

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
“ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ & ΥΠΗΡΕΣΙΕΣ”

Non-Coding RNA Classifier
by

Konstantinos Vasilas

Submitted
in partial fulfilment of the requirements for the degree of

Master of Information Systems & Services: Big data and Analytics
at the

UNIVERSITY OF PIRAEUS
February 2024

Thesis Supervisor: Ilias Maglogiannis
Title: Dean of School

Σε
λ.

 2

University of Piraeus,. All rights reserved.
Author Konstantinos Vasilas

Σε
λ.

 3

ΣΕΛΙΔΑ ΕΓΚΥΡΟΤΗΤΑΣ

Ονοματεπώνυμο Φοιτητή/Φοιτήτριας: Κωνσταντίνος Βάσιλας

Τίτλος Μεταπτυχιακής Διπλωματικής Εργασίας: Non Coding RNA Classifier

Η παρούσα Μεταπτυχιακή Διπλωματική Εργασία υποβάλλεται ως μερική εκπλήρωση των
απαιτήσεων του Προγράμματος Μεταπτυχιακών Σπουδών “Πληροφοριακά Συστήματα &
Υπηρεσίες” του Τμήματος Ψηφιακών Συστημάτων του Πανεπιστημίου Πειραιώς και
εγκρίθηκε στις 28/02/2024 από τα μέλη της Εξεταστικής Επιτροπής.

Εξεταστική Επιτροπή

Επιβλέπων (Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς):
Ηλίας Μαγκλογιάννης , Κοσμήτορας Σχολής

Μέλος Εξεταστικής Επιτροπής: Κωνσταντίνος Δελιμπάσης, Καθηγητής

Μέλος Εξεταστικής Επιτροπής: Δημοσθένης Κυριαζής, Καθηγητής

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΑΥΘΕΝΤΙΚΟΤΗΤΑΣ

Ο Κωνσταντίνος Βάσιλας γνωρίζοντας τις συνέπειες της λογοκλοπής, δηλώνω υπεύθυνα ότι
η παρούσα εργασία με τίτλο «Non Coding RNA Classifier», αποτελεί προϊόν αυστηρά
προσωπικής εργασίας και όλες οι πηγές που έχω χρησιμοποιήσει, έχουν δηλωθεί κατάλληλα
στις βιβλιογραφικές παραπομπές και αναφορές. Τα σημεία όπου έχω χρησιμοποιήσει ιδέες,
κείμενο ή/και πηγές άλλων συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την
κατάλληλη παραπομπή και η σχετική αναφορά περιλαμβάνεται στο τμήμα των
βιβλιογραφικών αναφορών με πλήρη περιγραφή.
Επιπλέον δηλώνω υπεύθυνα ότι η συγκεκριμένη Μεταπτυχιακή Διπλωματική Εργασία έχει
συγγραφεί από εμένα προσωπικά και δεν έχει υποβληθεί ούτε έχει αξιολογηθεί στο πλαίσιο
κάποιου άλλου μεταπτυχιακού ή προπτυχιακού τίτλου σπουδών, στην Ελλάδα ή στο
εξωτερικό.
Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την
ανάκληση του πτυχίου μου. Σε κάθε περίπτωση, αναληθούς ή ανακριβούς δηλώσεως,
υπόκειμαι στις συνέπειες που προβλέπονται τις διατάξεις που προβλέπει η Ελληνική και
Κοινοτική Νομοθεσία περί πνευματικής ιδιοκτησίας.

Ο ΔΗΛΩΝ

Ονοματεπώνυμο: Κωνσταντίνος Βάσιλας
Αριθμός Μητρώου: ΜΕ2102
Υπογραφή:

University of Piraeus

Non Coding RNA Classifier

Author:
Konstantinos Vasilas
Student ID: ME2102
vasilas.cei@gmail.com

Supervisor:
Ilias Maglogianis

February 22, 2024

Abstract

This thesis presents a simplified yet effective deep learning model for the
classification of non-coding RNAs (ncRNAs). Non-coding RNAs play a vital
role in gene regulation and are associated with various biological processes and
diseases. The complexity and diversity of ncRNAs make their classification a
challenging task. To tackle this, a new neural network model called NCC was
developer specifically designed to recognize patterns in ncRNA sequences as
well as an updated collection of non-coding RNA sequences datasets to train
and test the proposed architecture. The NCC model’s performance, when
benchmarked against traditional classifiers and existing RNA tools, revealed
a 6% improvement in accuracy over the previously best-performing models,
reaching 92.69% accuracy, along with slight enhancements in reliability, while
still retaining its uncomplicated architecture. This model was trained and
evaluated using a newly developed dataset that is ten times larger than the
conventional dataset, achieving an accuracy rate exceeding 98%. The model’s
accuracy and interpretability hold potential for future research in genomic
analysis and the identification of novel ncRNAs.

Contents
List of Figures

List of Tables

1 Introduction 1
1.1 Document Structure . 2

2 RNA - Theoretical Background 3
2.1 RNA . 3
2.2 Non-coding RNA . 3
2.3 RNA Secondary and Tertiary Structure 5

3 Artificial Intelligence 7
3.1 Machine Learning . 7
3.2 Classification Algorithms . 8
3.3 Artificial Neural Networks . 8

3.3.1 Neuron . 9
3.4 Activation Functions . 10
3.5 Deep learning . 12
3.6 Fully Connected layer . 12
3.7 Convolutional Neural Network (CNN) 12

3.7.1 Convolution Layer . 13
3.7.2 Pooling Layer . 13

3.8 Recurrent Neural Network (RNN) . 14
3.8.1 Long-Short term memory (LSTM) 16
3.8.2 Gated Recurrent Unit (GRU) 17
3.8.3 Bidirectional RRN . 17

4 Technologies 19
4.1 Python . 19
4.2 Deep learning Frameworks . 19

4.2.1 Tensorflow . 19
4.2.2 Keras . 19
4.2.3 PyTorch . 19
4.2.4 Key Differences . 20

4.3 Other Python Libraries . 20
4.3.1 NumPy . 20
4.3.2 Pandas . 21
4.3.3 Scikit-learn . 21
4.3.4 Matplotlib . 21

4.4 RNA Secondary Structure Predict . 21
4.4.1 Knotty . 21
4.4.2 IPknot . 22
4.4.3 Knotify . 22

5 Related Work 24
5.1 RNAcon . 24
5.2 nRC . 25
5.3 GraPPLE . 25
5.4 ncRFP . 26
5.5 ncDLRES . 26
5.6 ncDENSE . 27

6 ncRNA data 28
6.1 ncRNA databases . 28
6.2 RNACentral . 29
6.3 IRESbase . 30
6.4 Rfam . 30

6.4.1 Rfam MySQL database . 31
6.5 Data Collection . 31

6.5.1 Fasta files . 33
6.6 Final dataset (NCC dataset) . 34
6.7 nRC dataset . 36

6.7.1 Comparison between NCC and nRC datasets 37

7 Implementing the Prediction Mechanism. 39
7.1 Data preparation . 39

7.1.1 Sequence Padding and Cutting 39
7.1.2 One-hot encoding . 40

7.2 NCC Model Architecture . 42
7.3 Training and Testing the Model . 44

7.3.1 Performance metrics . 45
7.3.2 Benchmarking NCC dataset 49
7.3.3 Benchmarking nRC dataset 50

8 Conclusion 52

9 Future Work 53

Bibliography 55

List of Figures
1 Non-coding RNA Classes and sub-Classes 4
2 RNA Secondary and Tertiary structure (Image source [1]) 5
3 Diagram of perceptron neuron . 10
4 Fully connected (a) and convolution (b) layer example 14
5 RNN node Unfolding . 15
6 LSTM cell Architecture . 16
7 GRU cell Architecture . 18
8 Layer of a Bidirectional RRN . 18
9 Knotify approach representation (Image Source [2]) 23
10 RNAcon Algorithm - a non-coding RNA Classifier [Image Source] . . 24
11 Pipeline of the nRC ncRNA sequence classification tool 25
12 ncRFP NN model Architecture (Image Source [3]) 26
13 RNAcentral Expert Databases [Image source] 29
14 Rfam core database scheme diagram [Image Source] 32
15 Number of sequences per class distribution of final dataset (NCC

dataset) . 35
16 Sequence length distribution of miRNA and ribozyme 36
17 Sequence length mean and STB, per class, sorted by STB of NCC

dataset . 36
18 Sequence length mean and STB, per class, sorted by STB of nRC

dataset . 37
19 Sequence length distribution of leader RNA class in nRC (a) and NCC

(b) dataset . 38
20 Sequence length distribution of tRNA RNA class in nRC (a) and

NCC (b) dataset . 38
21 Sequence length distribution of ribozyme RNA class in nRC (a) and

NCC (b) dataset . 38
22 NCC dataset, RNA Sequences length distribution 40
23 NCC Neural Network Architecture 43
24 Diagram of Accuracy and loss per epoch during training 45
25 Confusion Matrix for binary classification problem 47
26 Confusion Matrix for multi-class classification problem 48
27 Confusion Matrix of NCC model trained and tested with NCC dataset

matrix (a) is with 8 digits encoding and matrix (b) with 4 digits per
RNA base . 49

28 Confusion Matrix of NCC model train and tested with nRC dataset . 51
29 Proposed model for future work . 53
30 Proposed model for future work, consisting of multiple binary classifiers 54

https://webs.iiitd.edu.in/raghava/rnacon/algorithm.html
https://rnacentral.org/expert-databases
https://docs.rfam.org/en/latest/database.html

List of Tables
1 Rfam MySQL Database - Connection Details 31
2 Number of Sequences per family per Data source 34
3 Number of Sequences per family in NCC dataset 35
4 nRC [4] dataset divided to Train and Test 37
5 One hot encoding of RNA Bases . 41
6 One hot encoding of RNA IUPAC . 41
7 NCC model training parameters . 45
8 Test metrics using the NCC dataset with 4 and 8 digits RNA Base

encoding . 49
9 Models comparison. 50

1 Introduction
Non coding RNAs (ncRNAs) encompass an array of RNA molecules that aren’t in-
volved in protein encoding. Despite their lack of coding ability ncRNAs play roles,
in regulating biological processes, including gene expression, DNA replication and
epigenetic control. The identification of non coding RNAs (ncRNAs) has posed
significant challenges for researchers studying their functions. Precisely predicting
families is vital for advancing research on their functions due to the functions as-
sociated with different ncRNA families. Traditional experimental methods [5] used
to identify families are not time consuming and labor intensive but also expensive
making them impractical for high throughput technology demands. Consequently
computational approaches have become indispensable in predicting families. Cur-
rent methods, for predicting families can be broadly categorized into two groups:

• Sequence or Secondary Structure-based Methods: These methods rely
on analyzing the sequence or secondary structure of ncRNAs to predict their
families. While this approach can provide insights, the accuracy can be limited
by the accuracy of predicted secondary structures.

• Homologous Sequence Alignment Methods: These methods [6] align
ncRNAs to their homologs to identify shared features and predict their fam-
ilies. This approach often achieves high accuracy but requires consensus sec-
ondary structure annotation for ncRNAs and struggles to model complex struc-
tures like pseudoknots.

To address these challenges, NCC was developed, a new ncRNA classification tool
that utilizes deep learning to analyze ncRNA sequences and classify them into their
respective categories. The model processes RNA sequences directly, with no addi-
tional information required, converting them into a one-hot encoded format. It con-
sists of four essential layers: a convolutional neural network layer for initial pattern
recognition, followed by a pooling layer to reduce data size. Then, a bi-directional
RNN layer examines the sequence from both ends for comprehensive analysis. The
sequence concludes with a fully connected layer that synthesizes the findings into
a final output, efficiently analyzing RNA sequences. The main goal of NCC is a
simple model architecture for fast training purposes with high enough accuracy.

This thesis is designed to serve as a foundational resource for researchers, of-
fering guidance and inspiration for the creation of future generations of non-coding
RNA (ncRNA) classification tools. By presenting a comprehensive overview of cur-
rent methodologies, challenges, and advancements in the field of ncRNA classifica-
tion, this work aims to equip scientists and bioinformaticians with the knowledge
and insights needed to innovate and develop more advanced, accurate, and efficient
ncRNA classifiers. The ultimate goal is to propel the field forward, fostering the
development of novel approaches that will enhance our understanding and analysis
of ncRNA functions and their roles in complex biological processes.

1

1.1 Document Structure

The document, focused on the classification of non-coding RNAs (ncRNAs) using
a novel deep learning model, is structured to guide the reader through a thorough
understanding of RNA biology, computational approaches, and the practical appli-
cation of artificial intelligence in genomic research. It begins with "RNA - Theo-
retical Background" section provides a deep dive into the biology of RNA, distin-
guishing between its various types and elaborating on the importance of non-coding
sequences. In the "Artificial Intelligence" section, the document transitions to the
computational methods, explaining the fundamentals of machine learning and neural
networks as they apply to RNA classification. The "Technologies" section outlines
the software and frameworks used, while "Related Work" places this research in the
context of existing related studies. The "ncRNA Data" section details the datasets
employed, followed by "Implementing the Prediction Mechanism," which describes
the development and evaluation of the classification model. The document concludes
with summaries of the findings, potential future research directions, and a compre-
hensive bibliography, offering a clear roadmap from theoretical underpinnings to
practical applications in RNA research.

2

2 RNA - Theoretical Background

2.1 RNA

RNA, which is short, for ribonucleic acid is a molecule in biological processes. It
plays a role in protein synthesis, gene expression and the regulation of information.
Unlike DNA RNA is a stranded molecule composed of nucleotides. Each nucleotide
consists of a base (adenine, cytosine, guanine or uracil) a sugar called ribose and a
phosphate group. To put it simply RNA is synthesized from DNA through transcrip-
tion. Helps translate the code into proteins. The cell relies on types of RNA such
as messenger RNA (mRNA) transfer RNA (tRNA) ribosomal RNA (rRNA) and
small nuclear RNA (snRNA) to carry out functions that are vital, for the organisms
overall health and proper functioning.

• Messenger RNA (mRNA) is produced from DNA. Transports the information,
from the nucleus to the ribosomes present in the cytoplasm. At the ribosomes
it undergoes translation resulting in protein synthesis.

