UNIVERSITY OF PIRAEUS - DEPARTMENT OF INFORMATICS
NANENIZTHMIO NEIPAIQY — TMHMA MNMAHPO®OPIKHZ

MSc «Advanced Informatics and Computing Systems -
Software Development and Artificial Intelligence»

MMZ «Mponyuéva ZuoTthuara NMANPo@opIkng - AvaTrtuén AoyiouIKoUu Kai

TexvnTig Nonuoouvng»

MSc Thesis

MeTatrTuyxiokn Aiatpifn

Thesis Title:

TitAog AlaTpIBAG:

Optical simulation of procedure execution in an
Aluminum Factory on an intelligent Virtual
Environment.

OTTIK) TTPpOCOMOIWON €KTEAEONG OIABIKACIWY O EPYOOTACIO
aAoupiviou e éva Euguég Eikovikd MepiBdAlov (IVA).

Student’s name-surname:

OvopaTeTTwvupo @oItnTA:

Triantafyllos Galanis

Tpiavta@uAAlog Mahdvng

Father’s name: Evangelos
MaTtpwvupo: Eudyyehog
Student’s ID No:

MIZr/20007

Ap1Bu6S MnTpwou:

Supervisor:

EmBAéTTWY:

Themistoklis Panagiotopoulos, Professor

O¢epioToKANG MavayiwTdtroulog, Kabnyntrig

October 2023/ Oktwpplog 2023

3-Member Examination Committee

TpiueAig E¢eTaoTikA ETTpoT™N)

Themistoklis Christos Douligeris Aggelos Pikrakis
Panagiotopoulos Professor Assistant Professor
Professor XpAoTog AouAnyépng Ayyehog Mikpdkng
OepIoTOKARS MavayiwTETTOUAOS Kabnyntig Emikoupog Kabnyntng

KaBnynmg

Table of Contents /[1epiexousva

1.Acknowledgments/ EUXOIPLOTIEG ...uiivieiieerieeiriecieeeteete e e e steesteesteestesbeebe e baesbaessaesaseenreenseans 7
2. ADSEIACE: ittt et et b e b e she e st s ab e e e b e nrees 8
2 TTEPIANWIN ettt et ettt e et e e et e e e be e eett e e e be e e tbeesabe e e baeeeabeeeabaeeatbeeebaeeenreenares 8
B INEFOTUCTION ..ttt sttt ettt e b e s b e sae e et e et e e nbe e saeesaeesane 9
2 7= Yol 140 T T PPN 9
3.2 ReSEAICh ObDJECHIVES: coeviiie ittt e e e rae e e s nraeee s 10
3.3 History of the most important Al techniqUES:coovciiiiiiiiiee e 10
3.3.1 Finite State Machines (FSIMIS):ueii ettt e e e e e e 10
3.3.2 BEhaVIiOUr TrEES (BTS) i uueieiieeiiieiirieesieeeitteesteeeteeesteesteeesareesasaeensseessseessaeesaseesnses 10
3.3.3 ULility-Based Alceiieiie ettt bee e e arees 10
3.3.4 Hierarchical Task Networks (HTNS):cecciieiieeeiie et se e e 11
3.3.5 Reinforcement Learning (RL):...ccuueeiiiiieei ettt e e 11
3.3.6 Machine Learning and Neural NetWorks:.......ccccoeeiieiieiiiciiee e 11
3.3.7 Goal-Oriented Action Planning (GOAP)ccueeeceeeciee ettt 11

3.4 Analysis of Goal-Oriented Action Planning (GOAP):........ceevir e 12
3.4.1 Goal-Oriented APProach:ciiiciiiieiciiee et e e 12
3.4.2 LiMItatioNS: ..eeeieieeee e 13

4. Maslow's Hierarchy of NEEASccocuiiee ittt et e e e bee e e e e reeeeeeaes 13
5. Creating the 3D ENVIFONMENTcciii ittt et e e sree e e e srae e e e sabae e e eeres 15
5.1 LiDAR - LIDAR SCANNING: cieiiiiiiiiiiiiiieeeeieniiiiieeeeeessssiitreeeeesssssssssesaeesesssnsssssesseeessssnssnnns 15
o0t 0 IR Y R 3 1 =T o o PP 15
5.1.2 LIDAR FORMULA ...ttt ettt ettt e e e e e ettt e e e e s e s nneneeeeeeeeeas 15

5.2 BLENDER ...ttt ettt ettt ettt e e e e e et e e e e e e e anberee e e e e s e e nnbeneeeeeeeeaannne 16
5.3 IMIXAMO .ciiiiiiiiiiiiiiiii it 17
SR - To o] 4 VAN Yol =T o - [o To H PP PP PPPPPPPPPPPPPPPPPPPRE 17
5.5 Project APPliCationeeeiie it e e a e e e e e e e nnnes 17
5.6 MethodolOgY USEA.......uuiiiiieiieeciieeee ettt e e e e et re e e e e s e s nnbeeeeeaeeesenannes 18

Lo o (o1 (o VYol o F- [To T 6 Yo I SRR 28
GACTION ClaSS: .uiieiiiriieeieeieet ettt ettt s bt sttt et e s b e s bt e sate st e sbeebe e beesbeesaeesnneenreens 34
(€] 101V =T) o] YA O - 3 SR 34
LCT o YT =T ol O = T PP PSP PPRTOPRt 35
GWOIIA ClaSS: ..eeiiiieiiie ettt ettt e sa e s bt e e s e e sabee e saseesreesneeesareeenneeenns 36
WOTIASEAteS Class:....couiiiieierieertere ettt sttt et reennees 38

(G Y=4=T o | PP PP PPPPPPPPPPPPPPPPPPRE 40
7. Maslow's Hierarchy of Needs and GOAP...........ooooiiii ettt e e e 42
8. CONCIUSION «.etiiiiee ettt ettt ste e s bt e e s be e e s ate e sabeesbeeesabeessbbeesateeenseeesnseesnseean 43

