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Abstract

This thesis explores the use of the Relay Policy Learning (RPL) algorithm proposed by
Gupta et al. [1], to model trajectory prediction in an aviation environment. RPLis a two-
phase approach consisting of a Hierarchical Imitation Learning (HIL) and Hierarchical
Reinforcement Learning (HRL) algorithms. The purpose of this thesis is to model a policy
learnt through RPL, to predict the aircraft trajectory. This is done through learning goal-
conditioned hierarchical policies from unstructured and unsegmented demonstrations.
This thesis utilizes a dataset with long aircraft trajectories. These are pre-processed to
correct imperfections and to create low-level and high-level datasets from these
demonstrations through the relay-data-relabelling augmentation of the RPL algorithm.
Then the created datasets are used to learn hierarchical Imitation Learning (IL) policies
without explicit goal labelling using the goal-conditioned Behavior Cloning (BC) method.
This provides a policy initialization for subsequent relay reinforcement fine -tuning using
a variant of the Trust Region Policy Optimization (TRPO) on-policy algorithm proposed
by Schulman et al. [4]. Then, the implemented agent is tested and evaluated. The thesis
concludes with a presentation of results and proposals for further work towards extending
the RPL algorithm to work with off-policy RL algorithms.

Thesis Supervisor: George Vouros
Title: Professor, University of Piraeus



Extédeon Stadikacimv Heyaiov ¥povikov opiovia Ie EVIOYUTIKI
padnon kar padnon pecw pipunong
Ao

AOavaocia Ada

YroPAOnke oto AIIME «Teyvntr) Nonupoouvn» tnv 29 ®efpovapiov 2024
WG LITOYPEWOT Y TNV Afyn Metamtuyiako AUTA®patog Zmovdmyv

ITepiinyn

Avt n Suthwpatikn Siepevva n xprjomn tov aiyopibuov Relay Policy Learning (RPL) mov
mpoteivetal amo Toug Gupta etal. [1], pe otoxo TNV povTeAomoinomn g TpofAeYn g TPOXI®V
AEPOOKAPROV, OE £va AgPOTOPIKO TepBarov. O aiyopiBuog RPL eival pia ipoogyyion
6V0 Pacewv, OTNV TPOTN PACT] XPNOLOTMOIEL Evav aAyOoplOuo pabnong pe 1epapykn
piunon (Hierarchical Imitation Learning - HIL), ev® otnv Sevtepn paon yxpnolomolel
evav ailyopiBuo 1epapyikng evioyvtikng pabnong (Hierarchical Reinforcement Learning -
HRL). £x0m0¢ autng g LETATTUXIAKTC OUTAWUATIKNG EPYACIAG VL VA X PTO1LOTTO) 0L
TOV eKTTAOEVUEVO TTPAKTOpA atd T0 RPL aAyopiBuo, yia va mpoPA&ypet Tnv Tpoy1d evog
aepPOOoKAPOVS. ApYkd, 1 ekmaidevon tov mpakTopa yivetal pe pn Sopnuéva Sedopéva,
OnAadt xwpig va astauteital ol OTOYOl TOU JPAKTOPA va €xouvv kaboplotel ek Twv
npotepwv. H Sratpin xpnoyomolel £va ovvoro 5eSouEvmV e TPOXIEG AEPOTKAP®V. AUTA
voAAAOVTAL 0 TTPo-EMeEEPYyaTia yia T S10pOwON ATEAEIMV KAl OTNV OUVEYEL V1A TN
Snuovpyia ovvoAmV Sedopuevwv XauUnAoL Kal vYnAol enuteédov HEC® TOU aAyopiBuov
emavgnong dedopevwyv (relay-data-relabelling augmentation) tov RPL. ¥tnv cvvéyewa, ta
OUVOAA YAUNAOU KAl LYPNAOL EMIIESOL ¥ PNOUOTOI0VVTAL YA TNV EKUAON 0T TTOMTIK®V HE
pabnon epapykng pipunong (Hierarchical Imitation Learning - HIL), xpnoomoiwvtag
evav aiyopifuo piunong pacouévo oe otoyo (goal-conditioned Behavior Cloning — goal
BC). Autd mapeyel pia apyIKomoinon JOATIKIG TOU TPAKTOPA Yl TNV €TAKOAOVON
Aemttouepn) ekuadnon pe xpron tov aAyopiBuov Trust Region Policy Optimization (TRPO)
twv Schulman et al. [4]. £tn ovveéyxewa, o ekmabevpevog mpakTopag Sokadetal kat
agoroyeital. H OSutdopatikr) epyacia  OAOKANP@VETAL HE MO TTAPOLCIAOT) T®V
QTOTEAEOUATOV KAl TIPOTACELS YA TIEPAITEP® EPYACIA YA TNV EMEKTACT] TOL AAYyopiOuov
RPL pe aAyopiBuovg evioyvtikng pabnong ektog moArtikng (off-policy Reinforcement
Learning).
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1 Introduction

In this section, we motivate this thesis by mentioning the importance of
utilizing Artificial Intelligence and Machine Learning (AI/ML) methods to

determine aircraft's trajectories.

1.1 Machine Learning Overview

Nowadays, Artificial Intelligence (AI) is used everywhere to power intelligent
applications. In brief, Al is the ability of a machine to somehow imitate, and
maybe go beyond in some specific terms, intelligent human behavior. Machine
Learning (ML) is a subset of the AI domain that allows the systems to make
decisions without the need to be “manually” programmed in advance. ML
methods can learn from data and understand the underlying patterns that are

contained in them. Figure 1 illustrates the broad categories of ML methods.

Imitation Learning

<

Dimensionality
Red uction

Learn the model
Model-based <

—_— leen the model
Reinforcement
Learning

T
Supervised
Learning (task-
driven)

Unsupervised
Machine Learning Learning (data-
& Deep driven)
Learning

(trial and error)
Value—based

Model-free off- pollcy
Pohcy -based

Figure 1: ML and DL main categories.



Deep Learning (DL) is a subset of ML. The main difference between the two
is thatin contrast to ML methods, where we apply one process that consists of a
simple or more complex algorithm, in DL. methods, multiple processes work
together, forming layers, to capture the underlying representation of the data
[35]. DL employs complex Deep Neural Networks (DNNs) that surpass the
capabilities of machine learning methods. DNNs are essentially "function
approximators". Deep Learning systems havebeen achieving incredible results in
solving tasks in fields like Natural Language Processing (NLP), Computer Vision
(CV), Robotics, real time decisions and many more.

ML and DL are broad fields but usually are classified into three main
categories, Supervised Learning (SL), Unsupervised Learning (UL), and
Reinforcement Learning (RL). DNNs can be used in supervised, unsupervised, or

reinforcement learning, in various ways.

1.1.1  Supervised Learning

Supervised learning, also known as task-driven method, refers to models that
can learn from labelled data to predict a value. It is the most common subbranch
of ML and is usually classified into two main categories, Classification and

Regression algorithms.

Classification
The classification approach refers to the modelling problem of predicting a

discrete class label output for a given input instance. Some widely used
classification machine learning algorithms are Support Vector Machines (SVMs),
Logistic Regression, Decision Tree, Naive Bayes Classifier, and K-Nearest
Neighbors (KNNs). Algorithms of the classification category are widely used for

image classification, fraud detection, email spam detection and diagnostics.

Regression

The regression approach refers to the modelling problem when the target
variable is a real or continuous value that needs to be approximated. Among the
most popular regression machine learning algorithms are Linear Regression
(LR), Lasso Regression, Support Vector Regression (SVR) and Multivariate
Regression. Algorithms of the regression category are widely utilized for risk

assessment and score prediction.
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Imitation Learning

Imitation Learning (IL) is a form of supervised learning, also known as
learning from demonstrations, and refers to an intelligent agent who receives
desired behavior demonstrations from an expert and attempts to perform a task
conforming to the expert’s behavior. IL may assume that the expert policy is
optimal. The expert demonstrations may originate from humans or even from
other agents that perform actions to complete a specific task. The agent can be
any machine learning model. However, due to multi-dimensionality and
continuity of the state-action space, it usually incorporates Deep Neural
Networks (DNNs) which can efficiently approximate different complex models,
e.g. a policy model.