• Transfer RNA (tRNA) is a RNA molecule that carries acids to the ribosomes
during protein synthesis. It accomplishes this task by matching acids with
mRNA codons, which are three nucleotide sequences that encode particular
amino acids. Subsequently it adds these acids to the growing chain.

• Ribosomal RNA (rRNA) forms a part of ribosomes which’re cellular structures
responsible for protein synthesis. Apart from providing support to ribosomes
rRNA also plays a role in catalyzing chemical reactions involved in protein
production.

• Small nuclear RNA (snRNA) belongs to a class of RNA molecules that con-
tribute to cellular processes. One of its functions is participating in RNA splic-
ing, which involves removing coding sequences called introns, from mRNA and
joining together coding sequences known as exons.

Apart, from the RNA types mentioned earlier there are RNA molecules that
have crucial regulatory functions, within cells. These include microRNA (miRNA)
and small interfering RNA (siRNA). Their role primarily involves controlling gene
expression by either inhibiting genes or breaking down mRNA molecules. RNA
in general has a role to play when it comes to the movement of information and
the control of gene expression, within cells. It is a molecule that’s necessary, for the
sustenance of life and is actively engaged in numerous significant biological processes.

2.2 Non-coding RNA

In the area of cellular mechanisms, a specific form of RNA known as non coding
RNAs [7] (ncRNAs) have emerged as pivotal players. Traditionally RNA was per-
ceived as a messenger, for conveying instructions, from DNA to create proteins.
However, current understanding reveals that ncRNAs despite not being protein pro-
ducing entities themselves, they play roles in regulating gene activity. Contribute
significantly to diverse biological processes.

3

Non coding RNAs are a group that can be broadly classified based on their size
and function. Small ncRNAs, which are usually than 200 nucleotides long include
microRNAs (miRNAs) and small interfering RNAs (siRNAs) both of which’re cru-
cial for RNA interference—a critical process in silencing genes after transcription.
Another subgroup called coding RNAs (lncRNAs) which exceed 200 nucleotides in
length have diverse regulatory functions such as modifying chromatin structure and
controlling transcriptional activities. Additionally, ribosomal RNAs (rRNAs) and
transfer RNAs (tRNAS) well known for their involvement, in protein synthesis are
also considered ncRNAs. This highlights the presence of coding sequences within
the genome.

In Rfam [8] there are 13 classes of non-coding RNA families. In Figure 1 the
leaves of the hierarchical tree represent ncRNA classes of Rfam, used in several
previous researches as well as in this study. As stated in [9] 10% of RNAcentral [10]
sequences do not match any existing Rfam family and could potentially represent
new families. Some of these sequences belong to non-coding RNA classes that are
not suitable for inclusion in Rfam because they are unstructured, or their sequence
length is too short or too long to be effectively modeled using CMs, such as piRNAs,
rasiRNAs, siRNA, and some long non-coding RNAs (5% of the total number of
sequences).

Figure 1: Non-coding RNA Classes and sub-Classes

The range of functions that coding RNAs (ncRNAs) perform is as diverse, as
their classification. For example miRNAs play a role in controlling gene expres-
sion by binding to sequences on target mRNAs. This binding can lead to either
degradation of the mRNA or inhibition of its translation into proteins. Such post
transcriptional regulation is essential for processes like development, cell growth
and programmed cell death (apoptosis). On the hand, lncRNAs have a range of
functions including acting as molecular scaffolds that assist in the formation of ri-
bonucleoprotein complexes or acting as decoys that divert proteins away from their
intended target genes. The ability of lncRNAs to regulate gene expression at levels
underscores their importance in maintaining balance.

Abnormal expression and malfunction of ncRNAs have been associated with
diseases such as cancer, neurological disorders and cardiovascular diseases. For in-
stance the dysregulation of miRNAs has been linked to tumor progression spread
(metastasis) which makes them potential biomarkers for diagnosing and predicting
cancer outcomes. Similarly, changes in patterns of expression have been observed in
disorders like Alzheimer’s disease and schizophrenia, suggesting a potential role for

4

these molecules in the development of these conditions. The connection, between
dysregulation and diseases, highlights the opportunities tied to targeting ncRNAs.

Once considered insignificant parts of our coding RNAs now take center stage in
our understanding of how genes are regulated. Their various functions, in processes
and the development of diseases present opportunities for further investigation and
therapeutic interventions. As we delve deeper into the world of non-coding RNAs
their potential to transform the field of medicine and advance our comprehension of
biology is vast. This thesis underscores the importance of ncRNAs in the molecular
orchestration of life, marking a paradigm shift in our perception of the genomic
landscape.

2.3 RNA Secondary and Tertiary Structure

The secondary structure of an RNA [11] molecule refers to the arrangement of its nu-
cleotides into base pairs and single strands, which determines its three-dimensional
shape. RNA secondary structure can take several type of forms, including stem
loop structures hairpin loops and pseudoknots. These formations occur when com-
plementary nucleotides (adenine with uracil and cytosine with guanine) form base
pairs and are stabilized by hydrogen bonds.

Understanding the secondary structure of RNA is crucial because it influences its
functionality. For instance, transfer RNA (tRNA) relies on its structure to transport
amino acids to the ribosome during protein synthesis. While the secondary structure
of ribosomal RNA (rRNA) is important for its structural and catalytic role in the
ribosome. Other types of RNA like microRNA (miRNA) and long non coding RNA
(lncRNA) may also have important functions within cells that depend on their
secondary structures.

Figure 2: RNA Secondary and Tertiary structure (Image source [1])

Predicting the secondary structure of an RNA molecule is important for un-
derstanding its function and for designing RNA molecules with specific functions.
There are several computational tools that can be used to predict the secondary
structure of an RNA molecule, including RNAcon [12], IPknot [13] and Knotify [2].
These tools use various algorithms and models to predict the most likely secondary
structure based on the nucleotide sequence of the molecule.

5

RNA tertiary structure denotes the three shape-dimensional shape that an RNA
molecule folds, which is pivotal for its operation. Unlike the arrangement of nu-
cleotides (primary structure) or simple loops and helices (secondary structure) the
tertiary structure involves more complex folding, where distinct parts of the RNA
molecule bend and loop back onto themselves. This folding process is influenced
by interactions between components of the RNA molecule including bonds between
nucleotides that are distantly positioned in the sequence. The resulting shape, from
this folding determines how the RNA functions, whether it participates in protein
synthesis, gene expression regulation or other cellular mechanisms.

6

3 Artificial Intelligence
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines
that are programmed to "think" and "learn" like humans. Essentially, it’s about
creating smart machines capable of performing tasks that typically require human
intelligence. This can include things like understanding natural language, recogniz-
ing images, solving problems, and making decisions. AI is integrated into various
aspects of our daily lives, from the virtual assistants in our smartphones to more
complex systems like autonomous vehicles. Its aim is not just to automate tasks,
but also to make machines capable of adapting to new situations, a trait that’s
inherently human. This technology is continually evolving, making our interaction
with digital systems more intuitive and efficient.

3.1 Machine Learning

Machine Learning is a form of Artificial Intelligence that enables computers to ac-
quire knowledge from experiences, like how humans learn from their own actions. It
involves training computers using volumes of data and algorithms that enable them
to grasp how to carry out a task. For instance, machine learning can be utilized
for speech recognition, movie recommendations and even weather prediction. What
distinguishes this approach is that these machines are not explicitly programmed for
these tasks; instead, they. Enhance their abilities over time by analyzing data. This
makes machine learning a tool, for tackling problems and enhancing the intelligence
and user-friendliness of our technology.

• Supervised learning stands as a fundamental approach where the algorithm
is trained on a pre-labeled dataset, akin to a student learning under the guid-
ance of a teacher. This method involves providing the algorithm with both
the input (such as images) and the desired output (the corresponding labels
identifying the content of the images). The objective is to enable the algo-
rithm to discern patterns and relationships between the input and output.
Through this training process, the machine becomes equipped to analyze new,
unlabeled data and predict or classify it accurately. Supervised learning is
integral to numerous applications, including email spam detection, where the
system is trained to differentiate between spam and non-spam emails, thereby
optimizing the filtering process.

• Unsupervised learning, another crucial aspect of machine learning, involves
training algorithms using data that is not labeled or categorized. Unlike super-
vised learning, where the model is guided by known outcomes, unsupervised
learning allows the algorithm to analyze and organize data autonomously. The
machine identifies patterns, correlations, and anomalies within the data, with-
out any prior instruction on what to look for. This method is particularly
useful for discovering hidden structures in data, such as grouping customers
with similar buying habits in marketing analysis or detecting unusual patterns
that could indicate fraudulent activity. Unsupervised learning paves the way
for machines to uncover insights from datasets that are too complex or vast
for human analysis.

7

• Semi-Supervised Learning is a technique, in machine learning, that com-
bines elements of unsupervised and supervised learning. This method involves
training the algorithm using a set of labeled data along with a pool of unla-
beled data. By blending the strengths of both types of learning, it aims to
achieve precision while minimizing the need for labeled data and benefiting
from the exploratory capabilities of unsupervised learning. This approach is
particularly valuable when acquiring labeled data is expensive or time con-
suming. Leveraging both labeled and unlabeled data allows for accuracy and
efficiency in the learning process. Semi supervised learning finds applications
in domains such, as image and speech recognition where labeling datasets can
be impractical but having a small amount of labeled data can greatly assist
and enhance the learning process.

3.2 Classification Algorithms

In the field of machine learning, classification problems revolve around algorithms
that sort and categorize data into established classes or groups. The main objective
is to assign unfamiliar data to one of these predetermined categories based on its
distinctive characteristics. An example we often encounter is email filtering, where
incoming emails are classified as either "spam" or "non spam". In this scenario the
algorithm learns from a training dataset that already contains labeled emails, as
either spam or non spam. It then utilizes this knowledge to classify emails. Classifi-
cation problems can be binary involving two classes like spam detection. Multi class
involving than two classes like identifying various types of fruits in images. This
approach plays a role in a range of applications, including medical diagnoses (clas-
sifying diseases) and financial analysis (identifying different credit risk categories).
The effectiveness of a classification model is typically assessed by evaluating its
accuracy in predicting the category, for acquired data.

3.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) belong to a category of machine learning tech-
niques that draw inspiration from the structure and function of the brain. These
networks consist of interconnected nodes, often referred to as "neurons", which per-
form calculations. Data enters through an input layer, passes through one or more
layers where processing occurs and eventually exits through an output layer. The
weights connecting these neurons representing the strength of their connections are
adjusted during the learning process.

ANNs excel at handling problems that involve linear relationships. They learn
by tuning these weights based on how much they deviate from predictions in a
process known as backpropagation. This adaptive mechanism allows them to make
predictions or decisions as they are exposed to more data.

These networks possess versatility. Find applications, in various domains such as
image and speech recognition natural language processing and even complex game
playing. ANNs ability to learn from datasets and uncover patterns that may not be
immediately apparent to humans makes them a formidable tool in the field of AI.

8

Their architecture and functionality continue to evolve, enabling them to tackle an
expanding range of tasks efficiently.

3.3.1 Neuron

A neuron in a neural network, often referred to as a node, a unit or a cell, is
a fundamental building block that mimics the function of neurons in the human
brain, albeit in a simplified manner. Each neuron in a neural network functions
as a tiny processing unit, performing simple calculations and contributing to the
network’s ability to solve complex problems.

Key aspects of a neuron in a neural network include:

• Inputs: Each neuron receives input from either the original dataset or the
output of other neurons. In the context of deep learning, these inputs can be
features of the data, such as pixels in an image or words in a text.

• Weights: Every input is associated with a weight, which is a trainable pa-
rameter of the model. These weights determine the influence of the input on
the neuron’s output. During the training process, these weights are adjusted
to help the model make accurate predictions or decisions.

• Activation Function: Once the inputs have been multiplied by their re-
spective weights and summed, the total is passed through an activation func-
tion. This function determines whether and to what extent the signal should
progress further through the network. Common activation functions include
sigmoid, tanh, and ReLU (Rectified Linear Unit).

• Output: The result of the activation function is the output of the neuron.
This output can either be used as an input to neurons in the next layer of
the network or, in the case of the final layer, as the final output of the neural
network for a given input.

• Bias: A bias term is often added to the input sum before applying the acti-
vation function. This term allows the neuron to shift the activation function
to the left or right, which can be critical for successful learning.

Perceptron A Perceptron is a type of neuron and one of the basic versions of a
neural network. It was initially created by Frank Rosenblatt in the 1950s. Essen-
tially it acts as a component, for intricate types of neural networks and provides a
fundamental framework, for comprehending how neural networks operate.

y = f

(
n∑

i=1

wixi + b

)
(1)

• y: This is the output of the Perceptron. It’s the final result after all the
calculations are done, representing the classification made by the Perceptron.
For a simple binary classifier, y will typically be 1 or 0, indicating which of
the two possible classes the input has been assigned to.

9

Figure 3: Diagram of perceptron neuron

• f : This stands for the activation function. In the context of a Perceptron, this
is often a step function. The activation function takes the weighted sum of the
inputs plus the bias and converts it into an output. For a step function, if the
sum is above a certain threshold, the output is 1; if it’s below the threshold,
the output is 0.

• wi : These are the weights. Each input feature xi has a corresponding weight
wi associated with it. These weights are parameters that the Perceptron learns
during the training process. They determine how much influence each input
will have on the final output. The learning process of a Perceptron involves
adjusting these weights based on the error in its predictions.

• xi : These are the input features. In the context of a dataset, each xi could be
a different attribute or characteristic of the data. For example, in a dataset
of houses, xi could represent features like size, number of rooms, or age of the
house.

• b: This is the bias term. The bias allows you to shift the activation function to
the left or right, which can be critical for successful learning. It’s like an extra
input to the Perceptron that always has the value 1 but has its own weight.
The bias ensures that even when all the input features are zero, the neuron
can still produce a non-zero output.

• n: This represents the number of inputs to the Perceptron. If you have a
dataset with many features, n will be large, indicating that the Perceptron is
taking into account many different factors to make its classification.

3.4 Activation Functions

Activation functions [14] in neural networks are crucial as they introduce non-linear
properties to the network, enabling it to learn and perform more complex tasks
that a linear equation couldn’t. Without these functions, the neural network would
essentially become a linear regression model, incapable of handling the complexities
found in real-world data.

