
Department of Digital Systems

Piraeus, Greece

Department of Informatics

Milan, Italy

MSc Thesis
in

Big Data and Analytics

Deepfake Detection with Deep Learning:
Leveraging Remote Heart Rate Estimation to
discriminate real from fake videos of faces

Spanidis Loukas

Supervisors: Professor Raffaella Lanzarotti
Department of Informatics

University of Milan

Professor Ilias Magklogiannis
Department of Digital Systems

University of Piraeus

2023

Spanidis Loukas

Deepfake Detection with Deep Learning: Leveraging Remote Heart Rate Estimation to discriminate
real from fake videos of faces
2023
Supervisor: Professor Raffaella Lanzarotti
Co-Supervisor : Professor Ilias Magklogiannis

University of Milan

Department of Informatics
Milan, Italy

University of Piraeus

Department of Digital Systems
Piraeus, Greece

Abstract

Deepfakes are swiftly becoming a reality. These media are generated by very powerful tools
which allow fast and cheap media manipulation. These videos can be used for unethical
and malicious applications, such as spread of fake news or fake porn. Given the upcoming
problems these media pose, researchers have started working on different ways to try
and detect these types of media. This master’s thesis investigates the temporal aspect of
deepfake detection, with a specific emphasis on exploring the physiological artifacts asso-
ciated with the corruption of physiological signals, such as heart rate variability, obtained
through the pyVHR framework. The study employs several state-of-the-art Convolutional
Neural Network (CNN) models, including AlexNet, ResNet, and SincNet, along with vari-
ous modifications and different data preprocessing techniques. These models are trained
and evaluated on the FaceForensics+ dataset, providing a comprehensive evaluation of
their effectiveness in deepfake detection. The results of this investigation demonstrate
that the SincNet model outperforms other models across different datasets within the
FaceForensics++ dataset. Notably, it achieves an impressive accuracy of 95.8% and an
F1-score of 95.9% when trained on the FaceShifter dataset. However, the performance of the
model varies depending on the specific dataset used for training, indicating the importance
of dataset selection in deepfake detection. The results highlight the potential of using
physiological signals, extracted from the pyVHR framework, in detecting deepfake videos.
Remarkably, the SincNet model demonstrated the ability to effectively distinguish between
real and fake videos using only the BVP signals extracted from the pyVHR framework.

iii

Περίληψη

Ta Deepfakes γίνονται γρήγορα πραγµατιϰότητα. Αυτά τα µέσα δηµιουργούνται από
πολύ ισχυρά εργαλεία που επιτρέπουν γρήγορο ϰαι φϑηνό χειρισµό µέσων. Τα βίντεο
αυτά µπορούν να χρησιµοποιηϑούν για ανήϑιϰες ϰαι ϰαϰόβουλες εφαρµογές, όπως η
διάδοση ψεύτιϰων ειδήσεων ή ψεύτιϰο πορνό. ∆εδοµένων των επερχόµενων προβλη-
µάτων που ϑέτουν αυτά τα µέσα, ερευνητές έχουν αρχίσει να εργάζονται µε διαφορε-
τιϰούς τρόπους για να προσπαϑήσουν να εντοπίσουν αυτούς τους τύπους µέσων. Αυτή
η διπλωµατιϰή εργασία διερευνά τη χρονιϰή προσέγγιση της ανίχνευσης deepfake, µε
ιδιαίτερη έµφαση στην εξερεύνηση των φυσιολογιϰών τεχνουργηµάτων που σχετίζονται
µε την ϰαταστροφή των φυσιολογιϰών σηµάτων, όπως η µεταβλητότητα του ϰαρδιαϰού
ρυϑµού, που λαµβάνονται µέσω του πλαισίου pyVHR. Η µελέτη χρησιµοποιεί πολλά
µοντέλα τελευταίας τεχνολογίας Συνελιϰτιϰού Νευρωνιϰού ∆ιϰτύου (CNN), συµπεριλ-
αµβανοµένων των AlexNet, ResNet ϰαι SincNet, µαζί µε διάφορες τροποποιήσεις ϰαι δι-
αφορετιϰές τεχνιϰές προεπεξεργασίας δεδοµένων. Αυτά τα µοντέλα εϰπαιδεύονται ϰαι
αξιολογούνται στο σύνολο δεδοµένων FaceForensics+, παρέχοντας µια ολοϰληρωµένη
αξιολόγηση της αποτελεσµατιϰότητάς τους στον εντοπισµό του deepfake βίντεο. Τα
αποτελέσµατα αυτής της έρευνας δείχνουν ότι το µοντέλο SincNet έχει ϰαλύτερη από-
δοση από άλλα µοντέλα σε διαφορετιϰά σύνολα δεδοµένων στο σύνολο δεδοµένων Face-
Forensics++. Συγϰεϰριµένα, επιτυγχάνει εντυπωσιαϰή αϰρίβεια 95,8% ϰαι F1-score 95,9%
όταν εϰπαιδεύεται στο σύνολο δεδοµένων FaceShifter. Ωστόσο, η απόδοση του µοντέλου
ποιϰίλλει ανάλογα µε το συγϰεϰριµένο σύνολο δεδοµένων που χρησιµοποιείται για την
εϰπαίδευση, υποδειϰνύοντας τη σηµασία της επιλογής δεδοµένων στην ανίχνευση deep-
fake βίντεο. Τα αποτελέσµατα υπογραµµίζουν τη δυνατότητα χρήσης φυσιολογιϰών
σηµάτων, που εξάγονται από το εργαλείο pyVHR, για την ανίχνευση deepfake βίντεο. Εί-
ναι αξιοσηµείωτο ότι το µοντέλο SincNet έδειξε την ιϰανότητα αποτελεσµατιϰής διάϰρ-
ισης µεταξύ πραγµατιϰών ϰαι ψεύτιϰων βίντεο χρησιµοποιώντας µόνο τα σήµατα BVP
που εξάγονται από το εργαλείο pyVHR.

v

Acknowledgements

I am deeply grateful to my supervisors, Professor Raffaella Lanzarotti, for her exceptional
guidance and mentorship throughout this master’s thesis. Moreover, I want to express
my heartfelt appreciation to her for suggesting the thesis topic. I would like to extend
a special appreciation to Assistant Professor Alessandro D’Amelio, whose expertise and
encouragement have been invaluable in the development of this work. Your thoughtful
inputs and suggestions have played a crucial role in refining the research methodology
and analysis. I also want to thank my co-supervisor, Professor Ilia Maglogianni, for their
contributions and valuable insights to this research. I would also like to thank the University
of Milan and the University of Piraeus for their support and access to resources, which
have been essential for conducting this thesis. I would also like to express my gratitude
to all my fellow students and friends for their mutual help and support throughout this
journey. Last but not least, I want to wholeheartedly thank my family for their endless
support and encouragement during all these years of studying. Your belief in me has been
my driving force, and I am forever grateful for your love and support.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Motivation and Prob Statement . 2
1.2 Thesis Structure . 3

2 Background 5

2.1 Deepfake Generation . 5
2.2 Feature Extractions . 7

2.2.1 PPG . 7
2.2.2 rPPG . 8
2.2.3 pyVHR . 9
2.2.4 Spectogram . 12

2.3 Deep Learning Techniques . 13
2.3.1 Artificial Neural Network . 13
2.3.2 Convolutional Neural Network . 14
2.3.3 Hyperparameters in CNN . 16
2.3.4 CNN Architectures . 16

2.4 Evaluation Measures . 20

3 Related Work 23

4 Proposed Methods 25

4.1 Approach Overview . 26
4.2 Data Pre-processing . 27
4.3 Models Architectures . 29
4.4 1D Approach . 30
4.5 2D Approach . 32

5 Experiments 35

6 Conclusions 41

7 Appendix 43

ix

Bibliography 49

List of Acronyms 51

List of Figures 53

List of Tables 55

x

1Introduction

Video manipulation refers to the act of altering or changing the content of a video for the
purpose of misleading or deceiving the audience. This can be achieved through various
techniques such as splicing, editing and adding or removing objects. Nowadays, media
manipulation is becoming cheaper and cheaper. With the advancements in digital video
editing software, it has become easier for individuals to create and distribute manipulated
videos. This has raised serious concerns about the spread of false information and the im-
pact it can have on public opinion and decision-making. Media manipulation is something
we have to deal with everyday of our life. An example of manipulated, widely spreading,
media is the deepfake.

The word deepfake is derived from combining the words "deep learning" and "fake," and it
is an artificial intelligence-powered video manipulation technique that use deep learning
algorithms to generate realistic-looking photos and videos of individuals doing or saying
things they never actually did. This techniquemay be used to generate videos that represent
actual individuals in imaginary circumstances, making it difficult to tell the difference
between real and fake material. Deepfakes have been a source of worry due to their ability
to spread misleading information and affect public opinion. Deepfakes have the potential
to be exploited for evil reasons such as extortion, misinformation, and propaganda, which
has alarmed both the public and corporate sectors.

Deepfakes have a negative impact on a variety of domains, including politics, organizations,
and the development of non-consensual explicit content. Deepfakes can be used in politics
to create fabricated video of politicians, which can spread false information, manipulate
public opinion, and disrupt the democratic process. Such malicious use of deepfakes can
undermine election integrity, with serious social and political implications. Furthermore,
deepfakes can have negative effects on organizations. For instance, they can be used as
a tool for blackmailing managers or executives by creating fake videos that make them
appear involved in unethical situations. This can lead to reputational damage, financial
losses, and weakened organizational decision-making. Additionally, the creation of non-
consensual explicit content through deepfakes, commonly known as "deepfake porn," can
cause significant emotional pain, humiliation, and reputational damage on the targeted
individuals, including employees of organizations. Deepfake porn can violate personal
privacy, consent, and dignity, harassment and abuse, which can have consequences for the
victims’ well-being and professional lives[16].

1

As deepfake technology continues to advance and become more accessible, it is crucial for
individuals to be able to recognize manipulated videos and understand the dangers they
pose to society. To limit the spread of video manipulation, effective tools and technologies
for detecting and preventing the spread of false information must be developed.

