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Περίληψη 

Τα Συστήματα Εντοπισμού Διαδικτυακής Διείσδυσης είναι εξειδικευμένες συσκευές υλικού ή 
προγράμματα λογισμικού, τα οποία έχουν σχεδιαστεί και κατασκευαστεί με σκοπό τον 
εντοπισμό κακόβουλης κίνησης στο δίκτυο. Οι τεχνικές που χρησιμοποιούνται κατά τον έλεγχο 
των πακέτων της κίνησης στο δίκτυο είναι σε θέση να ανιχνεύσουν οποιαδήποτε δυνητική 
απειλή. Για αυτόν τον λόγο θεωρούνται σημαντικές, καθώς είναι το πιο κρίσιμο μέρος 
προκειμένου να είναι αποτελεσματικό ένα Σύστημα Εντοπισμού Δικτυακής Διείσδυσης. Οι 
επιτιθέμενοι, από την πλευρά τους, για να παρακάμψουν αυτά τα συστήματα, άρχισαν να 
δημιουργούν φορτία που δεν εντοπίζονται. Τα εν λόγω φορτία, τα οποία αποκαλούνται 
πολυμορφικά shellcodes, είναι σε θέση να κρυφθούν ή να μεταλλαχθούν ώστε να 
παρακάμψουν αυτούς τους μηχανισμούς ασφαλείας. Επομένως, σε αυτήν τη διατριβή 
παρουσιάζεται μία νέα Μηχανή, η οποία είναι ικανή να ανιχνεύει αυτού του είδους τα shellcodes 
ειδικά για 32-bit Windows λειτουργικά συστήματα σε ένα δίκτυο. Με το να προσομοιώνει 
στοιχεία ενός λειτουργικού συστήματος Windows, αυτή η Μηχανή αυξάνει την ανθεκτικότητά του 
και την αποτελεσματικότητά του σε σύγκριση με εναλλακτικές λύσεις. Επιπλέον, η εν λόγω 
Μηχανή ενσωματώνεται στο SEDUCE, ένα κατανεμημένο σύστημα ανίχνευσης shellcode που 
χρησιμοποιεί προσομοίωση CPU για τον έλεγχο της κίνησης στο δίκτυο. 

 

 

 

Λέξεις Κλειδιά: Ασφάλεια Δικτύων, Συστήματα Εντοπισμού Δικτυακής Διείσδυσης, 
Πολυμορφικά Shellcodes, Εσωτερικές Λειτουργίες Windows OS 

Abstract 

The Network Intrusion Detection Systems (NIDS) are specialized systems which may be either 
hardware devices or software programs that are designed and built for detecting malicious 
traffic in the networks. The techniques used when inspecting the packets of a network traffic, 
are able to detect any potential threat. For this reason, these techniques are the most critical 
part for a NIDS system to be effective. The attackers by their side to circumvent those systems, 
started to craft undetectable payloads. These payloads, so-called polymorphic shellcodes, are 
able to either hide or mutate themselves and may bypass these security mechanisms. As such, 
in this thesis a new Engine is introduced which is capable of detecting this kind of shellcodes 
specifically for 32-bit Windows operating systems in a network environment. By emulating 
components of a Windows operating system, this engine improves its resilience and 
effectiveness in comparison to alternative solutions. Additionally, this Engine is integrated in 
SEDUCE, a distributed shellcode detection system using CPU emulation for inspecting the 
network traffic. 

 

 

 

 

 

 

Key Words: Network Security, Network Intrusion Detection Systems, Polymorphic Shellcodes, 
Windows OS Innerworkings 
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1. Introduction 
A major security research issue is risen regarding the detection of polymorphic shellcodes in the 
network. Network traffic may include various data, which is not an easy task to distinguish 
benign traffic from malicious. Moreover, various NIDS solutions designed and built for this 
purpose, but none of them are bulletproof. Organizations or individuals keep researching on 
how to bypass these systems. As such, many vendors designing NIDS solutions, are trying their 
best to keep their systems up to date. But they are facing multiple issues. Despite of finding the 
optimal solution to handle the network traffic efficiently, vendors are researching for techniques 
capable of detecting advanced attacks. 

This thesis is providing a solution which results on building a robust and effective NIDS system, 
especially for the shellcodes detection. The proposed solution mitigates various challenges 
associated with commonly used techniques for detecting malicious traffic. One basic key factor 
in its implementation is that it is designed based on the innerworkings of a windows operating 
system. As such, it provides an advantage in detecting previously unknown attacks and is less 
susceptible to false positives.  

 

1.1 Buffer Overflow Attacks (BoF) 
For the purposes of this thesis, a detailed explanation of what a buffer overflow attack is will be 
provided, as polymorphic shellcodes are predominantly utilized in such exploits. Furthermore, it 
should be noted that this thesis solution is not limited to detect shellcodes in such forms of 
attacks. 

1.1 General 

A buffer overflow attack is a type of security vulnerability that occurs when a program writes 
more data to a buffer than it can hold, as a result it overruns the buffer's boundary and 
overwrites adjacent memory locations. This vulnerability can cause the program to behave in an 
unintended way, which can be exploited by attackers. 

 

The history of buffer overflow attacks can be tracked back to the 1960s, with early instances 
occurring in the form of errors in the developing process rather than intentional exploitation. 
However, on the 1980s and 1990s this vulnerability gained significant attention in the context of 
cybersecurity. In the 1988, this type of attack was utilized by the famous "internet worm" created 
by Robbert Tappan Morris, but it became widely recognized in the 1996 when the supervisor of 
the BugTraq, Aleph One, wrote an article for the electronic magazine with the title "Smashing 
The Stack For Fun and Profit"[1]. 

 

The fundamental idea behind a buffer overflow attack is that an attacker is able to overwrite 
critical program data, like return addresses, function pointers, and other control information in 
order to redirect the program's operations, allowing them to either execute malicious code to 
gain unauthorized access to the systems or instantly terminate the program's execution 
resulting to a denial of service. 

1.2 Technical Aspect of BoF 
In this chapter, buffer overflow attacks will be descripted in ΙA-32 architectures. 
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1.2.1 Registers 

The x86 processors have eight (8) 32-bit general purpose registers, as illustrated in Figure 1.[2] 
The naming of the registers are mostly historical. For example, EAX used to be called the 
accumulator since it was used for arithmetic operations. From these registers, the stack pointer 
(ESP) and the base pointer (EBP) are special purpose registers associated with the stack’ s 
boundaries. 

 

For the EAX, EBX, ECX, and EDX registers can be subdivided into smaller units. For instance, 
the least significant 2 bytes of EAX can be used as a 16-bit register called AX. The least 
significant byte of AX can be used as a single 8-bit register called AL, while the most significant 
byte of AX can be used as a single 8-bit register called AH. The use of sub-registers is when 
dealing with data. For instance, when working with different portions of data within the larger 32-
bit registers.[2] 

 

 

Figure 1 General-purpose Registers 

 

1.2.2 The Stack 

The stack operates as a Last-In-First-Out (LIFO) data structure, meaning that the most recent 
element placed onto the stack, also must be the first element to be removed.[3] The extended 
stack pointer (ESP) register points to the top of it, defining its boundaries. The stack-specific 
instructions, PUSH and POP, utilize ESP to determine the stack's location in memory. The 
following figure illustrates the result of ESP register after executing the instructions (Figure 2, 3): 
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push 3 

push 2 

push 1 

Figure 2 Push instructions executed 

 

Address Value  

0xfaff0008 3  

0xfaff0004 2  

0xfaff0000 1  ESP pointing to this address 

Figure 3 Result of ESP register when push  

 

And the following Figures 4,5 illustrates the result of ESP when the POP instruction is 
encountered: 

pop 3 

pop 2 

Figure 4 Pop instructions executed 

 

Address Value  

0xfaff0008 3  

0xfaff0004 2  

0xfaff0000 1  ESP pointing to this address 

Figure 5 Result of ESP register when pop 

 

As it is observed, the pop instruction only decrements its value without writing or erasing data. 

 

Moreover, there is the extended base pointer (EBP) register. EBP register is used to calculate 
an address relative to another address and along with ESP, plays a crucial role in forming the 
stack frame. The EBP, often referred to as the frame pointer, serves as a stable reference point 
within a function's stack frame. This reference point is crucial for accessing local variables and 
parameters efficiently. It is set up by pointing to the stack’s base address. Figure 6 

 

Address Value  

0xfaff0008 3  ESP pointing to this address 

0xfaff0004 2  

0xfaff0000 1  

0xfafefffc Base stack address  EBP pointing to this address 

Figure 6 Indication of EBP register 

 

In x86 assembly, the stack typically grows from higher to lower addresses, with each stack slot 
often being 4 bytes. So, if a variable is two stack slots away from the base pointer (EBP), it is 
accessed as [EBP + 8]. 
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1.2.3 Program Functions 

When developing a program, the creation of functions is very important. They are offering to the 
developers better readability and also the ability to reuse the same code. Moreover, functions 
allow developers having their code more manageable.  

 

During a program’s execution, when a function is invoked, the control flow is transferred to the 
beginning of that function and as a result, a new stack frame is allocated on the stack. This 
newly created stack frame holds local variables, function parameters, and control data specific 
to the called function. The stack pointer as mentioned above, represented by the ESP register 
in x86 architectures, always pointing to the top of the stack frame and it is adjusted to create 
space for the newly allocated stack frame. Furthermore, the return address, indicating the next 
instruction to execute after the function completes its tasks, is pushed onto the stack. The return 
address is represented by the EIP register. [3] 

 

It's important to note that, before any instructions within the function are executed, the function 
prologue is taking place. The prologue is a set of instructions at the beginning of a function, 
typically responsible for setting up the function's stack frame. Figure 7 

 

push ebp ; Save the previous value of EBP 

mov esp, ebp ; Set up the new base pointer 

Figure 7 Prologue of a function 

 

During the execution of the function, the return address remains on the stack, and local 
variables, function parameters, or control-specific data may be manipulated to accomplish the 
function’s tasks. 

 

Once the function completes its tasks and is ready to return, the result, if any, is often stored in 
a designated register. Subsequently, the stack frame of the current function is then popped off 
the stack, freeing up the allocated space. Simultaneously, the return address is retrieved from 
the function’s stack frame, allowing the program to resume execution from the correct point in 
the calling code. This task is called epilogue (Figure 8). More specifically, the process of the 
epilogue involves saving the previous value of the base pointer (EBP) and the new base pointer 
is set to the current value of the stack pointer (ESP). 

 

pop ebp ; Restore the previous value of EBP 

ret ; Return to the calling function 

Figure 8 Epilogue of a function 

 

In a buffer overflow vulnerability, an attacker, taking into account the previously mentioned 
details, will try to manipulate the return address in a way that redirects the program execution to 
their intended destination. More specifically, before a function returns, they will try to take 
control of the return address by overwriting it with their intended data. Such scenarios may be 
accomplished when local variables are controlled by an attacker.  
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1.2.4 Stack Overflow 

 

The following program (Figure 9) is taking as input some characters from the command line 
(controlled by the user). Then, it copies the content of the input in a declared array of 12-
character size with the name “c”. As it is observed, the vulnerable “strcpy” function is not 
checking the size of the given input. As a result, by giving more than 12 characters from the 
command line, the stack of the “vulnerableFunction” is overflowed. 

