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Abstract 

This thesis explores the use of the Relay Policy Learning (RPL) algorithm proposed by 
Gupta et al. [1], to model trajectory prediction in an aviation environment. RPL is a two-
phase approach consisting of a Hierarchical Imitation Learning (HIL) and Hierarchical 
Reinforcement Learning (HRL) algorithms. The purpose of this thesis is to model a policy 
learnt through RPL, to predict the aircraft trajectory. This is done through learning goal-
conditioned hierarchical policies from unstructured and unsegmented demonstrations. 
This thesis utilizes a dataset with long aircraft trajectories. These are pre-processed to 
correct imperfections and to create low-level and high-level datasets from these 
demonstrations through the relay-data-relabelling augmentation of the RPL algorithm. 
Then the created datasets are used to learn hierarchical Imitation Learning (IL) policies  
without explicit goal labelling using the goal-conditioned Behavior Cloning (BC) method. 
This provides a policy initialization for subsequent relay reinforcement fine -tuning using 
a variant of the Trust Region Policy Optimization (TRPO) on-policy algorithm proposed 
by Schulman et al. [4]. Then, the implemented agent is tested and evaluated. The thesis 
concludes with a presentation of results and proposals for further work towards extending 
the RPL algorithm to work with off-policy RL algorithms. 
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Περίληψη 

Αυτή η διπλωματική διερευνά τη χρήση του αλγορίθμου Relay Policy Learning (RPL) που 
προτείνεται από τους Gupta et al. [1], με στόχο την μοντελοποίηση της πρόβλεψης τροχιών 
αεροσκαφών, σε ένα αεροπορικό περιβάλλον. Ο αλγόριθμος RPL είναι μια προσέγγιση 
δύο φάσεων, στην πρώτη φάση χρησιμοποιεί έναν αλγόριθμο μάθησης με ιεραρχική 
μίμηση (Hierarchical Imitation Learning - HIL), ενώ στην δεύτερη φάση χρησιμοποιεί 
έναν αλγόριθμο ιεραρχικής ενισχυτικής μάθησης (Hierarchical Reinforcement Learning - 
HRL). Σκοπός αυτής της μεταπτυχιακής διπλωματικής εργασίας είναι να χρησιμοποιήσει 
τον εκπαιδευμένο πράκτορα από το RPL αλγόριθμο, για να προβλέψει την τροχιά ενός 
αεροσκάφους. Αρχικά, η εκπαίδευση του πράκτορα γίνεται με μη δομημένα δεδομένα, 
δηλαδή χωρίς να απαιτείται οι στόχοι του πράκτορα να έχουν καθοριστεί εκ των 
προτέρων. Η διατριβή χρησιμοποιεί ένα σύνολο δεδομένων με τροχιές αεροσκαφών. Αυτά 
υποβάλλονται σε προ-επεξεργασία για τη διόρθωση ατελειών και στην συνέχεια για τη 
δημιουργία συνόλων δεδομένων χαμηλού και υψηλού επιπέδου μέσω του αλγορίθμου 
επαύξησης δεδομένων (relay-data-relabelling augmentation) του RPL. Στην συνέχεια, τα 
σύνολα χαμηλού και υψηλού επιπέδου χρησιμοποιούνται για την εκμάθηση πολιτικών με 
μάθηση ιεραρχικής μίμησης (Hierarchical Imitation Learning  - HIL), χρησιμοποιώντας 
έναν αλγόριθμο μίμησης βασισμένο σε στόχο (goal-conditioned Behavior Cloning – goal 
BC). Αυτό παρέχει μια αρχικοποίηση πολιτικής του πράκτορα για την επακόλουθη 
λεπτομερή εκμάθηση με χρήση του αλγόριθμου Trust Region Policy Optimization (TRPO) 
των Schulman et al. [4]. Στη συνέχεια, ο εκπαιδευμένος πράκτορας δοκιμάζεται και 
αξιολογείται. Η διπλωματική εργασία ολοκληρώνεται με μια παρουσίαση των 
αποτελεσμάτων και προτάσεις για περαιτέρω εργασία για την επέκταση του αλγορίθμου 
RPL με αλγόριθμους ενισχυτικής μάθησης εκτός πολιτικής (off-policy Reinforcement 
Learning). 
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1 Introduction 

In this section, we motivate this thesis by mentioning the importance of 

utilizing Artificial Intelligence and Machine Learning (AI/ML) methods to 

determine aircraft's trajectories. 

1.1 Machine Learning Overview 

Nowadays, Artificial Intelligence (AI) is used everywhere to power intelligent 

applications. In brief, AI is the ability of a machine to somehow imitate, and 

maybe go beyond in some specific terms, intelligent human behavior. Machine 

Learning (ML) is a subset of the AI domain that allows the systems to make 

decisions without the need to be “manually” programmed in advance. ML 

methods can learn from data and understand the underlying patterns that are 

contained in them. Figure 1 illustrates the broad categories of ML methods. 

 

Figure 1: ML and DL main categories. 
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Deep Learning (DL) is a subset of ML. The main difference between the two 

is that in contrast to ML methods, where we apply one process that consists of a 

simple or more complex algorithm, in DL methods, multiple processes work 

together, forming layers, to capture the underlying representation of the data 

[35]. DL employs complex Deep Neural Networks (DNNs) that surpass the 

capabilities of machine learning methods. DNNs are essentially "function 

approximators". Deep Learning systems have been achieving incredible results in 

solving tasks in fields like Natural Language Processing (NLP), Computer Vision 

(CV), Robotics, real time decisions and many more. 

ML and DL are broad fields but usually are classified into three main 

categories, Supervised Learning (SL), Unsupervised Learning (UL), and 

Reinforcement Learning (RL). DNNs can be used in supervised, unsupervised, or 

reinforcement learning, in various ways. 

1.1.1 Supervised Learning 

Supervised learning, also known as task-driven method, refers to models that 

can learn from labelled data to predict a value. It is the most common subbranch 

of ML and is usually classified into two main categories, Classification and 

Regression algorithms. 

Classification 

The classification approach refers to the modelling problem of predicting a 

discrete class label output for a given input instance. Some widely used 

classification machine learning algorithms are Support Vector Machines (SVMs), 

Logistic Regression, Decision Tree, Naïve Bayes Classifier, and K-Nearest 

Neighbors (KNNs). Algorithms of the classification category are widely used for 

image classification, fraud detection, email spam detection and diagnostics.  

Regression 

The regression approach refers to the modelling problem when the target 

variable is a real or continuous value that needs to be approximated. Among the 

most popular regression machine learning algorithms are Linear Regression 

(LR), Lasso Regression, Support Vector Regression (SVR) and Multivariate 

Regression. Algorithms of the regression category are widely utilized for risk 

assessment and score prediction. 
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Imitation Learning 

 Imitation Learning (IL) is a form of supervised learning, also known as 

learning from demonstrations, and refers to an intelligent agent who receives 

desired behavior demonstrations from an expert and attempts to perform a task 

conforming to the expert’s behavior. IL may assume that the expert policy is 

optimal. The expert demonstrations may originate from humans or even from 

other agents that perform actions to complete a specific task. The agent can be 

any machine learning model. However, due to multi-dimensionality and 

continuity of the state-action space, it usually incorporates Deep Neural 

Networks (DNNs) which can efficiently approximate different complex models, 

e.g. a policy model.  

 IL is usually classified into two main categories, direct and indirect imitation. 

Direct  

The direct imitation approach refers to an agent who directly learns how to 

imitate the expert’s policy. The Behavior Cloning (BC), the Direct Policy Learning 

(DPL), and the Dataset Aggregation (DAgger) algorithm are classical approaches 

that focus on directly imitating the policy. However, DAgger is difficult to use in 

practice as it requires access to an expert during all the training, rather than just 

a set of demonstrations. 

Indirect 

The indirect imitation approach refers to an agent who indirectly imitates 

the policy by learning the expert's reward function, which is commonly referred 

to as Inverse Reinforcement Learning (IRL). In addition to other tasks, IRL has 

been employed in navigation [24], autonomous driving [25], and manipulation 

[26]. 

1.1.2 Unsupervised Learning 

 Unsupervised learning, also known as data-driven method, refers to models 

that can learn from unlabeled data, without predefined labels on the dataset, by 

finding patterns in data. It is usually classified into two main categories, 

Clustering and Dimensionality Reduction algorithms.  
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Clustering 

The clustering approach attempts to find patterns in data and separates 

them into multiple subgroups based on the similarity. The most famous 

clustering algorithm is k-means algorithm. Other algorithms are the density-

based, distribution-based and hierarchical-based. Algorithms of the clustering 

category are widely used for city planning, targeted marketing, and biology.  

Dimensionality Reduction 

The dimensionality Reduction approach attempts to extract low-

dimensional features from the original data set. Some dimensionality reduction 

algorithms are Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA). Algorithms of the dimensionality reduction category are widely 

used for image recognition, face recognition, text mining, and big data 

visualization. 

