutral emotions, the latter being the area with the lowest performance.
This conclusion is further supported by the analysis of Precision-Recall curves, partic-
ularly for the neutral class.
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Figure 33: Evaluation curves for SVM in Music Valence Recognition.

The overall performance metrics, summarized in Table 12, reveal an accuracy of
71.7%and anF1-score of 61.8% for the arousal task, and 58.1%accuracywith a 59.3%F1-
score for valence. Moreover, statistical significance of the SVMmodel against a random
classifier were calculated using permutation tests. The results demonstrate a marked
superiority of the SVM model over the random classifier, with p-values of 0.0001 for
both music arousal and valence tasks. These results affirm the potential of SVM in
music emotion recognition but also underscore the necessity for further optimizations
to enhance its predictive accuracy, especially in distinguishing between nuanced emo-
tional states.

Table 12: Overall performance of SVM classifier.

Task F1 Accuracy AUC Precision Recall
Random
Classifier

Random
Classifier

F1

Statistical
Significance

pvalue
Arousal 0.618 0.717 0.812 0.654 0.607 0.44 0.38 0.0001
Valence 0.593 0.581 0.838 0.636 0.602 0.32 0.30 0.0001

5.5.2 Convolutional Neural Networks Results

Model selection process

In an effort to ascertain the most efficacious model for the MER task, a meticulous
cross-validation strategy was implemented. The analysis encompassed 30 unique com-
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binations of hyperparameters along with various numbers of non-trainable (frozen)
Convolutional layers. In this section, merely the configurations demonstrating supe-
rior performance in terms of arousal and valence within musical contexts are delin-
eated. The exhaustive outcomes derived from the grid search cross-validation for both
aforementioned dimensions are systematically catalogued in Appendix A (Tables 30
and 31). With respect to arousal recognitionwithinmusic, themodels selected achieved
notable results in the selected evaluationmetrics. The results from the cross-validation
of these models are delineated in Table 13. Following a strict evaluative process, Model
’S4’, which was configured with a batch size of 64 and a learning rate of 0.002, was
adjudged as the most optimal. This determination was based on its consistent superi-
ority across a spectrum of metrics, encompassing average segment accuracy, segment
F1 score, average track accuracy, and the range of confidence interval for the F1 score.
Model fine-tuning configurations and their naming convention are reported in Section
3.2.

Table 13: Cross validation results of CNN for Music Arousal

Model
Configuration

Mean
Segment
Accuracy

Segment
Accuracy

Std

Mean
Segment

F1

Segment
F1
Std

Lower
Confidence
Interval for
Segment F1

Upper
Confidence
Interval for
Segment F1

Mean
Track

Accuracy

Track
Accuracy

Std

Mean
Track
F1

Track
F1
Std

Lower
Confidence
Interval for
Track F1

Upper
Confidence
Interval for
Track F1

Mean
Epoch

S4
Batch size: 64
LR: 0.002

0.763 0.024 0.732 0.033 0.666 0.798 0.836 0.029 0.808 0.037 0.734 0.882 23

S0
Batch size: 32
LR: 0.002

0.774 0.021 0.756 0.041 0.674 0.838 0.847 0.034 0.829 0.045 0.739 0.919 24

S2
Batch size: 16
LR: 0.002

0.799 0.009 0.757 0.024 0.709 0.805 0.847 0.034 0.815 0.054 0.707 0.923 24

S3
Batch size: 16
LR: 0.002

0.799 0.015 0.77 0.028 0.714 0.826 0.831 0.063 0.813 0.089 0.635 0.991 22

Similarly, the Valence recognition task was subjected to a rigorous model selec-
tion process. Table 14 provides a summary of the top-performing cross-validation out-
comes. Model ’S0’, with a batch size of 64 and a learning rate of 0.002, was elected as
the optimal configuration due to its high mean segment accuracy and F1 score, coupled
with a notable mean track accuracy and low standard deviation of track F1, indicating
a robust capacity for valence prediction. In both tasks, the models selected not only
excelled in their predictive capabilities but also demonstrated stability and reliability,
crucial for the accurate classification of emotional content in children’s music.
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Table 14: Cross validation results of CNN for Music Valence

Model
Configuration

Mean
Segment
Accuracy

Segment
Accuracy

Std

Mean
Segment

F1

Segment
F1
Std

Lower
Confidence
Interval for
Segment F1

Upper
Confidence
Interval for
Segment F1

Mean
Track

Accuracy

Track
Accuracy

Std

Mean
Track
F1

Track
F1
Std

Lower
Confidence
Interval for
Track F1

Upper
Confidence
Interval for
Track F1

Mean
Epoch

S0
Batch size: 64
LR: 0.002

0.747 0.029 0.779 0.025 0.729 0.829 0.846 0.03 0.836 0.02 0.796 0.876 22

S2
Batch size: 16
LR: 0.002

0.761 0.026 0.778 0.031 0.716 0.84 0.809 0.041 0.803 0.038 0.727 0.879 22

S2
Batch size: 64
LR: 0.001

0.736 0.024 0.771 0.017 0.737 0.805 0.804 0.034 0.803 0.032 0.739 0.867 26

S3
Batch size: 64
LR: 0.002

0.74 0.031 0.773 0.027 0.719 0.827 0.827 0.05 0.825 0.045 0.735 0.915 29

Model Testing and Performance Evaluation

After the selection of the optimal model configurations, a comprehensive test was con-
ducted to assess the performance of the CNN classifier inMER, focusing on arousal and
valence dimensions. This section details the evaluation methodology, per-class met-
rics, overall performance, and analysis of ROC-AUC and Precision-Recall curves. The
performance assessment of the CNN model necessitated a comparison of actual labels
against the model’s predictions using confusion matrices for both arousal and valence
tasks, as depicted in Tables 15 and 16. As far asmusic Arousal recognition is concerned,
the model’s varied performance across the different energy levels, with a particularly
strong performance in identifying weak arousal levels. Nevertheless, FN and FP values
for neutral class can be improved, as a significant number of neutral song samples were
classified as weak. Regarding Valence task, model is particularly accurate in predicting
positive valence, with a high number of true positives (47) and few misclassifications.
Moreover, model manages to correctly identify a number of negative instances, though
there’s some confusion with the neutral category. Neutral class was the most challeng-
ing for the classifier, with a relatively higher number of instances being misclassified as
negative.

