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Explainable Reinforcement Learning using

Interpretable Models

Interpretability of the TD3 method on continuous

action-state spaces

By

Emmanouil Lykos

Submitted to the II-MSc “Artificial Intelligence” on

February 20, 2024,

in partial fulfillment of the

requirements for the MSc degree

Abstract

DeepReinforcement Learningmethods achievednewmilestones in the field of Artificial

Intelligence in various domains like gaming and autonomous driving. Those methods

incorporate the capabilities of Deep Neural Networks into well known function approx-

imation Reinforcement Learning methods. Although agents’ performance is excellent

in many cases, their decision-making mechanisms are considered black boxes, there-
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fore, there is a need for software engineers, developers, domain experts, operators etc.

to interpret in different levels the inner working of these methods to provide explana-

tions.

The contribution of this thesis is amethod that inherently generates interpretablemod-

els regarding the decision making of Deep Reinforcement Learning agents which are

operating in environments with continuous action spaces. Initially, we will specify the

problem that we are solving in a formal way and the scope of this thesis along with

the current scientific contributions in that direction and what are the contributions of

this thesis. Then, we will provide the necessary background knowledge in order for the

reader to understand the proposedmethod, by firstly describing the interpretablemod-

els that we are using and then by presenting the Twin Delayed Policy Gradient method,

which is the Actor-Critic Deep Reinforcement Learning method that we aim to modify

in order to generate interpretable policy models. Afterwards, we specify our method

which follows the mimicking paradigm and replaces the target policy neural network

model with an interpretable one, along with the various modifications that we can ap-

ply. Afterwards, our method gets evaluated in various environments using Gymnasium

and gets compared with the primary policy model that was trained from the original

Twin-Delayed Policy Gradientmethod, both in terms of the learning curve and the stan-

dalone performance of the generated primary neural network policy model and the in-

terpretable policymodel mimicking it, in order to evaluate interpretations’ quality. The

performance of agents with the interpretable method is shown to be competitive with

comparison to the ones generated from the original non-interpretable method, how-

ever with limitations. Last but not least, we justify the results, draw our conclusions

and provide directions for future work in this field.

Thesis Supervisor: George Vouros

Title: Professor at University of Piraeus
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1 Introduction

Reinforcement Learning[1] is the field ofMachine Learningwhere the agents determine

their optimal policy by interacting directly with their environment with ultimate goal

to maximize their expected reward. A high-level illustration of how a reinforcement

learning agent works step-wise, can be found in Figure 1 where the Agent performs an

action, observes its next state and the feedback(Reward) from the environment, updates

its policy accordingly and repeats this process.

Figure 1: Reinforcement Learning agent’s mechanics

Reinforcement Learning approaches, nowadays, have applications in many domains,

from simple to more complex, from simple mazes to robotics and gaming, for instance.

Initially, the first approaches were made to solve small-scale Markov Decision Pro-

cesses[2], thus, it served good to solve them via Dynamic Programming using Bellman

Equation[3]. Afterwards, in order for agents to be able to handle environments with

discrete state and action spaces and increase their reward incrementally per episode

or per step, Monte Carlo[4] and Temporal Difference methods[5] were introduced, re-

spectively. Then, because the state-action space might not be discrete or small, the

aforementioned methods were tweaked in a way that the agents do not need to keep a

map between all the states or state-action combinations and their expected value. In-

stead, this mapping is performed via a differentiable function that takes as input the
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state or both the state and the action, hence, the agent needs to store only the func-

tion’s parameters. Those methods are called function approximation methods[6] and

they were the stepping stone for two things. Firstly, because thosemethods can use any

differentiable function, neural networks can also be used as an approximator, like in [7],

where the authors are using Convolutional Neural Networks in order to build an agent

that can performwell in Atari games. However, this approach can also be applied using

fully connected neural networks for other environments like MuJoCo. Secondly, there

are Policy Gradient[8] and Actor-Critic[9] methods, where instead of learning the opti-

mal policy via the state or state-action value functions, the agent (actor) learns directly

the policy by learning a probability distribution on actions, given agent’s current state,

and the critic evaluates the policy providing feedback to the actor about the optimality

of the policy. Finally, note that policy gradient methods can use Deep Neural Networks

in order to generate the policy distribution, e.g. as done in [10–12].

Although deep neural networks models provide solutions to a variety of problems [13],

including functions’ approximations or modeling of environmental aspects, in rein-

forcement learning, their main problem arises when one needs to interpret their deci-

sion making. This happens because deep neural network models are considered black

boxes due to the way their parameters are tuned and interact, making it very compli-

cated to inspect its internal workings to justify somehow their decisions. Even if it can

be done, its impossible to provide a simple and convincing explanation.

Deep Reinforcement Learning, incorporating neural network models is not an excep-

tion to the aforementioned problem. In fact, in real-world applications, especially in

safety critical ones, it is of paramount importance for researchers to extract explana-

tions of the deep reinforcement learning agents, despite their excellent performance.

The reasons for this, are firstly that users and researchers will be more confident if they

know the logic that the neural network follows in its decisions, and secondly, it will be

easier to identify any small errors that may result to huge consequences if they hap-
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pen in a real-world setting. Hence, it is clear that there is a need to design and develop

reinforcement learning methods that can generate explainable agents.

Before proceeding to the work that was done in this thesis, it is needed to define the

basic terms and concepts around Explainable Reinforcement Learning[14]. Initially,

interpretability is defined as the ability of a system to provide explanations from an

interpretable model and those explanations are called interpretations. Furthermore,

explainability is defined as the ability of the system to provide surface representations

from interpretations. Therefore, in order to be able to extract surface representations

and make a model explainable, it is needed to have an interpretable model along with

an explanation logic that will filter out the interpretations and keep the most useful

ones to meet transparency requirements. Last but not least transparency is defined as

the ability of the model to provide explanations that are understandable by the people

that will see them. In this thesis, we will focus only on making Deep Reinforcement

Learning models interpretable.

In order to generate an interpretable model of a Deep Reinforcement Learning model,

there are mainly two ways: distillation or mimicking. The distillation process gathers

knowledge from the trained Deep Reinforcement Learning agent, exploiting any of the

constituent Deep Reinforcement Learning models in a direct way through a process of

transforming Deep Reinforcement Learning models’ elements into interpretable mod-

els. Themimicking process monitors the interaction of the Deep Reinforcement Learn-

ing agent with the environment, and gathers interaction samples, recording agent deci-

sions, state transitions, rewards and consulting Deep Reinforcement Learning assessed

values in order to train the interpretable model. Overall, the distillation paradigm aims

at exploiting the knowledge acquired by the DRLmodels viamodel inspection facilities,

while the mimicking method produces interpretable models without exploiting the in-

ner working components of DRL agents.
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Manymethods are developed regarding InterpretableDeepReinforcement Learning[14]

with the purpose to demystify the internal logic of Reinforcement Learning agents.

In this thesis, we will focus to interpret the decisions of Deep Reinforcement Learn-

ing agents that are trained to perform in environments with continuous action-spaces.

These agents are trained inmost cases using policy-gradient or actor-criticmethods, be-

cause they generate a probability distribution on possible actions, or choose directly the

action, instead of giving a value to every state-action pair. Such a method is the Twin-

Delayed Policy Gradient method[11]. Our approach is based on the work cited in [15]

where they replace the target neural network models of the Deep-Q-Networks method

with interpretable Boosting Trees, in order to generate interpretations from the neural

network value functions. Because, we want to apply this method to agents that interact

with continuous action spaces, we adopt a similar approach to interpret a Twin Delayed

Policy Gradient[11] agent. For this purpose we are using decision tree-based models,

which are interpretable by nature (inherently interpretable): Every internal tree node

represents a check about a certain condition and every leaf node represents the deci-

sion, therefore, for each decision that the tree makes we can extract the predicate that

corresponds to it.