IL is usually classified into two main categories, direct and indirect imitation.
Direct

The direct imitation approach refers to an agent who directly learns how to
imitate the expert’s policy. The Behavior Cloning (BC), the Direct Policy Learning
(DPL), and the Dataset Aggregation (DAgger) algorithm are classical approaches
that focus on directly imitating the policy. However, DAgger is difficult to use in
practice as it requires access to an expert during all the training, rather than just
a set of demonstrations.
Indirect

The indirect imitation approach refers to an agent who indirectly imitates
the policy by learning the expert's reward function, which is commonly referred
to as Inverse Reinforcement Learning (IRL). In addition to other tasks, IRL has
been employed in navigation [24], autonomous driving [25], and manipulation
[26].

1.1.2 Unsupervised Learning

Unsupervised learning, also known as data-driven method, refers to models
that can learn from unlabeled data, without predefined labels on the dataset, by
finding patterns in data. It is usually classified into two main categories,

Clustering and Dimensionality Reduction algorithms.



Clustering
The clustering approach attempts to find patterns in data and separates

them into multiple subgroups based on the similarity. The most famous
clustering algorithm is k-means algorithm. Other algorithms are the density-
based, distribution-based and hierarchical-based. Algorithms of the clustering

category are widely used for city planning, targeted marketing, and biology.

Dimensionality Reduction

The dimensionality Reduction approach attempts to extract low-
dimensional features from the original data set. Some dimensionality reduction
algorithms are Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA). Algorithms of the dimensionality reduction category are widely
used for image recognition, face recognition, text mining, and big data

visualization.

1.1.3 Reinforcement Learning

Reinforcement Learning (RL), also known as trial-and-error method, refers
to intelligent agents who are trained to achieve goals through a recurring
interaction process in a stochastic and potentially complex environment. Every
time the agent chooses and performs a certain action that changes the state of the
environment. The agent receives either rewards or penalties for the actions it
performs. The agent’s goalis to learn an optimal policy which maximizesthe long-
term cumulative rewards. Algorithms of the reinforcement learning category are
widely and successfully used for AI gaming, robot navigation, real time decisions,

learning tasks, and skill acquisition.

RLis usually classified into two main categories, model-based and model-free

algorithms.

Model-based.

In the model-based approach, the agent can either learn or have access to a
model of the environment. By a model of the environment, we mean a function
which predicts state transitions and rewards [34]. Then the agent collects data to
update the model. It can be a greedy algorithm with the aim to maximize the
reward ateach step. Itis suitable in situations where we have complete knowledge

about the environment, even in situations where no rewards are available.
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However, the main downside is that most model-based algorithms, beyond being
very inefficient during training, are over-fitting.
Model-based methods are usually classified into two main categories, “Learn

the model” and “Given the model”.

Learn the model.
Algorithms that belong to “Learn the model” category are World Models,

Imagination-Augmented Agent (I2A) [36], Model-Based Priors for Model-Free
(MBMF) [37], Generative Pretrained Transformers — GPT 3.5 + (who learn the

reward function to optimize performance).

Given the model.

An algorithm of the “Given the model” category is the AlphaZero [34].
Model-free.

In the model-free approach the agent directly updates a learned value
function or policy through interaction with the environment. Model-free methods
can successfully solve various tasks but require many samples to achieve good
performance. This approach is suitable in environments with a dynamic nature
and where we cannot have sufficient knowledge, even after many interactions.
For example, autonomous driving cars have a dynamic environment where there

can be numerous changes in traffic routes.

Model-free methods are usually classified into two main categories, value-

based and policy-based algorithms.

Value-based algorithms
Algorithms belonging to this approach are Deep Q Learning (DQN), Quantile-

Regression Deep Q Learning (QR-DQN), and Hindsight Experience Replay
(HER) [38].
Policy-based algorithms

Policy-based methods, e.g. policy gradient methods, are usually classified into

two main categories, off-policy, and on-policy algorithms.

Off-policy algorithms

Off-policy algorithms are using a different policy for acting and training.
They can reuse previous data very efficiently. Some widely used off-policy
algorithms are Deep Deterministic Policy Gradient (DDPG), Twin Delayed
DDPG(TD3) and Soft Actor Critic (SAC).
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On-policy algorithms

On-policy algorithms are using the same policy for acting and training. They
don’t use previous data, which makes them weaker on sample efficiency. Among
the most popular on-policy algorithms are Vanilla Policy Gradient (VPG), Trusted
Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO).

1.2 Scope of thesis

The Machine Learning method's categories that are studied in this thesis are
the directimitation supervised learning method and the on-policy, model-free RL

method, which are primarily studied on aircraft trajectory prediction.

1.2.1  Machine Learning in the Aviation Domain

In the aviation domain, predicting aircrafts’ trajectories can be challenging.
Due to it being a long-horizon task, it requires extended exploration. A key
objective is to develop learning methods to implement robust, autonomous
intelligent agents, that can perform well in complex, real-world aircraft

navigation.

1.2.2 Motivation

Gupta et al. propose the Relay Policy Learning (RPL) algorithm [1], a method
for imitation and reinforcement learning that can solve multi-stage, long-horizon
robotic tasks. Gupta et al. in [1], devised a simple and universally applicable two-
phase approach that in the first phase pre-trains hierarchical policies using
demonstrations such that they can be easily fine-tuned using RL during the
second phase. Authors demonstrate the effectiveness of their method on several
multi-stages, long-horizon manipulation tasks in a challenging kitchen
simulation environment. Aircraft trajectory prediction is a multi-stage, long-

horizon task, assuming a sparse binary reward.

1.2.3 Contribution

The main topic of this thesis is aircraft trajectory prediction in the aviation
domain, by implementing and evaluating a variant of the RPL algorithm. The
aircraft trajectories employed are from Paris to Istanbul. Each trajectory

indicates the movement of the aircraft, the most important observations are
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coordinates of aircraft position at any time step, i.e., longitude, latitude, and
altitude.

1.3 Structure of thesis

This thesis is subdivided into the following different topics:
Chapter 1: Introduction refers to a brief overview of the Al and the Al in aviation
domain, highlighting the scope and objectives of the current thesis.
Chapter 2: Background and Related Work provides a brief introduction of the
research areas of Imitation and Reinforcement Learning and a closer look at the
combination of the above methods. Furthermore, provides a brief overview of
Relay Policy Learning (RPL) algorithm proposed by Gupta et al [1].
Chapter 3: Methodology presents in detail the demonstrations dataset used in
our problem setting. It presents the preprocessing steps, and it further discusses
the proposed approach based on RPL algorithm [1],
Chapter 4: Experiments and Results contains the experimental setup and the
performance measures used for the evaluation of the agent.
Chapter 5: Conclusion and Future work are asummaryof the accomplished work
as well as a proposal of future research opportunities.
Bibliography provides a list of sources referred to in this thesis, to further

facilitate reader’s access to the selected articles and books.
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2 Background and Related
Work

This section provides a brief introduction to Artificial Intelligence research
areas of Imitation and Reinforcement Learning, and specifically to the Relay

Policy Learning (RPL) algorithm proposed by Gupta et al. [1].

2.1 Imitation Learning (IL)

It has long been known that humans and animals use imitation as a
mechanism for acquiring knowledge. In the context of Artificial Intelligence (Al),
Imitation Learning (IL) refers to a family of supervised machine-learning
methods, which can be used to quickly generate a rough solution to a given task,

using demonstrated behavior.

However, IL is not a recent advancement in Machine Learning (ML). One of
the first applications was carried out in 1989 by Dean Pomerleau. Specifically,
Behavior Cloning (BC) algorithm was used to train ALVINN, one of the first self-
driving cars [19]. Since then, IL techniques, where expert demonstrations of good
behavior are used to train a policy, have proven very useful in practice, and have

led to state-of-the-art performance in a variety of applications [3].