Table 15: Confusion Matrix of CNN in Music Arousal Recognition.

Predicted Label
Actual Label Weak Neutral Strong
Weak 70 7 1
Neutral 21 51 6
Strong 0 4 13
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Table 16: Confusion Matrix of CNN in Music Valence Recognition.

Predicted Label
Actual Label Negative Neutral Positive
Negative 29 12 0
Neutral 22 34 6
Positive 0 17 47

The class-wise metrics provide insightful observations regarding the CNN model’s
capability to identify and classify different emotional states within music tracks. As in-
dicated in Table 17, model performance in identifying emotional states within music
tracks varied across arousal categories. Notably, it excelled in identifying tracks with
weak arousal, demonstrating a precision of 0.769, a recall of 0.897, and an F1-score of
0.828. Conversely, for tracks with strong arousal, while recall was high at 0.765, pre-
cision was comparatively lower at 0.65, resulting in an F1-score of 0.703. The model
achieved the highest precision for neutral tracks, with an F1-score of 0.729. The evalua-
tion of discrimination ability is comprehensively detailed through the analysis of ROC-
AUC and Precision-Recall curves, as visualized in Figure 34. ROC curves revealed ex-
cellent discrimination between classes, particularly for strong arousal (AUC = 0.96).
Precision-recall curves indicated the model’s effectiveness in maintaining high preci-
sion as recall increased, especially for strong and weak categories. These findings high-
light the model’s capability in identifying emotional states within music tracks, with
room for improvement in certain areas.

Table 17: Class-wise Performance for CNN in Music Arousal Recognition

Precision Recall F1
Weak 0.769 0.897 0.828
Neutral 0.823 0.654 0.729
Strong 0.650 0.765 0.703
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Figure 34: Evaluation curves of CNN for Music arousal.

The CNNmodel’s performance in identifying emotional valence withinmusic tracks
varied across classes, as observed in Table 18. The ’Positive’ class stood out with high
precision (0.887) and an F1-score of 0.803, indicating the model’s proficiency in iden-
tifying positive tracks. Conversely, the ’Negative’ and ’Neutral’ classes exhibited mod-
erate performance, with F1-scores of 0.63 and 0.544, respectively, suggesting chal-
lenges in distinguishing between negative and neutral valences. Evaluation through
ROC curves revealed AUC values of 0.93, 0.88, and 0.71 for the ’Positive’, ’Negative’,
and ’Neutral’ classes, respectively, indicating themodel’s effectiveness in distinguishing
emotional expressions in music. Precision-recall curves similarly demonstrated high
precision and recall for ’Positive’ and ’Negative’ classes, affirming the model’s capabil-
ity in accurately classifying tracks with clear emotional valence. However, performance
on the ’Neutral’ class underscored difficulties in precisely identifying music with a neu-
tral emotional tone, reflecting the challenge in interpreting nuanced emotional content.
Evaluation curves for Valence recognition are presented in Figure 35.

Table 18: Per Class Metrics for Music Valence.

Precision Recall F1
Negative 0.569 0.707 0.630
Neutral 0.540 0.548 0.544
Positive 0.887 0.734 0.803
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Figure 35: Evaluation curves of CNN for Music valence.

The aggregate performance metrics, as presented in Table 19, offer a holistic view
of the model’s efficacy. For the arousal task, the model achieves an AUC of 0.894, an
F1-score of 0.753, and an accuracy of 0.775, underscoring its robust capability to dif-
ferentiate between arousal states in music. The precision and recall values of 0.747
and 0.772, respectively, further attest to the model’s balanced performance in correctly
identifying and classifying arousal levels. In contrast, the valence task reveals a slightly
lower performance, with an F1-score of 0.659 and an accuracy of 0.659. The preci-
sion and recall both stand at 0.665 and 0.663, respectively, accompanied by an AUC of
0.841. These metrics suggest that while the model is effective in recognizing valence in
music, there is a notable margin for enhancement, particularly in improving the bal-
ance between precision and recall. Both models achieved remarkable performance in
comparison with the Random Classifier. Moreover, their performance stood out sig-
nificantly when set against the SVM, with their respective p-values (0.0001 for Arousal
and 0.045 for Valence) underscoring their statistical significance.

Table 19: Overall performance of CNN model.

Task F1 Accuracy AUC Precision Recall
Random
Classifier
Accuracy

Random
Classifier

F1

Statistical
Significance

SVM
pvalue

Arousal 0.753 0.775 0.894 0.747 0.772 0.44 0.38 0.0001
Valence 0.659 0.659 0.841 0.665 0.663 0.32 0.30 0.045
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5.5.3 Dual-streammodel

Model selection process

The initial phase in the development of the Dual-stream model entailed the execution
of a grid search cross-validation procedure, specifically tailored to optimize the archi-
tecture of the Sequential component and to obtain the optimal set of hyperparameters.
This optimization process was guided by an evaluation of varying configurations of at-
tention heads, enumerated as 2, 4, 8, and 16, alongside variations in batch sizes and
learning rates to identify the architecture that yields the highest performance. The val-
idation results of this process, presenting the top four model configurations based on
their performance, are detailed in Tables 20 and 21. For an exhaustive overview of all
model configurations explored during this phase, refer to Appendix A (Tables 32 and
33), which provides a complete compilation of the grid search cross-validation results.

For the Music Arousal task, the optimal model configuration was identified with
16 attention heads, a batch size of 32 and a learning rate of 0.002. This configuration
exhibited superior performance, characterized by a Mean Segment Accuracy of 0.771,
Mean Segment F1 of 0.746, andMean Track F1 of 0.839. Thesemetrics not only under-
score themodel’s proficiency in identifying arousal-related emotional cueswithinmusic
but also its precision and reliability at both the segment and track levels. Additionally,
the standard deviations of thesemetrics, along with the lower and upper bounds for the
F1 score’s confidence interval, underscore the stability and dependability of the selected
classifier.

Table 20: Cross validation results of Dual-Stream model for Music Arousal Recogni-
tion.

