
 

 

UNIVERSITY OF PIRAEUS - DEPARTMENT OF INFORMATICS 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ – ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 

 

MSc «Advanced Informatics and Computing Systems - 

Software Development and Artificial Intelligence» 

ΠΜΣ «Προηγμένα Συστήματα Πληροφορικής - Ανάπτυξη Λογισμικού και 
Τεχνητής Νοημοσύνης» 

 

 

MSc Thesis 

Μεταπτυχιακή Διατριβή 

 

Thesis Title: 

 

Τίτλος Διατριβής: 

Optical simulation of procedure execution in an 

Aluminum Factory on an intelligent Virtual 

Environment.  

Οπτική προσομοίωση εκτέλεσης διαδικασιών σε εργοστάσιο 
αλουμινίου σε ένα Ευφυές Εικονικό Περιβάλλον (IVA). 

Student’s name-surname:  

Ονοματεπώνυμο φοιτητή: 

Triantafyllos Galanis  

Τριαντάφυλλος Γαλάνης 

Father’s name: 

Πατρώνυμο: 

Evangelos 

Ευάγγελος 

Student’s ID No: 

Αριθμός Μητρώου: 
ΜΠΣΠ/20007 

Supervisor: 

Επιβλέπων: 

Themistoklis Panagiotopoulos, Professor  

Θεμιστοκλής Παναγιωτόπουλος, Καθηγητής 

 

October 2023/ Οκτώβριος 2023 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-Member Examination Committee 

Τριμελής Εξεταστική Επιτροπή 
 
 

 

Themistoklis 

Panagiotopoulos 

 Professor 

Θεμιστοκλής Παναγιωτόπουλος 
Καθηγητής 

 
 

 

Christos Douligeris 

Professor  

Χρήστος Δουληγέρης 
Καθηγητής 

 

 

Aggelos Pikrakis 

Assistant Professor  

Άγγελος Πικράκης 
Επίκουρος Καθηγητής 

 

 



Table of Contents /Περιεχόμενα 
1.Acknowledgments/ Ευχαριστίες ............................................................................................ 7 

2. Abstract: ................................................................................................................................ 8 

2. Περίληψη ............................................................................................................................... 8 

3. Introduction ........................................................................................................................... 9 

3.1 Background: ..................................................................................................................... 9 

3.2 Research Objectives: ..................................................................................................... 10 

3.3 History of the most important AI techniques: .............................................................. 10 

3.3.1 Finite State Machines (FSMs): ................................................................................ 10 

3.3.2 Behaviour Trees (BTs): ............................................................................................ 10 

3.3.3 Utility-Based AI: ...................................................................................................... 10 

3.3.4 Hierarchical Task Networks (HTNs): ....................................................................... 11 

3.3.5 Reinforcement Learning (RL): ................................................................................. 11 

3.3.6 Machine Learning and Neural Networks: ............................................................... 11 

3.3.7 Goal-Oriented Action Planning (GOAP) .................................................................. 11 

3.4 Analysis of Goal-Oriented Action Planning (GOAP): ...................................................... 12 

3.4.1 Goal-Oriented Approach: ................................................................................ 12 

3.4.2 Limitations: ...................................................................................................... 13 

4. Maslow's Hierarchy of Needs .............................................................................................. 13 

5. Creating the 3D Environment .............................................................................................. 15 

5.1 LiDAR - LiDAR Scanning: ................................................................................................ 15 

5.1.1 LiDAR System .......................................................................................................... 15 

5.1.2 LIDAR FORMULA ..................................................................................................... 15 

5.2 BLENDER ........................................................................................................................ 16 

5.3 Mixamo .......................................................................................................................... 17 

5.4 Factory Scenario: ........................................................................................................... 17 

5.5 Project Application ........................................................................................................ 17 

5.6 Methodology used......................................................................................................... 18 

6. Factory scenario - Code ....................................................................................................... 28 

GAction Class: ...................................................................................................................... 34 

GInventory Class: ................................................................................................................. 34 

GPlanner Class: .................................................................................................................... 35 

GWorld Class: ...................................................................................................................... 36 

WorldStates Class: ............................................................................................................... 38 

GAgent Class ........................................................................................................................ 39 



SubGoal class ................................................................................................................... 39 

GAgent ............................................................................................................................. 40 

7. Maslow's Hierarchy of Needs and GOAP............................................................................. 42 

8. Conclusion ........................................................................................................................... 43 

9. Bibliography & References .................................................................................................. 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of figures  
Figure 1: Maslow's Hierarchy of Needs ................................................................................... 14 

Figure 2 : Mixamo .................................................................................................................... 17 

Figure 3:  IPhone - LiDAR sensor .............................................................................................. 18 

Figure 4 : IPhone ...................................................................................................................... 18 

Figure 5: Scaniverse ................................................................................................................. 18 

Figure 6: Size Selection ............................................................................................................ 19 

Figure 7: Scanning ................................................................................................................... 19 

Figure 8: CNC scanning 1 ......................................................................................................... 20 

Figure 9: CNC scanning 2 ......................................................................................................... 20 

Figure 10: CNC scanning result ................................................................................................ 20 

Figure 11: Screen Caption during scanning ............................................................................. 21 

Figure 12: Human scanning final result ................................................................................... 21 

Figure 13: Exporting scans ....................................................................................................... 21 

Figure 14: Importing Scans to Blender .................................................................................... 22 

Figure 15: Processing in Blender ............................................................................................. 22 

Figure 16:Humanoid rigging .................................................................................................... 23 

Figure 17: Choosing animation from Mixamo ......................................................................... 23 

Figure 18: Pairing Rigs ............................................................................................................. 24 

Figure 19: Adding movement to our character ....................................................................... 24 

Figure 20: Final Scene .............................................................................................................. 24 

Figure 21 : CNC Machines ........................................................................................................ 25 

Figure 22: Foundry press ......................................................................................................... 25 

Figure 23:Clark ......................................................................................................................... 25 

Figure 24: Press ....................................................................................................................... 25 

Figure 25: Aluminum Storage .................................................................................................. 26 

Figure 26: Assembly department ............................................................................................ 26 

Figure 27: Welding Department .............................................................................................. 26 

Figure 28: Gas tanks ................................................................................................................ 25 

Figure 29: Materials for use .................................................................................................... 25 

Figure 30: Mechanical workshop ............................................................................................ 27 

Figure 31: Aluminum Storage2 ................................................................................................ 27 

Figure 32: Car .......................................................................................................................... 27 

Figure 33: Worker 1V2 ............................................................................................................ 27 

Figure 34:Worker 1 .................................................................................................................. 27 

Figure 36: Supervisor Script ..................................................................................................... 28 

Figure 37: Supervisor Scrips-Goals .......................................................................................... 29 

Figure 38: Supervisor manage orders ..................................................................................... 29 

Figure 39: Supervisor Checks Departments 1 ......................................................................... 29 

Figure 40: Supervisor Checks Departments 2 ......................................................................... 29 

Figure 41: Supervisor checks the stock of the materials (purple square) ............................... 30 

Figure 42: Supervisor visits the bathroom .............................................................................. 30 

Figure 43: Supervisor visiting the restaurant .......................................................................... 30 

Figure 44: Secretary approaching the customers in customers waiting area ......................... 31 