1.1 Motivation and Prob Statement

According to [16], deepfakes often produce arifacts that may be difficult for humans to
notice but can be easily detected through machine learning and forensic analysis. Several
studies have focused on identifying deepfakes by searching for specific artifacts. These ar-
tifacts can be categorized into seven types: spatial artifacts in blending, environments, and
forensics; temporal artifacts in behavior, physiology, synchronization, and coherence.

• Blending (spatial). Spatial artifacts that occur when the generated content is blended
back into the frame;

• Environment (spatial). The facial features of a fake face can appear inconsistent or
abnormal compared to the surrounding elements within the frame.

• Forensic (spatial). Spatial artifacts that have abnormalities or distortions in a video
when subtle features or patterns are added by the model (e.g. inconsistent head poses).

• Behavior (temporal). Temporal artifacts that result from unnatural mannerisms or
other human behaviors introduced by the model;

• Physiological (temporal). Computer-generated content have disruptions in the physio-
logical signals that are present in the human faces(e.g. heart beat, blood flow, breathing).

• Synchronization (temporal). Inconsistencies concerning speech to landmarks on the
mouth area, including differences between visemes and phonemes in fake videos;

• Coherence (temporal). Disrupted coherence between consecutive frames (e.g. flickers)

The primary objective of this research is to address research questions concerning deepfake
detection. Specifically, the following questions were explored:

1. Can the distinction between real and fake videos be achieved by utilizing physiological
signals extracted from the videos as input to the detection models?

2. What is the performance difference between using raw BVP signals and spectrogram
representations as input for 2D CNN models in the deepfake detection?

3. Can the proposed model predict more accurately when dealing with more realistic
videos manipulated algorithms?

2 Chapter 1 Introduction

The primary focus of this thesis is to investigate the temporal aspect of deepfake detection,
with a specific emphasis on exploring the physiological artifacts associated with the corrup-
tion of physiological signals, such as heart rate variability. The proposed method concerns
around the implementation of several signal-level models. For the purpose of training
and testing, the FaceForensics+ dataset is used. At first, state-of-the-art CNN models,
including AlexNet, ResNet, and SincNet, are introduced along with various modifications
and different data preprocessing techniques. These variations involve both raw signal
classification and the creation of spectrograms derived from the signals. The training
and testing processes of these models are described, with a careful comparison of their
performance across all the proposed approaches.

1.2 Thesis Structure

The rest of the thesis is composed of five chapters.

Chapter 2 presents the background needed for the understanding of this thesis. It covers
key aspects such as the dataset used, the feature extraction techniques employed, the CNN
models utilized, and the evaluation measures employed.

Chapter 3 displays various related works on deepfake detection approaches. This chapter
analyze different methodologies and techniques employed by researchers in tackling the
deepfake detection challenge.

Chapter 4 provides the methods and pipeline employed in this study. It offers detailed
specifications of the models utilized, along with the data prepossessing techniques.

Chapter 5 discusses the training process and the specific training parameters employed
in this study. It provides details of how the models were trained, optimizing their per-
formance to achieve accurate deepfake detection. Additionally, this chapter presents the
corresponding results obtained from the training process.

Chapter 6 serves as the conclusion of this thesis, summarizing the key findings, highlights,
limitations, and suggestions for future work.

1.2 Thesis Structure 3

2Background

This section provides important background concepts for the understanding of this thesis.
Initially, a brief explanation about deepfakes generation tools (deepfake algorithms) will
be introduced, followed by an overview of the techniques employed for features extraction.
Then, an introduction on some useful deep learning techniques and architectures will be
provided, along with the evaluation measures that will be used during the thesis.

2.1 Deepfake Generation

The FaceForensics++ dataset [19] is a collection of 1000 original video sequences designed
for forensic analysis. The dataset consists of videos sourced from 977 YouTube videos with a
resolution greater than 480p. These videos feature mostly frontal faces without occlusions,
making them suitable for automated tampering methods to generate realistic forgeries.
To create a large scale manipulation database, cutting-edge video editing techniques
were adapted for fully automated operation. The dataset includes three graphics-based
approaches (Face2Face, FaceShifter, and FaceSwap) and two learning-based approaches
(DeepFakes and NeuralTextures). All five methods require pairs of source and target actor
videos as input. The output of each method is a video composed of generated images. In
the following paragraphs, these methods will be briefly described.

1. Deepfakes: Despite the commonly use of the word "Deepfakes" as the general tech-
nique of face replacement, it is also a specific manipulation method. Within the
FaceForensics++ dataset, the implementation of that method is from the faceswap
GitHub repository, accessible here. This implementations involve replacing a face in a
target video with a face observed in a source video or image collection. The method
relies on two autoencoders with a shared encoder that are trained to reconstruct images
of the source and target faces.

2. Face2Face: Face2Face [20] is a real-time facial approach that transfers the expressions
of a source video to a target video while keeping the identity of the target person. This
method aims to recover facial identity from the video and tracks the facial expressions
of both the source and target videos using a dense photometric consistency measure,
which allows for accurate tracking of facial movements. Once the facial expressions
are tracked, the technique transfers the expressions from the source actor to the target

5

https://github.com/deepfakes/faceswap

video in a photo-realistic fashion, ensuring that the manipulated output video appears
natural and seamless.

3. FaceSwap: FaceSwap accordig to Rössler et al. [19] is a graphics-based approach used
to transfer the face region from a source video to a target video. The process begins
by detecting sparse facial landmarks in both videos. These landmarks are then used
to extract the face region. This approach fits a 3D template model with blendshapes
using the observed landmarks. This model is then projected onto the target image by
minimizing the difference between the projected shape and the localized landmarks.
The textures of the input image are used throughout this phase to improve the visual
coherence. Finally, the rendered model is blended with the target image, and color
correction is performed. These steps are repeated for all pairs of source and target
frames until the video sequence is complete.

4. NeuralText: NeuralTextures, as demonstrated by Thies et al. [21], uses facial reenact-
ment as an example of the rendering approach. The method leverages the original video
data to train a neural texture model specific to the target person, which includes a ren-
dering network. This approach is implemented by a patch-based GAN-loss approach.
NeuralTextures are composed of a set of optimal feature maps, rather than simple
RGB values, that are learned during the scene capture process. The NeuralTextures
technique relies on tracked geometry, which is used during both training and testing. It
is important to note that the facial expressions in the mouth region was only modified,
while the eye region was kept unchanged.

5. FaceShifter: FaceShifter [11] is a two-stage framework designed for high-quality
and occlusion-aware face swapping. In the initial stage, the framework generates the
swapped face by effectively utilizing and combining target attributes. In the second
stage, the framework address the problem of face occlusions using a specialized network
called Heuristic Error Acknowledging Refinement Network (HEAR-Net). The results
of this approach have visually appealing outcomes and notable advancements in the
field of face swapping.

The proposed framework exhibits exceptional performance in generating highly re-
alistic face images without the need for subject-specific training. Through extensive
experimentation, the FaceShifter algorithm significantly outperforms earlier face swap-
ping techniques. Figure 2.1 shows some examples obtained using the framework,
highlighting the superior capabilities in generating convincing and authentic face
swaps across various face pairs. These evidence depicted in the Figure 2.1 further
supports the advancements achieved by the FaceShifter algorithm in the field of face
swapping.

6 Chapter 2 Background

Fig. 2.1: Comparison of the FaceShifter framework to some of the other face swapping algorithms.
Clearly, FaceShifter framework shows greater realism to the target characteristics, such
as lighting and image resolution. Source: Li et al. [11]

2.2 Feature Extractions

2.2.1 PPG

Photoplethysmography (PPG) as it described in [1] is a non-invasive optical technique
used to detect blood volume changes in peripheral blood vesselss. The technique involves
a light source and a photodetector on the skin, usually a LED, and measuring the light
that is transmitted or reflected from the skin. An example is depicted in Figure 2.2 As
the volume of blood in the peripheral blood vessels changes with each heartbeat, the
amount of light transmitted or reflected also changes, resulting in a waveform known as a
photoplethysmogram. This waveform has gained significant attention from researchers
worldwide, as it holds the potential to provide valuable information in addition to heart
rate estimation and pulse oxymetry readings.

However, these signals are mostly measured from skin-contact ECG/BVP sensors, which
may cause discomfort and are inconvenient for long-term monitoring. To solve this
problem, remote photoplethysmography (rPPG) , which targets to measure heart activity
remotely and without any contact, has been developing rapidly in recent years.

2.2 Feature Extractions 7

Fig. 2.2: Optical heart rate sensing uses light to analyze pulse waves. Narrower arteries on the
left side reflect more green light (higher reflectivity), indicating lower pressure before
the pulse wave. Wider arteries on the right side absorb more light (lower reflectivity),
indicating a higher blood pressure pulse. Source: https://www.noldus.com/
blog/what-is-rppg

2.2.2 rPPG

Remote-photoplethysmography (rPPG) is an extension of PPG that allows for the mea-
surement of blood volume changes in peripheral blood vessels using a camera and light
source at a distance (contactless) from the subject. As an extension of the PPG, rPPG
can be used to estimate parameters such as heart rate, arterial pressure, blood glucose
level or oxygen saturation level. In more details, according to Wang et al. [23], remote
photoplethysmography (rPPG) is a non-contact technique for monitoring a person’s pulse
rate with a multi-wavelength RGB camera. The technology detects the small color differ-
ences caused by pulses on the surface of human skin. An example of these reflections is
depicted in Figure 2.3. The video of the person’s face is captured by the camera, and the
pulse signal is extracted from the video by the rPPG algorithm. For extracting the pulse
signal from a video, there are numerous main rPPG approaches. Blind Source Separation
(BSS), Chrominance-based rPPG (CHROM), Projection onto Blood Volume Pulse (BVP),
and Spatial Subspace Rotation (2SR) are a few examples. The primary distinction between
these rPPG approaches is how RGB-signals are combined into a pulse signal. The main
purpose of the rPPG in this thesis is to analyze and extract feature (estimation of the heart
rate variability) concerning the Blood Volume Pulse signals.