1.1.3 Reinforcement Learning 

 Reinforcement Learning (RL), also known as trial-and-error method, refers 

to intelligent agents who are trained to achieve goals through a recurring 

interaction process in a stochastic and potentially complex environment. Every 

time the agent chooses and performs a certain action that changes the state of the 

environment. The agent receives either rewards or penalties for the actions it 

performs. The agent’s goal is to learn an optimal policy which maximizes the long-

term cumulative rewards. Algorithms of the reinforcement learning category are 

widely and successfully used for AI gaming, robot navigation, real time decisions, 

learning tasks, and skill acquisition.  

 RL is usually classified into two main categories, model-based and model-free 

algorithms.  

Model-based. 

 In the model-based approach, the agent can either learn or have access to a 

model of the environment.  By a model of the environment, we mean a function 

which predicts state transitions and rewards [34]. Then the agent collects data to 

update the model. It can be a greedy algorithm with the aim to maximize the 

reward at each step. It is suitable in situations where we have complete knowledge 

about the environment, even in situations where no rewards are available. 
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However, the main downside is that most model-based algorithms, beyond being 

very inefficient during training, are over-fitting.  

 Model-based methods are usually classified into two main categories, “Learn 

the model” and “Given the model”. 

Learn the model. 

 Algorithms that belong to “Learn the model” category are World Models, 

Imagination-Augmented Agent (I2A) [36], Model-Based Priors for Model-Free 

(MBMF) [37], Generative Pretrained Transformers – GPT 3.5 + (who learn the 

reward function to optimize performance). 

Given the model. 

 An algorithm of the “Given the model” category is the AlphaZero [34].  

Model-free. 

 In the model-free approach the agent directly updates a learned value 

function or policy through interaction with the environment. Model-free methods 

can successfully solve various tasks but require many samples to achieve good 

performance. This approach is suitable in environments with a dynamic nature 

and where we cannot have sufficient knowledge, even after many interactions. 

For example, autonomous driving cars have a dynamic environment where there 

can be numerous changes in traffic routes.  

 Model-free methods are usually classified into two main categories, value-

based and policy-based algorithms. 

Value-based algorithms 

 Algorithms belonging to this approach are Deep Q Learning (DQN), Quantile-

Regression Deep Q Learning (QR-DQN), and Hindsight Experience Replay 

(HER) [38]. 

Policy-based algorithms 

 Policy-based methods, e.g. policy gradient methods, are usually classified into 

two main categories, off-policy, and on-policy algorithms.  

Off-policy algorithms 

 Off-policy algorithms are using a different policy for acting and training. 

They can reuse previous data very efficiently. Some widely used off-policy 

algorithms are Deep Deterministic Policy Gradient (DDPG), Twin Delayed 

DDPG(TD3) and Soft Actor Critic (SAC). 
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On-policy algorithms 

 On-policy algorithms are using the same policy for acting and training. They 

don’t use previous data, which makes them weaker on sample efficiency. Among 

the most popular on-policy algorithms are Vanilla Policy Gradient (VPG), Trusted 

Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO). 

1.2  Scope of thesis 

 The Machine Learning method's categories that are studied in this thesis are 

the direct imitation supervised learning method and the on-policy, model-free RL 

method, which are primarily studied on aircraft trajectory prediction. 

1.2.1 Machine Learning in the Aviation Domain 

 In the aviation domain, predicting aircrafts’ trajectories can be challenging. 

Due to it being a long-horizon task, it requires extended exploration. A key 

objective is to develop learning methods to implement robust, autonomous 

intelligent agents, that can perform well in complex, real-world aircraft 

navigation. 

1.2.2 Motivation 

 Gupta et al. propose the Relay Policy Learning (RPL) algorithm [1], a method 

for imitation and reinforcement learning that can solve multi-stage, long-horizon 

robotic tasks. Gupta et al. in [1], devised a simple and universally applicable two-

phase approach that in the first phase pre-trains hierarchical policies using 

demonstrations such that they can be easily fine-tuned using RL during the 

second phase. Authors demonstrate the effectiveness of their method on several 

multi-stages, long-horizon manipulation tasks in a challenging kitchen 

simulation environment. Aircraft trajectory prediction is a multi-stage, long-

horizon task, assuming a sparse binary reward. 

1.2.3 Contribution 

 The main topic of this thesis is aircraft trajectory prediction in the aviation 

domain, by implementing and evaluating a variant of the RPL algorithm. The 

aircraft trajectories employed are from Paris to Istanbul. Each trajectory 

indicates the movement of the aircraft, the most important observations are 



 

  -13- 

coordinates of aircraft position at any time step, i.e., longitude, latitude, and 

altitude. 

1.3 Structure of thesis 

 This thesis is subdivided into the following different topics: 

Chapter 1: Introduction refers to a brief overview of the AI and the AI in aviation 

domain, highlighting the scope and objectives of the current thesis. 

Chapter 2: Background and Related Work provides a brief introduction of the 

research areas of Imitation and Reinforcement Learning and a closer look at the 

combination of the above methods. Furthermore, provides a brief overview of 

Relay Policy Learning (RPL) algorithm proposed by Gupta et al [1]. 

Chapter 3: Methodology presents in detail the demonstrations dataset used in 

our problem setting. It presents the preprocessing steps, and it further discusses 

the proposed approach based on RPL algorithm [1],  

Chapter 4: Experiments and Results  contains the experimental setup and the 

performance measures used for the evaluation of the agent. 

Chapter 5: Conclusion and Future work are a summary of the accomplished work 

as well as a proposal of future research opportunities. 

Bibliography provides a list of sources referred to in this thesis, to further 

facilitate reader’s access to the selected articles and books.  
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2 Background and Related 
Work 

This section provides a brief introduction to Artificial Intelligence research 

areas of Imitation and Reinforcement Learning, and specifically to the Relay 

Policy Learning (RPL) algorithm proposed by Gupta et al. [1]. 

2.1 Imitation Learning (IL) 

It has long been known that humans and animals use imitation as a 

mechanism for acquiring knowledge. In the context of Artificial Intelligence (AI), 

Imitation Learning (IL) refers to a family of supervised machine -learning 

methods, which can be used to quickly generate a rough solution to a given task, 

using demonstrated behavior. 

However, IL is not a recent advancement in Machine Learning (ML). One of 

the first applications was carried out in 1989 by Dean Pomerleau. Specifically, 

Behavior Cloning (BC) algorithm was used to train ALVINN, one of the first self-

driving cars [19]. Since then, IL techniques, where expert demonstrations of good 

behavior are used to train a policy, have proven very useful in practice, and have 

led to state-of-the-art performance in a variety of applications [3]. 

As mentioned earlier, the IL is a form of supervised learning. Firstly, the 

intelligent agent is provided with a set of input features, the independent 

variables. Then, it is trained to predict a target variable, the dependent variable. 

During the training process, when the expert provides demonstrations to the 

agent, the agent receives both the input features and the target variable. The input 

features are the agent’s state observations, while the target variable is agent's 

action. Therefore, the training data is composed of state-action pairs. The agent 

observes the state of the environment, and the actions demonstrated by the 

expert, and frames a policy based on it. 
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2.1.1 Imitation Learning formalism 

In IL formalism, the agent has access to demonstrations D containing a set of 

trajectories 𝐷 = {𝜏𝑖 , 𝜏𝑗, 𝜏𝑘 ,… } of state-action pairs 𝜏𝑖 = {𝑠0
𝑖 ,𝑎0

𝑖 , 𝑠1
𝑖 , 𝑎1

𝑖 , … 𝑠𝑇
𝑖 , 𝑎 𝑇

𝑖 }.  

Markov Decision Process (MDP) formalism for IL 

It is assumed that the environment in IL is a Markov Decision Process (MDP) 

with states s and actions a, and the set of admissible states and actions are 

referred to as S and A. The reward function 𝑟(𝑠, 𝑎) in R is unknown. The system 

dynamics are expressed by the probabilistic transition model: 

𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) 

The transition function which is the conditional probability distribution over 

𝑠𝑡+1, given a state and action at a particular times step.  

2.1.2 Imitation Learning challenges. 

 In classical Supervised Learning, each state-action pair is assumed to be 

independent of others and follows a specific distribution.  

In Imitation Learning the agent’s environment, which is modelled by a 

Markov Decision Process (MDP), given an action in each state, induces the next 

state, which breaks the crucial Independent and Identically Distributed (IID) 

assumption. IID is a fundamental assumption of almost all statistical learning 

approaches, meaning that each of the training data points used to build a model 

need to be independent of each other and are randomly sampled from the same 

underlying distribution.  