 

#include <string.h> 

 

void vulnerableFunction(char *attackerInput){ 

char c[12]; 

 

strcpy(c, attackerInput);  // no bounds checking 

} 

 

int main(int argc, char **argv){ 

vulnerableFunction(argv[1]); 

   return 0; 

} 

Figure 9 Stack after prologue 

 

An attacker may control the return address by giving sixteen (16) “A” characters and four (4) 
characters – bytes (since each character is a byte). The last four characters- bytes will overwrite 
the return address and point to a controlled destination. A visual representation is given when 
“vulnerableFunction” is initialed (Figure 10) and the result after the execution of the program by 
taking as input sixteen (16) “A” and 4 bytes contain the “0x0835C080” hex bytes (Figure 11). 

 

 

Figure 10 Initialized Stack before execution 
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Figure 11 Overwriting return address 

1.2.5 NOP Sleds 

A NOP sled, alternatively known as a NOP slide, refers to an extensive sequence of No-
Operation (NOP) instructions positioned before the actual shellcode.[4] Figure 12. They are 
used for increasing the chances for a successful exploitation of the program. Although, not 
mandatory, they frequently used. Their purpose is to increase the reliability of an exploit. More 
specifically, if the execution of the program directed to any point within the NOP sled, the 
shellcode will eventually be executed. 

 

Traditional NOP sleds consist of extended sequences of the NOP (No-Operation) instruction, 
often represented as 0x90 in hexadecimal. Attackers from their side, crafting those NOP 
instruction alternatively in order to avoid detection patters. The opcodes in the 0x40 to 0x4f 
range are often used because they correspond to single-byte instructions that increment or 
decrement general-purpose registers. For instance, the “inc eax” is the “0x40” hex 
representation. 

 

 

Figure 12 Nop Sleds and shellcode 
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1.3 Shellcode Insights 
Shellcode is a piece of executable code, generally referred as payload, to exploit vulnerabilities 
within a system or execute malicious commands. The term originates from its typical function of 
launching a command shell, providing attackers with control over a compromised system. 
Moreover, shellcodes are specifically crafted to take advantage of specific software 
vulnerabilities, allowing attackers to bypass security measures and gain control over 
compromised systems. In the context of buffer overflows, an attacker, upon gaining control of 
the return address, typically injects a shellcode payload (raw-byte instructions) to redirect the 
program as desired. 

 

Various types of shellcodes include: 

 

 Reverse Shell Shellcode: Establishes a connection between the compromised system 
and an attacker-controlled system, facilitating remote access to the compromised 
machine. 

 Bind Shell Shellcode: Establishes a network on the compromised system to initiate a 
connection with the attacker, allowing them to control the targeted system. 

 File Download Shellcode: Exploits vulnerabilities to download and execute a malicious 
file from a remote server onto the compromised system. 

 Shellcode for Local Privilege Escalation: Exploits operating system vulnerabilities to 
elevate the attacker's privileges, granting administrative or root access. 

1.4 Metamorphic and Polymorphic Shellcodes 
In order to defend against these kinds of attacks, the defenders created security mechanism to 
detect these shellcodes. As a response, the attackers start crafting more sophisticated 
shellcodes to bypass these mechanisms and achieve their goals. These shellcodes can be 
categorized to metamorphic and polymorphic shellcodes.  

 

Polymorphism refers to a type of malicious code or shellcode that has the ability to change its 
appearance dynamically while maintaining its original functionality. More specifically, the 
polymorphic shellcode may decrypt its code, execute it and then propagate itself encrypted with 
a different key. Then, when executed on different machine, it executes the same code. Instead, 
metamorphic shellcodes simply execute their code and then, during propagation, they mutate 
itself resulting to a different functionality code. The key difference between them is that 
metamorphism changes its underlying code. [5] 

 

Attackers, most of the times, craft shellcodes combining both of these categories. For the 
purpose of this thesis, when we mention polymorphic shellcodes, we will refer in their 
combination. Moreover, in this thesis we are addressing how to detect payloads that they have 
an encrypted shellcode along with their decryption routine and in top of that the NOP Sleds. 
Figure 13.  

 

 

Figure 13 Under Inspection Payload 
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1.5 Thesis Contribution 
This thesis introduces a Windows Detection Engine capable of detecting windows specific 
shellcodes in a network traffic. Its purpose is to detect advanced shellcodes such as 
metamorphic or polymorphic shellcodes for a 32-bit Windows operating system. This Engine is 
integrated in the “Shellcode Detection Using CPU Emulation” (SEDUCE), a Network Intrusion 
Detection System detecting shellcodes based on the technique of CPU emulation. More 
specifically, the Engine will be fed traffic from the network (raw bytes) and it will be capable of 
detecting if a system call in a Windows environment occurred. Furthermore, the focus on the 32-
bit architecture is intentional due to the fact that many legacy systems and certain environments 
still rely on 32-bit versions of the Windows operating system. 

 

1.6 Thesis Structure 
Since most of this these shellcodes exploit vulnerabilities such as buffer overflows, this thesis, 
in Chapter 1, is describing some basic concepts for an attacker to achieve a buffer overflow 
attack to compromise a system. More precisely, there is a briefly historical review regarding how 
buffer overflows occurred. Later, the technical aspects of a buffer overflow attack are presented 
such as how the stack or program functions work and most importantly how attackers achieve to 
exploit it. Then, a detailed explanation is given about what the shellcodes are among with how 
attackers hide them and how they seem from a network traffic perspective.  

In Chapter 2, the inner workings of a Network Intrusion Detection System are presented along 
with their currently techniques used. The advantages of this thesis solution compared to other 
Network Intrusion Detections Systems is also examined.  

In Chapter 3, some basic concepts regarding the Windows OS inner functionality are described, 
since the introduced Engine of this thesis act as a Windows OS emulator. Moreover, following 
each functionality description, a shellcode’s action will be presented. The basic concepts consist 
of: (a) how a Windows OS executing system calls, (b) which are the basic structures of a 
Windows OS along with their purposes, and (c) what actions are taken when a Windows OS 
operates with memory regarding some basic registers which a Windows OS frequently uses.  

In Chapter 4, detailed analysis of the thesis’s Engine implementation will be presented. More 
specifically, it will be described in details the structure of the memory map and how the memory 
layout is created. Additionally, all the helper and basic functions will be analyzed as they are the 
core functionality of this Engine.  

In Chapter 5, the User’s Manual is provided. More specifically, all the mandatory dependencies 
are presented which they should be installed and detailed instructions on how to build the 
thesis’s Engine. 

In Chapter 6, a presentation of the dataset preparation is provided. Moreover, it is presented a 
Proof-of-Concept that the Engine is capable of detecting polymorphic shellcodes and a general 
discussion regarding the results based on the detection time duration of them. 

In Chapter 7, conclusions based on the results from the preceding chapter will be presented. 
Furthermore, suggestions for future enhancements will be given for making the Engine more 
robust and effective. 
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2. Field Research 
In the network level, generally it is very difficult to detect the abovementioned shellcodes due to 
their capability to hide themselves with sophisticated techniques. Multiple systems with different 
techniques created for inspecting such malicious network traffics. This thesis, although 
introduces an Engine capable for detecting advanced shellcodes, it is integrated in a NIDS 
system using a technique which is more robust than other NIDS for detecting such shellcodes in 
a network traffic. 

 

2.1 Network Intrusion Detection System (NIDS) 
Network Intrusion Detection Systems (NIDS) is designed to identify and respond to potentially 
malicious traffic in the network. More specifically, they are capable to inspect the network traffic 
and, if any suspicious packet identified, it would report this incident to a Security Information 
and Event Management (SIEM) system. At the same time, it will drop this packet before 
reaching the destination system. NIDS may be either a hardware device or a software 
application monitoring inbound or outbound network traffic and usually placed behind a firewall. 
Figure 14. Multiple techniques are invented for detecting the malicious traffic. [6] 

 

 

Figure 14 NIDS Placement 

 

2.2 Detection Techniques of NIDS 

2.2.1 Signature-based Detection 

The Signature-based technique is the most common used by most NIDS. It is inspecting the 
network traffic based on signatures, patters or known identified events. [7] In the context of a 
polymorphic shellcodes, it may try to match the decryption routine or the nop sleds based on 
existing data in its database. For this reason, these NIDS always should have their database up 
to date. The consequences of this technique are that it relies on already identified events, 
meaning that it cannot detect new attack vectors. Moreover, the database of such systems is 
increasing as new event-entries should be inserted in. As a result, the processing time, for each 
packet inspection, will be increased causing high delays when packets are transmitted. 
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2.2.2 Anomaly-based Detection 

NIDS using anomaly-based detection, are creating a base-line network traffic. More specifically, 
they inspect the network traffic how it normally should be and if any abnormally traffic detected, 
they will report it to the Security Information and Event Management (SIEM) system. The 
malicious traffic if should be rejected or not, is based on their configuration. The consequences 
of this technique are that these types of NIDS are inspecting the traffic generally and not the 
actual payload. Moreover, they are prone to false positives. For instance, previously unknown 
traffic, but legitimate behavior can also get flagged accidentally. 

 

2.2.3 Emulation-based Detection 

The Emulation-based technique was firstly introduced by Polychronakis [9]. NIDS systems using 
this technique, are inspecting the network traffic by executing portions of traffic packets based 
on an emulated environment. More specifically, this environment may try to execute the network 
traffic as CPU instructions and if a malicious shellcode detected, it will report the event to a 
SIEM system. Simultaneously, based on configuration settings, these packets will either be 
dropped to prevent the threat or omitted. These kinds of NIDS are very effective because: (a) 
they may detect previously unknown polymorphic shellcodes- resilient to new type of attacks, 
(b) is not relying to any kind of database due to their dynamic inspection nature, (c) they inspect 
the actual traffic and focusing on the payloads and (d) they are less prone to false positives 
because the network traffic is executed in an emulated environment. Generally, this technique 
overcomes the consequences of the other two techniques. 

2.3 Shellcode Detection Using CPU Emulation 
SEDUCE is a tiny network intrusion detection system which is using the emulation-based 
technique. It consists of a sensors-agents schema. The sensors are placed strategically in the 
front line of the network. They are responsible for collecting based on filters the network traffic 
and distributing it to the agents. On the other side, the agents are placed after the sensors. 
They are responsible for inspecting the network traffic delivered by the sensors, and upon any 
malicious data found, they will immediately report to a SIEM system.[10]. The solution 
implemented in this thesis, is extending the capabilities of an agent by detecting 32-bit windows 
specific polymorphic shellcodes in a network. More specifically, combining the emulation-based 
technique with the integration of the engine within the agent - which functions as an emulator of 
a Windows operating system - significantly enhances the robustness and effectiveness of 
SEDUCE compared to other solutions, particularly when deployed in front of Windows host 
devices. 
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3. Design 

3.1 Windows Internals 
To design a Windows engine that detects shellcodes specific to Windows x86, it is crucial to 
understand how Windows facilitates system calls. In contrast to Linux, where applications can 
“directly” access system calls through interrupt software functions, Windows applications 
operate differently. They follow a distinct, lengthier route to utilize system calls. More 
specifically, they are designed to rely on functions from the Windows API. These Windows API 
functions, in turn, invoke functions from the Native API, which utilize the system calls. [11] The 
Native API functions are undocumented and are implemented in the ntdll.dll file. Moreover, they 
represent the lowest level of abstraction in the user-mode level. The following Figure 15 
illustrates the abstraction layer between user and kernel mode. 

