
 

 

 
 

 

Emotion Recognition on Scenes of films based 

on the speech and the image 

 by 

Eleftherios Tzagkarakis 

 

 

Submitted  

in partial fulfilment of the requirements for the degree of 

Master of Artificial Intelligence 

at the 

UNIVERSITY OF PIRAEUS 

 

 

 

 

 

 

December 2023 

University of Piraeus, NCSR “Demokritos”.  All rights reserved. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Author . . . . . . . . . . . . . . . Eleftherios Tzagkarakis. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

II-MSc “Artificial Intelligence” 

December, 2023 

 

Certified by. . . . . . . . . . . .. Ilias Maglogiannis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....   

Professor 

Thesis Supervisor 

 

Certified by. . . . . . . . . . . .... Michael Filippakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Professor 

/Academic Title 

Member of 

Examination 

Committee 

 Certified by. . . . . . . . . . . . . . . Maria Halkidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Associate Professor 

Member of 

Examination 

Committee



 

Emotion Recognition on Scenes of films based on the speech and 

the image. 

By 

Eleftherios Tzagkarakis 

 

 
Submitted to the II-MSc “Artificial Intelligence” in December 2023,  

in partial fulfilment of the 
requirements for the MSc degree  

 

Abstract 

This thesis delves into the fascinating realm of experimentation and evaluation, exploring 

a diverse array of machine learning models applied to both the auditory and visual 

domains. Specifically, the focus is on emotion recognition within public datasets 

comprising photographs and speech excerpts. The research progresses to the discernment 

of optimal models, which are subsequently deployed on cinematic scenes featuring 

monologues. This allows for a comprehensive comparison of the outcomes produced by 

these two models, scrutinizing the consistency and correlation of their predictions. 

The ultimate objective of this endeavour is to fashion an intelligent director, empowered 

by the capabilities of machine learning. This directorial intelligence extends beyond 

conventional boundaries, making decisions on whether a scene warrants a reiteration, 

particularly when the results of the two models exhibit disparities. The implementation of 

this groundbreaking approach integrates the training of open-source neural networks 

alongside the utilization of classical machine learning algorithms. 

This multifaceted exploration underscores the fusion of innovative technologies and 

traditional methodologies, establishing a robust framework for the advancement of 

intelligent cinematic direction. The synergy between open-source neural networks and 

classical machine learning algorithms not only contributes to the evolution of film 

production methodologies but also charts new territories in the intersection of artificial 

intelligence and artistic expression. 
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1  Introduction 

1.1 Problem Definition 

 

The fundamental challenge addressed in this thesis lies in gauging the fidelity of cinematic 

scenes by scrutinizing the congruence between facial expressions and vocal emotions. The 

primary aim is to assess the precision with which scenes are captured and to ascertain the 

alignment between the emotional portrayal in facial expressions and the corresponding 

emotional tonality in the voice. To achieve this, the research endeavours to develop an 

intelligent director employing two distinct classifiers—one dedicated to image 

classification and the other to speech classification. Through this approach, the study 

seeks to determine the effectiveness of these classifiers in collectively appraising the 

authenticity of film scenes, thereby providing filmmakers with valuable insights into the 

harmony between visual and auditory emotional cues. 

 

1.2 Scope 

The scope of this research extends to the exploration of machine learning models for 

emotion recognition, specifically applied to both visual and auditory data. The project 

delves into the intricacies of image and speech processing to accurately capture and 

classify emotions exhibited by actors in film scenes. The focus is not only on the individual 

performance of the classifiers but also on examining the correlation between their outputs. 

The goal is to determine whether the integration of these classifiers contributes to the 

effective evaluation of cinematic scenes, thereby empowering filmmakers with the 

assistance of artificial intelligence. 
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2  Theoretical Framework 

In this chapter, an in-depth analysis of the theoretical underpinnings that form the basis 

for the experiments conducted in this thesis is presented. The exploration begins with a 

comprehensive examination of Artificial Intelligence (AI), including its historical 

evolution and various types that have shaped its trajectory. Subsequent sections delve into 

essential concepts in Machine Learning, Classification, Neural Networks, Image 

Classification. Each section provides a foundational understanding crucial for 

comprehending the methodologies employed in the subsequent chapters. 

2.1 Artificial Intelligence (AI) 

2.1.1 Definition and Evolution 

Artificial Intelligence (AI) stands at the intersection of computer science, mathematics, 

and cognitive science. Its primary goal is to create machines that can mimic human 

intelligence and perform tasks that typically require human cognitive functions such as 

learning, problem-solving, and decision-making [1]. 

The term "Artificial Intelligence" was first coined by John McCarthy during the 

Dartmouth Conference in 1956 [2]. This seminal event marked the birth of AI as an 

academic field, attracting researchers from various disciplines who sought to explore the 

possibilities of creating intelligent machines. 

The evolution of AI can be traced through several distinct phases. Early AI research 

focused on rule-based systems and symbolic reasoning. However, limitations in handling 

real-world complexity led to the emergence of machine learning paradigms, where 

systems could learn from data. 
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2.1.2 Types of AI 

AI can be categorized into two main types: Narrow or Weak AI [3], [4] and General or 

Strong AI. Narrow AI is designed to perform a specific task or solve a particular problem, 

exhibiting intelligence only in that specific domain. Examples include virtual personal 

assistants like Siri and Alexa. 

In contrast, General AI aspires to possess human-like intelligence across a broad range of 

tasks. Achieving General AI remains a long-term goal and involves creating systems that 

can adapt and learn across various domains [5]. 

The contemporary landscape of AI is dominated by narrow AI applications, which have 

demonstrated remarkable success in tasks such as image and speech recognition, natural 

language processing, and game playing [6]. 

2.2  Machine Learning (ML) 

Machine Learning (ML) is a foundational concept in artificial intelligence, enabling 

computers to learn from data and make decisions or predictions without explicit 

programming. In ML, various tasks include classification, regression, and clustering. 

2.2.1 Classification 

Overview: 

Classification is a supervised learning task where the algorithm assigns predefined labels 

to input data based on patterns learned during training. This task is fundamental in 

various applications, such as spam detection, image recognition, and sentiment analysis. 

 

Algorithms: 

● Decision Trees: Create a tree-like model of decisions based on features [7], [8]. 

● Random Forest: Ensemble of decision trees, offering improved accuracy and 

robustness [9]. 

● Support Vector Machines (SVM): Classify data points by finding the optimal 

hyperplane [10].  
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2.2.2 Regression 

Overview: 

Regression is a supervised learning task where the algorithm predicts a continuous output 

variable based on input features. Commonly used in finance, economics, and weather 

forecasting, regression helps model relationships between variables. 

 

Algorithms: 

● Linear Regression: Establishes a linear relationship between input and output 

variables [11].  

● Lasso and Ridge Regression: Introduces regularization to prevent overfitting [12], 

[13].  

● Decision Trees for Regression: Extends decision trees to predict continuous values 

[8]. 

2.2.3 Clustering 

Overview: 

Clustering is an unsupervised learning task that groups similar data points together based 

on certain features. Applications include customer segmentation and anomaly detection. 

 

Algorithms: 

● K-Means: Divides data into k clusters based on centroids [14].  

● Hierarchical Clustering: Forms a tree of clusters, useful for visualizing 

relationships [15], [16]. 

● DBSCAN (Density-Based Spatial Clustering of Applications with Noise): Groups 

dense areas and identifies outliers [17]. 

2.2.4 Other Aspects 

While classification, regression, and clustering are fundamental, ML encompasses various 

other aspects. These include dimensionality reduction techniques, ensemble methods, 

and reinforcement learning, each serving specific purposes in diverse applications. 
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Algorithms: 

● Principal Component Analysis (PCA): Reduces dimensionality while retaining data 

variance [18], [19]. 

● Random Forests: Ensemble method combining multiple decision trees [20]. 

● Q-Learning: A reinforcement learning algorithm for making sequential decisions 

[21]. 

2.3  Deep Learning (DL) 

Deep Learning represents a subset of machine learning where artificial neural networks, 

inspired by the human brain's structure, are employed to model, and solve complex 

problems. The architecture involves interconnected nodes organized into layers, allowing 

for the learning of intricate hierarchical representations [22]. 

Deep Learning has gained prominence for its ability to automatically learn and extract 

features from raw data, eliminating the need for manual feature engineering. The learning 

process involves the adjustment of weights in neural network connections through 

backpropagation, optimizing the model's performance. 

 

Algorithms and Architectures: 

 

● Convolutional Neural Networks (CNNs): Effective for image and video analysis 

[23]. 

● Recurrent Neural Networks (RNNs): Suited for sequential data, such as time series 

or natural language [24]. 

● Long Short-Term Memory Networks (LSTMs): A type of RNN, ideal for capturing 

long-range dependencies [25], [26]. 
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2.3.1 Image Classification 

 

2.3.1.1 Overview 

Image classification is a fundamental task in computer vision, involving the assignment 

of predefined labels or categories to images. This process is essential for automated 

systems to recognize and interpret visual information in various applications. 

 

2.3.1.2 Methods and Techniques 

Various methods and techniques have been employed in image classification. Traditional 

machine learning approaches, including Support Vector Machines (SVM) and Random 

Forests, have been complemented and, in many cases, surpassed by deep learning 

methodologies, particularly Convolutional Neural Networks (CNNs) [27], [28]. 

 

2.3.1.3 Challenges in Image Classification 

Despite its widespread use, image classification faces several challenges: 

● Variability in Visual Appearance: Images can vary due to factors like lighting 

conditions, viewpoint changes, and object orientation, making it challenging for 

models to generalize effectively [29]. 

● Large-Scale Datasets and Training Complexity: Acquiring and managing large-

scale labelled datasets for training image classification models can be resource 

intensive. Additionally, the computational complexity of training deep neural 

networks presents challenges [30]. 