Figure 45: Secretary guides customer to the salesman .......................................................... 31 

Figure 46: Customer enters the factory .................................................................................. 32 

Figure 47: Client registration ................................................................................................... 32 

file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637591
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637592
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637593
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637594
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637595
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637596
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637597
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637598
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637599
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637600
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637601
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637602
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637604
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637607
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637608
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637609
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637610
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637611
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637612
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637613
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637614
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637615
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637616
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637617
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637618
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637619
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637620
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637621
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637623
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637624
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637626
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637627
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637628
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637629
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637630
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637632
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637633
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637634
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637635
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637636


Figure 48:Client waits for the secretary to guide him ............................................................. 32 

Figure 49: Client goes for consulting ....................................................................................... 32 

Figure 50: Follows her to the salesman ................................................................................... 32 

Figure 51: Client leaves ........................................................................................................... 32 

Figure 52: Supervisors pre conditions and after effects ......................................................... 33 

Figure 53: Cliens goals ............................................................................................................. 33 

Figure 54: GAction Class .......................................................................................................... 34 

Figure 55: GInventory Class ..................................................................................................... 34 

Figure 56: GPlanner Class 1 ..................................................................................................... 35 

Figure 57: GPlanner Class 2 ..................................................................................................... 36 

Figure 58: GWorld Class 1 ....................................................................................................... 36 

Figure 59: GWorld Class 2 ....................................................................................................... 37 

Figure 60: GWorld Class 3 ....................................................................................................... 38 

Figure 61: WorldStates Class ................................................................................................... 38 

Figure 62: GAgent Class - SGoals ............................................................................................. 39 

Figure 63: GAgent Class –Gagent 1 ......................................................................................... 40 

Figure 64: GAgent Class -GAgent 2 .......................................................................................... 41 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637637
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637638
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637639
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637640
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637641
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637642
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637643
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637644
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637645
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637647
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637648
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637649
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637650


1.Acknowledgments/ Ευχαριστίες 
 

 

Θα ήθελα να πω ένα μεγάλο ευχαριστώ στους γονείς μου για όλη την στήριξη που μου 

παρέχουν στις προσπάθειες μου όλα αυτά τα χρόνια ζωής μου καθώς και στους φίλους που 

με βοήθησαν σε όλη την διάρκεια των σπουδών μου. Επίσης, θα ήθελα να ευχαριστήσω 

όλους τους καθηγητές του μεταπτυχιακού προγράμματος του Πανεπιστημίου Πειραιά 

"Προηγμένα Συστήματα Πληροφορικής - Ανάπτυξη Λογισμικού και Τεχνητής Νοημοσύνης" 

για το όμορφο ταξίδι και τις γνώσεις που μου χάρισαν και ιδιαίτερα  τον Δρ. Θεμιστοκλή 

Παναγιωτόπουλο για την υποστήριξη και την καθοδήγηση που μου παρείχε κατά τη διάρκεια 

των σπουδών μου και την εκπόνηση της πτυχιακής μου.  

 

  



2. Abstract: 
 

This thesis presents the development of Optical simulation of procedure execution in an 

Aluminium Factory on an Intelligent Virtual Environment. It investigates the utilization of Goal-

Oriented Action Planning (GOAP) within the Unity game development engine for creating 

intelligent agent behaviours. Furthermore, it explores the integration of LiDAR scanning 

technology along with a 3D computer graphics software tool, Blender to enhance the 

development of agents and environmental elements. The factory setting presents unique 

challenges that can be addressed by employing GOAP, allowing virtual characters to exhibit 

realistic decision-making and efficient action execution. LiDAR scanning provides a means to 

capture real-world objects and environments, which can be refined using Blender to create 

textured 3D models. By combining these technologies, this thesis aims to offer valuable 

insights into the implementation of GOAP, as well as the integration of LiDAR scanning and 

Blender, to achieve a highly immersive factory environment in the context of game 

development. Finally, we discuss about the behaviour of the agents take when they also follow 

the theories of Maslow about the hierarchy of need’s. 

 

2. Περίληψη 
 

Η πτυχιακή εργασία εξετάζει τη χρήση του Σχεδιασμού Δράσης με Επίκεντρο τους Στόχους 

(Goal-Oriented Action Planning - GOAP) μέσα στο περιβάλλον ανάπτυξης παιχνιδιών Unity 

για τη δημιουργία έξυπνων συμπεριφορών πρακτόρων σε ένα σενάριο που αφορά την 

λειτουργία ενός εργοστασίου. Επιπλέον, γίνεται χρήση της τεχνολογίας σάρωσης LiDAR μαζί 

με ένα ανοιχτού κώδικα 3D computer graphics λογισμικό όπως είναι το Blender  για τη 

δημιουργία πρακτόρων και στοιχείων του περιβάλλοντος. Στο περιβάλλον ενός εργοστασίου 

μπορούμε να εφαρμόσουμε σε αρκετά σημεία ώστε να αντιμετωπίσουμε προκλήσεις τον 

Σχεδιασμό Δράσης με Επίκεντρο τους Στόχους (GOAP), επιτρέποντας στους εικονικούς 

χαρακτήρες να εκδηλώνουν ρεαλιστική λήψη αποφάσεων και αποτελεσματική εκτέλεση 

δράσεων. Η τεχνολογία σάρωσης LiDAR παρέχει τη δυνατότητα απαθανάτισης αντικειμένων 

και περιβάλλοντος από τον πραγματικό κόσμο, και τη δημιουργία 3D μοντέλων. Η πτυχιακή 

αυτή αποσκοπεί στην παρουσίαση και ανάλυση αυτών των τεχνολογιών, την ανάλυση των 

συμπερασμάτων από την εφαρμογή του GOAP και τις ανάγκες που οι πράκτορες 

προσπαθούν να καλύψουν, ενώ γίνεται προσπάθεια συσχέτισης αυτής της κάλυψης των 

αναγκών των πρακτόρων και της ιεραρχίας που έχουν αυτές με την πυραμίδα αναγκών του 

Maslow. 

 

 

 

 



3. Introduction 
 

In the realm of game development, the quest for creating intelligent and immersive virtual 

characters (Intelligent agents) has led to remarkable advancements in Artificial Intelligence 

(AI) systems. These systems, responsible for controlling characters within game worlds, play 

a pivotal role in shaping captivating gaming experiences. Intelligent agents are software 

systems that can perceive their environment, make decisions, and take actions to achieve 

goals. They mimic human decision-making processes. Artificial Intelligence (AI) is a broader 

field that includes intelligent agents and other techniques to create machines that perform 

tasks requiring human intelligence. AI aims to develop algorithms and systems for reasoning, 

learning, understanding language, perceiving the environment, and solving complex 

problems. Intelligent agents and AI are used in various applications, from autonomous 

vehicles to smart assistants and recommendation systems. AI improves efficiency, automates 

tasks, and augments human capabilities across industries like healthcare, finance, education, 

gaming, and manufacturing. 

As game complexity continues to increase, developers seek AI frameworks capable of 

managing intricate decision-making processes and dynamic behaviours. This thesis delves into 

one such framework, Goal-Oriented Action Planning (GOAP), and explores its application in 

Unity, a popular game development engine. Moreover, it investigates how LiDAR scanning 

technology and Blender program are utilized to generate agents and environmental elements, 

enhancing the overall realism and fidelity of the game world. Specifically, the scenario being 

considered is a factory setting, where GOAP is applied to simulate intelligent behaviours 

within this industrial environment. 

