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Περίληψη

Η μηχανική μάθηση (Machine / Deep learning) και ο συλλογισμός μέσω ανα-
παράστασης γνώσης (Machine reasoning) θεωρούνται δυο διαφορετικά πεδία της
Τεχνητής Νοημοσύνης. Μέσω της μηχανικής μάθησης επιτυγχάνουμε τη δημιουρ-

γία μοντέλων που έχουν αντιληπτικές δυνατότητες χαμηλού επιπέδου όπως ταξι-

νόμηση και πρόβλεψη ενώ μέσω του συλλογισμού με τη χρήση κατάλληλων ανα-

παραστάσεων και τεχνικών λογικής (logic based reasoning) επιτυγχάνουμε την
εξαγωγή συμπερασμάτων και πληροφορίων σε υψηλότερο επίπεδο. Ο συνδυασμός

αυτών των δυο διαφορετικών πεδίων (neural-based learning , logic-based reason-
ing) θα μπορούσε να συμβάλει στη δημιουργία νέων συστημάτων τα οποία θα είναι
ικανά να έχουν αντίληψη του περιβάλλοντος και να μπορούν να εξάγουν συμπε-

ράσματα πάνω στα δεδομένα που τους έχουν δοθεί. Στην παρούσα διπλωματική θα

επικεντρωθούμε στο Neural-symbolic computation με το οποίο επιτυγχάνεται ο
συνδυασμός deep-learning και συλλογισμού μέσω μιας υπάρχουσας μεθόδου και
λογισμικού με το όνομα NeurAsp. Αρχικά μέσω απλών παραδειγμάτων θα παρου-
σίασουμε τις δυνατότητες αυτής της μεθόδου και πως αυτή λειτουργεί εσωτερικά

και ενσώματώνεται με τις παραδοσιακές μεθόδους μηχανικής μάθησης και στην

συνέχεια θα έφαρμόσουμε την μέθοδο αυτή στην αναγνώριση δραστηριοτήτων σε

βίντεο μεταξύ ανθρώπων χρησιμοποιοώντας παράλληλα τεχνικές αναγνώρησης πε-

ρίπλοκων γεγονότων Complex Event Recognition (CER). Συγκεκρίμενα μέσω
τριών πειραμάτων στα οποία συγκρίνουμε τόσο τις παραδοσιακές μεθόδους βαθιάς

μηχανικής μάθησης όσο και αυτές του NeurAsp θα επιχειρήσουμε να αναδείξουμε
τα ωφέλη των μεθόδων που συνδυάζουν μηχανισμούς λογικής μαζί με την βαθιά

μηχανική μάθηση.
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Abstract

Machine / Deep Learning and Machine Reasoning are considered two different
subfields of Artificial Intelligence. With machine learning methods we can build
models with low level perceptual capabilities and with logic based methods we
can extract information and perform reasoning at a higher level. Combining
neural learning methods with logic-based techniques could help create systems
that are able to perceive their environment and infer the data given as input. In
this thesis, we will focus on neurosymbolic computation, where the combination
of deep learning and reasoning is achieved through an existing framework called
NeurAsp. We will go through simple examples that demonstrate NeurAsp’s ca-
pabilities and show how it works and integrates internally with traditional deep
learning methods. The main goal of this thesis is to apply this method to the
task of detecting human activity in videos with the usage of Complex Event
Recognition (CER) techniques. Finally, we will show the benefits of integrating
logic-based techniques with neural methods by presenting three different exper-
imental setups in which we compare the performances of pure traditional deep
learning methods and those proposed by the NeurAsp framework.
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1 Introduction

1.1 Neuro-symbolic Artificial Intelligence

Neuro-symbolic artificial intelligence refers to a field of research that combines
neural and symbolic methods, which are considered distinct areas of artificial
intelligence. Neural methods usually involve training artificial neural networks
using large amounts of raw data, where the model learns to associate the given
data by continuously learning from its mistakes and eventually is able to make
predictions for the given task even for new data related to the task. For example
if we train a neural network to identify a set of animals from images such as
dogs, cats and birds we can give as input a new instance of a bird and get the
results with high confidence. This fact shows that neural nets are very capable at
capturing patterns from raw data by adjusting the strengths of the connections
between its nodes and finally be able to infer on a new image. The strength
of neural nets depends heavily on the amount of training data and acquiring
training data is often costly and sometimes impossible. Also it is known that
neural nets are sensitive to noise even if the noise is obscure to the human
eye. On the other hand, symbolic methods involve the explicit representation of
knowledge using formal languages, logic-based techniques and reasoning allow
us to infer and extract information at a higher level. For instance if we encode
information about the color, sizes and shapes of objects to a symbolic program
and create a general rule regarding the similarities such as “the objects are
similar if they have the same size or color” we could answer questions such as
“are the square and the triangle similar?” given that squares and triangles are
encoded as symbols. Symbolic AI employs an inference engine, which uses rules
of logic to answer queries but this requires a lot of effort for encoding this kind
of information and most important it requires domain expertise which denotes
the major downside of symbolic AI systems. The symbolic AI system cannot
learn on its own: for instance if we have encoded only squares and triangles in

6



our example and we ask about circles the system will fail because circles are not
present in the knowledge base. Given the strengths and weaknesses of those two
different AI methods, neuro-symbolic AI is a novel area of AI research which
seeks to create hybrid methods with promising results.[Susskin, 2021]. Logic-
based methods are able to encode domain knowledge and also provide proof
regarding the correctness of the result allowing us to have better explainability
which will benefit neural methods to reduce their black-box nature. Also with
logic-based methods we can provide some sort of guidance during the training
phase of a neural network by integrating logic rules and not relying only to
the traditional neural loss functions leading to less time consuming and data
demanding training procedure. On the other hand neural methods with their
ability to handle and model large amount of raw data could be used to efficiently
approximate combinatorial optimization tasks which is the major drawback of
logic-based methods. With those hybrid approaches each method can benefit
from the other since neuro-symbolic AI aims to combine the complementary
strengths of neural and logic based methods.