● Fine-Grained Classification: Distinguishing between visually similar categories 

requires models to capture subtle differences in features, adding complexity to the 

classification task [31]. 

● Adversarial Attacks: Image classification models are vulnerable to adversarial 

attacks, where small, imperceptible perturbations to input images can lead to 

misclassifications [32]. 
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● Interpretability and Explainability: In critical applications, such as healthcare and 

autonomous systems, the interpretability and explainability of image classification 

models are crucial for trust and reliability [33], [34]. 

 

2.3.1.4 Importance in Various Fields 

Image classification holds significant importance across diverse domains due to its ability 

to interpret visual information. Specific applications include: 

 

● Healthcare: Image classification contributes to medical diagnostics through tasks 

like identifying tumours in medical images [35]. 

● Autonomous Vehicles: Image classification is crucial for object detection and 

recognition in the development of autonomous vehicles, enhancing their ability to 

navigate and make informed decisions [36], [37]. 

● Agriculture: Image classification aids in crop monitoring and disease detection, 

contributing to precision agriculture for improved yield and resource management 

[38]. 

● Security and Surveillance: Image classification enhances security and surveillance 

systems by identifying and tracking objects or individuals in real-time [39]. 

● Retail and E-commerce: Image classification is employed for product recognition, 

recommendation systems, and inventory management, improving the efficiency of 

retail operations [40]. 

 

2.3.1.5 ImageNet Dataset 

Overview: 

ImageNet is a massive dataset comprising millions of labelled images across thousands of 

classes. Its significance lies in its role as a benchmark for evaluating and advancing image 

classification algorithms. ImageNet has played a pivotal role in driving breakthroughs in 

computer vision. 
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Algorithms Developed: 

1. AlexNet (2012): Developed by Alex Krizhevsky and his team, AlexNet was 

the pioneering deep neural network architecture that demonstrated the 

effectiveness of deep learning for image classification. It significantly 

outperformed traditional methods, winning the 2012 ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) [41]. 

2. GoogLeNet (2014): Also known as Inception v1, GoogLeNet introduced the 

concept of inception modules, enabling the network to efficiently capture 

features at multiple scales. It won the ILSVRC 2014 competition [42]. 

3. ResNet (2015): ResNet, or Residual Network, addressed the vanishing 

gradient problem by introducing skip connections. This architecture 

enabled the training of extremely deep networks, leading to unprecedented 

accuracy in image classification [43]. 

 

2.3.1.6 Impact of ImageNet on Computer Vision 

The success of ImageNet and the corresponding algorithms has had a profound impact on 

the field of computer vision. These models, and their subsequent iterations, have become 

foundational in various applications, from image and video analysis to object detection 

and segmentation [29], [30]. 

 

Figure 1: ImageNet 
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2.3.2 Audio Classification 

 

2.3.2.1 Overview 

Audio classification is a fundamental task in the field of signal processing and machine 

learning, aimed at automatically categorizing audio signals into predefined classes or 

categories [44]. This process enables the extraction of meaningful information from vast 

amounts of audio data, with applications spanning various domains such as speech 

recognition, music genre classification, emotion recognition, environmental sound 

analysis, and more. 

 

2.3.2.2 Types of Audio Signals 

Audio signals encompass a diverse range, including but not limited to: 

 

● Speech: Human speech is a crucial component of communication systems and 

voice-activated technologies. 

● Music: Classification of music genres aids in content recommendation and 

organization in music streaming services [45]. 

● Environmental Sounds: Recognizing sounds from the environment, such as sirens, 

footsteps, or bird calls, has applications in surveillance and environmental 

monitoring [46]. 

2.3.2.3  Challenges in Audio Classification 

Despite its significance, audio classification poses several challenges, including: 

● Variability: Audio signals can exhibit substantial variability due to factors like 

pitch, tempo, and background noise [44]. 

● Feature Extraction: Selecting relevant features from audio signals is a critical step, 

requiring careful consideration of the characteristics of different signal types [45]. 

● Data Imbalance: Imbalanced datasets, where certain classes have fewer examples, 

can affect the model's ability to generalize [46]. 
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2.3.2.4  Importance in Various Fields 

The application of audio classification extends across numerous domains, and specific 

examples are outlined below: 

● Healthcare: Identifying medical conditions through speech analysis or monitoring 

patient well-being through audio cues [44]. 

● Entertainment: Improving content recommendation systems and enhancing user 

experience in gaming and virtual reality [45]. 

● Security: Detecting abnormal sounds for security and surveillance purposes [46].
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3 Related work 

3.1 Introduction 

Emotion recognition, a captivating interdisciplinary field, intersects with the realms of 

psychology, artificial intelligence, and multimedia processing. As human-computer 

interaction becomes increasingly nuanced, the ability to comprehend and respond to 

human emotions is a pivotal aspect of technological advancement. This chapter embarks 

on a comprehensive exploration of existing literature, seeking to unravel the intricate 

tapestry of emotion recognition, particularly within the captivating context of films. 

Understanding emotions has been a fundamental quest for scholars across disciplines, 

and the emergence of advanced technologies has propelled emotion recognition into the 

forefront of research endeavours. This chapter delves into the rich landscape of emotion 

recognition, dissecting the evolution of methodologies and paradigms that have shaped 

our understanding of emotional cues.  

Through an examination of seminal works, landmark studies, and contemporary research 

efforts, this chapter illuminates the critical milestones in emotion recognition. As we 

embark on this journey, the convergence of speech and image modalities stands as a 

central theme, reflecting the increasing recognition of the multi-dimensional nature of 

human expression. This exploration extends into the specific domain of films, where 

emotions manifest uniquely, challenging researchers to develop sophisticated models 

capable of capturing the essence of cinematic emotional landscapes. 

The synthesis of past achievements, ongoing endeavours, and the distinct challenges 

posed by the film domain will serve as a foundation for the subsequent chapters. As we 

navigate through the intricacies of related work, a comprehensive understanding of the 

existing landscape will pave the way for the novel contributions and methodologies 

presented in this thesis. 
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3.2 Emotion Recognition in Images 

Visual cues play a pivotal role in conveying emotions, and the application of emotion 

recognition in images has emerged as a transformative field, influencing various domains, 

including computer vision, psychology, and filmmaking. 

3.2.1 Early Foundations 

Pioneering research, exemplified by Ekman and Friesen's (1971) work on "Constants 

across Cultures in the Face and Emotion" [47], focused on the universality of facial 

expressions. This study and others in the early phase established the role of facial 

expressions as a key element in image emotion recognition. 

The work of Russell (1980) in "A Circumplex Model of Affect" [48] introduced a 

circumplex model of affect, emphasizing the diverse range of emotional signals within 

visual stimuli. Understanding this diversity is fundamental for developing comprehensive 

image emotion recognition models. 

3.2.2 Machine Learning Approaches in Image Emotion Recognition 

The analysis of facial expressions remains a cornerstone in image emotion recognition. 

Studies like Lucey et al.'s (2010) "The Extended Cohn-Kanade Dataset (CK+): A Complete 

Dataset for Action Unit and Emotion-Specified Expression" [49], featuring the Extended 

Cohn-Kanade dataset, provide a comprehensive resource for facial expression analysis 

and emotion-specific expression recognition. 

3.2.3 Facial Expression Analysis with Deep Learning 

Deep learning has revolutionized facial expression analysis in image emotion recognition. 

Studies like Liu et al.'s (2017) "Deep Learning for Generic Object Detection: A Survey" 

[50] showcase the effectiveness of deep neural networks in capturing intricate facial 

features, contributing to improved accuracy in recognizing emotions. 

Recognizing that emotions extend beyond facial expressions; multimodal deep learning 

approaches have evolved to consider other visual cues. The work of Zhang et al. (2020) in 

"Deep Learning for Emotion Recognition: A Comparative Review of Recent Advances" 
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[51] provides a comprehensive review of recent advances in deep learning for emotion 

recognition, including the integration of diverse visual cues. 

3.3  Emotion Recognition in Speech 

Speech, as a fundamental mode of human expression, harbours a wealth of emotional 

information encoded in acoustic features and linguistic nuances. The exploration of 

emotion recognition in speech has traversed a multifaceted journey, marked by key 

studies and technological advancements. 

3.3.1 Early Foundations 

In the early stages of speech emotion recognition, pioneering studies by Scherer (2003) 

laid the groundwork for understanding the vocal communication of emotion [52]. 

Scherer's work highlighted the significance of acoustic cues and prosody in conveying 

emotional states. This foundational research spurred subsequent investigations into the 

acoustic features indicative of specific emotions, providing a baseline for the development 

of automated recognition systems. 

3.3.2 Machine Learning Approaches 

The shift towards machine learning approaches marked a turning point in speech emotion 

recognition. Notably, alongside Support Vector Machines (SVMs), Gaussian Mixture 

Models (GMMs) have played a pivotal role in capturing the statistical distribution of 

speech features related to emotions. A significant study by Schuller et al. (2011) titled "The 

INTERSPEECH 2011 Speaker State Challenge" showcased the effectiveness of both GMMs 

and SVMs in modelling dynamic changes in emotion states using speech data [53]. These 

machine learning works offer complementary approaches, with GMMs providing a 

probabilistic framework for capturing complex emotion patterns, and SVMs excelling in 

discerning intricate patterns in speech data. Additionally, the influential work by Vapnik 

and Cortes (1995) titled "Support-Vector Networks" significantly influenced the adoption 

of SVMs in various machine learning applications, including speech emotion recognition 

[54]. Together, these paradigms have contributed significantly to automating the intricate 

task of decoding emotions from speech signals. 
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3.3.3 Deep Learning Advancements 

The advent of deep learning ushered in a new era for speech emotion recognition. Deng et 

al.'s (2013) work on "Recent Advances in Deep Learning for Speech Research at Microsoft" 

demonstrated the effectiveness of deep neural networks (DNNs) in capturing complex 

hierarchical representations of speech features [55]. DNNs, with their capacity to 

automatically learn intricate patterns, have become instrumental in enhancing the 

accuracy and robustness of speech emotion recognition systems. The current state of the 

art is characterized by the integration of advanced deep learning architectures, 

particularly recurrent neural networks (RNNs) and long short-term memory networks 

(LSTMs). Recent studies, such as Trigeorgis et al.'s (2016) exploration of "Adieu features? 