Fig. 2.3: In the skin reflection model, there are two types of reflections: specular and diffuse.
Among these, only the diffuse reflection carries pulsatile information. Source: Wang et al.
[23]

8 Chapter 2 Background

https://www.noldus.com/blog/what-is-rppg
https://www.noldus.com/blog/what-is-rppg

2.2.3 pyVHR

PyVHR is an open-source Python framework by Boccignone et al. [2] for analyzing Heart
Rate Variability (HRV) by extracting remote photoplethysmography (rPPG) signals from
videos, particularly videos of subjects’ facial skin. pyVHR framework is a multi-stage
pipeline that includes the entire process of extracting and analyzing HR fluctuations. It is
specifically developed to allow HRV analysis in theoretical research as well as practical
applicationswhere the use of wearable sensorswould be inconvenient or impracticable. The
pyVHR framework differentiates between two commonly used extraction approaches:

• Holistic: This method in pyVHR involves extracting the complete skin region from the
subject’s face in each video frame. Because of its simplicity, this method is widely used
in controlled conditions. However, it can result in significant variations in skin tone
and shading effects when illumination conditions are unstable.

• Patches: This method in pyVHR involves selecting a region of interest (ROI) consisting
of multiple patches placed on specific landmarks of the subject’s face in each video
frame. This approach is more comlex than the holistic method but offers advantages
such as the ability to exclude regions affected by shadows or poor lighting conditions.
Furthermore, the patches method have more reliable estimations due to the increased
number of observations that can be obtained.

Fig. 2.4: The pyVHR pipeline. (A) The pyVHR framework implements a multi-stage pipeline
that utilizes end-to-end deep learning (DL) methods for estimating Beats Per Minute
(BPM) through Power Spectral Density (PSD) analysis. (B) For traditional approaches,
the pyVHR framework follows a multi-stage pipeline that involves windowing and patch
collection, computation of RGB traces, pre-filtering, application of an rPPG algorithm to
estimate a Blood Volume Pulse (BVP) signal, post-filtering, and finally, BPM estimation
through PSD analysis. Source: [2]

2.2 Feature Extractions 9

The following section provide a detailed description of all the different modules that con-
stitute the pyVHR pipeline. These modules are shown in Figure 2.4 and can be summarized
as follows:

1. Skin extraction: In the first step, the goal is to segment the face skin to extract
areas related to PPG. This can be done either by collecting these areas in a single
patch (holistic approach) or by using multiple sparse patches that cover the whole
face (patch-wise approach). In general, the analysis in pyVHR excludes the regions
corresponding to the eyes and mouth. This can be achieved by using two different
methods in pyVHR shown in Figure 2.5 and summarized as follows:
• Convex-hull: This extractor uses the entire face and subtracts the ones calculated
based on the landmarks related to the eyes and mouth. This method creates a mask
that isolates the pixels connected with the skin.

• Face parsing: This extractor performs a semantic segmentation of the subject’s
face. It generates pixel-wise label maps for various semantic components such as
hair, mouth, eyes and nose. This allows to keep only the label mappings connected
with the skin regions.

Fig. 2.5: Comparison of the two skin extraction methods implemented in pyVHR: (A) Convex-hull
extraction approach and (B) Face parsing extraction approach. Source: [2]

2. RGB signal processing: Once the patches (skin regions of the face) have been selected,
they are tracked and used to calculate the average color intensities along overlapping
windows. This generates multiple time-varying RGB signals for each window. The
Figure 2.5 illustrate the Patch tracking on this process. In more details, the RGB signal
qi(t) is computed averaging Ni pixels pi j(t)

Ni
y=1 of the pixel intensity pi jϵ[0, 255]3 each

belonging to then i − th patch at time t:

qi(t) =
1
Ni

Ni∑
j=1

pi j(t) (2.1)

10 Chapter 2 Background

Where i = 1...P (P is the number of the overlapping patches, P=1 for the ‘holistic’
approach). Then the RGB signal of the i − th patch qi(t) is sliced into k overlapping
time windows M = Ws ∗ Fs, where Ws is the window length in seconds and Fs is the
sampling rate. Then the final equation is:

qk
i (t) = qi(t)w(t − kτFs) (2.2)

Where τ < Ws is the overlapping time and w is the rectangular window:

w(t) =

1, 0 ≤ t ≤ M
0, otherwise

Fig. 2.6: Patch tracking of a temporal window. Source: [2]

3. Pre-filtering: The raw RGB traces qi(t) can be optionally preprocessed by applying
intensity thresholds such as canonical filtering, normalization, or de-trending to limit
values outside the RGB colors interval. The resulting signals serve as inputs for any
subsequent rPPG method.

4. BVP extraction:

The rPPG method is applied to the time-windowed signals to produce a collection of
heart rate pulse signals (BVP estimates) for each patch. Specifically, the rPPG method
receives windowed RGB traces qi(t) as input. These traces have a length of K and are
processed to produce the estimated BVP signals yi(t) corresponding to the i − th patch
in the k − th time window. There are various methods implemented by pyVHR in order
to convert the RGB signals into a pulse signal (BVP), which are listed below:
• POS

• GREEN

2.2 Feature Extractions 11

• CHROM

• PCA

5. Post-filtering: Optionally, the computed BVP signals from the above mentioned
methods can be pass to a Band-Pass filter to exclude frequencies that fall outside the
normal range of heart rates.

6. BPM estimation: Finally, a beats per minutes (BPM) estimate is derived using basic
statistical analysis based on the peak points of the BVP Power Spectral Densities (PSD)
using Discrete time Fourier transform (DFT).

This project used the traditional approach of the pyVHR framework. It involved using the
Face Parsing extractor for skin extraction and employing the Patches approach with 100
patches on the face. During RGB signal processing, a window length of 6 seconds with an
overlapping parameter of 1 second was used. The Plane Orthogonal Skin (POS) method
was employed to convert the RGB signals into BVP signals, and an example of a predicted
BVP signal using the POS method is shown in Figure 2.7. A Band-Pass filter also used, and
only the selected BVP signals were retained for the following analysis and predictions.
It is important to note that the final step of the pyVHR framework, which involves BPM
estimation, was not implemented in this project.

Fig. 2.7: Example of a predicted BVP signals using POS method. Source: [2]

2.2.4 Spectogram

A spectrogram, according to Manhertz and Bereczky [15] is a visual representation of the
distribution of signals across frequencies and over time. The vertical axis of a spectrogram
typically represents time, the horizontal axis represents the discrete frequency steps, and
the amount of power detected is represented as the intensity at each time-frequency point.
The method to create spectograms is called short-time Fourier transform (STFT). The
STFT is built upon the Discrete Fourier Transform (DFT), which captures the frequency
and phase elements of a specific portion of a time-varying signal. The STFT focuses on

12 Chapter 2 Background

analyzing a small portion of a longer signal by calculating its Fourier transform. This
is done by multiplying the longer time function x[n] by a window function w[n]. There
are two commonly used window functions: the rectangular window, which extracts the
desired segment as it is, and the Hamming window, which applies a smoothing effect
at the edges to improve the frequency representation in the transformed domain. The
mathimatical representation of the discrete STFT can be descrived as follows

S T FT x[n](m, ω) =
∞∑

n=−∞

x[n]w[n − m]e− jωm (2.3)

where x[n] is the signal, w[n − m] is the window function, j is the complex unit, m is the time
(discrete), ω is the frequency (continuous) and n is the chunk. The magnitude squared of
the STFTx[n](m, ω) produce the spectrogram representation of the power spectral density
of the function.

An example of the STFT is depicted in the Figure 2.8, illustrating a speech signal along
with its corresponding spectrogram.

Fig. 2.8: The speech signal (top figure) and its spectrogram (bottom figure) of the vowel “A”: female
sound. Source: [3]

2.3 Deep Learning Techniques

2.3.1 Artificial Neural Network

Artificial Neural Networks (ANNs) are computational models inspired by the structure
and functioning of the human brain. They are widely used in machine learning and deep
learning to solve complex problems and make predictions. The network’s architecture

2.3 Deep Learning Techniques 13

typically includes an input layer, one or more hidden layers, and an output layer. An
example of an ANN is shown in Figure 2.9. Each layer has interconnected nodes called
artificial neurons. Each neuron receives input signals, applies weights to them, and passes
the result through an activation function, producing an output.

Fig. 2.9: Example of an Artificial Neural Network Model with 3 input neurons, one hidden layer
with 4 neurons and an output layer with two neurons. Source: [22]

2.3.2 Convolutional Neural Network

The Convolutional Neural Network (CNN) [17] is a type of deep neural network designed
mainly to deal with images. Although, this architecture is also used in different forms
of arrays: 1D for signals and sequences, 2D for images and audio spectograms and 3D
for videos. The architecture is composed of three parts: the convolutional layer, pooling
layer and the fully-connected layer (feed-forward part). An example of a typical 1D CNN
architecture is shown in the Figure 2.10. In this architecture, the convolutional layer
receives input data in the form of a vector and applies convolution using a 1 × N type
kernel. The feature map is created as one-dimensional data. A Fully-connected layer that
is created similarly to a traditional Artificial Neural Network (ANN) is used in the learning
process. Backpropagation is used for learning, where optimization techniques such as
stochastic gradient descent (SGD) based on the gradient descent method or the Adam
optimizer are employed. These techniques make it easier to adjust the network’s weights
and biases in order to reduce error and improve model performance.

• Convolutional Layer: The convolutional layer is a fundamental component of CNNs
that plays a crucial role in processing and extracting features from input data. It consists
of a set of learnable filters or kernels that slide across the input data, performing
convolutions to generate feature maps. During the convolution operation, the filters is
applied to local patches of the input and extract different feature and create multiple
feature maps. These feature maps capture different aspects of the input data. To
improve the network’s modeling capabilities, activation functions are applied after the
convolutional layer, introducing non-linearity. The most commonly used activation
functions in CNNs are the Rectified Linear Unit (ReLU) and Leaky ReLU. ReLU sets

14 Chapter 2 Background

Fig. 2.10: General structure of 1D CNN for signal pattern recognition. It contains the Convolutional
Layer, the Fully-connected Layer and the Output Layer. Source: Kim et al. [9]

negative values to zero and promotes sparse activation, while Leaky ReLU addresses
the "dying ReLU" problem by introducing a small slope for negative inputs. Graphically,
ReLU and Leaky ReLU can be represented as shown in the Figure 2.11. These activation
functions enable CNNs to capture complex relationships and improve their performance
in learning and extracting meaningful features from the input data.