1.2 Neuro-symbolic Approaches

There are several discussions and proposals on how to integrate neural and
logic methods which can be categorized to set of neuro-symbolic (NeSy) fami-
lies. One of the earliest NeSy approaches was to train neural networks to mimic
the behavior of logical reasoners(Logic as Neural Programs). The neurons of
a neural network can operate as logical gates(AND, OR ,etc..). This way neu-
rons can represent logical connectives, a piece of a logical statement or a con-
cept.[Rocktäschel, 2017][Sourek, 2018][Evans, 2018] Those approaches provided
an alternative way of logical reasoning by tackling some of the weaknesses of
logic-based methods such as high computational complexity, proneness to minor
inconsistencies in data and finally the dependency on domain expertise but the
black-box nature of neural networks nullify some of the benefits of logic-based
methods such as their expressive power. Another NeSy approach is to train a
neural network to comply with a set of logical constraints(Logic as regularizer)
by incorporating logical constraints in the loss function that penalizes violations
of logical rules.[Diligenti, 2017][Xu, 2018][Marra, 2021][Badreddine, 2022]. The
logic as regularizer NeSy approaches often introduce additional layers to perform
logic operations keeping the logical and neural parts separated leading to Nesy
Interfacing approaches.[Manhaeve, 2018][Yang, 2020][Winters, 2022]. In NeSy
interfacing a logic reasoner takes as input the predictions of a neural network,
computes the gradients in respect of the defined logic rules and then communi-
cates the gradient updates via the back-propagation which is the usual training
procedure of a neural network. This clear separation between the neural and
logic parts is very useful when we want to interpret the behaviour of a neural
network but it adds an overhead to training and inference times.

In Neural Probabilistic Logic Programming [Manhaeve, 2018] the authors
treat outputs of a neural network as the probability distribution over atomic
facts and based on this idea NeurAsp is proposed. NeurAsp [Yang, 2020] is a
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Figure 1: NeSy Approaches

framework 1 that focuses on Neural-symbolic computation [Garcez, 2019] which
achieves the combination of deep-learning and reasoning based on Answer Set
Programming [Lifschitz, 2019]. Answer Set Programming (ASP) is a method
of solving combinatorial optimization problems, based on logic programming
which is supported by specialized tools (ASP solvers). ASP solvers allow the
combination of logic based reasoning with optimization methods and also various
tasks related to artificial intelligence such as reasoning under uncertainty and
symbolic learning can be expressed and solved by using ASP solvers.

1.3 Human Activity Recognition (HAR)

Human Activity Recognition (HAR) is a challenging time series classification
task that involves predicting a person’s movement based on input data that
comes from various devices such as gps, wearable sensors, video cameras etc.
HAR is a multi staged task [Gupta, 2022] starting from capturing the signal
or video from the device, perform any data pre-processing needed and finally
choose the suitable machine or deep learning algorithm to train. One of the
most studied applications of HAR is the video-based HAR which aims to auto-
matically recognize and categorize human activities in video sequences. There
are numerous deep learning-based methods for activity recognition in videos
that mainly involve Convolutional Neural Networks (CNNs) [Dogan, 2021] and
Recurrent Neural Networks (RNNs) [Sungh, 2018] or their combination the
three-dimensional CNNs (C3Ds)[Wang, 2015]. Each method has its benefits
and limitations due to the complex nature of this particular task since the de-

1https://github.com/azreasoners/NeurAsp
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velopers of an automatic HAR system have to face a lot of problems such as
background blur, partial occlusion, image quality resolution, changes in scale
and viewpoint and so on. Finally, the annotation of behavioral roles is time-
consuming and costly, resulting in the unavailability of HAR datasets, and the
similarities between action classes also result in significant amount of noise in
the available datasets.[Vrigkas, 2015]

1.4 Complex Event Recognition in HAR

Human activity recognition as mentioned involves various time series data sources
such as sensors , cameras etc. If we treat the input as a timestamped informa-
tion and put a meaningful label we can construct entities called simple events.
Those simple events called primitives is assumed that they are not dependent
on other events. Some events could be the result of an external pre-process
procedure such as the average speed of a person in a given time interval. Those
events could contain patterns that are useful to extract further insights on our
data. Complex Event Recognition (CER) techniques allow the identification of
meaningful patterns in temporal data by creating complex event definitions that
may contain occurrences of simple events, combinations of simple events or even
combinations of other complex events.[Katzouris, 2017] In HAR it is important
to model the occurrences, the duration and the effects of the events. For this
reason the usage of a logic-based CER system with the ability to reason on tem-
poral data is essential.[Cugola, 2012] [Giatrakos, 2019] For example lets assume
that two people are walking in a very close distance and a certain orientation for
a time interval, then potentially a complex event ”walking together” is triggered
and after some time one of them starts running away. There must be a logic
mechanism that would trigger the termination of the ”walking together” by the
time one of those two persons starts running. The Event Calculus dialect as pro-
posed in RTEC [Artikis, 2015] offers a solution to perform temporal reasoning
and build a suitable logic-based CER system for HAR.[Alevizos, 2022]