3.1 Background: 

At the first steps of game development, rule-based systems were commonly used to control 

character behaviours. These systems were using some predefined rules that determined how 

characters would react in specific conditions or events. It was a simple approach that had no 

ability to handle complex scenarios and adapt to changing game states. 

Finite state machines 

Finite state machines (FSMs) emerged as a more flexible alternative to rule-based systems 

and represented character's behaviour as a finite set of states that changing depending on 

predefined conditions. This allowed for more dynamic and responsive character behaviours 

but in high game complexity it was very challenging to manage and adjust the states and the 

conditions and often required manual adjustments, even for small changes. 

Script-driven behaviours 

Script-driven behaviours were another popular in which developers wrote custom scripts or 

behaviours to control character actions and reactions but very often a large amount of manual 

coding needed and there was small ability to adapt dynamically to different game situations. 

All these limitations were the reason for developing more advanced AI architectures.  

Behaviour Trees 

Behaviour Trees (BTs) emerged as a hierarchical approach that had good control and flexibility 

over character behaviours. BTs have a tree-like structure, where each node has a specific 



action or decision-making logic. This structure helped developers to define complex behaviour 

sequences and prioritize actions in a better way. BTs became widely adopted due to their 

scalability, reusability, and ease of customization. 

Goal-Oriented Action Planning 

Another important advancement in AI architectures for game development was the 

introduction of Goal-Oriented Action Planning (GOAP). GOAP focused in goal-driven decision-

making rather than predefined behaviours and enabled characters to plan and execute actions 

on their own, based on the goals they have. All character actions have some preconditions, 

after effects and costs and GOAP gives them the ability to select the actions with the most 

“efficient” way to accomplished their goals, with a more dynamic and adaptive behaviour. 

3.2 Research Objectives: 

This thesis aims to explore the application of GOAP in Unity, focusing on its ability to create 

dynamic and intelligent character behaviours within a factory setting. Additionally, it 

investigates how LiDAR scanning, with a 3D computer graphics software tool like Blender can 

be employed to generate lifelike agents and environmental elements, creating a realistic 

factory environment. Through in-depth analysis and practical implementation examples, this 

study intends to provide future students and anyone concerns with valuable insights into the 

implementation of G.O.A.P, as well as the integration of LiDAR scanning and Blender for 

enhanced realism in a factory scenario. 

 

3.3 History of the most important AI techniques: 

There are many AI techniques that have been used through the years in video games 

development to create dynamic and intelligent behaviours for non-player characters (NPCs). 

Some of these techniques are: 

3.3.1 Finite State Machines (FSMs): 
 Finite State Machines (FSMs) have been one of the earliest and simplest AI techniques 

used in video games. FSMs model NPCs as finite states, and transitions between these states 

are triggered by events or conditions. While FSMs are straightforward to implement, they lack 

flexibility in handling complex behaviours. 

3.3.2 Behaviour Trees (BTs): 
 This technique introduced in the mid-2000s as a more structured approach to AI in 

games and use hierarchical tree structures to represent decision-making processes. Each node 

in the tree defines an action or condition, making it easier to create complex behaviours by 

combining simpler nodes. 

3.3.3 Utility-Based AI: 
Utility-Based AI, or simply Utility AI, considers the utility or desirability of different 

actions and selects the one with the highest perceived utility. This approach. allows for more 

sophisticated decision-making, as it considers the trade-offs between different actions based 

on their expected outcomes. Utility AI gained popularity in the mid-2000s for creating NPCs 

with adaptive and context-aware behaviours. 



 

3.3.4 Hierarchical Task Networks (HTNs): 
Hierarchical Task Networks (HTNs) are used to model AI decision-making as a hierarchy of 

tasks and subtasks. HTNs provide a more modular and flexible approach to representing 

complex behaviours, as the hierarchy allows for reusable and interchangeable components. 

This technique became popular in the late 2000s for its ability to handle diverse NPC 

behaviours efficiently. 

3.3.5 Reinforcement Learning (RL): 
Reinforcement Learning is a machine learning technique where agents learn to make decisions 

by interacting with their environment and receiving feedback in the form of rewards or 

penalties. RL has been applied to video game AI to create adaptive and learning NPCs, capable 

of improving their behaviour through trial and error. RL-based AI has gained significant 

attention in recent years, especially in developing autonomous characters and NPCs. 

3.3.6 Machine Learning and Neural Networks: 
Machine learning techniques, including neural networks, have made significant steps in AI 

gaming. Neural networks are used for tasks like character animation, speech recognition, and 

image processing. Deep Learning approaches, such as Deep Q-Networks (DQNs) and 

Generative Adversarial Networks (GANs), have also been employed to create more realistic 

and intelligent NPCs. 

AI techniques in video game development are continuously evolve and adapt to the needs for 

more realistic gaming, from early FSMs to advanced machine learning approaches, each 

technique has contributed to the evolution of NPC behaviours, making virtual characters more 

realistic, adaptive, and engaging. GOAP has played a significant role in creating goal-oriented 

behaviours, a diverse set of AI methods has been employed to cater to the ever-increasing 

complexity and player expectations in modern video games. 

 

3.3.7 Goal-Oriented Action Planning (GOAP) 
Goal-Oriented Action Planning (GOAP) has a big history in the field of Artificial Intelligence in 

video game development. The roots of GOAP can be traced back to classical planning 

algorithms, which have been studied since the 1960s. These algorithms involve finding 

sequences of actions to achieve goals in a defined state space. In the late 1990s and early 

2000s, video game developers recognized the limitations of traditional AI methods, such as 

Finite State Machines (FSMs) and scripted behaviours, in creating dynamic and adaptive NPC 

behaviours for complex game environments.  

The breakthrough for GOAP came with the development of the video game "F.E.A.R." in 2005, 

where Jeff Orkin, the lead AI programmer, implemented a form of GOAP for the game's AI 

enemies. The use of GOAP in "F.E.A.R." showcased the potential of goal-driven planning in 

creating lifelike and challenging behaviours for NPCs. Following this success, GOAP gained 

popularity in the game development community and found applications in various game 

genres. Over the years, researchers and developers have contributed to the refinement and 

optimization of GOAP, proposing variations to address specific challenges and integrate it with 

other AI techniques. The integration of GOAP into major game engines has made it more 

accessible to developers, leading to its widespread adoption. Today, GOAP continues to be an 



active area of research, with ongoing efforts to improve its scalability, performance, and 

adaptability in creating dynamic and immersive NPC behaviours. The history of GOAP 

showcases its evolution from classical planning algorithms to becoming a prominent AI 

technique in video game development, contributing to more engaging and realistic gaming 

experiences. As game worlds continue to grow in complexity and player expectations increase, 

GOAP remains a valuable tool in shaping the future of AI-driven NPC behaviours and 

interactive virtual environments. 

By employing the concept of goals and actions, GOAP enables virtual characters to 

autonomously plan and execute actions to achieve desired objectives. Utilizing action 

preconditions, effects, and cost considerations, GOAP empowers characters to make 

intelligent decisions in response to complex game scenarios. 