Fig. 2.11: ReLU activation function vs. LeakyReLU activation function (slope a = 0.01). Source: Li
et al. [14]

• Pooling layer: As it is described by O’Shea and Nash [17], the pooling layer is positioned
after the convolutional layer in a CNN architecture to reduce the spatial dimensions
of the feature maps generated by the convolutional layer. It achieves this through two
commonly used operations: Max Pooling and Average Pooling. Both operations divides
the feature maps into non-overlapping rectangular or square regions, referred to as
pooling windows. For each window, the maximum or the average value within that
region is selected and passed on to the next layer, discarding the other values.This
downsampling process provides several benefits, including spatial dimension reduction,
improved efficiency, and increased robustness to local variations. However, the pooling
layer also has limitations, such as information loss and reduction of the spatial resolution.

• Fully Connected Layer:
The fully-connected layer, also known as the dense layer, is typically positioned towards
the end of the neural network architecture, following the convolutional and pooling
layers. In this layer, every neuron in the previous layer is connected to every neuron in
the current layer. The connections between neurons possess weights that determine
their significance. These weights are learned during the training process through

2.3 Deep Learning Techniques 15

backpropagation and gradient descent. Fully-connected layer is the final layer aiming
to detect patterns throughout the input from the convolutional layers and to generate
the final classification or regression output.

2.3.3 Hyperparameters in CNN

Hyperparameters in Convolutional Neural Networks (CNNs) are pre-defined parameters
that determine the architecture, behavior, and learning process of the network. They are
not learned from the data but rather selected by the user through trial and error. Grid
Search is a common approach used to find the optimal values for these hyperparameters.
In order to use grid search, a range of values must be specified for each hyperparameter,
and the network’s performance must be carefully assessed for each and every possible
combination. Analyzing and fine-tuning these hyperparameters is essential for optimizing
the CNN’s performance. The main hyperparameters used in a CNN are shown in the
Figure ??.

Hyperparameters Description

Kernel Size Kernel size of the convolutional layer.
Kernel Count Kernel count of the convolutional layer.
Activation Function Neuron’s activation function(ReLU, sigmoid).
Max Pooling Down-sampling operation that selects the maximum value

from a group of neighboring neurons.
Pooling Size Refers to the dimension of the pooling window.
Layer Depth Number of layers constituting entire network.
Padding Process of adding extra pixels (usually filled with zeros)

around the input image.
Zero-padding Involves adding zeros to the border of an input image or feature map.
Batch Normalization Νormalizes the output of a layer by adjusting and scaling the

activations within each mini-batch during training.
Loss Function Function to calculate error.
Learning Rate Amount of change in weight that is updated during learning.
Epoch Number of learning iterations.
Batch Size Group size to divide training data into several groups.
Dropout Regularization technique that randomly deactivates a certain

percentage of neurons during training.

Tab. 2.1: Hyperparameters of a general 1D CNN.

2.3.4 CNN Architectures

1. AlexNet model:
AlexNet is a convolutional neural network (CNN) architecture that made significant
contributions to the field of computer vision when it was introduced by Krizhevsky

16 Chapter 2 Background

et al. [10]. It was designed specifically for image classification tasks (2D Data) and
achieved remarkable performance on the ImageNet dataset, significantly outperforming
previous models. The architecture of AleNet is composed of eight layers, including
five convolutional layers, followed by three fully connected layers, one of those is
the output layer. Krizhevsky et al. [10] found out that using the relu as an activation
function accelerated the speed of the training process by almost six times. Two Dropout
layers were also used in order to provent the model from overfitting. The AlexNet
archritecture is depicted in the Figure 2.12.

Fig. 2.12: Simplified illustration of the AlexNet architecture, created for the ImageNet challenge.
Source: Hemmer et al. [8]

2. ResNet model:
One of the key challenges in training deep CNNs is the problem of vanishing gradients,
which can cause the network to have difficulty learning from the input data. This issue
arises when the gradients computed during backpropagation become extremely small.
The vanishing gradients problem limits the The network’s ability to recognize complex
patterns and relationships, which slows learning process. Moreover, when gradients
vanish, the network is impossible to update the weights of the earlier layers, which
can lead to slow convergence or even prevent the network from learning anything
useful. This problem limits the depth of neural networks and slows down learning.

Fig. 2.13: Residual learning: a building block. Source: He et al. [7]

To address this problem, He et al. [7] proposed a deep neural network architecture called
ResNet, which stands for "Residual Network". The ResNet model introduces a new
building block known as "residual block", shown in Figure 2.13, that help the gradients
to take a shortcut path and directly flow to earlier layers, allowing the gradient to
flow more easily through the network and preventing them from vanishing. The

2.3 Deep Learning Techniques 17

ResNet architecture consists of several layers of convolutional and pooling operations,
followed by a global average pooling layer and a fully connected layer for classification.
As it depicted in the Figure 2.14, there are five different architectures of the ResNet
model depending on the number of the Convolutional layers. This number could be
18,34,50,101 and 152, according to the complexity of the use case. These architectures
allows ResNet to effectively train deep networks by overcoming the problem caused
by vanishing gradients.

Fig. 2.14: Different architectures (sizes) of the ResNet model. All of them work the same way as
explained above. Source: He et al. [7]

3. SincNet model:
The SincNet model is a deep learning architecture specifically designed for processing
raw audio waveforms. It was introduced by Ravanelli and Bengio [18] and the key
innovation of this model lies in its ability to learn filters directly from the audio signal,
using the concept of band-pass filters. Traditional convolutional neural networks
(CNNs) use predefined filters to extract features from the input data that learn all
elements of each filter. In contrast, SincNet learns the parameters of band-pass filters
that are applied to the raw audio waveform. This allows the model to capture frequency-
specific information directly from the input signal.
The SincNet architecture consists, as it is depicted in the Figure 2.15 , of three main
components: the Sinc convolutional layer, the sub-sampling layer, and the fully con-
nected layers. The Sinc convolutional layer is a key element of the SincNet architecture
and distinguishes it from traditional CNN models. Its ability to learn band-pass filters
directly from the input waveform allows SincNet to effectively capture frequency-
specific information and model raw audio signals without the need for handcrafted
features. More specifically, SincNet layers train "wavelets" for feature extraction by
applying convolution operations on the input signal:

y[n] = x[n] ∗ g[n, θ] (2.4)

18 Chapter 2 Background

Fig. 2.15: The architecture of SincNet model. Source: Ravanelli and Bengio [18]

where n is represents the index of the probe and θ represents the parameters of the
wavelets that are determined during the training process. The equation of the wavelet
function g is:

g[n, f1, f2] = 2f2sinc(2πf2n) − 2f1sinc(2πf1n) (2.5)

where sinc function

sinc(x) =
sin(x)

x
(2.6)

f1 and f2 are the cutoff frequencies determined by the SincNet layer during the training
phase. The initialization of the pair of filters (f1, f2) in the SincNet architecture is
based on the frequencies typically employed for computing Mel-frequency cepstral
coefficients (MFCCs).
The sub-sampling layer in the SincNet architecture reduces the dimensionality of the
feature maps, enabling the model to capture more robust and efficient representations.
This reduction in dimensionality helps improve the efficiency and effectiveness of the
network. The fully connected layers in SincNet then combine the extracted features
and are responsible for performing classification or regression tasks. Additionally,

2.3 Deep Learning Techniques 19

one advantage of SincNet is its ability to reduce the number of parameters in the first
convolutional layer.

2.4 Evaluation Measures

The last subsection of this chapter presents the evaluation measures that will be used in
the rest of this thesis for the evaluation of the models across all different datasets.

In the final subsection of this chapter, the evaluation measures to be used throughout the
thesis for assessing the performance of the models across various datasets are presented.
These evaluation measures will be used a framework for assessing and comparing the
effectiveness of the models in different scenarios.

Cross-entropy loss is a loss function commonly used in machine learning and opti-
mization. It measures the number of bits required to transform the output probability
distribution of a model for a specific input into the actual distribution of that input. The
cross-entropy loss serves as a measure of a model’s performance. It penalizes the probabil-
ity of each predicted class based on the distance from the actual expected value. A higher
cross-entropy loss indicates greater divergence between the predictions and the ground
truth. Ideally, the loss should be minimized and close to zero. This loss function is also
referred to as log loss or logarithmic loss. Mathematically, the cross-entropy loss can be
formally defined as follows:

Loss = −
1
N

N∑
i=1

[
yi log2 ŷi + (1 − yi) log2 (1 − ŷi)

] (2.7)

where N is the total number of samples, yi is the ground truth and ŷi is the sample
prediction.

Accuracy is a commonly used evaluation measure for classification tasks. It measures
the proportion of correctly classified instances out of the total number of instances in a
dataset. In other words, accuracy calculates the percentage of predictions that match the
true labels. Accuracy is a straightforward measure that provides a general overview of the
model’s performance. It is easy to interpret and understand, making it a popular choice
for evaluating classification models. It is defined as:

20 Chapter 2 Background

Acc. =
Number of Correct Predictions
Total Number of Predictions

(2.8)

However, it is important to note that accuracy alone may not provide a complete picture
of a model’s performance, especially in scenarios when the classes are imbalanced. In
such cases, additional evaluation measures, such as precision, recall, or F1 score, may be
necessary to assess the model’s performance.

Recall is an evaluation metric used in binary classification tasks. It quantifies the ability
of a classification model to correctly identify positive instances from the total number of
actual positive instances in a dataset. It is defined as:

Recall =
TP

TP + FN
(2.9)

Precision is an evaluation metric used also in binary classification tasks. It assesses the
ability of a classification model to accurately identify positive predictions from the total
number of predicted positive instances. It is defined as:

Precision =
TP

TP + FP
(2.10)

where TP is the number of true positives, FP the number of false positives and FN the
number of false negatives.

F1 score is an evaluation metric that combines precision and recall into a single score for
binary classification tasks. It provides a balanced assessment of a model’s performance
by considering both the ability to correctly identify positive instances (recall) and the
accuracy in classifying positive predictions (precision).