 

 

Figure 15 Windows Architecture 

 

The documented functions, utilized by developers through the Windows API, are residing inside 
the dll files. Some of the libraries are the kernel32.dll, advapi32.dll, gdi32.dll and are many 
more, depending on the specific task to be executed. The most commonly used functions, 
crucial for interacting with core services like working with file systems, processes, devices, etc, 
are provided by kernel32.dll. 

 

Attackers in order to craft stable shellcodes for Windows, may utilize functions generally from 
the Windows API functions. The three most vital libraries kernel32.dll, kernelbase.dll and 
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ntdll.dll, are so fundamental that they are imported by almost every process. As a Proof-of-
Concept Figure 16 and Figure 17 illustrate the loaded dlls from some common processes 
“explorer.exe” and “notepad.exe”, using the tool ListDLLs contained in the Sysinternals Suite of 
Windows.[12] 

 

 

Figure 16 Listing loaded DLLs for explorer.exe 

 

Figure 17 Listing loaded DLLs for notepad.exe 

 
It should be noted that the base addresses of DLLs are the same across processes on the 
same machine because DLLs are loaded into memory once and shared among multiple 
processes using a technique called DLL sharing. However, they will differ across machines and 
across reboots. 
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3.2 PE and Win32 API (DLLs) 

3.2.1 Portable Executable (PE)  

Every executable file follows a standard format known as Common Object File Format (COFF). 
The PE file format, a specific COFF format, is available for executable files, object code, DLLs, 
etc. for both 32-bit and 64-bit versions of Windows operating systems. In contrast, Unix-based 
systems, including Linux, the available files are the Executable Link File (ELF) format. 

 

Portable Executable file format is a data structure which is providing with all the necessary 
information the Windows OS loader how to manage the wrapped executable code. This 
includes dynamic library references for linking, the tables containing the import and export APIs, 
data dedicated to resource management, Thread Local Storage (TLS) data etc. Moreover, when 
PE files are loaded into memory via the Windows loader, the in-memory version is known as a 
module and it consists of the DOS Header, DOS Stub, PE File Header, Image Optional Header, 
Section Table, Data Dictionaries, and Sections. Figure 18. [13]. An important term “Relative 
Virtual Address (RVA)” is the distance between the beginning of a section or data structure and 
the base address of the module. 

 

Regarding the DLLs in-memory modules, after a shellcode is injected, may traverse several 
headers of these modules in order to find the base address of functions that it will then use for 
utilizing systems calls. For instance, the path that an attacker’ s shellcode is usually following is 
(finding the WinExec function inside the kernel32.dll): 

1) Determine the Relative Virtual Address (RVA) of the PE signature by adding the base 
address and an offset of 0x3C bytes. 

2) Calculate the address of the PE signature by adding the base address to the previously 
obtained RVA of the PE signature. 

3) Identify the RVA of the Export Table by adding the address of the PE signature to an 
offset of 0x78 bytes. 

4) Determine the address of the Export Table by combining the base address with the 
RVA of the Export Table. 

5) Find the count of exported functions by adding 0x14 bytes to the address of the Export 
Table. 

6) Obtain the RVA of the Address Table by adding 0x1C to the address of the Export 
Table. 

7) Find the address of the Address Table by combining the base address with the RVA of 
the Address Table. 

8) Determine the RVA of the Name Pointer Table by adding 0x20 bytes to the address of 
the Export Table. 

9) Find the address of the Name Pointer Table by adding the base address to the RVA of 
the Name Pointer Table. 

10) Identify the RVA of the Ordinal Table by adding 0x24 bytes to the address of the Export 
Table. 

11) Determine the address of the Ordinal Table by combining the base address with the 
RVA of the Ordinal Table. 

12) Iterate through the Name Pointer Table, comparing each string (name) with "WinExec" 
and keeping track of the position. 

13) Find the WinExec ordinal number from the Ordinal Table by adding (position * 2) bytes 
to the address of the Ordinal Table (each entry is 2 bytes). 

14) Obtain the function RVA from the Address Table by adding (ordinal_number * 4) bytes 
to the address of the Address Table (each entry is 4 bytes). 
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15) Find the function address by adding the base address to the obtained function RVA. 

 

 

Figure 18 PE Format 

 



MSc Thesis Dimitrios Tsilis 

Distributed Shellcode Detection System                                                                                       21 

3.2.2 Win32 API (DLLs) 

The Win32 API, or Windows API, refers specifically to the application programming interface 
provided by Microsoft for developing applications on the Microsoft Windows operating system. 
[11]. The "32" in Win32 refers to the 32-bit architecture of the Windows operating system. While 
modern versions of Windows support both 32-bit and 64-bit architectures, the term "Win32" is 
still commonly used to refer to the API as a historical convention. It is a set of functions and data 
structures that a Windows program can use to ask Windows to do a specific task, like opening a 
file, displaying a message, etc. Figure illustrates the chained reaction when “VirtualAlloc” 
function is called from kernel32.dll file. 

 

 

Figure 19 "VirtualAlloc" API Path 

 
As described in the 3.1 Windows Internals chapter, crafted shellcodes are utilizing functions 
from Win32 API residing in specific dlls. Knowing that dlls are PE files, they are mostly 
interested and searching for those functions inside the export table of these files as described 
previously.  

 

3.3 PEB and TEB structures 

3.3.1 Process Environment Block 

The PEB (Thread Environment Block) is a data structure that holds information about a process 
and is present in memory for every running process. It has been present in Windows since the 
introduction of Win2k (Windows 2000). [11] 

 

It provides information about a process at both kernel mode and user mode. Moreover, it is a 
structure available for every process at a fixed address in memory. For x86 processes, it can be 
found at fs:[0x30] in the Thread Environment Block (TEB), and for x64 processes, it's typically 
located at gs:[0x60]. 
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This structure contains useful information regarding the process, including the process name, 
process ID, pointers to other structures such as to PEB_LDR_DATA, and much more. The 
following Figure 20 illustrates some of its members. 

 

typedef struct _PEB { 

  BYTE                          Reserved1[2]; 

  BYTE                          BeingDebugged; 

  BYTE                          Reserved2[1]; 

  PVOID                         Reserved3[2]; 

  PPEB_LDR_DATA                 Ldr; 

  PRTL_USER_PROCESS_PARAMETERS  ProcessParameters; 

  PVOID                         Reserved4[3]; 

  PVOID                         AtlThunkSListPtr; 

  PVOID                         Reserved5; 

  ULONG                         Reserved6; 

  PVOID                         Reserved7; 

  ULONG                         Reserved8; 

  ULONG                         AtlThunkSListPtr32; 

  PVOID                         Reserved9[45]; 

  BYTE                          Reserved10[96]; 

  PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine; 

  BYTE                          Reserved11[128]; 

  PVOID                         Reserved12[1]; 

  ULONG                         SessionId; 

---------More Members------------------------------------------ 

} PEB, *PPEB; 

Figure 20 Process Environmental Block Structure 

 

3.3.2 Thread Environment Block 

In a process, there can be one or more threads, and typically, each process begins with a single 
primary thread. Additional threads are created as needed. Despite sharing the same virtual 
addresses, each thread possesses its own set of resources, including exception handlers, local 
storage, and more. So, like PEB, each thread has a TEB (Thread Environment Block). residing 
in the process address space. It is also known as Thread Information Block (TIB). [11] 

 

Moreover, the address of the TEB can be retrieved through the FS register for 32-bit Windows 
operating systems and via the GS register for 64-bit Windows operating systems. This 
mechanism allows for efficient access to thread-specific details and supports the functionality of 
a multi-threaded process. 

 

The TEB is a crucial data structure containing information essential to the execution context of 
each thread. Within the TEB, valuable details include thread-specific data such as the thread ID 
and initial stack address, exception handling information for managing errors, details about 
loaded DLLs including base addresses and entry points, and an array for Thread Local Storage 
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(TLS) allowing threads to have their own set of variables. The following Figure 21 illustrates 
some of its members.  

 

typedef struct _TEB { 

  PVOID Reserved1[12]; 

  PPEB  ProcessEnvironmentBlock; 

  PVOID Reserved2[399]; 

  BYTE  Reserved3[1952]; 

  PVOID TlsSlots[64]; 

  BYTE  Reserved4[8]; 

  PVOID Reserved5[26]; 

  PVOID ReservedForOle; 

  PVOID Reserved6[4]; 

  PVOID TlsExpansionSlots; 

----------More Members-------------------------------------- 

} TEB, *PTEB; 

Figure 21 Thread Environmental Block Structure 

3.4 PEB_LDR_DATA and LDR_MODULE 
The PEB Loader Data, or PEB_LDR_DATA, structure is a Windows Operating System structure 
that contains information about all of the loaded modules (DLLs) in the current process.[14]. The 
operating system links to the PEB_LDR_DATA structure in the Process Environment Block 
(PEB) at a specific offset. More specifically, the PEB structure includes a field that points to the 
PEB_LDR_DATA structure, and it is located at offset 0x0C from the beginning of the PEB. The 
following Figure 22 illustrates its structure. 

 

typedef struct _PEB_LDR_DATA { 

   uint32_t Length; 

   _Bool Initialized; 

   uint32_t SsHandle; 

   LIST_ENTRY InLoadOrderModuleList; 

   LIST_ENTRY InMemoryOrderModuleList; 

   LIST_ENTRY InInitializationOrderModuleList; 

} PEB_LDR_DATA, *PPEB_LDR_DATA; 

Figure 22 PEB Loader Data Structure 

 

The LIST_ENTRY structure typically contains two pointers, Flink and Blink, which stand for 
"Forward link" and "Backward link", respectively (Figure 23). These pointers allow elements to 
be linked in both directions, forming a doubly linked list. 

 

typedef struct _LIST_ENTRY { 

  uint32_t Flink; 

  uint32_t Blink; 

} LIST_ENTRY, *PLIST_ENTRY; 



MSc Thesis Dimitrios Tsilis 

Distributed Shellcode Detection System                                                                                       24 

Figure 23 LIST_ENTRY Structure 

 

Also, each DLL loaded into the process has its own LDR_MODULE structure (Figure 24). The 
LDR_MODULE structure holds essential information about a loaded module, including its base 
address, entry point, size, and names. This structure is part of the linked list of modules and is 
often accessed through the PEB_LDR_DATA structure. 