As mentioned earlier, the IL is a form of supervised learning. Firstly, the
intelligent agent is provided with a set of input features, the independent
variables. Then, it is trained to predict a target variable, the dependent variable.
During the training process, when the expert provides demonstrations to the
agent, the agentreceives both the input features and the target variable. The input
features are the agent’s state observations, while the target variable is agent's
action. Therefore, the training data is composed of state-action pairs. The agent
observes the state of the environment, and the actions demonstrated by the

expert, and frames a policy based on it.
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2.1.1 Imitation Learning formalism

In IL formalism, the agent has access to demonstrations D containing a set of

trajectories D = {t!,7/,7¥,...} of state-action pairs 7 = {s,a},s;, a, ... sk, ab}.

Markov Decision Process (MDP) formalism for IL

Itis assumed that the environment in IL is a Markov Decision Process (MDP)
with states s and actions a, and the set of admissible states and actions are
referred to as S and A. The reward function r(s,a) in R is unknown. The system

dynamics are expressed by the probabilistic transition model:

p(St+1lSear)

The transition function which is the conditional probability distribution over

S¢+1, given a state and action at a particular times step.

2.1.2 Imitation Learning challenges.

In classical Supervised Learning, each state-action pair is assumed to be
independent of others and follows a specific distribution.

In Imitation Learning the agent’s environment, which is modelled by a
Markov Decision Process (MDP), given an action in each state, induces the next
state, which breaks the crucial Independent and Identically Distributed (IID)
assumption. IID is a fundamental assumption of almost all statistical learning
approaches, meaning that each of the training data points used to build a model
need to be independent of each other and are randomly sampled from the same

underlying distribution.

2.1.3 Behavior Cloning (BC)

A straightforward and common approach to imitation learning is Behavior
Cloning (BC), which focuses on learning the expert’s policy using Supervised
Learning, as said above. BC learns a policy through learning to mimic the
demonstrated, state-action pairs. The objective is to learn an optimal policy
n*(als) by imitating the demonstrations. Here, being optimal, the aim is to

maximize the likelihood of actions demonstrated:

E(s,a)~Dlog7T(a|S)
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In some tasks, BC can be utilized effectively. Its main advantages are its
simplicity and efficiency. Suitable applications can be either short-horizon tasks
where expert's trajectories can cover the observation space or tasks where

committing an error doesn't result in catastrophic failures.

However, for most of the tasks, BC can be quite challenging and is often
unable to perform well across all temporally extended tasks due to compound
errors. The primary reason for this is that it violates the fundamental
Independent and Identically Distributed (IID) assumption [3] as mentioned in

section 2.1.2.

2.1.4 Hierarchical Imitation Learning (HIL)

Hierarchical Imitation Learning (HIL) is a potential solution to solve sparse
reward issues in challenging long-horizon tasks, by introducing temporal
abstraction. HIL try to achieve two goals, learn a temporal task abstraction, and

discover a meaningful segmentation of the demonstrations into subtasks.

Goal-conditioned formalism for HIL

When there are multiple demonstrated tasks, we consider a goal-conditioned

imitation learning setup where the dataset of demonstrations D contains

sequences that attempt to reach different goals sgi,,sé, !’;,

The objective is to learn a goal-conditioned optimal policy m*(als, s;) that can

reach different goals s, by imitating the demonstrations.

2.2 Reinforcement Learning (RL)

Trial and error are an essential approach to solving problems in which
multiple attempts are made to achieve a solution. In the context of Artificial
Intelligence (AI), Reinforcement Learning (RL) refers to an intelligent agent who
interacts with an environment and receives rewards and penalties. The agent's
goal is to learn an optimal policy which maximizes the long-term cumulative
rewards. In detail, we define the interaction rules, and the agent explores

different paths and possibilities.

The RLinteraction process includes receiving a reward and the next state of
the environmenteverytime when the agent choosesand performsa certain action

at a specific state, enabling state transition. The agent’s environment is either
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fully or partially observable. Figure 2 illustrates the RL iterative process of agent-

environment interaction to form trajectories and solve sequential problems.

7N

= =
"

Figure 2: The iterative interaction process.

In general, the recurring RL interaction process makes it possible to
incorporate uncertainty and typically, solving the following types of tasks:

% Tasks of achievement, such as "close the door", can be represented by
giving a positive reward for achieving the goal.

¢ Tasks of prevention, such as “don’t crash with another vehicle”, can be
represented by giving a negative reward when bad events occur.

% Tasks of maintenance, such as “keepthe air-traffic control system working
as long as possible”, giving a positive reward for each time step that the

desirable state is maintained [16].

2.2.1 Reinforcement Learning formalism.

The formulation of the Reinforcement Learning (RL) problem is similarto the
Imitation Learning (IL) problem. The main difference is that in RL, instead of
having access to demonstrations D, the agent gets rewards r(s, a).

RL algorithms address the problem of how an intelligent agent can learn to
approximate a strategy while interacting directly with its environment. The goal
of RL is to find an optimal policy 7*(a|s) that maximizes expected reward over

trajectories induced by the policy:

Ex [ZtT=Oytri(St' a)]
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The variable y is the discounting factor, which controls to what degree rewards in
the distant future affect the total value of a policy and is usually just slightly less
than1,0<y<1.

Markov Decision Process (MDP) formalism for RL

Most Reinforcement Learning (RL) research is based on the formalism of
problems as Markov Decision Processes (MDP). Although RL is by no means
restricted to MDP, this discrete-time, finite state and action formalism provides

the simplest framework in which to study algorithms.

A finite MDP models the following type of problem. We define M =
(S,A,P,7,po,y) tobe a finite-horizon Markov decision process (MDP), where S
and A are state and action spaces, p(s;;1|s¢a;) is the transition probability of each
state known as transition function, r(s,a) is the reward function, p, is the

distribution of the initial states of the trajectories and y is the discount factor.

MDP follows the Markovian property that s:+: depends only on previous state

information.

2.2.2 Reinforcement Learning challenges.
Reinforcement Learning (RL) has achieved significant success in many cases

but has been largely confined to relatively simple short-horizon tasks.

One of the challenges of Reinforcement Learning (RL) is the exploration -
exploitation trade-off. The exploration refers to the agent’s actions that may lead
to new information and potentially higher rewards in the future. The exploitation
refers to the agent’s actions that have high expected rewards based on its current

knowledge.

Another challenge is the curse of dimensionality, there are long-horizon tasks
where the possible states and actions in a complex environment can be very large
to effectively execute the costly iterative RL process. Furthermore, the
environment may not be fully observable to be able to explore all the possible
paths towards a goal state.

Finally, many long-horizon, multi-step tasks with continuous control are
natural to specify with a sparse reward. To address this issue, one can manually
design rewards functions, which provide the agent with more frequent rewards.

Moreover, in some cases such as self-driving car, there isn’t any direct reward
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function, thus, the approach of manual shaping a reward function is necessary.
However, manually designing a reward function that satisfies the desired
behavior can be extremely complicated and can result in suboptimal

performance.

These challenges of RL which come from the exploration-exploitation trade-
off, the curse of curse of dimensionality and the sparse and complicated reward

function, puts many real-world tasks out of practical reach of RL methods.

2.2.3 Deep Reinforcement Learning

Deep Reinforcement Learning (deep RL), a combination of RL and Deep
Learning (DL), is a potential solution to solve the curse of dimensionality in
challenging long-horizon tasks. Deep RL algorithms can employ Deep Neural
Networks (DNNs) since they can efficiently approximate the policy or the reward
function. This allows them to generalize across the observation space so that the
learning time scales much better. The DNN is trained at every training iteration
by updating its parameters. There can be DNN models either value-based or

policy-based. Figure 3 illustrates an example of deep RL.

/

Action

\
-

—

Figure 3: The deep RL model that trains a DNN to get action from state inputs.

Recent years, deep RL have accumulated significant and many times

impressive results tonumerous challenging domains such as Atarigames [17] and
Go [18].
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2.2.4 Hierarchical Reinforcement Learning (HRL)

Hierarchical Reinforcement Learning (HRL) is a potential solution to solve
sparse reward issues in challenging long-horizon tasks, by introducing temporal
abstraction. Thus, decisions are not required at each step, but rather invoke the
execution of temporally extended activities which follow specific policies until
termination. This leads to hierarchical control architectures and associated

learning algorithms [5].