Model
Configuration

Mean
Segment
Accuracy

Segment
Accuracy

Std

Mean
Segment

F1

Segment
F1
Std

Lower
Confidence
Interval for
Segment F1

Upper
Confidence
Interval for
Segment F1

Mean
Track

Accuracy

Track
Accuracy

Std

Mean
Track
F1

Track
F1
Std

Lower
Confidence
Interval for
Track F1

Upper
Confidence
Interval for
Track F1

Mean
Epoch

Heads: 8
Batch size: 32
LR: 0.001

0.767 0.034 0.739 0.047 0.645 0.833 0.836 0.05 0.813 0.053 0.707 0.919 29

Heads: 16
Batch size: 32
LR: 0.002

0.771 0.029 0.746 0.033 0.68 0.812 0.862 0.034 0.839 0.039 0.761 0.917 24

Heads: 8
Batch size: 16
LR: 0.002

0.795 0.027 0.753 0.035 0.683 0.823 0.831 0.047 0.779 0.083 0.613 0.945 20

Heads: 2
Batch size: 16
LR: 0.002

0.795 0.025 0.755 0.032 0.691 0.819 0.857 0.047 0.808 0.091 0.626 0.99 28

Conversely, for themusic Valence recognition task, a parallel configuration was em-
ployed, solidifying the selection of 2 attention heads, a batch size of 16 and a learning
rate of 0.002. This model configuration produced commendable results, as evidenced
by a Mean Segment Accuracy of 0.77, a Mean Segment F1 of 0.781, and a Mean Track
F1 of 0.791. The achievements in model performance thereby substantiate the rigor of
the architectural and optimization decisionsmade during the research process. Despite
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the fact that other model achieved higher F1 score in both segment and track levels, se-
lected model achieved the lowest Track F1 standard deviation and the highest Lower
confidence intervals of this metric, indicating model stability and generalization. The
integration of optimal fine-tuning scenarios—S4 for arousal and S0 for valence—within
the CNN part of the Dual-stream framework not only elevates the model’s performance
but also contributes to the broader discourse on computational approaches to under-
standing emotional expressions in music.

Table 21: Cross validation results ofDual-Streammodel forMusic ValenceRecognition.

Model
Configuration

Mean
Segment
Accuracy

Segment
Accuracy

Std

Mean
Segment

F1

Segment
F1
Std

Lower
Confidence
Interval for
Segment F1

Upper
Confidence
Interval for
Segment F1

Mean
Track

Accuracy

Track
Accuracy

Std

Mean
Track
F1

Track
F1
Std

Lower
Confidence
Interval for
Track F1

Upper
Confidence
Interval for
Track F1

Mean
Epoch

Heads: 16
Batch size: 16
LR: 0.002

0.767 0.022 0.781 0.027 0.727 0.835 0.785 0.052 0.778 0.048 0.682 0.874 28

Heads: 8
Batch size: 16
LR: 0.001

0.773 0.031 0.788 0.033 0.722 0.854 0.804 0.044 0.8 0.044 0.712 0.888 25

Heads: 2
Batch size: 32
LR: 0.001

0.763 0.032 0.789 0.036 0.717 0.861 0.827 0.053 0.821 0.049 0.723 0.919 22

Heads: 2
Batch size: 16
LR: 0.002

0.77 0.037 0.781 0.038 0.705 0.857 0.804 0.034 0.791 0.022 0.747 0.835 32

Model Testing and Performance Evaluation

Upon evaluating the Dual-Stream Model’s performance on the test set, the confusion
matrices for bothmusic Arousal andmusic Valence tasks reveal insightful details about
the model’s predictive accuracy and its nuanced understanding of emotional expres-
sions in music. As far as, music Arousal recognition is concerned, the confusion matrix
(Table 22) highlights themodel’s robust ability to classify weak energy levels accurately,
with 71 true positives out of 78 predictions. This signifies the model’s precision in iden-
tifying lower energy levels within music tracks. However, the classification of strong
and neutral energy levels presents a challenge, as evidenced by a substantial number of
neutral labels being misclassified as weak. Despite these challenges, the model demon-
strates a commendable proficiency in distinguishing between the various energy levels.

Table 22: Confusion Matrix of Dual-Stream model in Music Arousal Recognition.

Predicted Label
Actual Label Weak Neutral Strong
Weak 71 7 0
Neutral 23 54 1
Strong 0 6 11
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In contrast, theMusic Valence task showcases a different aspect of the model’s capabil-
ity (Table 23). Themodel exhibits a strong performance in correctly predicting positive
valence, with 52 out of 64 instances accurately classified. This underscores the model’s
effectiveness in recognizing the positive emotional spectrum in music. However, the
neutral valence category, with a significant portion of misclassifications, points to the
inherent difficulty in distinguishing neutral from negative, reflecting the complex and
subjective nature of music valence perception.

Table 23: Confusion Matrix of Dual-Stream model in Music Valence Recognition.

Predicted Label
Actual Label Negative Neutral Positive
Negative 32 9 0
Neutral 17 37 8
Positive 0 12 52

The class-wise metrics and evaluation curves collectively articulate the Dual-Stream
Model’s adeptness in discerning music arousal levels, as delineated in Table 24 and
Figure 36. Themodel exhibits remarkable precision, 0.917, and an F1 score of 0.759 for
strong arousal, affirming its capability to accurately identify high-energy tracks. This
proficiency extends to weak arousal, where an F1 score of 0.826 underscores effective
discrimination of lower-energy tracks. The neutral category, despite a commendable F1
score of 0.745, reveals an area for enhancement in precision akin to the extreme arousal
states.

The ROC and Precision-Recall Curves further highlight the model’s discrimination
capability, with AUC values of 0.95, 0.89, and 0.81 for strong, weak, and neutral arousal
levels, respectively. Thesemetrics showcase themodel’s confidence, particularly in dis-
tinguishing strong arousal tracks. The performance on neutral arousal, while slightly
lesser, still demonstrates robust differentiation between arousal levels. The model’s
efficacy is particularly evident in maintaining high precision across increasing recall
levels for strong and weak categories, suggesting a well-balanced approach in handling
arousal distinctions inmusic. This comprehensive analysis not only affirms themodel’s
current strengths in classifying arousal levels but also points towards potential refine-
ments for enhancing its granularity in arousal perception.