 

3.4 Analysis of Goal-Oriented Action Planning (GOAP): 

3.4.1 Goal-Oriented Approach: 
1. GOAP focuses on achieving specific goals rather than prescribing rigid behaviours or actions 

for agents. 

 Agents define their goals and the conditions that must be satisfied to consider a goal 

achieved. 

 The agent's decision-making is driven by the prioritization and evaluation of goals, 

allowing for dynamic and adaptive behaviour. 

2. Action Planning: 

 GOAP employs a planning process to determine the sequence of actions that an agent 

should execute to achieve its goals. 

 Actions are defined as atomic units of behaviour that can be executed by the agent. 

 The planning algorithm generates a plan by considering the current state, the desired 

goals, and the available actions that can be performed. 

3. State Representation: 

 GOAP utilizes a state representation to capture the current state of the environment 

and the agent. 

 The state consists of a set of variables and their corresponding values that describe 

the attributes and conditions of the agent and the environment. 

 The agent reasons about the state to decide which actions are applicable and which 

goals are achievable. 

4. Action Preconditions and Effects: 

 Actions in GOAP have preconditions and effects associated with them. 

 Preconditions represent the conditions that must be met for an action to be executed. 

 Effects describe the changes in the state that occur after an action is performed 

successfully. 

5. Decision-Making and Plan Execution: 



 GOAP provides a decision-making process for agents to select the most appropriate 

actions to execute. 

 The agent evaluates the desirability of each action based on factors such as the goal 

priority, action costs, and potential state changes. 

 Once a plan is generated, the agent executes the actions sequentially, updating the 

state as it progresses. 

6. Flexibility and Adaptability: 

 GOAP offers flexibility in designing agent behaviours as it allows for easy modification 

and addition of new goals, actions, and conditions. 

 Agents can dynamically switch goals, adapt plans, or reconsider actions based on 

changes in the environment or new priorities. 

 

3.4.2 Limitations: 
 GOAP may face challenges in handling complex and dynamic environments with a 

large number of goals and actions. 

 The planning process in GOAP can be computationally expensive and may require 

optimization techniques for efficiency. 

GOAP provides a robust and efficient framework for creating intelligent agent behaviours 

that can adapt to changing circumstances and pursue specific goals. Its goal-oriented 

approach and action planning capabilities make it a popular choice in game development, 

robotics, and other domains requiring sophisticated agent decision-making and 

behaviour. 

 

4. Maslow's Hierarchy of Needs 
Maslow's Hierarchy of Needs is a psychological theory proposed by Abraham Maslow in 1943. 

It describes the hierarchical structure of human needs, representing the progression of 

motivation and fulfilment from basic physiological needs to higher-level psychological needs. 

The pyramid-shaped hierarchy consists of five levels or categories of needs, with each level 

building upon the previous one. Here's an overview of each level: 



    

Figure 1: Maslow's Hierarchy of Needs 

    

Physiological Needs: 

Physiological needs are the most fundamental and essential requirements for human survival. 

Some of these needs are food, water, shelter, sleep, and basic bodily functions and must be 

met first, as they are necessary for sustaining life. When they are not fulfilled, they become 

the primary focus of motivation and drive human behaviour. 

 

Safety Needs: 

Safety needs include physical and emotional security, stability, and protection from harm or 

danger. 

After physiological needs are satisfied in a good level, individuals will seek for safety and 

stability in their environment. This includes personal safety, financial security, a stable job, 

health, and a secure living environment. 

 

Social Needs: 

Social needs are the desire for social connection, companionship, affection, and a sense of 

belonging. 

Humans are social beings that have a natural need for relationships, friendships and 

acceptance within family, friendships, and communities. 

Esteem Needs:  

Esteem needs include the desire for self-esteem, self-respect, recognition, and a sense of 

accomplishment. 

Self-Actualization Needs: 

Self-actualization needs represent the highest level of human needs in Maslow's hierarchy. 

They involve the realization of one's full potential, personal growth, and self-fulfilment. Self-



actualization is about pursuing one's passions, engaging in creative activities, seeking personal 

development, and experiencing a sense of purpose and fulfilment in life. 

According to Maslow, individuals go through these levels of needs in a sequential manner. As 

lower-level needs are satisfied, higher-level needs become more prominent and the driving 

force behind human motivation. Maslow suggested that the accomplishments of these needs 

is necessary for someone to reach their highest potential and achieve personal well-being and 

satisfaction. 

It is important to note that while Maslow's Hierarchy of Needs provides a valuable framework 

for understanding human motivation, and the theory remains influential in various fields, 

including psychology, human resources, and self-development, providing insights into the 

factors that drive human behaviour and well-being. 

5. Creating the 3D Environment 

5.1 LiDAR - LiDAR Scanning: 

LiDAR stands for Light Detection and Ranging. It is a remote sensing method that uses 

light from a laser to collect measurements and measure distances. It is also known as 

laser scanning or 3D scanning and 3D models and maps of objects and environments 

can be created from this procedure.  

5.1.1 LiDAR System 
A complete LiDAR system is made up of several components. All of the components work 

together to generate, record and georeference the data. The main components are: 

 Lidar Source, Detector and Scanning Mechanism 

 Timing Electronics 

 Global Positioning System (GPS)  

 Inertia Measurement Unit (IMU)  

 Computer 

The way a LiDAR sensor works depending on the sensor used, is to measure distance by 

shooting a precise, high-powered laser at a target and closely measuring the pulse that bounce 

off objects and return to the LiDAR sensor. The sensor uses the time it takes for each pulse to 

return to calculate distance (time of flight). Each of these pulsed laser measurements, or 

returns, can be processed into a 3D visualization known as a ‘point cloud’. 

 5.1.2 LIDAR FORMULA 
The entire process of bouncing a beam of light or laser off an object, receiving the returned 

signal, and calculating its absolute position in space can be represented mathematically using 

this formula:  

 d = c * t / 2 

 

In the formula, each letter represents: 



d is the distance 

c is the speed of light 

t is the time of the flight 

LiDAR is actually quite similar to how radar and sonar measure distance, except instead of 

using radio or sound waves, LiDAR systems use light. By taking into account the direction the 

light was sent, the position of the LiDAR scanner, and the distance between two points, LiDAR 

payloads are able to derive the exact 3D positions of every point from which signals return, or 

bounce back.  

LiDAR traces its roots back to the early 1960s, when lasers were first invented and scanners 

using them were mounted to planes. Back then, the word LiDAR wasn’t even an acronym—it 

was just a quick combination of the words “light” and “radar.”  

At first, LiDAR was mainly used to help make maps of small rivers and streams. But in the 

1980s, with the emergence of GPS, LiDAR became an integral tool in collecting large-scale 

geospatial data and in creating topographical maps. 

LiDAR sensors of the 1980s were large, clunky, and fairly inaccurate. They were also almost 

exclusively mounted to large, piloted airplanes, and their operation was manual, expensive, 

and did not always provide a good return on investment. 

Today, LiDAR technology is cheaper, smaller, and more accessible than ever before, leading 

to its proliferation across dozens of different industries and fields. In fact, recent iPhones have 

LiDAR scanners that can create 3D models from up to 4.5 meters (15 feet) away.  