The structure of the present thesis is the following. In the second section, we will pro-

vide related work with what we are doing and present the contributions of our work. In

the third section we cite the background theory that is necessary to understand the rest

of this thesis. This section is split into two parts. The first one presents the various in-

terpretablemodels that will be used. The second one, presents the Twin-Delayed Policy

Gradient(TD3)[11] method, which is an Actor-Critic method to be made interpretable

using the mimicking paradigm, in order to produce an interpretable agent that would

work in environments that have continuous action spaces. Then, in the fourth and fifth

section we will describe our methods and their experimental evaluation along with the

justification of the results, respectively. Finally, we draw our conclusions and provide
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directions for further work.
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2 RelatedWork

One of the first approaches to incorporate Decision Trees in Reinforcement Learning

methods to explain the resulting policy can be seen in [16]. This is done by employ-

ing Decision Trees in order to approximate the Q-values. The method runs like the Q-

Learning algorithm[17], but the complex part is how the Decision Tree is updated. In

the case of the greedy action selection, it calculates the Q-value difference between the

current and the previous timestep, ∆Q, using the Bellman equation, and updates the

previous timestep’s Q-value accordingly. Then, the agent adds the∆Q value to the pre-

vious timestep state’s node history. A split check is made, and a node split is performed

if the average∆Q is smaller than two times the standard deviation of∆Q. Overall, this

approach shows that tree-based approaches canwork onReinforcement Learning tasks

and especially in Q-Learning. However, the authors do not investigate method’s appli-

cability on Deep Reinforcement Learning tasks.

Another approach is the Conservative Q-Improvement algorithm[18]. This algorithm

utilizes a decision tree to estimate the Q-value function by keeping tree sizes small,

hence, easier interpretable and transparent. Agent’s policy is represented by a single

decision tree and its whole training procedure is virtually the same as in Stochastic

Gradient Trees(SGTs)[19], that will be presented later, where in each timestep it is de-

termined whether we should split, update or do nothing to the invoked leaf node, with

two main differences. The first is that CQI has one tree that predicts all the available

actions while SGTs need to have one tree for each action. The second one is the cri-

terion regarding whether a leaf node is eligible for splitting. In SGTs, student t-test is

applied onwhether the loss per update is equal to zero or not. On the other hand, in CQI

trees, a split is performed if the expected discounted future reward for the new policy

after the split increases above a specific dynamic threshold, and that’s why this method

is called conservative, because it wants to keep the tree as small as possible, assuming
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that a smaller tree is more interpretable than a bigger one. The problem with those ap-

proaches is that they work well for problems with discrete-action spaces, but they are

not designed for problems with continuous-action spaces.

Programmatically InterpretableReinforcement Learning(PIRL)[20] is aReinforcement

Learning framework that explains Deep Reinforcement Learning agents’ policies by

translating them to a high-level, domain-specific programming language in order to

be in a form that is readable by humans. Also, the resulting program might not be as

effective as the neural policy, but at least it can be configured easily by experts. More

formally, having a Partially Observable Markov Decision Process(POMDP)[21], a func-

tional language and given a policy sketch that syntactically defines a set of program-

matic policies, the main goal is to find a program that maximizes the long-term reward.

In order to avoid brute-force search, A. Verma et al.[20] proposes Neurally Directed

Program Search(NDPS) which performs local search on available policies, guided by

an oracle policy, which is extracted from a fully trained Deep Reinforcement Learn-

ing method, like DDPG[10]. NDPS evaluates the candidate programmatic policies by

measuring their distancewith the output of the oracle policy in a set of interesting histo-

ries which are enrichedwith additional histories generated by the programmatic policy.

Evaluation of NDPS policies showed that they can have smoother trajectories, and bet-

ter generalization abilities compared to the policies discovered by DRL. However, no

evaluation of the explainability or interpretability of PIRL is provided, with or without

human subjects. Although this method can work for environments with continuous ac-

tion spaces, it cannot work in an online manner because the policy oracle needs to be

defined beforehand.

Another mimicking work can be seen in the work of Y. Coppens et al.[22] where they

utilize Soft-Decision Trees(SDTs)[23] in order to explain the policy of a fully trained

model. SDTs are a classificationmodel which is a combination of binary Decision Trees

and perceptrons. More specifically, each node contains internally a perceptron model

16



that gives the probability on going to the right or left node for internal nodes, while

leaf nodes’ learn softmax distributions over possible classes. In [22] the authors use

a pre-trained Reinforcement Learning model and try to make the SDT to mimick its

policy by fitting it with a number of state-action pairs extracted from the model. The

evaluation of this approach was done on Mario AI Benchmark[24] using a pre-trained

actor-criticmodel with Proximal PolicyOptimization(PPO)[25]. It was determined that

SDTs could explain the extracted policy, but it could not perform standalone in the same

level as the PPO agent. Moreover, the interpretability of SDTs is questionable because

they can explain the features’ weights on internal node’s decision, but leaf nodes’ deci-

sion is opaque because it is determined by a softmax distribution. Also, because SDTs

want to have good generalization properties, for some inputs the SDT output differs

significantly with the one of the PPO policy, thus, the fidelity of SDT decreases (i.e. it

results to decisions that are different to those of teh original model). Finally, although

this method can provide a good explanation in problems that have spatial input it is not

known whether they can produce good interpretation in a non-spatial setting.

The work that is more closely to the approach taken in this thesis, can be seen in the pa-

per of A. Kontogiannis et al.[15]. In this approach the authors created an interpretable

DQNagent by replacing the target Q-network of theDQN[7] andDoubleDQN[26] algo-

rithms with an interpretable model and specifically Gradient Boosting Regressor(GBR)

trees[27], which are also presented and utilized in this thesis. Hence, this approach

is also considered inherently interpretable because it replaces a neural network model

from the original algorithm with an interpretable one. The difference with PIRL[20]

and Y. Coppens et al.[22] papers, is that in this work the neural network policy model

is not used as a pre-trained oracle to which the interpretable model fits its decisions

given the states. The interpretable model is learnt in an online manner together with

the neural network model, thus, the authors are able to also monitor agent’s training.

This approach was evaluated in the Air Traffic Management Challenge and showed ini-
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tially that the neural network model has competitive performance even though it used

the interpretablemodel as the target Q-network. Furthermore, it was shown that the in-

terpretable model has high fidelity in terms of the decision that it makes in comparison

to that of the neural network model. However, due to overfitting, high fidelity does not

always ensures that the interpretablemodel will performwell in the given environment,

thus, its way of making decisions will not give any useful decisions and interpretations

overall. This aspect is not investigated in this work. Furthermore, this approach is not

designed for problems with continuous action-spaces as DQN and Double DQN algo-

rithms are designed for problems with discrete action-spaces.
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3 Background Knowledge

In this section, we will describe the theory behind the components that the proposed

method uses in order to understand the technical aspects of this thesis. Initially, we

present the theory behind the Stochastic Gradient Trees and Gradient Boosting Re-

gression Trees which are the interpretable models that will be used to make Twin-

Delayed Policy Gradient algorithm interpretable. Afterwards, we will provide infor-

mation about Reinforcement Learning Actor-Critic methods in general and specifically

about the Twin-Delayed Policy Gradient algorithm.

3.1 Interpretable Models

3.1.1 Stochastic Gradient Trees

Stochastic Gradient Trees[19] are state-of-the-art incremental models that can be used

for both regression and classification and their updates are based on Stochastic Gradi-

ent Descent[28] which is widely used on Neural Networks. Its main contributions, in

comparison with similar models like Hoeffding Trees[29], is that thosemodels are gen-

eral and scalable because they can optimize to arbitrary differentiable loss functions and

because they do not need a number of trees to construct the final model in order to pre-

dict a single value, but only one, i.e. they are not ensemble models, respectively.