Barto et al. [5] review several related approaches to temporal abstraction and
hierarchical organization that machine learning researchers have developed: the
“options formalism” of Sutton, Precup, and Singh [13], the Hierarchies of
Abstract Machines (HAMs) approach of Parr and Russell[14,15],and Dietterich’s
MAXQ framework [16]. The MAXQ framework provides a hierarchical
decomposition of the given RL problem into a set of subproblems [16]. Common

to these approachesis areliance on semi-Markov Decision Processes (semi-MDP)
[5].

A review of relative research shows that there are several important design
decisions that must be made when constructing an HRL method [16]. In detalil,
HRL involves breaking the target Markov decision problem into a hierarchy of
subproblems or subtasks. There are three general approaches to defining these

subtasks:

% One approach is to define each subtaskin terms of a fixed policy that is
provided by the programmer. The “options formalism” of Sutton, Precup,

and Singh [13] takes this approach.

% The second approach is to define each subtask in terms of a non-
deterministic finite-state controller. The Hierarchy of Abstract Machines
(HAM) method of Parr and Russell [14, 15] takes this approach. This
method permits the programmer to provide a “partial policy” that
constrains the set of permitted actions at each point but does not specify a

complete policy for each subtask.

% The third approach is to define each subtask in terms of a termination
predicate and a local reward function. These define what it means for the

subtask to be completed and what the final reward should be for
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completing the subtask. The MAXQ method of Dietterich takes this
approach [16].

Goal-conditioned formalism for HRL

To extend Reinforcement Learning (RL) to multiple tasks, a goal-conditioned
formulation presented by Leslie Pack Kaelbling [9], can be used to learn a policy
n(als, sg) which maximizes the expected reward r(a,s, sg) with respect to a goal

distribution Sg~G as follows:

Es,~c [Ex[Z{_o¥ Ti (56 s $g)]]

2.3 Combination of Imitation and
Reinforcement Learning

As mentioned in 2.1.2 section, the well-known compounding error stemming
from Imitation Learning (IL) is often unable to perform wellin long-horizon tasks
[3]. Recent research has demonstrated that the Reinforcement Learning (RL)
approach is a potential solution to this issue, by enabling continuous
improvement of the learned policy from experience. The RL approach is

employed to improve IL policies through fine-tuning.

However, the use of Imitation Learning (IL) to bootstrap the process of
Reinforcement Learning (RL) has been previously utilized by several deep RL
algorithms. The bootstrapping helps to overcome exploration challenges, while

RL fine-tuning allows the policy to improve based on actual task objective.

Rajeswaran et al. [6] propose learning complex dexterous manipulation with
Deep Reinforcement Learning (DRL) and demonstrations. They propose to
augmentthe policysearch process with a small number of human demonstrations
collected in virtual reality (VR). They found that pre-training a policy with
Behavior Cloning (BC), and subsequent fine-tuning with policy gradient along
with an augmented loss to stay close to the demonstrations, dramatically reduces
the sample complexity, enabling training within the e quivalent of a few real-world

robot hours.

Zhu et al. [7] propose a model-free deep reinforcement learning method that

leverages a small amount of demonstration data to assist a reinforcement agent.
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They apply this approach to robotic manipulation tasks and train end-to-end

visuomotor policies that map directly from RGB camera inputs to joint velocities.

Nair et al. [8] propose overcoming exploration in environments with sparse
rewards in RL with demonstrations. Their method, which builds on top of Deep
Deterministic Policy Gradients and Hindsight Experience Replay [38], provides

an order of magnitude of speedup over RL on simulated robotics tasks.

The above approaches demonstrate that agents combining imitation and
reinforcement significantly improved performance than agents trained with RL
or IL alone. However, these approaches include a flat IL initialization that is
improved using reinforcement learning with additional auxiliary objectives
[6,7,8]. The flat algorithms treat the state space as a huge flat search space. This
means that the paths from the start state to the goal state are verylong, and the
length of these paths determines the costoflearning and planning, as information

about future rewards must be propagated backward along these paths.

Gupta et al. [1] demonstrate the Relay Policy Learning (RPL) method, which
is described in the next chapter, where agents can use to learn hierarchical

policies in a way that can be fine-tuned better than their flat counterparts.

2.4 Relay Policy Learning (RPL)

As mentioned throughout the previous chapters, solving multi-stage, long-
horizon robotic tasks can be challenging. To tackle these problems, Gupta et al.
propose the Relay Policy Learning (RPL) algorithm, a simple and universally —
applicable two-phase hierarchical approach, consisting of an imitation learning
phase that produces goal-conditioned hierarchical policies, and a hierarchical
reinforcement learning phase that finetunes these policies for task performance
[1].

In contrast to Hierarchical Reinforcement Learning (HRL) methods, the RPL
method takes advantage of unstructured demonstrations to bootstrap further
fine-tuning, and in contrast to conventional Hierarchical Imitation Learning
(HIL) methods, it does not focus on careful subtask segmentation, but instead
splits the demonstration data into fixed-length segments. This simplification
allows them to leverage the idea of relabelling demonstrations across different

goals. The RPL authors [1] demonstrate the effectiveness of their method on
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several multi-stage, long-horizon manipulation tasks in a challenging kitchen

simulation environment.

According to the RPL authors [1] the main advantage of their approach is that
it is simple and very general, in that it can be applied to any demonstrated data,
including easy to provide unsegmented, and unstructured demonstrations of
meaningful behaviours. Furthermore, this method does not require any explicit
form of skill segmentation or subgoal definition, which otherwise would need to
be learned or explicitly provided. Lastly, and mostimportantly, since this method
ensures thateverylow-leveltrajectoryis goal-conditioned and of the samelimited
length, it is very amenable to reinforcement fine-tuning, which allows for

continuous policy improvement.

2.4.1 Relay Policy Learning architecture.

The algorithm starts with unstructured, unlabelled demonstrations D, which
correspond to meaningful activities provided by the user. The pool of
demonstrations consists of N trajectories D = {7,741, Ty, ...Ty}, Where each
trajectory consists of state-action pairs 7 = {s;,a4, s3,a5,...st,ar} Importantly,
these demonstrations can be attempting to reach a variety of different high-level

subgoals, but do not require these subgoals to be specified explicitly.

To take the most advantage of such data, the authors pre-trains goal-
conditioned hierarchical policies using the proposed Relay Imitation Leaning
(RIL) algorithm, which construct low-level and high-level datasets from the
demonstrations, and then use them to perform imitation learning. This provides
a good policy initialization for subsequent Relay Reinforcement Fine-tuning

(RRF). Figure 4 illustrates the Relay Policy Learning algorithm [1].
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Figure 4: Relay Policy Learning algorithm [1]

Figure 5 illustrates the RPL [1] hierarchical policy architecture, which is
composed of a high-level policy and a low-level policy, which together generate
an action at a given state. High level Policy sets subgoals for low-level policy [2].

Low-level policy takes that subgoal and output low level actions to act in the

environment [2]. Only low-level act to the environment.
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Figure 5: Relay Policy Learning architecture [1].

Initially, the high-level policy takes the current state and creates a high-level
subgoal that is passed to the low-level policy. Then, the low-level policy takes the
current state and the subgoal created by the high-level policy to create an action
which is executed in the environment. For the subsequent H time steps, set to 30
in [1], the subgoal created by the high-level policy is kept fixed, while the low-

level policy takes the current state and creates an action at every time step.
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The overall steps of the Relay Policy Learning (RPL) method [1] are described
in Algorithm 1 in figure 6.

Algorithm 1 Relay Policy Learning

Require: Unstructured pool of demonstrations D =
{To, T1, ...‘TN}
1: Relabel goals in demonstration trajectories using
Algorithm 2, 3 to extract D;, D,
2: Relay Imitation Learning: Train 7} and 71'25 us-
ing Eqn 1
3: while not done do
4:  Collect on-policy experience with 7 and wfﬁ
for high level goals different sg
5: [Optional] Relabel this experience (Sec. 4.3),
and add to D;, Dy,
6:  Update the policy via policy gradient update
using Eqn 2, 3.
7: end while
8: Distill fine-tuned policies into a single multi-goal
policy

Figure 6: Overview of steps for RPL algorithm [1].