The F1 measure is calculated using the harmonic mean of precision and recall and it is
defined as:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

TP
TP + 1

2 (FP + FN)
(2.11)

2.4 Evaluation Measures 21

F1 score provides information about the performance of one of the categories. During the
multi-label classification, metrics that calculate the performance of all labels were used
like:

m-F1 (macro-F1) is the unweighted average of all F1 scores per label. It is defined as:

m−F1 =
F11 + F12 + ... + F1C

C
(2.12)

Where F11 is the F1 score of the first label and C is the number of labels.

µ-F1 (micro-F1) is the global average F1 score, also known as the accuracy score, is
calculated by summing the true positives (TP), false positives (FP), and false negatives (FN)
for each label and then calculating the proportion of correctly classified samples out of all
observations. Hence, it represents the accuracy of the classification model. It is defined
as:

µ−F1 =

∑C
i=1 TPi∑C

i=1 TPi +
1
2

(∑C
i=1 FPi +

∑C
i=1 FNi

) (2.13)

When the dataset is imbalanced, we need both of these metrics to understand how our
models perform. µ-F1 assigns weight to the labels with more samples, while m-F1 treats
all labels equally.

In cases where the dataset is imbalanced, it is important to consider both µ-F1 and m-F1

metrics to gain a better understanding of the model’s performance.

22 Chapter 2 Background

3Related Work

Zhao et al. [25] proposes the pair-wise self-consistency learning (PCL) method for deep-
fake image detection. The proposed approach leverages the concept of source feature
inconsistency within forged images to train Convolutional Neural Networks (ConvNets)
for representation learning. Experimental results on seven datasets, including the Face-
Forensic++ dataset, demonstrate that PCL outperforms the state of the art, improving
average AUC from 96.45% to 98.05% in in-dataset evaluation and from 86.03% to 92.18% in
cross-dataset evaluation.

[12] This PDF file introduces a new method to detect AI-generated fake face videos by
analyzing eye blinking. The method involves several steps, including pre-processing
video frames, locating face areas, extracting facial landmarks, aligning face regions, and
extracting eye contours. Eye blinking detection is performed using a combination of
Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM) network.
Experimental results demonstrate that the Long-term Recurrent Convolutional Networks
LRCN method achieves the highest performance (0.99) compared to CNN (0.98) and EAR
(0.79) in accurately detecting eye blinking in videos. This approach provides a robust
solution for detecting AI-generated fake face videos by focusing on the eye blinking
behavior.

Research has demonstrated that biological signals, such as heartbeat, can be a reliable indi-
cator of authentic videos. For instance, Ciftci et al. [5] proposed a Generative Adversarial
Network (GAN) based model that leverages the "heartbeat" of deep fakes to detect their
source. The proposed model comprises multiple detector networks that receive real videos
as input. Following this, a registration layer is used to pair real and fake videos and extract
facial regions of interest (ROI) and biological signals to create spatiotemporal windows
called PPG cells. These cells contain multiple faces extracted using a face detector. Finally,
a classification layer is employed to determine whether the video is fake or real. The
authors evaluated their model using publicly available datasets and achieved an accuracy
of 97.3% in detecting deep fakes, and the source model with 93.4% accuracy.

Themethod proposed by Yang et al. [24] is based on identifying errors introduced during the
splicing of synthesized face regions into original images by estimating 3D head poses from
the face images and developing a classification method. The authors observe a significant
difference in the estimated head pose between Deep Fakes and authentic images. They
use these differences to train a simple SVM-based classifier to differentiate original and

23

Deep Fakes. Τhe proposed method achieves an Area Under ROC (AUROC) of 0.843 on the
DARPA GAN Challenge dataset and 0.738 AUROC on the Deep Fake Dataset using head
orientations and translations as features.

Li and Lyu [13] proposes a deep learning approach to detect DeepFake videos by targeting
face warping artifacts. The authors observe that current DeepFake algorithms generate
images with limited resolutions, which are then transformed to match the faces to be
replaced in the source video. To capture these artifacts, they employ a dedicated con-
volutional neural network (CNN). The CNN is trained on a dataset comprising real and
DeepFake videos, with variations in the DeepFake generation algorithms and techniques.
The CNN is trained to classify videos as real or DeepFake based on the presence of face
warping artifacts. This approach leverages the power of deep learning to effectively detect
DeepFake videos by focusing on the characteristic artifacts introduced during the face
transformation process. This method also achieves high accuracy on the DeepFake TIMIT
dataset, with the best-performing CNN model achieving an accuracy of 98.5%.

Ciftci et al. [4] introduces a novel approach for detecting deep fakes by utilizing hidden
biological signals in portrait videos as an implicit descriptor of authenticity. The pro-
posed approach achieves a high accuracy of 99.39% in detecting fake content. The study
demonstrates that involving biological signals dramatically improves deep fake detec-
tion compared to simple machine learning-based approaches. The spatial and temporal
properties of biological signals are important, and these enable the network to perform
significantly better than complex and deeper networks. The paper documents all experi-
ments with the signal transformation, feature set, and SVM classification accuracy, trained
on FF and DF datasets. The experiments show that biological signals are not consistently
preserved in different synthetic facial parts. The results show a slight general tendency
of creating false positives, but the probabilistic video classification, incorporating fre-
quency domain, and appropriate segment durations eliminate these side effects. The paper
concludes that the proposed system, named FakeCatcher, is a promising candidate for
automatic monitoring systems, as it prioritizes minimizing false negatives while managing
false positives within an acceptable range for secondary manual verification processes.

Demir and Ciftci [6] presents a novel approach to detect deep fakes using gaze tracking.
The authors focus on identifying distinct eye and gaze features that differentiate deep fakes
from real videos. They analyze and compare these signatures across different variations of
real and fake videos, and use a deep neural network to classify any video as real or fake with
high accuracy. The results of their experiments show that their approach achieves high
accuracy in detecting deep fakes, with a mean accuracy of 90.6% and 90.3% in two 5-fold
validations using different dataset splits, and 80.72% and 73.68% accuracies in cross-dataset
evaluations between CDF and DFor datasets.

24 Chapter 3 Related Work

4Proposed Methods

In this chapter, the proposed approaches for deepfake video detection are presented.
The chapter begins with an overview of the adopted methodology, providing a clear
understanding of the key components of the research. Following this, an in-depth analysis
of the preprocessing techniques employed is presented. Finally, the chapter showcases the
various architectures of the Convolutional Neural Network (CNN) models utilized.

Fig. 4.1: Schema of proposed pipeline.

25

4.1 Approach Overview

Deepfake detection is a binary classification problem, distinguishing between REAL (label
0) and FAKE (label 1) labels. This type of classification is common in the context of deepfake
detection, as the goal is to determinewhether a given video is real ormanipulated. Figure 4.1
illustrates the main parts of the recommended approach. The FaceForensics++ dataset is
partitioned into five smaller datasets with 1000 real videos and their corresponding fakes,
each altered by a deepfake algorithm. As a result, each of the five datasets contains 2000
videos. Each dataset is named after the specific altering technique employed. The core of
the proposed method is in the extraction process of the BVP (blood volume pulse) signals
from the input videos using the pyVHR framework. These produced signals undergo several
preprocessing techniques before being fed into various state-of-the-art CNNmodels, which
provide the predicted label for each specific input signal. All the models were implemented
from scratch without the used of the transfer learning technique. As a result, all the
weights in the CNN models were initialized randomly and updated specifically for the
deepfake problem, ensuring a custom-tailored approach for better accuracy and reliable
predictions.

The fundamental aspect of this thesis approach concerns individual signal-based classifica-
tion. In other words, the focus lies on classifying each signal independently as opposed
to aggregating signals from multiple frames. This unique approach allows the models
to make decisions based on individual signal characteristics, improving the accuracy of
deepfake video detection.

In this thesis, the approach to address the deepfake detection challenge is split into two
distinct categories of CNNmodels. The first category is focused on 1D classification, where
the individual BVP signals extracted from the videos are used as inputs to the CNN models.
The second category involves CNN models for 2D classification, achieved by transforming
the 1D BVP signals into 2D data through spectrograms.

Lastly, all models, including 1D and 2D CNNs, were trained using only the first deepfake
dataset, known as the Deepfakes dataset. Due to time constraints and limitations in
available resources, this initial training served as a foundational step to choose the optimal
model. Moreover, the best-performing model was further trained on the other four datasets,
generating additional results. Although the ideal scenario would have involved training
all models on the entire dataset collection, practical restrictions required this step-by-step
approach.

26 Chapter 4 Proposed Methods

4.2 Data Pre-processing

Before training the models, several important preprocessing steps were applied to improve
the quality of the data. These steps ensured that the models could better recognize signifi-
cant patterns and features, leading to more accurate and effective deepfake detection.

Signals Creation

In the FaceForensics++ dataset, videos exhibit varying durations, resulting in a different
number of extracted BVP signals for each video. To this point, the face of the subject is
detected and a set of 100 patches is automatically tracked on it. This tracking involves a
temporal window of 6 seconds moving through the entire video duration with a 1-second
overlap. Within each temporal window, 100 patches are extracted, each containing 150
data points. For example, if a video have 8 frames within the temporal window, a total
of 800 individual signals (8 * 100) are generated. These BVP signals from the videos are
stored in nested lists, with each list varying in size based on the video duration.

Resampling

It is worth noting that the frame rates of the videos in FaceForensics++ dataset, where the
BVP signals are estimated, vary. Although the majority of the videos are recorded at 25fps,
some have different frame rates. Specifically, the FaceForensics++ dataset contains videos
with the following frame rates: 15, 18, 24, 25, 29, 30, 50, and 60. Additionally, each BVP
signal is 6 seconds, which leads to different lengths of the final BVP signal depending on
the video’s frame rate. The corresponding lengths of the BVP signals are as follows: 90,
108, 144, 150, 174, 180, 300, and 360. Since the FaceForensics++ dataset contains videos
with varying frame rates, all the BVP signals were re-sampled to a common sampling rate
of 25Hz. Example of this transformation is shown on Figure 4.2. This step enabled the
signals to be standardized and made them suitable for the model training process. As a
result, the length of each BVP signal became 150, regardless of the video’s original frame
rate.