Table 24: Class-wise Performance of Dual-Streammodel inMusic Arousal Recognition

Precision Recall F1
Weak 0.755 0.910 0.826
Neutral 0.806 0.692 0.745
Strong 0.917 0.647 0.759
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Figure 36: Evaluation curves of Dual-stream model for Music Arousal.

The Dual-Stream Model’s nuanced performance on the music valence task is com-
prehensively depicted through class-specific metrics and evaluation curves, highlight-
ing its strengths and areas for improvement in discerning emotional valencewithinmu-
sic. Detailed in Table 25, the model excels in recognizing positive valence, achieving an
impressive F1 score of 0.839, supported by high precision. Regarding negative valence,
an F1 score of 0.711 illustrates the model’s moderate ability to differentiate negative
emotional content. Conversely, the neutral category poses a challenge, evidenced by a
lower F1 score of 0.617, signaling a critical need for refinement in classifying neutrally
toned tracks.

Evaluation curves, as depicted in Figure 37, reinforce these findings. ROC curve
analysis demonstrates the model’s classification capabilities with AUC values of 0.95
for positive and 0.89 for negative valences, indicating a robust capacity to distinguish
these emotional expressions. However, the neutral class’s AUC of 0.73 reveals a strug-
gle in accurately classifying such an emotional content, underscoring the necessity for
enhancing model sensitivity. The Precision-Recall curve analysis depicts the model’s
proficiency with positive and negative classes but also accentuates the difficulty in pre-
cisely identifying neutral valence, spotlighting the intricate challenges.
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Table 25: Class-wise Performance for Dual-Stream model in Music Valence Recogni-
tion

Precision Recall F1
Negative 0.653 0.780 0.711
Neutral 0.638 0.597 0.617
Positive 0.867 0.812 0.839
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Figure 37: Evaluation curves of Dual-stream model for Music Valence.

The Dual-StreamModel’s overall performance, as encapsulated in Table 26, under-
scores its efficacy and competitive edge in the domain of MER. Across both arousal and
valence tasks, the model not only demonstrates commendable accuracy, precision, and
recall but also surpasses the benchmarks set by a random classifier, as evidenced by F1
scores significantly higher than those of a chance-level baseline. Specifically, for the
arousal task, the model achieves an AUC of 0.868 and an F1 score of 0.776, indicating
a high degree of accuracy in distinguishing between different levels of musical energy.
Similarly, in the valence task, the model records an AUC of 0.87 and an F1 score of
0.722, showcasing its ability to discern the nuanced spectrums of emotional valence in
music with substantial reliability.

Notably, themodel’s performance is statistically significant when compared against
the CNN model, as reflected by the p-values (0.29 for arousal and 0.013 for valence),
affirming its superior predictive capabilities. While the comparison with CNN mod-
els, especially in the arousal task, indicates room for improvement, the overall met-
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rics present a compelling case for the Dual-Stream Model’s advanced comprehension
of complex emotional expressions in music.

Table 26: Overall performance of Dual-Stream model.

Task F1 Accuracy AUC Precision Recall
Random
Classifier
Accuracy

Random
Classifier

F1

Statistical
Significance

CNN
pvalue

Arousal 0.776 0.786 0.868 0.826 0.75 0.44 0.38 0.296
Valence 0.722 0.725 0.87 0.719 0.73 0.32 0.30 0.0133

5.5.4 Comparisons, ablation study and emotion alignment

In the evaluation of emotional recognition models on the PMEmo dataset [5], distinct
approaches have been benchmarked to ascertain their efficacy in predicting arousal and
valence metrics. The proposed model, i.e., the CNN approach, with statistical aggrega-
tion on 10-second segments showcased superior performance, achieving the highest
recorded accuracies of 87.2% for arousal and 87.8% for valence. The F1 scores of this
model were also impressive at 86.5 and 87.1 respectively, indicating a robust ability
to balance precision and recall effectively. Comparative analysis with other method-
ologies, such as the SVM approach by Yin et al. [95] and the CNN combined with a
BiLSTM by He et al. [96], demonstrates that the proposed model not only excels in
accuracy but also maintains high F1 scores. The CNN-BiLSTM configuration by He et
al. achieved notable scores, particularly an F1 score of 86.52 for arousal, yet the pro-
posed model’s holistic performance remains unmatched in both metrics under study.
Comparisons are presented in Table 27.

Table 27: Comparisons with other model using PMEmo Dataset [5].

Arousal Valence
Method Model Type Accuracy F1 Accuracy F1

Yin et al. [95] SVM
Audio features
on Full-tracks

71.49 76.36 70.43 75.32

He et al. [96]
CNN
+ BiLSTM

10 sec segments
+ Deep
aggregation

82.79 85.17 77.44 81.91

He et al. [96]
CNN-based
autoencoder
+ BiLSTM

10 sec segments
+ Deep
aggregation

83.62 86.52 79.01 83.2

Proposed
model

CNN
10 sec segments
+Statistical
aggregation

87.2 86.5 87.8 87.1
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The ablation study, as summarized in Table 28, wasmeticulously designed to evalu-
ate the performance of variousmodels in the tasks ofmusic arousal and valence recogni-
tion. For the arousal task, the Dual-Streammodel demonstrated superior performance
across most metrics, with an F1 score of 0.776, accuracy of 0.786, and a precision of
0.826, although its AUC of 0.868 was slightly lower than that achieved by the CNN
model (0.894). In contrast, the Attention-based LSTM model exhibited lower metrics
in comparison, notably in F1 score and accuracy, underscoring the enhanced efficacy of
the Dual-Stream model in capturing the complexity of music arousal.

Similarly, in the music valence task, the Dual-Streammodel outperformed the CNN
and Attention-based LSTM models, achieving the highest F1 score of 0.722, accuracy
of 0.725, and an AUC of 0.870. The consistency in the performance of the Dual-Stream
model across both tasks highlights its robustness and adaptability in recognizing nu-
anced emotional components inmusic. These results underline the importance of lever-
aging diverse architectures to enhance model performance in music emotion recogni-
tion tasks.