2.4.2 Relay Imitation Learning (RIL)

To learn the relay policy from meaningful but unstructured demonstrations
D, the RPL authors devise the relay data relabelling augmentation algorithm to
construct a low-level dataset D; and a high-level dataset D, from the

demonstrations, and then use these datasets to perform imitation learning.

Relay data relabelling augmentation algorithm.

Gupta et al. [1] present a novel relay data-relabelling augmentation algorithm
for learning goal-conditioned hierarchical policies. In detail, they constructa low-
level dataset D; and a high-level dataset D, by iterating through the pool of

demonstrations D and use them to learn the high-level hierarchical policy 7} and

the low-level hierarchical policy 7, via supervised learning at multiple levels.

According to the RPL authors [1], the relay data relabelling augmentation
algorithm does not only enable us to learn hierarchical policies without explicit
labels, but also provides algorithmic improvements to imitation learning. Firstly,
generates more data through the relay data relabelling augmentation algorithm.
Secondly, it improves generalization since it is trained on a large variety of

subgoals.
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Construct the low-level dataset D,
RPL [1] iterates through the pool of demonstrations D to construct the low-

level dataset D,. Firstly, the method is configured with a low-level window size W,
and it generates state-action-goal (s, a, sé) tuples for low-level dataset D; within
a sliding window size W, along the demonstrations, as described in Algorithm 2

in figure 7.

Algorithm 2 Relay data relabeling for RIL low level

Require: Demonstrations D = {79, 71,...7n }
I: forn=1...N do
2: fort=1...t, do

3 forw =1...W; do

4 Add (s?, af, st w) to Dy
5: end for

6 end for

7: end for

Figure 7: Overview of steps to construct the low-level dataset [1].

The key idea behind this is to consider all states that are reached along a

demonstration trajectory within W, time steps from any state S; to be goals
reachable from the state S; by executing action a,, without the requirement for

any explicit goal labelling from a human demonstrator [1].
For example, consider the following trajectory 7, from the pool of
demonstration D = {ty, 1,75, ...Ty} consisting of N trajectories:
To = {51,Q1, S2,a2,53,03,54,04,S5,as5,S6, A6, S7,47, S8, A8, S9,A9, S10, A10, - STAT }
For each state-action (s, a) pairin 7, state-action-goal (s, a, sé) tuples are created.

If we set the low-level window size to be six, W, = 6, the created labels for the

(s1, a,) pair are the following:
$1,41, 82
$1,41, 83
S1,01, S4
S$1,041, S5
$1,41,Se

Repeating this procedure for all state-action pairs in the 7, trajectory.
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The authors in [1] tried to utilize different low-level window sizes for RPL.
Their ablations suggest that the larger the window, the harder the learning
problem becomes for both, imitation, and RL fine-tuning. Finally, they chose the

low-level window size W, to be 30-time steps in all their experiments.

Construct the high-level dataset.
RPL [1] employ a similar procedure to construct the high-level dataset D,.

Firstly, they choose a high-level window size W, and then generate state-
action(subgoal)-goal tuples for high-level dataset D;, within the sliding window

size W, along the demonstrations, as described in Algorithm 3 in figure 8.

Algorithm 3 Relay data relabeling for RIL high level

Require: Demonstrations D = {79, 71,...7TN }
1: forn=1...N do
2: fort=1...t, do

3 forw=1..W, do

4. Add (st'; 8¢ min(w,w;)» St+w) 10 D
5: end for

6 end for

7: end for

Figure 8: Overview of steps to construct the high-level dataset [1].

The high-level action (subgoal state) is set to j steps ahead s, j, 85S¢ 4 min (3, ))
choosing a sufficiently distant subgoal as the high-level action (subgoal state).

For example, consider the following trajectory 7, from the pool of
demonstration D = {7, 7y, T,,... Ty} consisting of N trajectories:

To = {51, @1, S2,A2,53,A3,S4,A4,S5, A5, S6, A, S7,47,Sg, Ag, S9,A9, S10, A10, -+ STAT }
For each state-action (s, a) pair in 7, trajectory creates state-action(subgoal)-goal
tuples. If we set the high-level window size to be nine, W}, = 9, and set the high-
level action (subgoal state) to be j steps ahead s j, as S¢1min w;,j), the j will be six
as the low-level window size. So, for state s;, high-level window size W}, = 9, and
j=6 the subgoal will be the s-. In detail, the created labels will be the following:

51, 57,52

S1,87,S83
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S1,57,S4
$1,57,S5
51,57, 56
$1,57,87
$1,57,58
Repeating this procedure for all state-action pairs in 7, trajectory.

In [1], high-level window size W}, is set to 260 in all the experiments.

Imitation Learning

According to the RPL authors [1], the Relay Imitation Learning (RIL)
algorithm is a simple imitation learning procedure that builds on the goal
relabelling scheme described in Lynch et al. [33] for the hierarchical setting,
resulting in improved handling of multi-task generalization and compounding
erTor.

Given these relay-data-relabelled datasets, they train a high-level policy m}
and a low-level policy ), by maximizing the likelihood of the actions taken given

the corresponding states and goals.

l l h
maxgy g E(s,a,sé)~Dl [logn(p(alsr Sg)] + E(s,sb,sg)~Dh [logmys (Sg s, Sg )]
Equation 1: Relay Imitation Learning equation [1].

In practice, this is a goal-conditioned Behaviour Cloning (BC) for the low-level

and the high-level datasets.

The RPL authors [1], used in their experiments Multilayer Perceptron (MLP)
feed-forward artificial neural networks, with two layers of 256 units each and
ReLu nonlinearities for both the high-level policy 7} and the low-level policy r},.

All imitation learning algorithms use the ADAM optimizer using a batch size of

128 and a learning rate of 0.005.

2.4.3 Relay Reinforcement Fine-tuning (RRF)

Gupta et al. [1] employ a goal-conditioned Hierarchical Reinforcement
Learning (HRL) algorithm for fine-tuning the extracted policies from the RIL
phase. The algorithm used is a variant of Trust Region Policy Optimization

(TRPO) proposed by Schulman and al. [4]. In detail, a variant of Natural Policy
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Gradient (NPG) with adaptive step, where both the high-level and the low-level
goal-conditioned policies 7} and ), are being trained with policy gradient in a
decoupled optimization [1].

In detail, given a low-level goal-reaching reward function r, (s, a;,sg), we can
optimize the low-levelpolicy by simply augmenting the state of the agent with the
goal commanded by the high-level policy and then optimizing the policy to
effectively reach the commanded goals by maximizing the sum of its rewards [1].
For the high-level policy, given a high-level goal-reaching reward function
(St ge, s, authors in [1] optimize it by running a similar goal-conditioned
policy gradient optimization to maximize the sum of high-level rewards obtained

by commanding the current low-level policy.

To encourage extracted policies at both levels from Relay Imitation Learning
(RIL) phase to stay close to the behaviour shown in the demonstrations, the
Natural Policy Gradient (NPG) objective is augmented with a max-likelihood
objective that ensures that policies at both levels take actions that are consistent
with the relabelled demonstration pools D; and D, from relay data relabelling

algorithm, as described in Equation 2 and 3 [1]:

V¢]Z=E

V,lognl(als, st) 27’1 (seapst)|+ AlE(s,a,sfq)~Dl[V§0 logr, (als, s})]
t

Equation 2: Reinforcement learning (low-level).

VoJn =E [Vglogng(sﬁs, Sél) z m, (st,sé,sé‘) + AhE(S‘SEq,Sg%Dh[Vglogng(sf,|s, sg)]
7

Equation 3: Reinforcement learning (high-level).

The RPL authors [1] fine-tune on 17 different compound goals individually,
with a path length of 260 for every compound goal, and the low-level horizon set
to 30. They use 100 trajectories in each iteration of on-policy fine-tuning, with a
discount of 0.995. When using variants of augmenting the policy gradient
objective with demonstrations, they experimented with different weights 1;, and
A, but they found 0.0001 to work well. They use a batch size of a 100 trajectories
per iteration, and standard parameters for truncated natural policy gradient
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based on python package [11], which contains implementations of various RL

algorithms for continuous control tasks simulated with MuJoCo.
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3 Methodology

In this chapter, we describe our attempt to reengineer the Relay Policy

Learning (RPL) algorithm [1] and evaluate its use to predict aircraft trajectories.