2 Asp And Event Calculus Background

At this point we will provide the needed background for answer set programming
, the event calculus and how they can be used in the CER context as provided
by [Katzouris, 2023].
Answer Set Programming: In what follows a rule r is an expression of the
form α ← δ1, ..., δn, where α is an atom, called the head of r, δis are literals
(possibly negated atoms), which collectively form the body of r and commas
in the bodies of rules denote conjunction. A rule is ground if it contains no
variables and a grounding of a rule r is called an instance of r. A (Herbrand)
interpretation is a collection of true ground facts. An interpretation I satisfies
an atom α iff α ∈ I. I satisfies a ground rule iff satisfying each literal in the body
implies that the head atom is also satisfied and it satisfies a non-ground rule r
if it satisfies all ground instances of r. An interpretation I is a model of a logic
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program π (collection of rules) if it satisfies every rule in π and it is a minimal
model if no strict subset of I has this property. An interpretation I is an answer
set of π if it is a minimal model of the reduct of π, that is, the negation-free,
ground program that results by removing from the ground version of π all rules
with a negated body literal not satisfied by I and removing all negated literals
from the bodies of the remaining rules

The Event Calculus is a temporal logic for reasoning about events and
their effects. Its ontology comprises time points (integers), fluents, that is,
properties which have certain values in time, and events, that is, occurrences
in time that may affect fluents and alter their value. Its axioms incorporate
the commonsense law of inertia, according to which fluents persist over time,
unless they are affected by an event. Its basic predicates and axioms are pre-
sented in Table 1(a), (b). Axiom (1) states that a fluent F holds at time T if
it has been initiated at the previous time point, while Axiom (2) states that
F continues to hold unless it is terminated. Definitions of initiatedAt/2 and
terminatedAt/2 predicates are provided in an application-specific manner. Us-
ing the Event Calculus in a CER context allows to reason with CEs that have
duration in time and are subject to commonsense phenomena, via associating
CEs to fluents. In this case, a set of CE patterns is a set of initiatedAt/2 and
terminatedAt/2 rules. As an example we use the task of activity recognition,
as defined in the CAVIAR project2. The CAVIAR data set consists of videos of
a public space, where actors per Table 1. (a), (b) The basic predicates and the
Event Calculus axioms. (c) Example CAVIAR data. At time point 1 person
with id1 is walking, her (X, Y ) coordinates are (201, 454) and her direction
is 270°. The target CE atoms (true state – supervision) for time point 1 state
that persons id1 and id2 are moving together at the next time point. (d) An
example of two domain-specific axioms in the EC. For example, the first rule
dictates that moving together between two persons X and Y is initiated at
time T if both X and Y are walking at time T, their euclidean distance is less
than 25 pixel positions and their difference in direction is less than 45°. The
second rule dictates that moving together between X and Y is terminated at
time T if one of them is standing still at time T and their euclidean distance
at T is greater than 30 form some activities. These videos have been manually
annotated by the CAVIAR team to provide the ground truth for two types of
activity. The first type, corresponding to simple events, consists of knowledge
about a person’s activities at a certain video frame/time point (e.g. walking,
standing still and so on). The second type, corresponding to CEs/fluents, con-
sists of activities that involve more than one person, for instance two people
moving together, meeting each other and so on. The aim is to detect CEs as
combinations of simple events and additional domain knowledge, such as a per-
son’s position and direction. Table 1(c) presents an example of CAVIAR data,
consisting of observations for a particular time point, in the form of an interpre-
tation I1. A stream of interpretations is matched against a set of CE patterns
(initiation/termination rules – see Table 1(d)), to infer the truth values of CE

2https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
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instances in time, using the Event Calculus axioms as a reasoning engine. We
henceforth call the atoms corresponding to CE instances whose truth values are
to be inferred/predicted, target CE instances. Table 1(c) presents the target
CE instances corresponding to the observations in I1.

(a)
Predicate: Meaning:
happensAt(E,T) Event E occurs at time T

initiatedAt(F,T) At time T, a period of time for which fluent F
holds is initiated.

terminatedAt(F,T) At time T, a period of time for which fluent F
holds is terminated.

holdsAt(F,T) Fluent F holds at time T

(b) Axioms of the Event Calculus

holdsAt(F,T+1) ← initiatedAt(F,T). (1)

holdsAt(F,T+1)← holdsAt(F,T), not terminatedAt(F,T). (2)

(c)
Observations I1 at time 1: Target CE instances at time 1:

{happensAt(walk(id1,1), {holdsAt(move(id1,id2),2),
happensAt(walk(id2,1), holdsAt(move(id2,id1),2) }
coords(walk(id1,201,454,1),
coords(walk(id2,230,440,1),
coords(direction(id1,270,1),
coords(direction(id2,270,1), }

Table 1

CER techniques require simple events in order to operate and those simple
events must be extracted from collected raw data. In HAR for instance raw data
could be the coordinates of the bounding boxes of persons provided by a neural
network that is trained to detect persons but there is a big gap between the raw
coordinates and a concept such as “walking” or “running“.This fact indicates
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the importance of neuro-symbolic techniques since we can bridge this gap by
using deep learning techniques where we can train a neural network to identify
and extract those simple events from raw data and provide them as inputs to a
logic-based CER system.

3 Basic Deep Learning Concepts

In this section we will introduce some basic concepts that are used in the training
procedure of a neural model. Of course it is not an exhaustive list of definitions
but rather a simple reference to some terms that we will use in the following
sections of this thesis. We will focus on the supervised training algorithm where
given an input and an output the neural network learns to associate them.

3.1 Neural Network Layers and Neurons

A neural network can be described by three types of layers :

• Input Layer : This layer will accept the raw data and pass it to the rest
of the network

• Hidden Layer : This type of layer may have more than one instance in
a neural network and can perform multiple mathematical operations and
data transformations.

• Output Layer : The final layer in the neural network where predictions
are obtained.

Figure 2: NN Visual Representation

A layer consists of small individual units called neurons. Neurons can take
an arbitrary number of inputs and have an output given condition. A simple
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example is given below where a neuron takes as input two values X1, X2 and
outputs a value Y.

