

MSc

Solving Long-Horizon Tasks via Imitation and

Reinforcement Learning

by

Athanasia Lappa

Submitted

in partial fulfilment of the requirements for the degree of

Master of Artificial Intelligence

at the

UNIVERSITY OF PIRAEUS

February 2024

 University of Piraeus, NCSR “Demokritos”. All rights reserved.

Author: Athanasia Lappa

II-MSc “Artificial Intelligence”

February 29, 2024

Certified by: George Vouros

George Vouros,

Professor,

University of

Piraeus

Thesis Supervisor

Certified by: Maria Dagioglou

Maria Dagioglou,

Researcher,

NCSR Demokritos

Member of

Examination

Committee

 Certified by: Orestis Telelis

Orestis

Telelis,

Professor,

University of

Piraeus

Member of

Examination

Committee

3

Solving Long-Horizon Tasks via Imitation

and Reinforcement Learning

By

Athanasia Lappa

Submitted to the II-MSc “Artificial Intelligence” on February 29, 2024, in

partial fulfillment of the
requirements for the MSc degree

Abstract

This thesis explores the use of the Relay Policy Learning (RPL) algorithm proposed by
Gupta et al. [1], to model trajectory prediction in an aviation environment. RPL is a two-
phase approach consisting of a Hierarchical Imitation Learning (HIL) and Hierarchical
Reinforcement Learning (HRL) algorithms. The purpose of this thesis is to model a policy
learnt through RPL, to predict the aircraft trajectory. This is done through learning goal-
conditioned hierarchical policies from unstructured and unsegmented demonstrations.
This thesis utilizes a dataset with long aircraft trajectories. These are pre-processed to
correct imperfections and to create low-level and high-level datasets from these
demonstrations through the relay-data-relabelling augmentation of the RPL algorithm.
Then the created datasets are used to learn hierarchical Imitation Learning (IL) policies
without explicit goal labelling using the goal-conditioned Behavior Cloning (BC) method.
This provides a policy initialization for subsequent relay reinforcement fine -tuning using
a variant of the Trust Region Policy Optimization (TRPO) on-policy algorithm proposed
by Schulman et al. [4]. Then, the implemented agent is tested and evaluated. The thesis
concludes with a presentation of results and proposals for further work towards extending
the RPL algorithm to work with off-policy RL algorithms.

Thesis Supervisor: George Vouros
Title: Professor, University of Piraeus

Εκτέλεση διαδικασιών μεγάλου χρονικού ορίζοντα με ενισχυτική

μάθηση και μάθηση μέσω μίμησης

Από

Αθανασία Λάππα

Υποβλήθηκε στο ΔΠΜΣ «Τεχνητή Νοημοσύνη» την 29 Φεβρουαρίου 2024

ως υποχρέωση για την λήψη Μεταπτυχιακού Διπλώματος Σπουδών

Περίληψη

Αυτή η διπλωματική διερευνά τη χρήση του αλγορίθμου Relay Policy Learning (RPL) που
προτείνεται από τους Gupta et al. [1], με στόχο την μοντελοποίηση της πρόβλεψης τροχιών
αεροσκαφών, σε ένα αεροπορικό περιβάλλον. Ο αλγόριθμος RPL είναι μια προσέγγιση
δύο φάσεων, στην πρώτη φάση χρησιμοποιεί έναν αλγόριθμο μάθησης με ιεραρχική
μίμηση (Hierarchical Imitation Learning - HIL), ενώ στην δεύτερη φάση χρησιμοποιεί
έναν αλγόριθμο ιεραρχικής ενισχυτικής μάθησης (Hierarchical Reinforcement Learning -
HRL). Σκοπός αυτής της μεταπτυχιακής διπλωματικής εργασίας είναι να χρησιμοποιήσει
τον εκπαιδευμένο πράκτορα από το RPL αλγόριθμο, για να προβλέψει την τροχιά ενός
αεροσκάφους. Αρχικά, η εκπαίδευση του πράκτορα γίνεται με μη δομημένα δεδομένα,
δηλαδή χωρίς να απαιτείται οι στόχοι του πράκτορα να έχουν καθοριστεί εκ των
προτέρων. Η διατριβή χρησιμοποιεί ένα σύνολο δεδομένων με τροχιές αεροσκαφών. Αυτά
υποβάλλονται σε προ-επεξεργασία για τη διόρθωση ατελειών και στην συνέχεια για τη
δημιουργία συνόλων δεδομένων χαμηλού και υψηλού επιπέδου μέσω του αλγορίθμου
επαύξησης δεδομένων (relay-data-relabelling augmentation) του RPL. Στην συνέχεια, τα
σύνολα χαμηλού και υψηλού επιπέδου χρησιμοποιούνται για την εκμάθηση πολιτικών με
μάθηση ιεραρχικής μίμησης (Hierarchical Imitation Learning - HIL), χρησιμοποιώντας
έναν αλγόριθμο μίμησης βασισμένο σε στόχο (goal-conditioned Behavior Cloning – goal
BC). Αυτό παρέχει μια αρχικοποίηση πολιτικής του πράκτορα για την επακόλουθη
λεπτομερή εκμάθηση με χρήση του αλγόριθμου Trust Region Policy Optimization (TRPO)
των Schulman et al. [4]. Στη συνέχεια, ο εκπαιδευμένος πράκτορας δοκιμάζεται και
αξιολογείται. Η διπλωματική εργασία ολοκληρώνεται με μια παρουσίαση των
αποτελεσμάτων και προτάσεις για περαιτέρω εργασία για την επέκταση του αλγορίθμου
RPL με αλγόριθμους ενισχυτικής μάθησης εκτός πολιτικής (off-policy Reinforcement
Learning).

 -i-

Acknowledgments

First and foremost, I would like to thank my supervisor Professor George

Vouros, for his continuous support, guidance, and advice throughout all

this period that I have been working on my master’s thesis . I should also

thank him for providing me with access to the hardware resources of

University of Piraeus.

I would also like to thank members of the AI-Lab (Christos Spatheris and

Theocharis Kravaris) for helping me deal with subtle technical issues.

Finally, I want to express my deepest gratitude to my family for their

continuous support throughout the years, as this thesis would not have

been completed without their love and encouragement.

This thesis is dedicated in loving memory of my dearest mother,

Dimitra Lappa

-ii-

Any opinions, findings, conclusions, or recommendations expressed in

this material are those of the author(s) and do not necessarily reflect the

views of the «funding body» or the view of University of Piraeus and Inst.

of Informatics and Telecom. of NCSR “Demokritos”