3.1 Demonstrations Datasets

In this section, the datasets that were utilized are being presented along with

the proposed method of data-preparation.

The datasets contain airplane traffic data collected from Paris to Istanbul
route,in Comma Separated Value (CSV) files. The CSV files are referred to as “the
dataset”, and they are the starting point of the Relay Imitation Learning (RIL).
The CSV file holds information about the trajectories of aircraft. Each row in the
file corresponds to twenty (20) seconds, and the state space is naturally
discretized into twenty-seconds time steps.

The dataset contains the longitude, latitude, and the altitude of each time step.
Some namesofthe parametersinthe datasetare notself-explanatory. Therefore,
table (1) explains the relevant parameters and airplane terminologies related to

them.

Table 1: Dataset

Parameter name Parameter Description Datatype

trajectory_ID Airplane trajectory ID, a combination object
of date and ID.

E longitude Longitude of the specific timestamp. float64
latitude Latitude of the specific timestamp. float64
n altitude Altitude of the specific timestamp. Float64
ﬂ timestamp Time stamp in Unix type. int64
n temp_iso Temperature Float64

7/ | v_wind_component Vertical wind direction, a positive Float64
value means that the direction of the

airflow is upward, while a negative
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value denotes that the direction is

downward.
u_wind_component Horizontal wind direction. Float64
Cluster Airplane trajectory route. int64
model_id Airplane model ID. int64
dlon Longitude difference of the current Float64

timestamp with the longitude of the

next timestamp.

b dlat Latitude difference of the current Float64
timestamp with the latitude of the

next timestamp.

1 dalt Altitude difference of the current Float64
altitude with the altitude of the next
timestamp.

i delay Airplane delay. int64

3.1.1 Overview training dataset.

The training dataset contains 64,245 rows from 116 trajectories, which are
distributed in six separate routes. The diagram in figure 9 illustrates the separate
routes. As we can notice the shortest route — dataset column “Cluster” - is this

with value five (5).

Airplane trajectories
Napiol - KwvotavTivolnoAn

55.0

—

52.5 1

50.0 1

47.5 4

45.0 A

Latitude
Cluster

42.5 4

40.0 +

37.5 1

35.0

Longitude

Figure 9: Airplane training trajectories.

-33-



The diagram in figure 10 illustrates the distribution of trajectories across the
different routes. The route of cluster five (5) represents 72% of the whole dataset,

so this was selected to train the agent.

B Cluster 5
Cluster 4
EEm Cluster 0
Cluster 2
B Cluster 3
Cluster 1

Cluster 5

Cluster 1

Cluster 3
Cluster 2

Cluster 0

Cluster 4

Figure 10: Distribution of training trajectories.

3.1.2 Cleaning training dataset

Convert trajectory ID to numerical value.
The trajectory ID in the dataset is a combination of date and an ID. Therefore,

we cropped the date and kept only the ID.

Remove trajectory routes.
Removed from the dataset the other trajectories and kept only trajectories in

cluster with value 5 in agent’s training.

Convert Unix timestamp.

Convert Unix timestamp to date — time format with seconds.

Check for missing data.

Each row in the train dataset corresponds to a twenty (20) seconds time-interval
update, as we can notice in the data variable timestamp. So, for each trajectory

ID we computed the time duration in minutes. The diagram in figure 11 illustrates

the total time steps and the time duration in minutes for each trajectory ID.
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Figure 11: Check for missing data.

Overview training dataset after the data cleaning process.

After the data cleaning process, the training dataset contains 46,467 rows
from 85 trajectories in route - data field “Cluster” - five (5). The diagram in figure

12 illustrates the altitude differences between the trajectories in route five (5).

Airplane trajectories 35000
Maplol - KwvotavtivoOmnoAn
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Figure 12: Training trajectories route 5 altitude.

Figure 13 illustrates trajectory ID cardinality in training dataset.

Trajectory ID cardinality
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Figure 13: Trajectory ID cardinality in training dataset.
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3.1.3 The Training Dataset

Data Correlation

Data correlation refers to the statistical relationship between two data
variables. We computed the Pearson correlation coefficient [39], which is the
most common measurement for a linear relationship between two variables. The
stronger the correlation between these two variables, the closer it will be to +1or
-1. A correlation coefficient of -1 describes inverse correlation, with values in one
series rising as those in the other decline, and vice versa. The diagram in figure

14 illustrates correlation between variables of the dataset.
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Figure 14: Pearson correlation coefficient.

Obviously, the longitude and the latitude variables clearly have a negative
correlation (-0.99), this indicates that the two variables move in opposite
directions. The latitude of Paris, France is 48.864716, and the longitude is
2.349014, while the latitude of Istanbul, Turkey is 41.015137, and the longitude is

28.979530.
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Negative correlation exists between temperature and altitude variables (-
0.72), when the altitude increases the temperature decrease and vice versa. Also,
there is negative correlation between the longitude selection — dataset column

“dlon” - and the temperature (-0.63).

The longitude selection — data column “dlon” — and the altitude have a
positive correlation (0.79), this indicates the two variables move either up or
down in the same direction together. Also, there exists a positive correlation

between altitude selection — data column “dalt” - and the latitude (0.61).
All the other dataset variables have zero or small correlation, which indicates
that there is no relationship between them and that they are considered being

unrelated.

Longitude selection correlation

The diagrams in figure 15 illustrate the correlations between the longitude and

the longitude, latitude, altitude, and temperature variables.
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Figure 15: Longitude selection correlation.

Latitude selection correlation
The diagram in figure 16 illustrates the correlations between the latitude and

the longitude, latitude, altitude, and temperature variables.
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Figure 16: Latitude selection correlation.

Altitude selection correlation
The diagram in figure 17 illustrates the correlations between the altitude and

the longitude, latitude, altitude, and temperature variables.
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Figure 17: Altitude selection correlation.
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Longitude, Latitude and Altitude distribution
The diagram in figure 18 illustrates the distribution of the longitude, latitude,

and altitude dataset variables.
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Figure 18: Longitude, Latitude and Altitude distribution.

Training trajectories

The diagram in figure 19 illustrates the 85 training trajectories.
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3.1.4 Overview of the test dataset.

The test dataset contains 36,819 rows from 65 trajectories, and as in the

training dataset they are distributed in six separate routes. The diagram in figure

20 illustrates the separate routes.
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Figure 20: Airplane test trajectories.

The diagram in figure 21 illustrates the distribution of trajectories across the

different routes. The route of cluster five (5) represents 59% of the whole dataset.
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Figure 21: Distribution of test trajectories.
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3.1.5 Cleaning test dataset
Here, the same pre-processing steps, as thosein the training dataset described

in section 3.1.2, do apply.

Overview of the test dataset after the data cleaning process.
After the data cleaning process, the test dataset contains 21,559 rows from 40
trajectories in route - data field “Cluster — five” (5). The diagram in figure 22

illustrates the altitude differences between the trajectories in route five (5).
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Figure 22: Test trajectories route 5 altitude.

Figure 23 illustrates trajectory ID cardinality in the test dataset.
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Figure 23: Trajectory ID cardinality in test dataset.
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3.2 Implementation and training of RPL agent

It is challenging to train an intelligent agent to predict aircraft trajectories
using unstructured traffic data due to the sparse reward issue. This section is
dedicated to explaining the implementation and training of the Relay Policy

Leaning (RPL) intelligent agent [1] as a potential solution for this long-horizon
task.

Firstly, in the Relay Imitation Learning (RIL) first phase, unstructured
aircraft trajectories are utilized as input to construct the high-level and low-level
datasets. These datasets are used to train the agent with the high-level and low-
level policies using a goal-conditioned Behavior Cloning algorithm. Finally, in the
Relay Reinforcement Fine-tuning (RRF) second phase, a variant of the Trust
Region Policy Optimization (TRPO) algorithm of Schulman et al. [4] employed to
fine-tune the agent's training. The two-phase RPL algorithm is shown in Figure

24.