The training method of the tree consists of two components. The first is a method to

evaluate a possible split and compute leaf node predictions using only gradient informa-

tion. The second, is an approach to determine whether there is enough information to

split a leaf node where in particular, it is based on t-tests. In Stochastic Gradient Trees

one-sample t-tests are used rather than hypothesis tests based on Hoeffding inequal-

ity, because it is needed for the SGT to use loss functions with unbounded gradients,

in order to determine whether enough evidence has been observed to justify splitting a
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node.

In order to see everything in a more formal way, let’s assume that the tree has a loss

function l(y, ŷ)where y is the ground truth label and ŷ is tree’s prediction which is equal

to y = σ(f(x)) where σ is a user-defined activation function, f represents the SGT, and

x the given instance. Because Stochastic Gradient Trees are updated incrementally,

for each update timestamp t we want to minimize the expected loss from last update

timestamp r until current timestamp t:

E[l(y, ŷ)] ≈ 1

t− r

t∑
i=r+1

l(yi, ŷi)

Because Stochastic Gradient Trees are trained incrementally, they change their struc-

turewhen each sample arrives, hence, we need to find amodification of the tree u : X →

R that minimizes the loss function. The modification can be splitting a leaf node, up-

dating its prediction value or doing nothing due to insufficient evidence to determine

the best split. More formally we have the following regarding the updates at a given

timestep:

ft+1 = ft + argminu[Lt(u) + Ω(u)],

where ft is the state of the tree at timestep t,

Lt(u) =
t∑

i=r+1

l(yi, ft(xi + u(xi))

and

Ω(u) = γ|Qu|+
λ

2

∑
j∈Qu

v2u(j)

20



TheΩ termworks as a regularizer of a possiblemodification,Qu ⊂ N is the set of unique

identifiers for the new leaf nodes that participate in modification u, and vu : N → R is

the difference in the predictions between the given node and its parent node. In Ω, the

first term penalizes the creation of a new node and the second one penalizes big changes

in the prediction value of new nodes in relation with their parent nodes. Thus, we want

our tree to have a minimal number of nodes and keep its prediction range low.

In order to keep consistency between the splitting criterion and leaf prediction values

with the loss function, the loss function Lt(u) is approximated using a Taylor expan-

sion:

Lt(u) ≈
t∑

i=r+1

[l(yi, ft(xi)) + giu(xi) +
1

2
hiu

2(xi)]

where gi and hi are the first and second derivatives, respectively, of l with respect to

ft(xi). Because the first term is a constant, we can simplify the expansion to:

∆Lt(u) =
t∑

i=r+1

[giu(xi) +
1

2
hiu

2(xi)]

=
t∑

i=r+1

∆li(u)

which describes the loss change due to modification u. In order to find the best split,

this function is calculated for every possible split in order to find the one that gives the

maximum reduction of the loss function. Also, for each potential split we need to find

the prediction values of the new leaf nodes. Note that at time t where an instance xt

arrives, the modification(if any) will be applied only to the leaf node that the particular

instance falls to. In order to find the optimal values vu(j), let’s define firstly a potential
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split:

u(x) =

vu(qu(x)), if x ∈ Domain(qu)

0, otherwise

where qu maps an instance in the given leaf node to an identifier for a leaf node that

would be created if the split were performed and x will be falling to. Also, we denote

the set Qu, which contains the identifiers for leaf nodes that will be created after the

split u. Then, we define the set Iju which is the set of instances that would reach the new

leaf node identified by j. Thus, loss difference can be written as:

∆Lt(u) =
∑
j∈Qu

∑
i∈Iju

[givu(j) +
1

2
hiv

2
u(j)] ⇔

=
∑
j∈Qu

[(
∑
i∈Iju

gi)vu(j) +
1

2
((
∑
i∈Iju

hi)v
2
u(j)]

Now, the optimal vu(j) can be found by adding to the above the corresponding term

from Ω,

∑
j∈Qu

[(
∑
i∈Iju

gi)vu(j) +
1

2
((
∑
i∈Iju

hi)v
2
u(j)] +

λ

2
v2u(j)

and setting its derivative with respect to vu equal to zero and solving by vu,

0 = (
∑
i∈Iju

gi) + (λ+
∑
i∈Iju

hi)vu(j) ⇔

v∗u(j) = −
∑

i∈Iju gi

λ+
∑

i∈Iju hi

The above equation estimates the quality of a possible split but it does not provide any

indication on whether we should perform the split. Because Stochastic Gradient Trees
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do not want to bound their gradients in order to keep their generality, they are using

Student’s t-test to determinewhether a split should bemade. The t statistic is computed

by

t =
L− E[L]
s/
√
n

where L is the mean change in loss if the split were applied, s is the sample standard

deviation of Li and, under null hypothesis, E[L] is assumed to be zero, i.e. it is assumed

that the split does not result in loss change. A p value can be computed using the inverse

cumulative distribution function of the t-distribution and, if p is less than δ, the split can

be applied.

The way that the split happens differs whether we are splitting a feature with discrete

or continuous value range. In the former case, we just create a branch of the split node

to each possible value, hence, if a feature of a leaf node has three distinct values and is

about to be split, we create 3 branches, one for each possible value. In the latter case,

given the upper and lower bounds of the feature’s values, which the user gave or they

were determined, we discretize it by performing equal width binning and then handle

the discrete values as an ordinal because the algorithm finds the best point to perform

a binary split.

For batch learningproblems, epochs are introduced in themethod toupdate the Stochas-

tic Gradient Tree using multiple passes over the training data, similar to the way those

are used in the Neural Networks training procedure.

3.1.2 Gradient Boosting Regression Trees

What boosting algorithms are doing is that they use a weak learning procedure-that

performs a bit better than random guessing-a number of times in order for their com-

bination to provide a strong learning procedure. There are several approaches for that
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like Random Forests[30], XGBoost[31], AdaBoost[32] etc. However, Gradient Boost-

ing algorithms construct additivemodels by sequentially fitting a simple parameterized

function(base learner) to current pseudo-residuals by least-squares at each iteration.

The pseudo-residuals are the gradient of the loss function being minimized, with re-

spect to the model values at each training data point, evaluated at current step.

In everyMachine Learning regression problem, what we want to do, is given some label

variables yi and some feature vectors x = {x1, x2, ..., xn}, in a training sample denoted

as {yi,xi}Ni , to find a general functionF that fits to the given training sample, even if the

instances are derived from various distributions. This is done by firstly defining a loss

function Ψ(y, F (x)) that we want our model F to minimize given the training sample.

This loss function can be any differentiable function such as mean-squared error or

cross-entropy loss. In case of boosting, F (x) is expanded as follows:

F (x) =
M∑

m=0

βmh(x;am)

where h(x;am) is the ”weak” model of the ensemble model, am are its parameters and

βm is the weight of this model, with these parameters, to the final decision. Thus, these

ensemblemodels train each base learner h sequentially by having an initial guess F0(x),

and then form = 1, 2, ...,M

(βm,am) = argminβ,a

N∑
i=1

Ψ(yi, Fm−1(xi) + βh(xi;a)) (1)

and

Fm(x) = Fm−1(xi) + βmh(xi;am) (2)
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The above is easier to be solved in two steps by firstly finding base-learner’s parameters

am by least-squares:

am = argmina,ρ

N∑
i=1

[ ˜yim − ρh(xi;a)] (3)

to the current pseudo residuals

˜yim = −[θΨ(yi, F (xi))

θF (xi)
]F (x)=Fm−1(x) (4)

and secondly we find βm by solving a single parameter optimization problem as fol-

lows:

βm = argminβ

N∑
i=1

Ψ(yi, Fm−1(xi) + βmh(xi;am)) (5)