 -1-

Table of Contents

TABLE OF CONTENTS ... 1

LIST OF FIGURES ... 3

LIST OF TABLES .. 5

ABBREVIATIONS .. 6

1 INTRODUCTION ..7

1.1 MACHINE LEARNING OVERVIEW ... 7

1.1.1 Supervised Learning ..8

1.1.2 Unsupervised Learning ..9

1.1.3 Reinforcement Learning .. 10

1.2 SCOPE OF THESIS .. 12

1.2.1 Machine Learning in the Aviation Domain 12

1.2.2 Motivation ... 12

1.2.3 Contribution .. 12

1.3 STRUCTURE OF THESIS .. 13

2 BACKGROUND AND RELATED WORK... 15

2.1 IMITATION LEARNING (IL).. 15

2.1.1 Imitation Learning formalism ... 16

2.1.2 Imitation Learning challenges.. 16

2.1.3 Behavior Cloning (BC) ... 16

2.1.4 Hierarchical Imitation Learning (HIL) ...17

2.2 REINFORCEMENT LEARNING (RL)... 17

2.2.1 Reinforcement Learning formalism. .. 18

2.2.2 Reinforcement Learning challenges. .. 19

2.2.3 Deep Reinforcement Learning ..20

2.2.4 Hierarchical Reinforcement Learning (HRL) 21

2.3 COMBINATION OF IMITATION AND REINFORCEMENT LEARNING 22

2.4 RELAY POLICY LEARNING (RPL) .. 23

-2-

2.4.1 Relay Policy Learning architecture. .. 24

2.4.2 Relay Imitation Learning (RIL) .. 26

2.4.3 Relay Reinforcement Fine-tuning (RRF) 29

3 METHODOLOGY ...32

3.1 DEMONSTRATIONS DATASETS.. 32

3.1.1 Overview training dataset. ... 33

3.1.2 Cleaning training dataset... 34

3.1.3 The Training Dataset ... 36

3.1.4 Overview of the test dataset.. 41

3.1.5 Cleaning test dataset ... 42

3.2 IMPLEMENTATION AND TRAINING OF RPL AGENT... 43

3.2.1 Relay Imitation Learning (RIL) .. 45

3.2.2 Relay Reinforcement Fine-tuning (RRF) 49

4 EXPERIMENTAL RESULTS .. 50

4.1 PERFORMANCE METRICS.. 50

4.2 RESULTS ... 50

4.2.1 TRPO agent ... 50

4.2.2 Goal-conditioned low-level BC agent ... 53

4.2.3 Goal-conditioned high-level BC agent .. 54

4.2.4 RPL agent .. 55

4.2.5 Compare original trajectories with RPL trajectories. 56

5 CONCLUSIONS AND FUTURE WORK .. 57

BIBLIOGRAPHY .. 59

 -3-

List of Figures

FIGURE 1: ML AND DL MAIN CATEGORIES..7

FIGURE 2: THE ITERATIVE INTERACTION PROCESS... 18

FIGURE 3: THE DEEP RL MODEL THAT TRAINS A DNN TO GET ACTION FROM STATE INPUTS. 20

FIGURE 4: RELAY POLICY LEARNING ALGORITHM [1] ... 25
FIGURE 5: RELAY POLICY LEARNING ARCHITECTURE [1]. ... 25

FIGURE 6: OVERVIEW OF STEPS FOR RPL ALGORITHM [1]. .. 26

FIGURE 7: OVERVIEW OF STEPS TO CONSTRUCT THE LOW-LEVEL DATASET [1].. 27

FIGURE 8: OVERVIEW OF STEPS TO CONSTRUCT THE HIGH-LEVEL DATASET [1]. 28

FIGURE 9: AIRPLANE TRAINING TRAJECTORIES... 33

FIGURE 10: DISTRIBUTION OF TRAINING TRAJECTORIES.. 34

FIGURE 11: CHECK FOR MISSING DATA. .. 35

FIGURE 12: TRAINING TRAJECTORIES ROUTE 5 ALTITUDE... 35

FIGURE 13: TRAJECTORY ID CARDINALITY IN TRAINING DATASET. ... 35
FIGURE 14: PEARSON CORRELATION COEFFICIENT. .. 36

FIGURE 15: LONGITUDE SELECTION CORRELATION.. 37

FIGURE 16: LATITUDE SELECTION CORRELATION. .. 38

FIGURE 17: ALTITUDE SELECTION CORRELATION. .. 38

FIGURE 18: LONGITUDE, LATITUDE AND ALTITUDE DISTRIBUTION. ... 39

FIGURE 19: THE 85 TRAJECTORIES.. 40

FIGURE 20: AIRPLANE TEST TRAJECTORIES.. 41

FIGURE 21: DISTRIBUTION OF TEST TRAJECTORIES. .. 41

FIGURE 22: TEST TRAJECTORIES ROUTE 5 ALTITUDE. ... 42
FIGURE 23: TRAJECTORY ID CARDINALITY IN TEST DATASET.. 42

FIGURE 24: RPL INTELLIGENT AGENT [1] .. 43

FIGURE 25: TRAJECTORY ID CARDINALITY IN LOW-LEVEL DATASET... 46

FIGURE 26: TRAJECTORY ID CARDINALITY IN HIGH-LEVEL DATASET. ... 47

FIGURE 27: TRPO ALGORITHM AGENT TRAINED (1E5 TIME-STEPS). ... 51

FIGURE 28: TRPO AGENT LONGITUDE AND LATITUDE TRAJECTORIES (1E5 TIME-STEPS). 51

FIGURE 29: TRPO ALGORITHM AGENT TRAINED (1E6 TIME-STEPS). ... 52

FIGURE 30: TRPO AGENT LONGITUDE AND LATITUDE TRAJECTORIES (1E6 TIME-STEPS). 52

FIGURE 31: GOAL BC LOW-LEVEL ALGORITHM AGENT TRAINED (10 EPOCHS). ... 53
FIGURE 32: GOAL BC LOW-LEVEL AGENT LONGITUDE AND LATITUDE TRAJECTORIES (10 EPOCHS). IN

THE LEFT FIGURE, POINTS FOR TRAJECTORIES 1 TO 4 COINCIDE TO THE POINTS OF THE 5TH,

DEPICTED. ... 53
FIGURE 33: GOAL BC HIGH-LEVEL ALGORITHM AGENT TRAINED (15 EPOCHS). .. 54

-4-

FIGURE 34: GOAL BC HIGH-LEVEL AGENT LONGITUDE AND LATITUDE TRAJECTORIES (15 EPOCHS). IN

THE LEFT FIGURE, POINTS FOR TRAJECTORIES 1 TO 4 COINCIDE TO THE POINTS OF THE 5TH,

DEPICTED. ..54

FIGURE 35: RPL TRAINED AGENT (1E2 TIME-STEPS). ..55

FIGURE 36: RPL AGENT LONGITUDE AND LATITUDE TRAJECTORIES (1E2 TIME-STEPS). IN THE LEFT

FIGURE, POINTS FOR TRAJECTORIES 1 TO 4 COINCIDE TO THE POINTS OF THE 5TH, DEPICTED.......55

FIGURE 37: VISUAL COMPARISON BETWEEN THE ORIGINAL AND THE RPL PREDICTED TRAJECTORY.56

 -5-

List of Tables

TABLE 1: DATASET ... 32

TABLE 2: DNN ARCHITECTURE ... 47

TABLE 3: NORMALIZE FORMULAS. .. 48

TABLE 4: UNNORMALIZE FORMULAS. ... 48

-6-

ABBREVIATIONS

ML = Machine Learning

DL = Deep Learning

ANN = Artificial Neural Network

DNN = Deep Neural Network

IM = Imitation Learning

HIL = Hierarchical Imitation Learning

RL = Reinforcement Learning

HRL = Hierarchical Reinforcement Learning

BC = Behavior Cloning

goal BC = goal Behavior Cloning

RPL = Relay Policy Learning

TRPO = Trust Region Policy Optimization

MLP = Multiple Layer Perceptron

MRM - Multilinear Regression Model

MSE – Mean Square Error

RELU – Rectified Linear Unit

 -7-

1 Introduction

In this section, we motivate this thesis by mentioning the importance of

utilizing Artificial Intelligence and Machine Learning (AI/ML) methods to

determine aircraft's trajectories.

1.1 Machine Learning Overview

Nowadays, Artificial Intelligence (AI) is used everywhere to power intelligent

applications. In brief, AI is the ability of a machine to somehow imitate, and

maybe go beyond in some specific terms, intelligent human behavior. Machine

Learning (ML) is a subset of the AI domain that allows the systems to make

decisions without the need to be “manually” programmed in advance. ML

methods can learn from data and understand the underlying patterns that are

contained in them. Figure 1 illustrates the broad categories of ML methods.

Figure 1: ML and DL main categories.

Machine Learning
& Deep

Learning

Supervised
Learning (task-

driven)

Imitation Learning

Direct

Inderect

Classification

Regression

Unsupervised
Learning (data-

driven)

Clustering

Dimensionality
Reduction

Reinforcement
Learning

(trial and error)

Model-based

Learn the model

Given the model

Model-free

Value-based

Policy-based

off-policy

on-policy

-8-

Deep Learning (DL) is a subset of ML. The main difference between the two

is that in contrast to ML methods, where we apply one process that consists of a

simple or more complex algorithm, in DL methods, multiple processes work

together, forming layers, to capture the underlying representation of the data

[35]. DL employs complex Deep Neural Networks (DNNs) that surpass the

capabilities of machine learning methods. DNNs are essentially "function

approximators". Deep Learning systems have been achieving incredible results in

solving tasks in fields like Natural Language Processing (NLP), Computer Vision

(CV), Robotics, real time decisions and many more.

ML and DL are broad fields but usually are classified into three main

categories, Supervised Learning (SL), Unsupervised Learning (UL), and

Reinforcement Learning (RL). DNNs can be used in supervised, unsupervised, or

reinforcement learning, in various ways.

1.1.1 Supervised Learning

Supervised learning, also known as task-driven method, refers to models that

can learn from labelled data to predict a value. It is the most common subbranch

of ML and is usually classified into two main categories, Classification and

Regression algorithms.

Classification

The classification approach refers to the modelling problem of predicting a

discrete class label output for a given input instance. Some widely used

classification machine learning algorithms are Support Vector Machines (SVMs),

Logistic Regression, Decision Tree, Naïve Bayes Classifier, and K-Nearest

Neighbors (KNNs). Algorithms of the classification category are widely used for

image classification, fraud detection, email spam detection and diagnostics.

Regression

The regression approach refers to the modelling problem when the target

variable is a real or continuous value that needs to be approximated. Among the

most popular regression machine learning algorithms are Linear Regression

(LR), Lasso Regression, Support Vector Regression (SVR) and Multivariate

Regression. Algorithms of the regression category are widely utilized for risk

assessment and score prediction.

 -9-

Imitation Learning

 Imitation Learning (IL) is a form of supervised learning, also known as

learning from demonstrations, and refers to an intelligent agent who receives

desired behavior demonstrations from an expert and attempts to perform a task

conforming to the expert’s behavior. IL may assume that the expert policy is

optimal. The expert demonstrations may originate from humans or even from

other agents that perform actions to complete a specific task. The agent can be

any machine learning model. However, due to multi-dimensionality and

continuity of the state-action space, it usually incorporates Deep Neural

Networks (DNNs) which can efficiently approximate different complex models,

e.g. a policy model.

 IL is usually classified into two main categories, direct and indirect imitation.

Direct

The direct imitation approach refers to an agent who directly learns how to

imitate the expert’s policy. The Behavior Cloning (BC), the Direct Policy Learning

(DPL), and the Dataset Aggregation (DAgger) algorithm are classical approaches

that focus on directly imitating the policy. However, DAgger is difficult to use in

practice as it requires access to an expert during all the training, rather than just

a set of demonstrations.

Indirect

The indirect imitation approach refers to an agent who indirectly imitates

the policy by learning the expert's reward function, which is commonly referred

to as Inverse Reinforcement Learning (IRL). In addition to other tasks, IRL has

been employed in navigation [24], autonomous driving [25], and manipulation

[26].

1.1.2 Unsupervised Learning

 Unsupervised learning, also known as data-driven method, refers to models

that can learn from unlabeled data, without predefined labels on the dataset, by

finding patterns in data. It is usually classified into two main categories,

Clustering and Dimensionality Reduction algorithms.

-10-

Clustering

The clustering approach attempts to find patterns in data and separates

them into multiple subgroups based on the similarity. The most famous

clustering algorithm is k-means algorithm. Other algorithms are the density-

based, distribution-based and hierarchical-based. Algorithms of the clustering

category are widely used for city planning, targeted marketing, and biology.

Dimensionality Reduction

The dimensionality Reduction approach attempts to extract low-

dimensional features from the original data set. Some dimensionality reduction

algorithms are Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA). Algorithms of the dimensionality reduction category are widely

used for image recognition, face recognition, text mining, and big data

visualization.

1.1.3 Reinforcement Learning

 Reinforcement Learning (RL), also known as trial-and-error method, refers

to intelligent agents who are trained to achieve goals through a recurring

interaction process in a stochastic and potentially complex environment. Every

time the agent chooses and performs a certain action that changes the state of the

environment. The agent receives either rewards or penalties for the actions it

performs. The agent’s goal is to learn an optimal policy which maximizes the long-

term cumulative rewards. Algorithms of the reinforcement learning category are

widely and successfully used for AI gaming, robot navigation, real time decisions,

learning tasks, and skill acquisition.

 RL is usually classified into two main categories, model-based and model-free

algorithms.

Model-based.

 In the model-based approach, the agent can either learn or have access to a

model of the environment. By a model of the environment, we mean a function

which predicts state transitions and rewards [34]. Then the agent collects data to

update the model. It can be a greedy algorithm with the aim to maximize the

reward at each step. It is suitable in situations where we have complete knowledge

about the environment, even in situations where no rewards are available.

 -11-

However, the main downside is that most model-based algorithms, beyond being

very inefficient during training, are over-fitting.

 Model-based methods are usually classified into two main categories, “Learn

the model” and “Given the model”.

Learn the model.

 Algorithms that belong to “Learn the model” category are World Models,

Imagination-Augmented Agent (I2A) [36], Model-Based Priors for Model-Free

(MBMF) [37], Generative Pretrained Transformers – GPT 3.5 + (who learn the

reward function to optimize performance).

Given the model.

 An algorithm of the “Given the model” category is the AlphaZero [34].

Model-free.