Regarding the emotion alignment of model predictions in music arousal, all models
exhibited comparable performance. Notably, the Attention-based LSTMmodel slightly
outperformed its counterparts in terms of this similarity metric. Nevertheless, its pre-
dictions were deemed insufficiently effective. The analysis reveals that the posterior
distributions of all models align with the annotated distribution to a moderate extent.
For the recognition of music valence, the Dual-Stream model demonstrated superior
performance in emotion alignment, achieving an impressive similarity score of 0.789.
This indicates that the Dual-Stream model is notably proficient at capturing valence-
related emotional content in music, with its posterior distributions showing a high
degree of alignment with the human annotations. This proficiency underscores the
model’s effectiveness in reflecting human perceptual evaluations of music emotion.

Table 28: Ablation Study Results for Music Arousal and Valence Recognition

Task Model F1 Accuracy AUC Precision Recall
Probabilistic
Emotion
Alignment

Arousal
CNN 0.753 0.775 0.894 0.747 0.772 0.741
Attention-based LSTM 0.648 0.717 0.834 0.660 0.653 0.744
Dual-Stream 0.776 0.786 0.868 0.826 0.750 0.739

Valence
CNN 0.659 0.659 0.841 0.665 0.663 0.761
Attention-based LSTM 0.656 0.665 0.824 0.654 0.676 0.775
Dual-Stream 0.722 0.725 0.870 0.719 0.730 0.786
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6 Conclusions

This study has made significant contributions to the domain of MER, with a specific
focus on children’s music. The primary objective was the development of a specialized
music dataset tailored to young listeners, combined with the application of advanced
DL algorithms for the analysis of emotional content. The secondary aim encompassed
the identification of important features and modalities affecting emotional dimensions
and categories. The researchmethodology employed in this work spans from the initial
data collection phase to the implementation of DL architectures. A distinctive aspect
of this approach lies in the creation of a unique dataset and its associated annotation
strategy, incorporating insights derived from both child psychology and music theory.
Furthermore, the adaptation and utilization of CNNs and LSTMs within a dual-stream
model capable of handling both spectrograms andmusic transcription sequences high-
lights the innovative nature of this work. This approach not only enhanced the accuracy
of emotion recognition but also afforded deeper insights into the nuanced patterns of
emotional expression within children’s music. The use of these diverse techniques rep-
resents a significant advancement in the application of AI to investigate cognitive and
emotional processes in children.

Table 29: Aggregated results of Machine Learning models.

Task Class SVM F1

Probabilistic
Emotion
Alignment

SVM

CNN F1

Probabilistic
Emotion
Alignment

CNN

Dual-Stream F1

Probabilistic
Emotion
Alignment
Dual-Stream

Arousal

Weak 0.798 - 0.828 - 0.826 -
Neutral 0.685 - 0.729 - 0.745 -
Strong 0.370 - 0.703 - 0.759 -
Overall 0.618 0.724 0.753 0.741 0.776 0.739

Valence

Negative 0.653 - 0.630 - 0.711 -
Neutral 0.500 - 0.544 - 0.617 -
Positive 0.626 - 0.803 - 0.839 -
Overall 0.593 0.763 0.659 0.761 0.722 0.786

The results summarized in Table 29 provide an overview of the F1 scores and Prob-
abilistic Emotion Alignment scores attained by the SVM, CNN, and Dual-Stream archi-
tecture models across various scenarios. The Dual-Stream model, in particular, show-
cased superior performance in tasks related to both arousal and valence, affirming its
robustness and capability in capturing the complex emotional content within music.
The Probabilistic Emotion Alignment, offering an additional dimension of analysis,
compares the distributions of annotations against the predictions made by models. In
this regard, the Dual-Stream model exhibited significant alignment, particularly in the
valence category, indicating its proficiency in discerning the nuanced emotional aspects
of music samples.
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The unimodal CNN and the CNN-LSTM models also demonstrated commendable
performance in the recognition of musical emotions. However, the Dual-Stream ar-
chitecture surpassed the CNN model’s achievements. In the context of arousal clas-
sification, the CNN-LSTM model was noted for its enhanced precision and F1 scores
across all emotional categories, highlighting its effectiveness in differentiating various
energy levels in music. Although the CNN model showed competitive performance, it
encountered more pronounced challenges within the neutral emotion category across
both tasks of emotion recognition. Thus, the use of spectrograms and music transcrip-
tion data was beneficial in improving the differentiation capabilities for arousal levels.
Similarly, for valence recognition, the Dual-Stream Neural Network excelled over the
CNNmodel across severalmetrics, including precision, recall, F1-score, AUC, and accu-
racy, showcasing a strong capacity to identify positive and negative valence in children’s
music, with areas for growth in the recognition of neutral valence.

Despite the advancements presented in this study, it is crucial to recognize the en-
countered challenges and limitations, particularly regardingdataset diversity. The com-
plex nature of children’s emotional reactions to music, varying across cultural contexts
and developmental stages, necessitates further exploration into the models’ general-
ization capabilities to new and varied musical compositions. These challenges offer
opportunities for future research, stressing the importance of advanced data collection
methods and the development of more sophisticated models to cover a wider array of
emotional expressions and musical genres.

Future research avenues are vast, including the exploration of culturally diverse
datasets to broaden the models’ interpretability of emotional expressions across dif-
ferent cultural backgrounds. Investigating alternative DL architectures could improve
model accuracy and generalization capabilities. Additionally, a deeper analysis of mu-
sic’s impact on various facets of child development, such as cognitive growth, emotional
intelligence, and social skills, would contribute significantly to developmental psychol-
ogy and musicology. Advancements in DL models, potentially developed through self-
supervised techniques likeContrastive Learning and augmentedbyExplainableAI prin-
ciples, could further the interpretability of these models, making their predictions and
insights more accessible to a wider audience, including educators and therapists. Such
approaches underscore the commitment to ethical AI use, laying the groundwork for
technology’s responsible application in sensitive domains like child development and
education. The overarching aim is to leveragemusic’s transformative power to enhance
child development, utilizing AI’s potential to deepen the understanding of the complex
interplay between music and human emotions.
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Appendices

Appendix A

As far as grid search cross validation results are concerned, only the top four performing
models are presented in Section 5. These outcomes are derived from the following grid
search cross-validation tables for both Arousal and Valence Recognition. Specifically,
Tables 30 and 31 pertain to Music Arousal and Valence recognition for the CNNmodel.
Additionally, Tables 32 and 33 present the grid search cross-validation results for the
Dual-Stream model.
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Table 30: Cross validation results of CNN for Music Arousal Recognition