Specifically, in Gradient Boosting Regression Tree[27], a base learner is in fact a regres-

sion tree with L leaves. The parameters of this learner are the split nodes along with

their decision makers, which in the end, split the space into L disjoint regions {Rlm}Ll=1

at iteration m. At each iteration we create a new L-terminal node tree. Each terminal

node keeps as a prediction a constant value which is equal to ỹlm = meanxi∈Rlm
(ỹim)

where ỹim is equal to the pseudo residual shown before. Now, as first step we need to

find the base learner’s hyperparameters where in our case each partition is determined

in a top down “best first” manner using a least squares splitting criterion. Then, we can

solve βm = argminβ

∑N
i=1 Ψ(yi, Fm−1(xi) + βmh(xi;am)) separately for each region Rlm

and because those nodes predict a constant value within each region we can just change

the problem and solve the following simple problem:

γlm = argminγ

∑
xi∈Rlm

Ψ(yi, Fm−1(xi) + γ) (6)
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Thus, the model Fm−1 is then updated in each corresponding region as follows because

every leaf node predicts a fixed value:

Fm(x) = Fm−1(x) + ν ∗ γlm1(x ∈ Rlm) (7)

where ν is the learning rate of the procedure. Thus the algorithm is the following,

where various lossmetrics can be appliedwithmean squared error be themost common

one:

Algorithm 1 Gradient Boosting Regressor

1: F0(x) = argminγ

∑N
i=1 Ψ(yi, γ)

2: form = 1 toM do

3: ỹim = −[∂Ψ(yi,F (xi))
∂F (xi)

]F (x)=Fm−1(x), i = 1, ..., N

4: {Rlm}L1 = L− terminal node tree({ỹim,xi}N1 )

5: γlm = argminγ

∑
xi∈Rlm

Ψ(yi, Fm−1(xi) + γ)

6: Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm)

7: end for

One extension of the above algorithm, in order to improve performance, is the induction

of randomness by training the mth tree with a subset of the training instances instead

of the entirety of them. The algorithm is adjusted as follows(we just take a subsample

to fit base learner and compute the model update for current iteration):
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Algorithm 2 Stochastic Gradient Boosting Regressor

1: F0(x) = argminγ

∑N
i=1 Ψ(yi, γ)

2: form = 1 toM do

3: {π(i)}N1 = rand_perm{i}N1
4: ỹπ(i)m = −[∂Ψ(yπ(i),F (xπ(i)))

∂F (xπ(i))
]F (x)=Fm−1(x), i = 1, ..., Ñ

5: {Rlm}L1 = L− terminal node tree({ỹπ(i)m,xπ(i)}N1 )

6: γlm = argminγ

∑
xπ(i)∈Rlm

Ψ(yπ(i), Fm−1(xπ(i)) + γ)

7: Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm)

8: end for

3.2 Actor-Critic Methods and Twin-Delayed Policy Gradient

Algorithm

Actor-Critic methods[9] are a subclass of Policy Gradient methods[8] that their goal is

to directly determine the optimal policy(the one that maximizes the expected reward)

using the one-step expected return in addition to the policy model itself. Therefore,

Actor-Critic methods have two components, the “actor” which references to the learned

policy, and the ”critic” which references to the learned state value function that gets

trained usually using TD-learning[5, 6]. Those methods help us address problems that

have continuous action space because they generate a distribution in the action space

rather than a score for each state-action pair. A graphical representation on how Actor-

Criticmethodswork can be shown in Figure 2where the actor, through its policymodel,

decides which action should be taken and the critic who through its value function in-

forms the actor how good was the action taken and how the actor should adjust.
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Figure 2: General framework of Actor-Critic methods

Twin-Delayed Policy Gradient(TD3)[11] is an actor-critic method that builds on top of

Deep Deterministic Policy Gradient[10] which is a Policy Gradient version of Deep Q-

Learning[7] method. In addition, what TD3 wants to address, that are reasons also to

convergence to suboptimal policies, are overestimations in value estimates, high vari-

ance and overfitting to value function’s peaks. Those problems are relevant to the

critic of the algorithm. About overestimation bias, approaches for Double Deep-Q-

Learning[26] andDouble Q-Learning[33] were employed initially, where in the former,

an additional target network is used to determine the value of the state-action function

and gets updated periodically based on the primary critic network. In the latter ap-

proach, two state-action value functions are used where at each step one is picked to

select the next action and the one is updated based on the other. However, none of

the aforementioned approached gave the desired results. Therefore, clipped Double Q-
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Learning is used where it assumes that a value function suffering from overestimation

bias can work as an upper bound to the true value function in order to favor underesti-

mations which are not persistent because agents do not want to stay at a state that give

small estimations. This is achieved by updating the critic networks by determining the

target value using the following formula:

y = r + γmini=1,2Q
′
θi
(s′, πϕ(s

′))

where θi, i = 1, 2 are the weights of critic networks and ϕ are the weights of the policy

network and it is clear from the formula that the target is determined using the most

pessimistic prediction between two critics in order to prevent overestimation bias.

Variance Reduction is ensured with target networks and delayed policy updates. Vari-

ance leads to a noisy gradient that accumulates errors which not only affects perfor-

mance but also results in slower convergence. One way tomitigate it, is to update target

network less frequently than every step which is done in Deep Q-Network for example

in order to have more stable learning. Another way to reduce variance in an actor-critic

method is to update the policy(actor) less frequent than the state-action value func-

tion(critics). This helps preventing policy divergence because when updating the actor

less frequently than the critics, the critics have reduced their error as much as possible.

So, in summary we want at each policy model update to have the best critics that we

can and then update the policy utilizing them. Also, that way it is ensured that policy

updates are done when the outputs of critic networks are changed significantly.

In order to prevent agent’s policy network’s overfit to value estimates peaks and also

promote exploration, stochasticity should be added to the agent. Also, the critic is sus-

ceptible to errors if it is updated by a deterministic policy. For that, a SARSA-like reg-

ularization strategy[1] is used where its basic principle is that similar actions, should

have similar value. In order to do that, the value function gets fit in a small area around
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target action, so the fitted function will be more smooth. In practice this is done by

adding bounded random noise to target policy’s selected action. More formally, the

target update is modified as:

y = r + γQθ′(s
′, πϕ′(s′) + ϵ),

ϵ ∼ clip(N (0, σ),−c, c)

Considering and combining the aforementioned tweaks, the TD3 algorithm can be seen

inAlgorithm3. More specifically, in lines 1-3 the initialization of the agent happens by

initializing the invoked neural networks, their target ones and the replay buffer. Then,

for each timestep the agent in line 5 selects an action using themain policy networkwith

additional noise ϵ in order to promote exploration, performs it and stores the transition

to replay buffer as seen in line 6. Afterwards, from lines 7 to 10, the agent takes a sample

from the replay buffer, finds the next action a′ from the sampled transitions and applies

clipped Double Q-Learning to find the target value in order to calculate critics’ loss and

update them accordingly. Then, from lines 11 to 13, the actor policy network gets up-

dated according to the predefined frequency d, using the chain rule in the weights of

first critic network θ1. Last but not least, from lines 14 to 16, the target networks are

getting updated in order to keep the errors small.
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Algorithm 3 Neural Networks TD3

1: Initialize critic networksQθ1 ,Qθ2 and actor network πϕ with random parameters θ1,

θ2, ϕ

2: Initialize target networks for the critics θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ

3: Initialize replay buffer B

4: for t = 1 to T do

5: Select action with exploration noise α ∼ πϕ(s) + ϵ, ϵ ∼ N(0, σ) and observe

reward r and new state s′

6: Store transition tuple (s, α, r, s′) in B

7: Sample mini-batch of N transitions (s, α, r, s′) from B

8:
∼
α← πϕ′(s′) + ϵ, ϵ ∼ clip(N(0, σ),−c, c)