Unfolding Process

Given the variation in video durations within the FaceForensics++ dataset, a challenge
arises in handling all videos in the same way during the deepfake detection process. To
address this issue, a solution was created by unfolding the signals specific to each individual
video from the nested list structure and organize them into a new list, without considering
their original sequence within the video. This method treated the BVP signals of each
video independently, regardless of the video duration. This method effectively solved the

4.2 Data Pre-processing 27

Fig. 4.2: Specific signal before (29Hz) and after (25Hz) the resample process.

problem of varying video lengths, making sure that all signals were ready to be fed into
the various DeepFake Detectors(CNN models).

Missing Data Points

In certain instances, due to the movement of the area of interest (face) and the positioning
of the patches during BVP signal extraction, some signals may contain missing data points,
as depicted in Figure 4.3. To ensure the integrity of the data fed into the CNN models, any
signals with missing data points were removed from the dataset. This step was taken to
maintain the consistency of the BVP signals, as missing data points can interfere with the
proper feeding of the CNN models.

Fig. 4.3: BVP signal with missing data points.

28 Chapter 4 Proposed Methods

(a) BVP Signal

(b) Spectogram

Fig. 4.4: Original BVP signal and the corresponding Spectogram.

Spectogram

In the second approach an important step is the conversion of one-dimensional BVP
signals into spectograms (two-dimensional data). To find the optimal parameters for this
conversion, various combinations of window size and hop length were experimented.
Different combinations, such as 50ms, 10ms, 50ms, 5ms, 100ms, 10ms, and 100ms, 5ms,
were tried to evaluate their impact on the resulting spectrograms. The optimal parameters
that have the most informative spectograms are presented in Table 4.1. Figure ?? shows
an example of a spectrogram derived from a BVP signal, along with the corresponding
original BVP signal.

Model Domain

Sampling rate 25Hz
Window length 50
Hop length 5

Tab. 4.1: Optimal parameters of spectrograms.

4.3 Models Architectures

The architecture overview of the CNN models used in this thesis falls into two distinct
categories: one for processing 1D BVP signals and the other for handling 2D spectrograms.
For the 1D BVP signals, three CNNmodels were employed: AlexNet, ResNet50, and SincNet.

4.3 Models Architectures 29

For the 2D spectrogram inputs, two CNN models, AlexNet, and ResNet50, were adapted to
handle the transformed data.

4.4 1D Approach

In the 1D model explanation section, an important point is the uniform input shape shared
across all 1D CNN models, which is (150, 1). Additionally, the detailed configurations of
each 1D CNN model, including AlexNet, ResNet50, and SincNet, will be explored.

AlexNet

In the initial analysis, the AlexNet CNN model served as the foundation for the first
deepfake detection architecture. However, through a careful process of Hyperparameters
tuning utilizing the KerasTuner optimization framework, significant changes were adopted
in the model’s architecture. By building upon the standard AlexNet, a more suitable
and effective architecture for the deepfake detection challenge was created. The updated
architecture maintained the core structure with five convolutional layers, but introduced
changes in the number of filters employed. Additionally, an extra fully connected layer
was added, changing the model’s depth and allowing it to capture more robust patterns
from the input BVP signals. To improve generalization and reduce over-fitting, a Batch
Normalization layer was added after every Convolutional Layer, and a Dropout Layer
with a rate of 0.5 was introduced after every Fully Connected Layer. This deeper CNN
model demonstrated a notable improvement in performance, resulting in more accurate
and reliable results for deepfake detection. The updated architecture can be shown in
Table 4.2, providing a more clear view of the new model. Furthermore, Figure 7.1 depicts
the whole architecture of the new model with the respective parameters.

ResNet50

The second model utilized in the thesis was the ResNet50, a CNN model containing the
impressive number of 50 layers. Unlike the first model (AlexNet), ResNet50 was employed
without using Hyperparameters tuning for its architecture. However, a crucial modification
was made to the first layer of this CNN model to make it compatible with the 1D data
input. Although the complete ResNet50 architecture is quite big to be presented in the
thesis, Figure 4.5 provides an overview of its components. For the specific 1D deepfake
detection problem, a small representation of the ResNet50 architecture is illustrated in
Figure 7.2.

30 Chapter 4 Proposed Methods

Layer Num. Layers Kernel Size Activ. Function Pool Size Stride Padding

Conv1D 96 11 ReLU - - Same
MaxPool1D - - - 1 1 Same
Conv1D 384 5 ReLU - - Same
MaxPool1D - - - 1 2 Same
Conv1D 256 11 ReLU - - Same
MaxPool1D - - - 3 1 Same
Conv1D 256 3 ReLU - - Same
MaxPool1D - - - 1 1 Same
Conv1D 96 3 ReLU - - Same
MaxPool1D - - - 1 1 Same
Dense 2048 - ReLU - - -
Dense 4096 - ReLU - - -
Dense 4096 - ReLU - - -
Dense 1 - Sigmoid - - -

Tab. 4.2: Updated AlexNet architecture after performing Hyperparameter Tunning.

Fig. 4.5: ResNet50 architecture.

SincNet

The final model used for the 1D signal classification problem was the SincNet model. In this
model, the Hyperparameter tuning process was employed using the KerasTuner optimizer
framework, similar to the approach employed for the AlexNet model. The resulting
architecture was carefully modified to better suit the challenges of deepfake detection.
The new model comprises a total of five Convolutional Layers and five Fully Connected
Layers. The first layer, SincConv1D, was specifically designed to improve the network’s
ability to capture patterns relating to signal-based problems while effectively filtering out
noise and undesirable features. This layer reduces the number of parameters, enabling
the extraction of highly selective filters and also reducing the computational demands of
the model. Furthermore, the addition of more layers to the existing model improves its
robustness, making it more capable of handling the complex task of deepfake detection.
The new model architecture is presented in Table 4.3, offering a clearer understanding of
the new model’s structure. Additionally, Figure 7.3 shows the complete architecture of the

4.4 1D Approach 31

updated model, along with its respective parameters, providing a clear representation of
the changes made during the Hyperparameters tuning process.

Layer Num. Layers Kernel Size Activ. Function Pool Size Stride Padding

SincConv1D 64 1 LeakyReLU - 1 Same
MaxPool1D - - - 2 1 Same
Conv1D 64 3 LeakyReLU - - Same
MaxPool1D - - - 2 1 Same
Conv1D 128 3 LeakyReLU - - Same
MaxPool1D - - - 2 1 Same
Conv1D 128 3 LeakyReLU - - Same
MaxPool1D - - - 2 1 Same
Conv1D 64 3 LeakyReLU - - Same
MaxPool1D - - - 2 1 Same
Dense 256 - LeakyReLU - - -
Dense 512 - LeakyReLU - - -
Dense 512 - LeakyReLU - - -
Dense 256 - LeakyReLU - - -
Dense 1 - Sigmoid - - -

Tab. 4.3: Updated SincNet architecture after performing Hyperparameter Tunning.

4.5 2D Approach

In this section, the 2D models utilized in the deepfake detection process will be explained.
An additional step was introduced before feeding the models, involving the conversion
of the 1D data into 2D format through the spectrogram procedure. By performing this
conversion, the input data shape transformed from (150, 1) to (26, 31, 1), as the data
now represents pictures that capture frequency information. Finally, a detailed review of
the AlexNet and ResNet50 models, adapted to process the transformed 2D data, will be
presented.

AlexNet

For the first 2D model, the AlexNet model was employed. In this case, the model was
utilized without the Hyperparameters tuning process. The architecture of the AlexNet
model is depicted in Figure 2.12. However, due to the computational requirements of the
model and the limitations of the available resources for the analysis, it was not possible to
train the AlexNet model using the spectrograms as input data with the entire dataset.

32 Chapter 4 Proposed Methods

ResNet50

In the 2D approach, the ResNet50 model was chosen as the second model for deepfake
detection. Similar to the previous approach (1D ResNet50), the ResNet50 model was used
without employing the KerasTuner framework. However, in this case, the model was
adapted specifically for 2D data input. Figure 4.5 provides a general overview of the
ResNet50 model, while Figure X shows a small part of the detailed representation of the
specific architecture tailored for the 2D deepfake challenge.

For the final layer of every CNN architecture, the "Sigmoid" activation function was
employed, specifically chosen to suit the binary classification problem at hand. This
activation function is well-suited for tasks where the goal is to determine a binary outcome,
such as distinguishing between real and fake videos in the context of deepfake detection.
By using the "Sigmoid" activation, the models are able to provide output values between 0
and 1.

4.5 2D Approach 33

5Experiments

In this chapter, the training process and performance evaluation of the previously intro-
duced deepfake detection models are explored. Additionally, an extensive search to identify
the best training hyperparameters were conducted, aiming to optimize each model’s per-
formance. Following the training process, the evaluation of each model’s performance is
presented. Key evaluation metrics, such as accuracy and F1-score, are analyzed to assess
the models’ effectiveness in distinguishing between real and deepfake videos. These met-
rics were chosen for their ability to provide a balanced view of the models’ classification
performance, considering both true positive and false positive rates.

In the first part of the training process, four different CNN models were trained. To
identify the optimal training hyperparameters, the KerasTuner framework were employed,
following by custom trial and error techniques. For the training optimizer, the Adam
Optimizer were utilized, knowing for its efficiency in gradient-based optimization tasks.
As the deepfake challenge is a binary classification problem, the BinaryCrossentropy loss
function was selected, while the BinaryAccuracy metric is used as the evaluation metric
during training. A batch size of 256 was applied across all models. It is important to note
that the learning rate was different in the AlexNet 1D model compared to the other models,
as it required a smaller value to achieve better convergence. Table 5.1 shows the optimal
hyperparameters for all the trained models, representing the fine-tuned configurations
that maximize their performance.

During the training process, an Early Stop callback with a patient equal to five were
used, which helped to determine the ideal number of epochs for each model. More
specifically, all models were stopped the training process after five epochs when there
was no improvement in validation accuracy. This approach prevented overfitting, since
identifies the most suitable stopping point, making sure the the models would achieve
the best possible generalization. Furthermore, for the actual training process, 80% of the
dataset was utilized. Within this 80%, 80% was used for the training phase, while the
remaining 20% served as the validation set. The final 20% of the dataset was dedicated to
the final model evaluation, providing an unbiased validation of the models’ performance
on unseen data.