Model
Configuration

Mean
Segment
Accuracy

Segment
Accuracy

Std

Mean
Segment

F1

Segment
F1
Std

Lower
Confidence
Interval for
Segment F1

Upper
Confidence
Interval for
Segment F1

Mean
Track

Accuracy

Track
Accuracy

Std

Mean
Track
F1

Track
F1
Std

Lower
Confidence
Interval for
Track F1

Upper
Confidence
Interval for
Track F1

Mean
Epoch

S4
Batch size: 64
LR: 0.002

0.763 0.024 0.732 0.033 0.666 0.798 0.836 0.029 0.808 0.037 0.734 0.882 23

S1
Batch size: 64
LR: 0.002

0.76 0.024 0.733 0.035 0.663 0.803 0.826 0.029 0.799 0.043 0.713 0.885 28

S0
Batch size: 32
LR: 0.002

0.774 0.021 0.756 0.041 0.674 0.838 0.847 0.034 0.829 0.045 0.739 0.919 24

S2
Batch size: 32
LR: 0.002

0.781 0.013 0.759 0.025 0.709 0.809 0.831 0.03 0.801 0.045 0.711 0.891 25

S0
Batch size: 32
LR: 0.001

0.778 0.031 0.757 0.044 0.669 0.845 0.815 0.032 0.8 0.054 0.692 0.908 25

S2
Batch size: 16
LR: 0.002

0.799 0.009 0.757 0.024 0.709 0.805 0.847 0.034 0.815 0.054 0.707 0.923 24

S4
Batch size: 64
LR: 0.001

0.753 0.032 0.733 0.045 0.643 0.823 0.815 0.049 0.803 0.057 0.689 0.917 22

S2
Batch size: 16
LR: 0.001

0.789 0.023 0.754 0.026 0.702 0.806 0.857 0.044 0.839 0.059 0.721 0.957 24

S3
Batch size: 32
LR: 0.002

0.782 0.015 0.756 0.019 0.718 0.794 0.815 0.032 0.775 0.06 0.655 0.895 27

S2
Batch size: 64
LR: 0.002

0.78 0.027 0.755 0.038 0.679 0.831 0.82 0.034 0.796 0.061 0.674 0.918 20

S2
Batch size: 32
LR: 0.001

0.764 0.025 0.736 0.045 0.646 0.826 0.836 0.042 0.795 0.062 0.671 0.919 20

S1
Batch size: 64
LR: 0.001

0.746 0.02 0.721 0.039 0.643 0.799 0.831 0.039 0.812 0.063 0.686 0.938 24

S4
Batch size: 32
LR: 0.001

0.761 0.034 0.734 0.055 0.624 0.844 0.831 0.047 0.814 0.065 0.684 0.944 24

S0
Batch size: 16
LR: 0.002

0.788 0.016 0.747 0.04 0.667 0.827 0.836 0.057 0.806 0.066 0.674 0.938 26

S3
Batch size: 64
LR: 0.002

0.767 0.027 0.741 0.042 0.657 0.825 0.831 0.039 0.802 0.066 0.67 0.934 28

S0
Batch size: 16
LR: 0.001

0.799 0.027 0.758 0.042 0.674 0.842 0.82 0.053 0.767 0.072 0.623 0.911 21

S4
Batch size: 16
LR: 0.002

0.794 0.023 0.759 0.03 0.699 0.819 0.836 0.047 0.807 0.073 0.661 0.953 20

S1
Batch size: 32
LR: 0.001

0.749 0.039 0.724 0.046 0.632 0.816 0.799 0.062 0.77 0.074 0.622 0.918 22

S4
Batch size: 32
LR: 0.002

0.776 0.022 0.749 0.027 0.695 0.803 0.852 0.043 0.818 0.074 0.67 0.966 24

S0
Batch size: 64
LR: 0.002

0.779 0.022 0.753 0.036 0.681 0.825 0.831 0.054 0.802 0.081 0.64 0.964 29

S0
Batch size: 64
LR: 0.001

0.758 0.015 0.742 0.04 0.662 0.822 0.794 0.056 0.772 0.082 0.608 0.936 28

S1
Batch size: 16
LR: 0.001

0.771 0.02 0.732 0.036 0.66 0.804 0.82 0.065 0.786 0.084 0.618 0.954 25

S1
Batch size: 32
LR: 0.002

0.767 0.03 0.741 0.035 0.671 0.811 0.836 0.073 0.817 0.087 0.643 0.991 22

S3
Batch size: 16
LR: 0.002

0.799 0.015 0.77 0.028 0.714 0.826 0.831 0.063 0.813 0.089 0.635 0.991 22

S1
Batch size: 16
LR: 0.002

0.784 0.03 0.743 0.04 0.663 0.823 0.852 0.06 0.825 0.09 0.645 1.005 25

S3
Batch size: 64
LR: 0.001

0.749 0.037 0.722 0.055 0.612 0.832 0.81 0.059 0.783 0.091 0.601 0.965 26

S3
Batch size: 16
LR: 0.001

0.791 0.017 0.755 0.031 0.693 0.817 0.836 0.073 0.81 0.092 0.626 0.994 31

S2
Batch size: 64
LR: 0.001

0.751 0.03 0.726 0.046 0.634 0.818 0.804 0.088 0.77 0.094 0.582 0.958 29

S3
Batch size: 32
LR: 0.001

0.766 0.021 0.739 0.034 0.671 0.807 0.836 0.082 0.801 0.103 0.595 1.007 31

S4
Batch size: 16
LR: 0.001

0.783 0.024 0.74 0.041 0.658 0.822 0.826 0.086 0.787 0.104 0.579 0.995 24
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Table 31: Cross validation results of CNN for Music Valence Recongition