 In the model-free approach the agent directly updates a learned value

function or policy through interaction with the environment. Model-free methods

can successfully solve various tasks but require many samples to achieve good

performance. This approach is suitable in environments with a dynamic nature

and where we cannot have sufficient knowledge, even after many interactions.

For example, autonomous driving cars have a dynamic environment where there

can be numerous changes in traffic routes.

 Model-free methods are usually classified into two main categories, value-

based and policy-based algorithms.

Value-based algorithms

 Algorithms belonging to this approach are Deep Q Learning (DQN), Quantile-

Regression Deep Q Learning (QR-DQN), and Hindsight Experience Replay

(HER) [38].

Policy-based algorithms

 Policy-based methods, e.g. policy gradient methods, are usually classified into

two main categories, off-policy, and on-policy algorithms.

Off-policy algorithms

 Off-policy algorithms are using a different policy for acting and training.

They can reuse previous data very efficiently. Some widely used off-policy

algorithms are Deep Deterministic Policy Gradient (DDPG), Twin Delayed

DDPG(TD3) and Soft Actor Critic (SAC).

-12-

On-policy algorithms

 On-policy algorithms are using the same policy for acting and training. They

don’t use previous data, which makes them weaker on sample efficiency. Among

the most popular on-policy algorithms are Vanilla Policy Gradient (VPG), Trusted

Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO).

1.2 Scope of thesis

 The Machine Learning method's categories that are studied in this thesis are

the direct imitation supervised learning method and the on-policy, model-free RL

method, which are primarily studied on aircraft trajectory prediction.

1.2.1 Machine Learning in the Aviation Domain

 In the aviation domain, predicting aircrafts’ trajectories can be challenging.

Due to it being a long-horizon task, it requires extended exploration. A key

objective is to develop learning methods to implement robust, autonomous

intelligent agents, that can perform well in complex, real-world aircraft

navigation.

1.2.2 Motivation

 Gupta et al. propose the Relay Policy Learning (RPL) algorithm [1], a method

for imitation and reinforcement learning that can solve multi-stage, long-horizon

robotic tasks. Gupta et al. in [1], devised a simple and universally applicable two-

phase approach that in the first phase pre-trains hierarchical policies using

demonstrations such that they can be easily fine-tuned using RL during the

second phase. Authors demonstrate the effectiveness of their method on several

multi-stages, long-horizon manipulation tasks in a challenging kitchen

simulation environment. Aircraft trajectory prediction is a multi-stage, long-

horizon task, assuming a sparse binary reward.

1.2.3 Contribution

 The main topic of this thesis is aircraft trajectory prediction in the aviation

domain, by implementing and evaluating a variant of the RPL algorithm. The

aircraft trajectories employed are from Paris to Istanbul. Each trajectory

indicates the movement of the aircraft, the most important observations are

 -13-

coordinates of aircraft position at any time step, i.e., longitude, latitude, and

altitude.

1.3 Structure of thesis

 This thesis is subdivided into the following different topics:

Chapter 1: Introduction refers to a brief overview of the AI and the AI in aviation

domain, highlighting the scope and objectives of the current thesis.

Chapter 2: Background and Related Work provides a brief introduction of the

research areas of Imitation and Reinforcement Learning and a closer look at the

combination of the above methods. Furthermore, provides a brief overview of

Relay Policy Learning (RPL) algorithm proposed by Gupta et al [1].

Chapter 3: Methodology presents in detail the demonstrations dataset used in

our problem setting. It presents the preprocessing steps, and it further discusses

the proposed approach based on RPL algorithm [1],

Chapter 4: Experiments and Results contains the experimental setup and the

performance measures used for the evaluation of the agent.

Chapter 5: Conclusion and Future work are a summary of the accomplished work

as well as a proposal of future research opportunities.

Bibliography provides a list of sources referred to in this thesis, to further

facilitate reader’s access to the selected articles and books.

 -15-

2 Background and Related
Work

This section provides a brief introduction to Artificial Intelligence research

areas of Imitation and Reinforcement Learning, and specifically to the Relay

Policy Learning (RPL) algorithm proposed by Gupta et al. [1].

2.1 Imitation Learning (IL)

It has long been known that humans and animals use imitation as a

mechanism for acquiring knowledge. In the context of Artificial Intelligence (AI),

Imitation Learning (IL) refers to a family of supervised machine -learning

methods, which can be used to quickly generate a rough solution to a given task,

using demonstrated behavior.

However, IL is not a recent advancement in Machine Learning (ML). One of

the first applications was carried out in 1989 by Dean Pomerleau. Specifically,

Behavior Cloning (BC) algorithm was used to train ALVINN, one of the first self-

driving cars [19]. Since then, IL techniques, where expert demonstrations of good

behavior are used to train a policy, have proven very useful in practice, and have

led to state-of-the-art performance in a variety of applications [3].

As mentioned earlier, the IL is a form of supervised learning. Firstly, the

intelligent agent is provided with a set of input features, the independent

variables. Then, it is trained to predict a target variable, the dependent variable.

During the training process, when the expert provides demonstrations to the

agent, the agent receives both the input features and the target variable. The input

features are the agent’s state observations, while the target variable is agent's

action. Therefore, the training data is composed of state-action pairs. The agent

observes the state of the environment, and the actions demonstrated by the

expert, and frames a policy based on it.

-16-

2.1.1 Imitation Learning formalism

In IL formalism, the agent has access to demonstrations D containing a set of

trajectories 𝐷 = {𝜏𝑖 , 𝜏𝑗, 𝜏𝑘 ,… } of state-action pairs 𝜏𝑖 = {𝑠0
𝑖 ,𝑎0

𝑖 , 𝑠1
𝑖 , 𝑎1

𝑖 , … 𝑠𝑇
𝑖 , 𝑎 𝑇

𝑖 }.

Markov Decision Process (MDP) formalism for IL

It is assumed that the environment in IL is a Markov Decision Process (MDP)

with states s and actions a, and the set of admissible states and actions are

referred to as S and A. The reward function 𝑟(𝑠, 𝑎) in R is unknown. The system

dynamics are expressed by the probabilistic transition model:

𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

The transition function which is the conditional probability distribution over

𝑠𝑡+1, given a state and action at a particular times step.

2.1.2 Imitation Learning challenges.

 In classical Supervised Learning, each state-action pair is assumed to be

independent of others and follows a specific distribution.

In Imitation Learning the agent’s environment, which is modelled by a

Markov Decision Process (MDP), given an action in each state, induces the next

state, which breaks the crucial Independent and Identically Distributed (IID)

assumption. IID is a fundamental assumption of almost all statistical learning

approaches, meaning that each of the training data points used to build a model

need to be independent of each other and are randomly sampled from the same

underlying distribution.

2.1.3 Behavior Cloning (BC)

A straightforward and common approach to imitation learning is Behavior

Cloning (BC), which focuses on learning the expert’s policy using Supervised

Learning, as said above. BC learns a policy through learning to mimic the

demonstrated, state-action pairs. The objective is to learn an optimal policy

π*(a|s) by imitating the demonstrations. Here, being optimal, the aim is to

maximize the likelihood of actions demonstrated:

𝐸(𝑠,𝑎)~𝐷𝑙𝑜𝑔𝜋(𝑎|𝑠)

 -17-

In some tasks, BC can be utilized effectively. Its main advantages are its

simplicity and efficiency. Suitable applications can be either short-horizon tasks

where expert's trajectories can cover the observation space or tasks where

committing an error doesn't result in catastrophic failures.

However, for most of the tasks, BC can be quite challenging and is often

unable to perform well across all temporally extended tasks due to compound

errors. The primary reason for this is that it violates the fundamental

Independent and Identically Distributed (IID) assumption [3] as mentioned in

section 2.1.2.

2.1.4 Hierarchical Imitation Learning (HIL)

Hierarchical Imitation Learning (HIL) is a potential solution to solve sparse

reward issues in challenging long-horizon tasks, by introducing temporal

abstraction. HIL try to achieve two goals, learn a temporal task abstraction, and

discover a meaningful segmentation of the demonstrations into subtasks.

Goal-conditioned formalism for HIL

When there are multiple demonstrated tasks, we consider a goal-conditioned

imitation learning setup where the dataset of demonstrations D contains

sequences that attempt to reach different goals 𝑠𝑔
𝑖 , 𝑠𝑔

𝑗
, 𝑠𝑔

𝑘 , …

The objective is to learn a goal-conditioned optimal policy 𝜋∗(𝑎|𝑠, 𝑠𝑔) that can

reach different goals 𝑠𝑔 by imitating the demonstrations.

2.2 Reinforcement Learning (RL)

Trial and error are an essential approach to solving problems in which

multiple attempts are made to achieve a solution. In the context of Artificial

Intelligence (AI), Reinforcement Learning (RL) refers to an intelligent agent who

interacts with an environment and receives rewards and penalties. The agent's

goal is to learn an optimal policy which maximizes the long-term cumulative

rewards. In detail, we define the interaction rules, and the agent explores

different paths and possibilities.

The RL interaction process includes receiving a reward and the next state of

the environment every time when the agent chooses and performs a certain action

at a specific state, enabling state transition. The agent’s environment is either

-18-

fully or partially observable. Figure 2 illustrates the RL iterative process of agent-

environment interaction to form trajectories and solve sequential problems.

Figure 2: The iterative interaction process.

In general, the recurring RL interaction process makes it possible to

incorporate uncertainty and typically, solving the following types of tasks:

❖ Tasks of achievement, such as "close the door", can be represented by

giving a positive reward for achieving the goal.

❖ Tasks of prevention, such as “don’t crash with another vehicle”, can be

represented by giving a negative reward when bad events occur.

❖ Tasks of maintenance, such as “keep the air-traffic control system working

as long as possible”, giving a positive reward for each time step that the

desirable state is maintained [16].

2.2.1 Reinforcement Learning formalism.

The formulation of the Reinforcement Learning (RL) problem is similar to the

Imitation Learning (IL) problem. The main difference is that in RL, instead of

having access to demonstrations 𝐷, the agent gets rewards 𝑟(𝑠, 𝑎).

RL algorithms address the problem of how an intelligent agent can learn to

approximate a strategy while interacting directly with its environment. The goal

of RL is to find an optimal policy 𝜋∗(𝑎|𝑠) that maximizes expected reward over

trajectories induced by the policy:

𝐸𝜋[Σ𝑡=0
Τ 𝛾 𝑡𝑟𝑖(𝑠𝑡, 𝑎𝑡)]

Agent Environment

 -19-

The variable 𝛾 is the discounting factor, which controls to what degree rewards in

the distant future affect the total value of a policy and is usually just slightly less

than 1, 0 ≤ 𝛾 < 1 .