2.1.3 Behavior Cloning (BC) 

A straightforward and common approach to imitation learning is Behavior 

Cloning (BC), which focuses on learning the expert’s policy using Supervised 

Learning, as said above. BC learns a policy through learning to mimic the 

demonstrated, state-action pairs. The objective is to learn an optimal policy 

π*(a|s) by imitating the demonstrations. Here, being optimal, the aim is to 

maximize the likelihood of actions demonstrated: 

𝐸(𝑠,𝑎)~𝐷𝑙𝑜𝑔𝜋(𝑎|𝑠) 
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In some tasks, BC can be utilized effectively. Its main advantages are its 

simplicity and efficiency. Suitable applications can be either short-horizon tasks 

where expert's trajectories can cover the observation space or tasks where 

committing an error doesn't result in catastrophic failures.  

However, for most of the tasks, BC can be quite challenging and is often 

unable to perform well across all temporally extended tasks due to compound 

errors. The primary reason for this is that it violates the fundamental 

Independent and Identically Distributed (IID) assumption [3] as mentioned in 

section 2.1.2. 

2.1.4 Hierarchical Imitation Learning (HIL) 

Hierarchical Imitation Learning (HIL) is a potential solution to solve sparse 

reward issues in challenging long-horizon tasks, by introducing temporal 

abstraction. HIL try to achieve two goals, learn a temporal task abstraction, and 

discover a meaningful segmentation of the demonstrations into subtasks. 

Goal-conditioned formalism for HIL 

When there are multiple demonstrated tasks, we consider a goal-conditioned 

imitation learning setup where the dataset of demonstrations D contains 

sequences that attempt to reach different goals 𝑠𝑔
𝑖 , 𝑠𝑔

𝑗
, 𝑠𝑔

𝑘 , … 

The objective is to learn a goal-conditioned optimal policy 𝜋∗(𝑎|𝑠, 𝑠𝑔) that can 

reach different goals 𝑠𝑔 by imitating the demonstrations. 

2.2 Reinforcement Learning (RL) 

Trial and error are an essential approach to solving problems in which 

multiple attempts are made to achieve a solution. In the context of Artificial 

Intelligence (AI), Reinforcement Learning (RL) refers to an intelligent agent who 

interacts with an environment and receives rewards and penalties. The agent's 

goal is to learn an optimal policy which maximizes the long-term cumulative 

rewards. In detail, we define the interaction rules, and the agent explores 

different paths and possibilities.  

The RL interaction process includes receiving a reward and the next state of 

the environment every time when the agent chooses and performs a certain action 

at a specific state, enabling state transition. The agent’s environment is either 
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fully or partially observable. Figure 2 illustrates the RL iterative process of agent-

environment interaction to form trajectories and solve sequential problems. 

 

Figure 2: The iterative interaction process. 

In general, the recurring RL interaction process makes it possible to 

incorporate uncertainty and typically, solving the following types of tasks: 

❖ Tasks of achievement, such as "close the door", can be represented by 

giving a positive reward for achieving the goal. 

❖ Tasks of prevention, such as “don’t crash with another vehicle”, can be 

represented by giving a negative reward when bad events occur. 

❖ Tasks of maintenance, such as “keep the air-traffic control system working 

as long as possible”, giving a positive reward for each time step that the 

desirable state is maintained [16]. 

2.2.1 Reinforcement Learning formalism. 

The formulation of the Reinforcement Learning (RL) problem is similar to the 

Imitation Learning (IL) problem. The main difference is that in RL, instead of 

having access to demonstrations 𝐷, the agent gets rewards 𝑟(𝑠, 𝑎).  

RL algorithms address the problem of how an intelligent agent can learn to 

approximate a strategy while interacting directly with its environment. The goal 

of RL is to find an optimal policy 𝜋∗(𝑎|𝑠) that maximizes expected reward over 

trajectories induced by the policy: 

𝐸𝜋[Σ𝑡=0
Τ 𝛾 𝑡𝑟𝑖(𝑠𝑡, 𝑎𝑡)] 

Agent Environment
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The variable 𝛾 is the discounting factor, which controls to what degree rewards in 

the distant future affect the total value of a policy and is usually just slightly less 

than 1, 0 ≤ 𝛾 < 1 . 

Markov Decision Process (MDP) formalism for RL 

Most Reinforcement Learning (RL) research is based on the formalism of 

problems as Markov Decision Processes (MDP). Although RL is by no means 

restricted to MDP, this discrete-time, finite state and action formalism provides 

the simplest framework in which to study algorithms. 

A finite MDP models the following type of problem. We define  Μ =

(𝑆, 𝐴, 𝑃, 𝑟, 𝜌0, 𝛾)   to be a finite-horizon Markov decision process (MDP), where 𝑆 

and 𝐴 are state and action spaces, 𝑝(𝑠𝑡+1|𝑠𝑡𝑎𝑡) is the transition probability of each 

state known as transition function, 𝑟(𝑠, 𝑎) is the reward function, 𝜌0 is the 

distribution of the initial states of the trajectories and 𝛾 is the discount factor. 

MDP follows the Markovian property that st+1 depends only on previous state 

information. 

2.2.2 Reinforcement Learning challenges. 

Reinforcement Learning (RL) has achieved significant success in many cases 

but has been largely confined to relatively simple short-horizon tasks. 

One of the challenges of Reinforcement Learning (RL) is the exploration-

exploitation trade-off. The exploration refers to the agent’s actions that may lead 

to new information and potentially higher rewards in the future. The exploitation 

refers to the agent’s actions that have high expected rewards based on its current 

knowledge. 

Another challenge is the curse of dimensionality, there are long-horizon tasks 

where the possible states and actions in a complex environment can be very large 

to effectively execute the costly iterative RL process. Furthermore, the 

environment may not be fully observable to be able to explore all the possible 

paths towards a goal state. 

Finally, many long-horizon, multi-step tasks with continuous control are 

natural to specify with a sparse reward. To address this issue, one can manually 

design rewards functions, which provide the agent with more frequent rewards. 

Moreover, in some cases such as self-driving car, there isn’t any direct reward 
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function, thus, the approach of manual shaping a reward function is necessary. 

However, manually designing a reward function that satisfies the desired 

behavior can be extremely complicated and can result in suboptimal 

performance.  

These challenges of RL which come from the exploration-exploitation trade-

off, the curse of curse of dimensionality and the sparse and complicated reward 

function, puts many real-world tasks out of practical reach of RL methods. 

2.2.3 Deep Reinforcement Learning 

Deep Reinforcement Learning (deep RL), a combination of RL and Deep 

Learning (DL), is a potential solution to solve the curse of dimensionality in 

challenging long-horizon tasks. Deep RL algorithms can employ Deep Neural 

Networks (DNNs) since they can efficiently approximate the policy or the reward 

function. This allows them to generalize across the observation space so that the 

learning time scales much better. The DNN is trained at every training iteration 

by updating its parameters. There can be DNN models either value-based or 

policy-based. Figure 3 illustrates an example of deep RL. 

 

Figure 3: The deep RL model that trains a DNN to get action from state inputs.  

Recent years, deep RL have accumulated significant and many times 

impressive results to numerous challenging domains such as Atari games [17] and 

Go [18]. 
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2.2.4 Hierarchical Reinforcement Learning (HRL) 

Hierarchical Reinforcement Learning (HRL) is a potential solution to solve 

sparse reward issues in challenging long-horizon tasks, by introducing temporal 

abstraction. Thus, decisions are not required at each step, but rather invoke the 

execution of temporally extended activities which follow specific policies until 

termination. This leads to hierarchical control architectures and associated 

learning algorithms [5]. 

Barto et al. [5] review several related approaches to temporal abstraction and 

hierarchical organization that machine learning researchers have developed: the 

“options formalism” of Sutton, Precup, and Singh [13], the Hierarchies of 

Abstract Machines (HAMs) approach of Parr and Russell [14,15], and Dietterich’s 

MAXQ framework [16]. The MAXQ framework provides a hierarchical 

decomposition of the given RL problem into a set of subproblems [16]. Common 

to these approaches is a reliance on semi-Markov Decision Processes (semi-MDP) 

[5]. 

A review of relative research shows that there are several important design 

decisions that must be made when constructing an HRL method [16]. In detail, 

HRL involves breaking the target Markov decision problem into a hierarchy of 

subproblems or subtasks. There are three general approaches to defining these 

subtasks:  

❖ One approach is to define each subtask in terms of a fixed policy that is 

provided by the programmer. The “options formalism” of Sutton, Precup, 

and Singh [13] takes this approach.  

❖ The second approach is to define each subtask in terms of a non-

deterministic finite-state controller. The Hierarchy of Abstract Machines 

(HAM) method of Parr and Russell [14, 15] takes this approach. This 

method permits the programmer to provide a “partial policy” that 

constrains the set of permitted actions at each point but does not specify a 

complete policy for each subtask.  