End-to-end speech emotion recognition using a deep convolutional recurrent network" 

[56], showcase the effectiveness of end-to-end architectures in capturing both temporal 

and spectral dependencies. This state-of-the-art integration underlines the significance of 

end-to-end solutions, minimizing the need for handcrafted features and maximizing the 

potential for nuanced emotion decoding. 

The journey through emotion recognition in speech encompasses seminal works, ranging 

from foundational research on acoustic cues to the integration of sophisticated machine 

learning and deep learning approaches. This evolution sets the stage for the subsequent 

exploration of emotion recognition in images and the fusion of modalities in the context 

of films. 

3.4  Multimodal Approaches 

Emotion recognition is inherently multimodal, and the integration of various sensory 

modalities, such as speech, images, and potentially other modalities like physiological 

signals, has garnered significant attention. Multimodal approaches offer a holistic 

understanding of human emotions, capturing the nuances that arise from the combination 

of different expressive channels. 
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3.4.1 Speech-Image Fusion for Comprehensive Emotion 
Understanding 

Combining speech and image modalities provides a synergistic approach to emotion 

recognition, enriching the depth and accuracy of emotional understanding. 

Studies such as Huang et al.'s (2019) "AVLnet: Learning Audio-Visual Language 

Representations from Instructional Videos" [57] exemplify the fusion of audio and visual 

information for improved emotion representation. Integrating both speech and image 

features enhances the robustness of emotion recognition systems, particularly in dynamic 

and complex scenarios. 

Ensuring temporal alignment between speech and image cues is crucial for coherent 

emotion interpretation. Research, such as the work by Han et al. (2020) on "Mutual 

Guidance for Cross-Modality Emotion Recognition" [58], explores mutual guidance 

mechanisms to align temporal dynamics in speech and image data, contributing to more 

accurate cross-modal emotion recognition. 

3.4.2 Physiological Signals Integration 

Incorporating physiological signals, such as heart rate or skin conductance, alongside 

speech and image modalities provides a more comprehensive view of emotional states. 

Studies like Chanel et al.'s (2009) "Emotion Assessment: Arousal Evaluation Using EEG's 

and Peripheral Physiological Signals" [59] showcase the integration of 

electroencephalogram (EEG) and peripheral physiological signals to assess arousal levels. 

Combining physiological data with speech and image features enables a more nuanced 

understanding of emotional responses, particularly in contexts where physiological 

changes play a significant role. 
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3.5  Applications in Film 

Emotion recognition technologies have found compelling applications in the realm of 

filmmaking, transforming the cinematic experience and storytelling. Understanding 

audience emotions opens new avenues for creating engaging narratives and enhancing 

overall viewer satisfaction. 

3.5.1 Real-Time Scene Adaptation 

In the work of Johnson et al. (2015) on "Emotionally Responsive Storytelling for Digital 

Games" [60], real-time emotion recognition is employed to adapt the progression of 

digital game narratives. Similar techniques can be applied to filmmaking, allowing scenes 

to dynamically respond to the emotional state of the audience. [61] 

3.5.2 Character Animation in Animated Films 

The study by Zhu et al. (2020) on "EmoGen: Deep Learning-Based Emotional Character 

Generation for Interactive Storytelling" [62] focuses on emotional character generation 

for interactive storytelling. Deep learning techniques enable the creation of animated 

characters that express emotions authentically, contributing to a more immersive viewing 

experience. 
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4  Methodology 

4.1  Introduction 

In the world of movies, where pictures and words come together, emotions come alive. 

This study aims to unravel how the emotions expressed on characters' faces connect with 

how they say things. Rather than focusing solely on pictures or words, the interest lies in 

understanding how these elements work together to evoke emotions. 

What sparked curiosity is the impactful way movies make us feel emotions. The goal is to 

better grasp how the emotions displayed on characters' faces might be linked to how they 

express themselves. The objective is to create a complete picture of how emotions unfold 

in movies, with a specific emphasis on the connection between facial expressions and the 

way characters speak. In these initial sections, the groundwork is laid for this exploration 

by explaining what needs to be discovered, why it's important, and where this study fits 

into the broader context of computers understanding emotions, analysing media, and how 

people and technology interact. This endeavour is like a journey, aiming to uncover the 

magic of emotions in movies, with a particular focus on assisting film directors in 

achieving a balance between facial and spoken emotions within scenes. 

4.2  Use Case 

Within the expansive landscape of emotion recognition in movies, this study zeroes in on 

a specific use case: scenes featuring characters expressing themselves through speech. 

These instances, often termed as monologue scenes, provide a controlled setting for 

analysis. The focus on monologue scenes allows us to hone in on the nuanced interplay 

between facial expressions and the way characters articulate their feelings. By 

concentrating on these specific moments, the study aims to uncover patterns and 

correlations between facial emotions and speech, contributing to a more detailed 

understanding of how these elements synchronize to convey emotions within cinematic 

narratives. 
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This targeted use case selection is not only about dissecting technical intricacies but also 

holds practical implications. The insights gained from monologue scenes can potentially 

provide guidance to film directors seeking to strike a balance between facial and spoken 

emotions. As explored in the introduction, this aligns with the broader goal of the study: 

to assist filmmakers in achieving a harmonious blend of visual and auditory emotional 

cues within scenes. The following sections will delve into the methodology, featuring 

Machine Learning algorithms, to untangle the complexities of this use case and shed light 

on the correlation between facial and speech emotions in movie scenes. 

4.3  Techniques 

4.3.1 Transfer Learning 

Central to the fine-tuning process for pre-trained ImageNet algorithms is the utilization 

of transfer learning. This technique capitalizes on the existing knowledge acquired by the 

models during training on the ImageNet dataset [6]. By leveraging this wealth of 

generalizable features, the models become adept at recognizing emotional nuances within 

cinematic scenes. The transfer of knowledge from a diverse range of images to the specific 

context of emotion recognition in films enhances the models' adaptability and 

performance in the dynamic cinematic environment. 

 

4.3.2 Data Augmentation (Rotation, Random Crop for Images) 

To augment the models' ability to generalize to various emotional expressions, data 

augmentation techniques were deployed. Rotation and random cropping emerged as key 

augmentation strategies, diversifying the training dataset. The introduction of variations 

in image orientation and cropping exposes the models to a broader range of emotional 

expressions. This augmentation technique helps prevent overfitting by subjecting the 

models to a more extensive set of scenarios, thereby enhancing their robustness and 

adaptability to the diverse emotional content present in cinematic scenes [64]. 
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4.3.3 Weighted Ensemble 

To optimize the predictive capabilities of the emotion recognition models, a weighted 

ensemble of the two best-performing models, determined based on accuracy, was crafted. 

This ensemble approach combines the outputs of multiple models with varying weights, 

assigning higher importance to the more accurate models. This technique draws on the 

strengths of individual models and mitigates potential weaknesses, resulting in a more 

balanced and accurate prediction. The creation of a weighted ensemble contributes to the 

overall effectiveness of the emotion recognition system, combining the insights of the top-

performing models [65]. 

In summary, transfer learning enhances adaptability, data augmentation refines 

robustness, and a weighted ensemble optimizes accuracy. These techniques collectively 

form a robust framework for fine-tuning pre-trained ImageNet algorithms, ensuring their 

efficacy in recognizing emotions within the dynamic and complex context of cinematic 

storytelling. 

4.4  Image Emotion Recognition Algorithms 

In the pursuit of decoding emotions within the intricate tapestry of cinematic narratives, 

a diverse ensemble of pre-trained ImageNet algorithms was meticulously chosen, each 

offering a unique lens through which to understand and capture emotional nuances.  

 

4.4.1 EfficientNet 

The EfficientNet family, introduced by Tan, M., & Le, Q. V. [63], spanning from B0 to B6, 

was incorporated for its scalability and efficiency, providing a balanced compromise 

between computational resources and model performance. EfficientNet is a convolutional 

neural network architecture and scaling method that uniformly scales all dimensions of 

depth/width/resolution using a compound coefficient. Unlike conventional practice that 

arbitrary scales these factors, the EfficientNet scaling method uniformly scales network 

width, depth, and resolution with a set of fixed scaling coefficients. EfficientNets also 
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transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers 

(98.8%), and 3 other transfer learning datasets, with an order of magnitude fewer 

parameters. 

 

Figure 2: ImageNet Model Size vs. Accuracy 

The strategic inclusion of EfficientNet variants ensures adaptability to the complex and 

dynamic nature of emotional expressions in film scenes. 

4.4.2 ResNet 

ResNet34 and ResNet50, integral components of the ResNet architecture, emerged as 

robust choices for their deep structures and skip connections, effectively addressing 

challenges related to vanishing gradients in deep neural networks [43]. The layers have 

been reformulated as learning residual functions with reference to the layer inputs, 

instead of learning unreferenced functions. On the ImageNet dataset residual nets with a 

depth of up to 152 layers—8× deeper than VGG nets [28] have been evaluated, but still 
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having lower complexity. An ensemble of these residual nets achieves 3.57% error on the 

ImageNet test set.  

 

Figure 3: Residual learning: A building block 

The architectural prowess of ResNet models positions them as formidable tools in 

capturing intricate emotional expressions embedded in the visual content of cinematic 

narratives. Their deep and skip-connected design equips them to navigate the nuanced 

complexities of emotions portrayed in diverse film scenes. 