9. Bibliography & REFEIENCESvviiiiiiiei et ree e s sbee e e s ares 44

List of figures

Figure 1: Maslow's Hierarchy of NEEdScoccuieiiiciiiiiiiiiie et 14
FISUIE 2 5 IMIIX@IMI0 1 s s s 17
Figure 3: IPhONE - LIDAR SENSOI .cccuiiiiieiiieeeecitieeeeciteeessiteeeessateeeessnteeeessaseeessnssaeesssnseeessnssseeean 18
= U N B 1 o Vo o | RS 18
FIgUIE 5 S CaMIV OIS e s nan 18
T U Y Y =1 =Y o d o PSR 19
T (WL I Y or= o 1 - 19
Figure 8: CNC SCANNING L. ..neeiiiiiiiiie ettt ettt e e sttt e e e e e s s ebtree e e e s e sssanrbraeeaeessannnns 20
FIGUre 9: CNC SCANNINEG 2 ..neeeiiiiitiiee ettt e e ettt e e e e s ettt e e e e e s sabebaeeeeeeessnnsebaeeaeessanannns 20
Figure 10: CNC SCANNING FESUIT...cccicuiiieeeiiieececiiee et ectee e et e e et e e e et re e e esnaaeeeenasaeeeesananeaan 20
Figure 11: Screen Caption during SCANNINGceeeciiieeiiiiieeecieee et e e ecrre e e s srae e e e srreeeesaneees 21
Figure 12: Human scanning final reSUlt.........ccuverieciiii e 21
FISUre 13: EXPOITING SCANS....uueiiiiiiitieeiiiiitee et e s ettt e e e e e s ssitreeeeeesssssabbbaeeeessssssnsesaaeeeessnssnnns 21
Figure 14: Importing SCans tO BIENENcoovuiiiiiiciiie ettt 22
Figure 15: Processing in BIENAENooocuiiiieeciiee ettt e et e e et e e e earae e e e sanaeeean 22
Figure 16:HUMANOI MZEING ...vvviiiiiiie ettt et e e e st e e et ae e e s sata e e e enraeeesannaeeen 23
Figure 17: Choosing animation from MiXamO........c..ceeeeiiieieeiiiee et ecvree e 23
FIBUIE 18: PailiNg RiES .ueiiiiiieiiiiiiieieieieise e nan 24
Figure 19: Adding movement t0 OUr CharaCter......cccvvivciieeirciiee e 24
FIBUIE 20: FINAI SCENEuiiie ettt e et e e e et e e e s bt e e e e s abaeeeensaeeeensseeesannaeeean 24
= U R B O\ O 1V =Tl o 11 = PR 25
FIGUIE 22: FOUNDIY PreESS ..uiiiiiciiiieiiiiiieeiiiieeeecitteeesiireeessateeesssssesessssseeessssseeessssseessnssseeessssseeen 25
=V Y T O -1 o TR 25
FIGUIE 24 PrESS . iiiiiiiieeeeeeiiitttee e e e ettt e e e e s sttt e e e e e s s sababeeeeeeessssssbaaaeaeesssssssssesaaaeeessnnnsnns 25
Figure 25: AlUMINUM STOFAZE .. .cciiiiuiiieeeiieee ettt e e ectte e e ecttee e e ettt e e e ettt e e e esasaesessssaseeeansaeeaeanseeeens 26
Figure 26: Assembly departMeENntooociiii ittt e e e e e e e e e aaeeean 26
Figure 27: Welding DepartMeEnt.........coocciieiiiciiiecciiiee e siireeeesiree e etre e e s seee e s ssaaaee s ssasaeeeesanaeeean 26
FIGUIE 28: GAS TANKS ..eiiieiiiee et e et e e et e e e e st e e e e e ata e e e e nsreeeeannaeeean 25
Figure 29: Materials fOr USEuiiiiiiiie ettt e e e e s et e e e s saaaeee s 25
Figure 30: Mechanical WOrkShOPoiiiiiiiiiicee et e 27
Figure 31: AlUMINUM STOFAZE2.....ccuviieeeiieeeeecitieeeectte e e ettt e e ettt e e e eeatteeeesabaeeeesnsaeeeesnsaeeesanseneean 27
FIBUIE 32 Al e s s s s 27
FIGUIE 33: WOTKEE AV2 ettt ettt e e e e e e et te e e e e e e e s abaaaeeaeaeeesnnsaaneeaeeeeennnes 27
FIUIE BA:WOTKEE L.ttt e e e e e e et e e e e e e e e baaaeeeeeeeesnnssaaneeeeeennnnes 27
FIBUIe 36: SUPEIVISOI SCIIPT. i 28
Figure 37: SUPErViSOr SCriPS-GOalscccuuiiiieiee ettt e e e ecreee e e e e e e e nbeeae e e e e e eeannes 29
Figure 38: SUPEIrVISOr MaNAgE OFUEIS .cccuviiieeiiieeeecireeeeiireeeectreeeestreeeessreeeesasaeeeesnsseeesssseeean 29
Figure 39: Supervisor Checks DepartmMents 1ccccveeeeiiieeeeiiieeeeciiee e eceree e ssvree e esvree e e senee s 29
Figure 40: Supervisor Checks Departments 2c.ueeeeeei i e e eeecvreee e e e e 29
Figure 41: Supervisor checks the stock of the materials (purple square)cccceeeevveerreennee. 30
Figure 42: Supervisor visits the bathroom ... 30
Figure 43: Supervisor visiting the restaurantccccee e 30
Figure 44: Secretary approaching the customers in customers waiting area.........ccccceeeuveeee. 31
Figure 45: Secretary guides customer to the salesmanccccceeeeeciiieec e, 31
Figure 46: Customer enters the factory ... 32

Figure 47: Client registrationccccuieeieciiee ettt e et e e e e saea e e e e e e e anaeee s 32

file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637591
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637592
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637593
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637594
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637595
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637596
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637597
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637598
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637599
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637600
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637601
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637602
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637604
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637607
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637608
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637609
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637610
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637611
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637612
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637613
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637614
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637615
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637616
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637617
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637618
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637619
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637620
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637621
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637623
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637624
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637626
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637627
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637628
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637629
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637630
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637632
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637633
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637634
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637635
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637636

Figure 48:Client waits for the secretary to guide him........cccccoviiieiiie e, 32

Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:

Client g0es fOr CONSUIINGveviiiiieie it 32
Follows her to the SaleSman..........cuviiieciiie e 32
L@ 1T B (= 1YL PP 32
Supervisors pre conditions and after effectsccccceveeieecciiieee 33
(01T o T = Y- | PP 33
(G Vot o] T 61 - 11U 34
€] 1Y 7=T) oYV - TP UPR 34
GPIANNEI ClASS L .uiiiiiiiieee ettt et tee e e et e e e e bae e e e bt e e e e nbae e e ennbaeeeenrees 35
(€] 2 T oY ToT G O = 3 USSR 36
LGV o o [F= 1300 RSP 36
LYo o o [1= 130 PP 37
GWOTIA ClaSS 3 oeeeieieeeeiieeee ettt e e e e ttree e e e e e e e st bba e e e e e e e e s abbbaeaeeeeeesnansssaeees 38
WOKIASTAtES Class ...eeiiiiiieeieiieee ettt et e e e et e e e e bte e e s ebteeeeebaeeaeenns 38
GAEENT Class - SGOQAIS ...cciiiiiiiiiiiiie ettt ebee e e s bee e e e rbee e e e narees 39
GAEENt Class —GageNt 1ceiiiiiieei et ree e e e e s ree e e sbee e e e ares 40
GAZENT Class “GAZENT 2......vvieieiiee ettt et e e et e e e etee e e e bae e e e rarae e e eenres 41

file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637637
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637638
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637639
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637640
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637641
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637642
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637643
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637644
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637645
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637647
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637648
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637649
file:///G:/Thesis_Galanis_Triantafillos_Beta.docx%23_Toc148637650

1.Acknowledgments/ EuyxapioTiec

Oa ABela va w &va UEYAAO EUXOPLOTW OTOUC YOVEIG PMoU ylo OAn tnv otnplén mou pou
TIAPEXOUV OTLG POOTIABELEG LoU OAQ aUTA Ta Xpovia {wNng Hou KabBwg kat oToug ¢piloug mou
pe Bonbnoav oe OAn tnv Sldpkela Twv omoudwv pou. Emiong Ba nbeha va euxaplotiow
OAOUG TOUC KaBNnynTéC TOU METATTUXLOKOU Tpoypappatog Tou Mavemiotnuiou MNelpald
"Mponyuéva Zuotiuota MNAnpodoplkng - Avamtuén Aoylopikol kat Texvntng Nonpoouvng"
yla to 6popdo TagidL Kal TIG YVWOELG TTOU HOoU XapLoav Kat tdlaitepa tov Ap. OEULOTOKAN
MavaylwTtomouAo yLa TV UTIOOTNPLEN KoL TNV Ka.Bodrynon Tou LoU TTAPELXE KATA T SLAPKELDL
TWV oTIOUSWVY HOU KaL TNV EKTTOVNON TG TITUXLOKHAG LOU.

2. Abstract:

This thesis presents the development of Optical simulation of procedure execution in an
Aluminium Factory on an Intelligent Virtual Environment. It investigates the utilization of Goal-
Oriented Action Planning (GOAP) within the Unity game development engine for creating
intelligent agent behaviours. Furthermore, it explores the integration of LiDAR scanning
technology along with a 3D computer graphics software tool, Blender to enhance the
development of agents and environmental elements. The factory setting presents unique
challenges that can be addressed by employing GOAP, allowing virtual characters to exhibit
realistic decision-making and efficient action execution. LiDAR scanning provides a means to
capture real-world objects and environments, which can be refined using Blender to create
textured 3D models. By combining these technologies, this thesis aims to offer valuable
insights into the implementation of GOAP, as well as the integration of LiDAR scanning and
Blender, to achieve a highly immersive factory environment in the context of game
development. Finally, we discuss about the behaviour of the agents take when they also follow
the theories of Maslow about the hierarchy of need’s.

2. [1epiAnwn

H mtuxlakn epyooia e€etalel Tn xprion tou IxedSlaopou Apaong pe Emikevtpo Toug ZTOXOUG
(Goal-Oriented Action Planning - GOAP) péoa oto meptaAlov avamtuéng mayvidiwy Unity
yla tTn dnuoupyla £Eumvwy cupumepLbopwY TPAKTOPWY OE €va OEVAPLO TIoU adopd Ttnv
Aewtoupyla evog epyootaciou. EmumAéoy, yivetal xprion tng texvoloyiag cdpwong LiDAR padl
pe éva avolytol kwdika 3D computer graphics Aoylopikd omwg sivat to Blender yiua tn
Snuloupyia mpaktdpwv Kal oTolxeiwv Tou meptBarlovtoc. Zto eplPaAlov evog epyootaciou
UrtopoUpE Vo EPaPUOCOUE OE OPKETA ONUELD WOTE VA QVTIUETWITICOUE TIPOKANOELG TOV
Yxebloopd Apdong pe Emikevtpo toug Xtoxoug (GOAP), emLTPEMOVIAC OTOUC ELKOVLKOUG
XOPAKTAPEG va eKONAWVOUV peaAloTik ARPN amodAcewy Kol OMOTEAECUATIKY €KTEAECN
Spdoswv. H texyvoloyia cdpwong LiDAR mapéxetl Tn SuvatotnTta amabavationg aVTIKELLEVWY
KoL TtePBAAAOVTOC QO TOV MPAYUATIKO KOO0, KAl Tn Snuioupyia 3D povtéAwv. H mtuylokn
QUTH AMOOKOTEL OTNV Ttapouciacn Kol AVAAUGCH QUTWVY TWV TEXVOAOYLWY, TNV avAAuch Twv
CUUTEPAOMATWY amd tnv edoppoyn tou GOAP Kal T QVAYKEG TOU OL TPAKTOPEC
npoomnabolv va KaAUPouy, evw yivetal MpoondBela cuoXETIONG AUTNG TG KAAUUNG TwV
OVOYKWV TWV TIPAKTOPWV KOl TNG LEPAPXLOC TTIOU €X0UV QUTEC HE TNV TIUPOULSA OVOYKWYV TOU
Maslow.