❖ The third approach is to define each subtask in terms of a termination 

predicate and a local reward function. These define what it means for the 

subtask to be completed and what the final reward should be for 
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completing the subtask. The MAXQ method of Dietterich takes this 

approach [16]. 

Goal-conditioned formalism for HRL 

To extend Reinforcement Learning (RL) to multiple tasks, a goal-conditioned 

formulation presented by Leslie Pack Kaelbling [9], can be used to learn a policy  

𝜋(𝑎|𝑠, 𝑠𝑔) which maximizes the expected reward 𝑟(𝑎, 𝑠, 𝑠𝑔) with respect to a goal 

distribution 𝑠𝑔~𝐺 as follows: 

Ε𝑠𝑔~𝐺 [Ε𝜋[Σ𝑡=0
𝑇 𝛾𝑡𝑟𝑖 (𝑠𝑡, 𝑎𝑡, 𝑠𝑔)]] 

2.3 Combination of Imitation and 
Reinforcement Learning 

As mentioned in 2.1.2 section, the well-known compounding error stemming 

from Imitation Learning (IL) is often unable to perform well in long-horizon tasks 

[3]. Recent research has demonstrated that the Reinforcement Learning (RL) 

approach is a potential solution to this issue, by enabling continuous 

improvement of the learned policy from experience. The RL approach is 

employed to improve IL policies through fine-tuning. 

However, the use of Imitation Learning (IL) to bootstrap the process of 

Reinforcement Learning (RL) has been previously utilized by several deep RL 

algorithms. The bootstrapping helps to overcome exploration challenges, while 

RL fine-tuning allows the policy to improve based on actual task objective. 

Rajeswaran et al. [6] propose learning complex dexterous manipulation with 

Deep Reinforcement Learning (DRL) and demonstrations. They propose to 

augment the policy search process with a small number of human demonstrations 

collected in virtual reality (VR). They found that pre-training a policy with 

Behavior Cloning (BC), and subsequent fine-tuning with policy gradient along 

with an augmented loss to stay close to the demonstrations, dramatically reduces 

the sample complexity, enabling training within the equivalent of a few real-world 

robot hours. 

Zhu et al. [7] propose a model-free deep reinforcement learning method that 

leverages a small amount of demonstration data to assist a reinforcement agent. 
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They apply this approach to robotic manipulation tasks and train end-to-end 

visuomotor policies that map directly from RGB camera inputs to joint velocities. 

Nair et al. [8] propose overcoming exploration in environments with sparse 

rewards in RL with demonstrations. Their method, which builds on top of Deep 

Deterministic Policy Gradients and Hindsight Experience Replay [38], provides 

an order of magnitude of speedup over RL on simulated robotics tasks. 

The above approaches demonstrate that agents combining imitation and 

reinforcement significantly improved performance than agents trained with RL 

or IL alone. However, these approaches include a flat IL initialization that is 

improved using reinforcement learning with additional auxiliary objectives 

[6,7,8]. The flat algorithms treat the state space as a huge flat search space. This 

means that the paths from the start state to the goal state are very long, and the 

length of these paths determines the cost of learning and planning, as information 

about future rewards must be propagated backward along these paths. 

Gupta et al. [1] demonstrate the Relay Policy Learning (RPL) method, which 

is described in the next chapter, where agents can use to learn hierarchical 

policies in a way that can be fine-tuned better than their flat counterparts. 

2.4 Relay Policy Learning (RPL) 

As mentioned throughout the previous chapters, solving multi-stage, long-

horizon robotic tasks can be challenging. To tackle these problems, Gupta et al. 

propose the Relay Policy Learning (RPL) algorithm, a simple and universally – 

applicable two-phase hierarchical approach, consisting of an imitation learning 

phase that produces goal-conditioned hierarchical policies, and a hierarchical 

reinforcement learning phase that finetunes these policies for task performance  

[1].  

In contrast to Hierarchical Reinforcement Learning (HRL) methods, the RPL 

method takes advantage of unstructured demonstrations to bootstrap further 

fine-tuning, and in contrast to conventional Hierarchical Imitation Learning 

(HIL) methods, it does not focus on careful subtask segmentation, but instead 

splits the demonstration data into fixed-length segments. This simplification 

allows them to leverage the idea of relabelling demonstrations across different 

goals. The RPL authors [1] demonstrate the effectiveness of their method on 



-24- 

 

several multi-stage, long-horizon manipulation tasks in a challenging kitchen 

simulation environment.  

According to the RPL authors [1] the main advantage of their approach is that 

it is simple and very general, in that it can be applied to any demonstrated data, 

including easy to provide unsegmented, and unstructured demonstrations of 

meaningful behaviours. Furthermore, this method does not require any explicit 

form of skill segmentation or subgoal definition, which otherwise would need to 

be learned or explicitly provided. Lastly, and most importantly, since this method 

ensures that every low-level trajectory is goal-conditioned and of the same limited 

length, it is very amenable to reinforcement fine-tuning, which allows for 

continuous policy improvement. 

2.4.1 Relay Policy Learning architecture. 

The algorithm starts with unstructured, unlabelled demonstrations D, which 

correspond to meaningful activities provided by the user. The pool of 

demonstrations consists of N trajectories 𝐷 = {𝜏0, 𝜏1, 𝜏2, … 𝜏𝑁}, where each 

trajectory consists of state-action pairs 𝜏 = {𝑠1, 𝑎1, 𝑠2, 𝑎2,… 𝑠𝑇 ,𝑎 𝑇}. Importantly, 

these demonstrations can be attempting to reach a variety of different high-level 

subgoals, but do not require these subgoals to be specified explicitly. 

To take the most advantage of such data, the authors pre -trains goal-

conditioned hierarchical policies using the proposed Relay Imitation Leaning 

(RIL) algorithm, which construct low-level and high-level datasets from the 

demonstrations, and then use them to perform imitation learning. This provides 

a good policy initialization for subsequent Relay Reinforcement Fine-tuning 

(RRF). Figure 4 illustrates the Relay Policy Learning algorithm [1]. 
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Figure 4: Relay Policy Learning algorithm [1] 

Figure 5 illustrates the RPL [1] hierarchical policy architecture, which is 

composed of a high-level policy and a low-level policy, which together generate 

an action at a given state. High level Policy sets subgoals for low-level policy [2]. 

Low-level policy takes that subgoal and output low level actions to act in the 

environment [2]. Only low-level act to the environment. 

 

Figure 5: Relay Policy Learning architecture [1]. 

Initially, the high-level policy takes the current state and creates a high-level 

subgoal that is passed to the low-level policy. Then, the low-level policy takes the 

current state and the subgoal created by the high-level policy to create an action 

which is executed in the environment. For the subsequent H time steps, set to 30 

in [1], the subgoal created by the high-level policy is kept fixed, while the low-

level policy takes the current state and creates an action at every time step. 
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The overall steps of the Relay Policy Learning (RPL) method [1] are described 

in Algorithm 1 in figure 6. 

 

Figure 6: Overview of steps for RPL algorithm [1]. 

2.4.2 Relay Imitation Learning (RIL) 

To learn the relay policy from meaningful but unstructured demonstrations 

𝐷, the RPL authors devise the relay data relabelling augmentation algorithm to 

construct a low-level dataset 𝐷𝑙  and a high-level dataset 𝐷ℎ from the 

demonstrations, and then use these datasets to perform imitation learning. 

Relay data relabelling augmentation algorithm. 

Gupta et al. [1] present a novel relay data-relabelling augmentation algorithm 

for learning goal-conditioned hierarchical policies. In detail, they construct a low-

level dataset 𝐷𝑙 and a high-level dataset 𝐷ℎ by iterating through the pool of 

demonstrations 𝐷 and use them to learn the high-level hierarchical policy 𝜋𝜃
ℎ and 

the low-level hierarchical policy 𝜋𝜑
𝑙  via supervised learning at multiple levels. 

According to the RPL authors [1], the relay data relabelling augmentation 

algorithm does not only enable us to learn hierarchical policies without explicit 

labels, but also provides algorithmic improvements to imitation learning. Firstly, 

generates more data through the relay data relabelling augmentation algorithm. 

Secondly, it improves generalization since it is trained on a large variety of 

subgoals. 
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Construct the low-level dataset 𝑫𝒍 

RPL [1] iterates through the pool of demonstrations 𝐷 to construct the low-

level dataset 𝐷𝑙. Firstly, the method is configured with a low-level window size 𝑊𝑙  

and it generates state-action-goal (𝑠, 𝑎, 𝑠𝑔
𝑙 )  tuples for low-level dataset 𝐷𝑙 within 

a sliding window size 𝑊𝑙  along the demonstrations, as described in Algorithm 2 

in figure 7. 

 

Figure 7: Overview of steps to construct the low-level dataset [1]. 