 

5.2 BLENDER 

Blender is a powerful and versatile 3D modelling and animation software that we used to fix 

any imperfections from LIDAR scanning and adding movement to agents in a virtual 

environment. 

Fixing Imperfections from LIDAR Scanning: 

• LIDAR scanning can produce highly accurate point cloud data, but it may also contain 

imperfections due to various factors, such as sensor noise, occlusions, or inaccuracies in the 

scanning process. Blender's advanced 3D modelling capabilities allow users to import LIDAR 

point cloud data and use various tools and filters to clean, process, and refine the scanned 

geometry. 

• Blender's point cloud editing tools, mesh reconstruction algorithms, and clean-up 

functions enable users to remove noise, fill gaps, and smoothen surfaces, resulting in a more 

accurate and visually appealing representation of the scanned environment. 

 

 

 



5.3 Mixamo 

Mixamo for Agent Animation: 

Mixamo is a web-based service provided by Adobe that offers a vast library of pre-made 3D 

characters and animations that allows users to easily animate virtual agents from a wide range 

of animations without the need for complex manual animation work. Once the desired 

animations are chosen, Mixamo automatically applies them to the 3D agents and provides a 

downloadable animation file, which can be easily imported back into Blender for further scene 

integration and refinement. Then can easily export 3D agents from Blender as FBX or other 

compatible formats. 

By using Blender's capabilities to address 

LIDAR scanning imperfections and integrating 

Mixamo's animation library, developers and 

3D artists can create more realistic and lifelike 

virtual environments with dynamic and 

expressive agents. Blender's open-source 

nature and active community support also 

make it a popular choice for game developers, 

researchers, and artists seeking to enhance 

the quality and realism of their projects. 

 In recent years, the integration of LiDAR 

scanning technology combined with 3D 

modelling and animation software like 

Blender has revolutionized the process of 

generating realistic agents, objects and environments for games and other purposes.  

5.4 Factory Scenario: 

The scenario considered in this thesis is a factory setting, where GOAP is applied to simulate 

intelligent behaviors within an industrial environment. The factory setting poses unique 

challenges, such as placing orders and managing them, production lines, coordinating tasks, 

common needs for the agents (eating, having a break, going to the bathroom) and responding 

to dynamic events. By applying GOAP in this context, someone can create virtual characters 

that exhibit realistic decision-making and efficient action execution, mirroring the 

complexities found in real-world factory scenarios. 

 

5.5 Project Application  

In order for the game to be created, the Unity Engine 2021.3.1f1 was used and the 

programming language for the scripts was C#. 

 

 

Figure 2 : Mixamo 



5.6 Methodology used 

This thesis started with learning how we can scan with a LiDAR sensor properly, what app to 

use, what is the ideal lighting, what surfaces are good for scanning, what angles to use, in what 

speed, etc.  

The LiDAR scanner we used in this thesis was from an iPhone 14 Pro Max 

 

 
 

 
 

 
 
 
 

 and after scanning a lot of different places, objects and persons in the aluminium factory of 

Lamda Leventis ABEE that is placed in Kalyvia Attica we managed to have some results. 

 

We used Scaniverse application, a 

free application from App Store for 

the creation of 3D models through 

LiDAR scanning. 

 
 
 
 
 
 
 

Figure 4 : IPhone  

Figure 3:  IPhone - LiDAR sensor 

Figure 5: Scaniverse 



 
 
 
 

Depending on the size of the object or the area 

we wanted to scan we adjust the mode to small – 

medium or large. 

 
 
 
 
 

 
 
When scanning an object, we have to 

slowly move around the object we 

want to scan targeting with the lens of 

the LiDAR sensor and try not to leave 

many gaps. Most of the apps show in 

the screen if there are any areas that 

need filling so you scan them more 

carefully. Depending of the size of the 

object we do this procedure a few 

times to have a better result and until 

we have no gaps in our scans. 

 
 

 
Another thing that someone should take into account during this kind of scanning is lighting, 

it shouldn’t be very bright or very dark and the surfaces shouldn’t be very shiny in order not 

to deflect light. If there is any shiny surfaces one way to solve this problem is to apply chalk 

on them and fix it later on Blender. Also the person who does this process needs to have a 

steady hand and move smoothly through all the sides and the angles of the object or the area 

he scans. Being careful in this procedure can reduce the time we will spend later to fix any bad 

or missing surfaces. 

Figure 6: Size Selection 

Figure 7: Scanning 



At the pictures that follow we can see the screen of the phone during the scan of a CNC 

machine: 

 

 

We can see the red and white area that inform us that the specific areas have not be scanned 

or need to be scanned more carefully in order to have a better result in the specific area. After 

we scan our object in every side and at the top so we don’t have any blanks (red and white 

areas) in our object we can stop scanning.  

 

 

 

 

And here we can 

see the final 

result of the 

previous scan: 

 

 

 
 
 
 

 

 

Figure 8: CNC scanning 1 Figure 9: CNC scanning 2 

Figure 10: CNC scanning result 



And the same from one of our characters: 

 

 
  

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 

And the final result:  
 

 

 

 
 
After finishing scanning we came up with a library of scans that we transferred from our phone 

to a pc for further processing where it was needed. We export the scans from the app as FBX 

file’s witch is friendlier to BLENDER and we can manage them better.  

The steps for this procedure was: 

 
      Step1 (SHARE) 

 

 
Step2 (EXPORT MODEL) 

 

 
           Step3 (FBX) 
 
 

                      

Figure 11: Screen Caption during scanning 

             

Figure 12: Human scanning final result 

Figure 13: Exporting scans 



 

And then we can import the scans to blender from where we save them simply by following 

the procedure that is shown below: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After importing our scans there are plenty of techniques that we can apply to fix any 
imperfections. Most of the times we used Clean Up tools (Decimate geometry, Fill holes, 
Make Planar Faces, Degenerate Dissolve 
(http://docs.blender.org/manual/en/2.81/modeling/meshes/editing/cleanup.html )), 

Shrinkwrap Modifier (https://www.youtube.com/watch?v=8vLX8e1zbY8), 

(https://www.youtube.com/shorts/gh7pN1OjYzQ ) and Sculpt mode features.  
In order to be able to use Sculpt 
mode in a scanned model one of 
the best options is to select our 
model in Edit mode and click 
Mesh at the Bar at the top, then 
Clean Up and Merge by distance. 
 
 In this way all the vertices of our 
mesh will stay connected when 
we use our brushes in Sculpt 
mode. 
 
 
 
 
 
 

Another choice is to use instant – meshes program and then import the fixed mesh in to 
blender as an FBX file, sometimes might be easier this way. 
(https://github.com/wjakob/instant-meshes ) 
But anyone can choose what feel is best for him. 

 

                
                       Figure 14: Importing Scans to Blender 

                       File      Import       FBX 

Figure 15: Processing in Blender 

http://docs.blender.org/manual/en/2.81/modeling/meshes/editing/cleanup.html
https://www.youtube.com/watch?v=8vLX8e1zbY8
https://www.youtube.com/shorts/gh7pN1OjYzQ
https://github.com/wjakob/instant-meshes


When we are satisfied with the result we export the scan as an FBX file so we can import it in 
to unity to make our scene.  
In case of a Human scan we also perform the same procedure but now we have to apply 
character 3D Rigging to our humanoid and also give him some movement. 
3D Rigging is the process of creating a skeleton for a 3D model so it can move. Most 
commonly, characters are rigged before they are animated because if a character model 
doesn't have a rig it can't be deformed and moved around. 
 