9: y ← r + γmini=1,2Qθ′i
(s′,

∼
α)

10: Update critics θi ← argminθi
N−1

∑
(y −Qθi(s, α))

2

11: if tmod d == 0 then

12: Update ϕ by the deterministic policy gradient:

13: ∇ϕJ(ϕ) = N−1
∑
∇αQθ1(s, α)|α=πϕ(s)∇ϕπϕ(s)

14: Update target networks:

15: θ′i ← τθi + (1− τ)θ′i

16: ϕ′ ← τϕ+ (1− τ)ϕ′

17: end if

18: end for
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4 Interpretable Twin-Delayed Policy Gradient

In order to make our TD3 agent interpretable, one of the two following approaches

could be followed. In the first, both the primary and target policy networks will be re-

placed with an interpretable incremental model, like SGT, according to the distillation

paradigm. These models will get updated in the same manner as neural networks by

configuring the loss function accordingly. In the second approach, we can interpret di-

rectly the primary policymodel, the target policymodel, the primary critics or the target

critics using the mimicking paradigm. In this thesis, the target policy network is han-

dled as a mimic of the policy network because we want to extract the policy itself, thus,

there was no point at extracting critics’ interpretations. Additionally, in the mimicking

approach, the primary policy network could not be replaced by an interpretable model

because this model gets updated incrementally. This method was introduced for inter-

pretable Deep Q-Networks version[15], where in order to update the target model, the

agent samples experience from replay buffer and fit the target from that. It is done in

that manner because the knowledge gathered in the parameters of one or more neural

networks cannot be transferred directly to an interpretable tree model. In this thesis,

the second method will be presented and investigated because it is a straightforward

method to make the original TD3 method interpretable and also we are able to use

non-incremental interpretable models because the target captures only the current in-

stance of the primary model. Furthermore, we can create different snapshots of the

interpretable model during training, so as to be able to examine the training progress

of the method.

The Interpretable Twin-Delayed Policy Gradient method using mimicking, can be seen

in Algorithm 4. Additionally, an illustration of its differences with the original TD3

algorithmcanbe seen inFigure 3. In this algorithm, it is necessary to explain threemod-

ifications. Firstly, from lines 13 to 22, it is seen that the primary policy neural network
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model is updated with different frequency than the target policy interpretable model

and also with different batch size(line 20). This is done for the same reason as the de-

layed policy updates because we do not do soft-update like Original TD3 algorithm(line

22), and instead we do something similar as copying the weights of the neural policy

model to the interpretable one, thus, when target policy model gets updated less fre-

quently the learning is more stable. We are also using different batch size to train the

interpretable models because interpretable models need more data to be good mimics

of the primary neural network policy model, i.e. to minimize validation loss. Secondly,

in line 22, unlike the original TD3 algorithmwhere the target policy network is changed

as τϕ+(1−τ)ϕ′, the target policymodel is fitted with the actions extracted from current

primary policy network. This is done because we want to extract the logic behind the

primary policy network. Last but not least, in line 20, the sampling of theN ′ transitions

in order to update the interpretable policy model model must be made more specific.

This step is done with either of the following ways:

• All which means that the entirety of states from the replay buffer are taken.

• Recentwhichmeans that theN ′most recent states in terms of insertion are taken

from the replay buffer.

• Recent Window which means that a random sample of N ′ states is taken from

theM ′most recent ones in terms of insertion in the replay buffer, whereN ′ < M ′.
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Algorithm 4 Interpretable TD3

1: Initialize critic networksQθ1 ,Qθ2 and actor network πϕ with random parameters θ1,

θ2, ϕ

2: Initialize target networks for the critics θ′1 ← θ1, θ′2 ← θ2

3: Initialize randomly target actor interpretable model with parameters ϕ′.

4: Initialize replay buffer B

5: for t = 1 to T do

6: Select action with exploration noise α ∼ πϕ(s) + ϵ, ϵ ∼ N(0, σ) and observe

reward r and new state s′

7: Store transition tuple (s, α, r, s′) in B

8: Sample mini-batch of N transitions (s, α, r, s′) from B

9:
∼
α← πϕ′(s′) + ϵ, ϵ ∼ clip(N(0, σ),−c, c)

10: y ← r + γmini=1,2Qθ′i
(s′,

∼
α)

11: Update critics θi ← argminθi
N−1

∑
(y −Qθi(s, α))

2

12: if tmod d == 0 then

13: Update ϕ by the deterministic policy gradient:

14: ∇ϕJ(ϕ) = N−1
∑
∇αQθ1(s, α)|α=πϕ(s)∇ϕπϕ(s)

15: Update target networks:

16: θ′i ← τθi + (1− τ)θ′i

17: end if

18: if tmod d′ == 0 then

19: Sample mini-batch of N ′ transitions (s, α, r, s′) from B using the selected

sampling strategy for interpretable actor model.

20: Initialize interpretable model’s parameters ϕ′

21: Update ϕ′ fitting interpretable model using states s as instances and πϕ(s) as

labels.

22: end if

23: end for
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(a) Original TD3

(b) Interpretable TD3

Figure 3: Illustration of the inner workings of Twin-Delayed Policy Gradient algorithm
in both original and interpretable versions

An extra sampling method, is the Experience Gain one where the basic idea is to
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sample N ′ transitions from the experience of the last K actor’s instances. However, in

order to do that, the primary actor network needs to run forN ′ steps, without updating

its weights, in order to gain the required experience. Tomake this approachmore com-

prehensive we describe it using the state diagram in 4 and break down how each state

is operating.

Figure 4: State diagram of an Interpretable TD3 Agent using Experience Gain sampling
method

As we can see from the diagram 4, the agent starts from the warm-up state, just like

the original TD3 algorithm in order to prevent any local optima due to the initial pa-

rameters of the policy, and then the agent alternates between the Training State and

the Experience Gain State. Before describing each state in detail, we will first show the

agent’s initialization:

Algorithm 5 Agent’s Initialization

1: Initialize critic networksQθ1 ,Qθ2 and actor network πϕ with random parameters θ1,

θ2, ϕ

2: Initialize target networks for the critics θ′1 ← θ1, θ′2 ← θ2

3: Initialize randomly interpretable target actor model with parameters ϕ′.

4: Initialize Replay buffer B

5: Initialize Experience Gain Replay Buffer B′
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As we can see in the above algorithm, we initialize the networks and the interpretable

target actor model. Also, we create two replay buffers, where one is the same as the

one in the original TD3 algorithm and the other is used to store experience from the

experience gain state and eventually sample from that in order to train the target actor

model. Then, the pseudocode for each of those states can be seen in Algorithm 6,

Algorithm 7 and Algorithm 8.

Comparing Algorithm 6 and Algorithm 7, the only differences between Train and

Warm-up state is that in the former, the action is selected in a greedy way, while in the

latter, the action that the agent will take is selected randomly and also after a number of

steps the agent switches to Train state without returning again to warm-up state. The

Experience Gain state that is shown on Algorithm 8 involves the current actor snap-

shot, running in the environment in a greedy manner with some exploration noise(line

3), without updating its weights, and storing the transitions into the second replay

bufferB′, as shown in line 4. When we have storedExperienceGainSteps transitions, if

theExperienceGainReplayBuffer is full, then the target actormodel is trained as shown

from lines 9 to 11. Replay BufferB′ has size equal to numActors ·ExperienceGainSteps,

thus, this means that B′ is full when at least numActors actor’s instances have passed

through Experience Gain state.