 

4.4.3 VGG 

The VGG series, comprising VGG11, VGG13, VGG16, and VGG19, was strategically 

included for its simplicity and effectiveness in image classification tasks [28]. Known for 

its straightforward architecture with varying depths, the VGG series brings a contrasting 

approach to understanding emotional nuances in cinematic scenes. Its emphasis on small 

convolutional filters makes it adept at capturing fine-grained details, complementing the 

broader spectrum provided by other algorithms. 
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Figure 4: VGG16 Architecture 

EfficientNet B0 to B6, ResNet34, and ResNet50, alongside VGG11, VGG13, VGG16, and 

VGG19, collectively form a diverse set of pre-trained ImageNet algorithms. This strategic 

selection ensures a comprehensive exploration of emotional nuances within varied 

cinematic scenarios. Each algorithm brings its unique strengths to the forefront, 

promising a nuanced and holistic understanding of emotion recognition within the 

dynamic realm of films.  

 

 

4.5  Speech Emotion Recognition Algorithms 

4.5.1 Whisper 

In the realm of advanced audio processing for emotion recognition in film scenes, the 

Whisper model takes centre stage. Highlighted in the paper "Robust Speech Recognition 

via Large-Scale Weak Supervision" [71] Whisper employs a sophisticated encoder-decoder 

Transformer architecture tailored for large-scale supervised pre-training. This model 

exhibits remarkable adaptability to the intricacies of cinematic speech, leveraging web-
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scale text data for training. Its minimalist preprocessing strategy involves predicting raw 

text transcripts without extensive standardization, streamlining the speech recognition 

pipeline. The Whisper model's multitask format enhances its versatility, seamlessly 

incorporating various speech processing tasks crucial for precise emotion recognition in 

film audio. 

 

Figure 5: Overview of Whisper approach 

4.5.2 HuBERT 

In addition to Whisper, the experiments conducted for this thesis also evaluated the 

Hubert model, introduced in the paper "HuBERT: Self-Supervised Speech Representation 

Learning by Masked Prediction of Hidden Units." [74] Hubert, a Hidden-Unit BERT 

approach for self-supervised speech representation learning, addresses challenges unique 

to the field. It incorporates an offline clustering step and applies a prediction loss 

exclusively over masked regions, compelling the model to learn a combined acoustic and 
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language model over continuous inputs. Hubert's training process, relying on the 

consistency of unsupervised clustering steps, showcases its effectiveness in capturing 

nuanced audio representations. 

 

Figure 6: The HuBERT approach predicts hidden cluster assignments of the masked frames generated by 

one or more iterations of k-means clustering 

4.5.3 Wave2Vec2 

Complementing this audio analysis toolkit, the Wave2Vec2 model [73], an evolution of 

Wave2Vec [72], was also evaluated in the experiments conducted for this thesis. Building 

on the principles of self-supervised learning for speech representations, Wave2Vec2 

refines feature extraction through extensive training on audio corpora. While 

Wave2Vec2's architecture and methodologies differ, its core focus on capturing contextual 

information within speech aligns with the pursuit of nuanced audio representations. 
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Figure 7: Illustration of Wave2Vec2 framework which jointly learns contextualized speech representations 

and an inventory of discretized speech units 

4.5.4 Sew-d 

Adding to the comprehensive exploration of diverse models, the Sew-d model was also 

included in the evaluation for this thesis. Explored in the paper "Performance-Efficiency 

Trade-Offs in Unsupervised Pre-Training for Speech Recognition," [75] which focuses on 

wav2vec 2.0, and formalizing several architecture designs that influence both the model 

performance and its efficiency, SEW (Squeezed and Efficient Wav2vec) is a pre-trained 

model architecture with significant improvements along both performance and efficiency 

dimensions across a variety of training setups.  

Sew-d offers valuable insights into the delicate balance between computational efficiency 

and recognition performance in unsupervised pre-training for speech recognition. This 

model provides an alternative perspective, contributing to the enhancement of speech 

representation learning and addressing the increasing demand for efficient yet effective 

models in real-world applications. 
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Figure 8: Original vs. squeezed context network 

 

4.6  Classifiers evaluation 

To evaluate the performance of the proposed classifier, applicable to both image and 

speech processing, two key metrics were employed: Accuracy and F1-score. These metrics 

are derived from the elements of a confusion matrix, as outlined in the table below: 

 Predicted 

 
 

Actual 

 Predicted Positive Predicted Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

Table 1: Confusion Matrix 

Accuracy is calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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This metric primarily indicates the proportion of correctly classified samples. However, 

Accuracy alone may not comprehensively reflect the classifier's performance, especially 

in cases where the class distribution is imbalanced.  

To address this limitation, the F1-score is also calculated, which is the harmonic mean of 

Precision and Recall. This metric provides a balanced view of the classifier's 

performance, considering both the correctly classified and the incorrectly classified 

samples. The F1-score is particularly useful in situations where an equal importance is 

assigned to both Precision and Recall. The calculation of the F1-score is as follows: 

𝐹1−𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

By utilizing both these metrics, a thorough evaluation of the classifiers' effectiveness in 

various scenarios is provided. 

4.7  Correlation between Image and Speech 

In this study, several statistical tests were utilized to analyse the correlation between the 

predictions of different classifiers. These tests include the Chi-Square test [76], Cramer's 

V association [77], and the Pearson correlation coefficient (Pearson's r) [78], each serving 

a distinct purpose in our analysis. 

Specifically, the Chi-Square test, which is a non-parametric method, assesses the 

independence between two categorical variables. It should be noted that in our case the 

corresponding variables are the image and speech predictions, and their values are 

integers corresponding to a class-emotion. It is calculated as: 

𝜒2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖
 

where 𝜒2 is the Chi-Square statistic, 𝑂𝑖 represents the observed frequency, and 𝐸𝑖 is the 

expected frequency under the assumption of independence. This test helps in 
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determining whether deviations from expected frequencies are due to chance or indicate 

a significant association. 

On the other hand, Cramer's V, which is built on the Chi-Square test, measures the 

strength of association between two nominal variables. It is given by: 

𝑉 = √
𝜒2
𝑁

𝑚𝑖𝑛(𝑘 − 1, 𝑟 − 1)
 

Here, 𝜒2 is the Chi-Square statistic, 𝑁 is the total number of observations, and 𝑘 and 𝑟 are 

the numbers of categories (classes) for each of the two variables. Cramer's V ranges from 

0 (no association) to 1 (complete association), providing a more nuanced understanding 

of the relationship strength. 

Similarly, Pearson's r measures the linear correlation between two continuous variables. 

In our cases, it is applied on the predicted probabilities of the two classifiers allowing to 

quantify the strength of the correlation of the classifiers not only based on the top-1 

predicted classes but also on the corresponding probabilities. It is calculated using the 

formula: 

𝑟 =
∑ (𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)

√∑ (𝑋𝑖 − 𝑋)2(𝑌𝑖 − 𝑌)2
 

where 𝑋𝑖 and 𝑌𝑖 are the individual sample points indexed with 𝑖, and 𝑋 and 𝑌  are the 

sample means. The value of 𝑟 ranges from -1 to +1, indicating the strength and direction 

of a linear relationship. 

The application of these statistical tests in our analysis is pivotal. The Chi-Square test 

identifies whether an association exists, Cramer's V quantifies the strength of association 

in categorical data (predicted classes), and Pearson's r provides insight into the linear 

correlation between continuous variables (predicted probabilities). Together, these 

methods offer a comprehensive understanding of the interrelationships among classifier 

predictions. 
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5 Experiments 

5.1 Tools and Platforms 

In the pursuit of advancing emotion recognition in film scenes through the amalgamation 

of speech and image analysis, an array of robust tools and platforms were employed. These 

technological choices were instrumental in crafting a sophisticated and effective system 

for deciphering emotional nuances in cinematic content. 

Python, a versatile and widely adopted programming language, was chosen as the 

cornerstone of our implementation. Renowned for its extensive libraries and ease of 

integration, Python facilitated the seamless development of the Emotion Recognition 

system. Its adaptability proved crucial in incorporating machine learning models and data 

processing techniques seamlessly. 

Kaggle Jupyter Notebooks emerged as a pivotal platform for conducting experiments in a 

collaborative and interactive environment. Leveraging Kaggle's infrastructure, the 

research team could efficiently code, visualize data, and analyse results within a 

centralized space. The platform's accessibility and pre-installed libraries streamlined the 

development and testing of emotion recognition models. 

PyTorch, a dynamic deep learning framework, played a central role in implementing 

neural network architectures. The framework's flexibility allowed for the construction and 

fine-tuning of models tailored to the dynamic nature of film scenes. PyTorch's dynamic 

computation graph and user-friendly interface facilitated efficient experimentation, 

ensuring the adaptability of the emotion recognition system to diverse cinematic 

scenarios. 

To harness the computational power necessary for accelerated model training, the study 

incorporated CUDA (Compute Unified Device Architecture). CUDA enables the utilization 

of Graphics Processing Units (GPUs), enhancing the computational efficiency of deep 

learning algorithms implemented in PyTorch. This not only expedited the 
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experimentation process but also allowed for the scalability of the emotion recognition 

system. 

In conjunction with these tools, an efficient Integrated Development Environment (IDE) 

played a pivotal role in streamlining the coding and debugging process. The chosen IDE 

contributed to the overall productivity of the research team, ensuring a smooth workflow 

during the development of algorithms and models. 

The judicious selection and integration of these tools and platforms created a robust 

foundation for conducting experiments and deriving meaningful results in the subsequent 

phases of the research endeavour. 