 
In Blender we can apply the Humanoid rigging option and then adjust the rigs to our character 
properly. 
 

 
Figure 16:Humanoid rigging 

 
Then we can download from Mixamo the animation we desire and attach it to our character. 
 

 
Figure 17: Choosing animation from Mixam 



 
 
 
After downloading the animation, we 
desire we pair the rigs of the animation 
figure to the ones we created for our 
character or we can do it later in Unity. 
 
 
 
 
 
 
 
 

 
 
 
 
After making some adjustments 
to the bones of the animation 
and the ones of our character we 
can pair them and the desired 
animation is now set to him. 
 
 
 
 
 
When everything is ready we start a new project in Unity and make a Library of our scans. 
We also make a typical scene to add them. 
In this thesis we ended up with a scene looking like the picture below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18: Pairing Rigs 

Figure 19: Adding movement to our character 

Figure 20: Final Scene 



The scans that added in the final scene are: 

         
 

Figure 26 : CNC Machines Figure 25: Foundry press 

Figure 23: Press Figure 24:Clark 

Figure 21: Materials for use Figure 22: Gas tanks 



 

 
 

 
 
 
 
 
 
 

Figure 28: Welding Department 
Figure 27: Aluminum Storage 

Figure 29: Assembly department 



 

 
    

 
       
 
 
    
 
 
 
 
 
 
  
  

Figure 30: Mechanical workshop 

Figure 31: Aluminum Storage2 
Figure 32: Car 

Figure 35:Worker 1 
Figure 33: Worker 1V2 

Figure 34:: Worker 2 



6. Factory scenario - Code 
 
The scenario of this thesis is to try to mimic real life events that happen a random day in a 
factory. This involves in one side the customers that enter the facilities, register at the 
reception desk, waiting at the waiting area, placing their orders, seeking for an advice etc. And 
from the other side there is the stuff that works there, the secretaries, the advisors, the 
designers, the supervisors and different type of workers.  
Every type of character that is in the scene has some beliefs, some goals and some needs and 
what we did was to try to mimic the way someone prioritizes them in the simplest way.  
 
As an example we can use the Supervisor (one of our main characters). 
He has some goals in this scenario. 
First of all, he has to arrange the orders and then to supervise the workers, the machines, to 
check the stock of the materials and the areas.  
But when a need that is bigger than his goals, let’s say he has to use the toilet, or he is very 
tired and need to have a rest and something to eat then he stops following his goals and does 
what is more important and crucial for him.  
 

 
Figure 36: Supervisor Script 

 
In the script above we can see the Supervisors script. One of the scripts that are attached to 
the character “Supervisor”. In this script we can set the needs of the character and its 
importance to him.  
Also we can program some needs to appear randomly, (Invoke method), between a specific 
period of time.  



Each character has a script like this in which 
we organize and prioritize his needs 
(beliefs) and how his actions will affect the 
world (Worldstates) and the other 
characters. 
In this scenario the physiological needs we 
attached to the characters except of their 
main goals are simple needs like going to 
the bathroom, take a break when tired or go 
to the restaurant to eat something, and we 
can add whatever we want, anytime and 
give it the priority we think is the best 
between others and all of these by using 
G.O.A.P. 
 
 
 

So, the Supervisor (Green hat) wants to: 
 

 
 
 
 manage his orders at his office: 
 
 
 
 
 
 
 
 

 
 Check the different Departments of the factory: 

(Green Squares) 
 

 

Figure 37: Supervisor Scrips-Goals 

Figure 38: Supervisor manage orders 

Figure 39: Supervisor Checks Departments 1 Figure 40: Supervisor Checks Departments 2 



 
 Check the stock of the materials: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
But when he needs to visit the toilet or the restaurant he will give priority to this needs 
and go.  

 
 Supervisor visiting the toilet: 

 
Figure 42: Supervisor visits the bathroom 

 Supervisor visiting the restaurant: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41: Supervisor checks the stock of the materials (purple square) 

Figure 43: Supervisor visiting the restaurant 



 
Every time an agent uses one of the resources, or when a resource or another NPC is added, 
the rest of the world gets the information and acts accordingly. 
 
The secretary for example knows when a client will enter the facilities and go to the waiting 
room, and her goal is to take him and when a salesman is available to guide him there and 
stay with him to help with the order. 
 
 

 
 
In the picture above we can see the 
blonde secretary approaching the 
customers (black suit figure) waiting 
area. 
 
 
 
 
 
 
 
 
 

 
 
 
 
And guide him to one of 
the free salesmen to 
place an order. 
After finishing this task, 
she will keep doing her 
job until she feels the 
need to take a rest or visit 
the bathroom. 
 
 
 

 
 
 

The customer has a main goal to place an order. The steps to succeed his goal are: 

 Go to the factory 

 Get registered  

 Go to the Consultants 

 Go to the customers waiting room 

 Wait for the secretary to guide him 

 Follow the secretary to the salesman 

 Leave the facilities 
 
 

Figure 44: Secretary approaching the customers in customers 
waiting area 

Figure 45: Secretary guides customer to the salesman 



We can see some screenshots of his actions: 
 

      
 

 
 
 

 

Figure 46: Customer enters the factory Figure 47: Client registration 

Figure 49: Client goes for consulting Figure 48:Client waits for the secretary to guide him 

Figure 50: Follows her to the salesman Figure 51: Client leaves 



    
 
Every action of every agent have some preconditions that need to be met and some after 
effects that can affect the word and other agents and we can set them in a way that would 
feel right. This way we can give a more realistic sense in the scene. 
 
At the picture below we can see the preconditions and after effects of the: 

Supervisor: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Working this way, we can manage every action of every agent and make him act 
autonomously even in more complicated scenarios. The only difficulty is to set his goals 
carefully. 
In the picture below we can see the same thing for the client: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

His final Goal is to place his order. In order 
to do that he has to arrive to the Factory, 
go to the reception to get register, go to the 
advisors if he wants some advice, then in 
waiting room, wait for the secretary to 
guide him to a free salesman, place his 
order and return to his home. This is what 
we see in this picture with every act having 
its own preconditions and after effects and 
in the end of all this procedures to 
accomplish his Goal. 
 
 

In our scenario we assume that there are 
more than one supervisors, so in order for 
one of them to go to an office to view and 
manage the orders we set a precondition 
that it has to be a Free office, (the 
information to the rest of the world comes 
from GWorld script as we will see later), and 
we set the duration to two (2) seconds. The 
after effect of this act is that he managed 
the orders. 
The same we did for his need to go to the 
toilet, only this time we set two 
preconditions, the first is to be a free toilet 
(the information to the rest of the world 
comes from GWorld script as we will see 
later) and the second is that he feels he has 
to go. The aftereffects is that he will feel 
relief after this action. 
 
 Figure 52: Supervisors pre conditions and after 

effects 

Figure 53: Cliens goals 



 
To understand better how, we accomplished that, we have to get into the code behind all this. 
In this project the main classes are the following: 

GAction Class: 

 

 
 

-Represents actions that game 
agents can perform. 
 