3. Introduction

In the realm of game development, the quest for creating intelligent and immersive virtual
characters (Intelligent agents) has led to remarkable advancements in Artificial Intelligence
(Al) systems. These systems, responsible for controlling characters within game worlds, play
a pivotal role in shaping captivating gaming experiences. Intelligent agents are software
systems that can perceive their environment, make decisions, and take actions to achieve
goals. They mimic human decision-making processes. Artificial Intelligence (Al) is a broader
field that includes intelligent agents and other techniques to create machines that perform
tasks requiring human intelligence. Al aims to develop algorithms and systems for reasoning,
learning, understanding language, perceiving the environment, and solving complex
problems. Intelligent agents and Al are used in various applications, from autonomous
vehicles to smart assistants and recommendation systems. Al improves efficiency, automates
tasks, and augments human capabilities across industries like healthcare, finance, education,
gaming, and manufacturing.

As game complexity continues to increase, developers seek Al frameworks capable of
managing intricate decision-making processes and dynamic behaviours. This thesis delves into
one such framework, Goal-Oriented Action Planning (GOAP), and explores its application in
Unity, a popular game development engine. Moreover, it investigates how LiDAR scanning
technology and Blender program are utilized to generate agents and environmental elements,
enhancing the overall realism and fidelity of the game world. Specifically, the scenario being
considered is a factory setting, where GOAP is applied to simulate intelligent behaviours
within this industrial environment.

3.1 Background:

At the first steps of game development, rule-based systems were commonly used to control
character behaviours. These systems were using some predefined rules that determined how
characters would react in specific conditions or events. It was a simple approach that had no
ability to handle complex scenarios and adapt to changing game states.

Finite state machines

Finite state machines (FSMs) emerged as a more flexible alternative to rule-based systems
and represented character's behaviour as a finite set of states that changing depending on
predefined conditions. This allowed for more dynamic and responsive character behaviours
but in high game complexity it was very challenging to manage and adjust the states and the
conditions and often required manual adjustments, even for small changes.

Script-driven behaviours

Script-driven behaviours were another popular in which developers wrote custom scripts or
behaviours to control character actions and reactions but very often a large amount of manual
coding needed and there was small ability to adapt dynamically to different game situations.

All these limitations were the reason for developing more advanced Al architectures.
Behaviour Trees

Behaviour Trees (BTs) emerged as a hierarchical approach that had good control and flexibility
over character behaviours. BTs have a tree-like structure, where each node has a specific

action or decision-making logic. This structure helped developers to define complex behaviour
sequences and prioritize actions in a better way. BTs became widely adopted due to their
scalability, reusability, and ease of customization.

Goal-Oriented Action Planning

Another important advancement in Al architectures for game development was the
introduction of Goal-Oriented Action Planning (GOAP). GOAP focused in goal-driven decision-
making rather than predefined behaviours and enabled characters to plan and execute actions
on their own, based on the goals they have. All character actions have some preconditions,
after effects and costs and GOAP gives them the ability to select the actions with the most
“efficient” way to accomplished their goals, with a more dynamic and adaptive behaviour.

3.2 Research Objectives:

This thesis aims to explore the application of GOAP in Unity, focusing on its ability to create
dynamic and intelligent character behaviours within a factory setting. Additionally, it
investigates how LiDAR scanning, with a 3D computer graphics software tool like Blender can
be employed to generate lifelike agents and environmental elements, creating a realistic
factory environment. Through in-depth analysis and practical implementation examples, this
study intends to provide future students and anyone concerns with valuable insights into the
implementation of G.0.A.P, as well as the integration of LiDAR scanning and Blender for
enhanced realism in a factory scenario.

3.3 History of the most important Al techniques:

There are many Al techniques that have been used through the years in video games
development to create dynamic and intelligent behaviours for non-player characters (NPCs).
Some of these techniques are:

3.3.1 Finite State Machines (FSMs):

Finite State Machines (FSMs) have been one of the earliest and simplest Al techniques
used in video games. FSMs model NPCs as finite states, and transitions between these states
are triggered by events or conditions. While FSMs are straightforward to implement, they lack
flexibility in handling complex behaviours.

3.3.2 Behaviour Trees (BTs):

This technique introduced in the mid-2000s as a more structured approach to Al in
games and use hierarchical tree structures to represent decision-making processes. Each node
in the tree defines an action or condition, making it easier to create complex behaviours by
combining simpler nodes.

3.3.3 Utility-Based Al:

Utility-Based Al, or simply Utility Al, considers the utility or desirability of different
actions and selects the one with the highest perceived utility. This approach. allows for more
sophisticated decision-making, as it considers the trade-offs between different actions based
on their expected outcomes. Utility Al gained popularity in the mid-2000s for creating NPCs
with adaptive and context-aware behaviours.

3.3.4 Hierarchical Task Networks (HTNs):

Hierarchical Task Networks (HTNs) are used to model Al decision-making as a hierarchy of
tasks and subtasks. HTNs provide a more modular and flexible approach to representing
complex behaviours, as the hierarchy allows for reusable and interchangeable components.
This technique became popular in the late 2000s for its ability to handle diverse NPC
behaviours efficiently.

3.3.5 Reinforcement Learning (RL):

Reinforcement Learning is a machine learning technique where agents learn to make decisions
by interacting with their environment and receiving feedback in the form of rewards or
penalties. RL has been applied to video game Al to create adaptive and learning NPCs, capable
of improving their behaviour through trial and error. RL-based Al has gained significant
attention in recent years, especially in developing autonomous characters and NPCs.

3.3.6 Machine Learning and Neural Networks:

Machine learning techniques, including neural networks, have made significant steps in Al
gaming. Neural networks are used for tasks like character animation, speech recognition, and
image processing. Deep Learning approaches, such as Deep Q-Networks (DQNs) and
Generative Adversarial Networks (GANs), have also been employed to create more realistic
and intelligent NPCs.

Al techniques in video game development are continuously evolve and adapt to the needs for
more realistic gaming, from early FSMs to advanced machine learning approaches, each
technique has contributed to the evolution of NPC behaviours, making virtual characters more
realistic, adaptive, and engaging. GOAP has played a significant role in creating goal-oriented
behaviours, a diverse set of Al methods has been employed to cater to the ever-increasing
complexity and player expectations in modern video games.

3.3.7 Goal-Oriented Action Planning (GOAP)

Goal-Oriented Action Planning (GOAP) has a big history in the field of Artificial Intelligence in
video game development. The roots of GOAP can be traced back to classical planning
algorithms, which have been studied since the 1960s. These algorithms involve finding
sequences of actions to achieve goals in a defined state space. In the late 1990s and early
2000s, video game developers recognized the limitations of traditional Al methods, such as
Finite State Machines (FSMs) and scripted behaviours, in creating dynamic and adaptive NPC
behaviours for complex game environments.

The breakthrough for GOAP came with the development of the video game "F.E.A.R." in 2005,
where Jeff Orkin, the lead Al programmer, implemented a form of GOAP for the game's Al
enemies. The use of GOAP in "F.E.A.R." showcased the potential of goal-driven planning in
creating lifelike and challenging behaviours for NPCs. Following this success, GOAP gained
popularity in the game development community and found applications in various game
genres. Over the years, researchers and developers have contributed to the refinement and
optimization of GOAP, proposing variations to address specific challenges and integrate it with
other Al techniques. The integration of GOAP into major game engines has made it more
accessible to developers, leading to its widespread adoption. Today, GOAP continues to be an

active area of research, with ongoing efforts to improve its scalability, performance, and
adaptability in creating dynamic and immersive NPC behaviours. The history of GOAP
showcases its evolution from classical planning algorithms to becoming a prominent Al
technique in video game development, contributing to more engaging and realistic gaming
experiences. As game worlds continue to grow in complexity and player expectations increase,
GOAP remains a valuable tool in shaping the future of Al-driven NPC behaviours and
interactive virtual environments.