5.2  Experimental setting 

5.2.1  Datasets Description 

5.2.1.1 Image Dataset 

The FER2013 dataset [66] serves as a pivotal component in the image analysis aspect of 

this research, contributing valuable insights into facial emotion recognition. Comprising 

over 35,000 images, FER2013 captures a diverse range of facial expressions across seven 

emotion categories, including happy, sad, surprise, angry, disgust, fear, and neutral. 

Each image is labelled with the corresponding emotion, providing a rich resource for 

training, and evaluating deep learning models. The dataset's diversity is a key asset, 

reflecting variations in pose, lighting, and ethnicity, making it well-suited for the study's 

objective of recognizing emotions in complex cinematic scenes. 

 

Figure 9: FER2013 Dataset examples 

The images within FER2013 are grayscale and sized at 48x48 pixels, striking a balance 

between computational efficiency and expressive facial features. This resolution ensures 

that critical facial details are preserved while optimizing the computational resources 
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required for model training. Leveraging FER2013 facilitates the development of a robust 

image-based emotion recognition system, allowing the model to generalize effectively to 

the nuanced emotional expressions present in film scenes. The careful curation and 

annotation of the FER2013 dataset position it as a foundational resource in the 

exploration of emotion recognition within the context of cinematic imagery. 

It is important to note that the surprise class has been excluded to align with the range of 

emotions present in the datasets described subsequently, which encompass both speech 

and video modalities. To prevent any confusion, the modified subset of the FER2013 

dataset, from which the surprise class has been omitted, will be referred to as FER2013-

selected throughout the remainder of this work. In total, the number of samples kept is 

25538. Subsequently, the dataset was randomly divided into training and validation 

subsets in an 80/20 ratio, respectively, that is, 20430 for training and 5108 for validation. 

Figure 3 illustrates the class distribution within these subsets. It is evident from the figure 

that the disgust class has the fewest samples. However, both subsets exhibit a similar 

distribution, which is conducive to extracting reliable results during the evaluation phase. 

  

 

Figure 10: Histogram of class distribution of FER2013-selected. (Left): Train set, (Right): 
Validation Set 
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5.2.1.2  Speech Datasets 

The sound aspect of this research encompasses a comprehensive blend of diverse audio 

datasets, strategically chosen to enrich the study of emotion recognition in cinematic 

scenes. It includes the CREMAD (Crowdsourced Emotional Multimodal Actors Dataset) 

[67], a valuable collection of audio recordings featuring a range of emotional expressions 

portrayed by multiple actors. The dataset provides a nuanced understanding of emotions 

in speech, contributing significantly to the robustness of the developed emotion 

recognition system. 

Additionally, the research incorporates both the RAVDESS song and speech portions 

(Ryerson Audio-Visual Database of Emotional Speech and Song) [68]. This extensive 

dataset covers a wide spectrum of emotions expressed through speech and song, providing 

a comprehensive foundation for the audio analysis component. The inclusion of both song 

and speech ensures a holistic understanding of emotional cues, crucial in capturing the 

multifaceted nature of emotions within cinematic contexts. 

Furthermore, the study leverages the Surrey Audiovisual Expressed Emotion (SAVEE) 

dataset [69]. This dataset includes recordings of actors vocalizing a range of emotions, 

enhancing the diversity of emotional expressions available for analysis. The combination 

of facial and vocal cues in the Surrey Audiovisual dataset contributes to a more holistic 

approach to emotion recognition in cinematic audio-visual scenes. 

Finally, the Toronto Emotional Speech Set (TESS) forms an integral part of the audio 

datasets [70]. TESS comprises naturalistic emotional expressions, providing a valuable 

resource for training models to recognize emotions in speech. The incorporation of TESS 

enhances the generalization capabilities of the developed system, enabling it to discern 

subtle emotional nuances in cinematic audio. 
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Figure 11: Example of ‘fear’ speech sample. (Top): Waveplot. (Bottom): Spectrogram 

 
 

 

 

Figure 12: Example of ‘angry’ speech sample. (Top): Waveplot. (Bottom): Spectrogram 

In all datasets, the same classes as in FER2013 were retained, namely, happy, sad, angry, 

disgust, fear, and neutral. More specifically, the calm class from RAVDESS was excluded, 

as well as the surprise class from RAVDESS, TESS, and SAVEE. Furthermore, as each 

dataset includes the ID of the speaker, they were split into development and test sets at a 

90/10 ratio based on the number of speakers, when feasible (for instance, the TESS 

dataset contains only two speakers; therefore, the first was assigned to the development 
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set and the second to the test set). The test set comprises speakers not used in training, 

ensuring that the test results more accurately reflect the trained model's generalization 

capabilities. It is important to note that within each individual dataset, the number of 

samples for every speaker is identical. Subsequently, the development set was further 

divided randomly into training and validation sets at an 80/20 ratio, based on the number 

of samples rather than the number of speakers. The following table summarizes the 

number of speakers and samples in each dataset and sub-dataset: 

 

 Number of speakers Number of samples 

 
RAVDESS 

Dev 22 1724 

Test 2 160 

 
CREMAD 

Dev 82 6704 

Test 9 738 

 
TESS 

Dev 1 1200 

Test 1 1200 

 
SAVEE 

Dev 3 315 

Test 1 105 

Final dev 108 9943 

Train 108 7954 

Validation 108 1989 

Final Test 13 2203 

Table 2: Distribution of speakers and samples across speech datasets 
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Furthermore, as shown in the subsequent figure, it has been ensured that there is a similar 

distribution of classes among the train, validation, and test subsets of the final merged 

dataset: 

 

 

  

 

 
 

Figure 13: Histogram of class distribution of the final merged speech dataset. 

All samples are shorter than 30 seconds, allowing them to be directly fed into the speech 

classifiers described in Section 4.5 without the need for segmentation into windows. 

However, to ensure uniformity in sample length, padding with zeros was applied at the 

end of each sample, resulting in a fixed length of 30 seconds for all samples.  
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This amalgamation of audio datasets forms a rich and diverse foundation for the research, 

allowing for a comprehensive exploration of emotion recognition in cinematic contexts, 

where both speech and ambient sounds contribute to the overall emotional landscape. 

5.2.1.3  Video dataset 

For the correlation analysis between image and speech classifiers, the One-Minute 

Gradual-Emotional Behavior (OMG-Emotion) dataset [79] was selected. This dataset 

comprises 2,400 samples, each annotated by five annotators. The ground truth for each 

sample was determined by selecting the emotion that received the maximum votes. Every 

sample is a short RGB video (less than 30 seconds) featuring a monologue expressing a 

single emotion. What sets the OMG-Emotion dataset apart from previous ones is its focus 

on long-term emotional behaviour classification, in contrast to the short-term emphasis 

of other datasets (e.g., MOSI [80], EmoReact [81], GIFGIF+ [82]), which typically analyse 

only a few (1-2) seconds of video length. 

 

Figure 14: Frames extracted from videos of the OMG-Emotion dataset. 

 

Like the Image and Speech datasets, only the samples corresponding to the emotions 

happy, sad, angry, disgust, fear, and neutral were retained, while excluding those 

labelled as surprise. During dataset preparation (download), it was noticed that several 

videos were not available, hence the number of samples used is 1,470. The classes’ 

distribution illustrated in the following figure indicates that fear and disgust classes are 

the most underrepresented classes: 
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Figure 15: Histogram of class distribution of the final video dataset.  

5.2.2 Training specifications 

 

5.2.2.1  Image classifier 

For the image classifier, EfficientNet, ResNet and VGG models were trained with the 

FER2013 dataset. However, only the ResNet34 results may be found in this thesis since it 

outperformed the others, probably since the dataset was small, and the images were in 

grey scale. 

To fine-tune ResNet34 on the FER2013-selected dataset, each image was first resized 

from  (48 × 48) to (224 × 224) pixels to match the input size for which ResNet34 was 

pretrained. To prevent overfitting, it was applied Image Augmentation by randomly 

flipping the images along both the vertical and horizontal axes. After augmentation, the 

pixel values were normalized by dividing them by 255 to bring them into the 0 to 1 range. 

Then standardization (Z-score normalization) was performed using a mean of 0.485 and 

a standard deviation of 0.229, in line with the data preprocessing used during the 

pretraining of ResNet34. Additionally, Early Stopping technique was implemented based 

on the validation set loss value to ensure, as much as possible, the generalization capability 

of the model. 
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In the subsequent table, the values of the hyperparameters used during training are 

provided: 

 

Batch Size 128 

Learning Rate 1e-05 

Epochs 1000 

Early Stop Patience 20 

Frozen Layers First 57 

Optimizer Adam 

Loss Function Cross Entropy 

Table 3: Image classifier training hyperparameters 

It should be noted that due to lack of computational resources, hyperparameters were not 

tuned, thus their values were chosen based on experience and intuition. Batch Size was 

selected based on the maximum number of images that can be loaded on the GPU 

provided by Kaggle (Nvidia P100). 

 

5.2.2.2  Speech classifier 

To fine-tune Whisper-tiny, HuBERT-base, and Wav2Vec2-base, the sampling rate and 

maximum length were aligned with the parameters used during the pretraining of these 

models. Specifically, all models were pretrained using a 16 kHz sampling rate. However, 

only Whisper-tiny imposes a maximum sample length requirement, specifically 30 

seconds. As detailed in Section 5.2.1.2, zero-padding was applied at the end of each sample 

to achieve a uniform length across all models, ensuring a fair comparison.  

The table below summarizes the hyperparameters employed for each model: 
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Like the image classifier, hyperparameters were not tuned due to resource constraints. 

For all models, only the last block of layers along with the classification head were trained. 

Therefore, the Frozen Layers hyperparameter was set based on the number of layers 

preceding the last block. The Batch Size for HuBERT-base and Wav2Vec2-base was 

determined by the maximum number of samples that our GPU could accommodate. 