10

1. Binary Step Function This function is a threshold-based activation func-
tion. It outputs a binary result based on whether the input value is above or
below a certain threshold.

f(x) =

{
1 if x ≥ 0

0 otherwise
(2)

2. Linear Activation Function This function is simply a linear equation of the
input. It returns the input as is, without applying any threshold or transfor-
mation

f(x) = ax (3)

3. Sigmoid or Logistic Function It outputs values between 0 and 1, making it
useful for binary classification. However, it suffers from the vanishing gradient
problem, where neurons with inputs of large magnitude saturate at 0 or 1,
with almost no gradient for backpropagation.

σ(x) =
1

1 + e−x
(4)

4. Hyperbolic Tangent (tanh) Similar to the sigmoid but outputs values be-
tween -1 and 1. It’s zero-centered, making it easier for the model to converge
and learn, but it still suffers from the vanishing gradient problem for very high
or very low values of x.

tanh(x) =
ex − e−x

ex + e−x
(5)

5. Rectified Linear Unit (ReLU) It outputs x if x is positive; otherwise, it
outputs zero. ReLU is very popular because it overcomes the vanishing gradi-
ent problem, allowing models to learn faster and perform better. However, it
can suffer from the "dying ReLU" problem, where neurons can become inactive
and stop contributing to the model learning.

ReLU(x) = max(0, x) (6)

6. Leaky ReLU A variation of ReLU, it allows a small, non-zero gradient when
the unit is not active, preventing neurons from dying.

ReLU(x) = max(0.01x, x) (7)

7. Softmax Function Typically used in the output layer of a classifier, it turns
logits (raw predictions) into probabilities that sum up to 1. This function is
particularly useful for multi-class classification problems.

Softmax(xi) =
exi∑
j e

xj
(8)

11

3.5 Deep learning

Deep learning is an advanced subset of machine learning that utilizes the use of
complex neural networks. These networks consist of many layers, hence the term
"deep", and they process data in a highly sophisticated manner. The design of learn-
ing models enables them to comprehend and interpret quantities of data resembling
the cognitive processes of humans, in a more direct and focused manner.

3.6 Fully Connected layer

A Fully Connected (FC) layer is a key component in neural networks, particularly
in Deep Learning architectures. It’s called "fully connected" because every neuron
in this layer is connected to every neuron in the previous layer. This dense network
of connections allows the FC layer to integrate and process information learned by
the network in earlier layers.

In practical terms, the FC layer’s role is to take the outputs from the previous
layers, which often represent learned features from the input data (like edges or
textures in an image), and combine them to form the final output. For instance, in
a facial recognition task, while the earlier layers might identify features like edges,
colors, and textures, the FC layer combines these to recognize specific faces.

The FC layer is usually placed towards the end of the neural network and is
often followed by a classification layer, like a softmax, which is used to predict prob-
abilities of different classes. The strength of a fully connected layer is in its ability
to learn non-linear combinations of the high-level features extracted by previous
layers, making it integral in transforming these features into complex outputs like
classifications or predictions.

3.7 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a kind of network that is mainly used
for processing data that has a grid like structure, like images. CNNs are renowned
for their effectiveness in image recognition and processing tasks.

The main element of a CNN is the convolutional layer. This layer applies a series
of filters to the input data to create feature maps. These filters systematically scan
the input and perform a mathematical operation called a convolution, which essen-
tially means multiplying and summing up values. This process helps the network
focus on specific features like edges, textures, or shapes. After the convolutional
layers, there are pooling layers, which reduce the spatial size of the feature maps.
This downsampling helps reduce the amount of computation and parameters in the
network, making it more efficient.

CNNs also typically include fully connected layers towards the end, which in-
tegrate the learned features from the convolutional and pooling layers to perform
classification tasks, like identifying objects in images.

CNNs are powerful when it comes to tasks that involve the recognition and
classification of visual data, being able to capture and learn patterns from images
with high efficiency and accuracy. They are widely used in applications like image

12

and video recognition, image classification, medical image analysis, and even in
self-driving cars for visual perception.

3.7.1 Convolution Layer

The convolutional layer plays a role in the architecture of a Convolutional Neural
Network (CNN). Its main task is to capture characteristics from input data, images.
This layer employs filters also referred to as kernels to examine the input data and
carry out convolution operations.

1. Filters/Kernels: A filter is a small matrix of weights. Each filter is designed
to detect specific features, such as edges, textures, or patterns in the input
data.

2. Convolution Operation: The filter is applied to the input data by sliding it
across the input image. At each position, a calculation is made by multiplying
the filter and the corresponding section of the image. This process combines
the filter values, with the values of the image to effectively extract features
from the area of the image.

3. Feature Maps: The result of applying a filter across the entire input image
is a feature map. This map represents the locations and strengths of detected
features in the input. For instance, if the filter is designed to detect vertical
edges, the feature map will have high values in regions with vertical edges.

4. Stride and Padding: The stride determines the movement of the filter across
the image.When the stride is set to 1 the filter moves pixel by pixel, while a
larger stride moves it faster, skipping pixels. Padding refers to adding pixels
(zeros) around the input image to ensure that the filter can be effectively
applied to all areas of the image including its borders.

5. Non-Linearity (Activation Function): After the convolution operation, an
activation function like ReLU (Rectified Linear Unit) is typically applied to
introduce non-linearity, allowing the network to learn more complex patterns.

6. Multiple Filters: A convolutional layer usually contains multiple filters, each
detecting different features. When applied to the input, this creates a stack of
feature maps, one for each filter, providing a comprehensive representation of
various features in the input.

3.7.2 Pooling Layer

The pooling layer plays a role, in Convolutional Neural Networks (CNNs). Usually
comes after one or more convolutional layers. Its main job is to decrease the di-
mensions (width and height) of the input volume for the convolutional layer. This
reduction in dimensionality serves several purposes:

13

(a) Fully Connected Layer (b) Convolution Layer

Figure 4: Fully connected (a) and convolution (b) layer example

1. Reduced Computation: By downsizing the input data, pooling layers de-
crease the number of parameters and computations in the network, leading to
improved computational efficiency.

2. Avoiding Overfitting: Pooling helps in preventing overfitting, a common
problem in machine learning where a model performs well on training data
but poorly on unseen data. By reducing the complexity of the model, it helps
in generalizing the patterns learned.

3. Maintaining Spatial Invariance: Pooling helps the network to become in-
variant to slight changes and distortions in the input image, making it better at
recognizing objects irrespective of their variations in position and orientation
in the image.

The most common types of pooling are:

• Max Pooling: This method involves selecting the maximum element from the
region of the feature map covered by the filter. For example, in a 2x2 pooling
filter, max pooling would take the largest element from the 2x2 region. Max
pooling is effective in capturing the most prominent feature in the local patch
of the feature map.

• Average Pooling: Instead of taking the maximum value, average pooling
computes the average of the elements in the region of the feature map covered
by the filter.

The pooling layer typically operates independently on each depth slice of the input
and resizes it spatially. The use of pooling layers in CNN architectures is a critical
factor in their ability to efficiently process high-resolution images and video.

3.8 Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a kind of neural network (ANN) that is specif-
ically designed to handle data that occurs in a sequence. Unlike feedforward net-

14

works, which process data in a linear manner RNNs have loops that enable infor-
mation to flow back through the network. This unique feature allows RNNs to ef-
fectively model and understand relationships and patterns, in data. The way RNNs
operate is by analyzing the input data while considering the information from time
steps through the recurrent connections. This mechanism empowers the network
to learn and capture patterns in data, such as the word order, in a sentence or the
melodic structure of a musical composition.

Figure 5: RNN node Unfolding

RNNs have a wide range of applications, particularly in tasks that involve se-
quential data. Here are some of their notable applications:

• Natural Language Processing (NLP): RNNs are widely used in NLP
tasks, such as machine translation, text summarization, sentiment analysis,
and chatbot development.

• Speech Recognition: RNNs are employed in speech recognition systems to
convert spoken language into text. By analyzing the temporal patterns of
speech, RNNs can identify words and phrases.

• Music Generation: RNNs can generate new music by learning patterns from
existing compositions. They can also create variations on existing melodies or
improvise new ones.

• Time Series Forecasting: RNNs can be used to forecast future values of
a time series, such as stock prices, weather patterns, or customer behavior.
They analyze historical data to identify trends and patterns that can inform
predictions.

• Drug Discovery: RNNs are being explored in drug discovery to analyze
molecular structures and predict interactions between drugs and proteins. This
could lead to the development of more effective and targeted therapies.

One of the difficulties encountered with RNNs is the issue of maintaining long
term connections. RNNs often face challenges when it comes to preserving infor-
mation, over extended time intervals during training resulting in problems such as
vanishing gradients. To tackle this problem advanced forms of RNNs, LSTMs (Long
Short Term Memory networks) and GRUs (Gated Recurrent Units) have been de-
veloped. These models are specifically designed to retain long term dependencies.

15

3.8.1 Long-Short term memory (LSTM)

LSTM networks [15], known as Long Short Term Memory networks are a kind of
Recurrent Neural Network (RNN) that tackle the problem of learning long term
dependencies. Unlike RNNs, which excel at capturing short term dependencies but
face difficulties in retaining information over long sequences and encounter issues
like vanishing or exploding gradients LSTMs overcome these challenges using a dis-
tinctive architecture that enables better retention of information, over extended
periods.

The main concept, behind an LSTM is its cell state. This state is responsible for
storing and transferring information across the network facilitating the management
of long term dependencies. LSTMs are equipped with three types of gates (Figure
6) that control the movement of information into and, out of the cell state:

• The forget gate ft decides what information should be discarded from the
cell state.

• The input gate it determines what new information should be added to the
cell state.

• The output gate ot decides what part of the current cell state should be used
to generate the output at the current time step.

Figure 6: LSTM cell Architecture

These gates allow the LSTM to selectively remember or forget things, making it
very efficient at learning from long sequences of data. This is particularly useful in
applications like language modeling, where understanding the context from a long
passage of text is crucial.

16

Where:

σ(x) =
1

1 + e−x

tanh(x) =
ex − e−x

ex + e−x

it = σ(xtU
i + ht−1W

i)

ft = σ(xtU
f + ht−1W

f)

ot = σ(xtU
o + ht−1W

o)

gt = tanh(xtU
g + ht−1W

g)

Ct = σ(ftCt−1 + itgt)

ht = tanh(Ct)ot

(9)

3.8.2 Gated Recurrent Unit (GRU)

A Gated Recurrent Unit (GRU), introduced in [16], is a type of Recurrent Neural
Network (RNN) that is designed to capture patterns in sequential data, similar to
Long Short Term Memory (LSTM) networks. However GRUs have a simplier struc-
ture (Figure 7) compared to LSTMs. They are known for their efficiency in modeling
sequences and their ability to overcome the vanishing gradient problem commonly
encountered in RNNs. Unlike LSTMs, which have three gates (input, output and
forget) GRUs only have two gates, the update gate and the reset gate. This simpli-
fication results in fewer parameters and a more streamlined model enabling faster
training without significantly sacrificing performance.

1. Update Gate: The update gate zt in a GRU controls the extent to which a
new state overwrites the old state. It’s a combination of the forget and input
gates in an LSTM, deciding how much of the previous (past) information needs
to be passed along to the next (future).

2. Reset Gate: The reset gate rt is used to decide how much of the past infor-
mation to forget. It allows the model to drop any irrelevant information in the
future (next) steps, effectively resetting the memory of the network.

Where:

rt = σ(xtU
r + ht−1W

r)

zt = σ(xtU
z + ht−1W

z)

gt = tanh(xtU
g + rtW

ght−1

ht = (1− zt)gt + ztht−1

(10)

3.8.3 Bidirectional RRN

A Bidirectional Recurrent Neural Network (BiRNN) [17] expands upon the Recur-
rent Neural Network (RNN) by incorporating a mechanism to process data, in both
forward and backward directions (Figure 8). This approach equips the network with
access to both information about the sequence at each point. In a BiRNN there exist

17

Figure 7: GRU cell Architecture

two layers of RNNs. One layer handles the data in a direction from the beginning
to the end of the sequence, while the other layer handles it in a direction from the
end to the beginning. This dual layer structure empowers the network to capture
insights, from both forthcoming states.

Figure 8: Layer of a Bidirectional RRN

18

4 Technologies

4.1 Python

Python is widely regarded as a choice, for developing AI models due to it’s because
it’s easy to learn and use. Its straightforward syntax simplifies coding AI algorithms.
Python also offers support for specialized tools and libraries specifically designed for
AI, such as TensorFlow, Keras and PyTorch. These resources greatly facilitate the
process of building AI models. Moreover, Python boasts a community of users who
actively collaborate, exchange ideas and provide assistance to one another. This
collaborative environment makes it easier to find solutions and discover techniques
in the realm of AI. Given these factors it’s no surprise that Python has gained
popularity and proves valuable for AI projects.

4.2 Deep learning Frameworks

4.2.1 Tensorflow

TensorFlow [18], developed by Google is an open source framework, for machine
learning. It is known for its computational graph paradigm, where computations are
represented as a directed graph. Originally, TensorFlow used a static computation
graph, meaning that the entire structure of the graph had to be defined before any
computation could take place. However, TensorFlow 2.x introduced eager execution,
allowing for flexibility and intuitive development. It supports hardware options such
as CPUs, GPUs and TPUs (Tensor Processing Units). With an active community,
TensorFlow offers a wealth of resources and libraries, for machine learning tasks.

4.2.2 Keras

Keras [19] started as an independent high-level neural networks API, designed to
be user-friendly and provide a simple interface for building and training models.
Keras aims to provide an unfair advantage to any developer looking to ship Ma-
chine Learning-powered apps. Keras focuses on debugging speed, code elegance and
conciseness, maintainability, and deployability. By using keras codebase is smaller,
more readable, easier to iterate on. Keras models run faster thanks to XLA com-
pilation with JAX and TensorFlow, and are easier to deploy across every surface
(server, mobile, browser, embedded) thanks to the serving components from the
TensorFlow and PyTorch ecosystems

4.2.3 PyTorch

PyTorch [20] is an open-source machine learning framework developed by Facebook’s
AI Research lab (FAIR). It is known for its dynamic computation graph, which al-
lows for more flexible and intuitive development. Unlike TensorFlow’s earlier ver-
sions, PyTorch embraces a more Pythonic and imperative style, making it popular
among researchers and practitioners who prefer a dynamic approach to model con-
struction. PyTorch gained significant popularity in the research community due to
its ease of use, strong support for GPU acceleration, and a highly active community.