By employing the concept of goals and actions, GOAP enables virtual characters to
autonomously plan and execute actions to achieve desired objectives. Utilizing action
preconditions, effects, and cost considerations, GOAP empowers characters to make
intelligent decisions in response to complex game scenarios.

3.4 Analysis of Goal-Oriented Action Planning (GOAP):

3.4.1 Goal-Oriented Approach:

1. GOAP focuses on achieving specific goals rather than prescribing rigid behaviours or actions
for agents.

> Agents define their goals and the conditions that must be satisfied to consider a goal
achieved.

> The agent's decision-making is driven by the prioritization and evaluation of goals,
allowing for dynamic and adaptive behaviour.

2. Action Planning:

» GOAP employs a planning process to determine the sequence of actions that an agent
should execute to achieve its goals.

> Actions are defined as atomic units of behaviour that can be executed by the agent.

» The planning algorithm generates a plan by considering the current state, the desired
goals, and the available actions that can be performed.

3. State Representation:

> GOAP utilizes a state representation to capture the current state of the environment
and the agent.

> The state consists of a set of variables and their corresponding values that describe
the attributes and conditions of the agent and the environment.

> The agent reasons about the state to decide which actions are applicable and which
goals are achievable.

4, Action Preconditions and Effects:

> Actions in GOAP have preconditions and effects associated with them.

Preconditions represent the conditions that must be met for an action to be executed.
Effects describe the changes in the state that occur after an action is performed
successfully.

VYV VvV

5. Decision-Making and Plan Execution:

34.2

GOAP provides a decision-making process for agents to select the most appropriate
actions to execute.

The agent evaluates the desirability of each action based on factors such as the goal
priority, action costs, and potential state changes.

Once a plan is generated, the agent executes the actions sequentially, updating the
state as it progresses.

Flexibility and Adaptability:

GOAP offers flexibility in designing agent behaviours as it allows for easy modification
and addition of new goals, actions, and conditions.

Agents can dynamically switch goals, adapt plans, or reconsider actions based on
changes in the environment or new priorities.

Limitations:

GOAP may face challenges in handling complex and dynamic environments with a
large number of goals and actions.

The planning process in GOAP can be computationally expensive and may require
optimization techniques for efficiency.

GOAP provides a robust and efficient framework for creating intelligent agent behaviours
that can adapt to changing circumstances and pursue specific goals. Its goal-oriented
approach and action planning capabilities make it a popular choice in game development,
robotics, and other domains requiring sophisticated agent decision-making and
behaviour.

4. Maslow's Hierarchy of Needs

Maslow's Hierarchy of Needs is a psychological theory proposed by Abraham Maslow in 1943.
It describes the hierarchical structure of human needs, representing the progression of
motivation and fulfiiment from basic physiological needs to higher-level psychological needs.
The pyramid-shaped hierarchy consists of five levels or categories of needs, with each level
building upon the previous one. Here's an overview of each level:

Figure 1: Maslow's Hierarchy of Needs

Physiological Needs:

Physiological needs are the most fundamental and essential requirements for human survival.
Some of these needs are food, water, shelter, sleep, and basic bodily functions and must be
met first, as they are necessary for sustaining life. When they are not fulfilled, they become
the primary focus of motivation and drive human behaviour.

Safety Needs:

Safety needs include physical and emotional security, stability, and protection from harm or
danger.

After physiological needs are satisfied in a good level, individuals will seek for safety and
stability in their environment. This includes personal safety, financial security, a stable job,
health, and a secure living environment.

Social Needs:

Social needs are the desire for social connection, companionship, affection, and a sense of
belonging.

Humans are social beings that have a natural need for relationships, friendships and
acceptance within family, friendships, and communities.

Esteem Needs:

Esteem needs include the desire for self-esteem, self-respect, recognition, and a sense of
accomplishment.

Self-Actualization Needs:

Self-actualization needs represent the highest level of human needs in Maslow's hierarchy.
They involve the realization of one's full potential, personal growth, and self-fulfiiment. Self-

actualization is about pursuing one's passions, engaging in creative activities, seeking personal
development, and experiencing a sense of purpose and fulfilment in life.

According to Maslow, individuals go through these levels of needs in a sequential manner. As
lower-level needs are satisfied, higher-level needs become more prominent and the driving
force behind human motivation. Maslow suggested that the accomplishments of these needs
is necessary for someone to reach their highest potential and achieve personal well-being and
satisfaction.

It is important to note that while Maslow's Hierarchy of Needs provides a valuable framework
for understanding human motivation, and the theory remains influential in various fields,
including psychology, human resources, and self-development, providing insights into the
factors that drive human behaviour and well-being.

5. Creating the 3D Environment

5.1 LiDAR - LiDAR Scanning:

LiDAR stands for Light Detection and Ranging. It is a remote sensing method that uses
light from a laser to collect measurements and measure distances. It is also known as
laser scanning or 3D scanning and 3D models and maps of objects and environments
can be created from this procedure.

5.1.1 LiDAR System

A complete LiDAR system is made up of several components. All of the components work
together to generate, record and georeference the data. The main components are:

» Lidar Source, Detector and Scanning Mechanism
» Timing Electronics

» Global Positioning System (GPS)

» Inertia Measurement Unit (IMU)

» Computer

The way a LiDAR sensor works depending on the sensor used, is to measure distance by
shooting a precise, high-powered laser at a target and closely measuring the pulse that bounce
off objects and return to the LiDAR sensor. The sensor uses the time it takes for each pulse to
return to calculate distance (time of flight). Each of these pulsed laser measurements, or
returns, can be processed into a 3D visualization known as a ‘point cloud’.

5.1.2 LIDAR FORMULA

The entire process of bouncing a beam of light or laser off an object, receiving the returned
signal, and calculating its absolute position in space can be represented mathematically using
this formula:

d=c*t/2

In the formula, each letter represents:

dis the distance
cis the speed of light
tis the time of the flight

LiDAR is actually quite similar to how radar and sonar measure distance, except instead of
using radio or sound waves, LiDAR systems use light. By taking into account the direction the
light was sent, the position of the LiDAR scanner, and the distance between two points, LIiDAR
payloads are able to derive the exact 3D positions of every point from which signals return, or
bounce back.

LiDAR traces its roots back to the early 1960s, when lasers were first invented and scanners
using them were mounted to planes. Back then, the word LiDAR wasn’t even an acronym—it
was just a quick combination of the words “light” and “radar.”

At first, LiDAR was mainly used to help make maps of small rivers and streams. But in the
1980s, with the emergence of GPS, LiDAR became an integral tool in collecting large-scale
geospatial data and in creating topographical maps.

LiDAR sensors of the 1980s were large, clunky, and fairly inaccurate. They were also almost
exclusively mounted to large, piloted airplanes, and their operation was manual, expensive,
and did not always provide a good return on investment.

Today, LiDAR technology is cheaper, smaller, and more accessible than ever before, leading
to its proliferation across dozens of different industries and fields. In fact, recent iPhones have
LiDAR scanners that can create 3D models from up to 4.5 meters (15 feet) away.

5.2 BLENDER

Blender is a powerful and versatile 3D modelling and animation software that we used to fix
any imperfections from LIDAR scanning and adding movement to agents in a virtual
environment.

Fixing Imperfections from LIDAR Scanning:

o LIDAR scanning can produce highly accurate point cloud data, but it may also contain
imperfections due to various factors, such as sensor noise, occlusions, or inaccuracies in the
scanning process. Blender's advanced 3D modelling capabilities allow users to import LIDAR
point cloud data and use various tools and filters to clean, process, and refine the scanned
geometry.

. Blender's point cloud editing tools, mesh reconstruction algorithms, and clean-up
functions enable users to remove noise, fill gaps, and smoothen surfaces, resulting in a more
accurate and visually appealing representation of the scanned environment.

5.3 Mixamo

Mixamo for Agent Animation:

Mixamo is a web-based service provided by Adobe that offers a vast library of pre-made 3D
characters and animations that allows users to easily animate virtual agents from a wide range
of animations without the need for complex manual animation work. Once the desired
animations are chosen, Mixamo automatically applies them to the 3D agents and provides a
downloadable animation file, which can be easily imported back into Blender for further scene
integration and refinement. Then can easily export 3D agents from Blender as FBX or other
compatible formats.

By using Blender's capabilities to address
LIDAR scanning imperfections and integrating
Mixamo's animation library, developers and
3D artists can create more realistic and lifelike
@’ virtual environments with dynamic and
‘ expressive agents. Blender's open-source
v nature and active community support also
make it a popular choice for game developers,
researchers, and artists seeking to enhance

. the quality and realism of their projects.