Conversely, for Whisper-tiny, the Batch Size was chosen based on the maximum number 

of samples that our available RAM (25 GB) could handle. CPU training was opted for 

Whisper-tiny, as it proved to be significantly less time-consuming compared to CPU 

training for HuBERT-base and Wav2Vec2-base. 

5.2.3 Correlation analysis pipeline 

To investigate the relationship between the predictions of Image and Speech classifiers, a 

meticulous pipeline was established based on the OMG-Emotion dataset, which was 

cleaned as detailed in Section 5.2.1.3. This involved three key subprocesses: a) Image 

Process, b) Speech Process, and c) Correlation Analysis Process. 

Image process consists of the following steps: 

● Dividing each video monologue into frames.  

● Detecting faces in each frame using the light-weight detector provided by the 

python-opencv package called haarcascade_frontalface_default. Each detected 

 Whisper-tiny HuBERT-base Wav2Vec2-base 

Batch Size 128 2 2 

Learning Rate 1e-05 1e-05 1e-05 

Epochs 1000 1000 1000 

Early Stop Patience 20 20 20 

Frozen Layers First 50 First 208 First 195 

Optimizer Adam Adam Adam 

Loss Function Cross Entropy Cross Entropy Cross Entropy 

Table 4: Speech classifiers training hyperparameters 
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face is outlined by a bounding box defined by 4 values, namely, x, y, w, h, where x, 

y are the coordinates of the top-left corner of the bounding box, and w, h are the 

width and height of the bounding box. 

● Cropping the frame to the area within bounding box. 

● Converting each cropped RGB frame to greyscale. 

● Resizing cropped frames to (224 × 224). 

● Normalizing frames as described in Section 5.2.1.1. 

● Obtaining predictions (probabilities for each class) for all frames of a video. 

● Calculating the mean probability for each class using predictions from all frames.   

 

Speech process consists of the subsequent steps: 

● Extraction raw speech values using moviepy package. 

● Converting from stereo to mono by averaging the two channels. 

● Generating a single prediction (class probabilities) for each video, as videos are 

shorter than 30 seconds and do not require segmentation into multiple windows. 

 

Correlation analysis process is comprised of the following steps: 

● Determining the class with the maximum probability for each sample and for 

each classifier. These variables may be called as speech_pred and img_pred. Note 

that for each sample there is a single value for each classifier, i.e., the class-

emotion ID. The initial variables which include the predicted probabilities of all 

classes will be named as speech_pred_prob and img_pred_prob. 

● Calculating the p-value of Chi Square test for the correlation between 

speech_pred and img_pred variables. 

● Converting the values of speech_pred and img_pred to one-hot encoding. These 

variables will be the speech_pred_one_hot and img_pred_one_hot. 

● Computing the p-value of Chi Square test for each pair of classes on the 

correlation of speech_pred_one_hot_<emotion> and 

img_pred_one_hot_<emotion> variables, where <emotion> is a placeholder for 

each one of the six emotions. 
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● Computing Cramer's V Association between speech_pred and img_pred 

variables. 

● Computing Cramer's V Association for each pair of classes, i.e., between all pairs 

of variables speech_pred_one_hot_<emotion> and 

img_pred_one_hot_<emotion> variables. 

● Compute Pearson's r for each pair of classes, i.e., between all pairs of variables 

speech_pred_prob_<emotion> and img_pred_prob_<emotion>. 

5.3  Results 

The experimental phase of this research involved the training and evaluation of a series of 

carefully selected algorithms designed for both image and audio-based emotion 

recognition in cinematic scenes. For the image analysis component, deep learning models 

based on convolutional neural networks (CNNs) were trained using the FER2013 dataset. 

The models underwent rigorous training to capture intricate facial features and nuances 

associated with different emotional expressions. Simultaneously, for the audio analysis, a 

combination of recurrent neural networks (RNNs) and attention mechanisms were 

employed. These audio models were trained on the amalgamated audio datasets, 

including CREAMD, RAVDESS (song and speech portions), Surrey Audiovisual, and 

TESS. The utilization of a diverse set of algorithms aimed to capture the multi-modal 

nature of emotions portrayed in cinematic content, accounting for both visual and 

auditory cues. 

The performance of these trained models was rigorously evaluated against a carefully 

curated subset of the datasets that remained unseen during the training phase, commonly 

referred to as the test set. Metrics such as accuracy, precision, recall, and F1 score were 

employed to assess the models' ability to accurately recognize and classify emotions in 

cinematic scenes. The evaluation process involved analysing the models' responses to a 

variety of emotional expressions, ensuring a robust understanding of their performance 

across different scenarios. The experimental setup was designed to emulate real-world 

conditions, where the models need to generalize effectively to a diverse range of emotional 

cues encountered in cinematic storytelling. 
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Results indicate promising levels of accuracy and effectiveness in emotion recognition 

across both image and audio domains. The comprehensive evaluation against the test set 

provides valuable insights into the models' generalization capabilities and their potential 

applicability in real-world scenarios. These findings contribute to the advancement of 

emotion recognition technology within the cinematic context, offering a foundation for 

future developments and applications in areas such as film analysis, virtual reality, and 

human-computer interaction. 

In addition to evaluating individual model performances, a significant component of our 

analysis involved investigating the correlation between image and speech-based emotion 

recognition models. This cross-modal correlation study was critical in understanding how 

visual and auditory cues collectively contribute to emotion recognition in cinematic 

scenes. To this end, statistical methods such as Chi-Square tests, Cramer's V Association, 

and Pearson's correlation coefficient were employed to analyse the relationship between 

the predictions made by image and speech classifiers. 

Our results revealed interesting patterns of correlation and divergence between the two 

modalities. For instance, most of the emotions showed notable discrepancies, indicating 

unique challenges in capturing the essence of these emotions across different sensory 

inputs. These findings highlight the complexities inherent in multi-modal emotion 

recognition and underscore the importance of integrating diverse analytical approaches 

for a more holistic understanding. The insights gained from this correlation analysis not 

only validate the effectiveness of our models in their respective domains but also pave the 

way for developing more sophisticated, integrated systems for emotion recognition in 

cinematic content. 

5.3.1 Image Classification Algorithm Evaluation 

This section conducts a comprehensive evaluation of image classification algorithms, 

specifically trained for the task of emotion recognition in facial expressions. The objective 

is to provide nuanced insights into the effectiveness of these models, aiding in the 

selection of algorithms specifically designed for emotion recognition from facial imagery. 

The following figures display the classification results of the fine-tuned ResNet34 model. 

The classification report and confusion matrix reveal that the happy class is the most 
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accurately classified, achieving an F1-score of 89%. In contrast, the disgust class is the 

least accurately classified, with an F1-score of just 38%. These outcomes are consistent 

with the class distribution discussed in Section 5.2.1.1, where the happy class had the 

highest number of samples, and the disgust class had the fewest. The overall macro 

average F1-score is 65%, and the accuracy stands at 72%. These results highlight the 

complexity of emotion recognition in facial expressions, even for a state-of-the-art model 

like ResNet34, which appears to face challenges in learning the nuanced patterns of 

certain emotions. 

 

Figure 16: Classification report of ResNet34 on FER2013-selected validation set. 
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Figure 17: Confusion matrix of ResNet34 on FER2013-selected validation set. 

The subsequent figure illustrates the learning curves of ResNet34 during its fine-tuning 

on the FER2013-selected dataset. Initially, for the first 10 epochs, the training and 

validation curves progressed similarly. However, post this phase, the model started to 

overfit. A notable observation is made at epoch 100, where the curves exhibit a significant 

'jump', marked by improved validation results and a reduction in training accuracy. This 

shift mitigated some of the overfitting, allowing the model to continue training for a longer 

period before being halted by the Early Stopping mechanism. It's worth noting that this 

'jump' coincided with the termination of our Kaggle training session after exceeding a 

continuous run-time of 12 hours. Subsequently, training was resumed by reloading the 

current model along with its optimizer state. 
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Figure 18: Learning curves of ResNet34 fine-tuning on FER2013-selected dataset. 

These results and observations not only shed light on the effectiveness of the ResNet34 

model in emotion recognition from facial expressions but also underscore the dynamic 

nature of model training, particularly in the context of computational constraints and 

dataset characteristics. 
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5.3.2 Speech Classification Algorithms Evaluation 

This section conducts a thorough evaluation of speech classification algorithms trained 

for emotion recognition during speech. The goal is to delve into the effectiveness of these 

models, guiding the selection of algorithms adept at discerning emotions from raw speech 

data. 

The classification report and confusion matrix for the HuBERT model reveal a struggle to 

identify significant patterns in raw speech for emotion detection. With an overall accuracy 

and macro average F1-score of 47% and 44%, respectively, the model demonstrates 

limitations in classifying emotions accurately, and an 18% misclassification rate between 

the happy and disgust classes underscores difficulties in learning fundamental emotional 

patterns. 

 

Figure 19: Classification report of HuBERT on speech validation set. 
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Figure 20: Confusion matrix of HuBERT on speech validation set. 

 

The HuBERT model's learning curves suggest a tendency to overfit at the early stages of 

fine-tuning, around epoch 30, failing to capture distinct emotional features in the speech. 
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Figure 21: Learning curves of HuBERT fine-tuning on speech dataset. 

Similarly, the Wav2Vec2 model displays suboptimal performance, with 42% accuracy and 

a 39% macro average F1-score, further indicating challenges in constructing meaningful 

speech features that correlate with underlying emotions. Significant misclassification 

rates, such as 38% between angry and happy and 16% between happy and sad, point to 

the model's shortcomings in understanding the basic concepts of each emotion. 
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Figure 22: Classification report of Wav2Vec2 on speech validation set. 

 

Figure 23: Confusion matrix of Wav2Vec2 on speech validation set. 