Figure 3: Neuron Visual Representation

When a neuron provides an output it is common to use the phrase “the
neuron fired”. A neuron fires when a condition is met. For instance this
condition in our depicted example could be a simple expression such as the
“sum of inputs must be greater than 10 in order to fire”. We can assume when
the neuron fires the output Y is 1 and when it doesn’t is 0:

Figure 4: Neuron operations given a condition

Here we will introduce the terms bias and weights. In our example the
threshold was 10 and it is a constant that we introduced to the neuron in order
to create a condition for the inputs.
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X1 +X2 > threshold→ Y=1

X1 +X2 < threshold→ Y=0

if we move the threshold to the other side we get:

X1 +X2 − threshold > 0

X1 +X2 − threshold < 0

Now we can rename the negative threshold with the positive term bias:

X1 +X2 + bias > 0

X1 +X2 + bias < 0

So far our inputs have the same “importance” and impact to the outcome of
the neuron but if we multiply each term with a number called weight we can
quantify the impact of each input:

W1 ∗X1 +W2 ∗X2 +W0 ∗ bias > 0

3.2 Activation Functions

A neuron can output any number in the range of (-∞ ∞) We use activation
functions to limit the range of the output of a neuron. This helps with the
internal computations between the layers of a neural network and also introduces
non linearity which is essential for the learning procedure. We introduce some
of the most well known activation functions:

• Sigmoid activation function : The sigmoid function has its domain as
the set of all real numbers, and its range is (0, 1). In other words this
function has an output close to 0 for large negative input values and an
input close to 1 for large positive values.

Figure 5: Sigmoid activation function
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• Relu activation function : The relu function is a simple calculation that
returns the value provided as input directly, or the value 0 if the input is
0 or less. This function is the most used activation function between the
hidden layers of a neural network.

Figure 6: Relu activation function

• Tanh activation function : This function has its domain as the set of all
real numbers, and its range is (-1, 1). A main difference with the sigmoid
activation function is that this function introduces negative numbers to
its output.Its output is a value close to -1 for large negative input values
and an input close to 1 for large positive values.

Figure 7: Tanh activation function

• Softmax activation function : Activation functions are also used in the
output layer of the neural network in order to produce the desired outcome
depending on the task. The softmax activation function transforms a
previous layer’s output into a vector of probabilities. It is commonly used
for multiclass classification.
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Figure 8: Softmax activation function

3.3 Loss Functions

The results of the Output Layer are compared to the ground truth targets
provided by the dataset annotators.The loss function is a quantitative indicator
of the performance of a neural network that computes the difference between the
prediction and the actual target value. The difference between the prediction
Ŷ and the actual value Y is called loss or error. One of the most common loss
function is the Mean Square Error (MSE):

MSE =
1

n

n∑
i=1

(Ŷi − Yi)
2

The MSE loss function penalizes the model for making large errors by squaring
them. This loss function is used in regression tasks where the output needs to
be a numerical value
For classification Tasks a very common loss function is the Cross-entropy loss
(Log Loss):

L = − 1

n

n∑
i=1

Yi · log(Ŷi)

We use this loss function to measure the performance of a classification model
whose output is a probability value between 0 and 1.

3.4 Internal Training Steps of a Neural Network

The training procedure of a neural network is a set of steps that are repeated
many times. Here we provide a brief description of those steps:

• Forward Pass: During the forward pass the raw input data in the input
layer traverses through all the hidden layers where a set of mathematical
operations and transformations is being performed and finally the result
reaches the output layer as the prediction of the neural network

• Loss computation: The loss function computes the loss between the
prediction and the ground truth.
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• Gradient computation and weight updates: The gradient descent
algorithm is used to find the local minimum of a function and the gra-
dient ascent is used to find the local maximum of a function. In any of
those algorithms the gradients of a function are computed and multiplied
by a given step called the learning rate. The values that come from this
multiplication are the needed updates for the weights.

• Backward Pass (Backpropagation):The backward pass is most essen-
tial step of the learning procedure since it is responsible to apply the
weight updates to the hidden layers.

As mentioned those steps are repeated for all samples in the training
dataset and the process of all samples is called an epoch. Due to computer
memory limitations is if often that the data is splitted to smaller chunks
called bathes. A neural network can train for several epochs until some
criteria are met. (for instance the loss cannot be minimized any further)

3.5 Performance Metrics for Classification Tasks

During or after the training procedure it is essential to evaluate the performance
of the neural network.The most intuitive performance metric for classification
tasks is the Accuracy.
Given a binary classification task where the neural network classifies positive
and negative classes we can define the Accuracy metric as such:

Accuracy =
TP + TN

TP + TN + FP + FN

True Positives (TP): Predicted positive and its actually positive.
True Negatives (TN): Predicted negative and its actually negative.
False Positives (FP): Predicted positive and its actually negative.
False Negative (FN): Predicted negative and its actually positive.

Accuracy is simple ratio of correctly predicted samples to the total samples
and often the indication of high accuracy can be misleading especially when the
class distribution of a dataset is imbalanced.
Another performance metric that is more suited for imbalanced datasets is the
F1 Score and in order to define it we need to introduce two additional perfor-
mance metrics the Precision and Recall:

• Precision: the ratio of correctly predicted positive observations to the
total positive observations. High precision relates to the low false positive
rate

Precision =
TP

TP + FN
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• Recall: the ratio of correctly predicted positive observations to the all
observations in actual class

Recall =
TP

TP + FP

• F1 Score: the weighted average of Precision and Recall. Therefore, this
score takes both false positives and false negatives into account

F1 Score =
2 · (Recall · Precision)

Recall + Precision

Confusion matrices are also very useful in neural network performance eval-
uation since they summarize all the above metrics in a visual way:

Figure 9: Confusion matrix

3.6 Tensors And Feature Scaling

A tensor is a dimensional data structure and a generalization of matrices to
N-dimensional space. We can think of tensors as data containers with multiple
dimensions. Scalars, vectors, and matrices can be represented as 0D tensors,
1D tensors and 2D tensors respectively. Data that needs a representation of
higher dimensionality can use 3D, 4D .etc tensors.