19

4.2.4 Key Differences

Computational Graphs
TensorFlow originally used static computation graphs, while PyTorch employs dy-
namic computation graphs.Keras, when integrated with TensorFlow, follows Ten-
sorFlow’s computational graph paradigm.

Ease of Use
TensorFlow had a steeper learning curve initially, but with TensorFlow 2.x and eager
execution, it became more intuitive. Keras has always been designed for ease of use
and user-friendliness. PyTorch is known for its intuitive and Pythonic programming
style.

Flexibility and Control
TensorFlow provides both high-level and low-level APIs, offering a balance between
abstraction and control. Keras abstracts many low-level details, providing less flex-
ibility compared to TensorFlow’s lower-level APIs. PyTorch offers a highly flexible
and dynamic approach, allowing for a high degree of control over models.

Community and Ecosystem
TensorFlow has a large and established community with extensive resources and
third-party libraries. Keras benefits from TensorFlow’s ecosystem and has its own
community as well. PyTorch gained rapid popularity in research communities, par-
ticularly for its dynamic computation graph.

Hardware Support
TensorFlow provides extensive support for various hardware, including CPUs, GPUs,
and TPUs. PyTorch is well-suited for GPU acceleration and is adaptable to different
hardware setups.

Ultimately, the choice between TensorFlow, Keras, and PyTorch depends on in-
dividual preferences, project requirements, and familiarity with the framework. All
three are powerful tools with active communities, and they are widely used in both
research and industry.

4.3 Other Python Libraries

4.3.1 NumPy

NumPy [21], short for Numerical Python, is a fundamental package for scientific
computing in Python. It is renowned for its powerful N-dimensional array object,
which is a versatile container for large and multidimensional arrays. NumPy arrays
facilitate advanced mathematical and statistical operations, as they are optimized
for performance and allow for efficient array processing. The library also provides
tools for integrating C/C++ and FORTRAN code, enabling further optimization
and speed. Its widespread popularity among data scientists and researchers stems
from its high-level mathematical functions, ease of integration with other libraries,

20

and its pivotal role in the broader ecosystem of data analysis, machine learning, and
scientific computing in Python.

4.3.2 Pandas

Pandas [22] is a Python library that is widely used for manipulating and analyzing
data. It offers high-level data structures, like DataFrame and Series which simplify
the handling and processing of information. With Pandas individuals can efficiently
carry out tasks such as cleaning and transforming data merging datasets and creating
visualizations. Its ability to import and export data in formats such as CSV, Excel
and SQL databases has made it a preferred tool, among data scientists and analysts.
The user-friendly interface of Pandas, coupled with its range of features, has firmly
established it as a component of the Python data analysis toolkit.

4.3.3 Scikit-learn

Scikit learn [23], also known as sklearn is a used machine learning library, for Python
that is highly regarded for its simplicity and efficiency. It offers an array of tools
for machine learning tasks such as classification, regression, clustering and dimen-
sionality reduction. Scikit learn is built upon the foundations of NumPy and SciPy
while providing an interface to create and fine tune machine learning models. Its
comprehensive documentation, user nature and ability to handle types of data make
it a favored choice among both beginners and experienced practitioners, in the realm
of data science and machine learning.

4.3.4 Matplotlib

Matplotlib [24] is a known Python library that is widely used for creating animated
and interactive visualizations. It has gained popularity, for its user nature and
flexibility allowing users to generate several types of plots and graphs using just a
few lines of code. One of the advantages of Matplotlib is its level of customization,
which grants users the ability to fine tune nearly every aspect of their plots. From
axes limits and labels to the overall style and color scheme. This adaptability makes
it an indispensable tool in Python for visualizing data in professional contexts serving
purposes such, as exploring data patterns presenting research findings and depicting
complex datasets.

4.4 RNA Secondary Structure Predict

4.4.1 Knotty

Knotty [25] is an algorithm for the efficient and accurate prediction of complex RNA
pseudoknot structures. It improves on previous methods by handling a comprehen-
sive class of pseudoknots with significantly reduced space complexity and enhanced
prediction accuracy, leveraging a novel technique called sparsification. Knotty’s
performance, evaluated against other leading methods, showcases its superior ca-
pability in predicting biologically relevant pseudoknots with lower space and time

21

requirements. This advancement enables more practical applications in computa-
tional pseudoknot structure prediction, overcoming limitations of prior tools and
offering a valuable case study on complex space-efficient algorithm optimization for
RNA research.

4.4.2 IPknot

IPknot [13] is an innovative approach for predicting RNA secondary structures, par-
ticularly those involving pseudoknots, by focusing on optimizing the accuracy of
the predicted structure. IPknot effectively breaks down a pseudoknotted structure
into several pseudoknot-free components, while also estimating a base-pairing prob-
ability distribution that accounts for pseudoknots. This process enables IPknot to
model various types of pseudoknots efficiently and operate at high speeds. Addi-
tionally, a heuristic algorithm was developed that refines base-pairing probabilities,
enhancing IPknot’s predictive precision. The optimization of expected accuracy is
achieved through the use of integer programming combined with a threshold cut.
Furthermore, IPknot has been adapted to predict a consensus secondary structure,
inclusive of pseudoknots, from multiple sequence alignments.

4.4.3 Knotify

Knotify [2] is an Efficient Parallel Platform for RNA Pseudoknot Prediction Using
Syntactic Pattern Recognition" presents a novel methodology for predicting RNA
secondary structures, particularly focusing on RNA pseudoknots.The approach com-
bines syntactic pattern recognition and context-free grammar (CFG) to predict RNA
pseudoknots. High level representation of Knotify architecture is presented in Figure
9. The process involves parsing RNA sequences using CFG, identifying potential
pseudoknot patterns, and employing a novel heuristic based on free-energy minimiza-
tion to resolve ambiguities in the folding patterns. The method was tested using a
dataset of 262 RNA sequences, achieving a recall ratio of 76.4% in predicting core
stems of RNA pseudoknots. The F1-score and Matthew’s Correlation Coefficient
(MCC) were 0.774 and 0.543, respectively, outperforming other platforms in terms
of execution time.

At this point is worth mentioning next version of Knotify

1. Knotify+ [26] framework introduces an innovative approach to predict H-type
pseudoknots, which includes complex features like bulges and internal loops,
by leveraging context-free grammar (CFG). By combining CFG’s strengths
with strategies for optimal base pairing and minimizing free energy, Knotify+
achieves significant performance improvements in predicting the core stems of
pseudoknots. It not only surpasses existing frameworks in accuracy, especially
for shorter sequences, but also offers competitive accuracy for longer sequences
with reduced execution times, making it a cutting-edge solution in the field.

2. The updated framework [27] introduces a pruning technique that efficiently
narrows down the grammar’s search space. By filtering out trees that emerge
from rare conditions, it achieves a significant reduction in execution time—33%

22

Figure 9: Knotify approach representation (Image Source [2])

faster than the original grammar-based method and 43% quicker than the
brute-force approach—while maintaining the original level of accuracy.

3. This approach [28] introduces a grammar-based framework for predicting all
L-type pseudoknots in a sequence efficiently, incorporating key biological con-
cepts like maximum base pairing and minimizing free energy. Evaluatinf its
effectiveness using four performance metrics: precision, recall, Matthews cor-
relation coefficient (MCC), and the F1-score. This method outperformed three
well-known methods in precision (0.844) and showed superior F1-score (0.671)
and MCC (0.521), demonstrating its high accuracy and reliability. Added to
RNA toolset, this methodology enhances biologists’ ability to predict RNA
motifs, offering potential applications in gene therapy, drug design, and un-
derstanding RNA functionality. It can also be combined with other methods
to improve RNA structure prediction accuracy.

23

5 Related Work

5.1 RNAcon

RNAcon [12] is a tool that includes two different prediction models: one for dis-
tinguishing non-coding and coding RNAs, and another for classifying predicted
non-coding RNAs into various categories. The model for distinguishing between
non-coding and coding RNAs uses a machine learning approach based on Support
Vector Machines (SVMs) and nucleotide composition as input features. To optimize
and evaluate the model, three different datasets were used and various kernels and
parameters of the SVM were tested using a 10-fold cross-validation technique. The
final model implemented in the RNAcon web server uses tri-nucleotide compositions
(TNC) for discrimination between non-coding and coding RNA sequences. RNAcon
algorithm is presented in figure 10

Figure 10: RNAcon Algorithm - a non-coding RNA Classifier [Image Source]

24

https://webs.iiitd.edu.in/raghava/rnacon/algorithm.html

5.2 nRC

The nRC [4] tool is based on the extraction of features from the ncRNA secondary
structure and a supervised classification algorithm using a deep learning architec-
ture based on convolutional neural networks. The nRC tool was tested for the
classification of 13 different ncRNA classes, similar to previous described RNAcon
tool, and achieved an accuracy and sensitivity score of about 74%. The nRC tool
outperformed other similar classification methods that have been developed until
the year 2017 and were based on secondary structure features and machine learning
algorithms, including the RNAcon tool, which was the reference classifier. Three
steps are the basis of the proposed method:

1. The prediction of ncRNAs secondary structures, the extraction of frequent
sub-structures as features and the classification of known ncRNA classes. To
implement these processes, IPknot [13] algorithm was used to predict RNA
secondary structures with pseudoknots,

2. the MoSS [29] decision tree pruning algorithm to obtain sub-structures

3. a deep learning network architecture, namely a convolutional neural network,
as a supervised classifier.

Figure 11: Pipeline of the nRC ncRNA sequence classification tool

5.3 GraPPLE

This study [30] investigates the use of specific properties of graphs that represent
the predicted secondary structure of non-coding RNA (ncRNA) to reflect functional
information. The authors developed a computational algorithm and a web-based
tool called GraPPLE for classifying ncRNA molecules as functional and into Rfam
families based on their graph properties. The tool was demonstrated to be more ro-
bust than sequence-similarity-based methods and covariance models with increasing
sequence divergence and, when combined with existing methods, led to a significant
improvement in prediction accuracy. The most informative graph properties were
found to provide insight into the structural features that give ncRNA molecules
functional properties. The GraPPLE tool may be useful for identifying potentially
interesting ncRNA molecules among large candidate datasets.

25

5.4 ncRFP

Another approach [3], describes a method for predicting the family of non-coding
RNAs (ncRNAs) called ncRFP. Traditional methods for ncRNA prediction involve
predicting the secondary structure of the RNA and then identifying the ncRNA
family based on the properties of the secondary structure. However, these methods
can be complex and may not always be accurate due to errors that can accumulate
in the multi-step process, particularly due to imperfections in tools used to pre-
dict the secondary structure of RNA. The ncRFP method is a novel approach that
uses deep learning to predict the ncRNA family directly from the RNA sequence,
bypassing the need to predict the secondary structure. This method simplifies the
prediction process and improves accuracy compared to traditional methods. The
neural network architecture of the AI model is shown in Figure 12

Figure 12: ncRFP NN model Architecture (Image Source [3])

5.5 ncDLRES

The authors of this article [31] propose a novel method called ncDLRES for pre-
dicting the family of non-coding RNA (ncRNA) based on dynamic long short-term
memory (LSTM) and residual neural network (ResNet). The method, called ncDL-
RES, extracts the features of ncRNA sequences using dynamic LSTM and then
classifies them using ResNet. The authors compare ncDLRES to both the homol-
ogous sequence alignment method and other methods that predict ncRNA based
on secondary structure, called ncRFP. The homologous sequence alignment method
is currently the most accurate method, but it has limitations due to the need for
consensus secondary structure annotation of ncRNA sequences and the inability to

26

model pseudoknots. ncDLRES reduces the data requirements and expands the ap-
plication scope compared to the homologous sequence alignment method, and its
performance is greatly improved compared to the ncRFP methods.

5.6 ncDENSE

In this study [32], a method called ncDENSE, based on a deep learning model, was
introduced. It predicts families of non-coding RNAs (ncRNAs) by analyzing the
sequence features of these ncRNAs. The nucleotide bases in the sequences of ncRNAs
were encoded using a one-hot coding scheme. These encoded sequences were then
input into an ensemble deep learning model, which comprised three components:
the dynamic bi-directional gated recurrent unit (Bi-GRU), the dense convolutional
network (DenseNet), and the Attention Mechanism (AM). More specifically, the
dynamic Bi-GRU was utilized to extract contextual feature information and capture
long-term dependencies within the ncRNAs sequences. The AM was employed to
assign varying weights to the features extracted by the Bi-GRU, focusing attention
on information with higher weights. Meanwhile, DenseNet was employed to extract
local feature information from the ncRNAs sequences and carry out classification
using the fully connected layer.

27

6 ncRNA data
This section introduces various RNA databases, with a particular emphasis on the
detailed utilization of the Rfam database. Additionally, it discusses the development
of a specialized non-coding RNA database. This database is specifically designed
for the training and testing of the proposed classifier. The section also provides a
thorough analysis of the datasets employed, offering insights into their composition
and utility in the context of RNA-based research and classification.

6.1 ncRNA databases

A non coding RNA database refers to a collection of sequences of ncRNA, along
with their corresponding structural explanations. These databases serve as a tool
for researchers to explore the world of ncRNAs by accessing and analyzing extensive
amounts of reliable data. Some of these databases often include multiple sequence
alignments (MSAs) of ncRNA families and functional and structural annotations for
each ncRNA family. The below list presents a selection of coding RNA (ncRNA)
databases.

• Rfam [8] A comprehensive database of ncRNA families and their annotated
alignments, curated by the RNA Bioinformatics Group at the University of
Cambridge.

• RNACentral [10] Similar to Rfam, RNAcentral acts as a unified hub, providing
centralized access to non-coding RNA sequences gathered from a network of
specialized databases.