Last but not least, one thing to take care for, is that the interpretable models that are

currently used, do not have any mechanism for multi-output regression. In order to

handle it, the agent can keep one instance for each action coordinate and use only the

given state as input to each instance. Another way, in order to introduce dependence

among action’s coordinates, can be that for each action coordinate, the agent makes its

prediction based on the state and the prediction that he did on previous action coordi-

nates, if applicable.
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Algorithm 6Warm-up State

1: Total warm-up steps,WarmupSteps > 0

2: CurrStep← 0

3: Select random action action α ∼ ϵ, ϵ ∼ N(0, σ) and observe reward r and new state

s′

4: Store transition tuple (s, α, r, s′) in B

5: CurrStep← CurrStep+ 1

6: Sample mini-batch of N transitions (s, α, r, s′) from B

7:
∼
α← πϕ′(s′) + ϵ, ϵ ∼ clip(N(0, σ),−c, c)

8: y ← r + γmini=1,2Qθ′i
(s′,

∼
α)

9: Update critics θi ← argminθi
N−1

∑
(y −Qθi(s, α))

2

10: if tmod d == 0 then

11: Update ϕ by the deterministic policy gradient:

12: ∇ϕJ(ϕ) = N−1
∑
∇αQθ1(s, α)|α=πϕ(s)∇ϕπϕ(s)

13: Update target networks:

14: θ′i ← τθi + (1− τ)θ′i

15: end if

16: if CurrStep == WarmUpSteps then

17: Move to Train State

18: end if

19: if tmod d′ == 0 then

20: Move to Experience Gain State

21: end if
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Algorithm 7 Train State

1: Select action with exploration noise α ∼ πϕ(s) + ϵ, ϵ ∼ N(0, σ) and observe reward

r and new state s′

2: Store transition tuple (s, α, r, s′) in B

3: Sample mini-batch of N transitions (s, α, r, s′) from B

4:
∼
α← πϕ′(s′) + ϵ, ϵ ∼ clip(N(0, σ),−c, c)

5: y ← r + γmini=1,2Qθ′i
(s′,

∼
α)

6: Update critics θi ← argminθi
N−1

∑
(y −Qθi(s, α))

2

7: if tmod d then

8: Update ϕ by the deterministic policy gradient:

9: ∇ϕJ(ϕ) = N−1
∑
∇αQθ1(s, α)|α=πϕ(s)∇ϕπϕ(s)

10: Update target networks:

11: θ′i ← τθi + (1− τ)θ′i

12: end if

13: if tmod d′ == 0 then

14: Move to Experience Gain State

15: end if
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Algorithm 8 Experience Gain State

1: Total experience gain steps, ExperienceGainSteps > 0

2: CurrStep← 0

3: Select action with exploration noise α ∼ πϕ(s) + ϵ, ϵ ∼ N(0, σ) and observe reward

r and new state s′

4: Store transition tuple (s, α, r, s′) in B′

5: CurrStep← CurrStep+ 1

6:

7: if CurrStep == ExperienceGainSteps then

8: if Experience Gain Buffer B′ is full then

9: Sample random mini-batch of N ′ transitions (s, α, r, s′) from B′.

10: Initialize target actor model’s parameters ϕ′

11: Update ϕ′ using states s as instances and πϕ(s) as labels.

12: end if

13: Move to Train State

14: end if
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5 Experimental Evaluation

5.1 Evaluation tasks

In the previous section we presented an interpretable version of Twin Delayed Policy

Gradient algorithm that helps us build interpretable agents that can perform on envi-

ronments with continuous actions. Our approach’s performance will be evaluated on

the suite of MuJoCo continuous control tasks[34], interfaced through Gymnasium[35]

which is a maintaining clone of OpenAI Gym[36], without any modifications to the en-

vironment or the reward in order for our experiments to be easily reproducible. The

environments that the experiments will be conducted are the following:

• InvertedPendulum and InvertedDoublePendulum[37] where the agent is

actually a cart that can move left or right applying a specific amount of force with

ultimate goal to balance the one or two piece pole which is attached to the cart,

respectively. Those environments are the simpler ones because the agent has only

one action dimension, thus, it does not need to coordinate more than one joints.

Also their observation space is small because their dimensionality is equal to 4.

• Hopper[38] is an environment where the agent has 3 joints that he can control,

the thigh, the leg and the foot. Therefore, its 3-dimensional action space repre-

sents the torque that can be applied to its three joints. On the other hand, its ob-

servation space consists of 11 dimensions. The goal of the agent is to keep jumping

forward as much as it can.

Note, that in the last environment the agent is required to jump forwardwith controlled

and not abrupt movements in order to achieve maximum rewards. Consequently, we

can see that the evaluation tasks cover various cases of state-action complexity and also

showcase increased difficulty because not only they have high dimensional observation

space, but the presented models should also map those observations to high dimen-
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sional action spaces. This mapping is also challenging because each action dimension

needs an instance of the interpretable model used. An illustration of the environments

can be seen in Figure 5. More details about the environments can be found in Gymna-

sium’s documentation.

(a) InvertedPendulum-v4 (b)
InvertedDoublePendulum-
v4

(c) Hopper-v4

Figure 5: Illustration of Gymnasium environments that will be used for our method’s
evaluation.

5.2 Implementation details and experimental setup

In order to compare our approach in a fair manner with the original TD3 algorithm, the

hyperparameters of the interpretable method are made equal to the hyperparameters

of the original method, and will be equal to those stated in [11], thus, the presented

approach will differ only in the new hyperparameters. Specifically, both the actor and

critic networks are 2-layer fully connected feed-forward neural networks where the first

layer contains 400 neurons and the second one 300 neurons that are using rectified

linear units[39] as their activation function. Actor network’s output layer will use tanh

multiplied bymaximumpossible action in order to produce decisions within the agent’s
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bounds. Both network parameters are updated using Adam [40] with a learning rate

of 10−3. As you can see in Algorithm 3 the networks are trained from a mini batch of

collected experience, saved in replay buffer. This mini batch has size N = 100 and the

replay buffer B has size equal to 1 million transitions.

Target policy smoothing is implemented by adding ϵ ∼ N (0, 0.2) to the actions chosen

by the target actor network, clipped to (−0.5, 0.5). Delayed policy updates consist of up-

dating the actor and target critic network every d iterations, with d = 2. While a larger

d would result in a larger benefit with respect to accumulating errors, for fair compar-

ison, the critics are only trained once per time step, and training the actor for too few

iterations would cripple learning. Both policy and critic target networks are updated

with τ equal to 0.005, which in practice means that their weights are 99.5 percent the

same with a 0.5 percent change in the direction of the weights of the corresponding pri-

mary model. Furthermore, the number of warm-up steps, where the agent is choosing

actions randomly, is equal to 1000 for all environments.

In terms of interpretable TD3’s hyperparameters, as it was mentioned before, they are

the same as the original TD3 algorithm, where applicable, however, there are some

which are introduced in the presented approach. Firstly, the update frequency of the

target actor interpretablemodel d′ is equal to 200, because if it gets set to a smaller value

the learning becomes slower without giving better results. Secondly, because the inter-

pretable target actor interpretable model needs more data in order to be able to repli-

cate the primary actor network, the number of sampled instancesN ′ is equal to 10000.

Furthermore, the sampling method of N ′ transitions that seem to work best was the

Experience Gain one where those transitions are getting sampled from the most recent

policy network (actor) instance. This approach in comparison with the others in terms

of the learning curve of the primary policy model did not show any major difference.

However, when testing the performance of the interpretable models, the one trained

with Experience Gain performed much better, which means that it fits better the policy
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of the neural network actor. This happens because the interpretable model fits from

instances extracted from a single distribution, i.e. in our case, a single actor policy net-

work. Finally, as stated in the previous section, the interpretable models used are not

designed formulti-output regression and twoways were provided. The approach that is

assuming complete independence among action coordinates performed the same level

as the one that is introducing a dependence of an action coordinate with its previous

one. Also, the former approach can be parallelized, thus, the predictions can be done

faster. Thus, in the experiments run, we have one interpretable model’s instance per

action coordinate that takes as input only the given states.