Figure 10: Tensors Visual Representation
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Feature Scaling is a very important procedure used to normalize the range of
independent variables or features of data. In data processing, it is also known
as data normalization and is generally performed during the data preprocessing
step.The most common technique called min-max normalization:

x′ =
x−min(x)

max(x)−min(x)

With min-max normalization we re-scale the range of features to scale the range
in [0, 1].Here, max(x) and min(x) are the maximum and the minimum values
of the feature respectively

3.7 Splitting to Training and Testing Dataset

Data splitting is an important aspect of neural network training procedure. The
evaluation of a neural network performance must be performed on new data. In
other words we use data that the network has never “seen” in order to evaluate
its true performance so it is essential to avoid using the same data on training
and testing. To emphasize the importance of dataset splitting we introduce the
concept of overfitting.
Overfitting is when a neural network performs well on training data and poorly
on new-unseen data. An overfitted neural network has learnt the patterns and
the noise of the training dataset instead of the actual relationships between the
features. This neural network may have a good performance on the training
dataset but when a new dataset is provided as input the results are not as good
, in other words the neural network does not generalize well. When we perform
data splitting it is essential to not mix training samples with testing samples
because the results will be misleading. Some of the techniques used for dataset
splitting are:

• Train-Test Split:it is the simplest method of data splitting. The ratio
used for the split is usually 80% training 20% testing.

Figure 11: Data split visualization

This method has some caveats since some samples that share the same
patterns or noise could be either on the train or the test side and this
could also result in overfitting.

• K-fold Cross Validation:this method has many variations but the main
idea is to perform multiple splits on the dataset and perform the testing
on various portions of the dataset and average the results.
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Figure 12: K-fold cross validation split

3.8 Brief Introduction to LSTMs

LSTMs are a special case of deep neural networks that are capable of processing
sequences of data , learn long term dependencies and retain useful information
from previous seen data.
An LSTM is composed by a set of stacked units called cells. An LSTM
cell operates by using three types of gates which control the information in a
sequence of data; the forget gate , input gate and output gate. We will
briefly mention the role of each gate , how they communicate, operate and use
the aforementioned activation functions , sigmoid and tanh.
The output of an LSTM for a specific time point is dependent on:

• The current long-term memory of the network , the cell state

• The output of the previous time point , the hidden state

• The input data of the current time point

In the image below we can see a high level visualization of the components of
an LSTM cell.
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Figure 12: Internals of a lstm cell

As we can see the main components of an LSTM cell are its three gates:

• Forget Gate:The forget gate is responsible for the long term memory of
the lstm in the form of a vector and decides which piece of information
is relevant to keep. In order to achieve this the previous hidden state and
the new input data are fed into the forget gate and the sigmoid function
outputs values close to 0 when a component of the input is deemed ir-
relevant and closer to 1 when relevant. The output values are then sent
up and pointwise multiplied with the previous cell state. This point-
wise multiplication means that components of the cell state which have
been deemed irrelevant by the forget gate network will be multiplied by a
number close to 0 and thus will have less influence on the following steps.

• Input Gate:The input gate takes as input the current input data and the
previous hidden state and passes them through a tanh activation function
and a sigmoid function in parallel. The tanh activation function outputs
values close to 1 when the network estimates that this fraction of infor-
mation must have impact on the outcome and close to -1 if the impact
needs to be reduced.The sigmoid activation function acts as a filter that
identifies which fraction of the new memory vector are worth retain-
ing. This gate will output a vector of values in [0,1].Finally the outputs of
the tanh and sigmoid functions are pointwise multiplied and this decides
the magnitude of the new information that we use to update the long
term memory of the network by performing a pointwise addition with the
previous cell state
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• Output Gate:The output gate decides the next hidden state or the
final prediction of the network if the time point fed is the last of the
sequence. In a similar way with the input gate the network passes the
current input and the previous hidden state through a sigmoid activa-
tion function and creates a filter for the worth keeping information of the
new data. Then the vector of the new cell state that contains all the in-
formation from previous timesteps and the current one is being set to a
tanh activation function.The outputs of the tanh and sigmoid functions
are pointwise multiplied and the result is the new hidden state.

A sequence of stacked LSTM cells form a LSTM neural network as illus-
trated bellow:

Figure 13: Stacked lstm cells forming a lstm neural net

3.9 Output Relations of LSTMs

Depending the task LSTMs can be configured to have various output modes
regarding the number of their output. We present two of them:

• Many-to-One: Given a sequence of data as input, and we have to predict
a single output.
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Figure 14: Many to one lstm

• Many-to-Many:Given a sequence of data as input, and we have to pre-
dict multiple outputs. In this case the size of the input can match the size
of the output and this is something that we will apply in our task.

Figure 15: Many to many lstm

3.10 Bi-directional LSTM

Bi-directional LSTMs is a special case of an LSTM neural network. By revers-
ing the flow of the input it can use information from the future steps of the
sequence. Basically it retains an additional layer with the reversed sequence
which allows the combination of information from both flows.
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Figure 16: Bi-directional lstm

4 NeurAsp Framework Overview

In this section we will introduce the main concepts of the NeurAsp framework
and in parallel we will go through the digit addition example [Yang, 2020] step
by step.