The learning curves for Wav2Vec2 also indicate early overfitting, with validation curves 

diverging from training curves post-epoch 35. 
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Figure 24: Learning curves of Wav2Vec2 fine-tuning on speech dataset. 

In contrast, the Whisper model showcases exceptional performance, achieving 100% in 

both accuracy and macro average F1-score, as evidenced by the classification results, and 

learning curves. 
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Figure 25: Classification report of Whisper on speech validation set. 

 

Figure 26: Confusion matrix of Whisper on speech validation set. 

While validation curves occasionally diverge, they re-align with training curves, 

suggesting a well-generalized model. Training was intentionally concluded at epoch 123 

upon reaching 100% accuracy, as no further improvements were possible. 
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Figure 27: Learning curves of Whisper fine-tuning on speech dataset. 

It can be assumed that the underperformance of HuBERT and Wav2Vec2 can be 

attributed to two primary factors: 

1. Firstly, the Batch Size utilized for training was minimal (2), which likely hindered 

the introduction of sufficient stochasticity during fine-tuning. This stochasticity is 

often crucial for effective generalization. Conversely, during the fine-tuning of 

Whisper, a larger Batch Size (128) was employed, as detailed in Section 5.2.2.2, 

which likely facilitated convergence towards a more optimal global minimum. 
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2. Secondly, the substantial number of trainable parameters in both models 

(87,283,840 for Wav2Vec2 and 92,010,125 for HuBERT, in contrast to 6,433,536 

for Whisper) may have precipitated rapid overfitting. In the domain of machine 

learning, it is a well-established notion that large models, when trained on 

relatively small datasets, are prone to overfitting. Conversely, overly small models 

may not generalize well due to insufficient parameters, highlighting the need for a 

judicious balance between the number of trainable parameters and the volume of 

available data. Moreover, a prevalent approach in transfer learning is to unfreeze 

entire blocks of layers rather than individual layers, which can facilitate the 

learning of spatial features at varying levels of abstraction. Given the constraint of 

computational resources, allowing only the last block of layers to remain unfrozen 

was a strategic decision that balanced the need for model complexity against the 

available experimental resources. 

 Accuracy F1-score 

HuBERT 47% 44% 

Wav2Vec2 42% 39% 

Whisper 100% 100% 

Table 5: Speech classifiers performance on speech validation set. 

To further assess the Whisper model's efficacy, it was applied to the test set described in 

Section 5.2.1.2. Performance on diverse speakers in this set exposed a decline in both 

accuracy and macro average F1-score, from 100% to 71%. Misclassification rates, such as 

27% between angry and happy and 21% between happy and fear, suggest a degree of 

overfitting to specific voices in the development set. This leads to the hypothesis that audio 

augmentation techniques might mitigate overfitting. However, due to resource 

constraints, the exploration of such techniques is designated for future research. 
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Figure 28: Classification report of Whisper on speech test set. 

 

 

Figure 29: Confusion matrix of Whisper on speech test set. 

In conclusion, this comprehensive analysis provides critical insights into the current 

capabilities and limitations of state-of-the-art speech classification algorithms for 

emotion recognition. While the Whisper model demonstrates remarkable performance 
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under controlled conditions, the drop in accuracy when faced with a more varied test set 

highlights the complexity of real-world applications. These results underscore the need 

for ongoing refinement of models, particularly in the context of generalization across 

diverse speech patterns. Future work should explore the potential of audio augmentation 

and other advanced techniques to enhance the robustness and adaptability of these 

models. 

5.3.3 Classifiers Correlation Evaluation 

In this section, a comprehensive correlation analysis between image and speech classifiers 

trained was performed on the video dataset presented in Section 5.2.1.3. Despite these 

classifiers being trained on different datasets, their predictions on a common set allow us 

to investigate the relationship between the visual and auditory recognition of emotions. 

First, the classification results are presented to provide a clear baseline of the performance 

metrics for each emotion recognition classifier. This step is essential for several reasons. 

It establishes the efficacy of each classifier in isolation, offering a precise picture of their 

ability to identify and differentiate between emotional states. These initial findings are 

fundamental to setting the context for the correlation analysis that follows. By 

understanding the individual strengths and weaknesses revealed through accuracy, 

precision, recall, and F1-scores, the nuances in the combined analysis of image and speech 

classifiers can be better appreciated. Thus, starting with the classification results is not 

only logical but necessary for a coherent progression of the analysis within this thesis. 

As illustrated in the following figures, the image classifier (ResNet34) demonstrated high 

precision in the classification of the neutral class, achieving perfect precision. However, 

its recall and F1-score for most classes were low, indicating difficulty in classifying certain 

emotions. The confusion matrix corroborates this, showing a high rate of true positives 

for happy, yet substantial misclassification among other emotions. It is noteworthy that 

the high rate of true positives predominantly reflects a classification bias towards the 

happy class. The overall accuracy and macro average F1-score is 23% and 0.089%, 

respectively. 
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Figure 30: Classification report of ResNet34 on video dataset. 

 

Figure 31: Confusion matrix of ResNet34 on video dataset. 

  

The speech classifier (Whisper) showed an even distribution in its classification ability 

across different emotions. The classification report and confusion matrix suggest 



  -63- 

moderate effectiveness, with sad being the most accurately classified emotion and fear 

and angry showing complete misclassification. The overall accuracy and macro average 

F1-score are higher than those of image classifier but still very low, 24% and 18%, 

respectively. 

 

Figure 32: Classification report of Whisper on video dataset. 

 

Figure 33: Confusion matrix of Whisper on video dataset. 



-64- 

 

Regarding to the classifiers’ correlation, a chi-square test was employed to assess the 

independence of their predictions. The resulting p-value of 0.55 suggests no significant 

association between the predictions of the image and speech classifiers, indicating that 

the modalities may capture different aspects of emotional expression. 

The following p-value matrix, constructed from the chi-square tests on one-hot encoded 

predictions, presents a nuanced view of the inter-class associations. It is particularly 

striking that the image classifier's predictions correlate significantly with the happy class 

(p-values < 0.05, as seen in the top-left quadrant of the matrix). This correlation is also 

reflected in the image classifier’s confusion matrix. Conversely, within the speech 

classifier, there is a notable inter-correlation among all classes (evident in the bottom-

right quadrant). However, an examination of both the bottom-left and top-right quadrants 

of the matrix reveals an absence of correlation between the predictions of the image and 

speech classifiers across all emotional classes (p-values ≥ 0.05), underscoring the 

independent nature of their classification patterns. It should be observed that the disgust 

class in the image classifier's results does not yield any p-values. This absence is 

attributable to the complete lack of classifications —neither true positives nor false 

positives— recorded for this class. 
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Figure 34: Chi-Square test p-values for all class pairs. 

Cramer's V values, presented in the subsequent figures, were calculated to measure the 

strength of association between predictions. The low association between image and 

speech classifier predictions suggests distinct patterns being captured by each modality. 

However, within each classifier, certain pairs of emotions showed stronger associations, 

potentially indicating a shared underlying pattern in recognition. Notably, within the 

image classifier's results, a robust negative association of -0.84 between the happy and 

sad classes emerges, a logical finding given their antithetical semantic nature. Moreover, 

the happy class also shows a moderately negative correlation with the angry (-0.27) and 

fear (-0.39) classes, reinforcing the classifier's discernment of affective contrasts. 

Conversely, the speech classifier's predictions across all emotions are interconnected with 

a uniformly weak negative association, ranging from -0.37 to -0.09, suggesting a more 
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subtle but reasonable differentiation between emotional states in auditory data, since all 

classes should be negative correlated as each sample contains a single emotion. 

 

Figure 35: Crammer’s V association between Image and Speech classifiers’ predictions 
(predicted classes). 

 

Figure 36: Crammer’s V association between one-hot encoding of the predicted classes of Image 
and Speech classifiers. 

The computed Pearson's r coefficients, derived from the predicted probabilities, illustrate 

a spectrum of correlation strengths among different emotional classes. These correlations 
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may be indicative of shared attributes between certain emotions recognized by the 

classifiers or common features within the underlying learned representations predicting 

these states. Mirroring the findings from Cramer's V association values, no significant 

correlation between the Image and Speech classifiers was observed. The most notable 

positive correlation (0.14) occurs between the neutral predictions of the Speech classifier 

and angry predictions of the Image classifier. Conversely, the most pronounced negative 

correlation (-0.16) is between the sad predictions of the Speech classifier and angry 

predictions of the Image classifier. 

 

In the realm of the Image classifier, there is a marked inter-correlation, particularly 

between the happy class and other emotions: sad (-0.80), angry (-0.57), fear (-0.64), and 

disgust (-0.49) all display substantial negative correlations. Additionally, positive 

correlations are found between fear and disgust (0.55), and to a lesser extent between sad 

and neutral (0.38), angry (0.17), fear (0.25), and disgust (0.25). For the speech classifier, 

akin to the Cramer's V results, all classes demonstrate weak negative correlations with 

Pearson's r values ranging from -0.40 to -0.06, reflecting subtle but always negative 

distinctions in the classifier's processing of emotional nuances in speech. 
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Figure 37: Pearson’s r between the predicted probabilities of classes of Image and Speech 
classifiers. 