Last but not least, we need to provide information about the hyperparameters of the

interpretablemodels that get used in themethod. Asmentioned in previous section, the

interpretablemodel can be a number of Stochastic Gradient Trees or Gradient Boosting

Regression Trees. For the former, the SGTs are trained for 10 epochs with learning rate

of 0.5, the numerical attributes are split into 8 equal width bins and in order to perform

a split we should see at least 16 samples. Also, the bounds for each attribute x are equal

to the 95% confidence interval derived from the given batch of the N ′ transitions. For

the Gradient Boosting Regression Trees (GBR), we did a grid-search in order to find

the best GBR hyperparameters for each of the experimental tasks, given that GBR is

faster than SGTs, thus, it was feasible to test it in all cases. The hyperparameters that

we tuned in GBR are the following:

1. The number of estimators, i.e. trees, that the model will have.

2. The maximum depth of those estimators.

3. Method’s Learning Rate.

4. The percentage of the number of the training samples that each tree will fit on.

5. The minimum number of training samples that should fall into a leaf node.
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The custom hyperparameters can be seen in a more organized manner in Tables 1, 2,

and 3.

Table 1: Interpretable TD3 and TD3(where applicable) Hyperparameters

Hyperparameter Value

Neural Network Actor’s Learning Rate 10−3

Critic’s Learning Rate 10−3

τ 5x10−3

Neural Network’s Batch Size 100

Discount Factor 0.99

Actor’s Update frequency in terms of Agent’s Steps 2

Warm-up Steps 103 or 104

Replay Buffer Size 106

Number of neurons of the first fully connected layer of the networks 400

Number of neurons of the second fully connected layer of the networks 300

Sampling strategy for training (interpretable) target actor Experience Gain

Experience Gain Actor Samples 105

Experience Gain Actor Instances 1

Target Actor’s Update frequency in terms of Agent’s Steps 200

Noise to action 10−1

Table 2: Stochastic Gradient Trees Hyperparameters per environment

Hyperparameter Value

SGT Train Epochs 10

SGT Bins for Numerical Values 8

SGT Learning Rate 0.5

SGT Batch Size(# samples to see in order to split) 16
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Table 3: Gradient Boosting Regression Trees Hyperparameters per environment

InvertedPendulum-v4 InvertedDoublePendulum-v4 Hopper-v4

# Estimators 500 500 100

Estimator’s Max Depth 5 5 20

Learning Rate 0.5 0.5 0.1

Estimator’s subsample 1.0 1.0 1.0

# Minimum Samples 100 100 250

The evaluation of the approaches and their comparison with the Original TD3 algo-

rithm, is done in two phases where in the former their learning curve and fidelity of

the interpretations is evaluated, and in the latter the standalone performance of the re-

sulted interpretable model is evaluated. In the first phase, the agent runs for 1 million

training steps and every 5000 training steps the agent stops training and runs for 10

episodes where the agent chooses actions without any exploration noise in order to de-

termine the performance given its current parameters. The average evaluation results

from 5 experiment runs alongwith their standard deviation are shown in Figure 6. Note

that, in all environments the agent runs for at most 1000 steps per episode.

The implementation of the presented approaches was done in Python, using PyTorch

withGPUoptimization for theneural networks, SciKit-Learn[41] for theGradientBoost-

ing Regressor and pySGT was used for the Stochastic Gradient Trees. The implemen-

tation of the presented approach can be found in this GitHub repository.
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5.3 Experimental results

(a) InvertedPendulum-v4 (b) InvertedDoublePendulum-v4

(c) Hopper-v4

Figure 6: Learning curves of various models in the respective environments.

Figure 6 shows per environment and per method, the average reward and its standard

deviation that the neural network policy model yields across 5 runs, when ran in eval-

uation mode i.e. without adding any noise to its chosen actions, for 10 episodes. The

applied methods switch to evaluation mode per 5000 training steps and in Figure’s 6

results, their agents were trained for 1million steps. From this Figure, the following can
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be induced. Initially, it can be seen in Figure 6a that in the easier problem which is the

InvertedPendulum, TD3 using SGTs performs in the same level as the original TD3 al-

gorithm. However, when the problem becomes a little bit harder like the InvertedDou-

blePendulum, as can be seen in Figure 6b, TD3with SGT has clearly worse performance

than the original TD3 and TD3 using GBRs agents, where those two still have similar

performance. Investigating why this happens, two things were investigated. The first

one was how good is the fit that the interpretable model does on the given data. This

gets investigated by determining the training Mean Squared Error(MSE) per episode.

MSE per episode is the average training MSE along the interpretable model updates

that happened in a single episode. The results can be seen in Figure 7. Note that, it is

normal sometimes for the resulting curves to have variable sizes because a better per-

forming agent covers 1 million timesteps in less episodes than the one who performs

worse, thus, each episode runs for less steps.

(a) InvertedPendulum-v4 (b) InvertedDoublePendulum-v4

Figure 7: Training MSE of interpretable models in the respective environments.

FromFigure 7, it is clear that trainingMSE is higher for the SGT case than the GBR case

in both environments. However, the paradox in this is that SGT’s MSE in InvertedPen-
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dulum is higher than MSE in the InvertedDoublePendulum case, but InvertedPendu-

lum SGT agent performs in the same level as the GBR variation and the original TD3

algorithm. This might happen because InvertedPendulum is an environment which is

easier to solve, i.e. fit to the optimal policy, than the InvertedDoublePendulum one,

even if it has greater MSE, or it might be less sensitive to mistakes, thus, even if in some

action makes a bad decision, the error can be fixed at a next step. Furthermore, com-

paring the MSE per episode between Interpretable TD3 using SGT with the one using

GBR per environment, in both Figures 6a and 6b we can see that GBRs fit much better

than SGTs, having training loss close to zero.

The second thing that we investigated is the fidelity of the interpretablemodels. Fidelity

is defined as the difference between the decision made by the interpretable model with

the decision that the target neural network policy model would have made if it got up-

dated as the original TD3 algorithm. Fidelity is measured by the Mean Absolute Error

per each training step between the decisions of those two models. The fidelity along

with its standard deviation per step across 5 runs of 1 million steps each, can be seen in

Figure 8. We can see that the fidelity of the interpretable policy model is higher in the

InvertedDoublePendulum case(Figure 8b) than in the InvertedPendulum one(Figure

8a). Βoth interpretable models in InvertedPendulum, as seen in Figure 8a present the

same fidelity, converging nearly to 1, which is half of themaximumpossibleMAE.How-

ever, in both versions of interpretable TD3, the neural network policy model yields the

maximum possible episodic reward when it gets to evaluation phase, as seen in Figure

6a, thus, the training reaches the optimum.
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(a) InvertedPendulum-v4 (b) InvertedDoublePendulum-v4

Figure 8: MAE of interpretable models in the respective environments.

However, because TD3 with SGTs performs worse even in simple problems, we do not

evaluate it in the rest of the environments.

As Figure 6c shows, for the Hopper environment, the interpretable TD3 using GBR

performs worse that original TD3 algorithm. In order to explain why this happens,

we will check initially, the average MSE per episode and interpretable agent’s fidelity.

From Figure 9a, we can see that MSE is low throughout training, as it was for Inverted-

DoublePendulum. This means that GBR does not have a problem to fit to neural net-

work’s policy. From Figure 9b we can see that the fidelity decreases as the training

progresses and it is virtually at the same level with InvertedPendulum as seen in Fig-

ure 8a. However, the main particularity that Hopper environment introduces, is that

this environment’s action space is multidimensional, therefore, it is more difficult for

the interpretable models to be trained effectively well, assuming that there is a separate

model per action dimension.
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(a) Hopper’s MSE per episode (b) Hopper’s MAE per step

Figure 9: Hopper’s average MSE and MAE per episode.