 

typedef struct _LDR_MODULE { 

   LIST_ENTRY InLoadOrderModuleList; 

   LIST_ENTRY InMemoryOrderModuleList; 

   LIST_ENTRY InInitializationOrderModuleList; 

   uint32_t BaseAddress; 

   uint32_t EntryPoint; 

   uint32_t SizeOfImage; 

   UNICODE_STRING FullDllName; 

   UNICODE_STRING BaseDllName; 

   uint32_t Flags; 

   int16_t LoadCount; 

   int16_t TlsIndex; 

   LIST_ENTRY HashTableEntry; 

   uint32_t TimeDateStamp; 

} LDR_MODULE, *PLDR_MODULE; 

Figure 24 Loader Module Structure 

 

PEB_LDR_DATA is the head of the list. It has both forward and backward links to other 
elements, forming a doubly linked list. These links help traverse the list in both directions. As for 
LDR_MODULE, these entries are interconnected with PEB_LDR_DATA, forming a dynamic 
chain which is traversable in order to find any loaded LDR_MODULE. 

 

Windows constructs the list of the loaded DLLs based on the order they (1) were loaded by the 
windows loader (InLoadOrderModuleList), (2) are found in the memory layout 
(InMemoryOrderModuleList), (3) were initialized (InInitializationOrderModuleList).  

 

Polymorphic shellcodes typically traverse the PEB_LDR_DATA structure and the linked 
LDR_MODULE structures in order to find the base address of loaded dlls needed to utilize 
functions inside them.  

3.5 Importance of FS and GS Registers 
In Windows operating systems, the FS (Frame Segment) and GS (General Segment) registers 
play important roles. For 32-bit windows operating systems, the FS register is used to point to 
TEB structure for each created process/thread. In 64-bit versions the GS register is used for 
same purpose. [11]. Polymorphic shellcodes very often will contain instructions using the FS or 
GS registers to reach TEB and, in turn PEB with the purpose of finding dlls loaded into memory.  

 

These registers contain a value called selector holding the index in the Global Descriptor Table 
where TEB structure may be found. Figure 25. 
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Figure 25 Segment Selector 

3.5.1 Global Descriptor Table 

The Global Descriptor Table (GDT) is a binary data structure specific to the IA-32 and x86-64 
architectures. It contains entries telling the CPU about memory segments and also defines base 
access privileges for certain parts of memory. [15] The GDT’s role is to manage memory 
segments and set up the necessary descriptors for code, data, and other segments. Moreover, 
there is a special register (GDTR) holding the value pointing to GDT. The following Figure 26 
and Figure 27 illustrating the GDTR register and GDT Table, respectively. 

 

 

Figure 26 GDTR Register 

 

 

Figure 27 Global Descriptor Table 

 

The x86 architecture has two methods of memory protection and of providing virtual memory - 
segmentation and paging. In the 32-bit version of Windows, each process has its own set of 
segment descriptors in the GDT, which are managed by the operating system. The GDT is 
responsible for defining the memory segments for both user-mode and kernel-mode execution. 
 

3.5.2 Segment Registers 

In x86 architecture, segment registers are special-purpose registers that are used in conjunction 
with memory segmentation [15]. The most used segment registers are: 

 

1. CS (Code Segment): Points to the base address of the code segment. The instruction pointer 
(EIP or RIP in 32-bit or 64-bit mode, respectively) contains the offset within this segment. 
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2. DS (Data Segment): Points to the base address of the data segment. Used for data 
accesses. 

 

3. ES (Extra Segment): Historically used as an additional data segment in certain operations. 

 

4. FS and GS (F and S letters comes after the E – Extra Segment): Additional segment registers 
introduced to provide extra segments for certain operations.  

 

3.6 Overall Design 
A shellcode’s main purpose is to reach the desired function in order to execute a system call. To 
achieve this goal, it has to traverse several structures when injected into a process. The 
traversal path usually is “TEB->PEB->PEB_Ldr_DATA->InMemoryOrderLoadList-
>currentProgram->ntdll base address->kernel32 base address”. Then, when finding the 
appropriate dll’s base address (kernel32.dll in our case), it will search for the desired function in 
it as described in the Portable Executable (PE) chapter. So, the constructed Engine should 
consist of the following: 

a) a Process Environment Block structure along with its structured members. 

b) a Thread Environment Block structure along with its structured members. 

c) a PEB Loader Data structure. 

d) a structure for the loaded in-memory modules (kernel32.dll) 

e) a structure for the Global Descriptor Table. 

All these structures should be loaded into a virtual memory and interconnect with each other, 
allowing a shellcode to traverse as it wants. Lastly, the FS register should hold the value index 
for finding the appropriate entry (TEB structure) in the GDT. 
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4. Implementation 
In the SEDUCE project, the “detection_engine_unicorn_windows_x86.c”and “winternl.h” files 
are created. The first one is responsible for the initialization and, generally, the running process 
of the Engine. Also, it is responsible to map the memory properly and write into it all the 
necessary structures needed. Regarding the “winternl.h” file, all the windows specific structures 
are declared and are used by the routines of the Engine. 

4.1 Library Inclusions  
The basic libraries used to build the Windows Engine are the Unicorn Engine project and the 
libpe library under the project “readpe - PE Utils”. 

4.1.1 Unicorn Engine 

Unicorn Engine is a lightweight, multi-platform, multi-architecture CPU emulator framework, 
based on QEMU. [16] It is designed to provide a flexible and efficient platform for emulating 
instructions across various architectures. A notable difference between Unicorn and QEMU is 
that we only focus on emulating CPU operations, but do not handle other parts of computer 
machine like QEMU. 
 
Its core provides an API in C such as: 

 Opening and closing Unicorn instance created. 
 Starting and stopping the emulation based on end-address, time or instructions count 

given parameters. 
 Reading and writing into memory based on given memory regions given. 
 Read and writing to the cpu registers. 
 Providing memory management, such as hook memory events for invalid memory 

access or dynamically map memory at runtime in order to handle invalid/missing 
memory regions. 

4.1.2 libpe  

The libpe library under the project “readpe - PE Utils” is used to handle the parsing and analysis 
of PE files. [17] It provides an API in C to extract information from PE files programmatically, 
such as headers, sections, and other details embedded within these files. More specifically, for 
our purpose, it will be used to parse the kernel32.dll for writing its raw-byte content in the 
memory. Also, it will be used for parsing the exported functions along with their relative virtual 
addresses and writing them into memory, in case a windows system call occurred. 

4.2 Basic Windows structures 
The “winternl.h” header file contains all the necessary structures that will be initialized by the 
functions declared in the “detection_engine_unicorn_windows_x86.c” file. More specifically, it 
contains the structures for the Process Environment Block, Thread Environment Block, PEB 
Loader Data and Loader Modules (dll loaded in memory). Moreover, it contains the structures 
which are declared as members inside the aforementioned structures. It should be noted that 
for the structures Process Environment Block and the Thread Environment Block, the “#pragma 
pack(push, 8)” preprocessor directive is in effect. This directive instructs the compiler to adjust 
the alignment of structure members. The number represents the byte alignment and setting it to 
8 means that the structure members will be aligned on 8-byte boundaries. The following Figures 
28-37 illustrate the contained structures in this file. 
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typedef struct _LIST_ENTRY { 

  uint32_t Flink; 

  uint32_t Blink; 

} LIST_ENTRY, *PLIST_ENTRY; 

Figure 28 LIST_ENTRY Structure 

 

typedef struct _UNICODE_STRING { 

  uint16_t Length; 

  uint16_t MaximumLength; 

  uint32_t  Buffer; 

} UNICODE_STRING, *PUNICODE_STRING; 

Figure 29 UNICODE_STRING Structure 

 

typedef struct _LDR_MODULE { 

   LIST_ENTRY InLoadOrderModuleList; 

   LIST_ENTRY InMemoryOrderModuleList; 

   LIST_ENTRY InInitializationOrderModuleList; 

   uint32_t BaseAddress; 

   uint32_t EntryPoint; 

   uint32_t SizeOfImage; 

   UNICODE_STRING FullDllName; 

   UNICODE_STRING BaseDllName; 

   uint32_t Flags; 

   int16_t LoadCount; 

   int16_t TlsIndex; 

   LIST_ENTRY HashTableEntry; 

   uint32_t TimeDateStamp; 

} LDR_MODULE, *PLDR_MODULE; 

Figure 30 LDR_MODULE Structure 

 

typedef struct _PEB_LDR_DATA { 

   uint32_t Length; 

   _Bool Initialized; 

   uint32_t SsHandle; 

   LIST_ENTRY InLoadOrderModuleList; 

   LIST_ENTRY InMemoryOrderModuleList; 

   LIST_ENTRY InInitializationOrderModuleList; 

} PEB_LDR_DATA, *PPEB_LDR_DATA; 

Figure 31 PEB_LDR_DATA Structure 
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typedef struct _RTL_USER_PROCESS_PARAMETERS { 

  uint8_t Reserved1[16]; 

  uint32_t Reserved2[10]; 

  UNICODE_STRING ImagePathName; 

  UNICODE_STRING CommandLine; 

} RTL_USER_PROCESS_PARAMETERS, *PRTL_USER_PROCESS_PARAMETERS; 

Figure 32 RTL_USER_PROCESS_PARAMETERS Structure 

 

typedef struct _NT_TIB { 

    uint32_t ExceptionList; 

    uint32_t StackBase; 

    uint32_t StackLimit; 

    uint32_t Reserved1; 

    uint32_t Reserved2; 

    uint32_t Reserved3; 

    uint32_t Self; 

} NT_TIB, *PNT_TIB; 

Figure 33 NT_TIB Structure 

 

typedef struct _CLIENT_ID { 

    uint32_t UniqueProcess; 

    uint32_t UniqueThread; 

} CLIENT_ID, *PCLIENT_ID; 

Figure 34 CLIENT_ID Structure 

 

typedef struct _GDI_TEB_BATCH { 

    uint32_t Offset; 

    uint32_t HDC; 

    uint32_t Buffer[310]; 

} GDI_TEB_BATCH, *PGDI_TEB_BATCH; 

Figure 35 GDI_TEB_BATCH Structure 

 

typedef struct _PROCESSOR_NUMBER { 

    uint16_t Group; 

    uint8_t Number; 

    uint8_t Reserved; 

} PROCESSOR_NUMBER, *PPROCESSOR_NUMBER; 

Figure 36 PROCESSOR_NUMBER Structure 
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typedef struct _GUID { 

    uint32_t Data1; 

    uint16_t Data2; 

    uint16_t Data3; 

    uint8_t Data4[8]; 

} GUID, *PGUID; 

Figure 37 GUID Structure 

 

#pragma pack(push, 8)  // Set packing to 8 bytes 

typedef struct __TEB { 

    NT_TIB NtTib; 

    uint32_t EnvironmentPointer; 

    CLIENT_ID ClientId; 

    uint32_t ActiveRpcuint32_t; 

    uint32_t ThreadLocalStoragePointer; 

    uint32_t ProcessEnvironmentBlock;  // PPEB 

    uint32_t LastErrorValue; 

    uint32_t CountOfOwnedCriticalSections; 

    uint32_t CsrClientThread; 

    uint32_t Win32ThreadInfo; 

    uint32_t User32Reserved[26]; 

    uint32_t UserReserved[5]; 

    uint32_t WOW32Reserved;  // ptr to wow64cpu!X86SwitchTo64BitMode 

    uint32_t CurrentLocale; 

    uint32_t FpSoftwareStatusRegister; 

    uint32_t SystemReserved1[54]; 

    uint32_t ExceptionCode; 

    uint32_t ActivationContextStackPointer;  // PACTIVATION_CONTEXT_STACK 

    uint8_t SpareBytes[36]; 

    uint32_t TxFsContext; 