The key idea behind this is to consider all states that are reached along a 

demonstration trajectory within 𝑊𝑙  time steps from any state 𝑆𝑡 to be goals 

reachable from the state 𝑆𝑡 by executing action 𝑎𝑡, without the requirement for 

any explicit goal labelling from a human demonstrator [1].  

For example, consider the following trajectory 𝜏0  from the pool of 

demonstration 𝐷 = {𝜏0, 𝜏1, 𝜏2, … 𝜏𝑁} consisting of N trajectories: 

𝜏0 = {𝑠1, 𝑎1, 𝑠2, 𝑎2,𝑠3, 𝑎3, 𝑠4, 𝑎4,𝑠5, 𝑎5, 𝑠6, 𝑎6, 𝑠7,𝑎7, 𝑠8, 𝑎8, 𝑠9 ,𝑎9 , 𝑠10, 𝑎10, … 𝑠𝑇𝑎𝑇} 

For each state-action (𝑠, 𝑎) pair in 𝜏0 state-action-goal (𝑠, 𝑎, 𝑠𝑔
𝑙 ) tuples are created. 

If we set the low-level window size to be six, 𝑊𝑙 = 6, the created labels for the 

(𝑠1, 𝑎1) pair are the following: 

𝑠1, 𝑎1, 𝑠2 

𝑠1, 𝑎1, 𝑠3 

𝑠1, 𝑎1, 𝑠4 

𝑠1, 𝑎1, 𝑠5 

𝑠1, 𝑎1, 𝑠6 

Repeating this procedure for all state-action pairs in the 𝜏0 trajectory. 
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The authors in [1] tried to utilize different low-level window sizes for RPL. 

Their ablations suggest that the larger the window, the harder the learning 

problem becomes for both, imitation, and RL fine-tuning. Finally, they chose the 

low-level window size 𝑊𝑙  to be 30-time steps in all their experiments. 

 

Construct the high-level dataset. 

RPL [1] employ a similar procedure to construct the high-level dataset 𝐷ℎ. 

Firstly, they choose a high-level window size 𝑊ℎ  and then generate state-

action(subgoal)-goal tuples for high-level dataset 𝐷ℎ, within the sliding window 

size 𝑊ℎ  along the demonstrations, as described in Algorithm 3 in figure 8.  

 

Figure 8: Overview of steps to construct the high-level dataset [1]. 

The high-level action (subgoal state) is set to j steps ahead 𝑠𝑡+𝑗, as 𝑠𝑡+min (𝑊𝑙 ,𝑗) 

choosing a sufficiently distant subgoal as the high-level action (subgoal state). 

For example, consider the following trajectory 𝜏0  from the pool of 

demonstration 𝐷 = {𝜏0, 𝜏1, 𝜏2, … 𝜏𝑁}  consisting of N trajectories: 

𝜏0 = {𝑠1, 𝑎1, 𝑠2, 𝑎2,𝑠3, 𝑎3, 𝑠4, 𝑎4,𝑠5, 𝑎5, 𝑠6, 𝑎6, 𝑠7,𝑎7, 𝑠8, 𝑎8, 𝑠9 ,𝑎9 , 𝑠10, 𝑎10, … 𝑠𝑇𝑎𝑇} 

For each state-action (𝑠, 𝑎) pair in 𝜏0 trajectory creates state-action(subgoal)-goal 

tuples. If we set the high-level window size to be nine, 𝑊ℎ = 9, and set the high-

level action (subgoal state) to be j steps ahead 𝑠𝑡+𝑗, as 𝑠𝑡+min (𝑊𝑙 ,𝑗), the j will be six 

as the low-level window size. So, for state 𝑠1, high-level window size 𝑊ℎ = 9, and 

j=6 the subgoal will be the 𝑠7. In detail, the created labels will be the following: 

𝑠1, 𝑠7, 𝑠2 

𝑠1, 𝑠7, 𝑠3 
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𝑠1, 𝑠7, 𝑠4 

𝑠1, 𝑠7, 𝑠5 

𝑠1, 𝑠7, 𝑠6 

𝑠1, 𝑠7, 𝑠7 

 𝑠1, 𝑠7, 𝑠8 

Repeating this procedure for all state-action pairs in 𝜏0 trajectory. 

In [1], high-level window size 𝑊ℎ  is set to 260 in all the experiments. 

Imitation Learning 

According to the RPL authors [1], the Relay Imitation Learning (RIL) 

algorithm is a simple imitation learning procedure that builds on the goal 

relabelling scheme described in Lynch et al. [33] for the hierarchical setting, 

resulting in improved handling of multi-task generalization and compounding 

error. 

Given these relay-data-relabelled datasets, they train a high-level policy 𝜋𝜃
ℎ 

and a low-level policy 𝜋𝜑
𝑙  by maximizing the likelihood of the actions taken given 

the corresponding states and goals. 

𝑚𝑎𝑥𝜑,𝜃  Ε(𝑠,𝑎,𝑠𝑔
𝑙 )~𝐷𝑙

[𝑙𝑜𝑔𝜋𝜑(𝑎|𝑠, 𝑠𝑔
𝑙 )] + Ε(𝑠,𝑠𝑔

𝑙 ,𝑠𝑔
ℎ )~𝐷ℎ

[𝑙𝑜𝑔𝜋𝜗(𝑠𝑔
𝑙 |𝑠, 𝑠𝑔

ℎ)] 

Equation 1: Relay Imitation Learning equation [1]. 

In practice, this is a goal-conditioned Behaviour Cloning (BC) for the low-level 

and the high-level datasets.  

The RPL authors [1], used in their experiments Multilayer Perceptron (MLP) 

feed-forward artificial neural networks, with two layers of 256 units each and 

ReLu nonlinearities for both the high-level policy 𝜋𝜚
ℎ and the low-level policy 𝜋𝜑

𝑙 . 

All imitation learning algorithms use the ADAM optimizer using a batch size of 

128 and a learning rate of 0.005. 

2.4.3 Relay Reinforcement Fine-tuning (RRF) 

Gupta et al. [1] employ a goal-conditioned Hierarchical Reinforcement 

Learning (HRL) algorithm for fine-tuning the extracted policies from the RIL 

phase. The algorithm used is a variant of Trust Region Policy Optimization 

(TRPO) proposed by Schulman and al. [4]. In detail, a variant of Natural Policy 
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Gradient (NPG) with adaptive step, where both the high-level and the low-level 

goal-conditioned policies 𝜋𝜃
ℎ and 𝜋𝜑

𝑙  are being trained with policy gradient in a 

decoupled optimization [1]. 

In detail, given a low-level goal-reaching reward function 𝑟𝑙 (𝑠𝑡 , 𝑎𝑡 ,𝑠𝑔
𝑙 ), we can 

optimize the low-level policy by simply augmenting the state of the agent with the 

goal commanded by the high-level policy and then optimizing the policy to 

effectively reach the commanded goals by maximizing the sum of its rewards  [1]. 

For the high-level policy, given a high-level goal-reaching reward function 

𝑟ℎ(𝑠𝑡 , 𝑔𝑡 , 𝑠𝑔
ℎ), authors in [1] optimize it by running a similar goal-conditioned 

policy gradient optimization to maximize the sum of high-level rewards obtained 

by commanding the current low-level policy. 

Τo encourage extracted policies at both levels from Relay Imitation Learning 

(RIL) phase to stay close to the behaviour shown in the demonstrations , the 

Natural Policy Gradient (NPG) objective is augmented with a max-likelihood 

objective that ensures that policies at both levels take actions that are consistent 

with the relabelled demonstration pools 𝐷𝑙  and 𝐷ℎ from relay data relabelling 

algorithm, as described in Equation 2 and 3 [1]: 

∇𝜑 𝐽𝑙 = Ε [∇𝜑 𝑙𝑜𝑔𝜋𝜑
𝑖 (𝑎|𝑠, 𝑠𝑔

𝑙 ) ∑𝑟𝑙 (𝑠𝑡, 𝑎𝑡, 𝑠𝑔
𝑙 )

𝑡

] + 𝜆𝑙𝐸(𝑠,𝑎,𝑠𝑔
𝑙 )~𝐷𝑙

[∇𝜑 𝑙𝑜𝑔𝜋𝜑
𝑙 (𝑎|𝑠, 𝑠𝑔

𝑙 )] 

Equation 2: Reinforcement learning (low-level). 

∇𝜗𝐽ℎ = Ε [∇𝜃𝑙𝑜𝑔𝜋𝜃
ℎ(𝑠𝑔

𝑙|𝑠, 𝑠𝑔
ℎ) ∑ 𝑟ℎ(𝑠𝑡 , 𝑠𝑔

𝑙 , 𝑠𝑔
ℎ)

𝑡

] + 𝜆ℎ𝐸(𝑠,𝑠𝑔
𝑙 ,𝑠𝑔

ℎ)~𝐷ℎ
[∇𝜗𝑙𝑜𝑔𝜋𝜃

ℎ(𝑠𝑔
𝑙 |𝑠, 𝑠𝑔

ℎ)] 

Equation 3: Reinforcement learning (high-level). 