During the evaluation of the models, key metrics such as accuracy and F1-score were very
important. Additionally, the training time of each model was another crucial metric taken
into account for the computational efficiency. All models were tested on the same test

35

Parameters Values
Optimizer Adam
Learning Rate 0.0001
Metric BinaryAccuracy
Loss BinaryCrossentropy
Batch Size 256

(a) AlexNet 1D

Parameters Values
Optimizer Adam
Learning Rate 0.001
Metric BinaryAccuracy
Loss BinaryCrossentropy
Batch Size 256

(b) ResNet50 1D

Parameters Values
Optimizer Adam
Learning Rate 0.001
Metric BinaryAccuracy
Loss BinaryCrossentropy
Batch Size 256

(c) SincNet 1D

Parameters Values
Optimizer Adam
Learning Rate 0.001
Metric BinaryAccuracy
Loss BinaryCrossentropy
Batch Size 256

(d) ResNet50 2D

Tab. 5.1: Optimal training Hyperparameters

set, providing a fair and consistent basis for comparison. The results obtained from this
evaluation process are presented in Table 5.2, offering a better overview of each model’s
performance. The combined values of accuracy, F1-score, and training time allowed for a
better understanding of the models’ effectiveness and efficiency for the deepfake detection
challenge.

It is important to be noted that during the training process, each signal is learned indepen-
dently by the model. However, for the testing part, a video-level classification is required.
To achieve this, all the individual signals from each video in the test set are gathered
together. Then, a majority vote technique is employed to determine the final classification
for the video. For example, if a testing video contains 1000 signals and the Deepfake
Detector (model) classifies 700 signals as real and the remaining 300 as fake, the final
classification for the video is determined as real, as the majority of signals are classified
as real. This video-level classification approach ensures a better decision-making process
based on the majority of individual signal predictions, providing a robust evaluation of the
deepfake detection performance.

Models Accuracy F1-score Training time (seconds) Epochs

AlexNet 1D 74.2% 75.1% 72046 19
ResNet 1D 78.5% 78.9% 126083 21
SincNet 79.9% 81.5% 22255 28
ResNet 2D 70.1% 70.3% 1800136 25

Tab. 5.2: The results of every model on the FaceForensics++ dataset using only the deepfakes
algorithm.

The results of the evaluation clearly indicate that the SincNet model outperforms the
other models in terms of accuracy and F1-score, achieving 79.9% and 81.5%, respectively,

36 Chapter 5 Experiments

making it the most efficient choice for deepfake detection. Furthermore, it achieved these
impressive results in significantly less training time (22255 seconds) compared to the
other models, and over just 28 epochs. The ResNet 1D model also performed well, with
an accuracy of 78.5% and an F1-score of 78.9%, although it took a longer time to train
(126083 seconds) over 21 epochs. The AlexNet 1D model showed reasonable results with
an accuracy of 74.2% and an F1-score of 75.1%, taking 72046 seconds of training over 19
epochs. On the other hand, the ResNet 2D model exhibited the lowest accuracy and F1-
score of 70.1% and 70.3%, respectively. Moreover, it had the longest training time (1,800,136
seconds) and was trained over 25 epochs. Based on these findings, the SincNet model was
selected for further training and evaluation on the remaining four datasets (Face2Face,
FaceShifter, FaceSwap, NeuralText). Four additional models were then created, using the
SincNet model as the foundation for the deepfake detection task.

For the training process of the second part, the SincNet model was used following the
same architecture and the same training Hyperparameters as in the first training part. Also
in this part the Early Stop callback with a patient equal to five were used. The Figure 5.1,
depict the accuracy and loss plots of the SincNet model for each dataset during the training
process.

The plot shows the model’s performance over a certain number of epochs, which are
complete passes through the entire training dataset. The x-axis typically represents the
number of epochs, while the y-axis represents the metric values. The number of epochs
is different between every model due to the fact that the Early Stop callback was used.
From the Figure 5.1 it is visible that the SincNet model trained in the FaceShifter dataset
demonstrated the highest training accuracy and lowest training loss, making it the most
effective model among those trained for Deep Fake detection.

SincNet Models Accuracy F1-score Training time (seconds) Epochs

DeepFakes 79.9% 81.5% 22255 28
Face2Face 83.8% 82.2% 20488 26
FaceShifter 95.8% 95.9% 24879 31
FaceSwap 89.0% 90.2% 11513 17
NeuralText 62.3% 70.1% 12039 18

Tab. 5.3: The results of the SincNet model on all the different datasets within the FaceForensics++
dataset.

For the evaluation of the SincNet model on every dataset, the same metrics as before
were used. The results obtained from this evaluation process are presented in Table 5.3,
providing a gathered overview of the the model’s performance on each dataset. The results
demonstrate that SincNet model using the NeuralText dataset had the lowest accuracy,
while using the FaceShifter dataset had the highest. It is worth noting that the FaceShifter
deepfake algorithm is known for producing the most realistic appearances, making this

37

(a) Deepfakes (b) Face2Face

(c) FaceSwap (d) FaceShifter

(e) NeuralText

Fig. 5.1: Accuracy and loss training plots of the SincNet mode on every dataset.

38 Chapter 5 Experiments

approach particularly robust in distinguishing real and fake videos (95.8% accuracy). This
happened due to the fact that the FaceShifter algorithm changes a lot the background
information (the BVP signals dirived using the pyVHR) of the video in order to make the
video as realistic as possible. On the opposite site, the NeuralText algorithm is not so
robust and realistic as the other algorithms, so the background information didn’t change
a lot and that is why the accuracy using this dataset is low (62.3% accuracy). As a result,
the proposed model has the ability to distinguish very accurately those deepfake videos
that humans can’t.

39

6Conclusions

This thesis aimed to investigate the temporal aspect of deepfake detection, focusing on the
physiological artifacts associated with the corruption of physiological signals, such as heart
rate variability. The research questions explored revolved around the distinction between
real and fake videos utilizing physiological signals, the performance difference between
using raw BVP signals and spectrogram representations as input for 2D CNN models, and
the predictive accuracy of the proposed model when dealing with more realistic videos
manipulated by algorithms.

The research employed several state-of-the-art CNN models, including AlexNet, ResNet,
and SincNet, along with various modifications and different data preprocessing techniques.
The models were trained and tested on the FaceForensics+ dataset, which provided a
comprehensive platform for evaluating the effectiveness of the proposed approaches.

The results obtained from the study provide valuable insights into the effectiveness of
the proposed models for deepfake detection. The SincNet model demonstrated superior
performance across all the different datasets within the FaceForensics++ dataset, achieving
the highest accuracy and F1-score when trained on the FaceShifter dataset. This suggests
that the model was highly effective in learning from this dataset and making accurate pre-
dictions. However, the performance of the model varied depending on the specific dataset
used for training, indicating the importance of dataset selection in deepfake detection.

Furthermore, the results showed that the SincNet model outperformed other CNN models
such as AlexNet and ResNet when trained on the same dataset. This highlights the
effectiveness of the SincNet model in deepfake detection and its potential for further
research and development in this field.

However, the study also revealed some limitations. The accuracy of the models was lower
when trained on the NeuralText dataset, suggesting that the models may have difficulty
learning from certain types of datasets.

In conclusion, the research questions posed in this study have been validated, and the
findings can be summarized in three key points:

41

1. The physiological signals extracted from the videos prove to be sufficient for distin-
guishing real from forged videos. Depending on the training dataset, the accuracy
varies between 62.3% and 95.8%.

2. The testing results clearly demonstrate that all the CNN models trained with raw
BVP signals outperform the model trained with spectrograms as input.

3. The proposed model (SincNet) performs significantly better when dealing with very
realistic manipulated videos, such as FaceShifter, achieving an accuracy of 95.8%,
compared to other less realistic manipulated videos, like NeuralText, where the
accuracy was 62.3%.

Based on the results of this thesis and the ongoing progress in deepfake techniques, there
are several potential areas for future work to improve deepfake detection and overcome
limitations:

• Expand Dataset Coverage: One potential future direction is to train all the proposed
CNN models on every dataset within the FaceForensics++ dataset.

• Multi-Dataset Evaluation: Another possibility is to train the SincNet model on four
datasets within the FaceForensics++ dataset and test it on the fifth dataset, assessing its
ability to adapt and perform well on previously unseen deepfake variations. With this
approach five more models will be created.

• Real-Time Deployment: Developing an efficient real-time deployment strategy for
the deepfake detection models.

42 Chapter 6 Conclusions

7Appendix

43

Fig. 7.1: Custom AlexNet architecture

44 Chapter 7 Appendix

Fig. 7.2: Small part of the 1D ResNet50 architecture.

45

Fig. 7.3: Custom SincNet architecture

46 Chapter 7 Appendix

Fig. 7.4: Small part of the 2D ResNet50 architecture.

47

Bibliography

[1]John Allen. “Photoplethysmography and its application in clinical physiological measurement”.
In: Physiological Measurement 28 (Apr. 2007), R1–39.

[2]Giuseppe Boccignone, Donatello Conte, Vittorio Cuculo, et al. “pyVHR: a Python framework
for remote photoplethysmography”. In: PeerJ Comput. Sci. 8 (2022), e929.

[3]Lamia Bouafif, Kais Ouni, and Noureddine Ellouze. “Implementation of a Speech Coding
Strategy for Auditory Implants”. In: Int. Arab J. Inf. Technol. 7 (Dec. 2010), pp. 388–394.

[4]Umur Aybars Ciftci, Ilke Demir, and Lijun Yin. “FakeCatcher: Detection of Synthetic Por-
trait Videos using Biological Signals”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence (2020), pp. 1–1.

[5]Umur Aybars Ciftci, Ilke Demir, and Lijun Yin. How Do the Hearts of Deep Fakes Beat? Deep Fake

Source Detection via Interpreting Residuals with Biological Signals. 2020. arXiv: 2008.11363
[cs.CV].

[6]Ilke Demir and Umur Aybars Ciftci. “Where Do Deep Fakes Look? Synthetic Face Detection
via Gaze Tracking”. In: ACM Symposium on Eye Tracking Research and Applications. ACM, May
2021.