• IRESbase [33] A freely accessible online database that curates experimentally
validated internal ribosome entry sites (IRESs)

• miRBase [34] A database of microRNAs (miRNAs), which are small ncRNAs
that play a role in the regulation of gene expression.

• NONCODE [35] is an integrated knowledge database dedicated to non-coding
RNAs (excluding tRNAs and rRNAs).

• Ensembl [36] is a genome browser for vertebrate genomes and model organisms
that supports research in comparative genomics, evolution, sequence variation
and transcriptional regulation

• GeneCards [37] is a searchable, integrative database that provides comprehen-
sive, user-friendly information on all annotated and predicted human genes

• LNCipedia [38] is a public database for long non-coding RNA (lncRNA) se-
quence and annotation.

28

6.2 RNACentral

RNAcentral [10] is a comprehensive, publicly accessible resource that provides in-
tegrated access to a vast array of non-coding RNA (ncRNA) sequences. These
sequences are sourced from a collaboration of over 54 expert databases, covering
a wide range of organisms and RNA types. The platform is coordinated by the
European Bioinformatics Institute [39] and supported by wellcome.com, with initial
funding from BBSRC

Figure 13: RNAcentral Expert Databases [Image source]

RNACentral Support:

• Data Integration: It compiles ncRNA sequences from multiple databases,
offering tools for text search, sequence similarity search, bulk downloads, and
programmatic data access

• Stable Identifiers: Unique identifiers are assigned to each distinct sequence,
with support for species-specific identifiers for sequences in specific organisms

• Genomic Mapping: Sequences are mapped to reference genomes from over
250 species using blat, and users can browse these mapped sequences in a
genome browser or download genome coordinates in various formats

• Functional Annotations: RNAcentral incorporates modified nucleotides
from sources like Modomics and PDB, miRNA targets from TarBase, and
Gene Ontology annotations from QuickGO. All sequences are annotated with

29

https://rnacentral.org/expert-databases

Rfam models, providing warnings and additional information, including sec-
ondary structure diagrams for various RNA types

6.3 IRESbase

IRESbase [33] is a publicly accessible repository of experimentally validated IRES
sequences from diverse organisms, including eukaryotes and viruses. Curated by re-
searchers from Nanjing University of Aeronautics and Astronautics, IRESbase cur-
rently holds over 1,300 IRES entries, encompassing both eukaryotic and viral IRESs
from 11 eukaryotic species and 198 viruses, respectively. The database meticulously
annotates each IRES record, providing detailed information on its location, host
RNA, functional properties, and supporting literature references.

IRESbase offers a wealth of features that enhance its utility for research purposes.
Users can search for IRESs based on various criteria, including organism, host RNA
type, functional attributes, and sequence similarity. Additionally, the database pro-
vides a comprehensive mapping of IRESs to human circular RNAs (circRNAs) and
long non-coding RNAs (lncRNAs), highlighting their potential involvement in these
emerging RNA classes.

The accessibility and comprehensiveness of IRESbase have propelled its use in
numerous research endeavors. Studies have employed IRESbase data to investigate
the evolution, structural features, and functional mechanisms of IRESs, contributing
to a deeper understanding of their role in gene regulation. Additionally, IRESbase
has been instrumental in predicting and analyzing novel IRESs, facilitating the
identification of previously uncharacterized IRES-dependent genes.

6.4 Rfam

Rfam [8] is a database of non-coding RNA families and their annotated alignments,
curated by the RNA Bioinformatics Group at the University of Cambridge. It is
a comprehensive resource for ncRNA sequences and their corresponding functional
and structural annotations.

The Rfam database relies on sets of related sequences, known as families, which
share a common ancestor and are thought to have similar functions. These families
are identified through sequence alignments (MSAs) that are generated using tools
and meticulously checked by knowledgeable annotators to guarantee their reliability
and precision. Besides the MSAs Rfam also provides a variety of annotations for each
ncRNA family, including functional descriptions, secondary structure predictions,
and cross-references to other databases.

Rfam serves as a tool, for researchers delving into the study of ncRNAs. It
offers access to reliable data, enabling analysis on a large scale. One of its benefits
lies in aiding the identification and categorization of ncRNA sequences, providing an
extensive collection of well established ncRNA families for reference purposes. Rfam
remains consistently updated with additions of families and annotations, rendering
it an indispensable resource, within the RNA community.

30

6.4.1 Rfam MySQL database

Rfam provides a public read-only MySQL database containing the latest version of
Rfam data. Details to access this database are provided in Table 1. The database
core scheme is shown in diagram 14.

Parameter Value

host mysql-rfam-public.ebi.ac.uk
port 4497
user rfamro
database Rfam

Table 1: Rfam MySQL Database - Connection Details

Advanced examples of using the public Rfam database can be found in Current
Protocols in Bioinformatics publication [40]. Some examples bellow:

1

2 -- Number of Sequences per file and ncRNA type
3 -- ---
4 SELECT family.rfam_acc , family.type ,
5 COUNT(full_region.rfamseq_acc) as Number_of_Sequences
6 FROM full_region, family
7 Where family.rfam_acc = full_region.rfam_acc
8 GROUP BY family.rfam_acc;
9

10 -- For RF00014.fa fasta file show
11 -- sequence id, start and stop, description and type
12 -- This query will be used to construct fasta headers
13 -- ---
14 SELECT full_region.rfam_acc, full_region.rfamseq_acc, seq_start, seq_end,
15 rfamseq.description, family.type
16 FROM full_region , rfamseq , family
17 WHERE full_region.rfamseq_acc = rfamseq.rfamseq_acc
18 AND family.rfam_acc = full_region.rfam_acc
19 AND full_region.rfam_acc = 'RF00014';
20

6.5 Data Collection

To assemble a dataset of small non-coding RNA sequences, Rfam database was
mainly used, The bellow SQL query was used to retrieve all .fasta file names that
contain RNA sequences of the RNA families in interest.

1 -- Get all .fasta file names
2 -- ---
3 SELECT rfam_acc FROM family
4 WHERE type = "Cis-reg; IRES;" OR type = "Cis-reg; leader;"
5 OR type = "Cis-reg; riboswitch;" OR type = "Gene; miRNA;"

31

Figure 14: Rfam core database scheme diagram [Image Source]

6 OR type = "Gene; ribozyme;" OR type = "Gene; snRNA; snoRNA; CD-box;"
7 OR type = "Gene; snRNA; snoRNA; HACA-box;" OR type = "Gene; snRNA; snoRNA; scaRNA;"
8 OR type = "Gene; tRNA"

This query returns a list of all the fasta filenames:

1 # The response of the mySQL rfam server
2 # ---
3 ['RF00008', 'RF00009', 'RF00010', 'RF00011', ... , 'RF04235', 'RF04236']

Each file is downloaded from the SFTP server :

32

https://docs.rfam.org/en/latest/database.html

1 acc_id_list = ['RF00008', 'RF00009', 'RF00010', 'RF00011' , 'RF04235', 'RF04236']
2 for filename in acc_id_list:
3 URL = "http://http.ebi.ac.uk/pub/databases/Rfam/CURRENT/fasta_files/"
4 URL += filename + ".fa.gz"
5 wget.download(URL, "../datasets/Rfam/"+filename+".fa.gz")

Example of RF00004.fa fasta file contents:

1 >CM001883.1/36104473-36104278 Theobroma cacao cultivar Matina 1-6 chromosome ...
2 ATACCTTTCTCGGCCTTTTGGCTAAGATCAAGTGTAGTATCTGTTCTTATCAGTTTAATATCTGATACGTGGGCCA ...
3 >JH795869.1/919604-919793 Dacryopinax sp. DJM-731 SS1 chromosome Unknown DAC ...
4 GCACCACTCTGGCCTTTTGGCTTAGATCAAGTGTAGTATCTGTTCTTATTAGTTTAACCACTAATATGGTCGCACC ...
5 >CM001769.1/9270458-9270652 Cicer arietinum chromosome Ca6, whole genome sho ...
6 ATACCTTTCTCGGCCTTTTGGCTAAGATCAAGTGTAGTATCTGTTTTTATCAGTTTAATATCTGATATGTGGTCCA ...
7 >FR853084.2/62466812-62466957 Gorilla gorilla gorilla genomic chromosome, ch ...
8 ATTACTTCTCAGCCTTTTGGCTAAGATCAAGTGTAATAAATCTCATTGTGCTTTATGCCTAATGTGTGCTTATATT ...
9 >KK088422.1/566554-566746 Aspergillus ruber CBS 135680 unplaced genomic scaf ...

10 CCAGCTCTCTTTGCCTTTTGGCTTAGATCAAGTGTAGTATCTGTTCTTTTCAGTTTAATCTCTGAAAGTGTTCTAA ...
11 >AACT01051284.1/529-401 Ciona savignyi cont_51284, whole genome shotgun sequ ...
12 ACAGCTGATGCCGCAGCTACACTATGTATTAATCGGATTTTTGAACTTGGAGTACGGTTCTGGAGCTTGCTCCACC ...

6.5.1 Fasta files

The FASTA file format is frequently employed as a text based representation, for
sequences encompassing nucleotide sequences (DNA or RNA) as well as amino acid
sequences (proteins). It serves as an adaptable format that is widely utilized in the
fields of bioinformatics and biochemical research. A FASTA file comprises sequence
records, with each record consisting of two components:

1. Definition Line: The first line of a sequence record starts with a greater-than
sign (">") followed by a unique identifier for the sequence. This identifier can
be any descriptive name or code, such as the name of the organism or the
source of the sequence.

2. Sequence Data: The subsequent lines of a sequence record contain the actual
sequence data. The sequence data is composed of single-letter codes repre-
senting the individual nucleotides or amino acids in the sequence.

Since this research has classification interests only, in "definition" section of each
sequence the class will be the only available info, as shown in the below example.

1 >IRES
2 ATACCTTTCTCGGCCTTTTGGCTAAGATCAAGTGTAGTATCTGTTCTTATCAGTTTAATATCTGATACGTGGGCCA ...
3 >tRNA
4 GCACCACTCTGGCCTTTTGGCTTAGATCAAGTGTAGTATCTGTTCTTATTAGTTTAACCACTAATATGGTCGCACC ...
5 >tRNA
6 ATACCTTTCTCGGCCTTTTGGCTAAGATCAAGTGTAGTATCTGTTTTTATCAGTTTAATATCTGATATGTGGTCCA ...
7 >riboswitch
8 ATTACTTCTCAGCCTTTTGGCTAAGATCAAGTGTAATAAATCTCATTGTGCTTTATGCCTAATGTGTGCTTATATT ...

33

9 >HACA-box
10 CCAGCTCTCTTTGCCTTTTGGCTTAGATCAAGTGTAGTATCTGTTCTTTTCAGTTTAATCTCTGAAAGTGTTCTAA ...
11 >tRNA
12 ACAGCTGATGCCGCAGCTACACTATGTATTAATCGGATTTTTGAACTTGGAGTACGGTTCTGGAGCTTGCTCCACC ...

6.6 Final dataset (NCC dataset)

Files of the same family were combined in order to generate one .fasta file per RNA
family. IRES non-coding RNA family dataset was poor, so a second data source,
IRESbase [33], dedicated to this family was used to extend the initial dataset. In
table 2 the number of sequences of each family:

RNA Family Source # of Sequences
IRES Rfam 1472
IRES IRESbase 1328
leader Rfam 31662
riboswitch Rfam 69465
miRNA Rfam 387173
ribozyme Rfam 220007
CD-box Rfam 132915
HACA-box Rfam 36938
scaRNA Rfam 2962
tRNA Rfam 1432442
5S_rRNA Rfam 140644
5_8S_rRNA Rfam 4940
Intron_gpI Rfam 2611
Intron_gpII Rfam 15729

Table 2: Number of Sequences per family per Data source

The final dataset has nearly 4-5 thousand sequences per family, with some ex-
ceptions. The distribution of our data is shown in Figure 15, and the number of
sequences per class is shown in Table 3

34

Figure 15: Number of sequences per class distribution of final dataset (NCC dataset)

RNA Family Number of Sequences
IRES 2800
leader 3061
riboswitch 3791
miRNA 4317
ribozyme 4630
CD-box 4661
HACA-box 4931
scaRNA 2962
tRNA 4882
5S_rRNA 4882
5_8S_rRNA 4940
Intron_gpI 2611
Intron_gpII 4409

Table 3: Number of Sequences per family in NCC dataset

The analysis of the distribution of sequence lengths, among RNA classes as shown
in Figure 17 indicates a relationship between the length of a sequence and its corre-
sponding RNA class. This correlation has the potential to enhance the effectiveness
of classification models. For example, as illustrated in Figure 16 miRNA sequences
are generally shorter than 200 nucleotides while ribozyme RNA sequences often ex-
ceed 800 nucleotides in length. These distinct length characteristics within RNA
classes suggest that considering sequence length could be valuable for distinguishing
between RNA classes in classification models. This understanding of the varying
lengths of RNA sequences across classes not only deepens our knowledge about
RNA structure but also paves the way for developing more accurate and efficient

35

techniques, for classifying RNAs.

(a) miRNA (b) ribozyme

Figure 16: Sequence length distribution of miRNA and ribozyme

Figure 17: Sequence length mean and STB, per class, sorted by STB of NCC dataset

6.7 nRC dataset

The dataset used in the nRC [4] publication was specifically designed for the clas-
sification of non-coding RNA (ncRNA) sequences. This dataset was constructed
by utilizing sequences from the Rfam database. The selected dataset is composed
by 13 different ncRNA classes: miRNA, 5S rRNA, 5.8S rRNA, ribozymes, CD-box,
HACA-box, scaRNA, tRNA, Intron gpI, Intron gpII, IRES, leader, and riboswitch.

To create a balanced and statistically meaningful dataset, the researchers fol-
lowed a methodology similar to that used in previous studies. They selected 20%
non-redundant sequences using the CD-HIT tool [41], which is a widely used method
for clustering and comparing protein or nucleotide sequences. The aim was to ensure
that the dataset did not have redundant sequences which might skew the classifi-
cation results. For most of the ncRNA classes, they randomly chose 500 sequences

36

each. However, for the IRES class, only 320 sequences were available, leading to a
total of 6320 ncRNA sequences in the dataset. A second dataset composed of 2600
sequences, downloaded by Rfam for testing purposes of the nRC tool, containing
200 sequences of each class.