 

The RPL authors [1] fine-tune on 17 different compound goals individually, 

with a path length of 260 for every compound goal, and the low-level horizon set 

to 30. They use 100 trajectories in each iteration of on-policy fine-tuning, with a 

discount of 0.995. When using variants of augmenting the policy gradient 

objective with demonstrations, they experimented with different weights 𝜆ℎ  and 

𝜆𝑙 , but they found 0.0001 to work well. They use a batch size of a 100 trajectories 

per iteration, and standard parameters for truncated natural policy gradient 
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based on python package [11], which contains implementations of various RL 

algorithms for continuous control tasks simulated with MuJoCo.  
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3 Methodology 

In this chapter, we describe our attempt to reengineer the Relay Policy 

Learning (RPL) algorithm [1] and evaluate its use to predict aircraft trajectories. 

3.1 Demonstrations Datasets 

In this section, the datasets that were utilized are being presented along with 

the proposed method of data-preparation. 

The datasets contain airplane traffic data collected from Paris to Istanbul 

route, in Comma Separated Value (CSV) files. The CSV files are referred to as “the 

dataset”, and they are the starting point of the Relay Imitation Learning (RIL). 

The CSV file holds information about the trajectories of aircraft. Each row in the 

file corresponds to twenty (20) seconds, and the state space is naturally 

discretized into twenty-seconds time steps.  

The dataset contains the longitude, latitude, and the altitude of each time step. 

Some names of the parameters in the dataset are not self-explanatory.  Therefore, 

table (1) explains the relevant parameters and airplane terminologies related to 

them. 

Table 1: Dataset 

 Parameter name Parameter Description Datatype 

1 trajectory_ID Airplane trajectory ID, a combination 

of date and ID. 

object 

2 longitude Longitude of the specific timestamp. float64 

3 latitude Latitude of the specific timestamp. float64 

4 altitude Altitude of the specific timestamp. Float64 

5 timestamp Time stamp in Unix type. int64 

6 temp_iso Temperature Float64 

7 v_wind_component Vertical wind direction, a positive 

value means that the direction of the 

airflow is upward, while a negative 

Float64 
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value denotes that the direction is 

downward. 

8 u_wind_component Horizontal wind direction. Float64 

9 Cluster Airplane trajectory route. int64 

10 model_id Airplane model ID. int64 

11 dlon Longitude difference of the current 

timestamp with the longitude of the 

next timestamp.  

Float64 

12 dlat Latitude difference of the current 

timestamp with the latitude of the 

next timestamp.  

Float64 

13 dalt Altitude difference of the current 

altitude with the altitude of the next 

timestamp. 

Float64 

14 delay Airplane delay. int64 

3.1.1 Overview training dataset. 

The training dataset contains 64,245 rows from 116 trajectories, which are 

distributed in six separate routes. The diagram in figure 9 illustrates the separate 

routes. As we can notice the shortest route – dataset column “Cluster” - is this 

with value five (5). 

 

Figure 9: Airplane training trajectories. 
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The diagram in figure 10 illustrates the distribution of trajectories across the 

different routes. The route of cluster five (5) represents 72% of the whole dataset, 

so this was selected to train the agent. 

 

Figure 10: Distribution of training trajectories. 

3.1.2 Cleaning training dataset 

Convert trajectory ID to numerical value. 

The trajectory ID in the dataset is a combination of date and an ID. Therefore, 

we cropped the date and kept only the ID. 

Remove trajectory routes. 

Removed from the dataset the other trajectories and kept only trajectories in 

cluster with value 5 in agent’s training. 

Convert Unix timestamp. 

Convert Unix timestamp to date – time format with seconds. 

Check for missing data. 

Each row in the train dataset corresponds to a twenty (20) seconds time-interval 

update, as we can notice in the data variable timestamp. So, for each trajectory 

ID we computed the time duration in minutes. The diagram in figure  11 illustrates 

the total time steps and the time duration in minutes for each trajectory ID. 
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Figure 11: Check for missing data. 

Overview training dataset after the data cleaning process. 

After the data cleaning process, the training dataset contains 46 ,467 rows 

from 85 trajectories in route - data field “Cluster” - five (5). The diagram in figure 

12 illustrates the altitude differences between the trajectories in route five (5). 

e 

Figure 12: Training trajectories route 5 altitude. 

Figure 13 illustrates trajectory ID cardinality in training dataset. 

 

Figure 13: Trajectory ID cardinality in training dataset. 
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3.1.3 The Training Dataset 

Data Correlation 

Data correlation refers to the statistical relationship between two data 

variables. We computed the Pearson correlation coefficient [39], which is the 

most common measurement for a linear relationship between two variables. The 

stronger the correlation between these two variables, the closer it will be to +1 or 

-1. A correlation coefficient of -1 describes inverse correlation, with values in one 

series rising as those in the other decline, and vice versa. The diagram in figure 

14 illustrates correlation between variables of the dataset. 

 

Figure 14: Pearson correlation coefficient. 

Obviously, the longitude and the latitude variables clearly have a negative 

correlation (-0.99), this indicates that the two variables move in opposite 

directions. The latitude of Paris, France is 48.864716, and the longitude is 

2.349014, while the latitude of Istanbul, Turkey is 41.015137, and the longitude is 

28.979530. 
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Negative correlation exists between temperature and altitude variables (-

0.72), when the altitude increases the temperature decrease and vice versa. Also, 

there is negative correlation between the longitude selection – dataset column 

“dlon” - and the temperature (-0.63). 

The longitude selection – data column “dlon” – and the altitude have a 

positive correlation (0.79), this indicates the two variables move either up or 

down in the same direction together. Also, there exists a positive correlation 

between altitude selection – data column “dalt” - and the latitude (0.61). 

All the other dataset variables have zero or small correlation, which indicates 

that there is no relationship between them and that they are considered being 

unrelated. 

Longitude selection correlation 

The diagrams in figure 15 illustrate the correlations between the longitude and 

the longitude, latitude, altitude, and temperature variables. 

 

Figure 15: Longitude selection correlation. 

 

Latitude selection correlation 

The diagram in figure 16 illustrates the correlations between the latitude and 

the longitude, latitude, altitude, and temperature variables. 
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Figure 16: Latitude selection correlation. 

 

Altitude selection correlation 

The diagram in figure 17 illustrates the correlations between the altitude and 

the longitude, latitude, altitude, and temperature variables. 

 

Figure 17: Altitude selection correlation. 
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Longitude, Latitude and Altitude distribution 

The diagram in figure 18 illustrates the distribution of the longitude, latitude, 

and altitude dataset variables. 

 

Figure 18: Longitude, Latitude and Altitude distribution. 

 

Training trajectories 

The diagram in figure 19 illustrates the 85 training trajectories. 
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Figure 19: The 85 trajectories 
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3.1.4 Overview of the test dataset. 

The test dataset contains 36,819 rows from 65 trajectories, and as in the 

training dataset they are distributed in six separate routes. The diagram in figure 

20 illustrates the separate routes. 

 

Figure 20: Airplane test trajectories. 

The diagram in figure 21 illustrates the distribution of trajectories across the 

different routes. The route of cluster five (5) represents 59% of the whole dataset. 

 

Figure 21: Distribution of test trajectories. 
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3.1.5  Cleaning test dataset 

Here, the same pre-processing steps, as those in the training dataset described 

in section 3.1.2, do apply. 

Overview of the test dataset after the data cleaning process. 

After the data cleaning process, the test dataset contains 21,559 rows from 40 

trajectories in route - data field “Cluster – five” (5). The diagram in figure 22 

illustrates the altitude differences between the trajectories in route five (5). 

 

Figure 22: Test trajectories route 5 altitude. 

Figure 23 illustrates trajectory ID cardinality in the test dataset. 

 

Figure 23: Trajectory ID cardinality in test dataset. 
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3.2 Implementation and training of RPL agent 

It is challenging to train an intelligent agent to predict aircraft trajectories 

using unstructured traffic data due to the sparse reward issue. This section is 

dedicated to explaining the implementation and training of the Relay Policy 

Leaning (RPL) intelligent agent [1] as a potential solution for this long-horizon 

task.  

Firstly, in the Relay Imitation Learning (RIL) first phase, unstructured 

aircraft trajectories are utilized as input to construct the high-level and low-level 

datasets. These datasets are used to train the agent with the high-level and low-

level policies using a goal-conditioned Behavior Cloning algorithm. Finally, in the 

Relay Reinforcement Fine-tuning (RRF) second phase, a variant of the Trust 

Region Policy Optimization (TRPO) algorithm of Schulman et al. [4] employed to 

fine-tune the agent's training. The two-phase RPL algorithm is shown in Figure 

24. 