-Stores action details like name, 
cost, target, duration, 
preconditions, and effects. 
 
-Allows checking action 
achievability and pre/post action 
execution. 

 
 
 

 
 
 
 

GInventory Class: 

 
 
 
 
-Manages an inventory of game 
objects (items). 
 
-Provides methods to add, find, 
and remove items by their tags. 

 
 
 
 
 
 
 
 
 
 

Figure 54: GAction Class 

Figure 55: GInventory Class 



GPlanner Class: 

 
 
 
 
-Implements a goal-
based planning 
system for generating 
action plans. 
 
-Plans actions to 
achieve specific goals 
based on the current 
world state. 
 
-Utilizes a search 
graph and recursive 
methods for planning. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 56: GPlanner Class 1 



 
Figure 57: GPlanner Class 2 

 
 

GWorld Class: 

 
 
-Manages global game 
world state and 
resource availability. 
 
-Uses queues for clients, 
salesmen office, spots, 
checks. 
 
-Initializes queues based 
on tags in the scene. 
 
-Provides methods for 
adding and removing 
entities. 
 
-Follows the singleton 
pattern. 

 
 
 
 
 
 
 

Figure 58: GWorld Class 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 59: GWorld Class 2 



 

WorldStates Class: 

 
 
 
 
 
-Manages a collection of states 
representing the global world 
state. 
 
-Uses a dictionary to associate 
state keys with values. 
 
-Provides methods for checking, 
adding, modifying, removing, and 
retrieving states. 
 
-It allows for flexible 
representation and manipulation 
of the game world's state, which 
can influence agent decisions. 

 
 
 
 
 
 
 
 
 
 

Figure 60: GWorld Class 3 

Figure 61: WorldStates Class 



GAgent Class 

Consists of two classes: SubGoal and GAgent. 

 

 

SubGoal class 
 

This class represents a sub-goal within the agent's behavior. It is used to specify what the 
agent should aim to achieve in its environment. Here are the key elements of the SubGoal 
class: 
 

 sgoals: This is a dictionary that maps a goal name (a string) to an integer value that 
represents the priority of the goal. 

remove: A Boolean value that indicates whether the sub-goal should be removed once it's 
achieved. 

 The constructor SubGoal (string s, int i, bool r) initializes a sub-goal with the specified 
goal name s, priority i, and removal status r. It creates a new dictionary entry with the 
goal name and priority. 

 

 

 
Figure 62: GAgent Class - SGoals 

 
 
 
 
 
 
 



 

GAgent 
GAgent Class: 

The GAgent class represents an agent and manages his actions, goals, inventory, beliefs, and 
planning. If we look at the key components of this class: 
 

 actions: A list that holds instances of GAction (actions) that the agent can perform. 

 goals: A dictionary that associates sub-goals (instances of SubGoal) with their 
priorities (integers). 

 inventory: An instance of the GInventory class, which likely manages the agent's 
inventory. 

 beliefs: An instance of the WorldStates class, which may represent the agent's beliefs 
about the state of the world. 

 
 

 
Figure 63: GAgent Class –Gagent 1 

   



 
Figure 64: GAgent Class -GAgent 2 

 
 
 
 
These are the main scripts that form our G.O.A.P. model and create a framework for modeling 
and managing actions, inventories, planning, and world states within a Unity-based game or 
simulation. This system facilitates AI-driven decision-making, resource management, and goal 
achievement by game agents or characters. It provides a foundation for implementing 
intelligent behavior and interactions in the game world. 
 
 
 
 
 
 
 



7. Maslow's Hierarchy of Needs and GOAP  
 
Maslow's Hierarchy of Needs and Goal-Oriented Action Planning (GOAP) share a significant 
connection, as they both revolve around human behavior and motivation. Maslow's theory 
proposes a hierarchical structure of human needs, while GOAP provides a framework for 
intelligent decision-making and goal achievement in virtual agents within video games and 
simulations. By analyzing how GOAP-driven agents in video games fulfill these needs, we can 
gain valuable insights into how virtual environments can cater to fundamental human 
requirements and enhance player engagement and immersion. 
Maslow's Hierarchy of Needs encompasses five levels: physiological, safety, love and 
belonging, esteem, and self-actualization.  
GOAP-driven agents in video games can address each of these levels or similar in various ways, 
contributing to a more compelling and meaningful gaming experience for players. 
 
At the base of the pyramid are physiological needs, such as food, water, and shelter. In virtual 
environments, GOAP can be utilized to program agents to prioritize their actions and do thinks 
that are more crucial for them, like self-preservation, seek resources, avoid hazards, providing 
a sense of realism and immersion for players. 
Ensuring that virtual agents address their physiological needs enhances the player's 
connection to the game world and adds depth to the overall experience. 
 
Moving up the hierarchy, safety needs encompass security and stability. GOAP-driven agents 
can exhibit behaviors that promote a sense of safety, both for themselves and the player 
adhering to safety protocols, avoiding danger, and cooperating with other agents, virtual 
characters giving a sense of security within the virtual environment, contributing to the 
player's emotional investment in the game. 
 
The love and belonging needs are related to social interactions and the desire to be part of a 
community. 
GOAP-driven agents can be programmed to display cooperative behaviors, help others, and 
engage in social interactions with each other and the player. This can add a sense of 
companionship and belonging within the virtual world, heightening the player's sense of 
connection and emotional involvement. 
 
Esteem needs involve accomplishment, recognition, and self-worth.  
GOAP-driven agents can exhibit competence and goal achievement, providing players with a 
sense of accomplishment and recognition for their actions. NPCs that react dynamically to 
player actions and achieve objectives reinforce the player's importance and contribution to 
the virtual world. 
 
At the top of the pyramid are self-actualization needs, encompassing personal growth and 
fulfillment. 
GOAP can contribute to self-actualization by providing NPCs with diverse and meaningful 

goals that align with their unique traits and attributes. Intelligent virtual agents that 

exhibit autonomy, creativity, and adaptability in their actions create a rich and 
immersive virtual environment, encouraging players to explore and engage 
more deeply with the game world. 
In conclusion, the relative connection between Maslow's Hierarchy of Needs 
and GOAP lies in their shared focus on human behavior, motivation, and 
fulfillment. By incorporating GOAP-driven agents that address physiological, 
safety, social, esteem, and self-actualization needs, video game developers can 



create more immersive and emotionally resonant gaming experiences. Understanding this 
connection between AI-driven behaviors and human needs fulfillment can lead to the design 
of games that offer players a deeper sense of engagement, emotional investment, and 
enjoyment. 
 
In conclusion, this thesis has delved into the exploration of Goal-Oriented Action Planning 
(GOAP) within the Unity game engine, coupled with the integration of LiDAR scanning and 
Blender, to create an immersive factory scenario. The research has demonstrated how the 
adoption of GOAP-driven agents in the virtual environment effectively addresses fundamental 
human needs, as proposed by Maslow's Hierarchy of Needs, bridging the gap between AI-
driven behaviors and the fulfillment of human motivations. 
Maslow's Hierarchy of Needs provides a framework for understanding human motivations, 
encompassing physiological, safety, love and belonging, esteem, and self-actualization needs.  
Through the lens of GOAP, virtual agents in the factory scenario have been equipped to fulfill 
some needs in a nuanced manner in a way that it can create a more emotionally resonant and 
engaging gaming experience for players. 
 