4.1 Syntax

NeurAsp syntax is similar to ASP with a few differences that we will address in
the following section.
Let’s assume that a neural network M takes as input a tensor t and outputs
a matrix in Re×n where e is the number of random events and n the number
of possible outcomes for each random event.Each row of the output matrix
represents the probability distribution of each random event.The aforementioned
neural network can be represented in NeurAsp as the following neural atom:

nn(m(e, t), [v1, ..., vn]) ,

where nn is a reserved keyword that denotes the neural atom , m is the symbolic
name of the neural network M and finally [v1, ..., vn] are the n possible outcomes
of each random event.
The task is, given a pair of digit images (MNIST) and their sum as the label,
let a Convolutional neural network (CNN) learn the digit classification of
the input images.
Let’s define a neural atom for the digit addition task:
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nn(digit(1, D), [1, 2, 3, 4, 5, 6, 7, 8, 9]) ,

where:

• t=D: the image tensor provided as input

• e=1: one image tensor can be classified to one digit

• n=10: there are 10 possible digits that the image tensor can be classified

• possible outcomes: [0,1,2,3,4,5,6,7,8,9]

• m=digit: the symbolic name of the task’s neural network

• output matrix: a matrix in R1×10 that represents the probability dis-
tribution over the possible digits.

Since we need to apply digit addition between pairs of images we need to define
the addition operation rule as such:

addition(D1, D2, N)← digit1(D1), digit2(D2), N = D1 +D2 ,

In NeurAsp syntax we use the atom img(T). to indicate that this atom repre-
sents the input tensor T. Since we have introduced everything needed in order
to formulate the digit addition task using the NeurAsp syntax we can define the
NeurAsp program bellow:

img(D1).
img(D2).
nn(digit(1, D), [1, 2, 3, 4, 5, 6, 7, 8, 9])← img(D).
addition(D1, D2, N)← digit1(D1), digit2(D2), N = D1 +D2.

4.2 Semantics and Internal Operations

A NeurAsp program Π needs to be transformed to an actual ASP program
called Π′.During the transformation of the program NeurAsp performs a set of
actions that are needed for the framework to operate:

• Neural atom replacement: The neural atom is replaced by a set of
rules:

{mi(t) = v1; ...;mi(t) = vn} = 1 for i ∈ {1, ..., e}.

This rule is an ASP choice rule in the language of clingo and means to
choose exactly one atom between the braces. In digit addition task the
choice rule would be:

{digit1(0..9); digit2(0..9)} = 1.

This rule would yield a set of 20 atoms (10 digits for each input image)
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• Store the atoms of choice rules in a list: The atoms produced are
stored in a python list for later usage as we will show in the training
procedure.

• Mapping of the output matrix: Create a mapping between the output
probability distribution matrix and the possible outcomes of the classifi-
cation for each input tensor. This way each atom can be associated with
a probability. In digit addition this mapping is shown in the figure below:

Figure 16: Mapping of output probabilities

Note that each sample given as input to the Convolutional neural network
comes as a pair of tensors which contains the numerical representation of
the digit image. The neural network will output a probability distribution
to its output layer for each digit image of the pair as shown in the figure
below:

Figure 17: Output probabilities of a digit pair

• Create a matrix for the computed gradient updates: This matrix
has similar mapping as the output matrix and it is used for storing the
gradient updates as we will show in the training procedure.
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In digit addition we provide as labels the result of the addition of two numbers
and with that we can limit the choices for each digit in the given pair. For
instance if we know that D1 +D2 = 1 then the possible pairs are [D1 = 1 and
D2 = 0] or [D1 = 0 and D2 = 1].
The fact “The sum of D1 and D2 equals to 1” can be encoded as an ASP
constraint forming an observation. An observation is a set of ASP constraints
such as:

:- not addition(D1, D2, 1).

We can interpret this ASP constraint as “filter out any pair of digits that do
not sum to 1” and the output would be two sets of atoms such as:

• [digit(D1) = 0, digit(D2) = 1]

• [digit(D1) = 1, digit(D2) = 0]

Those sets of atoms are called stable models or interpretations I (men-
tioned in Section2 Asp and Event Calculus Background).We can calculate
the probabilities of those interpretations by using the outputs of the neural
network.(As we will see in next sections where we discuss the learning pro-
cedure, the neural network outputs probabilities for each image. At first the
probabilities are random but as the neural network keeps training those output
probabilities are being updated).The probability of a stable model I is de-
fined as the product of the probabilities of each atom they contain. For instance
in our example:

Figure 18: Mapping of probabilities to atoms

P (I1) = P (digit(d1, 1)) + P (digit(d2, 0)) = 0.3 · 0.3 = 0.09

P (I2) = P (digit(d1, 0)) + P (digit(d2, 1)) = 0.1 · 0.1 = 0.01

Finally we can define the probability of an observation O as the sum of the
stable models probabilities that satisfies O :

P (O) =
∑
I|=O

P (I)
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In our example that would be:

P(:- not addition(d1, d2, 1)) = P(I1) + P(I2) = 0.09 +0.01=0.10

4.3 Inference with NeurAsp

Since NeurAsp has made an association between the outputs of a neural network
and the atoms produced by ASP, the reasoning about the relations among
objects recognized by the neural network is possible.
The digit addition is quite trivial and not suitable for the demonstration of the
inference capabilities of the NeurAsp framework so we will use the toycar exam-
ple provided by [Yang, 2020]. The task is that a Convolutional Neural Network
can identify 5 object classes [car,cat,person,truck,other] in an image and we
need to determine if the identified car is an actual car or a toy car. Instead of
training the neural network from scratch for this specific task we can write ASP
rules based on commonsense reasoning regarding the size relations between
objects.The NeurAsp program for this task is:

nn(label(1,I,B),[car,cat,person,truck,other] :- box(I,B,X1, Y1, X2, Y2).

The NeurAsp program states that the neural network takes as input the bound-
ing box of the objects in an image and then outputs one classification label for
each one of them.
In real life we know that objects can be sorted by their size and we can encode
this information with the following ASP rules:

smaller(cat,person).
smaller(person,car).
smaller(person,truck).

Those rules state that the object on the left is smaller than the one in the
right. We add a rule that states that if an object X is smaller than an object Y
and there is an object Z that is smaller than X then Z is also smaller than Y.

smaller(X,Y) :- smaller(X,Z),smaller(Z,Y).