Train 6320 seq
Test 2600 seq

Table 4: nRC [4] dataset divided to Train and Test

Given that this dataset is already in use for benchmarking with other classifica-
tion models, we will also employ it for our proposed model’s training and testing to
enable a fair comparison.

Figure 18: Sequence length mean and STB, per class, sorted by STB of nRC dataset

6.7.1 Comparison between NCC and nRC datasets

The Non-Coding RNA Classification (NCC) dataset developed for this research is
significantly more extensive, containing over ten times the number of sequences
compared to previous nRC dataset. Interestingly, the distribution of RNA sequence
lengths across different RNA classes in this new dataset is similar to that observed
in nRC dataset. This similarity is particularly evident in certain RNA classes. For
instance, IRES sequences, ribozymes, and Intron_gpI all tend to be longer in both
the NCC and nRC datasets, although there are some minor variations, as presented
in Figures 20 and 21. A noteworthy distinction can be observed in the case of
leader RNA sequences. This difference is clearly illustrated in Figure 19, where the
distribution of the leader RNA class sequence lengths in the datasets are compared
side by side.

37

(a) leader in nRC (b) leader in NCC

Figure 19: Sequence length distribution of leader RNA class in nRC (a) and NCC
(b) dataset

(a) tRNA in nRC (b) tRNA in NCC

Figure 20: Sequence length distribution of tRNA RNA class in nRC (a) and NCC
(b) dataset

(a) ribozyme in nRC (b) ribozyme in NCC

Figure 21: Sequence length distribution of ribozyme RNA class in nRC (a) and NCC
(b) dataset

38

7 Implementing the Prediction Mechanism.
In this section, the document focuses on implementing the prediction mechanism
for the non-coding RNA (ncRNA) classification model. The section is divided into
several parts, detailing the steps taken in preparing the data, developing the model
architecture, and training and evaluating the model.

The purpose of this research is the development of a non-coding RNA classifier
using as input the RNA sequence (primary structure of RNA). Focusing only on
primary structure of RNA, error from prediction methods of secondary structure
(graph properties of RNA) are excluded from the classification flow. It is crucial to
focus also on other features of RNA like secondary structure or k-mers substrings,
but it is out of the scope of this research.

So to summarize, the main goal of this research focus on are developing a non-
coding RNA classifier the bellow characteristics:

1. Input of the model is the RNA sequence (primary structure) only.

2. The architecture of the model should be very simple, like ncRFP [3], resulting
in quick training sessions.

3. Acceptable prediction accuracy of the model.

7.1 Data preparation

Data preparation consist of tow main parts, first the processes of sequence padding
and cutting to standardize RNA sequence lengths to 500 nucleotides, ensuring con-
sistency crucial for the model’s accuracy. The second part is the implementation of
one-hot encoding, a technique used to transform RNA sequences into a numerical
format that is more suitable for machine learning algorithms.

7.1.1 Sequence Padding and Cutting

Padding and cutting are common techniques used to prepare sequences for deep
learning models, particularly in sequential data tasks such as natural language pro-
cessing (NLP) and speech recognition. These techniques are employed to ensure
that all sequences have a consistent length, which can improve the performance of
the model.

Padding involves adding extra elements to shorter sequences to make them match
the length of the longest sequence. This is typically done with zeros or filler values.
Padding ensures that all sequences receive equal attention from the model, regardless
of their original length. It also helps to prevent the model from overfitting to shorter
sequences, as it is forced to learn features from all sequences, regardless of their
length.

Cutting involves removing elements from longer sequences to make them match
the length of the shortest sequence. This is typically done by removing the last ele-
ments from the sequence. Cutting ensures that all sequences fit within the memory
constraints of the model and the computational resources available. It also helps to
prevent the model from becoming too complex and difficult to train.

39

Figure 22: NCC dataset, RNA Sequences length distribution

By inspecting Figure 22 it is notable that most sequences have less than 500
nucleotides. So for this model, the input sequence must have length equal to 500
features. That means that each sequence with fewer nucleotides will be padded with
zeroes and if the sequence has greater length it will be cutted, risking losing critical
features of the sequence.

7.1.2 One-hot encoding

One-Hot Encoding is a process used in data preprocessing to convert categorical data
into a numerical format, making it suitable for use in machine learning algorithms
which typically require numerical input. This technique involves creating a binary
vector for each category in the dataset.

The primary advantage of One-Hot Encoding is that it avoids the introduction of
a false ordinal relationship that might occur if the categories were simply encoded as
integers (e.g., 1 for Red, 2 for Blue, 3 for Green). In the integer format, algorithms
might misinterpret the data to imply that Green is greater than Blue, and Blue is
greater than Red, which is not the case. By using binary vectors, One-Hot Encoding
maintains the distinctiveness of each category without implying any order.

However, One-Hot Encoding can significantly increase the dimensionality of the
dataset, especially if the categorical variable has many categories. This increase
in dimensions can lead to computational complexity and the risk of overfitting in
machine learning models. Therefore, it is often used judiciously and sometimes in
conjunction with dimensionality reduction techniques.

Since there are no known relations between the bases of RNA One-hot encoding
was used to encode the sequences before using them as input into the deep learning
model. There are 16 different characters that we need to represent as shown in table
6, but most of the characters are not present in the dataset and if they do, they
are very rare. Therefore, the encoding is applied to the basic RNA known bases

40

and the extra IUPAC characters are encoded with ’X’ which is also the padding
character. Table 5 shows the different encodings of RNA characters, encoded with
4 and 8 digits.

Base 4 digits 8 digits
A 1000 1000 0010

T/U 0100 0100 0001
G 0010 0010 1000
C 0001 0001 0100
X 0000 0000 0000

Table 5: One hot encoding of RNA Bases

The main reason Table 5 was chosen instead of complete IUPAC encoding of 16
characters was because both NCC and nRC datasets contains very few of the rest
set presented in Table 6.

IUPAC Code Meaning Complement Encoding
A A T 1000 0000 0000 0000
C C G 0100 0000 0000 0000
G G C 0010 0000 0000 0000

T/U T A 0001 0000 0000 0000
M A or C K 0000 1000 0000 0000
R A or G Y 0000 0100 0000 0000
W A or T W 0000 0010 0000 0000
S C or G S 0000 0001 0000 0000
Y C or T R 0000 0000 1000 0000
K G or T M 0000 0000 0100 0000
V A or C or G B 0000 0000 0010 0000
H A or C or T D 0000 0000 0001 0000
D A or G or T H 0000 0000 0000 1000
B C or G or T V 0000 0000 0000 0100
N G or A or T or C N 0000 0000 0000 0010
X None - 0000 0000 0000 0000

Table 6: One hot encoding of RNA IUPAC

41

7.2 NCC Model Architecture

Over 25 distinct models were developed, trained, and tested using the NCC dataset.
This extensive experimentation included dense networks and convolutional networks,
both independently and in combined sequential formats. However, it was the recur-
rent models that exhibited exceptional performance in terms of accuracy, outshining
the other network types. Notably, bidirectional recurrent neural networks (BiRNNs)
stood out.

In RNA classification, a Bidirectional Recurrent Neural Network layer is par-
ticularly effective due to its ability to process sequential data in both forward and
backward directions. This bidirectional approach is crucial because the context of
RNA sequences often depends on both preceding and succeeding nucleotides. Tradi-
tional RNNs, which process data in a single direction, might miss important context
or patterns that are only apparent when considering the full sequence. A BiRNN can
capture these dependencies by analyzing the sequence from both ends, leading to
a more comprehensive understanding of the RNA structure and function. This en-
hanced ability to recognize patterns and relationships within RNA sequences makes
BiRNNs especially suitable for tasks like RNA classification, where the sequential
context and order are critical for accurate predictions.

The best model, which exhibited the highest accuracy and acceptable loss mar-
gins while maintaining its simplicity of its architecture, was selected and presented
in this research. It consists of one-dimensional convolutional neural network, one-
dimensional max pooling layer, bidirectional recurrent layer and one fully connected
dense layer. The model architecture is illustrated in Figure 23.

This research prioritizes not only accuracy but also the speed of training and
testing periods. The use of a straightforward architecture facilitates these quick
processes. By simplifying the system’s design, we can efficiently train and test our
models, achieving rapid results without compromising on accuracy. This dual focus
on speed and precision is a core objective of our study.

1. Input Layer

2. Convolutional Layer

3. Max Pooling Layer

4. Bidirectional Recurrent Layer

5. Fully Connected Dense Network

The convolutional layer extracts important features from the input data, while the
max pooling layer downsamples the feature map to reduce its size. The bidirectional
recurrent layer captures long-term dependencies in the input data, while the fully
connected dense layer combines the features extracted by the previous layers to make
a final prediction.

This model architecture was shown to achieve the highest accuracy and accept-
able loss margins on the NCC dataset, making it a promising choice for a variety of
sequential data classification tasks.

42

Figure 23: NCC Neural Network Architecture

This Keras model is a neural network for processing sequential data for a classi-
fication task with 13 classes (as indicated by the final Dense layer with 13 units and
’softmax’ activation). Breakdown of its components with more details:

1. Input Layer: Accepts input with shape (500, 4) or (500, 8) where 500 is the
length of padded and cutted sequence and 4 or 8 is the number of digits used
for one hot encoding, in general this is indicating sequences of length 500 with
4 or 8 features each.

2. Conv1D Layer: A one-dimensional convolutional layer with 32 filters, kernel
size 9, and ReLU activation. It’s designed to extract features from the sequence
data.

3. MaxPooling1D Layer: Reduces the dimensionality of the data, pooling over
windows of size 4, to condense the features and reduce computation.

4. Bidirectional GRU Layer: A bidirectional GRU (Gated Recurrent Unit)
with 128 units. It processes the data in both forward and backward direc-
tions, capturing dependencies in the sequence. It includes dropout equal to
0.3 (for regularization) and random kernel and recurrent initializers, while zero
initialization of bias.

5. Flatten Layer: Flattens the output of the GRU layer to a single dimension,
preparing it for the dense layer.

6. Dense Layers: Fully connected layers with the last dense layer composed of
13 units and ’softmax’ activation, outputting a probability distribution over
13 classes.

43

7.3 Training and Testing the Model

Adam optimization method [42] was used with learning rate 0.001. The Adam
optimizer is a widely-used optimization algorithm in training neural networks. It
combines the best properties of the Stochastic Gradient Descent and RMSProp
algorithms to handle sparse gradients on noisy problems. Adam stands for "Adaptive
Moment Estimation," and utilizes the squared gradients for scaling the learning rate,
similar to RMSprop, and employs the moving average of the gradient, akin to SGD
with momentum, rather than the gradient itself. This integration effectively marries
the concepts of dynamic learning rate adjustment and gradient smoothening. Such
a combination is key in efficiently navigating towards the global minimum in the
optimization landscape.This approach helps in navigating the rough terrain of high-
dimensional space, which is typical in deep learning tasks. Adam is favored for its
efficiency in terms of memory requirement, computational cost, and especially for
its effectiveness in cases where relatively large amounts of data and parameters are
involved.

Categorical Cross-Entropy is a loss function often used in machine learning for
multi-class classification problems. It measures the difference between two probabil-
ity distributions - the true distribution (actual labels) and the predicted distribution,
output by the model. The function calculates the loss by taking the negative log
of the predicted probability assigned to the true class. It’s particularly effective
when the model’s output is a probability distribution across multiple classes, like in
neural networks with softmax activation in the output layer. This loss function is
crucial for models where accurate probability distributions are essential, such as in
classification tasks with more than two classes.

L = −
M∑
i=1

yi log(pi) (11)

And for multi-class classification:

L = −
M∑
i=1

yo,i log(po,i) (12)

Where:

• L is the loss.

• M is the number of classes.

• yi is a binary indicator (0 or 1) if class label ii is the correct classification for
the observation.

• pi is the predicted probability of the observation belonging to class ii.

• yo,i is a binary indicator (0 or 1) if class i is the correct classification for
observation o.

• po,i is the predicted probability of observation o being of class i.

The training of the model was conducted over three different sets of epochs: 20,
50, and 100. According to the data illustrated in Figure 24, it was observed that

44

beyond the first 20 epochs, the model’s accuracy plateaued, showing little to no
further improvement, and this trend was mirrored in the loss metrics as well. All
the details about the model’s training are shown in Table 7.

0 4 8 12 16 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Epoch

Training with nRC training dataset

Accuracy
Loss

Figure 24: Diagram of Accuracy and loss per epoch during training

Number of Epochs 20/50/100
Batch size 128
Steps per Epoch Default = 277
Optimizer Adam
loss function Categorical Cross Entropy
Shuffle Train data True

Table 7: NCC model training parameters

7.3.1 Performance metrics

To assess the performance of each non-coding RNA class prediction method, men-
tioned in this document, the well-established metrics of accuracy, sensitivity, preci-
sion, F1-score, and Matthews correlation coefficient (MCC) were employed as well
as the confusion matrix.

• Accuracy is the percentage of correctly classified images.

Accuracy =
TP + TN

TP + TN + FN + FP
(13)

45

• Sensitivity, also known as Recall, is the ratio of correctly predicted positive
cases to the whole actual positive cases.

Sensitivity =
TP

TP + FN
(14)

• Precision is the ratio of correctly predicted positive cases to the total pre-
dicted positive cases.

Precision =
TP

TP + FP
(15)

• The F1-score is a combination of the precision and recall metrics and can be
defined as the harmonic mean of a model’s precision and recall.

F-score = 2× Precision × Sensitivity
Precision + Sensitivity

(16)

• The Matthews correlation coefficient (MCC) takes into account true and
false positives and negatives, and is an efficient metric for unbalanced classes.

MCC =
TP × TN − FP × FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(17)

In case of multi-class classification, accuracy measures the proportion of correctly
classified cases from the total number of objects in the dataset.

Accuracy =
Correct predictions

All predictions
(18)

For the other metrics in case of multi-class classification first, measurement of the
metric by class is applied, then macro-average it across classes. Example of precision
is presented in equations 19 and 20.