Markov Decision Process (MDP) formalism for RL

Most Reinforcement Learning (RL) research is based on the formalism of

problems as Markov Decision Processes (MDP). Although RL is by no means

restricted to MDP, this discrete-time, finite state and action formalism provides

the simplest framework in which to study algorithms.

A finite MDP models the following type of problem. We define Μ =

(𝑆, 𝐴, 𝑃, 𝑟, 𝜌0, 𝛾) to be a finite-horizon Markov decision process (MDP), where 𝑆

and 𝐴 are state and action spaces, 𝑝(𝑠𝑡+1|𝑠𝑡𝑎𝑡) is the transition probability of each

state known as transition function, 𝑟(𝑠, 𝑎) is the reward function, 𝜌0 is the

distribution of the initial states of the trajectories and 𝛾 is the discount factor.

MDP follows the Markovian property that st+1 depends only on previous state

information.

2.2.2 Reinforcement Learning challenges.

Reinforcement Learning (RL) has achieved significant success in many cases

but has been largely confined to relatively simple short-horizon tasks.

One of the challenges of Reinforcement Learning (RL) is the exploration-

exploitation trade-off. The exploration refers to the agent’s actions that may lead

to new information and potentially higher rewards in the future. The exploitation

refers to the agent’s actions that have high expected rewards based on its current

knowledge.

Another challenge is the curse of dimensionality, there are long-horizon tasks

where the possible states and actions in a complex environment can be very large

to effectively execute the costly iterative RL process. Furthermore, the

environment may not be fully observable to be able to explore all the possible

paths towards a goal state.

Finally, many long-horizon, multi-step tasks with continuous control are

natural to specify with a sparse reward. To address this issue, one can manually

design rewards functions, which provide the agent with more frequent rewards.

Moreover, in some cases such as self-driving car, there isn’t any direct reward

-20-

function, thus, the approach of manual shaping a reward function is necessary.

However, manually designing a reward function that satisfies the desired

behavior can be extremely complicated and can result in suboptimal

performance.

These challenges of RL which come from the exploration-exploitation trade-

off, the curse of curse of dimensionality and the sparse and complicated reward

function, puts many real-world tasks out of practical reach of RL methods.

2.2.3 Deep Reinforcement Learning

Deep Reinforcement Learning (deep RL), a combination of RL and Deep

Learning (DL), is a potential solution to solve the curse of dimensionality in

challenging long-horizon tasks. Deep RL algorithms can employ Deep Neural

Networks (DNNs) since they can efficiently approximate the policy or the reward

function. This allows them to generalize across the observation space so that the

learning time scales much better. The DNN is trained at every training iteration

by updating its parameters. There can be DNN models either value-based or

policy-based. Figure 3 illustrates an example of deep RL.

Figure 3: The deep RL model that trains a DNN to get action from state inputs.

Recent years, deep RL have accumulated significant and many times

impressive results to numerous challenging domains such as Atari games [17] and

Go [18].

 -21-

2.2.4 Hierarchical Reinforcement Learning (HRL)

Hierarchical Reinforcement Learning (HRL) is a potential solution to solve

sparse reward issues in challenging long-horizon tasks, by introducing temporal

abstraction. Thus, decisions are not required at each step, but rather invoke the

execution of temporally extended activities which follow specific policies until

termination. This leads to hierarchical control architectures and associated

learning algorithms [5].

Barto et al. [5] review several related approaches to temporal abstraction and

hierarchical organization that machine learning researchers have developed: the

“options formalism” of Sutton, Precup, and Singh [13], the Hierarchies of

Abstract Machines (HAMs) approach of Parr and Russell [14,15], and Dietterich’s

MAXQ framework [16]. The MAXQ framework provides a hierarchical

decomposition of the given RL problem into a set of subproblems [16]. Common

to these approaches is a reliance on semi-Markov Decision Processes (semi-MDP)

[5].

A review of relative research shows that there are several important design

decisions that must be made when constructing an HRL method [16]. In detail,

HRL involves breaking the target Markov decision problem into a hierarchy of

subproblems or subtasks. There are three general approaches to defining these

subtasks:

❖ One approach is to define each subtask in terms of a fixed policy that is

provided by the programmer. The “options formalism” of Sutton, Precup,

and Singh [13] takes this approach.

❖ The second approach is to define each subtask in terms of a non-

deterministic finite-state controller. The Hierarchy of Abstract Machines

(HAM) method of Parr and Russell [14, 15] takes this approach. This

method permits the programmer to provide a “partial policy” that

constrains the set of permitted actions at each point but does not specify a

complete policy for each subtask.

❖ The third approach is to define each subtask in terms of a termination

predicate and a local reward function. These define what it means for the

subtask to be completed and what the final reward should be for

-22-

completing the subtask. The MAXQ method of Dietterich takes this

approach [16].

Goal-conditioned formalism for HRL

To extend Reinforcement Learning (RL) to multiple tasks, a goal-conditioned

formulation presented by Leslie Pack Kaelbling [9], can be used to learn a policy

𝜋(𝑎|𝑠, 𝑠𝑔) which maximizes the expected reward 𝑟(𝑎, 𝑠, 𝑠𝑔) with respect to a goal

distribution 𝑠𝑔~𝐺 as follows:

Ε𝑠𝑔~𝐺 [Ε𝜋[Σ𝑡=0
𝑇 𝛾𝑡𝑟𝑖 (𝑠𝑡, 𝑎𝑡, 𝑠𝑔)]]

2.3 Combination of Imitation and
Reinforcement Learning

As mentioned in 2.1.2 section, the well-known compounding error stemming

from Imitation Learning (IL) is often unable to perform well in long-horizon tasks

[3]. Recent research has demonstrated that the Reinforcement Learning (RL)

approach is a potential solution to this issue, by enabling continuous

improvement of the learned policy from experience. The RL approach is

employed to improve IL policies through fine-tuning.

However, the use of Imitation Learning (IL) to bootstrap the process of

Reinforcement Learning (RL) has been previously utilized by several deep RL

algorithms. The bootstrapping helps to overcome exploration challenges, while

RL fine-tuning allows the policy to improve based on actual task objective.

Rajeswaran et al. [6] propose learning complex dexterous manipulation with

Deep Reinforcement Learning (DRL) and demonstrations. They propose to

augment the policy search process with a small number of human demonstrations

collected in virtual reality (VR). They found that pre-training a policy with

Behavior Cloning (BC), and subsequent fine-tuning with policy gradient along

with an augmented loss to stay close to the demonstrations, dramatically reduces

the sample complexity, enabling training within the equivalent of a few real-world

robot hours.

Zhu et al. [7] propose a model-free deep reinforcement learning method that

leverages a small amount of demonstration data to assist a reinforcement agent.

 -23-

They apply this approach to robotic manipulation tasks and train end-to-end

visuomotor policies that map directly from RGB camera inputs to joint velocities.

Nair et al. [8] propose overcoming exploration in environments with sparse

rewards in RL with demonstrations. Their method, which builds on top of Deep

Deterministic Policy Gradients and Hindsight Experience Replay [38], provides

an order of magnitude of speedup over RL on simulated robotics tasks.

The above approaches demonstrate that agents combining imitation and

reinforcement significantly improved performance than agents trained with RL

or IL alone. However, these approaches include a flat IL initialization that is

improved using reinforcement learning with additional auxiliary objectives

[6,7,8]. The flat algorithms treat the state space as a huge flat search space. This

means that the paths from the start state to the goal state are very long, and the

length of these paths determines the cost of learning and planning, as information

about future rewards must be propagated backward along these paths.

Gupta et al. [1] demonstrate the Relay Policy Learning (RPL) method, which

is described in the next chapter, where agents can use to learn hierarchical

policies in a way that can be fine-tuned better than their flat counterparts.

2.4 Relay Policy Learning (RPL)

As mentioned throughout the previous chapters, solving multi-stage, long-

horizon robotic tasks can be challenging. To tackle these problems, Gupta et al.

propose the Relay Policy Learning (RPL) algorithm, a simple and universally –

applicable two-phase hierarchical approach, consisting of an imitation learning

phase that produces goal-conditioned hierarchical policies, and a hierarchical

reinforcement learning phase that finetunes these policies for task performance

[1].

In contrast to Hierarchical Reinforcement Learning (HRL) methods, the RPL

method takes advantage of unstructured demonstrations to bootstrap further

fine-tuning, and in contrast to conventional Hierarchical Imitation Learning

(HIL) methods, it does not focus on careful subtask segmentation, but instead

splits the demonstration data into fixed-length segments. This simplification

allows them to leverage the idea of relabelling demonstrations across different

goals. The RPL authors [1] demonstrate the effectiveness of their method on

-24-

several multi-stage, long-horizon manipulation tasks in a challenging kitchen

simulation environment.

According to the RPL authors [1] the main advantage of their approach is that

it is simple and very general, in that it can be applied to any demonstrated data,

including easy to provide unsegmented, and unstructured demonstrations of

meaningful behaviours. Furthermore, this method does not require any explicit

form of skill segmentation or subgoal definition, which otherwise would need to

be learned or explicitly provided. Lastly, and most importantly, since this method

ensures that every low-level trajectory is goal-conditioned and of the same limited

length, it is very amenable to reinforcement fine-tuning, which allows for

continuous policy improvement.

2.4.1 Relay Policy Learning architecture.

The algorithm starts with unstructured, unlabelled demonstrations D, which

correspond to meaningful activities provided by the user. The pool of

demonstrations consists of N trajectories 𝐷 = {𝜏0, 𝜏1, 𝜏2, … 𝜏𝑁}, where each

trajectory consists of state-action pairs 𝜏 = {𝑠1, 𝑎1, 𝑠2, 𝑎2,… 𝑠𝑇 ,𝑎 𝑇}. Importantly,

these demonstrations can be attempting to reach a variety of different high-level

subgoals, but do not require these subgoals to be specified explicitly.

To take the most advantage of such data, the authors pre -trains goal-

conditioned hierarchical policies using the proposed Relay Imitation Leaning

(RIL) algorithm, which construct low-level and high-level datasets from the

demonstrations, and then use them to perform imitation learning. This provides

a good policy initialization for subsequent Relay Reinforcement Fine-tuning

(RRF). Figure 4 illustrates the Relay Policy Learning algorithm [1].

 -25-

Figure 4: Relay Policy Learning algorithm [1]

Figure 5 illustrates the RPL [1] hierarchical policy architecture, which is

composed of a high-level policy and a low-level policy, which together generate

an action at a given state. High level Policy sets subgoals for low-level policy [2].