The findings from the chi-square tests, Cramer's V associations, and Pearson's 

correlations provide a multifaceted view of the relationship between image and speech 

emotion recognition classifiers. The absence of strong correlation suggests that combining 

these classifiers could potentially capture a more holistic representation of emotional 

expressions, leveraging the strengths of both modalities. The diversity in performance and 

associations also underscores the complexity of emotion recognition and the need for 

multimodal approaches in more accurately understanding and classifying human 

emotions. 
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6  Discussion 

6.1  Findings and Validation of Classifiers 

The findings from the experiments conducted in Chapter 5 provide a foundation for 

understanding the capabilities and limitations of the integrated image and speech 

classifiers.  The absence of a notable correlation between facial expressions and vocal 

emotions underscores the challenges faced by classifiers in accurately capturing and 

representing emotions. This insight points to a potential gap in the current technology's 

ability to fully grasp and depict the nuanced interplay of emotions in cinematic scenes, 

emphasizing the need for further advancements in the field. Metrics such as precision, 

recall, and F1 score shed light on the classifiers' performance, but it is crucial to consider 

contextual nuances in emotional expression. For instance, the subtle interplay of 

conflicting emotions or the impact of cultural variations may challenge the classifiers. The 

discussion navigates through these nuances, highlighting instances where the classifiers 

excelled and areas demanding refinement. Moreover, it addresses the correlation between 

classifiers, exploring whether a unified evaluation metric can be devised to holistically 

gauge the congruence of visual and auditory emotional cues. 

The validation of classifiers prompts a reflection on their applicability across diverse film 

genres and cultural contexts. While the classifiers demonstrate proficiency in certain 

emotional archetypes, the discussion contemplates the adaptability of these models to the 

multifaceted nature of human emotions. Additionally, considerations are given to the 

temporal dynamics of emotion expression within scenes, recognizing that capturing 

evolving emotional states requires a dynamic understanding of the classifiers' temporal 

resolution. By critically examining these aspects, the discussion elucidates the potential 

and challenges of employing classifiers for nuanced emotion recognition in cinematic 

storytelling. 



-70- 

 

6.2  Computational Resources: Necessity and 
Challenges 

A critical dimension of implementing advanced audio processing models, particularly the 

training of sophisticated architectures, revolves around the formidable demand for 

computational resources. The intricacies of these models, characterized by encoder-

decoder Transformer architectures tailored for large-scale supervised pre-training, 

necessitate substantial computing power and infrastructure. 

The discussion opens by acknowledging the inherent challenges associated with the 

computational demands of training such advanced models. Achieving proficiency in tasks 

such as robust speech recognition in cinematic scenes mandates extensive computations, 

contributing to prolonged training times and heightened resource consumption. 

The high demand for computational resources raises pertinent questions about the 

accessibility of cutting-edge technology. It prompts consideration of the disparities in 

resource availability across research institutions and organizations, potentially creating a 

divide in the ability to engage with and contribute to advancements in the field. 

Additionally, the economic implications of investing in substantial computational 

infrastructure for research purposes come to the forefront. 

As the field progresses, the discussion also highlights the continuous pursuit of more 

efficient algorithms and methodologies that could potentially mitigate the heavy 

computational burden. It underscores the ongoing efforts to strike a balance between 

model complexity and the practical constraints imposed by the necessity for extensive 

computational resources. 

In conclusion, this subchapter shines a spotlight on the critical role that computational 

resources play in the development and progress of advanced audio processing models. It 

serves as a call for awareness within the research community about the challenges posed 

by resource-intensive endeavours, fostering a dialogue on the responsible use of 

computational power in the pursuit of cutting-edge technology. 
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6.3  Ethical Implications and Privacy Concerns 

As emotion recognition technology permeates the filmmaking domain, ethical 

considerations and privacy concerns emerge as focal points of deliberation. The discussion 

underscores the ethical responsibility of filmmakers and technologists in deploying facial 

expression analysis tools. Privacy implications are scrutinized, acknowledging that the 

extraction of emotional data from actors' facial expressions raises questions about consent 

and the boundaries of personal information usage. Filmmakers must navigate the delicate 

balance between creative expression and ethical obligations, ensuring that the use of 

emotion recognition technology respects individual privacy rights. 

The discourse extends to the potential misuse of emotional data, emphasizing the need for 

stringent ethical guidelines within the filmmaking industry. Privacy-preserving 

techniques, such as anonymization or informed consent protocols, are proposed as 

safeguards against unwarranted intrusion. The discussion also acknowledges the role of 

regulatory frameworks in shaping ethical standards for emotion recognition in film. By 

fostering an environment of transparency and accountability, filmmakers can embrace 

these technologies ethically, safeguarding both the creative process and the privacy of 

individuals involved. The analysis delves into specific scenarios, such as emotional data 

storage and sharing, to delineate the ethical considerations that should underpin the 

integration of emotion recognition technology into filmmaking practices. 
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7  Conclusion and Future Work 

This chapter serves as a culmination of the research endeavours presented in this thesis, 

summarizing key findings, and outlining avenues for future exploration. The dual focus 

on visual and auditory cues for emotion recognition in cinematic scenes has provided 

valuable insights into the alignment and divergence between facial expressions and vocal 

emotions. 

 

7.1  Summary of the findings 

The research endeavour focused on assessing the accuracy of emotion portrayal in 

cinematic scenes, exploring the relationship between facial expressions and vocal 

emotions. Despite employing advanced audio models like Whisper and HuBERT and 

sophisticated face emotion recognition algorithms, the results highlighted a distinct lack 

of correlation between the two classifiers. This outcome points to a critical challenge in 

capturing the full spectrum of emotional expression in cinema through current 

technologies. Despite being trained on dedicated train sets, each model exhibited 

limitations in accurately isolating and interpreting complex audio and visual cues 

independently, as reflected in the less-than-ideal results. This underscores the inherent 

challenges in adapting these classifiers to the multifaceted nature of emotional 

expressions within cinematic scenes. This finding not only underscores the intricacies 

involved in emotion recognition within cinematic contexts but also signals the need for 

further research and development in multimodal emotion analysis. 

7.2  Classifier Correlation 

An intriguing aspect emerged during the exploration—the correlation between image and 

speech classifiers. The interplay between these classifiers, while offering a comprehensive 

evaluation of cinematic scenes, revealed instances of low correlation. This observation 

opens new possibilities for leveraging low correlation as a tool for detecting mental 

disorders. The nuanced understanding of emotional expression misalignment could 
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potentially serve as an indirect indicator, warranting further investigation into its 

applicability in mental health diagnostics. 

7.3  Detecting Mental Disorders through Low 
Correlation 

Beyond the primary objective of assessing cinematic scene authenticity, the discussion 

delves into an intriguing dimension of the low correlation observed between image and 

speech classifiers. While a high correlation is sought for congruent emotional portrayal in 

films, a low correlation may serve as a diagnostic tool for identifying potential mental 

health indicators. Research in psychology suggests that individuals with certain mental 

disorders may exhibit incongruence between facial expressions and vocal tone, commonly 

known as emotional incongruence. 

The discussion explores the potential of leveraging the classifiers' low correlation to flag 

instances of emotional incongruence in actors. This becomes particularly relevant in the 

context of characterizing mental health conditions such as depression, anxiety, or certain 

personality disorders. By employing machine learning algorithms trained on datasets that 

include instances of emotional incongruence associated with mental health issues, the 

classifiers could contribute to an auxiliary layer of mental health screening in the film 

industry. 

However, ethical considerations loom large in this application. The discussion critically 

evaluates the potential stigmatization and ethical challenges associated with using film-

based emotion recognition as a proxy for mental health assessment. It emphasizes the 

importance of involving mental health professionals in the interpretation of results and 

ensuring that any diagnostic indications are communicated responsibly. This subchapter, 

therefore, underscores the dual nature of the correlation metric, acknowledging its utility 

in assessing cinematic authenticity while also contemplating its potential role in raising 

flags for mental health considerations in the film industry. 
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7.4  Considerations on Computational Resources 

The integration of state-of-the-art algorithms, exemplified by models like Whisper, comes 

with a significant demand for computational resources, prompting a comprehensive 

examination of its implications. 

The practical implications of these computational demands extend beyond the confines of 

research environments. Access to high-performance computing clusters or cloud 

resources becomes a prerequisite for researchers and practitioners looking to deploy these 

algorithms in real-world scenarios. The challenge lies in making these technologies 

accessible and applicable in settings with limited computational infrastructure, 

emphasizing the need for advancements that democratize access. 

On an economic front, the high computational requirements translate into considerable 

costs associated with hardware, electricity, and cloud computing services. The economic 

viability of these technologies becomes a critical consideration, necessitating future 

research to explore avenues for optimizing algorithms, reducing computational footprints, 

and developing energy-efficient training methods. 

Ethical dimensions further come into play, with environmental impact being a primary 

concern. The energy consumption associated with large-scale model training contributes 

to the carbon footprint of AI research. Researchers and developers must be mindful of 

these consequences and actively seek sustainable practices, including the use of renewable 

energy sources and energy-efficient hardware. 

Moreover, the accessibility and inclusivity of advanced models are at stake due to their 

high computational requirements. Disparities in access may emerge, limiting the ability 

of researchers in resource-constrained environments to participate in cutting-edge 

research. Addressing these ethical dimensions involves technological innovations, policy 

initiatives, and community-driven efforts to ensure equitable access to computational 

resources. 

For future research, there is a clear mandate to optimize training processes, explore 

federated learning approaches, and develop model architectures that strike a better 

balance between computational efficiency and performance. Collaborations between 

researchers, industry stakeholders, and policymakers can drive initiatives to make 
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advanced AI technologies more accessible, economically viable, and ethically sound. The 

quest for computational efficiency must be aligned with the broader goal of ensuring that 

the benefits of technological progress are shared equitably, without compromising ethical 

standards or exacerbating existing disparities. 

7.5  Closing Remarks 

In conclusion, this research contributes to the broader exploration of emotion recognition 

in cinematic scenes, providing filmmakers and researchers with a nuanced toolkit. The 

identification of low correlation as a potential avenue for mental health applications adds 

a layer of societal relevance to the technological advancements. Moving forward, ethical 

considerations and responsible use of computational resources will play pivotal roles in 

shaping the trajectory of research in this domain. The journey does not conclude here but 

opens doors for continued exploration and collaboration across disciplines. 
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