Relay Policy Learning [RPL) algorithm [1]

Phase1: Relay Imitation Learning [RIL) Phase2: Pelay Reinforcement
Fine-tuning [RRF)

Geel-cenditicned
EBehevicr Clening

Trust Regicn Policy
(BC})

Optimizeticn (TRPO)

|

Aircraft — 1

trajectorie

Figure 24: RPL intelligent agent [1]

The following Python libraries were employed in the implementation of the

RPL intelligent agent.

NumPy
NumPy, short for Numerical Python, is an essential library for scientific
computing. It provides multidimensional array objects and functions for working

in domain of linear algebra, Fourier transform, and matrices [28].
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Furthermore, tensors are essentially multidimensional arrays, which makes
NumPy a central component in machine learning systems. Additionally,

framework libraries TensorFlow and PyTorch utilize NumPy in core calculations.

Pandas

Pandas is a Python library built on the NumPy library and is frequently used
in machine learning projects because has functions for analysing, cleaning,
exploring, and manipulating data. Pandas can read various data formats, such as
CSV files, and convert them into data frame objects. A data frame is a 2-
dimensional data structure with rows and columns, like a spreadsheet [29]. Data

frames are used for analysing and manipulating data in different ways.

The Panda library is utilized to the data preprocessing stage for reading,
manipulating, and preserving the read Comma Separated Value (CSV) files of

training and testing demonstrations datasets to DataFrames.

Geopandas

Geopandas is a Python library that provides support for geospatial data to

Pandas DataFrames to make working with them more efficient [27].

The Geopandas library is utilized to the data preprocessing stage to plot
airplane traffic data of the route from Paris to Istanbul. Additionally, it is used in

the experiments results stage to plot the agent's generated trajectories.

Matplotlib
Matplotlib is a comprehensive library for creating static, animated, and

interactive visualizations in Python [40].

The Matplotlib library is utilized to the data preprocessing and evaluation

stages to plot Pandas DataFrames.

Gymnasium

Gymnasium is a Python library for developing and evaluating reinforcement
learning algorithms. It is a very versatile toolkit that is compatible with both
TensorFlow and PyTorch libraries [30]. The library includes several pre -built
environments for testing reinforcement learning agents, e.g., Atari games and
robotics tasks. Arguably the most crucial feature of Gymnasium is that all

environments share the same structure.
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The Gymnasium library is utilized to provide the agent with a completely

custom environment for testing Relay Policy Learning (RPL) algorithm.

PyTorch

PyTorch is an open-source machine learning (ML) framework based on the
Python programming language and the Torch library. Torch is an open-source
ML library used for creating deep neural networks and is written in the Lua
scripting language [31].

The PyTorch library is used for the goal-conditioned Behaviour Cloning (BC) of

low-level and high-level datasets, later outlined in detail.

Stable Baselines3
Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement

learning algorithms in PyTorch. It is the next major version of Stable Baselines
[32]. SB3is a deepreinforcement library that uses PyTorch for the backend and
provides several implemented algorithms and features, for both online and
offline reinforcement learning algorithms [41]. SB3 has implement experimental

features in a separate SB3-Contrib library [42,43].

The SB3-Contrib library is utilized for Relay Reinforcement Fine-tuning
(RRF) using the Trust Region Policy Optimization (TRPO) algorithm [44].

3.2.1 Relay Imitation Learning (RIL)
This section focuses on the phase of Relay Imitation Learning (RIL)

implementation of the Relay Policy Learning (RPL) algorithm [1].

Relay data relabelling augmentation algorithm.

The relay data relabelling augmentation algorithm [1], described in section
2.4.2, allow us to learn goal-conditioning hierarchical policies without explicit
labelling. In detail, we construct a low-level dataset D; and a high-level datasetD;,
by iterating through the unstructured traffic data of aircraft trajectories, which
are included in the training dataset D, described in section 3.1.

Constructing the low-level dataset D,
The low-level dataset D;, described in Algorithm 2 in section 2.4.2 was

constructed by iterating through the traffic data of aircraft trajectories included

in the training dataset D. Firstly, we choose the low-level sliding window size W
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to be 30, and then generate state-action-goal (s, a, sé) tuples forlow-level dataset

D,, within the sliding window W, along the traffic data of aircraft trajectories.

After the data cleaning process in section 3.1.2, the aircraft trajectories, which
are included in the training dataset D, are 85 trajectories in 46,467 rows. The low-
level dataset created from training dataset has 85 trajectories in 1,347,543 rows.

Figure 25 illustrates trajectory ID cardinality in low-level dataset.
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Figure 25: Trajectory 1D cardinality in low-level dataset.

Constructing the high-level dataset D)
Similarly, the high-level dataset D;, described in Algorithm 3 in section 2.4.2

was constructed by iterating through the traffic data of aircraft trajectories
included in the training dataset D. Firstly, we choose the high-level sliding
window size W), to be 260, and then generate state-action(subgoal)-goal tuples
for high-level dataset D, within the sliding window W, along the traffic data of

aircraft trajectories.

After the data cleaning process in section 3.1.2, the traffic data of aircraft
trajectories, which are included in the training dataset D, was 85 trajectories in
46,467 rows. The high-level dataset created from training dataset has 85
trajectories in 12,034,953 rows. Figure 26 illustrates trajectory ID cardinality in
high-level dataset.
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Figure 26: Trajectory ID cardinality in high-level dataset.

Goal-conditioned Behavior Cloning (BC)

Goal-conditioned Behavior Cloning (BC) is a simple imitation learning
procedure that given the low-level and high-level datasets, trains a model for the
high-level policy { and for the low-level policy m}, by maximizing the likelihood

of the actions taken given the corresponding states and goals.

Deep Neural Network (DNN) Architecture

The Deep Neural Network (DNN) implementing the BC method was fed with
airplane's longitude, latitude, and altitude. The goalis the DNN to be trained to
predict the airplane coordinates for the next step. This is a multi-target
Multilinear Regression Model (MRM), which is a machine learning model that
utilizes multiple features as input to make multiple predictions with continuous

values.

The final model architecture consisted of a Multi-Layer Perceptron (MLP)
feedforward artificial neural network, which was fully connected to two hidden

layers, as shown in Table 2.

Table 2: DNN architecture

Layer Description

Feature Extractor Flatten extractor

Input Three values: longitude, latitude and altitude.
Linear 256 filters, RELU activation function
Linear 256 filters, RELU activation function

Output Three values: longitude, latitude and altitude.
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The network is separated into two mains sections. The first section comprises
an extractor whose role is to extract features from observations. Coordinates are
vector observations, so the features extractor is simply a Flatten Layer for each
observation. The second section is a fully connected DNN with a nonlinear RELU

activation function, which is used to train both the high-level policy 7' and the

low-level policy ), of the goal-conditioned BC.

All imitation learning algorithms are trained with the ADAM optimizer using
a batch size of 128 and a learning rate of 0.005. The network's output is the

predicted longitude, latitude, and altitude.

Coordinates Normalization
To enhance the Deep Neural Network's stability, the dataset features are
normalized prior to being fed to it. Table 3 shows the airplane's longitude,

latitude, and altitude zero-mean normalization formulas.

Table 3: Normalize formulas.

Normalize formulas

Normalize Longitude = Longitude — Longitude Average / Longitude Standard Deviation

Normalize Latitude = Latitude — Latitude Average / Latitude Standard Deviation

Normalize Altitude = Altitude — Altitude Average / Altitude Standard Deviation

Similarly, table 4 shows formulas utilized to unnormalize the trajectories

generated by the trained airplane agent.

Table 4: Unnormalize formulas.

Unnormalize formulas

Unnormalize Longitude = Longitude * Longitude Standard Deviation + Longitude Average

Unnormalize Latitude = Latitude * Latitude Standard Deviation + Latitude Average

Unnormalize Altitude = Altitude * Altitude Standard Deviation + Altitude Average
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3.2.2 Relay Reinforcement Fine-tuning (RRF)
This section focuses on the phase of Relay Reinforcement Fine-tuning (RRF)

implementation of the Relay Policy Learning (RPL) algorithm.