Low-level policy takes that subgoal and output low level actions to act in the

environment [2]. Only low-level act to the environment.

Figure 5: Relay Policy Learning architecture [1].

Initially, the high-level policy takes the current state and creates a high-level

subgoal that is passed to the low-level policy. Then, the low-level policy takes the

current state and the subgoal created by the high-level policy to create an action

which is executed in the environment. For the subsequent H time steps, set to 30

in [1], the subgoal created by the high-level policy is kept fixed, while the low-

level policy takes the current state and creates an action at every time step.

-26-

The overall steps of the Relay Policy Learning (RPL) method [1] are described

in Algorithm 1 in figure 6.

Figure 6: Overview of steps for RPL algorithm [1].

2.4.2 Relay Imitation Learning (RIL)

To learn the relay policy from meaningful but unstructured demonstrations

𝐷, the RPL authors devise the relay data relabelling augmentation algorithm to

construct a low-level dataset 𝐷𝑙 and a high-level dataset 𝐷ℎ from the

demonstrations, and then use these datasets to perform imitation learning.

Relay data relabelling augmentation algorithm.

Gupta et al. [1] present a novel relay data-relabelling augmentation algorithm

for learning goal-conditioned hierarchical policies. In detail, they construct a low-

level dataset 𝐷𝑙 and a high-level dataset 𝐷ℎ by iterating through the pool of

demonstrations 𝐷 and use them to learn the high-level hierarchical policy 𝜋𝜃
ℎ and

the low-level hierarchical policy 𝜋𝜑
𝑙 via supervised learning at multiple levels.

According to the RPL authors [1], the relay data relabelling augmentation

algorithm does not only enable us to learn hierarchical policies without explicit

labels, but also provides algorithmic improvements to imitation learning. Firstly,

generates more data through the relay data relabelling augmentation algorithm.

Secondly, it improves generalization since it is trained on a large variety of

subgoals.

 -27-

Construct the low-level dataset 𝑫𝒍

RPL [1] iterates through the pool of demonstrations 𝐷 to construct the low-

level dataset 𝐷𝑙. Firstly, the method is configured with a low-level window size 𝑊𝑙

and it generates state-action-goal (𝑠, 𝑎, 𝑠𝑔
𝑙) tuples for low-level dataset 𝐷𝑙 within

a sliding window size 𝑊𝑙 along the demonstrations, as described in Algorithm 2

in figure 7.

Figure 7: Overview of steps to construct the low-level dataset [1].

The key idea behind this is to consider all states that are reached along a

demonstration trajectory within 𝑊𝑙 time steps from any state 𝑆𝑡 to be goals

reachable from the state 𝑆𝑡 by executing action 𝑎𝑡, without the requirement for

any explicit goal labelling from a human demonstrator [1].

For example, consider the following trajectory 𝜏0 from the pool of

demonstration 𝐷 = {𝜏0, 𝜏1, 𝜏2, … 𝜏𝑁} consisting of N trajectories:

𝜏0 = {𝑠1, 𝑎1, 𝑠2, 𝑎2,𝑠3, 𝑎3, 𝑠4, 𝑎4,𝑠5, 𝑎5, 𝑠6, 𝑎6, 𝑠7,𝑎7, 𝑠8, 𝑎8, 𝑠9 ,𝑎9 , 𝑠10, 𝑎10, … 𝑠𝑇𝑎𝑇}

For each state-action (𝑠, 𝑎) pair in 𝜏0 state-action-goal (𝑠, 𝑎, 𝑠𝑔
𝑙) tuples are created.

If we set the low-level window size to be six, 𝑊𝑙 = 6, the created labels for the

(𝑠1, 𝑎1) pair are the following:

𝑠1, 𝑎1, 𝑠2

𝑠1, 𝑎1, 𝑠3

𝑠1, 𝑎1, 𝑠4

𝑠1, 𝑎1, 𝑠5

𝑠1, 𝑎1, 𝑠6

Repeating this procedure for all state-action pairs in the 𝜏0 trajectory.

-28-

The authors in [1] tried to utilize different low-level window sizes for RPL.

Their ablations suggest that the larger the window, the harder the learning

problem becomes for both, imitation, and RL fine-tuning. Finally, they chose the

low-level window size 𝑊𝑙 to be 30-time steps in all their experiments.

Construct the high-level dataset.

RPL [1] employ a similar procedure to construct the high-level dataset 𝐷ℎ.

Firstly, they choose a high-level window size 𝑊ℎ and then generate state-

action(subgoal)-goal tuples for high-level dataset 𝐷ℎ, within the sliding window

size 𝑊ℎ along the demonstrations, as described in Algorithm 3 in figure 8.

Figure 8: Overview of steps to construct the high-level dataset [1].

The high-level action (subgoal state) is set to j steps ahead 𝑠𝑡+𝑗, as 𝑠𝑡+min (𝑊𝑙 ,𝑗)

choosing a sufficiently distant subgoal as the high-level action (subgoal state).

For example, consider the following trajectory 𝜏0 from the pool of

demonstration 𝐷 = {𝜏0, 𝜏1, 𝜏2, … 𝜏𝑁} consisting of N trajectories:

𝜏0 = {𝑠1, 𝑎1, 𝑠2, 𝑎2,𝑠3, 𝑎3, 𝑠4, 𝑎4,𝑠5, 𝑎5, 𝑠6, 𝑎6, 𝑠7,𝑎7, 𝑠8, 𝑎8, 𝑠9 ,𝑎9 , 𝑠10, 𝑎10, … 𝑠𝑇𝑎𝑇}

For each state-action (𝑠, 𝑎) pair in 𝜏0 trajectory creates state-action(subgoal)-goal

tuples. If we set the high-level window size to be nine, 𝑊ℎ = 9, and set the high-

level action (subgoal state) to be j steps ahead 𝑠𝑡+𝑗, as 𝑠𝑡+min (𝑊𝑙 ,𝑗), the j will be six

as the low-level window size. So, for state 𝑠1, high-level window size 𝑊ℎ = 9, and

j=6 the subgoal will be the 𝑠7. In detail, the created labels will be the following:

𝑠1, 𝑠7, 𝑠2

𝑠1, 𝑠7, 𝑠3

 -29-

𝑠1, 𝑠7, 𝑠4

𝑠1, 𝑠7, 𝑠5

𝑠1, 𝑠7, 𝑠6

𝑠1, 𝑠7, 𝑠7

 𝑠1, 𝑠7, 𝑠8

Repeating this procedure for all state-action pairs in 𝜏0 trajectory.

In [1], high-level window size 𝑊ℎ is set to 260 in all the experiments.

Imitation Learning

According to the RPL authors [1], the Relay Imitation Learning (RIL)

algorithm is a simple imitation learning procedure that builds on the goal

relabelling scheme described in Lynch et al. [33] for the hierarchical setting,

resulting in improved handling of multi-task generalization and compounding

error.

Given these relay-data-relabelled datasets, they train a high-level policy 𝜋𝜃
ℎ

and a low-level policy 𝜋𝜑
𝑙 by maximizing the likelihood of the actions taken given

the corresponding states and goals.

𝑚𝑎𝑥𝜑,𝜃 Ε(𝑠,𝑎,𝑠𝑔
𝑙)~𝐷𝑙

[𝑙𝑜𝑔𝜋𝜑(𝑎|𝑠, 𝑠𝑔
𝑙)] + Ε(𝑠,𝑠𝑔

𝑙 ,𝑠𝑔
ℎ)~𝐷ℎ

[𝑙𝑜𝑔𝜋𝜗(𝑠𝑔
𝑙 |𝑠, 𝑠𝑔

ℎ)]

Equation 1: Relay Imitation Learning equation [1].

In practice, this is a goal-conditioned Behaviour Cloning (BC) for the low-level

and the high-level datasets.

The RPL authors [1], used in their experiments Multilayer Perceptron (MLP)

feed-forward artificial neural networks, with two layers of 256 units each and

ReLu nonlinearities for both the high-level policy 𝜋𝜚
ℎ and the low-level policy 𝜋𝜑

𝑙 .

All imitation learning algorithms use the ADAM optimizer using a batch size of

128 and a learning rate of 0.005.

2.4.3 Relay Reinforcement Fine-tuning (RRF)

Gupta et al. [1] employ a goal-conditioned Hierarchical Reinforcement

Learning (HRL) algorithm for fine-tuning the extracted policies from the RIL

phase. The algorithm used is a variant of Trust Region Policy Optimization

(TRPO) proposed by Schulman and al. [4]. In detail, a variant of Natural Policy

-30-

Gradient (NPG) with adaptive step, where both the high-level and the low-level

goal-conditioned policies 𝜋𝜃
ℎ and 𝜋𝜑

𝑙 are being trained with policy gradient in a

decoupled optimization [1].

In detail, given a low-level goal-reaching reward function 𝑟𝑙 (𝑠𝑡 , 𝑎𝑡 ,𝑠𝑔
𝑙), we can

optimize the low-level policy by simply augmenting the state of the agent with the

goal commanded by the high-level policy and then optimizing the policy to

effectively reach the commanded goals by maximizing the sum of its rewards [1].

For the high-level policy, given a high-level goal-reaching reward function

𝑟ℎ(𝑠𝑡 , 𝑔𝑡 , 𝑠𝑔
ℎ), authors in [1] optimize it by running a similar goal-conditioned

policy gradient optimization to maximize the sum of high-level rewards obtained

by commanding the current low-level policy.

Τo encourage extracted policies at both levels from Relay Imitation Learning

(RIL) phase to stay close to the behaviour shown in the demonstrations , the

Natural Policy Gradient (NPG) objective is augmented with a max-likelihood

objective that ensures that policies at both levels take actions that are consistent

with the relabelled demonstration pools 𝐷𝑙 and 𝐷ℎ from relay data relabelling

algorithm, as described in Equation 2 and 3 [1]:

∇𝜑 𝐽𝑙 = Ε [∇𝜑 𝑙𝑜𝑔𝜋𝜑
𝑖 (𝑎|𝑠, 𝑠𝑔

𝑙) ∑𝑟𝑙 (𝑠𝑡, 𝑎𝑡, 𝑠𝑔
𝑙)

𝑡

] + 𝜆𝑙𝐸(𝑠,𝑎,𝑠𝑔
𝑙)~𝐷𝑙

[∇𝜑 𝑙𝑜𝑔𝜋𝜑
𝑙 (𝑎|𝑠, 𝑠𝑔

𝑙)]

Equation 2: Reinforcement learning (low-level).