PrecisionClassA =
TPClassA

TPClassA + FPClassA

(19)

PrecisionMacro−Average =
PrecisionClassA + ...+ PrecisionClassN

N
(20)

In the multi-class the Matthews correlation coefficient (MCC) can be defined in
terms of a confusion matrix C for K classes. To simplify the definition, consider the
following intermediate variables:

• tk : the number of times class k truly occurred

tk =
K∑
i

Cik (21)

• pk : the number of times class k was predicted

pk =
K∑
i

Cki (22)

46

• c : the total number of samples correctly predicted

c =
K∑
k

Ckk (23)

• s : the total number of samples

s =
K∑
i

K∑
j

Cij (24)

Then the multiclass MCC is defined as:

MCC =
c× s−

∑K
k pk × tk√

(s2 −
∑K

k p2k)× (s2 −
∑K

k t2k)
(25)

Confusion Matrix is a table used in classification tasks to visualize the perfor-
mance of an algorithm. It displays the number of correct and incorrect predictions
categorized by their actual and predicted classifications, typically with actual classes
in rows and predicted classes in columns, helping to easily identify where the model
is making mistakes. The most basic terms for a binary classifier, as presented in
Figure 25, are True positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN).

• TP: values which are actually positive and are predicted positive

• TN: values which are actually negative and are predicted negative

• FP: values which are actually negative and are predicted positive

• FN: values which are actually positive and are predicted negative

Figure 25: Confusion Matrix for binary classification problem

47

It is important to note that these basics metrics are extracted for each class
separately, since the task at hand involves multi-class classification. For a single class
(for example Class Ck), positive is considered a sample belonging to the specific class,
while negative is considered a sample belonging to any other class. So, a confusion
matrix for a multi class problem looks like Figure 26

Figure 26: Confusion Matrix for multi-class classification problem

48

7.3.2 Benchmarking NCC dataset

First step is splitting the NCC dataset to Train and Test with test size equal to
33% of the main dataset. Training the NCC model with 35427 number of sequences
using the parameters from Table 7 and testing it with the rest 17450.

(a) 8 Features per RNA base (b) 4 Features per RNA base

Figure 27: Confusion Matrix of NCC model trained and tested with NCC dataset
matrix (a) is with 8 digits encoding and matrix (b) with 4 digits per RNA base

One-hot Enc Accuracy Sensitivity Precision F-Score MCC
8 Digits 0.989226 0.986510 0.987894 0.987182 0.988283
4 Digits 0.990544 0.988647 0.988861 0.988732 0.989716

Table 8: Test metrics using the NCC dataset with 4 and 8 digits RNA Base encoding

49

7.3.3 Benchmarking nRC dataset

To effectively evaluate the performance of the NCC, Non-Coding RNA Classification
model proposed in this research, a comparative analysis with pre-existing non-coding
RNA classification tools is essential. For a fair and accurate comparison, it’s crucial
to use an identical dataset for both training and testing across all tools. This ensures
that the results are directly comparable and not influenced by variations in data. In
this section, the NCC model, along with other established tools such as RNAcon,
GraPPLE, nRC, ncRFP, ncDLRES, and ncDENSE, will be compared using the same
dataset. It’s important to note that the NCC model has not been specifically tailored
or optimized for this dataset (instead it was trained and adjusted using the NCC
dataset produced in this research), providing an unbiased basis for comparison. This
approach will allow for a comprehensive evaluation of the NCC model’s capabilities
in the context of existing methodologies in non-coding RNA classification.

Model/Method Accuracy Sensitivity Precision F-score MCC
RNAcon 0.3737 0.3787 0.4500 0.3605 0.3341
GraPPLE 0.6487 0.6684 0.7325 0.7050 0.6857
nRC 0.6960 0.6889 0.6878 0.6878 0.6627
ncRFP 0.7972 0.7878 0.7904 0.7883 0.7714
ncDLRES 0.8430 0.8344 0.8419 0.8407 0.8335
ncDENSE 0.8687 0.8677 0.8703 0.8667 0.8574
NCC 4d 0.9269 0.9269 0.9286 0.9268 0.9210
NCC 8d 0.9292 0.9292 0.9311 0.9293 0.9234

Table 9: Models comparison.

The table 9 showcases the performance of each tool across five key metrics.
4d and 8d refer to 4 digits and 8 digits encoding per RNA bases. It is evident
from the table that the NCC (Non-Coding RNA Classification) tool outperforms
its counterparts in all these metrics. Notably, the NCC tool demonstrates a slight
improvement in accuracy, exceeding the next best model, ncDENSE, by approxi-
mately 0.06. This highlights the enhanced capability of the NCC tool in accurately
classifying non-coding RNA sequences. Additionally, the accompanying figure 28
presents the confusion matrix for the NCC model, which has been both trained and
tested using the nRC dataset.

50

Figure 28: Confusion Matrix of NCC model train and tested with nRC dataset

51

8 Conclusion
This thesis is focused on creating and evaluating a tool, for classifying coding RNA
(ncRNA) sequences. Aiming to develop an effective method that takes into account
the intricate nature of ncRNAs, thereby contributing to the broader understanding
of RNA biology and its implications in various biological processes and diseases.

Key features of this research are:

1. New dataset was developed (NCC dataset) ten times larger than the nRC
dataset used in previous researches, providing a rich basis for training and
evaluating the proposed classification model.

2. An in-depth analysis of two comprehensive ncRNA datasets, NCC and nRC,
highlighting the diversity and complexity of ncRNA sequences.

3. The design and implementation of a unique neural network architecture, the
NCC model, tailored specifically for the classification of ncRNAs. This model
stands out by directly encoding RNA sequences and bypassing the potential
inaccuracies of RNA secondary structure prediction tools.

4. The NCC model demonstrated superior performance, marginally outperform-
ing existing top-tier classifiers in accuracy when assessed with identical datasets.
This underscores the model’s efficacy and the advancements in its architecture
and training process. The model achieved exceptional accuracy rates, reach-
ing up to 98% with the newly developed dataset, highlighting the significant
progress made in ncRNA classification.

The model introduced in this study has demonstrated a notable performance,
slightly surpassing the previously established top-performing classifiers when eval-
uated using identical training and testing datasets. Moreover, This achievement
underscores the model’s effectiveness and the advancements made in its design and
implementation. Additionally, the model exhibits exceptional accuracy, achieving
rates as high as 98% when utilizing the extended dataset that was developed during
this research.

At present, RNA databases are somewhat underdeveloped and exhibit a signifi-
cant imbalance among RNA classes. Certain non-coding RNA (ncRNA) classes are
represented by a minimal number of sequences compared to others, underscoring a
disparity in the availability of data. This scenario emphasizes that the domain of
ncRNA classification remains a vibrant and promising field of research. There is
a strong anticipation for the emergence of more sophisticated and precise method-
ologies for ncRNA classification. The ongoing interest and active research in this
area suggest that we can expect the development of novel approaches that will
significantly enhance the accuracy and effectiveness of ncRNA identification and
classification.

52

9 Future Work
While the proposed classification model didn’t incorporate secondary structure and
graph properties as part of its input, it’s important to highlight their potential sig-
nificance. These elements, though not directly used in the current model, could
offer valuable insights and enhance the model’s predictive accuracy. Exploring their
integration in future iterations of the model might uncover deeper relationships and
patterns within the data, potentially leading to more robust and accurate classifica-
tions. Their relevance in the broader context of the field suggests they are worthy
of further investigation and consideration.

A possible future approach is to develop a second parallel model for prediction
non-coding RNA classes by using the graph features of the input RNA sequence.
Along with other features extracted like the length of the sequence, k-mers sub-
strings presence (as presented in [43]) and other RNA sequence extracted features.
A possible architecture of a future model for ncRNA classification is shown in Figure
29.

Figure 29: Proposed model for future work

A pivotal element of this research has been the development of the dataset,
which holds significant weight in the overall effectiveness of our work. The quality
of the dataset used for training is intrinsically linked to the accuracy of the model,
directly influencing its capacity to produce precise predictions for new, unseen data.
Recognizing this critical relationship, a key recommendation for future research is
the creation of a comprehensive collection of generic non-coding RNA (ncRNA)
datasets. These datasets would serve a dual purpose: firstly, as a resource for
training and testing ncRNA classification tools, and secondly, as a benchmark for
comparing the performance of various classifiers.

The development of such a collection would entail gathering a diverse range of
ncRNA sequences, ensuring a wide representation of different ncRNA types. This
diversity is essential to train models that are robust and capable of handling the
complexity and variability inherent in ncRNA sequences. Furthermore, by stan-
dardizing the datasets used across different tools, we can facilitate a more objective
and consistent comparison of their performance. Investment in these datasets would
significantly enhance the field of ncRNA research, providing researchers with valu-
able resources to develop more advanced and accurate classification tools.

53

An alternative model that holds considerable potential features a collection of
binary classifiers operating in parallel, with each classifier dedicated to identifying
a specific class of non-coding RNA. The outputs of these individual classifiers are
then aggregated by a final, overarching model, as presented in Figure 30. This mas-
ter model analyzes the collective inputs from the binary classifiers to determine the
specific class of the RNA sequence in question, effectively leveraging the strengths
of each binary classifier to achieve a more nuanced and accurate classification out-
come. This architecture allows for a focused approach where each binary classifier
specializes in distinguishing its assigned RNA class, enhancing the overall precision
and reliability of the RNA classification process.

Figure 30: Proposed model for future work, consisting of multiple binary classifiers

54

Bibliography
[1] Qi Zhao, Zheng Zhao, Xiaoya Fan, Zhengwei Yuan, Qian Mao, and Yudong Yao.

Review of machine learning methods for rna secondary structure prediction.
PLoS computational biology, 17:e1009291, 08 2021. doi: 10.1371/journal.pcbi.
1009291.

[2] Christos Andrikos, Evangelos Makris, Angelos Kolaitis, Georgios Rassias,
Christos Pavlatos, and Panayiotis Tsanakas. Knotify: An efficient parallel plat-
form for rna pseudoknot prediction using syntactic pattern recognition. Methods
and Protocols, 5(1), 2022. ISSN 2409-9279. doi: 10.3390/mps5010014. URL
https://www.mdpi.com/2409-9279/5/1/14.

[3] Linyu Wang, Shaoge Zheng, Hao Zhang, Zhiyang Qiu, Xiaodan Zhong, Haiming
Liu, and Yuanning Liu. ncrfp: A novel end-to-end method for non-coding
rnas family prediction based on deep learning. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 18(2):784–789, 2021. doi: 10.1109/
TCBB.2020.2982873.

[4] Antonino Fiannaca, Massimo La Rosa, Laura La Paglia, Riccardo Rizzo, and
Alfonso Urso. nrc: non-coding rna classifier based on structural features. Bio-
Data Mining, 10, 2017. doi: https://doi.org/10.1186/s13040-017-0148-2. URL
https://doi.org/10.1186/s13040-017-0148-2.

[5] Alexander Hüttenhofer and Jörg Vogel. Experimental approaches to identify
non-coding RNAs. Nucleic Acids Research, 34(2):635–646, 01 2006. ISSN 0305-
1048. doi: 10.1093/nar/gkj469. URL https://doi.org/10.1093/nar/gkj469.

[6] Feng Da-Fei and Doolittle Russell F. Progressive sequence alignment as a
prerequisitetto correct phylogenetic trees. Journal of Molecular Evolution, 25
(4):351–360, 1987. doi: 10.1007/BF02603120. URL https://doi.org/10.
1007/BF02603120.

[7] John S. Mattick and Igor V. Makunin. Non-coding RNA. Human Molecular
Genetics, 15(suppl_1):R17–R29, 04 2006. ISSN 0964-6906. doi: 10.1093/hmg/
ddl046. URL https://doi.org/10.1093/hmg/ddl046.

[8] Sam Griffiths-Jones, Alex Bateman, Mhairi Marshall, Ajay Khanna, and
Sean R. Eddy. Rfam: an RNA family database. Nucleic Acids Research,
31(1):439–441, 01 2003. ISSN 0305-1048. doi: 10.1093/nar/gkg006. URL
https://doi.org/10.1093/nar/gkg006.

[9] Ioanna Kalvari, Joanna Argasinska, Natalia Quinones-Olvera, Eric P Nawrocki,
Elena Rivas, Sean R Eddy, Alex Bateman, Robert D Finn, and Anton I Petrov.
Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families.
Nucleic Acids Research, 46(D1):D335–D342, 11 2017. ISSN 0305-1048. doi:
10.1093/nar/gkx1038. URL https://doi.org/10.1093/nar/gkx1038.

55

https://www.mdpi.com/2409-9279/5/1/14
https://doi.org/10.1186/s13040-017-0148-2
https://doi.org/10.1093/nar/gkj469
https://doi.org/10.1007/BF02603120
https://doi.org/10.1007/BF02603120
https://doi.org/10.1093/hmg/ddl046
https://doi.org/10.1093/nar/gkg006
https://doi.org/10.1093/nar/gkx1038

[10] RNAcentral Consortium. RNAcentral 2021: secondary structure integration,
improved sequence search and new member databases. Nucleic Acids Research,
49(D1):D212–D220, 10 2020. ISSN 0305-1048. doi: 10.1093/nar/gkaa921. URL
https://doi.org/10.1093/nar/gkaa921.

[11] Paul G Higgs. Rna secondary structure: physical and computational aspects.
Quarterly reviews of biophysics, 33(3):199–253, 2000.

[12] Bharat Panwar, Amit Arora, and Gajendra PS Raghava. Prediction and
classification of ncrnas using structural information. BMC Genomics, 15,
2014. ISSN 1471-2164. doi: https://doi.org/10.1186/1471-2164-15-127. URL
https://doi.org/10.1186/1471-2164-15-127.

[13] Kengo Sato, Yuki Kato, Michiaki Hamada, Tatsuya Akutsu, and Kiyoshi
Asai. IPknot: fast and accurate prediction of RNA secondary structures
with pseudoknots using integer programming. Bioinformatics, 27(13):i85–
i93, 06 2011. ISSN 1367-4803. doi: 10.1093/bioinformatics/btr215. URL
https://doi.org/10.1093/bioinformatics/btr215.

[14] Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions
in neural networks. International Journal of Engineering Applied Sciences and
Technology, 04:310–316, 05 2020. doi: 10.33564/IJEAST.2020.v04i12.054.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.
1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.