In recent years, the integration of LiDAR
scanning technology combined with 3D
modelling and animation software like
Figure 2 : Mixamo Blender has revolutionized the process of
generating realistic agents, objects and environments for games and other purposes.

5.4 Factory Scenario:

The scenario considered in this thesis is a factory setting, where GOAP is applied to simulate
intelligent behaviors within an industrial environment. The factory setting poses unique
challenges, such as placing orders and managing them, production lines, coordinating tasks,
common needs for the agents (eating, having a break, going to the bathroom) and responding
to dynamic events. By applying GOAP in this context, someone can create virtual characters
that exhibit realistic decision-making and efficient action execution, mirroring the
complexities found in real-world factory scenarios.

5.5 Project Application

In order for the game to be created, the Unity Engine 2021.3.1f1 was used and the
programming language for the scripts was CH.

5.6 Methodology used

This thesis started with learning how we can scan with a LiDAR sensor properly, what app to
use, what is the ideal lighting, what surfaces are good for scanning, what angles to use, in what
speed, etc.

The LiDAR scanner we used in this thesis was from an iPhone 14 Pro Max

" LiDAR Sensor

Figure 3: IPhone - LiDAR sensor

Figure 4 : IPhone

and after scanning a lot of different places, objects and persons in the aluminium factory of
Lamda Leventis ABEE that is placed in Kalyvia Attica we managed to have some results.

We used Scaniverse application, a
free application from App Store for
the creation of 3D models through \\

LiDAR scanning.

/_ \ Scaniverse - 3D Scanner

ANOIrMA

Figure 5: Scaniverse

Select Scan Size

@ Small Object
L/ foed it L Depending on the size of the object or the area
we wanted to scan we adjust the mode to small —

medium or large.

ﬁ‘ip Medium Object

,@ Large Object / Area
r r d)OT S

Figure 6: Size Selection

When scanning an object, we have to
slowly move around the object we
want to scan targeting with the lens of
the LiDAR sensor and try not to leave
many gaps. Most of the apps show in
the screen if there are any areas that
need filling so you scan them more
carefully. Depending of the size of the
object we do this procedure a few
times to have a better result and until
we have no gaps in our scans.

Figure 7: Scanning

N

Another thing that someone should take into account during this kind of scanning is lighting,
it shouldn’t be very bright or very dark and the surfaces shouldn’t be very shiny in order not
to deflect light. If there is any shiny surfaces one way to solve this problem is to apply chalk
on them and fix it later on Blender. Also the person who does this process needs to have a
steady hand and move smoothly through all the sides and the angles of the object or the area
he scans. Being careful in this procedure can reduce the time we will spend later to fix any bad
or missing surfaces.

At the pictures that follow we can see the screen of the phone during the scan of a CNC
machine:

a

0

e

-
“ o g
/ 5,?///(/// : /

B

5
B
7

o

+))) RANGE: 2.5 M

Figure 8: CNC scanning 1 Figure 9: CNC scanning 2

We can see the red and white area that inform us that the specific areas have not be scanned
or need to be scanned more carefully in order to have a better result in the specific area. After

we scan our object in every side and at the top so we don’t have any blanks (red and white
areas) in our object we can stop scanning.

And here we can
see the final
result of the
previous scan:

Figure 10: CNC scanning result

And the same from one of our characters:

\\\\\\
\\\\\\\

N
&

-

\\\\\\
\\\\\\ AN
\\\ .
N \\ .\\\\\\

N

- L
c§§§\\ -
-

) RANGE:2.5M

Figure 11: Screen Caption during scanning

And the final result:

Figure 12: Human scanning final result

After finishing scanning we came up with a library of scans that we transferred from our phone
to a pc for further processing where it was needed. We export the scans from the app as FBX
file’s witch is friendlier to BLENDER and we can manage them better.

The steps for this procedure was:

Share
@) Post toScaniverse

’ Send in Message

e Post to Sketchfab
© oo vices

‘1‘ Export Model

Stepl (SHARE) Step2 (EXPORT MODEL) Step3 (FBX)

|Figure 13: Exporting scans

And then we can import the scans to blender from where we save them simply by following
the procedure that is shown below:

A5 Blender
2 [Flel Edit Render Window Help Layout

Add Object GIS

Collada (Default) (.dae)
Alembic (.abc)
SVG as Gre
External Data =
Motion
Clean Up =
Scalable Vector Graphics (.svg)
Defaults Stanford (.ply)
Stl (.stl)
FBX (.fbx)
gITF 2.0 (.glh/ ~1+h

(D Quit

Wavefront (Loa
Extensible 3D (.x3d/.wrl)

[Images as Planes

Figure 14: Importing Scans to Blender

File =) Import =) FBX

After importing our scans there are plenty of techniques that we can apply to fix any
imperfections. Most of the times we used Clean Up tools (Decimate geometry, Fill holes,
Make Planar Faces, Degenerate Dissolve
(http://docs.blender.org/manual/en/2.81/modeling/meshes/editing/cleanup.html)),
Shrinkwrap Modifier (https://www.youtube.com/watch?v=8vLX8e1zbY8),
(https://www.youtube.com/shorts/gh7pN10jYzQ) and Sculpt mode features.

= ZIIN B |n order to be able to use Sculpt
mode in a scanned model one of
the best options is to select our
model in Edit mode and click
Mesh at the Bar at the top, then
Clean Up and Merge by distance.

In this way all the vertices of our

mesh will stay connected when
we use our brushes in Sculpt
mode.

Figure 15: Processing in Blender
Another choice is to use instant — meshes program and then import the fixed mesh in to
blender as an FBX file, sometimes might be easier this way.
(https://github.com/wjakob/instant-meshes)

But anyone can choose what feel is best for him.

http://docs.blender.org/manual/en/2.81/modeling/meshes/editing/cleanup.html
https://www.youtube.com/watch?v=8vLX8e1zbY8
https://www.youtube.com/shorts/gh7pN1OjYzQ
https://github.com/wjakob/instant-meshes

When we are satisfied with the result we export the scan as an FBX file so we can import it in
to unity to make our scene.

In case of a Human scan we also perform the same procedure but now we have to apply
character 3D Rigging to our humanoid and also give him some movement.

3D Rigging isthe process of creating a skeleton for a 3D model so it can move. Most
commonly, characters are rigged before they are animated because if a character model
doesn't have a rig it can't be deformed and moved around.

In Blender we can apply the Humanoid rigging option and then adjust the rigs to our character
properly.

% Blender [D/PaPei fn RSy Ko & i 1l raciTruya Epyaoio\RIG WORKER blend]

Figure 16:Humanoid rigging

Then we can download from Mixamo the animation we desire and attach it to our character.

€3 mixamo

Q o~ WALKING ON CH32_NONPBR

SEND TO AERO

UPLOAD CHARACTER

IRRRE:
LA
Skl

Figure 17: Choosing animation from Mixam

After downloading the animation, we
desire we pair the rigs of the animation
figure to the ones we created for our
character or we can do it later in Unity.

Figure 18: Pairing Rigs

After making some adjustments
to the bones of the animation
and the ones of our character we
can pair them and the desired
animation is now set to him.

4
4
N
%
-5
N
4
4
N
g

Figure 19: Adding movement to our character
When everything is ready we start a new project in Unity and make a Library of our scans.
We also make a typical scene to add them.
In this thesis we ended up with a scene looking like the picture below:

Figure 20: Final Scene

The scans that added in the final scene are:

Figure 23: Press Figure 24:Clark

Figure 22: Gas tanks Figure 21: Materials for use

Figure 28: Welding Department
Figure 27: Aluminum Storage

Figure 29: Assembly department

 Blender

Figure 30: Mechanical workshop

Figure 32: Car

Figure 34:: Wc;rker 2

Figure 35: Figure 33: Worker 1V2

6. Factory scenario - Code

The scenario of this thesis is to try to mimic real life events that happen a random day in a
factory. This involves in one side the customers that enter the facilities, register at the
reception desk, waiting at the waiting area, placing their orders, seeking for an advice etc. And
from the other side there is the stuff that works there, the secretaries, the advisors, the
designers, the supervisors and different type of workers.

Every type of character that is in the scene has some beliefs, some goals and some needs and
what we did was to try to mimic the way someone prioritizes them in the simplest way.

As an example we can use the Supervisor (one of our main characters).

He has some goals in this scenario.

First of all, he has to arrange the orders and then to supervise the workers, the machines, to
check the stock of the materials and the areas.

But when a need that is bigger than his goals, let’s say he has to use the toilet, or he is very
tired and need to have a rest and something to eat then he stops following his goals and does
what is more important and crucial for him.