Model
Configuration

Mean
Segment
Accuracy

Segment
Accuracy

Std

Mean
Segment

F1

Segment
F1
Std

Lower
Confidence
Interval for
Segment F1

Upper
Confidence
Interval for
Segment F1

Mean
Track

Accuracy

Track
Accuracy

Std

Mean
Track
F1

Track
F1
Std

Lower
Confidence
Interval for
Track F1

Upper
Confidence
Interval for
Track F1

Mean
Epoch

S0
Batch size: 16
LR: 0.001

0.758 0.035 0.776 0.035 0.706 0.846 0.809 0.033 0.801 0.031 0.739 0.863 28

S0
Batch size: 16
LR: 0.002

0.753 0.031 0.767 0.034 0.699 0.835 0.804 0.047 0.796 0.036 0.724 0.868 25

S0
Batch size: 32
LR: 0.001

0.745 0.023 0.769 0.027 0.715 0.823 0.818 0.05 0.816 0.05 0.716 0.916 25

S0
Batch size: 32
LR: 0.002

0.747 0.013 0.774 0.022 0.73 0.818 0.809 0.049 0.805 0.047 0.711 0.899 27

S0
Batch size: 64
LR: 0.001

0.735 0.031 0.768 0.026 0.716 0.82 0.776 0.047 0.774 0.041 0.692 0.856 30

S0
Batch size: 64
LR: 0.002

0.747 0.029 0.779 0.025 0.729 0.829 0.846 0.03 0.836 0.02 0.796 0.876 22

S1
Batch size: 16
LR: 0.001

0.756 0.023 0.773 0.033 0.707 0.839 0.799 0.057 0.799 0.055 0.689 0.909 25

S1
Batch size: 16
LR: 0.002

0.752 0.024 0.769 0.029 0.711 0.827 0.79 0.042 0.788 0.038 0.712 0.864 25

S1
Batch size: 32
LR: 0.001

0.731 0.021 0.759 0.03 0.699 0.819 0.795 0.059 0.789 0.059 0.671 0.907 24

S1
Batch size: 32
LR: 0.002

0.751 0.025 0.774 0.031 0.712 0.836 0.804 0.062 0.8 0.057 0.686 0.914 20

S1
Batch size: 64
LR: 0.001

0.724 0.034 0.757 0.033 0.691 0.823 0.771 0.064 0.769 0.062 0.645 0.893 23

S1
Batch size: 64
LR: 0.002

0.742 0.032 0.774 0.034 0.706 0.842 0.823 0.072 0.82 0.075 0.67 0.97 20

S2
Batch size: 16
LR: 0.001

0.753 0.023 0.772 0.025 0.722 0.822 0.818 0.052 0.815 0.054 0.707 0.923 31

S2
Batch size: 16
LR: 0.002

0.761 0.026 0.778 0.031 0.716 0.84 0.809 0.041 0.803 0.038 0.727 0.879 22

S2
Batch size: 32
LR: 0.001

0.755 0.029 0.782 0.033 0.716 0.848 0.799 0.052 0.79 0.052 0.686 0.894 29

S2
Batch size: 32
LR: 0.002

0.755 0.024 0.781 0.027 0.727 0.835 0.813 0.045 0.805 0.038 0.729 0.881 28

S2
Batch size: 64
LR: 0.001

0.736 0.024 0.771 0.017 0.737 0.805 0.804 0.034 0.803 0.032 0.739 0.867 26

S2
Batch size: 64
LR: 0.002

0.748 0.033 0.78 0.031 0.718 0.842 0.837 0.043 0.834 0.041 0.752 0.916 41

S3
Batch size: 16
LR: 0.001

0.766 0.032 0.781 0.033 0.715 0.847 0.804 0.044 0.797 0.042 0.713 0.881 26

S3
Batch size: 16
LR: 0.002

0.758 0.02 0.777 0.027 0.723 0.831 0.795 0.057 0.792 0.054 0.684 0.9 28

S3
Batch size: 32
LR: 0.001

0.751 0.022 0.777 0.029 0.719 0.835 0.818 0.03 0.814 0.025 0.764 0.864 26

S3
Batch size: 32
LR: 0.002

0.754 0.015 0.779 0.021 0.737 0.821 0.814 0.058 0.809 0.053 0.703 0.915 21

S3
Batch size: 64
LR: 0.001

0.729 0.031 0.761 0.022 0.717 0.805 0.781 0.05 0.78 0.046 0.688 0.872 24

S3
Batch size: 64
LR: 0.002

0.74 0.031 0.773 0.027 0.719 0.827 0.827 0.05 0.825 0.045 0.735 0.915 29

S4
Batch size: 16
LR: 0.001

0.753 0.018 0.771 0.026 0.719 0.823 0.781 0.052 0.779 0.053 0.673 0.885 28

S4
Batch size: 16
LR: 0.002

0.749 0.02 0.768 0.028 0.712 0.824 0.799 0.052 0.796 0.051 0.694 0.898 22

S4
Batch size: 32
LR: 0.001

0.736 0.016 0.764 0.022 0.72 0.808 0.79 0.048 0.788 0.048 0.692 0.884 29

S4
Batch size: 32
LR: 0.002

0.742 0.021 0.769 0.027 0.715 0.823 0.781 0.047 0.779 0.046 0.687 0.871 26

S4
Batch size: 64
LR: 0.001

0.726 0.038 0.759 0.032 0.695 0.823 0.781 0.062 0.779 0.06 0.659 0.899 24

S4
Batch size: 64
LR: 0.002

0.739 0.028 0.772 0.024 0.724 0.82 0.804 0.053 0.801 0.053 0.695 0.907 26
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Table 32: Cross validation results of Dual - Stream model for Music Arousal Recogni-
tion