With the association of each label and its bounding box we could create a
rule that by default asserts the size relationships as we defined it so far but this
rule would not be sufficient to differentiate toy cars from real ones. We need
to use additional information from the bounding box coordinates so we could
encode the size relation of the boxes using ASP code as such:

smaller(I,B1, B2) :- box(I,B1, X1, Y1, X2, Y2),
box(I,B2, X

′
1, Y

′
1 , X

′
2, Y

′
2),

|X1 −X2| × |Y1 − Y2| < |X ′
1 −X ′

2| × |Y ′
1 − Y ′

2 |.
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Now we could make the assumption that if a car has a smaller bounding box
than a person in the same picture then it is probably a toy car but this is not
the case as we can see in the set of pictures below:

Figure 19: Example of inference with NeuAsp

In the left picture what we have defined so far would suffice since we have a large
bounding box of a person and small ones for the cars and indeed they are toy
cars , but in the picture of the right there are small bounding boxes of actual
cars in the background. So there are some exceptions regarding the size
relations that we need to encode and we will need to define a second smaller
relation regarding the bounding boxes (besides the one that refers to real life
sizes).

smaller(I,B1, B2) :- not ∼smaller(I,B1, B2),
label(I,B1) = L1, label(I,B2) = L2, smaller(L1, L2).

The symbol ∼ in front of the new size relation stands for strong negation and
is needed in order to assert explicit falsity and provides a way to define the
exception in our size relation. The rule above can be translated as B1 is smaller
than B2 if the exception does not hold and if B1 is smaller than B2 in actual
object sizes.
In order to determine if the recognized car is a toy or not we need to apply com-
monsense reasoning for the bounding boxes as well. Objects in a picture appear
larger if they are closer to the camera so we can use their bottom coordinates
(Y2) to determine which object is closer:

∼smaller(I,B2, B1) :- box(I,B1, X1, Y1, X2, Y2),
box(I,B2, X

′
1, Y

′
1 , X

′
2, Y

′
2),

Y2 ≥ Y ′
2 ,

|X1 −X2| × |Y1 − Y2| < |X ′
1 −X ′

2| × |Y ′
1 − Y ′

2 |.

The rule above says that B2 is not smaller than B1 if B1 is closer to the
camera (Y2 ≥ Y ′

2) and the box of B1 is smaller than B2. Then we define the
rule :

smaller(I,B1, B2) :- ∼smaller(I,B2, B1).
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This rule says that B1 is smaller than B2 if B2 is not smaller than B1.
Finally we can create the rule that states when a car is a toy or not:

toy(I,B1) :- label(I,B1) = L1, label(I,B2) = L2,
smaller(I,B1, B2) ,smaller(L2, L1).

This final rule says that the object L1 with the bounding box B1 is a toy if
it is smaller in terms of the bounding box rules that we defined (with the ex-
ceptions of the camera distance) and also if the object L2 is smaller than L1 in
real life.Using those rules NeurAsp is able to differentiate toy cars by applying
commonsense reasoning on a Neural Network outputs.

4.4 Learning with NeurAsp

When we train a neural network with NeurAsp our task is to find the parameters
θ that maximize the log-likelihood of the observations.

θ ∈ argmaxθ

∑
log(PΠ(θ)(O))

The gradient of
∑

log(PΠ(θ)(O)) with respect to θ is :

∂
∑

log(PΠ(θ)(O))

∂θ
=

∑ ∂ log(PΠ(θ)(O))

∂p
× ∂p

∂θ

The term ∂p
∂θ can be computed through the usual neural network backpropagtion

while each
∂ log(PΠ(θ)(O))

∂p can be computed as shown in [Yang, 2020] , proposi-
tion 1:

∂ log(PΠ(θ)(O))

∂p
=

∑
I:|=O

PΠ(θ)(I))

PΠ(θ)(c=v)) −
∑

I:|=O
PΠ(θ)(I))

PΠ(θ)(c=v′))∑
I:|=O PΠ(θ)(I))

In order to explain in depth the above formula we need to break it down as
shown below:
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Figure 19: Formula break down

Continuing our example of digit addition we assume that at this point NeurAsp
has the probability distributions for both images of the sample. In order to
calculate the gradients we need the following:

• The Denominator: we need the probability of each stable model. We
calculate those probabilities as the multiplication of the probabilities of
each atom that each model contains as shown in the previous sub-section.

• The Numerator and its parts: NeurAsp keeps a list of all generated atoms
(20 in total) as we have mentioned in sub-section 4.2 Semantics and
Internal Operations in the form of:

[digit(d1, 0), ..., digit(d1, 9), digit(d2, 0), ..., digit(d2, 9)]

NeurAsp iterates through all the generated digit atoms and checks if they
are contained in each model (satisfied by the model) and depending on
the case it performs different updates to the gradients as we denote with
the two parts of the numerator.
The first part of the numerator indicates that the probability pi of an
atomi tends to increase for every stable model that contains this particu-
lar atom.
On the other hand the second part of the numerator indicates that
the probability pi of an atomi tends to decrease for each stable model that
does not contain this particular atom.
The value of each increase or decrease its dependent on the probability
of each atom and the probability of each stable model of the observation
as they are defined in the previous sub-section.

In order to elaborate more on the calculation of gradient updates we
provide a step by step example for some of the generated output atoms:
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Assuming that we have the following output probabilities and stable mod-
els of the observation:

and the computed probabilities of the stable models:

P (I1) = P (digit(d1, 1)) + P (digit(d2, 0)) = 0.3 · 0.3 = 0.09

P (I2) = P (digit(d1, 0)) + P (digit(d2, 1)) = 0.1 · 0.1 = 0.01

NeurAsp will need to store the computed gradients before proceeding
with the backpropagation so for this reason there is a matrix initialized with
zeroes. This matrix has a mapping with all possible outcomes ( in our case 9
outcomes) and will be populated with the gradient updates as we will describe.