Sut cal s1 =
goals.Add(Cs1,

SubGoal s2 =
goals.Add(s2,

SubGoal s3 =
goals.Add(s3,

SubGoal s4 =
goals.Add(s4, 3

SubGoal sS5 = new SubGoal("relief", 1, +
goals.Add(ss,

Range(15, 28));
m.Range(2, S));

id GetTired()

beliefs.ModifyState(
Invoke("GetTired”™, R

id NeedRelief()

beliefs.ModifyStatel
Invoke("NeedRelief",

Figure 36: Supervisor Script

In the script above we can see the Supervisors script. One of the scripts that are attached to
the character “Supervisor”. In this script we can set the needs of the character and its
importance to him.

Also we can program some needs to appear randomly, (Invoke method), between a specific
period of time.

Each character has a script like this in which
we organize and prioritize his needs
(beliefs) and how his actions will affect the
world (Worldstates) and the other
Open Select Overrides characters.

In this scenario the physiological needs we
attached to the characters except of their
main goals are simple needs like going to
the bathroom, take a break when tired or go
to the restaurant to eat something, and we
can add whatever we want, anytime and
give it the priority we think is the best
between others and all of these by using
G.0.AP.

v Supervisor Static

i Tag Untagged v Layer Default

P Transform

+ v Nav Mesh Agent
B Rest(Script)
B v Supervisor (Script)
B Manage Orders (Script)
B v G Agent Visual (Script)
B Supervise (Script)
B Check Supplies (Script)

A GoToToilet (Script)
Figure 37: Supervisor Scrips-Goals

O O O ®© O ©®© O © ®

So, the Supervisor (Green hat) wants to:

» manage his orders at his office:

Figure 38: Supervisor manage orders

» Check the different Departments of the factory:
(Green Squares)

A

Figure 39: Supervisor Checks Departments 1 Figure 40: Supervisor Checks Departments 2

Figure 41: Supervisor checks the stock of the materials (purple square)

But when he needs to visit the toilet or the restaurant he will give priority to this needs
and go.

> Supervisor visiting the toilet:

Figure 42: Supervisor visits the bathroom

» Supervisor visiting the restaurant:

Figure 43: Supervisor visiting the restaurant

Every time an agent uses one of the resources, or when a resource or another NPC is added,
the rest of the world gets the information and acts accordingly.

The secretary for example knows when a client will enter the facilities and go to the waiting
room, and her goal is to take him and when a salesman is available to guide him there and
stay with him to help with the order.

In the picture above we can see the
blonde secretary approaching the
customers (black suit figure) waiting
area.

Figure 44: Secretary approaching the customers in customers

And guide him to one of
the free salesmen to
place an order.

After finishing this task,
she will keep doing her
job until she feels the
need to take a rest or visit
the bathroom.

Figure 45: Secretary quides customer to the salesman

The customer has a main goal to place an order. The steps to succeed his goal are:
e Go to the factory
e Get registered
e Go to the Consultants

Go to the customers waiting room

Wait for the secretary to guide him

Follow the secretary to the salesman

Leave the facilities

We can see some screenshots of his actions:

Figure 46: Customer enters the factory Figure 47: Client registration

Figure 49: Client goes for consulting Figure 48:Client waits for the secretary to guide him

Figure 50: Follows her to the salesman Figure 51: Client leaves

Every action of every agent have some preconditions that need to be met and some after
effects that can affect the word and other agents and we can set them in a way that would
feel right. This way we can give a more realistic sense in the scene.

At the picture below we can see the preconditions and after effects of the:
Supervisor:

| #] Manage Orders (Script)

In our scenario we assume that there are
more than one supervisors, so in order for
one of them to go to an office to view and
manage the orders we set a precondition
that it has to be a Free office, (the
information to the rest of the world comes
from GWorld script as we will see later), and
we set the duration to two (2) seconds. The
- — after effect of this act is that he managed
e - the orders.

- The same we did for his need to go to the
toilet, only this time we set two
preconditions, the first is to be a free toilet
(the information to the rest of the world
comes from GWorld script as we will see
later) and the second is that he feels he has
to go. The aftereffects is that he will feel
relief after this action.

sript)

Figure 52: Supervisors pre conditions and after
effects

Working this way, we can manage every action of every agent and make him act
autonomously even in more complicated scenarios. The only difficulty is to set his goals
carefully.

In the picture below we can see the same thing for the client:

~ Client

Tag Untagged - Layer Default

Open Select Overrides

Transform

His final Goal is to place his order. In order
s : to do that he has to arrive to the Factory,
I e— B | go to the reception to get register, go to the
g e | advisors if he wants some advice, then in

waiting room, wait for the secretary to
guide him to a free salesman, place his
order and return to his home. This is what
we see in this picture with every act having
its own preconditions and after effects and
in the end of all this procedures to

accomplish his Goal.

n

Runnir a

 # | Get Guided (Script)
L+] Go Home (Script)
EA - G Agent Visus Script)

Figure 53: Cliens goals

To understand better how, we accomplished that, we have to get into the code behind all this.
In this project the main classes are the following:

GAction Class:

> preconditions;
> offects;

-Represents actions that game
agents can perform.

-Stores action details like name,

cost, target, duration,
preconditions, and effects. s
-Allows checking action

achievability and pre/post action
execution.

>conditions)
n preconditions)

!conditions.ContainsKey(p-Key))

PrePerform();

PostPerform();

Glnventory Class:

System.Collections;
System.Collections.Generic;
UnityEngine;

GInventory
= List<GameObject> items = List<GameObject>();
-Manages an inventory of game R

objects (items).

items.Add(i);

GameObject FindItemWithTag(

-Provides methods to add, find, R
foreach(GameObject i in items)
and remove items by their tags. €

if (i.tag == tag)
{
return i;
¥
3

return
| RemoveItem(GameObject i)
indexToRemove=-1;

foreach (GameObject g in items)

{

indexToRemove++;
if (g == 1)
break;

if(indexToRemove>=-1)
items.RemoveAt(indexToRemove) ;

Figure 55: GInventory Class

GPlanner Class:

-Implements a goal-
based planning
system for generating
action plans.

-Plans actions to
achieve specific goals
based on the current
world state.

-Utilizes a search
graph and recursive
methods for planning.

cost
on action;

o parent, onarye ,int> allstatos,

action = action;

(Node parent, > allstates,
parent = parent;

cost

state 5

nCKey re , int> b in
1£(ate.ContainsKey(b.Key))

Add(b.Key, b.value)

action = action;

on> planC

bleActions
a in actions)

f (a.IsAchievable())
usabloActions . Add(a);

i >0);
, e, I, Instance. GetWorld().GetStates(), baliefstates.Ge

BuildGraph(start, leave bleActions, goal);

leaf in leaves)

n> result =

if (n.action 1=)
result.Insert(e, n.action);

}

n = n.parent;

}

tion> queue = new 0
« a in result)

queue. Enqueue(a);
";
a in queue)

ig.Log("Q: " + a.actionName);

return queue;

BUSTAGRapH(Node parent, List<liode> leaves, >usuableActions,

foundPath =
action in usuableActions)

if(action. IsAchievableGiven(parent.state))

< > currentStat Dict , int>(parent. state);

r< > off in action.effects)

if(!currentState.ContainsKey(eff.Key))
currentState.Add(eff.Key, eff.Value);

e node= (parent, parent.cost + action.cost, currentState,action);

(GoalAchieved(goal, currentState))

leaves. Add(node);
foundPath =

G subset = ActionSubset(usuableActions, action);
found = BuiliGraph(node, leaves, subset, goal);

if (found)
foundPath =

}
}

return foundPath;

GoalAchieved(D < , int> goal , int> state)

, int> g in goal)

if (!state.ContainsKey(g.Key))
return false;

}

return

Figure 56: GPlanner Class 1

> beliefstates,

on> ActionSubset(l ion> actions, n removeMe)

n> subset i on>();

foreach (

{

ion a in actions)

if (!a.Equals(removeMe))
subset.Add(a);

}

return subset;

Figure 57: GPlanner Class 2

GWorld Class:

-Manages global game
world state and
resource availability.

-Uses queues for clients,
salesmen office, spots,
checks.

-Initializes queues based
on tags in the scene.

-Provides methods for
adding and removing
entities.

-Follows the singleton
pattern.