    GDI_TEB_BATCH GdiTebBatch; 

    CLIENT_ID RealClientId; 

    uint32_t GdiCachedProcessuint32_t; 

    uint32_t GdiClientPID; 

    uint32_t GdiClientTID; 

    uint32_t GdiThreadLocalInfo; 

    uint32_t Win32ClientInfo[62]; 

    uint32_t glDispatchTable[233]; 

    uint32_t glReserved1[29]; 

    uint32_t glReserved2; 

    uint32_t glSectionInfo; 

    uint32_t glSection; 

    uint32_t glTable; 

    uint32_t glCurrentRC; 
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    uint32_t glContext; 

    uint32_t LastStatusValue; 

    UNICODE_STRING StaticUnicodeString; 

    uint16_t StaticUnicodeBuffer[261]; 

    uint32_t DeallocationStack; 

    uint32_t TlsSlots[64]; 

    LIST_ENTRY TlsLinks; 

    uint32_t Vdm; 

    uint32_t ReservedForNtRpc; 

    uint32_t DbgSsReserved[2]; 

    uint32_t HardErrorMode; 

    uint32_t Instrumentation[9]; 

    GUID ActivityId; 

    uint32_t SubProcessTag; 

    uint32_t EtwLocalData; 

    uint32_t EtwTraceData; 

    uint32_t WinSockData; 

    uint32_t GdiBatchCount; 

    PROCESSOR_NUMBER CurrentIdealProcessor; 

    uint32_t IdealProcessorValue; 

    uint8_t ReservedPad0; 

    uint8_t ReservedPad1; 

    uint8_t ReservedPad2; 

    uint8_t IdealProcessor; 

    uint32_t GuaranteedStackBytes; 

    uint32_t ReservedForPerf; 

    uint32_t ReservedForOle; 

    uint32_t WaitingOnLoaderLock; 

    uint32_t SavedPriorityState; 

    uint32_t SoftPatchPtr1; 

    uint32_t ThreadPoolData; 

    uint32_t TlsExpansionSlots;  // Ptr32 Ptr32 Void 

    uint32_t MuiGeneration; 

    _Bool IsImpersonating; 

    uint32_t NlsCache; 

    uint32_t pShimData; 

    uint32_t HeapVirtualAffinity; 

    uint32_t CurrentTransactionuint32_t; 

    uint32_t ActiveFrame;  // PTEB_ACTIVE_FRAME 

    uint32_t FlsData; 

    uint32_t PreferredLanguages; 

    uint32_t UserPrefLanguages; 

    uint32_t MergedPrefLanguages; 

    _Bool MuiImpersonation; 

    uint16_t CrossTebFlags; 
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    uint16_t SameTebFlags; 

    uint32_t TxnScopeEnterCallback; 

    uint32_t TxnScopeExitCallback; 

    uint32_t TxnScopeContext; 

    uint32_t LockCount; 

    uint32_t SpareUlong0; 

    uint32_t ResourceRetValue; 

} TEB, *PTEB; 

Figure 38 TEB Structure 

 

typedef struct __PEB { 

    uint8_t InheritedAddressSpace; 

    uint8_t ReadImageFileExecOptions; 

    uint8_t BeingDebugged; 

    uint8_t BitField; 

    uint32_t Mutant; 

    uint32_t ImageBaseAddress; 

    uint32_t Ldr;  //PEB_LDR_DATA Ldr; 

    PRTL_USER_PROCESS_PARAMETERS ProcessParameters; 

    uint32_t SubSystemData; 

    uint32_t ProcessHeap; 

    uint32_t FastPebLock; 

    uint32_t AtlThunkSListPtr; 

    uint32_t IFEOKey; 

    uint32_t CrossProcessFlags; 

    uint32_t UserSharedInfoPtr; 

    uint32_t SystemReserved; 

    uint32_t AtlThunkSListPtr32; 

    uint32_t ApiSetMap; 

    uint32_t TlsExpansionCounter; 

    uint32_t TlsBitmap; 

    uint32_t TlsBitmapBits[2]; 

    uint32_t ReadOnlySharedMemoryBase; 

    uint32_t SharedData; 

    uint32_t ReadOnlyStaticServerData; 

    uint32_t AnsiCodePageData; 

    uint32_t OemCodePageData; 

    uint32_t UnicodeCaseTableData; 

    uint32_t NumberOfProcessors; 

    uint32_t NtGlobalFlag; 

    int64_t CriticalSectionTimeout; 

    uint32_t HeapSegmentReserve; 

    uint32_t HeapSegmentCommit; 

    uint32_t HeapDeCommitTotalFreeThreshold; 
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    uint32_t HeapDeCommitFreeBlockThreshold; 

    uint32_t NumberOfHeaps; 

    uint32_t MaximumNumberOfHeaps; 

    uint32_t ProcessHeaps; 

    uint32_t GdiSharedHandleTable; 

    uint32_t ProcessStarterHelper; 

    uint32_t GdiDCAttributeList; 

    uint32_t LoaderLock; 

    uint32_t OSMajorVersion; 

    uint32_t OSMinorVersion; 

    uint16_t OSBuildNumber; 

    uint16_t OSCSDVersion; 

    uint32_t OSPlatformId; 

    uint32_t ImageSubsystem; 

    uint32_t ImageSubsystemMajorVersion; 

    uint32_t ImageSubsystemMinorVersion; 

    uint32_t ActiveProcessAffinityMask; 

    uint32_t GdiHandleBuffer[34]; // or [60] depending on the ptr_size 

    uint32_t PostProcessInitRoutine; 

    uint32_t TlsExpansionBitmap; 

    uint32_t TlsExpansionBitmapBits[32]; 

    uint32_t SessionId; 

    uint64_t AppCompatFlags; 

    uint64_t AppCompatFlagsUser; 

    uint32_t pShimData; 

    uint32_t AppCompatInfo; 

    UNICODE_STRING CSDVersion; 

    uint32_t ActivationContextData; 

    uint32_t ProcessAssemblyStorageMap; 

    uint32_t SystemDefaultActivationContextData; 

    uint32_t SystemAssemblyStorageMap; 

    uint32_t MinimumStackCommit; 

    uint32_t FlsCallback; 

    LIST_ENTRY FlsListHead; 

    uint32_t FlsBitmap; 

    uint32_t FlsBitmapBits[4]; 

    uint32_t FlsHighIndex; 

    uint32_t WerRegistrationData; 

    uint32_t WerShipAssertPtr; 

    uint32_t pUnused; // pContextData 

    uint32_t pImageHeaderHash; 

    uint64_t TracingFlags; 

    uint64_t CsrServerReadOnlySharedMemoryBase; 

    uint32_t TppWorkerpListLock; 

    LIST_ENTRY TppWorkerpList; 
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    uint32_t WaitOnAddressHashTable[128]; 

} PEB, * PPEB; 

Figure 39 PEB Structure 

 

4.3 Windows Detection Engine 
All the necessary functions needed to initialize and run the Windows Engine is declared in the 
“detection_engine_unicorn_windows_x86.c” file. It is the core component of the implementation 
in which the memory map, initialization of the structures, starting the Engine take place. 
Moreover, it contains the function which is used to detect the malicious traffic and also the 
function which is responsible for its termination. 

4.3.1 Memory Layout 

For the memory layout, the following macros – symbolic constants are declared. Figure 40 

 

#define BASE_ADDR      0x400000 

#define EXEC_SIZE      0x600000 

#define STACK_BASE     0xD00000 

#define STACK_SIZE     0x010000 

#define HEAP_BASE      0xD50000 

#define HEAP_SIZE      0x010000 

 

#define DLL_META     0x60000000 

#define DLL_META_SZ  0x00010000 

#define DLL_BASE     0x70000000 

#define PEB_LDR_ADDR 0x77dff000 

#define TEB_ADDR     0x79000000  

#define PEB_ADDR     0x7A000000  

#define GDT_BASE     0x80000000 

#define GDT_SIZE         0x1000 

Figure 40 Defining the Macros 

 

From the abovementioned, the BASE_ADDR is where the emulation is going to start. More 
specifically, it is the starting point of execution and also the address that the emulated binary will 
be written. The stack’ s and heap’s base address and size declared from the STACK_BASE, 
STACK_SIZE, HEAP_BASE, HEAP_SIZE as their names denote. Moreover, the “kernel32.dll” 
file’ s structure (LDR_MODULE) and its raw byte content are written to DLL_META and 
DLL_BASE, respectively. Lastly, the structures of the PEB_LDR_DATA, TEB, PEB and GDT 
will be written to PEB_LDR_ADDR, TEB_ADDR, PEB_ADDR and GDT_BASE. 

 

Based on the above the memory map is illustrated in the following Figure 41: 
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0x00000000 

|------------------------------------| 

|         Executable Code       |     BASE_ADDR (0x400000 - 0xA00000) 

|------------------------------------| 

|                                           | 

|             Stack                     |     STACK_BASE (0xD00000 - 0xD10000) 

|                                           | 

|------------------------------------| 

|                                           | 

|             Heap                      |    HEAP_BASE (0xD50000 - 0xD60000) 

|                                           | 

|------------------------------------| 

|                                           | 

|         (Other regions)          | 

|                                           | 

|------------------------------------| 

|                                           | 

|           DLL Metadata          |     DLL_META (0x60000000 - 0x60010000) 

|                                           | 

|------------------------------------| 

|                                           | 

|           DLL Base                |      DLL_BASE (0x70000000) 

|------------------------------------| 

|                                           | 

|       PEB Loader Address   |     PEB_LDR_ADDR (0x77dff000) 

|------------------------------------| 

|                                           | 

|           TEB Address           |     TEB_ADDR (0x79000000) 

|------------------------------------| 

|                                           | 

|           PEB Address           |     PEB_ADDR (0x7A000000) 

|------------------------------------| 

|                                           | 

|             GDT                       |    GDT_BASE (0x80000000 - 0x80001000) 

|------------------------------------| 

0xFFFFFFFF 

Figure 41 Memory Map in Virtual RAM 

4.3.2 Helper Functions 

The following functions are declared which they help in the process for either aligning the 
memory or initializing the structures and write them into the memory. It should be noted that in 
some of these functions there are additional routines which will be explained in details. 
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a) The “align4k” function’ s purpose is to ensure that a given size is rounded up to the nearest 
multiple of 4 kilobytes, aligning it to a specific boundary. Figure 42 

 

static inline size_t align4k(size_t size){ 

size_t alignment = 0x1000; 

size_t mask = ((size_t)-1) & -alignment; 

return (size + (alignment - 1)) & mask; 

} 

Figure 42 “align4k” Function 

 

b) The “create_LDR_Module” function is responsible to align the exported functions’ addresses 
of a dll and then create and write in memory its structure. More specifically, at first it iterates 
over the exported functions from the parsed dll file and adjusts their addresses based on the dll 
base address (DLL_BASE). Then, it initializes the LDR_MODULE structure with information 
about the dll, such as base address, entry point, and size of the image. Finally, it writes the 
LDR_MODULE into the memory at specific address along with their dll’ s meta data 
(DLL_BASE, DLL_META addresses). Figure 43 