[16] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation, 2014.

[17] Mike Schuster and Kuldip Paliwal. Bidirectional recurrent neural networks.
Signal Processing, IEEE Transactions on, 45:2673 – 2681, 12 1997. doi: 10.
1109/78.650093.

[18] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org.

[19] François Chollet et al. Keras. https://keras.io, 2015.

56

https://doi.org/10.1093/nar/gkaa921
https://doi.org/10.1186/1471-2164-15-127
https://doi.org/10.1093/bioinformatics/btr215
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.tensorflow.org/
https://keras.io

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

[21] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke,
and Travis E. Oliphant. Array programming with NumPy. Nature, 585
(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL
https://doi.org/10.1038/s41586-020-2649-2.

[22] Jeff Reback, Wes McKinney, jbrockmendel, Joris Van den Bossche, Tom
Augspurger, Phillip Cloud, gfyoung, Sinhrks, Adam Klein, Matthew Roeschke,
Jeff Tratner, Chang She, William Ayd, Simon Hawkins, Terji Petersen, Jeremy
Schendel, Andy Hayden, Marc Garcia, Vytautas Jancauskas, MomIsBestFriend,
Pietro Battiston, Skipper Seabold, chris b1, h vetinari, Stephan Hoyer, Wouter
Overmeire, alimcmaster1, Mortada Mehyar, Christopher Whelan, and Thomas
Kluyver. pandas-dev/pandas: Pandas 1.0.0. Zenodo, January 2020. doi:
10.5281/zenodo.3630805. URL https://doi.org/10.5281/zenodo.3630805.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Jour-
nal of machine learning research, 12(Oct):2825–2830, 2011.

[24] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
& Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[25] Hosna Jabbari, Ian Wark, Carlo Montemagno, and Sebastian Will. Knotty:
efficient and accurate prediction of complex RNA pseudoknot structures.
Bioinformatics, 34(22):3849–3856, 06 2018. ISSN 1367-4803. doi: 10.1093/
bioinformatics/bty420. URL https://doi.org/10.1093/bioinformatics/
bty420.

[26] Evangelos Makris, Angelos Kolaitis, Christos Andrikos, Vrettos Moulos, Panayi-
otis Tsanakas, and Christos Pavlatos. Knotify+: Toward the prediction of
rna h-type pseudoknots, including bulges and internal loops. Biomolecules,
13(2), 2023. ISSN 2218-273X. doi: 10.3390/biom13020308. URL https:
//www.mdpi.com/2218-273X/13/2/308.

[27] Evangelos Makris, Angelos Kolaitis, Christos Andrikos, Vrettos Moulos, Panayi-
otis Tsanakas, and Christos Pavlatos. An intelligent grammar-based platform
for rna h-type pseudoknot prediction. In Ilias Maglogiannis, Lazaros Iliadis,
John Macintyre, and Paulo Cortez, editors, Artificial Intelligence Applications
and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops, pages

57

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3630805
https://doi.org/10.1093/bioinformatics/bty420
https://doi.org/10.1093/bioinformatics/bty420
https://www.mdpi.com/2218-273X/13/2/308
https://www.mdpi.com/2218-273X/13/2/308

174–186, Cham, 2022. Springer International Publishing. ISBN 978-3-031-
08341-9.

[28] Christos Koroulis, Evangelos Makris, Angelos Kolaitis, Panayiotis Tsanakas,
and Christos Pavlatos. Syntactic pattern recognition for the prediction of l-
type pseudoknots in rna. Applied Sciences, 13(8), 2023. ISSN 2076-3417. doi:
10.3390/app13085168. URL https://www.mdpi.com/2076-3417/13/8/5168.

[29] Christian Borgelt, Thorsten Meinl, and Michael Berthold. Moss: A program
for molecular substructure mining. In Proceedings of the 1st International
Workshop on Open Source Data Mining: Frequent Pattern Mining Implementa-
tions, OSDM ’05, page 6–15, New York, NY, USA, 2005. Association for Com-
puting Machinery. ISBN 1595932100. doi: 10.1145/1133905.1133908. URL
https://doi.org/10.1145/1133905.1133908.

[30] Liam Childs, Zoran Nikoloski, Patrick May, and Dirk Walther. Identification
and classification of ncRNA molecules using graph properties. Nucleic Acids
Research, 37(9):e66–e66, 04 2009. ISSN 0305-1048. doi: 10.1093/nar/gkp206.
URL https://doi.org/10.1093/nar/gkp206.

[31] Linyu Wang, Xiaodan Zhong, Shuo Wang, and Yuanning Liu. ncdlres: a
novel method for non-coding rnas family prediction based on dynamic lstm and
resnet. BMC Bioinformatics, 22, 09 2021. doi: 10.1186/s12859-021-04365-4.
URL https://doi.org/10.1186/s12859-021-04365-4.

[32] Kai Chen, Xiaodong Zhu, Lei Hao, Jiahao Wang, Zhen Liu, and Yuanning Liu.
ncdense: a novel computational method based on a deep learning framework
for non-coding rnas family prediction. BMC Genomics, 12 2022. doi: 10.21203/
rs.3.rs-2374139/v1.

[33] Jian Zhao, Yan Li, Cong Wang, Haotian Zhang, Hao Zhang, Bin Jiang,
Xuejiang Guo, and Xiaofeng Song. Iresbase: A comprehensive database
of experimentally validated internal ribosome entry sites. Genomics, Pro-
teomics & Bioinformatics, 18(2):129–139, 2020. ISSN 1672-0229. doi: https:
//doi.org/10.1016/j.gpb.2020.03.001. URL https://www.sciencedirect.
com/science/article/pii/S1672022920300577. Special Issue:Bioinformatics
Commons—2020.

[34] Ana Kozomara, Maria Birgaoanu, and Sam Griffiths-Jones. miRBase: from
microRNA sequences to function. Nucleic Acids Research, 47(D1):D155–D162,
11 2018. ISSN 0305-1048. doi: 10.1093/nar/gky1141. URL https://doi.org/
10.1093/nar/gky1141.

[35] Changning Liu, Baoyan Bai, Geir Skogerbø, Lun Cai, Wei Deng, Yong Zhang,
Dongbo Bu, Yi Zhao, and Runsheng Chen. NONCODE: an integrated knowl-
edge database of non-coding RNAs. Nucleic Acids Research, 33(suppl_1):
D112–D115, 01 2005. ISSN 0305-1048. doi: 10.1093/nar/gki041. URL
https://doi.org/10.1093/nar/gki041.

58

https://www.mdpi.com/2076-3417/13/8/5168
https://doi.org/10.1145/1133905.1133908
https://doi.org/10.1093/nar/gkp206
https://doi.org/10.1186/s12859-021-04365-4
https://www.sciencedirect.com/science/article/pii/S1672022920300577
https://www.sciencedirect.com/science/article/pii/S1672022920300577
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1093/nar/gki041

[36] Fergal J Martin, M Ridwan Amode, Alisha Aneja, Olanrewaju Austine-
Orimoloye, Andrey G Azov, If Barnes, Arne Becker, Ruth Bennett, An-
drew Berry, Jyothish Bhai, Simarpreet Kaur Bhurji, Alexandra Bignell, San-
jay Boddu, Paulo R Branco Lins, Lucy Brooks, Shashank Budhanuru Rama-
raju, Mehrnaz Charkhchi, Alexander Cockburn, Luca Da Rin Fiorretto, Claire
Davidson, Kamalkumar Dodiya, Sarah Donaldson, Bilal El Houdaigui, Tamara
El Naboulsi, Reham Fatima, Carlos Garcia Giron, Thiago Genez, Gurpreet S
Ghattaoraya, Jose Gonzalez Martinez, Cristi Guijarro, Matthew Hardy, Zoe
Hollis, Thibaut Hourlier, Toby Hunt, Mike Kay, Vinay Kaykala, Tuan Le,
Diana Lemos, Diego Marques-Coelho, José Carlos Marugán, Gabriela Ale-
jandra Merino, Louisse Paola Mirabueno, Aleena Mushtaq, Syed Nakib Hos-
sain, Denye N Ogeh, Manoj Pandian Sakthivel, Anne Parker, Malcolm Perry,
Ivana Piližota, Irina Prosovetskaia, José G Pérez-Silva, Ahamed Imran Ab-
dul Salam, Nuno Saraiva-Agostinho, Helen Schuilenburg, Dan Sheppard, Swati
Sinha, Botond Sipos, William Stark, Emily Steed, Ranjit Sukumaran, Du-
lika Sumathipala, Marie-Marthe Suner, Likhitha Surapaneni, Kyösti Sutinen,
Michal Szpak, Francesca Floriana Tricomi, David Urbina-Gómez, Andres Vei-
denberg, Thomas A Walsh, Brandon Walts, Elizabeth Wass, Natalie Willhoft,
Jamie Allen, Jorge Alvarez-Jarreta, Marc Chakiachvili, Bethany Flint, Ste-
fano Giorgetti, Leanne Haggerty, Garth R Ilsley, Jane E Loveland, Benjamin
Moore, Jonathan M Mudge, John Tate, David Thybert, Stephen J Trevanion,
Andrea Winterbottom, Adam Frankish, Sarah E Hunt, Magali Ruffier, Fiona
Cunningham, Sarah Dyer, Robert D Finn, Kevin L Howe, Peter W Harrison,
Andrew D Yates, and Paul Flicek. Ensembl 2023. Nucleic Acids Research, 51
(D1):D933–D941, 11 2022. ISSN 0305-1048. doi: 10.1093/nar/gkac958. URL
https://doi.org/10.1093/nar/gkac958.

[37] Gil Stelzer, Naomi Rosen, Inbar Plaschkes, Shahar Zimmerman, Michal Twik,
Simon Fishilevich, Tsippi Iny Stein, Ron Nudel, Iris Lieder, Yaron Mazor,
Sergey Kaplan, Dvir Dahary, David Warshawsky, Yaron Guan-Golan, Asher
Kohn, Noa Rappaport, Marilyn Safran, and Doron Lancet. The genecards suite:
From gene data mining to disease genome sequence analyses. Current Protocols
in Bioinformatics, 54(1):1.30.1–1.30.33, 2016. doi: https://doi.org/10.1002/
cpbi.5. URL https://currentprotocols.onlinelibrary.wiley.com/doi/
abs/10.1002/cpbi.5.

[38] Pieter-Jan Volders, Jasper Anckaert, Kenneth Verheggen, Justine Nuytens,
Lennart Martens, Pieter Mestdagh, and Jo Vandesompele. LNCipedia 5: to-
wards a reference set of human long non-coding RNAs. Nucleic Acids Research,
47(D1):D135–D139, 10 2018. ISSN 0305-1048. doi: 10.1093/nar/gky1031. URL
https://doi.org/10.1093/nar/gky1031.

[39] Catherine Brooksbank, Evelyn Camon, Midori A. Harris, Michele Magrane,
Maria Jesus Martin, Nicola Mulder, Claire O’Donovan, Helen Parkinson,
Mary Ann Tuli, Rolf Apweiler, Ewan Birney, Alvis Brazma, Kim Henrick,
Rodrigo Lopez, Guenter Stoesser, Peter Stoehr, and Graham Cameron. The
European Bioinformatics Institute’s data resources. Nucleic Acids Research,

59

https://doi.org/10.1093/nar/gkac958
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.5
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.5
https://doi.org/10.1093/nar/gky1031

31(1):43–50, 01 2003. ISSN 0305-1048. doi: 10.1093/nar/gkg066. URL
https://doi.org/10.1093/nar/gkg066.

[40] Ioanna Kalvari, Eric P. Nawrocki, Joanna Argasinska, Natalia Quinones-
Olvera, Robert D. Finn, Alex Bateman, and Anton I. Petrov. Non-coding
rna analysis using the rfam database. Current Protocols in Bioinformat-
ics, 62(1):e51, 2018. doi: https://doi.org/10.1002/cpbi.51. URL https://
currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.51.

[41] Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. CD-HIT: ac-
celerated for clustering the next-generation sequencing data. Bioinformatics, 28
(23):3150–3152, 10 2012. ISSN 1367-4803. doi: 10.1093/bioinformatics/bts565.
URL https://doi.org/10.1093/bioinformatics/bts565.

[42] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014.

[43] Chandran Nithin, Sunandan Mukherjee, Jolly Basak, and Ranjit Prasad Ba-
hadur. Ncodr: A multi-class support vector machine classification to distinguish
non-coding rnas in viridiplantae. Quantitative Plant Biology, 3:e23, 2022. doi:
10.1017/qpb.2022.18.

60

https://doi.org/10.1093/nar/gkg066
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.51
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.51
https://doi.org/10.1093/bioinformatics/bts565

	List of Figures
	List of Tables
	Introduction
	Document Structure

	RNA - Theoretical Background
	RNA
	Non-coding RNA
	RNA Secondary and Tertiary Structure

	Artificial Intelligence
	Machine Learning
	Classification Algorithms
	Artificial Neural Networks
	Neuron

	Activation Functions
	Deep learning
	Fully Connected layer
	Convolutional Neural Network (CNN)
	Convolution Layer
	Pooling Layer

	Recurrent Neural Network (RNN)
	Long-Short term memory (LSTM)
	Gated Recurrent Unit (GRU)
	Bidirectional RRN

	Technologies
	Python
	Deep learning Frameworks
	Tensorflow
	Keras
	PyTorch
	Key Differences

	Other Python Libraries
	NumPy
	Pandas
	Scikit-learn
	Matplotlib

	RNA Secondary Structure Predict
	Knotty
	IPknot
	Knotify

	Related Work
	RNAcon
	nRC
	GraPPLE
	ncRFP
	ncDLRES
	ncDENSE

	ncRNA data
	ncRNA databases
	RNACentral
	IRESbase
	Rfam
	Rfam MySQL database

	Data Collection
	Fasta files

	Final dataset (NCC dataset)
	nRC dataset
	Comparison between NCC and nRC datasets

	Implementing the Prediction Mechanism.
	Data preparation
	Sequence Padding and Cutting
	One-hot encoding

	NCC Model Architecture
	Training and Testing the Model
	Performance metrics
	Benchmarking NCC dataset
	Benchmarking nRC dataset

	Conclusion
	Future Work
	Bibliography