System.Collections;

g System.Collections.Generic;
System.Lin
UnityEngin

ass GWorld

-) GWorld instance = new GWorld();

c WorldStates world;

c Queue<GameObject> clients;

¢ Queue<GameOb salesmen;
Queue<GameObject> offices;
Queue<GameObject> spots;

c Queue<GameObject> checks;

c GWorld()

world
clients Queue<GameObject>();
salesmen = new Queue<GameObject>();

offices = new Queue<GameObject>();
spots = new Queue<GameObject>();
checks = ne ue<GameObject>();

GameObject[] sales = GameObject.FindGameObjectsWithTag("Sales");
foreach(GameObject s in sales)

salesmen.Enqueue(s);
if (sales.Length > 0)

world.ModifyState("FreeSalesman", sales.Length);

GameObject[] offs = GameObject.FindGameObjectsWithTag("Office");
foreach (GameObject o in offs)

offices.Enqueue(o0);
if (offs.Length > 0)

world.ModifyState("FreeOffice", offs.Length);

GameObject[] spt = GameObject.FindGameObjectsWithTag("spot");
foreach (GameObject sp in spt)

offices.Enqueue(sp);
if (spt.Length >)

world.ModifyState("FreeSpot", spt.Length);

GameObject[] chck ameObject.FindGameObjectsWithTag("check");

foreach (GameObject in chck)

Figure 58: GWorld Class 1

foreach (GameObject sp in spt)
offices.Enqueue(sp);

if (spt.Length > ©)
world.ModifyState("FreeSpot", spt.Length);

GameObject[] chck = GameObject.FindGameObjectsWithTag("check");
foreach (GameObject c in chck)
offices.Enqueue(c);

if (spt.Length > ©)
world.ModifyState("FreeCheck", chck.Length);

Time.timeScale = 5;

te GWorld()

AddClient(GameObject p)

clients.Enqueue(

GameObject RemoveClient()

if (clients.Count == ©) return
return clients.Dequeue();

AddSalesman(GameObject s)

salesmen.Enqueue(s);

AddSalesman(GameObject s)

salesmen.Enqueue(s);

ic GameObject RemoveSalesman()

if (salesmen.Count == ©) return
return salesmen.Dequeue();

AddOffice(GameObject o)

offices.Enqueue(o);

GameObject RemoveOffice()

if (offices.Count == 0) return
return offices.Dequeue();

oid AddSpot(GameObject sp)

spots.Enqueue(sp);

lic GameObject RemoveSpot()

if (spots.Count == ©) return
return spots.Dequeue();

< oid AddCheck(GameObject c)

checks.Enqueue(c);

Figure 59: GWorld Class 2

Figure 60: GWorld Class 3

WorldStates Class:

-Manages a collection of
representing the global
state.

-Uses a dictionary to associate

state keys with values.

-Provides methods for checking,
adding, modifying, removing, and |ESEEESEEEEEY .

retrieving states.

-1t allows for

states
world

flexible
representation and manipulation
of the game world's state, which
can influence agent decisions.

checks . Enqueue(c) ;

— GameObject RemoveCheck()

if Cchecks.Count)
return checks.Dequeue(C);

Gwoxrld

return

Instance

{ return instance; 3

WorldStates

return woxrld;

HasState(
return states.Contains
key

states.Add(key, valu

ModifyState(
if(states.ContainsKe

states[key]
if (states[key]

GetwWoxri1d(C)D

t> states;

key)
Key(key); }
, int value)
e);
st key, t value)

y(key))

+= value;

<= 0)

RemoveState(key);

3
else
states.Add(key,

RemoveState(st

value);

key)

if(states.ContainsKey(key))
states.Remove(key);

SetState(

key, value)

if (states.ContainsKey(key))

states[key]
else

= value;

states.Add(key, value);

- Ary<st
{ return states; }

Figure 61: WorldStates Class

>GetStates()

GAgent Class

Consists of two classes: SubGoal and GAgent.

SubGoal class

This class represents a sub-goal within the agent's behavior. It is used to specify what the
agent should aim to achieve in its environment. Here are the key elements of the SubGoal
class:

e sgoals: This is a dictionary that maps a goal name (a string) to an integer value that
represents the priority of the goal.
remove: A Boolean value that indicates whether the sub-goal should be removed once it's
achieved.
e The constructor SubGoal (string s, int i, bool r) initializes a sub-goal with the specified
goal name s, priority i, and removal status r. It creates a new dictionary entry with the
goal name and priority.

System.Collections;
ig System.Collections.Generic;
g UnityEngine;
] System.Ling;

SubGoal

Dictionary<stri
remove;

SubGoal(string s,int i,bool r)
sgoals = new Dictionary<stri

i
sgoals.Add(s, 1i);
remove = r;

Figure 62: GAgent Class - SGoals

GAgent
GAgent Class:

The GAgent class represents an agent and manages his actions, goals, inventory, beliefs, and
planning. If we look at the key components of this class:

e actions: A list that holds instances of GAction (actions) that the agent can perform.

e goals: A dictionary that associates sub-goals (instances of SubGoal) with their
priorities (integers).

e inventory: An instance of the Glnventory class, which likely manages the agent's
inventory.

o beliefs: An instance of the WorldStates class, which may represent the agent's beliefs
about the state of the world.

System.Collections.Generic;
UnityEngine;
System.Ling;

Dictionary<: : > sgoals;
remove;

r)

y inventory=
beliefs=

er;
actionQueue;
currentAction;

L currentGoal;

Vector3 destination = Ve

.GetComponents<GAc
n a in acts)
actions.Add(a);

invoked = f
CompleteAction()
currentAction.running =

currentAction.PostPerform();
invoked = f

(0]
if (currentAction != && currentAction.running)
{
f t distanceToTarget r3.Distance(destination, .transform.position);
if(distanceToTarget <

if (!invoked)

", currentAction.duration);

Figure 63: GAgent Class —Gagent 1

if (planner == | actionQueue =

{

planner =
sortedGoals fI in goals or entry.Value
> sg in sortedGoals)

actionQueue = planner.plan(actions, sg.Key.sgoals, beliefs) ;
if (actionQueue !=)
{

currentGoal = sg.Key;

break;

}

if (actionQueue != && actionQueue.Count == B8)
{
if (currentGoal.remove)
{
goals.Remove(currentGoal);
}
planner =

}

if (actionQueue != && actionQueue.Count > 8)
{
currentAction = actionQueue.Dequeue();
if (currentAction.PrePerform())
{
if (currentAction.target Ll && currentAction.targetTag != "")
currentAction.target ct.FindWithTag(currentAction.targetTag);

if (currentAction.target !
{

currentAction.running = tr

I rm dest = currentAction.target.transform.Find(
if (dest I=
destination dest.position;

else

destination = currentAction.target.transform.position;

currentAction.agent.SetDestination(destination);

1lse

actionQueue =

Figure 64: GAgent Class -GAgent 2

These are the main scripts that form our G.0.A.P. model and create a framework for modeling
and managing actions, inventories, planning, and world states within a Unity-based game or
simulation. This system facilitates Al-driven decision-making, resource management, and goal
achievement by game agents or characters. It provides a foundation for implementing
intelligent behavior and interactions in the game world.

7. Maslow's Hierarchy of Needs and GOAP

Maslow's Hierarchy of Needs and Goal-Oriented Action Planning (GOAP) share a significant
connection, as they both revolve around human behavior and motivation. Maslow's theory
proposes a hierarchical structure of human needs, while GOAP provides a framework for
intelligent decision-making and goal achievement in virtual agents within video games and
simulations. By analyzing how GOAP-driven agents in video games fulfill these needs, we can
gain valuable insights into how virtual environments can cater to fundamental human
requirements and enhance player engagement and immersion.

Maslow's Hierarchy of Needs encompasses five levels: physiological, safety, love and
belonging, esteem, and self-actualization.

GOAP-driven agents in video games can address each of these levels or similar in various ways,
contributing to a more compelling and meaningful gaming experience for players.

At the base of the pyramid are physiological needs, such as food, water, and shelter. In virtual
environments, GOAP can be utilized to program agents to prioritize their actions and do thinks
that are more crucial for them, like self-preservation, seek resources, avoid hazards, providing
a sense of realism and immersion for players.

Ensuring that virtual agents address their physiological needs enhances the player's
connection to the game world and adds depth to the overall experience.

Moving up the hierarchy, safety needs encompass security and stability. GOAP-driven agents
can exhibit behaviors that promote a sense of safety, both for themselves and the player
adhering to safety protocols, avoiding danger, and cooperating with other agents, virtual
characters giving a sense of security within the virtual environment, contributing to the
player's emotional investment in the game.

The love and belonging needs are related to social interactions and the desire to be part of a
community.

GOAP-driven agents can be programmed to display cooperative behaviors, help others, and
engage in social interactions with each other and the player. This can add a sense of
companionship and belonging within the virtual world, heightening the player's sense of
connection and emotional involvement.

Esteem needs involve accomplishment, recognition, and self-worth.

GOAP-driven agents can exhibit competence and goal achievement, providing players with a
sense of accomplishment and recognition for their actions. NPCs that react dynamically to
player actions and achieve objectives reinforce the player's importance and contribution to
the virtual world.