 

/* return value: 1 everything ok 

 *               0 an error occured */ 

static int create_LDR_Module(uc_engine * uc, pe_ctx_t ctx, 

        uint64_t dll_base_address, uint64_t 
dll_meta_addr){ 

 uc_err err; 

 char *dll_name; 

 char full_dll_name[PATH_MAX]; 

 size_t base_dll_name_len, full_dll_name_len, base_dll_name_wide_len, 

     full_dll_name_wide_len; 

 const char *directory_path = "C:\\Windows\\System32\\"; 

 LDR_MODULE _dataDLL; 

 int retval = 1; 

 

 // Align function addresses based on DLL Base address 

 for (int i = 0; i < pe_exported_functions->functions_count; i++) { 

  pe_exported_functions->functions[i].address += 
dll_base_address; 

 } 

 

 // Creating LDR_MODULE struct for the DLL 

 

 dll_name = strrchr(ctx.path, '/'); 

 if (!dll_name) { 

  return 0; 

 } 

 dll_name++;  // walk past the / 
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 base_dll_name_len = strlen(dll_name); // length of the narrow character 
string 

 snprintf(full_dll_name, sizeof(full_dll_name), "%s%s", directory_path, 

   dll_name); 

 

 full_dll_name_len = strlen(full_dll_name); // length of the narrow character 
string 

 uint16_t *wideString_base_dll_name = 

     (uint16_t *) malloc((base_dll_name_len + 1) * sizeof(uint16_t)); 

 uint16_t *wideString_full_dll_name = 

     (uint16_t *) malloc((full_dll_name_len + 1) * sizeof(uint16_t)); 

 

 // Convert the narrow strings to a wide string 

 for (size_t i = 0; i < base_dll_name_len; i++) { 

  wideString_base_dll_name[i] = (uint16_t) dll_name[i]; 

 } 

 wideString_base_dll_name[base_dll_name_len] = 0; 

 

 for (size_t i = 0; i < full_dll_name_len; i++) { 

  wideString_full_dll_name[i] = (uint16_t) full_dll_name[i]; 

 } 

 wideString_full_dll_name[full_dll_name_len] = 0; 

 

 base_dll_name_wide_len = (base_dll_name_len) * sizeof(uint16_t);
 // size of the wide character string in bytes 

 full_dll_name_wide_len = (full_dll_name_len) * sizeof(uint16_t); // size of the 
wide character string in bytes 

 

 memset(&_dataDLL, 0, sizeof(LDR_MODULE)); 

 

 _dataDLL.BaseAddress = (uint32_t) dll_base_address; 

 _dataDLL.EntryPoint = (uint32_t) ctx.pe.entrypoint; 

 _dataDLL.SizeOfImage = (uint32_t) ctx.map_size; 

 _dataDLL.FullDllName.Length = (uint16_t) full_dll_name_wide_len; 

 _dataDLL.FullDllName.MaximumLength = 

     (uint16_t) full_dll_name_wide_len + 2; 

 _dataDLL.FullDllName.Buffer = dll_meta_addr + sizeof(_dataDLL); 

 _dataDLL.BaseDllName.Length = (uint16_t) base_dll_name_wide_len; 

 _dataDLL.BaseDllName.MaximumLength = 

     (uint16_t) base_dll_name_wide_len + 2; 

 _dataDLL.BaseDllName.Buffer = 

     dll_meta_addr + sizeof(_dataDLL) + 

     _dataDLL.FullDllName.MaximumLength; 

 

 _dataDLL.InInitializationOrderModuleList.Flink = 

     (uint32_t) PEB_LDR_ADDR + 0xc; 
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 _dataDLL.InInitializationOrderModuleList.Blink = 

     (uint32_t) PEB_LDR_ADDR + 0xc; 

 _dataDLL.InMemoryOrderModuleList.Flink = (uint32_t) PEB_LDR_ADDR + 
0x14; 

 _dataDLL.InMemoryOrderModuleList.Blink = (uint32_t) PEB_LDR_ADDR + 
0x14; 

 _dataDLL.InInitializationOrderModuleList.Flink = 

     (uint32_t) PEB_LDR_ADDR + 0x1c; 

 _dataDLL.InInitializationOrderModuleList.Blink = 

     (uint32_t) PEB_LDR_ADDR + 0x1c; 

 

 err = uc_mem_write(uc, _dataDLL.FullDllName.Buffer, 

      wideString_full_dll_name, 
full_dll_name_wide_len); 

 if (err != UC_ERR_OK) { 

  retval = 0; 

  goto exit; 

 } 

 

 err = uc_mem_write(uc, _dataDLL.BaseDllName.Buffer, 

      wideString_base_dll_name, 
base_dll_name_wide_len); 

 if (err != UC_ERR_OK) { 

  retval = 0; 

  goto exit; 

 } 

 

 err = uc_mem_write(uc, dll_meta_addr, &_dataDLL, sizeof(_dataDLL)); 

 if (err != UC_ERR_OK) { 

  retval = 0; 

 } 

 exit: 

 free(wideString_full_dll_name); 

 free(wideString_base_dll_name); 

 return retval; 

} 

Figure 43 “create_LDR_Module” Function 

 

c) The “setup_PEB_LDR” function is used for setting up the Process Environment Block's (PEB) 
Loader Data (PEB_LDR_DATA) structure within the emulated environment. The 
PEB_LDR_DATA structure will be written in the PEB_LDR_ADDR address. Figure 44 

 

/* return value: 0 an error occured 

 *               1 everything OK */ 

static int setup_PEB_LDR(uc_engine * uc){ 
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 uc_err err; 

 size_t size; 

 PEB_LDR_DATA _dataPEB_LDR; 

 

 memset(&_dataPEB_LDR, 0, sizeof(PEB_LDR_DATA)); 

 _dataPEB_LDR.InInitializationOrderModuleList.Flink = 

     (uint32_t) DLL_META; 

 _dataPEB_LDR.InInitializationOrderModuleList.Blink = 

     (uint32_t) DLL_META; 

 _dataPEB_LDR.InMemoryOrderModuleList.Flink = (uint32_t) DLL_META + 0x8; 

 _dataPEB_LDR.InMemoryOrderModuleList.Blink = (uint32_t) DLL_META +0x8; 

 _dataPEB_LDR.InInitializationOrderModuleList.Flink = 

     (uint32_t) DLL_META + 0x10; 

 _dataPEB_LDR.InInitializationOrderModuleList.Blink = 

     (uint32_t) DLL_META + 0x10; 

 size = align4k(sizeof(_dataPEB_LDR)); 

 err = uc_mem_map(uc, PEB_LDR_ADDR, size, UC_PROT_READ); 

 if (err != UC_ERR_OK) 

  return 0; 

 

 err = uc_mem_write(uc, PEB_LDR_ADDR, &_dataPEB_LDR,  

    sizeof(_dataPEB_LDR)); 

 if (err != UC_ERR_OK) { 

  uc_mem_unmap(uc, PEB_LDR_ADDR, size); 

  return 0; 

 } 

 

 return 1; 

} 

Figure 44 “setup_PEB_LDR” Function 

 

d) The structures of the Process Environment Block and Thread Environment Block will be 
initialized by the “create_PEB_TEB” function and these structures will be written into the 
memory at PEB_ADDR and TEB_ADDR addresses, respectively. Figure 45 

 

/* return value: 0 an error occured 

 *               1 everything OK */ 

static int create_PEB_TEB(uc_engine * uc){ 

 uc_err err; 

 size_t size; 

 PEB _PEB; 

 TEB _TEB; 

 

 memset(&_PEB, 0, sizeof(PEB)); 

 memset(&_TEB, 0, sizeof(TEB)); 
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 _PEB.ImageBaseAddress = (uint32_t) BASE_ADDR; 

 _PEB.Ldr = (uint32_t) PEB_LDR_ADDR; 

 _PEB.ProcessHeap = (uint32_t) HEAP_BASE; 

 _TEB.NtTib.StackBase = (uint32_t) STACK_BASE; 

 _TEB.NtTib.StackLimit = (uint32_t) STACK_BASE - (uint32_t) STACK_SIZE; 

 _TEB.NtTib.Self = (uint32_t) TEB_ADDR; 

 _TEB.ThreadLocalStoragePointer = (uint32_t) TEB_ADDR; 

 _TEB.ProcessEnvironmentBlock = (uint32_t) PEB_ADDR; 

 

 size = align4k(sizeof(_PEB)); 

 

 err = uc_mem_map(uc, PEB_ADDR, size, UC_PROT_READ); 

 if (err != UC_ERR_OK) 

  return 0; 

 

 err = uc_mem_write(uc, PEB_ADDR, &_PEB, size); 

 if (err != UC_ERR_OK) { 

  uc_mem_unmap(uc, PEB_ADDR, size); 

  return 0; 

 } 

 

 size = align4k(sizeof(TEB)); 

 err = uc_mem_map(uc, TEB_ADDR, size, UC_PROT_READ); 

 if (err != UC_ERR_OK) { 

  uc_mem_unmap(uc, PEB_ADDR, align4k(sizeof(PEB))); 

  return 0; 

 } 

 

 err = uc_mem_write(uc, TEB_ADDR, &_TEB, size); 

 if (err != UC_ERR_OK) { 

  uc_mem_unmap(uc, TEB_ADDR, align4k(sizeof(TEB))); 

  uc_mem_unmap(uc, PEB_ADDR, align4k(sizeof(PEB))); 

  return 0; 

 } 

 

 return 1; 

} 

Figure 45 “create_PEB_TEB” Function 

 

e) The initialization of the Global Descriptor Table’ s structure will be executed by the 
“create_GDT” function. Also, it will write the GDT structure into the memory along with its 
registered entries at GDT_BASE address. Figure 46 
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/* return value: 0 an error occured 

 *               1 everything OK */ 

static int create_GDT(uc_engine * uc){ 

 uc_err err; 

 

 err = uc_mem_map(uc, GDT_BASE, GDT_SIZE, UC_PROT_READ); 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, "could not memory map GDT\n"); 

  return 0; 

 } 

 /* relevant registers are init by setup_segment_registers */ 

 

 const uint8_t a[] = "\xff\xff\x00\x00\x00\xfb\xcf\x00"; 

 err = uc_mem_write(uc, GDT_BASE + 4 * 8, a, sizeof(a)); 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, "could not write at offset 32 of GDT\n"); 

  uc_mem_unmap(uc, GDT_BASE, GDT_SIZE); 

  return 0; 

 } 

 

 const uint8_t a1[] = "\xff\xff\x00\x00\x00\xf3\xcf\x00"; 

 err = uc_mem_write(uc, GDT_BASE + 5 * 8, a1, sizeof(a1)); 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, "could not write at offset 40 of GDT\n"); 

  uc_mem_unmap(uc, GDT_BASE, GDT_SIZE); 

  return 0; 

 } 

 

 const uint8_t a2[] = "\xff\xff\x00\x00\x00\x97\xcf\x00"; 

 err = uc_mem_write(uc, GDT_BASE + 6 * 8, a2, sizeof(a2)); 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, "could not write at offset 48 of GDT\n"); 

  uc_mem_unmap(uc, GDT_BASE, GDT_SIZE); 

  return 0; 