Custom RL environment

To train the intelligence agent a custom environment created using the
gymnasium interface [30], which includes all the necessary components to train
the airplane agent. The agent was trained to cover the distance from Paris airport
to Istanbul airport. This is a sparse binary reward task, in which the agentreceives
reward when arriving tothe Istanbul airport. Additionally, the episode terminates
in case of exceeding the 3,000-time steps. The observation space is a 3-
dimensional continuous space, which observes the longitude, latitude, and
altitude of the airplane agent. The action space is a 3-dimensional action space
that corresponds to longitude, latitude, and altitude modifications to the airplane

agent.

Trust Region Policy Optimization

In detail, as described in section 2.4.3 Gupta et al. [1] employ a goal-
conditioned Hierarchical Reinforcement Learning (HRL) algorithm which is a
variant of the Trust Region Policy Optimization (TRPO) algorithm proposed by
Schulman and al. [4].
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4 Experimental Results

This section provides the results from evaluating the agent using different

configurations. Our experiments aim to answer the following questions:

1. Does Relay Imitation Learning (RIL) algorithm improve Reinforcement

Learning Process to predict aircraft trajectories?

2. Is it possible to use Relay Policy Learning (RPL) algorithm to predict

aircraft trajectories?

4.1 Performance metrics

For comparison, we trained four agents, the first agent trained exclusively
with the Trust Region Policy Optimization (TRPO) algorithm. The second agent
was trained solely with the low-level goal BC of the Relay Imitation Learning
(RIL) algorithm. The third agent was trained solely with the high-level goal BC of
the Relay Imitation Learning (RIL) algorithm. Finally, the fourth agent was
trained with the Relay Policy Learning (RPL) algorithm. Afterwards, we employ
the trained agents to predict five trajectories for the route Paris to Istanbul airport

and plot the outcomes.

Furthermore, we compare the RPL agent's predicted trajectories to the

original trajectories from Paris airport to Istanbul airport and plot the results.

4.2 Results

4.2.1 TRPO agent

The diagram in figure 27 illustrates the agent's five generated trajectories
when it has been trained exclusively with Reinforcement Learning (RL)
algorithm. Specifically, it was trained 1e5 time-steps with the Trust Region Policy
Optimization algorithm, whose policy network was not pre-trained in any way.

As we can observe, the agent cannot predict the root neither the correct altitude.
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Figure 27: TRPO algorithm agent trained (1e5 time-steps).

The diagram in figure 28 illustrates the longitude and latitude of trajectories.
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Figure 28: TRPO agent longitude and latitude trajectories (1e5 time-steps).

-51-

altitude



The diagram in figure 29 illustrates agent’s five generated trajectories when

enhancing the time-steps training to 1e6: It still does not provide valid

predictions.
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Figure 29: TRPO algorithm agent trained (1e6 time-steps).

The diagram in figure 30 illustrates the longitude and latitude of trajectories.
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Figure 30: TRPO agent longitude and latitude trajectories (1e6 time-steps).
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4.2.2 Goal-conditioned low-level BC agent

According to the Relay Imitation Learning (RIL) phase, the agent was first
trained in 10 epochs with the goal conditioned low-level Behavior Cloning (BC)
algorithm. The diagram in figure 31illustrates agent's five generated trajectories.
As we can observe, the agent was able to predict the correct root and the actual

altitude, in a quite adequate way.
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Figure 31: goal BC low-level algorithm agent trained (10 epochs).

The diagram in Figure 32 illustrates the longitude and latitude of trajectories.
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Figure 32: Goal BC low-level agent longitude and latitude trajectories (10 epochs). In the left
figure, points for trajectories 1 to 4 coincide to the points of the 5, depicted.
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4.2.3 Goal-conditioned high-level BC agent

Then, the agent was trained 15 epochs with the high-level goal conditioned

Behavior Cloning (BC) algorithm. The diagram in figure 33 illustrates agent's five

generated trajectories. As we can observe, agent was able to predict several

subgoals. However, all subgoals are from the middle of the route until Istanbul

airport due tothe high-level window size was setto 260 . Additionally, the altitude

predictions are not correct.
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Figure 33: goal BC high-level algorithm agent trained (15 epochs).

The diagram in figure 34 illustrates the longitude and latitude of trajectories.
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4.2.4 RPL agent

Finally, an agent was trained with the Relay Policy Learning (RPL) algorithm.

The diagram in figure 35 illustrates the trained agent's generated trajectories. As

we can observe, RL fine-tunning succeeds to improve RIL predictions, however

there is still a high altitude predicted in Paris airport.
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The diagram in figure 36 illustrates the longitude and latitude of trajectories.
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4.2.5 Compare original trajectories with RPL trajectories.

The diagram in figure 37 illustrates the comparison of an original trajectory

with the predicted trajectory when the agent has been trained with the Relay

Policy Learning (RPL) algorithm.
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Figure 37: Visual comparison between the original and the RPL predicted trajectory.

As we can observe, predicted trajectory it is close to the original trajectory in

longitude and latitude predictions. However, the altitude predictions are not

accurate.
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5 Conclusions and future
work

In this thesis, Reinforcement Learning and Imitation Learning methods have
been explored in the context of predicting long-horizon execution of tasks. In
particular, the thesis focuses on the direct imitating supervised learning methods
and the on-policy, model-free Reinforcement Learning methods, to model

aircraft's trajectory prediction in the aviation domain.

Summarizing the work conducted in the context of this thesis we reengineer
the Relay Policy Learning (RPL) algorithm [1] proposed by Gupta et al. and
evaluate its use to predict aircraft trajectories. RPL is a two-phase hierarchical
approach, consisting of a Relay Imitation Learning (RIL) phase that produces
goal-conditioned hierarchical policies, and a Relay Reinforcement Fine -tuning
(RRF) phase that fine-tunes these policies for task performance. It utilizes a
dataset with long aircraft trajectories containing unstructured, unlabelled routes
from Paris to Istanbul. First, the dataset was pre-processed to correct
imperfections. Then, created low-level and high-level datasets through the relay-
data relabelling augmentation of the RPL algorithm [1], which allow us to learn
goal-conditioning hierarchical policies without explicit labelling. Afterwards, the
created datasets are used to learn hierarchical Imitation Learning policies using
a goal-conditioned Behavior Cloning method. Training Deep Neural Networks
(DNNSs) to predict airplane longitude, latitude, and altitude for the next step. To
enhance the Deep Neural Network's stability, the datasets features are
normalized prior to being fed to it. Finally, the two policies from the Relay
Imitation Learning (RIL) phase are fine-tuning with Reinforcement Learning.
Specifically, using the Trust Region Policy Optimization (TRPO) on-policy
algorithm proposed by Schulman et al. [4]. To train the intelligence agent a
custom environment created using the gymnasium interface.

Predicting aircrafts' trajectories can be challenging because it requires
extensive exploration. The use of Imitation Learning to bootstrap the process of
Reinforcement Learning, helps to overcome exploration challenges, while the RL

fine-tuning allows the policy to improve based on actual task objective. The
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results indicate that it is possible to use RPL algorithm in aircraft trajectories
predictions. For comparison, we trained four agents, The first agent trained
exclusively with Reinforcement Leaning cannot provide valid predictions. The
second agent trained in 10 epochs with the goal conditioned low-level Behavior
Cloning (BC) algorithm was able to predict the correct root and the actual
altitude, in a quite adequate way. The third agent trained in 15 epochs with the
high-level goal conditioned Behavior Cloning (BC) algorithm was able to predict
several subgoals. However, all subgoals were from the middle of the route until
Istanbul airport, and the altitude predictions were not correct. Finally, the fourth
agenttrained with the Relay Policy Learning (RPL) algorithm was able toimprove
RIL predictions. We demonstrated the effectiveness of RPL method on
comparison of an original trajectory with the predicted trajectory when the agent

has been trained with the Relay Policy Learning (RPL) algorithm.

In conclusion, during this research, it became clear that the Relay Policy
Learning (RPL) algorithm [1] can be used to predict aircraft trajectories.
Furthermore, itimproves generalization since it is trained on manysubgoals. The
main advantage of the RPL algorithm is that it is simple and very general, in that
it can be applied to any demonstrated data, including easy to provide
unsegmented, and unstructured demonstrations of meaningful behaviours.
Therefore, for future work, we propose to further explore with off-policy

Reinforcement Learning methods.
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