Model
Configuration

Mean
Segment
Accuracy

Segment
Accuracy

Std

Mean
Segment

F1

Segment
F1
Std

Lower
Confidence
Interval for
Segment F1

Upper
Confidence
Interval for
Segment F1

Mean
Track

Accuracy

Track
Accuracy

Std

Mean
Track
F1

Track
F1
Std

Lower
Confidence
Interval for
Track F1

Upper
Confidence
Interval for
Track F1

Mean
Epoch

Heads: 2
Batch size: 16
LR: 0.001

0.78 0.029 0.737 0.042 0.653 0.821 0.847 0.056 0.809 0.065 0.679 0.939 23

Heads: 2
Batch size: 16
LR: 0.002

0.795 0.025 0.755 0.032 0.691 0.819 0.857 0.047 0.808 0.091 0.626 0.99 28

Heads: 2
Batch size: 32
LR: 0.001

0.763 0.032 0.732 0.043 0.646 0.818 0.847 0.068 0.822 0.068 0.686 0.958 29

Heads: 2
Batch size: 32
LR: 0.002

0.766 0.029 0.741 0.035 0.671 0.811 0.836 0.05 0.807 0.06 0.687 0.927 25

Heads: 4
Batch size: 16
LR: 0.001

0.784 0.024 0.745 0.041 0.663 0.827 0.836 0.05 0.785 0.092 0.601 0.969 26

Heads: 4
Batch size: 16
LR: 0.002

0.791 0.025 0.75 0.039 0.672 0.828 0.842 0.058 0.797 0.077 0.643 0.951 25

Heads: 4
Batch size: 32
LR: 0.001

0.758 0.03 0.737 0.039 0.659 0.815 0.826 0.039 0.802 0.051 0.7 0.904 25

Heads: 4
Batch size: 32
LR: 0.002

0.773 0.023 0.745 0.034 0.677 0.813 0.831 0.065 0.805 0.062 0.681 0.929 23

Heads: 8
Batch size: 16
LR: 0.001

0.78 0.022 0.738 0.04 0.658 0.818 0.82 0.046 0.771 0.089 0.593 0.949 24

Heads: 8
Batch size: 16
LR: 0.002

0.795 0.027 0.753 0.035 0.683 0.823 0.831 0.047 0.779 0.083 0.613 0.945 20

Heads: 8
Batch size: 32
LR: 0.001

0.767 0.034 0.739 0.047 0.645 0.833 0.836 0.05 0.813 0.053 0.707 0.919 29

Heads: 8
Batch size: 32
LR: 0.002

0.777 0.022 0.75 0.035 0.68 0.82 0.826 0.047 0.778 0.069 0.64 0.916 23

Heads: 16
Batch size: 16
LR: 0.001

0.783 0.026 0.745 0.036 0.673 0.817 0.842 0.058 0.805 0.069 0.667 0.943 25

Heads: 16
Batch size: 16
LR: 0.002

0.787 0.025 0.748 0.038 0.672 0.824 0.842 0.048 0.799 0.073 0.653 0.945 30

Heads: 16
Batch size: 32
LR: 0.001

0.762 0.029 0.732 0.043 0.646 0.818 0.836 0.065 0.793 0.089 0.615 0.971 25

Heads: 16
Batch size: 32
LR: 0.002

0.771 0.029 0.746 0.033 0.68 0.812 0.862 0.034 0.839 0.039 0.761 0.917 24
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Table 33: Cross validation results of Dual - Stream model for Music Valence Recogni-
tion

Model
Configuration

Mean
Segment
Accuracy

Segment
Accuracy

Std

Mean
Segment

F1

Segment
F1
Std

Lower
Confidence
Interval for
Segment F1

Upper
Confidence
Interval for
Segment F1

Mean
Track

Accuracy

Track
Accuracy

Std

Mean
Track
F1

Track
F1
Std

Lower
Confidence
Interval for
Track F1

Upper
Confidence
Interval for
Track F1

Mean
Epoch

[
Heads: 2

Batch size: 16
LR: 0.001

] 0.762 0.028 0.78 0.033 0.714 0.846 0.809 0.05 0.806 0.044 0.718 0.894 26

[
Heads: 2

Batch size: 16
LR: 0.002

] 0.77 0.037 0.781 0.038 0.705 0.857 0.804 0.034 0.791 0.022 0.747 0.835 28

[
Heads: 2

Batch size: 32
LR: 0.001

] 0.763 0.032 0.789 0.036 0.717 0.861 0.827 0.053 0.821 0.049 0.723 0.919 22

[
Heads: 2

Batch size: 32
LR: 0.002

] 0.757 0.039 0.784 0.04 0.704 0.864 0.804 0.053 0.793 0.048 0.697 0.889 27

[
Heads: 4

Batch size: 16
LR: 0.001

] 0.767 0.03 0.783 0.033 0.717 0.849 0.799 0.044 0.791 0.041 0.709 0.873 24

[
Heads: 4

Batch size: 16
LR: 0.002

] 0.761 0.029 0.777 0.035 0.707 0.847 0.813 0.043 0.805 0.044 0.717 0.893 24

[
Heads: 4

Batch size: 32
LR: 0.001

] 0.754 0.033 0.781 0.036 0.709 0.853 0.818 0.055 0.81 0.048 0.714 0.906 27

[
Heads: 4

Batch size: 32
LR: 0.002

] 0.759 0.025 0.784 0.028 0.728 0.84 0.795 0.068 0.787 0.063 0.661 0.913 26

[
Heads: 8

Batch size: 16
LR: 0.001

] 0.773 0.031 0.788 0.033 0.722 0.854 0.804 0.044 0.8 0.044 0.712 0.888 25

[
Heads: 8

Batch size: 16
LR: 0.002

] 0.757 0.045 0.774 0.047 0.68 0.868 0.781 0.081 0.775 0.069 0.637 0.913 24

[
Heads: 8

Batch size: 32
LR: 0.001

] 0.75 0.039 0.776 0.041 0.694 0.858 0.804 0.076 0.802 0.072 0.658 0.946 27

[
Heads: 8

Batch size: 32
LR: 0.002

] 0.749 0.042 0.774 0.044 0.686 0.862 0.818 0.038 0.805 0.031 0.743 0.867 24

[
Heads: 16

Batch size: 16
LR: 0.001

] 0.756 0.041 0.775 0.042 0.691 0.859 0.804 0.061 0.805 0.05 0.705 0.905 27

[
Heads: 16

Batch size: 16
LR: 0.002

] 0.767 0.022 0.781 0.027 0.727 0.835 0.785 0.052 0.778 0.048 0.682 0.874 28

[
Heads: 16

Batch size: 32
LR: 0.001

] 0.755 0.031 0.78 0.031 0.718 0.842 0.809 0.077 0.805 0.066 0.673 0.937 28

[
Heads: 16

Batch size: 32
LR: 0.002

] 0.753 0.032 0.778 0.035 0.708 0.848 0.79 0.073 0.783 0.069 0.645 0.921 23
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