 

Figure 24: RPL intelligent agent [1] 

The following Python libraries were employed in the implementation of the 

RPL intelligent agent. 

NumPy 

NumPy, short for Numerical Python, is an essential library for scientific 

computing. It provides multidimensional array objects and functions for working 

in domain of linear algebra, Fourier transform, and matrices [28].  
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Furthermore, tensors are essentially multidimensional arrays, which makes 

NumPy a central component in machine learning systems. Additionally, 

framework libraries TensorFlow and PyTorch utilize NumPy in core calculations.  

Pandas 

Pandas is a Python library built on the NumPy library and is frequently used 

in machine learning projects because has functions for analysing, cleaning, 

exploring, and manipulating data. Pandas can read various data formats, such as 

CSV files, and convert them into data frame objects. A data frame is a 2-

dimensional data structure with rows and columns, like a spreadsheet [29]. Data 

frames are used for analysing and manipulating data in different ways.  

The Panda library is utilized to the data preprocessing stage for reading, 

manipulating, and preserving the read Comma Separated Value (CSV) files of 

training and testing demonstrations datasets to DataFrames. 

Geopandas 

Geopandas is a Python library that provides support for geospatial data to 

Pandas DataFrames to make working with them more efficient [27]. 

The Geopandas library is utilized to the data preprocessing stage  to plot 

airplane traffic data of the route from Paris to Istanbul. Additionally, it is used in 

the experiments results stage to plot the agent's generated trajectories. 

Matplotlib 

Matplotlib is a comprehensive library for creating static, animated, and 

interactive visualizations in Python [40]. 

The Matplotlib library is utilized to the data preprocessing and evaluation 

stages to plot Pandas DataFrames. 

Gymnasium 

Gymnasium is a Python library for developing and evaluating reinforcement 

learning algorithms. It is a very versatile toolkit that is compatible with both 

TensorFlow and PyTorch libraries [30]. The library includes several pre -built 

environments for testing reinforcement learning agents, e.g., Atari games and 

robotics tasks. Arguably the most crucial feature of Gymnasium is that all 

environments share the same structure.  
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The Gymnasium library is utilized to provide the agent with a completely 

custom environment for testing Relay Policy Learning (RPL) algorithm. 

PyTorch 

PyTorch is an open-source machine learning (ML) framework based on the 

Python programming language and the Torch library. Torch is an open-source 

ML library used for creating deep neural networks and is written in the Lua 

scripting language [31]. 

The PyTorch library is used for the goal-conditioned Behaviour Cloning (BC) of 

low-level and high-level datasets, later outlined in detail.  

Stable Baselines3 

Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement 

learning algorithms in PyTorch. It is the next major version of Stable Baselines  

[32]. SB3 is a deep reinforcement library that uses PyTorch for the backend and 

provides several implemented algorithms and features, for both online and 

offline reinforcement learning algorithms [41]. SB3 has implement experimental 

features in a separate SB3-Contrib library [42,43]. 

The SB3-Contrib library is utilized for Relay Reinforcement Fine-tuning 

(RRF) using the Trust Region Policy Optimization (TRPO) algorithm  [44]. 

3.2.1 Relay Imitation Learning (RIL) 

This section focuses on the phase of Relay Imitation Learning (RIL) 

implementation of the Relay Policy Learning (RPL) algorithm [1]. 

Relay data relabelling augmentation algorithm. 

The relay data relabelling augmentation algorithm [1], described in section 

2.4.2, allow us to learn goal-conditioning hierarchical policies without explicit 

labelling. In detail, we construct a low-level dataset 𝐷𝑙 and a high-level dataset 𝐷ℎ 

by iterating through the unstructured traffic data of aircraft trajectories , which 

are included in the training dataset 𝐷, described in section 3.1. 

Constructing the low-level dataset 𝑫𝒍 

The low-level dataset 𝐷𝑙, described in Algorithm 2 in section 2.4.2 was 

constructed by iterating through the traffic data of aircraft trajectories included 

in the training dataset 𝐷. Firstly, we choose the low-level sliding window size 𝑊𝑙
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to be 30, and then generate state-action-goal (𝑠, 𝑎, 𝑠𝑔
𝑙 )  tuples for low-level dataset 

𝐷𝑙, within the sliding window 𝑊𝑙  along the traffic data of aircraft trajectories. 

After the data cleaning process in section 3.1.2, the aircraft trajectories, which 

are included in the training dataset 𝐷, are 85 trajectories in 46,467 rows. The low-

level dataset created from training dataset has 85 trajectories in 1,347,543 rows. 

Figure 25 illustrates trajectory ID cardinality in low-level dataset. 

 

 

Figure 25: Trajectory ID cardinality in low-level dataset. 

Constructing the high-level dataset 𝑫𝒉 

Similarly, the high-level dataset 𝐷ℎ, described in Algorithm 3 in section 2.4.2 

was constructed by iterating through the traffic data of aircraft trajectories 

included in the training dataset 𝐷. Firstly, we choose the high-level sliding 

window size 𝑊ℎ  to be 260, and then generate state-action(subgoal)-goal tuples 

for high-level dataset 𝐷ℎ, within the sliding window 𝑊ℎ  along the traffic data of 

aircraft trajectories. 

After the data cleaning process in section 3.1.2, the traffic data of aircraft 

trajectories, which are included in the training dataset 𝐷, was 85 trajectories in 

46,467 rows. The high-level dataset created from training dataset has 85 

trajectories in 12,034,953 rows. Figure 26 illustrates trajectory ID cardinality in 

high-level dataset. 
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Figure 26: Trajectory ID cardinality in high-level dataset. 

Goal-conditioned Behavior Cloning (BC) 

Goal-conditioned Behavior Cloning (BC) is a simple imitation learning 

procedure that given the low-level and high-level datasets, trains a model for the 

high-level policy 𝜋𝜃
ℎ and for the low-level policy 𝜋𝜑

𝑙  by maximizing the likelihood 

of the actions taken given the corresponding states and goals .  

Deep Neural Network (DNN) Architecture 

The Deep Neural Network (DNN) implementing the BC method was fed with 

airplane's longitude, latitude, and altitude. The goal is the DNN to be trained to 

predict the airplane coordinates for the next step. This is a multi-target 

Multilinear Regression Model (MRM), which is a machine learning model that 

utilizes multiple features as input to make multiple predictions with continuous 

values. 

The final model architecture consisted of a Multi-Layer Perceptron (MLP) 

feedforward artificial neural network, which was fully connected to two hidden 

layers, as shown in Table 2. 

Table 2: DNN architecture 

Layer Description 

Feature Extractor Flatten extractor 

Input Three values: longitude, latitude and altitude. 

Linear 256 filters, RELU activation function 

Linear 256 filters, RELU activation function 

Output Three values: longitude, latitude and altitude. 
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The network is separated into two mains sections. The first section comprises 

an extractor whose role is to extract features from observations. Coordinates are 

vector observations, so the features extractor is simply a Flatten Layer for each 

observation. The second section is a fully connected DNN with a nonlinear RELU 

activation function, which is used to train both the high-level policy 𝜋𝜚
ℎ and the 

low-level policy 𝜋𝜑
𝑙  of the goal-conditioned BC.  

All imitation learning algorithms are trained with the ADAM optimizer using 

a batch size of 128 and a learning rate of 0.005. The network's output is the 

predicted longitude, latitude, and altitude. 

Coordinates Normalization 

To enhance the Deep Neural Network's stability, the dataset features are 

normalized prior to being fed to it. Table 3 shows the airplane's longitude, 

latitude, and altitude zero-mean normalization formulas. 

Table 3: Normalize formulas. 

Normalize formulas 

Normalize Longitude = Longitude – Longitude Average / Longitude Standard Deviation 

Normalize Latitude = Latitude – Latitude Average / Latitude Standard Deviation 

Normalize Altitude = Altitude – Altitude Average / Altitude Standard Deviation 

 

Similarly, table 4 shows formulas utilized to unnormalize the trajectories 

generated by the trained airplane agent. 

Table 4: Unnormalize formulas. 

Unnormalize formulas 

Unnormalize Longitude = Longitude * Longitude Standard Deviation + Longitude Average 

Unnormalize Latitude = Latitude * Latitude Standard Deviation + Latitude Average  

Unnormalize Altitude = Altitude * Altitude Standard Deviation + Altitude Average   
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3.2.2 Relay Reinforcement Fine-tuning (RRF) 

This section focuses on the phase of Relay Reinforcement Fine-tuning (RRF) 

implementation of the Relay Policy Learning (RPL) algorithm. 