∇𝜗𝐽ℎ = Ε [∇𝜃𝑙𝑜𝑔𝜋𝜃
ℎ(𝑠𝑔

𝑙|𝑠, 𝑠𝑔
ℎ) ∑ 𝑟ℎ(𝑠𝑡 , 𝑠𝑔

𝑙 , 𝑠𝑔
ℎ)

𝑡

] + 𝜆ℎ𝐸(𝑠,𝑠𝑔
𝑙 ,𝑠𝑔

ℎ)~𝐷ℎ
[∇𝜗𝑙𝑜𝑔𝜋𝜃

ℎ(𝑠𝑔
𝑙 |𝑠, 𝑠𝑔

ℎ)]

Equation 3: Reinforcement learning (high-level).

The RPL authors [1] fine-tune on 17 different compound goals individually,

with a path length of 260 for every compound goal, and the low-level horizon set

to 30. They use 100 trajectories in each iteration of on-policy fine-tuning, with a

discount of 0.995. When using variants of augmenting the policy gradient

objective with demonstrations, they experimented with different weights 𝜆ℎ and

𝜆𝑙 , but they found 0.0001 to work well. They use a batch size of a 100 trajectories

per iteration, and standard parameters for truncated natural policy gradient

 -31-

based on python package [11], which contains implementations of various RL

algorithms for continuous control tasks simulated with MuJoCo.

-32-

3 Methodology

In this chapter, we describe our attempt to reengineer the Relay Policy

Learning (RPL) algorithm [1] and evaluate its use to predict aircraft trajectories.

3.1 Demonstrations Datasets

In this section, the datasets that were utilized are being presented along with

the proposed method of data-preparation.

The datasets contain airplane traffic data collected from Paris to Istanbul

route, in Comma Separated Value (CSV) files. The CSV files are referred to as “the

dataset”, and they are the starting point of the Relay Imitation Learning (RIL).

The CSV file holds information about the trajectories of aircraft. Each row in the

file corresponds to twenty (20) seconds, and the state space is naturally

discretized into twenty-seconds time steps.

The dataset contains the longitude, latitude, and the altitude of each time step.

Some names of the parameters in the dataset are not self-explanatory. Therefore,

table (1) explains the relevant parameters and airplane terminologies related to

them.

Table 1: Dataset

 Parameter name Parameter Description Datatype

1 trajectory_ID Airplane trajectory ID, a combination

of date and ID.

object

2 longitude Longitude of the specific timestamp. float64

3 latitude Latitude of the specific timestamp. float64

4 altitude Altitude of the specific timestamp. Float64

5 timestamp Time stamp in Unix type. int64

6 temp_iso Temperature Float64

7 v_wind_component Vertical wind direction, a positive

value means that the direction of the

airflow is upward, while a negative

Float64

 -33-

value denotes that the direction is

downward.

8 u_wind_component Horizontal wind direction. Float64

9 Cluster Airplane trajectory route. int64

10 model_id Airplane model ID. int64

11 dlon Longitude difference of the current

timestamp with the longitude of the

next timestamp.

Float64

12 dlat Latitude difference of the current

timestamp with the latitude of the

next timestamp.

Float64

13 dalt Altitude difference of the current

altitude with the altitude of the next

timestamp.

Float64

14 delay Airplane delay. int64

3.1.1 Overview training dataset.

The training dataset contains 64,245 rows from 116 trajectories, which are

distributed in six separate routes. The diagram in figure 9 illustrates the separate

routes. As we can notice the shortest route – dataset column “Cluster” - is this

with value five (5).

Figure 9: Airplane training trajectories.

-34-

The diagram in figure 10 illustrates the distribution of trajectories across the

different routes. The route of cluster five (5) represents 72% of the whole dataset,

so this was selected to train the agent.

Figure 10: Distribution of training trajectories.

3.1.2 Cleaning training dataset

Convert trajectory ID to numerical value.

The trajectory ID in the dataset is a combination of date and an ID. Therefore,

we cropped the date and kept only the ID.

Remove trajectory routes.

Removed from the dataset the other trajectories and kept only trajectories in

cluster with value 5 in agent’s training.

Convert Unix timestamp.

Convert Unix timestamp to date – time format with seconds.

Check for missing data.

Each row in the train dataset corresponds to a twenty (20) seconds time-interval

update, as we can notice in the data variable timestamp. So, for each trajectory

ID we computed the time duration in minutes. The diagram in figure 11 illustrates

the total time steps and the time duration in minutes for each trajectory ID.

 -35-

Figure 11: Check for missing data.

Overview training dataset after the data cleaning process.

After the data cleaning process, the training dataset contains 46 ,467 rows

from 85 trajectories in route - data field “Cluster” - five (5). The diagram in figure

12 illustrates the altitude differences between the trajectories in route five (5).

e

Figure 12: Training trajectories route 5 altitude.

Figure 13 illustrates trajectory ID cardinality in training dataset.

Figure 13: Trajectory ID cardinality in training dataset.

-36-

3.1.3 The Training Dataset

Data Correlation

Data correlation refers to the statistical relationship between two data

variables. We computed the Pearson correlation coefficient [39], which is the

most common measurement for a linear relationship between two variables. The

stronger the correlation between these two variables, the closer it will be to +1 or

-1. A correlation coefficient of -1 describes inverse correlation, with values in one

series rising as those in the other decline, and vice versa. The diagram in figure

14 illustrates correlation between variables of the dataset.

Figure 14: Pearson correlation coefficient.

Obviously, the longitude and the latitude variables clearly have a negative

correlation (-0.99), this indicates that the two variables move in opposite

directions. The latitude of Paris, France is 48.864716, and the longitude is

2.349014, while the latitude of Istanbul, Turkey is 41.015137, and the longitude is

28.979530.

 -37-

Negative correlation exists between temperature and altitude variables (-

0.72), when the altitude increases the temperature decrease and vice versa. Also,

there is negative correlation between the longitude selection – dataset column

“dlon” - and the temperature (-0.63).

The longitude selection – data column “dlon” – and the altitude have a

positive correlation (0.79), this indicates the two variables move either up or

down in the same direction together. Also, there exists a positive correlation

between altitude selection – data column “dalt” - and the latitude (0.61).

All the other dataset variables have zero or small correlation, which indicates

that there is no relationship between them and that they are considered being

unrelated.

Longitude selection correlation

The diagrams in figure 15 illustrate the correlations between the longitude and

the longitude, latitude, altitude, and temperature variables.

Figure 15: Longitude selection correlation.

Latitude selection correlation

The diagram in figure 16 illustrates the correlations between the latitude and

the longitude, latitude, altitude, and temperature variables.

-38-

Figure 16: Latitude selection correlation.

Altitude selection correlation

The diagram in figure 17 illustrates the correlations between the altitude and

the longitude, latitude, altitude, and temperature variables.

Figure 17: Altitude selection correlation.

 -39-

Longitude, Latitude and Altitude distribution

The diagram in figure 18 illustrates the distribution of the longitude, latitude,

and altitude dataset variables.

Figure 18: Longitude, Latitude and Altitude distribution.

Training trajectories

The diagram in figure 19 illustrates the 85 training trajectories.

-40-

Figure 19: The 85 trajectories

 -41-

3.1.4 Overview of the test dataset.

The test dataset contains 36,819 rows from 65 trajectories, and as in the

training dataset they are distributed in six separate routes. The diagram in figure

20 illustrates the separate routes.

Figure 20: Airplane test trajectories.

The diagram in figure 21 illustrates the distribution of trajectories across the

different routes. The route of cluster five (5) represents 59% of the whole dataset.

Figure 21: Distribution of test trajectories.

-42-

3.1.5 Cleaning test dataset

Here, the same pre-processing steps, as those in the training dataset described

in section 3.1.2, do apply.

Overview of the test dataset after the data cleaning process.

After the data cleaning process, the test dataset contains 21,559 rows from 40

trajectories in route - data field “Cluster – five” (5). The diagram in figure 22

illustrates the altitude differences between the trajectories in route five (5).

Figure 22: Test trajectories route 5 altitude.

Figure 23 illustrates trajectory ID cardinality in the test dataset.

Figure 23: Trajectory ID cardinality in test dataset.

 -43-

3.2 Implementation and training of RPL agent

It is challenging to train an intelligent agent to predict aircraft trajectories

using unstructured traffic data due to the sparse reward issue. This section is

dedicated to explaining the implementation and training of the Relay Policy

Leaning (RPL) intelligent agent [1] as a potential solution for this long-horizon

task.

Firstly, in the Relay Imitation Learning (RIL) first phase, unstructured

aircraft trajectories are utilized as input to construct the high-level and low-level

datasets. These datasets are used to train the agent with the high-level and low-

level policies using a goal-conditioned Behavior Cloning algorithm. Finally, in the

Relay Reinforcement Fine-tuning (RRF) second phase, a variant of the Trust

Region Policy Optimization (TRPO) algorithm of Schulman et al. [4] employed to

fine-tune the agent's training. The two-phase RPL algorithm is shown in Figure

24.

Figure 24: RPL intelligent agent [1]

The following Python libraries were employed in the implementation of the

RPL intelligent agent.

NumPy

NumPy, short for Numerical Python, is an essential library for scientific

computing. It provides multidimensional array objects and functions for working

in domain of linear algebra, Fourier transform, and matrices [28].

-44-

Furthermore, tensors are essentially multidimensional arrays, which makes

NumPy a central component in machine learning systems. Additionally,

framework libraries TensorFlow and PyTorch utilize NumPy in core calculations.

Pandas

Pandas is a Python library built on the NumPy library and is frequently used

in machine learning projects because has functions for analysing, cleaning,

exploring, and manipulating data. Pandas can read various data formats, such as

CSV files, and convert them into data frame objects. A data frame is a 2-

dimensional data structure with rows and columns, like a spreadsheet [29]. Data

frames are used for analysing and manipulating data in different ways.

The Panda library is utilized to the data preprocessing stage for reading,

manipulating, and preserving the read Comma Separated Value (CSV) files of

training and testing demonstrations datasets to DataFrames.

Geopandas

Geopandas is a Python library that provides support for geospatial data to

Pandas DataFrames to make working with them more efficient [27].

The Geopandas library is utilized to the data preprocessing stage to plot

airplane traffic data of the route from Paris to Istanbul. Additionally, it is used in

the experiments results stage to plot the agent's generated trajectories.

Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and

interactive visualizations in Python [40].

The Matplotlib library is utilized to the data preprocessing and evaluation

stages to plot Pandas DataFrames.