 } 

 

 /* was const uint8_t a3[] = "\xff\x0f\x00\xd0\xb7\xf3\x40\x00"; */ 

 const uint8_t a3[] = "\xff\x0f\x00\x00\x00\xf3\x40\x79";  

 err = uc_mem_write(uc, GDT_BASE + 10 * 8, a3, sizeof(a3)); 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, "could not write at offset 80 of GDT\n"); 

  uc_mem_unmap(uc, GDT_BASE, GDT_SIZE); 

  return 0; 

 } 
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 return 1; 

} 

Figure 46 “create_GDT” Function 

 

f) The process of setting up the segment registers will take place in the 
“setup_segment_registers” function. The registers are the code segment, data segment, extra 
segment, stack segment and file segment. Figure 47 

 

static inline int setup_segment_registers(void){ 

 uc_err err; 

 

 memset(&gdtr, 0, sizeof(uc_x86_mmr)); 

 gdtr.base = GDT_BASE; 

 gdtr.flags = 0; 

 gdtr.limit = GDT_SIZE; 

 gdtr.selector = 0; 

 

 err = uc_reg_write(uc, UC_X86_REG_GDTR, &gdtr); 

 if (err != UC_ERR_OK) { 

  return 0; 

 } 

 

 int b = 35; 

 err = uc_reg_write(uc, UC_X86_REG_CS, &b); 

 if (err != UC_ERR_OK) { 

  return 0; 

 } 

 

 int b1 = 43; 

 err = uc_reg_write(uc, UC_X86_REG_DS, &b1); 

 if (err != UC_ERR_OK) { 

  return 0; 

 } 

 

 err = uc_reg_write(uc, UC_X86_REG_ES, &b1); 

 if (err != UC_ERR_OK) { 

  return 0; 

 } 

 

 err = uc_reg_write(uc, UC_X86_REG_GS, &b1); 

 if (err != UC_ERR_OK) { 

  return 0; 

 } 

 

 int b2 = 48; 
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 err = uc_reg_write(uc, UC_X86_REG_SS, &b2); 

 if (err != UC_ERR_OK) { 

  return 0; 

 } 

 

 int b3 = 83; 

 err = uc_reg_write(uc, UC_X86_REG_FS, &b3); 

 if (err != UC_ERR_OK) { 

  return 0; 

 } 

 

 return 1; 

} 

Figure 47 “setup_segment_registers” Function 

 

g) The “hook_dll_functions” function will be called its time an instruction is executed in the 
unicorn engine. Its main purpose is to detect if the EIP register is in the boundaries of the 
parsed dll in memory and also checking if this address is belonging to any of the Windows API 
function. Figure 48 

 

static void hook_dll_functions(uc_engine * uc, uint64_t address, uint32_t size, 

          void *user_data){ 

 EmulationResult *er; 

 Threat *threat; 

 char threat_msg[400]; 

 

 if ((uint32_t) address < (uint32_t) DLL_BASE) 

  return; 

 

 er = (EmulationResult *) user_data; 

 threat = er->threat; 

 

 for (int i = 0; i < pe_exported_functions->functions_count; i++) { 

  uint32_t funcAddress = 

      (uint32_t) pe_exported_functions->functions[i].address; 

  if ((uint32_t) funcAddress == (uint32_t) address) { 

   er->gotcha = 1; 

   threat->severity = SEVERITY_HIGH; 

   snprintf(threat_msg, sizeof(threat_msg), 

     "Windows x86 kernel32.dll call 
detected (%s)", 

     pe_exported_functions-
>functions[i].name); 

   threat->msg = strdup(threat_msg); 

   if (!threat->msg) { 
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    fprintf(stderr, "could not allocate 
memory for threat string\n"); 

    er->gotcha = -1; 

   } 

   uc_emu_stop(uc); 

   return; 

  } 

 } 

} 

Figure 48 “hook_dll_functions” Function 

 

4.3.3 Main functions 

The following functions are responsible for the initialization of the unicorn engine and also what 
should be done while this engine is running. 

 

a) The “uni_engine_init” function is responsible of the Unicorn Engine’ s initialization. Its primary 
purpose is to set up the emulation environment, load a DLL (Dynamic Link Library) into 
memory, and initialize various data structures related to the emulation of a Windows 
environment. Firstly, it will create an instance of the Unicorn Engine. Then, it will parse and load 
in a variable the exported functions of the kernel32.dll and, consequently write dll’ s raw byte 
content into memory. Lastly, it will set up the memory as described in the previous chapters by 
calling the abovementioned functions. Figure 49 

 

static int uni_engine_init(void){ 

 uc_err err; 

 const void *raw_data; 

 char *path = DLL_DIR "/kernel32.dll"; 

 

 // Initialize engine 

 err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, "could not open unicorn engine in x86 mode\n"); 

  return 0; 

 } 

 

 disposable_mem = mmap(NULL, HEAP_BASE + HEAP_SIZE - BASE_ADDR, 
PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 

 if (disposable_mem == MAP_FAILED) { 

  perror("could not allocate disposable emulation memory"); 

  goto err_mmap; 

 } 

 

 err = uc_mem_map_ptr(uc, BASE_ADDR, HEAP_BASE + HEAP_SIZE - 
BASE_ADDR, UC_PROT_ALL, disposable_mem); 

 if (err != UC_ERR_OK) { 
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  perror("could not map host disposable memory to emulator"); 

  goto err_uc_mem_map_ptr; 

 } 

 

 // Parsing kernel32.dll 

 pe_err_e err_loading = pe_load_file(&ctx, path); 

 // if we don't find the file in the standard place, search  

 // a local directory (this is useful when trying out things from 

 // a non-installed version) 

 if (err_loading == LIBPE_E_OPEN_FAILED) { 

  path = "./DLL/windows-x86/system32/kernel32.dll"; 

  err_loading = pe_load_file(&ctx, path); 

 } 

 if (err_loading != LIBPE_E_OK) { 

  pe_error_print(stderr, err_loading); 

  goto err_pe_load_file; 

 } 

 

 // parse the loaded PE file(e.g. kernel32.dll) from previous step 

 err_loading = pe_parse(&ctx); 

 if (err_loading != LIBPE_E_OK) { 

  pe_error_print(stderr, err_loading); 

  goto err_pe_parse; 

 } 

 // Pointer to raw data of PE file 

 raw_data = ctx.map_addr; 

 //Size of PE file 

 raw_pe_size = ctx.map_size; 

 

 // Save globally the exported functions from the previous parsed PE file 

 pe_exported_functions = pe_exports(&ctx); 

 

 // Load parsed file in memory 

 // size of memory block; MUST be 4 KB (4 * 1024) aligned (size=1,2,… 
otherwise will cause fail) --> In our case raw_pe_size 

 

 err = uc_mem_map(uc, DLL_BASE, align4k(raw_pe_size), UC_PROT_READ | 
UC_PROT_EXEC); 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, "could not create space for loaded DLLs\n"); 

  goto err_uc_mem_map_dll; 

 } 

 

 err = uc_mem_write(uc, DLL_BASE, raw_data, raw_pe_size); 

 if (err != UC_ERR_OK) { 
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  fprintf(stderr, 

   "could not write DLL data to emulator 
memory\n"); 

  goto err_uc_mem_write_dll; 

 } 

 

 err = uc_mem_map(uc, DLL_META, DLL_META_SZ, UC_PROT_READ); 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, "could not map memory for DLL metadata\n"); 

  goto err_uc_mem_map_dll_meta; 

 } 

 

 // Creating the LDR_Module struct for the DLL 

 if (create_LDR_Module(uc, ctx, DLL_BASE, DLL_META) == 0) { 

  fprintf(stderr, "failed to create LDR module\n"); 

  goto err_create_ldr_module; 

 } 

 

 if (setup_PEB_LDR(uc) == 0) { 

  fprintf(stderr, "failed to setup PEB and LDR\n"); 

  goto err_setup_peb_ldr; 

 } 

 

 if (create_PEB_TEB(uc) == 0) { 

  fprintf(stderr, "failed to create PEB and TEB\n"); 

  goto err_create_peb_teb; 

 } 

 

 if (create_GDT(uc) == 0) { 

  fprintf(stderr, "failed to create GDT\n"); 

  goto err_create_gdt; 

 } 

 

 // we don't pe_unload as we need the structures (functions)  

 // exported by libpe for later 

 return 1; 

 

  err_create_gdt: 

 uc_mem_unmap(uc, TEB_ADDR, align4k(sizeof(TEB))); 

 uc_mem_unmap(uc, PEB_ADDR, align4k(sizeof(PEB))); 

  err_create_peb_teb: 

 uc_mem_unmap(uc, PEB_LDR_ADDR, align4k(sizeof(PEB_LDR_DATA))); 

  err_setup_peb_ldr: 

  err_create_ldr_module: 

   uc_mem_unmap(uc, DLL_META, DLL_META_SZ); 
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  err_uc_mem_map_dll_meta: 

  err_uc_mem_write_dll: 

 uc_mem_unmap(uc, DLL_BASE, align4k(raw_pe_size)); 

  err_uc_mem_map_dll: 

  err_pe_parse: 

 pe_unload(&ctx); 

  err_pe_load_file: 

 uc_mem_unmap(uc, BASE_ADDR, HEAP_BASE + HEAP_SIZE - 
BASE_ADDR); 

  err_uc_mem_map_ptr: 

 munmap(disposable_mem, HEAP_BASE + HEAP_SIZE - BASE_ADDR); 

  err_mmap: 

 uc_close(uc); 

 return 0; 

} 

Figure 49 “uni_engine_init” Function 

 

b) When the Unicorn Engine is set up properly, the “uni_engine_process” function will be 
executed in order for the Unicorn Engine to start running. Its main purpose is to set the hook 
function (hook_dll_functions) and for each block (raw traffic byte) will do the inspection if any 
system call is detected. Moreover, it starts the engine from a specific point of the constructed 
memory and before that is responsible to set up the esp and ebp registers for the stack. Figure 
50. 

 

static int uni_engine_process(char *data, size_t len, Threat * threat){ 

 uc_err err; 

 uc_hook trace_handle; 

 EmulationResult er; 

 const char *p; 

 int block_size, i, block_num = 0; 

 int ret = 0; 

 uint32_t stack_top, ebp; 

 

 if ((data == NULL) || (len == 0)) 

  return 0; 

 

 er.gotcha = 0; 

 er.threat = threat; 

 

 stack_top = STACK_BASE; // that's where it starts off from 

 ebp = stack_top + sizeof(void *); 

 

 err = uc_hook_add(uc, &trace_handle, UC_HOOK_CODE, hook_dll_functions, 

     &er, BASE_ADDR, DLL_BASE + raw_pe_size 
- 1); 

/* 
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     &er, DLL_BASE, DLL_BASE + raw_pe_size - 
1); 

*/ 

 if (err != UC_ERR_OK) { 

  fprintf(stderr, 

   "could not add windows x86 kernel32.dll 
function hook"); 

  return -1; 

 } 

 

 while ((p = get_next_block(data, len, MIN_BLOCK_LENGTH, &block_size, 

       block_num++))) { 

  if (block_size > EXEC_SIZE) { 

   fprintf(stderr, "block size larger than available " 

      "memory for 
emulation\n"); 

   ret = -1; 

   goto exit_loop; 

  } 

 

  // Start of disposable_mem is BASE_ADDR in emulator. 