Custom RL environment 

To train the intelligence agent a custom environment created using the 

gymnasium interface [30], which includes all the necessary components to train 

the airplane agent. The agent was trained to cover the distance from Paris airport 

to Istanbul airport. This is a sparse binary reward task, in which the agent receives 

reward when arriving to the Istanbul airport. Additionally, the episode terminates 

in case of exceeding the 3,000-time steps. The observation space is a 3-

dimensional continuous space, which observes the longitude, latitude, and 

altitude of the airplane agent. The action space is a 3-dimensional action space 

that corresponds to longitude, latitude, and altitude modifications to the airplane 

agent.  

Trust Region Policy Optimization  

In detail, as described in section 2.4.3 Gupta et al. [1] employ a goal-

conditioned Hierarchical Reinforcement Learning (HRL) algorithm which is a 

variant of the Trust Region Policy Optimization (TRPO) algorithm proposed by 

Schulman and al. [4]. 
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4 Experimental Results 

This section provides the results from evaluating the agent using different 

configurations. Our experiments aim to answer the following questions: 

1. Does Relay Imitation Learning (RIL) algorithm improve Reinforcement 

Learning Process to predict aircraft trajectories? 

2. Is it possible to use Relay Policy Learning (RPL) algorithm to predict 

aircraft trajectories? 

4.1 Performance metrics 

For comparison, we trained four agents, the first agent trained exclusively 

with the Trust Region Policy Optimization (TRPO) algorithm. The second agent 

was trained solely with the low-level goal BC of the Relay Imitation Learning 

(RIL) algorithm. The third agent was trained solely with the high-level goal BC of 

the Relay Imitation Learning (RIL) algorithm. Finally, the fourth agent was 

trained with the Relay Policy Learning (RPL) algorithm. Afterwards, we employ 

the trained agents to predict five trajectories for the route Paris to Istanbul airport 

and plot the outcomes. 

Furthermore, we compare the RPL agent's predicted trajectories to the 

original trajectories from Paris airport to Istanbul airport and plot the results. 

4.2 Results 

4.2.1 TRPO agent 

The diagram in figure 27 illustrates the agent's five generated trajectories 

when it has been trained exclusively with Reinforcement Learning (RL) 

algorithm. Specifically, it was trained 1e5 time-steps with the Trust Region Policy 

Optimization algorithm, whose policy network was not pre-trained in any way. 

As we can observe, the agent cannot predict the root neither the correct altitude. 
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Figure 27: TRPO algorithm agent trained (1e5 time-steps). 

 

The diagram in figure 28 illustrates the longitude and latitude of trajectories. 

 

Figure 28: TRPO agent longitude and latitude trajectories (1e5 time-steps). 
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The diagram in figure 29 illustrates agent’s five generated trajectories when 

enhancing the time-steps training to 1e6: It still does not provide valid 

predictions. 

 

Figure 29: TRPO algorithm agent trained (1e6 time-steps). 

 

The diagram in figure 30 illustrates the longitude and latitude of trajectories. 

 

Figure 30: TRPO agent longitude and latitude trajectories (1e6 time-steps). 
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4.2.2 Goal-conditioned low-level BC agent 

According to the Relay Imitation Learning (RIL) phase, the agent was first 

trained in 10 epochs with the goal conditioned low-level Behavior Cloning (BC) 

algorithm. The diagram in figure 31 illustrates agent's five generated trajectories. 

As we can observe, the agent was able to predict the correct root and the actual 

altitude, in a quite adequate way. 

 

Figure 31: goal BC low-level algorithm agent trained (10 epochs). 

 

The diagram in Figure 32 illustrates the longitude and latitude of trajectories. 

 

Figure 32: Goal BC low-level agent longitude and latitude trajectories (10 epochs). In the left 

figure, points for trajectories 1 to 4 coincide to the points of the 5 th, depicted. 
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4.2.3 Goal-conditioned high-level BC agent 

Then, the agent was trained 15 epochs with the high-level goal conditioned 

Behavior Cloning (BC) algorithm. The diagram in figure 33 illustrates agent's five 

generated trajectories. As we can observe, agent was able to predict several 

subgoals. However, all subgoals are from the middle of the route until Istanbul 

airport due to the high-level window size was set to 260 . Additionally, the altitude 

predictions are not correct. 

 

Figure 33: goal BC high-level algorithm agent trained (15 epochs). 

The diagram in figure 34 illustrates the longitude and latitude of trajectories. 

 

Figure 34: Goal BC high-level agent longitude and latitude trajectories (15 epochs). In the left 

figure, points for trajectories 1 to 4 coincide to the points of the 5th, depicted. 
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4.2.4 RPL agent 

Finally, an agent was trained with the Relay Policy Learning (RPL) algorithm. 

The diagram in figure 35 illustrates the trained agent's generated trajectories. As 

we can observe, RL fine-tunning succeeds to improve RIL predictions, however 

there is still a high altitude predicted in Paris airport. 

 

Figure 35: RPL trained agent (1e2 time-steps). 

 

The diagram in figure 36 illustrates the longitude and latitude of trajectories. 

 

Figure 36: RPL agent longitude and latitude trajectories (1e2 time-steps). In the left figure, 

points for trajectories 1 to 4 coincide to the points of the 5th, depicted. 
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4.2.5  Compare original trajectories with RPL trajectories. 

The diagram in figure 37 illustrates the comparison of an original trajectory 

with the predicted trajectory when the agent has been trained with the Relay 

Policy Learning (RPL) algorithm. 

 

Figure 37: Visual comparison between the original and the RPL predicted trajectory. 

 

As we can observe, predicted trajectory it is close to the original trajectory in 

longitude and latitude predictions. However, the altitude predictions are not 

accurate. 
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5 Conclusions and future 
work 

In this thesis, Reinforcement Learning and Imitation Learning methods have 

been explored in the context of predicting long-horizon execution of tasks. In 

particular, the thesis focuses on the direct imitating supervised learning methods 

and the on-policy, model-free Reinforcement Learning methods, to model 

aircraft's trajectory prediction in the aviation domain.  

Summarizing the work conducted in the context of this thesis we reengineer 

the Relay Policy Learning (RPL) algorithm [1] proposed by Gupta et al. and 

evaluate its use to predict aircraft trajectories. RPL is a two-phase hierarchical 

approach, consisting of a Relay Imitation Learning (RIL) phase that produces 

goal-conditioned hierarchical policies, and a Relay Reinforcement Fine -tuning 

(RRF) phase that fine-tunes these policies for task performance. It utilizes a 

dataset with long aircraft trajectories containing unstructured, unlabelled routes 

from Paris to Istanbul. First, the dataset was pre-processed to correct 

imperfections. Then, created low-level and high-level datasets through the relay-

data relabelling augmentation of the RPL algorithm [1], which allow us to learn 

goal-conditioning hierarchical policies without explicit labelling. Afterwards, the 

created datasets are used to learn hierarchical Imitation Learning policies using 

a goal-conditioned Behavior Cloning method. Training Deep Neural Networks 

(DNNs) to predict airplane longitude, latitude, and altitude for the next step. To 

enhance the Deep Neural Network's stability, the datasets features are 

normalized prior to being fed to it. Finally, the two policies from the Relay 

Imitation Learning (RIL) phase are fine-tuning with Reinforcement Learning. 

Specifically, using the Trust Region Policy Optimization (TRPO) on-policy 

algorithm proposed by Schulman et al. [4]. To train the intelligence agent a 

custom environment created using the gymnasium interface. 

Predicting aircrafts' trajectories can be challenging because it requires 

extensive exploration. The use of Imitation Learning to bootstrap the process of 

Reinforcement Learning, helps to overcome exploration challenges, while the RL 

fine-tuning allows the policy to improve based on actual task objective. The 
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results indicate that it is possible to use RPL algorithm in aircraft trajectories 

predictions. For comparison, we trained four agents, The first agent trained 

exclusively with Reinforcement Leaning cannot provide valid predictions. The 

second agent trained in 10 epochs with the goal conditioned low-level Behavior 

Cloning (BC) algorithm was able to predict the correct root and the actual 

altitude, in a quite adequate way. The third agent trained in 15 epochs with the 

high-level goal conditioned Behavior Cloning (BC) algorithm was able to predict 

several subgoals. However, all subgoals were from the middle of the route until 

Istanbul airport, and the altitude predictions were not correct. Finally, the fourth 

agent trained with the Relay Policy Learning (RPL) algorithm was able to improve 

RIL predictions. We demonstrated the effectiveness of RPL method on 

comparison of an original trajectory with the predicted trajectory when the agent 

has been trained with the Relay Policy Learning (RPL) algorithm.  

In conclusion, during this research, it became clear that the Relay Policy 

Learning (RPL) algorithm [1] can be used to predict aircraft trajectories. 

Furthermore, it improves generalization since it is trained on many subgoals. The 

main advantage of the RPL algorithm is that it is simple and very general, in that 

it can be applied to any demonstrated data, including easy to provide 

unsegmented, and unstructured demonstrations of meaningful behaviours. 

Therefore, for future work, we propose to further explore with off-policy 

Reinforcement Learning methods. 
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