At the top of the pyramid are self-actualization needs, encompassing personal growth and
fulfillment.

GOAP can contribute to self-actualization by providing NPCs with diverse and meaningful
goals that align with their unique traits and attributes. Intelligent virtual agents that
exhibit autonomy, creativity, and adaptability in their actions create a rich and
immersive virtual environment, encouraging players to explore and engage
more deeply with the game world.

In conclusion, the relative connection between Maslow's Hierarchy of Needs
and GOAP lies in their shared focus on human behavior, motivation, and
fulfillment. By incorporating GOAP-driven agents that address physiological,
safety, social, esteem, and self-actualization needs, video game developers can

create more immersive and emotionally resonant gaming experiences. Understanding this
connection between Al-driven behaviors and human needs fulfillment can lead to the design
of games that offer players a deeper sense of engagement, emotional investment, and
enjoyment.

In conclusion, this thesis has delved into the exploration of Goal-Oriented Action Planning
(GOAP) within the Unity game engine, coupled with the integration of LiDAR scanning and
Blender, to create an immersive factory scenario. The research has demonstrated how the
adoption of GOAP-driven agents in the virtual environment effectively addresses fundamental
human needs, as proposed by Maslow's Hierarchy of Needs, bridging the gap between Al-
driven behaviors and the fulfillment of human motivations.

Maslow's Hierarchy of Needs provides a framework for understanding human motivations,
encompassing physiological, safety, love and belonging, esteem, and self-actualization needs.
Through the lens of GOAP, virtual agents in the factory scenario have been equipped to fulfill
some needs in a nuanced manner in a way that it can create a more emotionally resonant and
engaging gaming experience for players.

At the base of the pyramid, GOAP-driven agents prioritize self-preservation and safety,
seeking resources and avoiding hazards, thereby addressing physiological needs and
enhancing player immersion. Moving up, safety needs are met through agent behaviors that
promote a sense of security and cooperation, both within the virtual environment and for the
player.

Such agents create a rich and immersive virtual environment, encouraging players to explore
and engage more deeply with the game world, fulfilling their desire for personal growth and
fulfillment.

Moreover, the integration of LiDAR scanning and Blender has significantly enhanced the
fidelity of the factory scenario, providing a visually authentic and dynamic virtual
environment. LIDAR scanning accurately represents the physical space, while Blender's 3D
modeling capabilities refine and enhance the scanned data.

8. Conclusion

The findings of this research contribute to Al-driven virtual environments. While the thesis
demonstrates the potential of GOAP, LiDAR scanning, and Blender integration, it also
acknowledges the challenges and limitations encountered during the development of the
simulation. Future work could explore the integration of additional Al techniques, such as
emotion modeling or reinforcement learning, to further enhance the depth and complexity of
NPC behaviors.

In conclusion, this exploration of GOAP, LiDAR scanning, and Blender integration showcases
the potential for creating engaging and meaningful virtual environments.

By understanding the connection between intelligent agents and fundamental
human requirements, we pave the way for more emotionally resonant and
immersive experiences in virtual worlds, ultimately contributing to the
advancement of Al-driven simulations and game development. As the
boundaries between virtual and real-world experiences continue to blur, the
significance of considering human needs in Al-driven applications becomes
increasingly vital for shaping more compassionate and enriching interactions
in the digital realm.

9. Bibliography & References

1. Structure of Intelligent Agents and Environments, Alan Bundy (2003)

(https://www.inf.ed.ac.uk/teaching/courses/ai2/module4/small slides/small-

agents.pdf)

2. Al for Game Developers, David M. Bourg, Glenn Seeman, 2004

(Chapter 1, Chapter 7, Chapter 9, Chapter 11, Chapter 14)

(https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Progr

amming/Al%20for%20Game%20Developers%20-

9%20%20David%20M.%20Bourq%2C%20Glenn%20Seeman.pdf)

3. Artificial Intelligence For Games, 2™ Edition , lan Millington ,2009

(https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Progr

amming/Artificial%20Intelligence%20for%20Games. pdf)

4. Behavior Trees in Robotics and Al: An Introduction, Michele Colledanchise,
Petter Ogren, 2017-08-31

(https://arxiv.org/pdf/1709.00084.pdf)

(https://www.sciencedirect.com/science/article/pii/S0921889022000513)

5. Finite State Machines , Karleigh Moore and Dishant Gupta

(https://brilliant.org/wiki/finite-state-machines/)

6. Goal-Oriented Action Planning: Ten Years Old and No Fear! , Peter Higley,
2015

(https://ubm-t
wvideo01.s3.amazonaws.com/ol/vault/gdc2015/presentations/Higley Peter

Goal-Oriented Action Planning.pdf)

7. GOAP Analysis

(https://medium.com/@stannotes/design-unpredictable-ai-in-games-part-1-

architecture-3752a618db6)

(https://alumni.media.mit.edu/~jorkin/goap.html)

8. Maslow's Hierarchy of Needs

(https://canadacollege.edu/dreamers/docs/Maslows-Hierarchy-of-Needs.pdf)

9. MOTIVATION AND PERSONALITY, ABRAHAM H. MASLOW, 1954

(https://www.holybooks.com/wp-content/uploads/Motivation-and-Personality-

Maslow.pdf)

10. LIDAR

(https://www.mappedin.com/blog/product/indoor-mapping/what-is-lidar-scanning/)

(https://support.apple.com/kb/SP876?locale=en US)

11. SCANIVERSE

(https://apps.apple.com/us/app/scaniverse-3d-scanner/id1541433223)

(https://scaniverse.com/)

(https://opentopography.org/blog/iphone-lidar-applications-geosciences)

12. UNITY

(https://unity.com/)

(https://learn.unity.com/tutorial/an-introduction-to-goap#)

(https://assetstore.unity.com/packages/tools/behavior-ai/goal-oriented-action-

planning-artificial-intelligence-72912)

(https://assetstore.unity.com/)

13. MIXAMO

(https://www.mixamo.com/#/),

(https://www.mixamo.com/#/?page=18&type=Character),

(https://www.mixamo.com/#/?page=1&query=walk&type=Motion%2CMotionPack)

14. Class Presentations by my professor Themistocles Panayiotopoulos

15. A survey of Behaviour Trees in robotics and Al, Elsevier, Matteo lovino, 8/22

https://www.inf.ed.ac.uk/teaching/courses/ai2/module4/small_slides/small-agents.pdf
https://www.inf.ed.ac.uk/teaching/courses/ai2/module4/small_slides/small-agents.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/AI%20for%20Game%20Developers%20-%20%20David%20M.%20Bourg%2C%20Glenn%20Seeman.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/AI%20for%20Game%20Developers%20-%20%20David%20M.%20Bourg%2C%20Glenn%20Seeman.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/AI%20for%20Game%20Developers%20-%20%20David%20M.%20Bourg%2C%20Glenn%20Seeman.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/Artificial%20Intelligence%20for%20Games.pdf
https://theswissbay.ch/pdf/Gentoomen%20Library/Game%20Development/Programming/Artificial%20Intelligence%20for%20Games.pdf
https://arxiv.org/pdf/1709.00084.pdf
https://www.sciencedirect.com/science/article/pii/S0921889022000513
https://brilliant.org/wiki/finite-state-machines/
https://medium.com/@stannotes/design-unpredictable-ai-in-games-part-1-architecture-3752a618db6
https://medium.com/@stannotes/design-unpredictable-ai-in-games-part-1-architecture-3752a618db6
https://alumni.media.mit.edu/~jorkin/goap.html
https://canadacollege.edu/dreamers/docs/Maslows-Hierarchy-of-Needs.pdf
https://www.holybooks.com/wp-content/uploads/Motivation-and-Personality-Maslow.pdf
https://www.holybooks.com/wp-content/uploads/Motivation-and-Personality-Maslow.pdf
https://www.mappedin.com/blog/product/indoor-mapping/what-is-lidar-scanning/
https://support.apple.com/kb/SP876?locale=en_US
https://apps.apple.com/us/app/scaniverse-3d-scanner/id1541433223
https://scaniverse.com/
https://opentopography.org/blog/iphone-lidar-applications-geosciences
https://unity.com/
https://learn.unity.com/tutorial/an-introduction-to-goap
https://assetstore.unity.com/packages/tools/behavior-ai/goal-oriented-action-planning-artificial-intelligence-72912
https://assetstore.unity.com/packages/tools/behavior-ai/goal-oriented-action-planning-artificial-intelligence-72912
https://assetstore.unity.com/
https://www.mixamo.com/#/
https://www.mixamo.com/#/?page=1&type=Character
https://www.mixamo.com/#/?page=1&query=walk&type=Motion%2CMotionPack