Gymnasium

Gymnasium is a Python library for developing and evaluating reinforcement

learning algorithms. It is a very versatile toolkit that is compatible with both

TensorFlow and PyTorch libraries [30]. The library includes several pre -built

environments for testing reinforcement learning agents, e.g., Atari games and

robotics tasks. Arguably the most crucial feature of Gymnasium is that all

environments share the same structure.

 -45-

The Gymnasium library is utilized to provide the agent with a completely

custom environment for testing Relay Policy Learning (RPL) algorithm.

PyTorch

PyTorch is an open-source machine learning (ML) framework based on the

Python programming language and the Torch library. Torch is an open-source

ML library used for creating deep neural networks and is written in the Lua

scripting language [31].

The PyTorch library is used for the goal-conditioned Behaviour Cloning (BC) of

low-level and high-level datasets, later outlined in detail.

Stable Baselines3

Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement

learning algorithms in PyTorch. It is the next major version of Stable Baselines

[32]. SB3 is a deep reinforcement library that uses PyTorch for the backend and

provides several implemented algorithms and features, for both online and

offline reinforcement learning algorithms [41]. SB3 has implement experimental

features in a separate SB3-Contrib library [42,43].

The SB3-Contrib library is utilized for Relay Reinforcement Fine-tuning

(RRF) using the Trust Region Policy Optimization (TRPO) algorithm [44].

3.2.1 Relay Imitation Learning (RIL)

This section focuses on the phase of Relay Imitation Learning (RIL)

implementation of the Relay Policy Learning (RPL) algorithm [1].

Relay data relabelling augmentation algorithm.

The relay data relabelling augmentation algorithm [1], described in section

2.4.2, allow us to learn goal-conditioning hierarchical policies without explicit

labelling. In detail, we construct a low-level dataset 𝐷𝑙 and a high-level dataset 𝐷ℎ

by iterating through the unstructured traffic data of aircraft trajectories , which

are included in the training dataset 𝐷, described in section 3.1.

Constructing the low-level dataset 𝑫𝒍

The low-level dataset 𝐷𝑙, described in Algorithm 2 in section 2.4.2 was

constructed by iterating through the traffic data of aircraft trajectories included

in the training dataset 𝐷. Firstly, we choose the low-level sliding window size 𝑊𝑙

-46-

to be 30, and then generate state-action-goal (𝑠, 𝑎, 𝑠𝑔
𝑙) tuples for low-level dataset

𝐷𝑙, within the sliding window 𝑊𝑙 along the traffic data of aircraft trajectories.

After the data cleaning process in section 3.1.2, the aircraft trajectories, which

are included in the training dataset 𝐷, are 85 trajectories in 46,467 rows. The low-

level dataset created from training dataset has 85 trajectories in 1,347,543 rows.

Figure 25 illustrates trajectory ID cardinality in low-level dataset.

Figure 25: Trajectory ID cardinality in low-level dataset.

Constructing the high-level dataset 𝑫𝒉

Similarly, the high-level dataset 𝐷ℎ, described in Algorithm 3 in section 2.4.2

was constructed by iterating through the traffic data of aircraft trajectories

included in the training dataset 𝐷. Firstly, we choose the high-level sliding

window size 𝑊ℎ to be 260, and then generate state-action(subgoal)-goal tuples

for high-level dataset 𝐷ℎ, within the sliding window 𝑊ℎ along the traffic data of

aircraft trajectories.

After the data cleaning process in section 3.1.2, the traffic data of aircraft

trajectories, which are included in the training dataset 𝐷, was 85 trajectories in

46,467 rows. The high-level dataset created from training dataset has 85

trajectories in 12,034,953 rows. Figure 26 illustrates trajectory ID cardinality in

high-level dataset.

 -47-

Figure 26: Trajectory ID cardinality in high-level dataset.

Goal-conditioned Behavior Cloning (BC)

Goal-conditioned Behavior Cloning (BC) is a simple imitation learning

procedure that given the low-level and high-level datasets, trains a model for the

high-level policy 𝜋𝜃
ℎ and for the low-level policy 𝜋𝜑

𝑙 by maximizing the likelihood

of the actions taken given the corresponding states and goals .

Deep Neural Network (DNN) Architecture

The Deep Neural Network (DNN) implementing the BC method was fed with

airplane's longitude, latitude, and altitude. The goal is the DNN to be trained to

predict the airplane coordinates for the next step. This is a multi-target

Multilinear Regression Model (MRM), which is a machine learning model that

utilizes multiple features as input to make multiple predictions with continuous

values.

The final model architecture consisted of a Multi-Layer Perceptron (MLP)

feedforward artificial neural network, which was fully connected to two hidden

layers, as shown in Table 2.

Table 2: DNN architecture

Layer Description

Feature Extractor Flatten extractor

Input Three values: longitude, latitude and altitude.

Linear 256 filters, RELU activation function

Linear 256 filters, RELU activation function

Output Three values: longitude, latitude and altitude.

-48-

The network is separated into two mains sections. The first section comprises

an extractor whose role is to extract features from observations. Coordinates are

vector observations, so the features extractor is simply a Flatten Layer for each

observation. The second section is a fully connected DNN with a nonlinear RELU

activation function, which is used to train both the high-level policy 𝜋𝜚
ℎ and the

low-level policy 𝜋𝜑
𝑙 of the goal-conditioned BC.

All imitation learning algorithms are trained with the ADAM optimizer using

a batch size of 128 and a learning rate of 0.005. The network's output is the

predicted longitude, latitude, and altitude.

Coordinates Normalization

To enhance the Deep Neural Network's stability, the dataset features are

normalized prior to being fed to it. Table 3 shows the airplane's longitude,

latitude, and altitude zero-mean normalization formulas.

Table 3: Normalize formulas.

Normalize formulas

Normalize Longitude = Longitude – Longitude Average / Longitude Standard Deviation

Normalize Latitude = Latitude – Latitude Average / Latitude Standard Deviation

Normalize Altitude = Altitude – Altitude Average / Altitude Standard Deviation

Similarly, table 4 shows formulas utilized to unnormalize the trajectories

generated by the trained airplane agent.

Table 4: Unnormalize formulas.

Unnormalize formulas

Unnormalize Longitude = Longitude * Longitude Standard Deviation + Longitude Average

Unnormalize Latitude = Latitude * Latitude Standard Deviation + Latitude Average

Unnormalize Altitude = Altitude * Altitude Standard Deviation + Altitude Average

 -49-

3.2.2 Relay Reinforcement Fine-tuning (RRF)

This section focuses on the phase of Relay Reinforcement Fine-tuning (RRF)

implementation of the Relay Policy Learning (RPL) algorithm.

Custom RL environment

To train the intelligence agent a custom environment created using the

gymnasium interface [30], which includes all the necessary components to train

the airplane agent. The agent was trained to cover the distance from Paris airport

to Istanbul airport. This is a sparse binary reward task, in which the agent receives

reward when arriving to the Istanbul airport. Additionally, the episode terminates

in case of exceeding the 3,000-time steps. The observation space is a 3-

dimensional continuous space, which observes the longitude, latitude, and

altitude of the airplane agent. The action space is a 3-dimensional action space

that corresponds to longitude, latitude, and altitude modifications to the airplane

agent.

Trust Region Policy Optimization

In detail, as described in section 2.4.3 Gupta et al. [1] employ a goal-

conditioned Hierarchical Reinforcement Learning (HRL) algorithm which is a

variant of the Trust Region Policy Optimization (TRPO) algorithm proposed by

Schulman and al. [4].

-50-

4 Experimental Results

This section provides the results from evaluating the agent using different

configurations. Our experiments aim to answer the following questions:

1. Does Relay Imitation Learning (RIL) algorithm improve Reinforcement

Learning Process to predict aircraft trajectories?

2. Is it possible to use Relay Policy Learning (RPL) algorithm to predict

aircraft trajectories?

4.1 Performance metrics

For comparison, we trained four agents, the first agent trained exclusively

with the Trust Region Policy Optimization (TRPO) algorithm. The second agent

was trained solely with the low-level goal BC of the Relay Imitation Learning

(RIL) algorithm. The third agent was trained solely with the high-level goal BC of

the Relay Imitation Learning (RIL) algorithm. Finally, the fourth agent was

trained with the Relay Policy Learning (RPL) algorithm. Afterwards, we employ

the trained agents to predict five trajectories for the route Paris to Istanbul airport

and plot the outcomes.

Furthermore, we compare the RPL agent's predicted trajectories to the

original trajectories from Paris airport to Istanbul airport and plot the results.

4.2 Results

4.2.1 TRPO agent

The diagram in figure 27 illustrates the agent's five generated trajectories

when it has been trained exclusively with Reinforcement Learning (RL)

algorithm. Specifically, it was trained 1e5 time-steps with the Trust Region Policy

Optimization algorithm, whose policy network was not pre-trained in any way.

As we can observe, the agent cannot predict the root neither the correct altitude.

 -51-

Figure 27: TRPO algorithm agent trained (1e5 time-steps).

The diagram in figure 28 illustrates the longitude and latitude of trajectories.

Figure 28: TRPO agent longitude and latitude trajectories (1e5 time-steps).

-52-

The diagram in figure 29 illustrates agent’s five generated trajectories when

enhancing the time-steps training to 1e6: It still does not provide valid

predictions.

Figure 29: TRPO algorithm agent trained (1e6 time-steps).

The diagram in figure 30 illustrates the longitude and latitude of trajectories.

Figure 30: TRPO agent longitude and latitude trajectories (1e6 time-steps).

 -53-

4.2.2 Goal-conditioned low-level BC agent

According to the Relay Imitation Learning (RIL) phase, the agent was first

trained in 10 epochs with the goal conditioned low-level Behavior Cloning (BC)

algorithm. The diagram in figure 31 illustrates agent's five generated trajectories.

As we can observe, the agent was able to predict the correct root and the actual

altitude, in a quite adequate way.

Figure 31: goal BC low-level algorithm agent trained (10 epochs).

The diagram in Figure 32 illustrates the longitude and latitude of trajectories.

Figure 32: Goal BC low-level agent longitude and latitude trajectories (10 epochs). In the left

figure, points for trajectories 1 to 4 coincide to the points of the 5 th, depicted.

-54-

4.2.3 Goal-conditioned high-level BC agent

Then, the agent was trained 15 epochs with the high-level goal conditioned

Behavior Cloning (BC) algorithm. The diagram in figure 33 illustrates agent's five

generated trajectories. As we can observe, agent was able to predict several

subgoals. However, all subgoals are from the middle of the route until Istanbul

airport due to the high-level window size was set to 260 . Additionally, the altitude

predictions are not correct.