At the base of the pyramid, GOAP-driven agents prioritize self-preservation and safety, 
seeking resources and avoiding hazards, thereby addressing physiological needs and 
enhancing player immersion. Moving up, safety needs are met through agent behaviors that 
promote a sense of security and cooperation, both within the virtual environment and for the 
player. 
Such agents create a rich and immersive virtual environment, encouraging players to explore 
and engage more deeply with the game world, fulfilling their desire for personal growth and 
fulfillment. 
Moreover, the integration of LiDAR scanning and Blender has significantly enhanced the 
fidelity of the factory scenario, providing a visually authentic and dynamic virtual 
environment. LiDAR scanning accurately represents the physical space, while Blender's 3D 
modeling capabilities refine and enhance the scanned data. 

 

8. Conclusion 
The findings of this research contribute to AI-driven virtual environments. While the thesis 
demonstrates the potential of GOAP, LiDAR scanning, and Blender integration, it also 
acknowledges the challenges and limitations encountered during the development of the 
simulation. Future work could explore the integration of additional AI techniques, such as 
emotion modeling or reinforcement learning, to further enhance the depth and complexity of 
NPC behaviors. 
 
In conclusion, this exploration of GOAP, LiDAR scanning, and Blender integration showcases 
the potential for creating engaging and meaningful virtual environments.  

By understanding the connection between intelligent agents and fundamental 
human requirements, we pave the way for more emotionally resonant and 
immersive experiences in virtual worlds, ultimately contributing to the 
advancement of AI-driven simulations and game development. As the 
boundaries between virtual and real-world experiences continue to blur, the 
significance of considering human needs in AI-driven applications becomes 
increasingly vital for shaping more compassionate and enriching interactions 
in the digital realm. 
 
 



9. Bibliography & References  
 

1. Structure of Intelligent Agents and Environments, Alan Bundy (2003) 
(https://www.inf.ed.ac.uk/teaching/courses/ai2/module4/small_slides/small-
agents.pdf) 
2. AI for Game Developers, David M. Bourg, Glenn Seeman, 2004 
(Chapter 1, Chapter 7, Chapter 9, Chapter 11, Chapter 14 ) 
(https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Progr
amming/AI%20for%20Game%20Developers%20-
%20%20David%20M.%20Bourg%2C%20Glenn%20Seeman.pdf) 
3. Artificial Intelligence For Games, 2nd Edition , Ian Millington ,2009 
(https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Progr
amming/Artificial%20Intelligence%20for%20Games.pdf) 
4. Behavior Trees in Robotics and AI: An Introduction, Michele Colledanchise, 

Petter Ögren, 2017-08-31  
(https://arxiv.org/pdf/1709.00084.pdf) 
(https://www.sciencedirect.com/science/article/pii/S0921889022000513)  
5. Finite State Machines , Karleigh Moore and Dishant Gupta 
(https://brilliant.org/wiki/finite-state-machines/) 
6. Goal-Oriented Action Planning: Ten Years Old and No Fear! , Peter Higley, 

2015 
(https://ubm-t
 wvideo01.s3.amazonaws.com/o1/vault/gdc2015/presentations/Higley_Peter_
Goal-Oriented_Action_Planning.pdf ) 
7. GOAP Analysis  
(https://medium.com/@stannotes/design-unpredictable-ai-in-games-part-1-
architecture-3752a618db6)  
(https://alumni.media.mit.edu/~jorkin/goap.html)  
8. Maslow's Hierarchy of Needs 
(https://canadacollege.edu/dreamers/docs/Maslows-Hierarchy-of-Needs.pdf) 
9. MOTIVATION AND PERSONALITY, ABRAHAM H. MASLOW, 1954 
(https://www.holybooks.com/wp-content/uploads/Motivation-and-Personality-
Maslow.pdf) 
10. LIDAR 
(https://www.mappedin.com/blog/product/indoor-mapping/what-is-lidar-scanning/) 
(https://support.apple.com/kb/SP876?locale=en_US) 
11. SCANIVERSE 
(https://apps.apple.com/us/app/scaniverse-3d-scanner/id1541433223) 
(https://scaniverse.com/) 
(https://opentopography.org/blog/iphone-lidar-applications-geosciences) 
12. UNITY 
(https://unity.com/) 
(https://learn.unity.com/tutorial/an-introduction-to-goap#) 
(https://assetstore.unity.com/packages/tools/behavior-ai/goal-oriented-action-
planning-artificial-intelligence-72912) 
(https://assetstore.unity.com/) 
13. MIXAMO 
(https://www.mixamo.com/#/), 
(https://www.mixamo.com/#/?page=1&type=Character) , 
(https://www.mixamo.com/#/?page=1&query=walk&type=Motion%2CMotionPack)  

14. Class Presentations by my professor Themistocles Panayiotopoulos 

15. A survey of Behaviour Trees in robotics and AI, Elsevier, Matteo Iovino, 8/22 

https://www.inf.ed.ac.uk/teaching/courses/ai2/module4/small_slides/small-agents.pdf
https://www.inf.ed.ac.uk/teaching/courses/ai2/module4/small_slides/small-agents.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/AI%20for%20Game%20Developers%20-%20%20David%20M.%20Bourg%2C%20Glenn%20Seeman.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/AI%20for%20Game%20Developers%20-%20%20David%20M.%20Bourg%2C%20Glenn%20Seeman.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/AI%20for%20Game%20Developers%20-%20%20David%20M.%20Bourg%2C%20Glenn%20Seeman.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/Artificial%20Intelligence%20for%20Games.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/Artificial%20Intelligence%20for%20Games.pdf
https://arxiv.org/pdf/1709.00084.pdf
https://www.sciencedirect.com/science/article/pii/S0921889022000513
https://brilliant.org/wiki/finite-state-machines/
https://medium.com/@stannotes/design-unpredictable-ai-in-games-part-1-architecture-3752a618db6
https://medium.com/@stannotes/design-unpredictable-ai-in-games-part-1-architecture-3752a618db6
https://alumni.media.mit.edu/~jorkin/goap.html
https://canadacollege.edu/dreamers/docs/Maslows-Hierarchy-of-Needs.pdf
https://www.holybooks.com/wp-content/uploads/Motivation-and-Personality-Maslow.pdf
https://www.holybooks.com/wp-content/uploads/Motivation-and-Personality-Maslow.pdf
https://www.mappedin.com/blog/product/indoor-mapping/what-is-lidar-scanning/
https://support.apple.com/kb/SP876?locale=en_US
https://apps.apple.com/us/app/scaniverse-3d-scanner/id1541433223
https://scaniverse.com/
https://opentopography.org/blog/iphone-lidar-applications-geosciences
https://unity.com/
https://learn.unity.com/tutorial/an-introduction-to-goap
https://assetstore.unity.com/packages/tools/behavior-ai/goal-oriented-action-planning-artificial-intelligence-72912
https://assetstore.unity.com/packages/tools/behavior-ai/goal-oriented-action-planning-artificial-intelligence-72912
https://assetstore.unity.com/
https://www.mixamo.com/#/
https://www.mixamo.com/#/?page=1&type=Character
https://www.mixamo.com/#/?page=1&query=walk&type=Motion%2CMotionPack