In the second phase, we will run the best, according to the evaluation results, agent’s

policy neural network and interpretable target policymodel that was extracted from the

previous phase, for 500 episodeswithout updating any of their parameters, i.e. they run

in evaluation mode. This is useful firstly in order to see what the neural network policy

model learned but also how the interpretable model can perform by itself on the en-

vironment. If the interpretable model performs closely to the primary policy network,

then we can assume that its interpretations are reliable because they represent a policy

of similar quality with the one of the neural network policy model, thus, it has a good

basis to provide explanations regarding agent’s policy. The results can be seen in Ta-

ble 4 where we report the average episodic reward of each policy model, along with its

standard deviation, if run standalone in each environment for 500 episodes. In this ta-

ble, TD3 represents the Original TD3method, where NN Policy represents the primary

neural network policy model. Furthermore, TD3+GBR and TD3+SGT denote the In-

terpretable TD3method using GBR and SGT as their target interpretable policy model,

respectively. In those methods both the primary neural network policy model(NN Pol-
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icy) and the target interpretable model(GBR or SGT) are evaluated in terms of their

standalone performance, i.e the reward.

Table 4: Best agent’s primary policy network and target policy model average reward
with standard deviation, extracted from 500 evaluation episodes.

TD3 TD3+GBR TD3+SGT

NN Policy NN Policy GBR NN Policy SGT

InvertedPendulum-v4 1000± 0.0 1000± 0.0 1000± 0.0 1000± 0.0 51.83± 12.07

InvertedDoublePendulum-v4 9359.85± 0.14 9324.27± 0.15 6145.95± 4046.92 8790.02± 2174.30 201.70± 64.96

Hopper-v4 3531.76± 4.72 3343.69± 517.79 2409.32± 916.76 N/A N/A

Initially, from Table 4, we can see that TD3+SGT method’s interpretable SGT policy

model does not generalize at all in every environment that it was tested because the av-

erage episodic reward is much lower than the ones that the other policy models yield.

However, we can see that TD3+SGT method’s NN Policy, has perfect performance in

InvertedPendulum environment while in InvertedDoublePendulum it has non-optimal

performance but the average reward is not much lower than the optimal one. However,

it reports an extremely high standard deviation. This is expected because, as seen in Fig-

ure 6b, the NN Policy model learnt from TD3 using GBRs, does not have the same per-

formance as the neural network policy model learnt from the original TD3. However,

as shown in Table 4 the average episodic reward is lower with comparison to TD3’s NN

Policy’s average reward and their standard deviation high. Checking Figure 10a, this

happens mostly due to few under-performing episodes that yield reward around 500,

while from Figure 10d it can be seen that in the the episodes that their total reward are

not outliers, which comprise the majority of them, TD3+SGT’s NN Policy yields very

high rewards, i.e., around 9349 units.
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(a) All models boxplots except TD3+SGT(SGT)

(b) TD3 zoomed-in boxplot (c) TD3+GBR(NN Policy)
zoomed-in boxplot

(d) TD3+SGT(NN Policy)
zoomed-in boxplot

Figure 10: Boxplots of evaluation scores in InvertedDoublePendulum-v4 per policy
model. Note that each subfigure has different scaling.

Regarding results for the TD3+GBR, in comparison to the TD3, reported in Table 4,

we can deduce the following. Initially, with regard to TD3+GBR method’s NN Policy

performance, we can see that in all environments it has almost similar performance

with the TD3 NN Policy, except for Hopper where it reports a larger deviation. As seen

from the corresponding boxplot in Figure 11a, this happens due to a small number of

under-performing episodes with reward close to 1000 units, while in the rest of the

episodes, as seen from Figure 11c, the policy models reports very high episodic reward,

around 3460 units, which is close to the average reward of TD3. Last but not least,

from TD3+GBR method’s GBR model’s results, we can see that although in Inverted-
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Pendulum the policy has optimal performance, in InvertedDoublePendulum and Hop-

per, GBR does not seem to generalize well. This might happen due to a small number

of under-performing episodes or this might be due to poor generalization which would

result in many under-performing episodes. Regarding TD3+GBR GBR policy model’s

performance in InvertedDoublePendulum environment, from Figure 10a we can see

that even though there is a high median value, lower rewards are not considered out-

liers. Therefore, we can extract the conclusion that in half of the episodes theGBRpolicy

model performs optimally, while in the others it yields suboptimal rewards. Regarding

TD3+GBR GBR policy model’s performance in Hopper environment, from Figure 11a

we can see that its episodic rewards span through the whole range, with no outliers.

Consequently, we can see that even though the GBR policy models have good fidelity

with respect to neural network policies, they do not have the same performance.

Summing up, from the presented results, we can see that the interpretable models have

high fidelity with their respective neural network policy model, but have poor gener-

alization properties which was shown when having them run standalone on the en-

vironment. Therefore, the resulting interpretable policy models can provide accurate

interpretations regarding the inner workings of the neural network policy model, but,

they are not in a level that they can run standalone in the given environment.
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(a) All models boxplots

(b) TD3 zoomed-in boxplot (c) TD3+GBR(NN Policy) zoomed-in boxplot

Figure 11: Boxplots of evaluation scores in Hopper-v4 per policy model. Note that each
subfigure has different scaling.
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6 Conclusions & Further Work

In this thesis, we presented a method that creates interpretable agents that perform

on environments with continuous action spaces and investigated their performance on

those environments. Specifically, our methodmodifies the Twin-Delayed Policy Gradi-

ent method by replacing the target neural network model with an interpretable model

that is used as a mimic of the primary neural network policy model. Finally, we eval-

uated our method with each interpretable model in two parts. In the first part, we in-

vestigated the learning curve of the primary neural network policy model and whether

it converges to a good cumulative reward. We show how well the interpretable policy

model fits the given neural network policy and we also show its fidelity in terms of how

similar were the interpretable model’s decisions in comparison to the ones that the tar-

get neural network policy model of the original TD3methodmakes. In the second part,

we evaluated the performance of the best models that were learnt from the training of

the neural network policy model and of the interpretable model, in order to determine

their generalization abilities. Overall, regarding the first part we show that TD3 using

GBRs can reach the same performance, i.e. yield rewards of the same level, as the orig-

inal TD3 algorithm. TD3 using SGTs has weaker performance in harder environments.

Regarding the second part, the neural network policy models using GBR have similar

performance than the one of the original TD3 algorithm, but the GBRs perform worse

due to learning capacity. Still in some cases they can have similar performance.

There are several directions that we can take for future work. Initially, this approach

does not yield good performance in some environments, likeHopper, evenwith TD3us-

ing GBRs, thus, we should investigate further why it does not work. An initial thought

is that this happens because each action coordinate uses a separate model, thus, we

assume independence among the coordinates, resulting in actions’ dimensions misco-

ordination. Therefore, we need to determine how we can modify our approach in order
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to perform well, considering correlations among actions’ dimensions. Firstly, we can

investigate the dependence among action coordinates values and try again to introduce

dependence among action coordinates in a ”chain” manner, but with a specific order.

Secondly, we canwork on using interpretablemodels that are designed formulti-output

regression, like XGBoost[31]. Thirdly, because Machine Learning models, unlike Deep

Neural Networks, cannot have the same predictive performance with raw data, it is

worth trying to apply feature engineering in the sampled states before feeding them

to the interpretable models. Furthermore, we should investigate whether we can yield

better interpretations using an interpretable model that can perform standalone in the

environments yielding rewards close to those of the neural network models. Moreover,

it would be useful to also make TD3 interpretable by using distillation instead of mim-

icking in order to exploit the inner working components of Deep Reinforcement Learn-

ing agents and get directly the interpretable policy model. Last but not least, we should

try and make interpretable versions of other actor-critic methods, like SAC[12].
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