Figure 33: goal BC high-level algorithm agent trained (15 epochs).

The diagram in figure 34 illustrates the longitude and latitude of trajectories.

Figure 34: Goal BC high-level agent longitude and latitude trajectories (15 epochs). In the left

figure, points for trajectories 1 to 4 coincide to the points of the 5th, depicted.

 -55-

4.2.4 RPL agent

Finally, an agent was trained with the Relay Policy Learning (RPL) algorithm.

The diagram in figure 35 illustrates the trained agent's generated trajectories. As

we can observe, RL fine-tunning succeeds to improve RIL predictions, however

there is still a high altitude predicted in Paris airport.

Figure 35: RPL trained agent (1e2 time-steps).

The diagram in figure 36 illustrates the longitude and latitude of trajectories.

Figure 36: RPL agent longitude and latitude trajectories (1e2 time-steps). In the left figure,

points for trajectories 1 to 4 coincide to the points of the 5th, depicted.

-56-

4.2.5 Compare original trajectories with RPL trajectories.

The diagram in figure 37 illustrates the comparison of an original trajectory

with the predicted trajectory when the agent has been trained with the Relay

Policy Learning (RPL) algorithm.

Figure 37: Visual comparison between the original and the RPL predicted trajectory.

As we can observe, predicted trajectory it is close to the original trajectory in

longitude and latitude predictions. However, the altitude predictions are not

accurate.

 -57-

5 Conclusions and future
work

In this thesis, Reinforcement Learning and Imitation Learning methods have

been explored in the context of predicting long-horizon execution of tasks. In

particular, the thesis focuses on the direct imitating supervised learning methods

and the on-policy, model-free Reinforcement Learning methods, to model

aircraft's trajectory prediction in the aviation domain.

Summarizing the work conducted in the context of this thesis we reengineer

the Relay Policy Learning (RPL) algorithm [1] proposed by Gupta et al. and

evaluate its use to predict aircraft trajectories. RPL is a two-phase hierarchical

approach, consisting of a Relay Imitation Learning (RIL) phase that produces

goal-conditioned hierarchical policies, and a Relay Reinforcement Fine -tuning

(RRF) phase that fine-tunes these policies for task performance. It utilizes a

dataset with long aircraft trajectories containing unstructured, unlabelled routes

from Paris to Istanbul. First, the dataset was pre-processed to correct

imperfections. Then, created low-level and high-level datasets through the relay-

data relabelling augmentation of the RPL algorithm [1], which allow us to learn

goal-conditioning hierarchical policies without explicit labelling. Afterwards, the

created datasets are used to learn hierarchical Imitation Learning policies using

a goal-conditioned Behavior Cloning method. Training Deep Neural Networks

(DNNs) to predict airplane longitude, latitude, and altitude for the next step. To

enhance the Deep Neural Network's stability, the datasets features are

normalized prior to being fed to it. Finally, the two policies from the Relay

Imitation Learning (RIL) phase are fine-tuning with Reinforcement Learning.

Specifically, using the Trust Region Policy Optimization (TRPO) on-policy

algorithm proposed by Schulman et al. [4]. To train the intelligence agent a

custom environment created using the gymnasium interface.

Predicting aircrafts' trajectories can be challenging because it requires

extensive exploration. The use of Imitation Learning to bootstrap the process of

Reinforcement Learning, helps to overcome exploration challenges, while the RL

fine-tuning allows the policy to improve based on actual task objective. The

-58-

results indicate that it is possible to use RPL algorithm in aircraft trajectories

predictions. For comparison, we trained four agents, The first agent trained

exclusively with Reinforcement Leaning cannot provide valid predictions. The

second agent trained in 10 epochs with the goal conditioned low-level Behavior

Cloning (BC) algorithm was able to predict the correct root and the actual

altitude, in a quite adequate way. The third agent trained in 15 epochs with the

high-level goal conditioned Behavior Cloning (BC) algorithm was able to predict

several subgoals. However, all subgoals were from the middle of the route until

Istanbul airport, and the altitude predictions were not correct. Finally, the fourth

agent trained with the Relay Policy Learning (RPL) algorithm was able to improve

RIL predictions. We demonstrated the effectiveness of RPL method on

comparison of an original trajectory with the predicted trajectory when the agent

has been trained with the Relay Policy Learning (RPL) algorithm.

In conclusion, during this research, it became clear that the Relay Policy

Learning (RPL) algorithm [1] can be used to predict aircraft trajectories.

Furthermore, it improves generalization since it is trained on many subgoals. The

main advantage of the RPL algorithm is that it is simple and very general, in that

it can be applied to any demonstrated data, including easy to provide

unsegmented, and unstructured demonstrations of meaningful behaviours.

Therefore, for future work, we propose to further explore with off-policy

Reinforcement Learning methods.

 -59-

Bibliography

[1] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy

learning: Solving long-horizon tasks via imitation and reinforcement learning. In

CoRL, 2019.

[2] https://www.cs.utexas.edu/~yukez/cs391r_fall2021/slides/pre_11-

04_Harshit.pdf

[3] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imitation learning and

structured prediction to no-regret online learning. In AISTATS 2011.

[4] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region

policy optimization. CoRR, abs/1502.05477, 2015. URL

http://arxiv.org/abs/1502.05477.

[5] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement

learning. Discrete Event Dynamic Systems, 2003.

[6] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and

S. Levine. Learning complex dexterous manipulation with deep reinforcement

learning and demonstrations. In RSS 2018.

[7] Y. Zhu, Z. Wang, J. Merel, A. A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool,

J. Kramár, R. Hadsell, N. de Freitas, and N. Heess. Reinforcement and imitation

learning for diverse visuomotor skills. In RSS 2018.

[8] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel.

Overcoming exploration in reinforcement learning with demonstrations. ICRA

2018.

[9] L. P. Kaelbling. Learning to achieve goals. In Proceedings of the 13th

International Joint Conference on Artificial Intelligence. Chambéry, France,

August 28 - September 3, 1993, pages 1094–1099, 1993.

[10] O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical

reinforcement learning. In Advances in Neural Information Processing Systems

31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS

2018, 3-8 December 2018, Montréal, Canada., pages 3307–3317, 2018.

[11] https://github.com/aravindr93/mjrl

-60-

[12]https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_10111213.pdf

[13] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A

framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, 112:181–211, 1999

[14] R. Parr. Hierarchical Control and Learning for Markov Decision Processes.

PhD thesis, University of California, Berkeley, CA, 1998.

[15] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines.

In Advances in Neural Information Processing Systems: Proceedings of the 1997

Conference, Cambridge, MA, 1998. MIT Press.

[16] T. G. Dietterich. Hierarchical reinforcement learning with the maxq value

function decomposition. Journal of Artificial Intelligence Research, 13:227–303,

2000.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement

learning. Nature, 518(7540):529–533, 2015.

[18] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural

networks and tree search. Nature, 529 (7587):484–489, 2016.

[19] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”

NIPS, pp. 305–313, 1989.

[20] M. Bojarski et al., “End to End Learning for Self-Driving Cars,” arXiv

preprint arXiv:1604.07316, 2016.

[21] A. Giusti et al., “A Machine Learning Approach to Visual Perception of Forest

Trails for Mobile Robots,” in IEEE Robotics and Automation Letters., 2015, pp.

2377–3766.

[22] J. Nakanishi et al., “Learning from demonstration and adaptation of biped

locomotion,” in Robotics and Autonomous Systems, vol. 47, no. 2-3, 2004, pp.

79–91.

 -61-

[23] M. Kalakrishnan et al., “Learning Locomotion over Rough Terrain using

Terrain Templates,” in The 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2009.

[24] B. D. Ziebart et al., “Maximum Entropy Inverse Reinforcement Learning.” in

AAAI Conference on Artificial Intelligence, 2008, pp. 1433–1438.

[25] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement

learning,” in ICML, 2004, p. 1.

[26] C. Finn, S. Levine, and P. Abbeel, “Guided Cost Learning: Deep Inverse

Optimal Control via Policy Optimization,” in ICML, 2016.

[27] "Geopandas", Geopandas.org. [Online]. Available:

https://geopandas.org/en/stable/ [Accessed: 23 January 2024].

[28] "NumPy", Numpy.org. [Online]. Available: https://numpy.org/. [Accessed:

23 January 2024].

[29] "pandas - Python Data Analysis Library", Pandas.pydata.org, 2021. [Online].

Available: https://pandas.pydata.org/. [Accessed: 23 January 2024].

[30] "Gym: A toolkit for developing and comparing reinforcement learning.”

https://gymnasium.farama.org/index.html [Accessed: 23 January 2024].

[31] https://pytorch.org/. [Accessed: 23 January 2024].

[32] Antonin Raffin et al., "Stable-Baselines3: Reliable Reinforcement Learning

Implementations ", Journal of Machine Learning Research, 2021. [Online].

Available: https://jmlr.org/papers/volume22/20-1364/20-1364.pdf [Accessed:

25 January 2024].

[33] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P.

Sermanet. Learning latent plans from play. CoRR, abs/1903.01973, 2019.

[34] https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

[35] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:

nature 521.7553 (2015), pp. 436–444.

[36] https://doi.org/10.48550/arXiv.1707.06203

[37] https://doi.org/10.48550/arXiv.1709.03153

[38] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B.

McGrew, J. Tobin, P. Abbeel, and W. Zaremba. Hindsight experience replay.

CoRR, abs/1707.01495, 2017. URL http://arxiv.org/abs/1707.01495.

https://geopandas.org/en/stable/
https://gymnasium.farama.org/index.html
https://doi.org/10.48550/arXiv.1709.03153
http://arxiv.org/abs/1707.01495

-62-

[39]

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html

[40] https://matplotlib.org/ [Accessed: 23 January 2024]

[41] https://stable-baselines3.readthedocs.io/en/master/ [Accessed: 25 January

2024]

[42] https://sb3-contrib.readthedocs.io/en/master/ [Accessed: 25 January

2024]

[43] Raffin, Antonin and Hill, Ashley and Ernestus, Maximilian and Gleave,

Adam and Kanervisto, Anssi and Dormann, Noah. Stable Baselines3, 2019. URL

https://github.com/DLR-RM/stable-baselines3.

[44] https://sb3-contrib.readthedocs.io/en/master/modules/trpo.html#

[Accessed: 25 January 2024]

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
https://stable-baselines3.readthedocs.io/en/master/
https://sb3-contrib.readthedocs.io/en/master/
https://sb3-contrib.readthedocs.io/en/master/modules/trpo.html