[7]Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image

Recognition. 2015. arXiv: 1512.03385 [cs.CV].

[8]Martin Hemmer, Huynh Van Khang, Kjell G. Robbersmyr, Tor I. Waag, and Thomas J. J. Meyer.
“Fault Classification of Axial and Radial Roller Bearings Using Transfer Learning through a
Pretrained Convolutional Neural Network”. In: Designs 2.4 (2018).

[9]Seong-Hoon Kim, Zong Woo Geem, and Gi-Tae Han. “Hyperparameter Optimization Method
Based on Harmony Search Algorithm to Improve Performance of 1D CNN Human Respiration
Pattern Recognition System”. In: Sensors 20.13 (2020).

[10]Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems. Ed. by
F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger. Vol. 25. Curran Associates, Inc., 2012.

49

https://arxiv.org/abs/2008.11363
https://arxiv.org/abs/2008.11363
https://arxiv.org/abs/1512.03385

[11]Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, and FangWen. “Advancing high fidelity identity
swapping for forgery detection”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2020, pp. 5074–5083.

[12]Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In Ictu Oculi: Exposing AI Generated Fake Face

Videos by Detecting Eye Blinking. 2018. arXiv: 1806.02877 [cs.CV].

[13]Yuezun Li and Siwei Lyu. Exposing DeepFake Videos By Detecting Face Warping Artifacts. 2019.
arXiv: 1811.00656 [cs.CV].

[14]Z. Li, W. T. Nash, S. P. O Brien, et al. cardiGAN: A Generative Adversarial Network Model

for Design and Discovery of Multi Principal Element Alloys. 2022. arXiv: 2202.00966
[cond-mat.mtrl-sci].

[15]Gabor Manhertz and Akos Bereczky. “STFT spectrogram based hybrid evaluation method for
rotating machine transient vibration analysis”. In: Mechanical Systems and Signal Processing

154 (2021), p. 107583.

[16]Yisroel Mirsky and Wenke Lee. “The Creation and Detection of Deepfakes: A Survey”. In: CoRR
abs/2004.11138 (2020). arXiv: 2004.11138.

[17]Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Networks. 2015. arXiv:
1511.08458 [cs.NE].

[18]Mirco Ravanelli and Yoshua Bengio. Speaker Recognition from Raw Waveform with SincNet.
2019. arXiv: 1808.00158 [eess.AS].

[19]Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, et al. FaceForensics: A Large-scale Video

Dataset for Forgery Detection in Human Faces. 2018. arXiv: 1803.09179 [cs.CV].

[20]J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. “Face2Face: Real-time Face
Capture and Reenactment of RGB Videos”. In: Proc. Computer Vision and Pattern Recognition

(CVPR), IEEE. 2016.

[21]Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred Neural Rendering: Image

Synthesis using Neural Textures. 2019. arXiv: 1904.12356 [cs.CV].

[22]İbrahim TOPAL. “ESTIMATION WITH ARTIFICIAL NEURAL NETWORK ON ELECTRONIC
WORD OF MOUTH: OPINION SEARCHING”. In: Yönetim Bilimleri Dergisi 18.35 (2020).

[23]Wenjin Wang, Albertus C. den Brinker, Sander Stuijk, and Gerard de Haan. “Algorithmic
Principles of Remote PPG”. In: IEEE Transactions on Biomedical Engineering 64.7 (2017), pp. 1479–
1491.

[24]Xin Yang, Yuezun Li, and Siwei Lyu. Exposing Deep Fakes Using Inconsistent Head Poses. 2018.
arXiv: 1811.00661 [cs.CV].

[25]Tianchen Zhao, Xiang Xu, Mingze Xu, et al. Learning Self-Consistency for Deepfake Detection.
2021. arXiv: 2012.09311 [cs.CV].

50 Bibliography

https://arxiv.org/abs/1806.02877
https://arxiv.org/abs/1811.00656
https://arxiv.org/abs/2202.00966
https://arxiv.org/abs/2202.00966
https://arxiv.org/abs/2004.11138
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1808.00158
https://arxiv.org/abs/1803.09179
https://arxiv.org/abs/1904.12356
https://arxiv.org/abs/1811.00661
https://arxiv.org/abs/2012.09311

List of Acronyms

CNN Convolutional Neural Network

BVP Blood Volume Pulse

GAN Generative Adversarial Network

RGB Red Green Blue

HEAR-Net Heuristic Error Acknowledging Network

PPG Photoplethysmography

LED Light-Emitting Diode

ECG Electrocardiography

rPPG remote Photoplethysmography

BSS Blind Source Separation

CHROM Chrominance-base

HRV Heart Rate Variability

ROI Region Of Interest

DL Deep Learning

BPM Beats Per Minute

PSD Power Spectral Density

51

POS Plane Orthogonal Skin

PCA Principal Component Analysis

DFT Discete time Fourier Transformation

STFT Short-Time Fourier Trasformation

ANN Artificial Neural Network

ReLU Rectified Linear Unit

MFCC Mel-Frequency Cepstral Coefficient

PCL pair-wise self-Consistency Learning

ConvNet Convolutional Network

AI Artificial Intelligence

LSTM Long-Sort Term Memory

LRCN Long-sort Reccurent Convolutional Network

ROC Receiver Operating Characteristic

AUROC Area Under Receiver Operating Characteristic

SVM Support Vector Machine

FF FaceForensics

Hz Hertz

52 Bibliography

List of Figures

2.1 Comparison of the FaceShifter framework to some of the other face swapping
algorithms. Clearly, FaceShifter framework shows greater realism to the
target characteristics, such as lighting and image resolution. Source: Li et al.
[11] . 7

2.2 Optical heart rate sensing uses light to analyze pulse waves. Narrower
arteries on the left side reflect more green light (higher reflectivity), indicating
lower pressure before the pulse wave. Wider arteries on the right side absorb
more light (lower reflectivity), indicating a higher blood pressure pulse.
Source: https://www.noldus.com/blog/what-is-rppg . . . 8

2.3 In the skin reflection model, there are two types of reflections: specular and
diffuse. Among these, only the diffuse reflection carries pulsatile information.
Source: Wang et al. [23] . 8

2.4 The pyVHR pipeline. (A) The pyVHR framework implements a multi-stage
pipeline that utilizes end-to-end deep learning (DL) methods for estimating
Beats Per Minute (BPM) through Power Spectral Density (PSD) analysis.
(B) For traditional approaches, the pyVHR framework follows a multi-stage
pipeline that involves windowing and patch collection, computation of RGB
traces, pre-filtering, application of an rPPG algorithm to estimate a Blood Vol-
ume Pulse (BVP) signal, post-filtering, and finally, BPM estimation through
PSD analysis. Source: [2] . 9

2.5 Comparison of the two skin extraction methods implemented in pyVHR: (A)
Convex-hull extraction approach and (B) Face parsing extraction approach.
Source: [2] . 10

2.6 Patch tracking of a temporal window. Source: [2] 11
2.7 Example of a predicted BVP signals using POS method. Source: [2] 12
2.8 The speech signal (top figure) and its spectrogram (bottom figure) of the

vowel “A”: female sound. Source: [3] . 13
2.9 Example of an Artificial Neural Network Model with 3 input neurons, one

hidden layer with 4 neurons and an output layer with two neurons. Source:
[22] . 14

53

https://www.noldus.com/blog/what-is-rppg

2.10 General structure of 1D CNN for signal pattern recognition. It contains
the Convolutional Layer, the Fully-connected Layer and the Output Layer.
Source: Kim et al. [9] . 15

2.11 ReLU activation function vs. LeakyReLU activation function (slope a = 0.01).
Source: Li et al. [14] . 15

2.12 Simplified illustration of the AlexNet architecture, created for the ImageNet
challenge. Source: Hemmer et al. [8] . 17

2.13 Residual learning: a building block. Source: He et al. [7] 17
2.14 Different architectures (sizes) of the ResNet model. All of them work the

same way as explained above. Source: He et al. [7] 18
2.15 The architecture of SincNet model. Source: Ravanelli and Bengio [18] 19

4.1 Schema of proposed pipeline. 25
4.2 Specific signal before (29Hz) and after (25Hz) the resample process. 28
4.3 BVP signal with missing data points. 28
4.4 Original BVP signal and the corresponding Spectogram. 29
4.5 ResNet50 architecture. 31

5.1 Accuracy and loss training plots of the SincNet mode on every dataset. . . . 38

7.1 Custom AlexNet architecture . 44
7.2 Small part of the 1D ResNet50 architecture. 45
7.3 Custom SincNet architecture . 46
7.4 Small part of the 2D ResNet50 architecture. 47

54

List of Tables

2.1 Hyperparameters of a general 1D CNN. 16

4.1 Optimal parameters of spectrograms. 29
4.2 Updated AlexNet architecture after performing Hyperparameter Tunning. . 31
4.3 Updated SincNet architecture after performing Hyperparameter Tunning. . . 32

5.1 Optimal training Hyperparameters . 36
5.2 The results of every model on the FaceForensics++ dataset using only the

deepfakes algorithm. 36
5.3 The results of the SincNet model on all the different datasets within the

FaceForensics++ dataset. 37

55

	Titlepage
	Abstract
	Abstract
	Acknowledgements
	Acknowledgements
	1 Introduction
	1.1 Motivation and Prob Statement
	1.2 Thesis Structure

	2 Background
	2.1 Deepfake Generation
	2.2 Feature Extractions
	2.2.1 PPG
	2.2.2 rPPG
	2.2.3 pyVHR
	2.2.4 Spectogram

	2.3 Deep Learning Techniques
	2.3.1 Artificial Neural Network
	2.3.2 Convolutional Neural Network
	2.3.3 Hyperparameters in CNN
	2.3.4 CNN Architectures

	2.4 Evaluation Measures

	3 Related Work
	4 Proposed Methods
	4.1 Approach Overview
	4.2 Data Pre-processing
	4.3 Models Architectures
	4.4 1D Approach
	4.5 2D Approach

	5 Experiments
	6 Conclusions
	7 Appendix
	Bibliography
	Acronym
	List of Acronyms
	List of Figures
	List of Tables