  // This is where we copy the payload. 

  memcpy(disposable_mem, p, block_size); 

 

  for (i = 0; i < block_size; i++) { 

   err = uc_reg_write(uc, UC_X86_REG_ESP, 
&stack_top); 

   if (err != UC_ERR_OK) { 

    fprintf(stderr, "could not set 
ESP\n"); 

    ret = -1; 

    goto exit_loop; 

   } 

 

   err = uc_reg_write(uc, UC_X86_REG_EBP, 
&ebp); 

   if (err != UC_ERR_OK) { 

    fprintf(stderr, "could not set 
EBP\n"); 

    ret = -1; 

    goto exit_loop; 

   } 

 

   if (setup_segment_registers() == 0) { 

    fprintf(stderr, "error at setting up 
segment" 
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 " registers\n"); 

    ret = -1; 

    goto exit_loop; 

   } 

 

   DPRINTF_MD5(disposable_mem+i, 
block_size-i, 

         "checking 
offset %d\n", i); 

 

   // emulate with 200000 microseconds timeout
  

   err = 

       uc_emu_start(uc, BASE_ADDR+i, 0, 
200000, 0); 

   if (er.gotcha <= -1) { // callback 
internal error 

    ret = -1; 

    goto exit_loop; 

   } 

 

   if (er.gotcha == 1) { // found shellcode 

    DPRINTF_MD5(p, block_size, 

         "detection at 
offset %d\n", i); 

    threat->payload = 
malloc(block_size); 

    if (!threat->payload) { 

     perror("could 
not allocate memory for malicious payload"); 

     ret = -1; 

     goto exit_loop; 

    } 

    memcpy(threat->payload, p, 
block_size); 

    threat->length = block_size; 

    ret = 1; 

    goto exit_loop; 

   } 

 

   // In all other emulation errors do nothing 

    

   // flush QEMU translations just before the next 
round 
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   err = uc_ctl_remove_cache(uc, BASE_ADDR, 
BASE_ADDR + block_size - 1); 

   if (err != UC_ERR_OK) { 

    ret = -1; 

    goto exit_loop; 

   } 

    

  } // for-loop for offsets 

 }  // while-loop for blocks 

 

 exit_loop: 

 uc_hook_del(uc, trace_handle); 

 return ret; 

} 

Figure 50 “uni_engine_process” Function 
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5. User’s Manual 
SEDUCE [18] can be built in a Debian based operating system. First of all, the dependency 
packages should be downloaded it and built. The command that should be issued is “sudo apt 
install <PackageName>”. The following packages should be installed: 

 git gcc automake autoconf libtool autoconf-archive make 

 libglib2.0-dev libconfuse-dev default-mysql-server libprelude-dev  

 libpreludedb-dev libpcap-dev libnet1-dev libnids-dev prelude-utils  

 libpreludedb7-mysql prelude-manager libyara-dev pkg-config cmake  

After the successful installation of the dependencies. The project should be fetched and 
installed. The following command should be issued: 

a) “sudo git clone https://github.com/seduceIDS/seduce.git” 

b) ./autogen.sh 

c) ./configure --enable-win32 --disable-linux64 

d) make install 

The (a) command is fetching the project from its repository. The (b) command is fetching all the 
libraries which will be included such as the Unicorn Engine and libpe. At the same time,  it is 
doing some checks that everything is installed and not any library is missing in order for the 
user to build the project. The command (c) will configure the project to work only with the 
Windows Engine created in this thesis. Finally, the command (d) will build the whole project.  

 

As described in 2.3 Shellcode Detection Using CPU Emulation chapter, SEDUCE consists of 
the sensors and agents nodes. For the detection capabilities of the Windows Engine created, 
the binary under the “agent folder” will be used. This binary is designed to emulate an agent 
when set up to a network.  

 

To start a specific Engine to inspect a given network traffic, the “./seduce win32 
/{pathToBinaryTraffic}” command should be issued. The option /{pathToBinaryTraffic} is the 
path of the raw-binary network traffic file having also the shellcode. The results of the 
Experimental Evaluation chapter will be based on the execution of this command. 
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6. Experimental Evaluation 
For the purpose of the experimental evaluation of the thesis’s Windows Engine, different kind of 
shellcodes created and fed it. Moreover, the dataset for the Engine to be tested, the 
“msfvenom” application program was used. 

 

6.1 Dataset Preparation 
“msfvenom” is a part of the Metasploit Framework, a widely used penetration testing and 
exploitation toolkit. Metasploit is open-source and provides tools for developing, testing, and 
executing exploits against remote targets. [19] It is commonly used by security professionals, 
ethical hackers, and penetration testers to assess the security of systems. “msfvenom” 
specifically is a combination of the words "Metasploit" and "payload generation." It is a powerful 
payload generator that is used to create various types of malicious shellcodes for a variety of 
operating systems and architectures. 

 

For the thesis purpose, the command “msfvenom -p windows/exec CMD=calc.exe -a x86 --
platform windows -e x86/shikata_ga_nai -i 100 -f raw” will be issued for the payload creation.  

Options given: 

a) -p windows/exec: Specifies the payload to be generated. In this case, it's a Windows 
command execution payload. 

b) CMD=calc.exe: Specifies the command to be executed. In this example, it's set to 
execute the Windows Calculator (calc.exe). You can replace this with any other 
command you want to execute on the target system. 

c) -a x86: Specifies the architecture of the payload. Here, it's set to x86, indicating a 32-bit 
payload. 

d) --platform windows: Specifies the target platform, which is Windows in this case. 

e) -e x86/shikata_ga_nai: Specifies the encoder to be used. In this example, it's set to 
use the Shikata Ga Nai encoder, which is a polymorphic XOR additive feedback 
encoder for x86 instructions. 

f) -i 100: Specifies the number of iterations for the encoder. In this case, it's set to 100 
iterations. 

g) -f raw: Specifies the format of the output payload. In this case, it's set to raw, which 
means the payload will be generated in raw binary format. 

Putting it all together, this msfvenom command generates a Windows payload that executes the 
Calculator (calc.exe) when executed on a 32-bit Windows system. The payload is encoded 
using the Shikata Ga Nai encoder with 100 iterations, and the output is in raw binary format. 

 

6.2 Proof-of-Concept 
As a Proof-of-Concept the previous command will be issued and the raw data output will be 
saved in the “winExec_shikata_ga_nai_100_iterations.dat” file. Then, executing the command 
“./seduce win32 ./payloads/winExec_shikata_ga_nai_100_iterations.dat”, would result of 
detecting the shellcode’s system call. Figure 51. 
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Figure 51 Detecting WinExec System Call 

 

As another Proof-of-Concept with a different system call, the command “msfvenom -p 
windows/meterpreter/reverse_tcp -a x86 --platform windows -e x86/shikata_ga_nai -i 100 -f raw” 
issued. Regarding the option given in conjunction with the previous one is: 

a) -p windows/meterpreter/reverse_tcp: Specifies the payload to be generated. In this 
case, it's a Windows Meterpreter reverse TCP shell payload. Meterpreter is an 
advanced, dynamically extensible payload that provides a wide range of post-
exploitation capabilities. 

This msfvenom command generates a Windows Meterpreter reverse TCP shell payload for a 
32-bit Windows system. The payload is encoded using the Shikata Ga Nai encoder with 100 
iterations, and the output is in raw binary format. The raw data output will be saved in the 
“reverseTCPMeter_shikata_ga_nai_100_iterations.dat” file. By executing the command 
“./seduce win32 ./payloads/reverseTCPMeter_shikata_ga_nai_100_iterations.dat”, would result, 
as previously, of detecting the shellcode’s system call. Figure 52. 

 

 

Figure 52 Detecting LoadLibraryA System Call 

 

 

6.3 Time Duration 
The conducted test for time duration, a dataset with different iteration of the -i option will be 
generated. The command for the generated payloads is as the first PoC with different iterations. 
Upon the test, the results with seven (7) attempts for each iteration along with the average time 
are illustrated in the following table: 

 

Iterations 1st 
Attempt 

2nd 
Attempt 

3rd 
Attempt 

4th 
Attempt 

5th 
Attempt 

6th 
Attempt 

7th 
Attempt 

Average 

1 1506 1292 1612 1207 1217 1442 1119 1345.14 

5 1803 1530 2027 1527 1568 1783 1710 1679.29 

20 7185 5558 7562 6760 6060 6959 6127 6521.71 

50 28314 28674 26530 27419 25964 29368 25538 27476.29 

100 147851 145152 145124 142965 143608 144847 140916 144762.71 

 

Based on the previous table the following figure may be constructed, illustrating the average 
time per iteration. Figure 53. 
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Figure 53 Average time duration line chart 

7. Conclusions and Future Work 
 

7.1 Conclusions 
As revealed by the results of the conducted test, the thesis Engine is capable for detecting 
polymorphic shellcodes. More specifically, the Engine continues to effectively emulate the 
behavior of polymorphic shellcodes regardless the kind of the shellcode (whichever system call 
wants to execute) or the iterations applied to them. As a result, it demonstrates its robustness 
and leads to the conclusion that it is resilient to unknown polymorphic shellcodes. 

 

A clear and noteworthy positive correlation exists between the number of iterations applied by 
the Shikata Ga Nai encoder and the time duration required for detection. Based on the Figure 
53, while Engine’ s emulation is generally more resilient to polymorphism, there is a trade-off in 
terms of time required for detection. As more iterations applied to the polymorphic shellcode, 
the time duration for detection is growing. This has the potential to create a bottleneck in the 
network traffic and overall impacting the systems performance. 

 

7.2 Future Enhancements 
The Windows Engine that has been presented in this thesis is capable to detect polymorphic 
shellcodes which are utilizing functions from the kernel32.dll file. Because other polymorphic 
shellcodes may utilize functions from other dll files, it is possible to extent its capabilities by 
integrating more DLLs among with their exported functions. While many shellcodes may attempt 
dynamic loading of absent DLLs using the LoadLibrary function in kernel32.dll, a more 
straightforward approach would be to load them during the Engine initialization phase. This 
strategy minimizes the detection time, optimizing the overall effectiveness of the detection 
process.  

 

Another extension to SEDUCE Engine may be to support detection capabilities for polymorphic 
shellcodes for x64 Windows. More specifically, the same Engine may be built by emulating a 
x64 Windows environment which executing both x86 and x64 programs. In a Windows 
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environment, the WOW64 (Windows-on-Windows 64-bit) subsystem allows the execution of 32-
bit Windows-based applications on 64-bit Windows systems. The result would be to have one 
Engine for detecting both x86 and x64 polymorphic shellcodes. 

 

Finally, it should be noted that during our test conduction, the Engine for some invalid 
instructions have been stopped with the exception “Segfault”. [20] The root cause of this 
misbehavior is belonging to the Unicorn library for which developers will provide a fix in the 
Unicorn version 2.1.0. [21] 
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