NeurAsp will iterate though all 20 generated atoms and for each of the two
stable models starting with digit(d1, 0) will do the following:

• digit(d1, 0) is not in model1:[digit(d1, 1), digit(d2, 0)]

In this model the atom is not contained since for d1 the atom digit(d1, 1)
is present with probability p1 = 0.3 so we will have a negative gradient

update of value P (model1)
p1

= 0.09
0.3 to be added in the 0 index of gradient

update matrix.

• digit(d1, 0) is in model2:[digit(d1, 0), digit(d2, 1)]
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In this model the atom with probability p0 = 0.1 is contained so we will

have a positive gradient update of value P (model1)
p0

= 0.09
0.1 to be added

in the 0 index of gradient update matrix.

Continuing with digit(d1, 1):

• digit(d1, 1) is in model1:[digit(d1, 1), digit(d2, 0)]

In this model the atom is contained with probability p1 = 0.3 so we will

have a positive gradient update of value P (model1)
p1

= 0.09
0.3 to be added

in the 1st index of gradient update matrix .

• digit(d1, 1) is not in model1:[digit(d1, 0), digit(d2, 1)]

In this model the atom is not contained since for d1 the atom digit(d1, 0)
is present with probability p0 = 0.1 so we will have a negative gradient

update of value P (model1)
p0

= 0.09
0.1 to be added in the 1st index of gradient

update matrix.

We will provide a last iteration with digit(d1, 2):

• digit(d1, 2) is not in model1:[digit(d1, 1), digit(d2, 0)]

In this model the atom is not contained since for d1 the atom digit(d1, 1)
is present with probability p1 = 0.3 so we will have a negative gradient

update of value P (model1)
p1

= 0.09
0.3 to be added in the 2nd index of gradient

update matrix.

• digit(d1, 2) is not in model1:[digit(d1, 0), digit(d2, 1)]

In this model the atom is not contained since for d1 the atom digit(d1, 0)
is present with probability p0 = 0.1 so we will have a negative gradient

update of value P (model1)
p0

= 0.09
0.1 to be added in the 2nd index of gradient

update matrix.

Any further iteration for digit d1 will result to a negative update. Again when
the loop reaches atoms regarding digit d2 it will do the same respective updates.
When all atoms are checked the gradient update matrix is populated and back-
propagation is initiated.

5 Human Activity Recognition with NeurAsp

5.1 Task Description

NeurAsp showed promising results compared to traditional deep neural network
methods regarding the digit addition task. The purpose of this thesis is to in-
vestigate the capabilities of the NeurAsp framework with a more challenging
task such as the recognition of the interactions between two persons in a video.
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Given a set of video frames where persons are performing a set of actions (sim-
ple events) such as walking , running , remain idle etc we will train a neural
network that will recognize the interaction between pairs of persons and cate-
gorize them to complex events classes such as meeting , moving together etc.
Using as a “teacher” a logical theory that provides definitions of the complex
events in terms of the simple ones. That is, the task is to train the Neural Net-
work to predict simple events in a way that optimizes the predictive performance
of the complex event rules when they consume such simple event predictions.
The simple events here will be treated as latent concepts, similarly to single-
digit labels in the MNIST addition task in previous section
For this task we will need to create suitable input tensors that contain a se-
quence of features for a given number of frames (timepoints). Since sequential
data is involved we have chosen to train a Bi-directional LSTM that will
output classification results for each timepoint given as input.

5.2 CAVIAR Dataset

The dataset used for this thesis is the CAVIAR dataset. We are using the first
section of video clips recorded in the entrance of the INRIA Labs at Grenoble,
France3. All clips are recorded at 25 frames per second and include actions
performed by individual persons or by groups of persons. Each frame is anno-
tated in XML format with a label and bounding boxes that bound the people
involved.We refer to actions that involve individual people as simple events
and those events are labeled by the annotators using the following labels:

• inactive

• active

• walking

• running

Actions that groups of persons perform are referred as complex events and
the following labels are used by the annotators:

• joining

• meeting

• moving

• split up

• leaving object

• fighting

The features provided for each frame are:

3https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
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• orientation: the orientation of the observed person

• cx: x coordinate of the bounding box center

• cy: y coordinate of the bounding box center

• w: width of the bounding box

• h : height of the bounding box

5.3 Data Pre-processing

In order to perform our experiments, the CAVIAR dataset needed to be pro-
cessed. Each video is described by an XML file that contains information about
what is happening in each frame regarding each person or group of persons.
We need to create suitable input and output tensors for our LSTM and this is
achieved by performing a set of data pre-processing steps as described below.

5.3.1 XML parsing

A python script extracts for each video all the necessary information from the
XML file and this information is stored to a python dictionary. This dictionary
contains information about all the videos provided by CAVIAR, organized by
each video source. For each frame in every video we keep the following infor-
mation:

• all visible persons ids in each frame (each person has its own id)

• features of each visible person (orientation, center coordinates of bounding
boxes and their corresponding width and height) and its simple event label

• person ids that are involved in a complex event and the complex event
label

• all possible pairs of person ids that are visible in the frame regardless
of whether they are performing a complex event or not. If the pair is not
performing a complex event as dictated by the complex event annotation
their complex event label is annotated as “no interaction”

An example for one frame with 4 visible persons is provided below where the
text colors match the bounding box colors in Figure 20:
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Figure 20: Sample image of individuals and their bounding boxes

The information from the annotators for this frame is:

Simple Events:

• Person1: walking

• Person2: walking

• Person3: inactive

• Person4: walking

Complex Events annotated as a group action in XML file:

Person1 and Person2 : moving

Given this information we can produce the following pairs and also annotate the
complex event of each non participating pair as a “no interaction” complex
event:

• Person1 - Person2: moving

• Person1 - Person3: no interaction

• Person1 - Person4: no interaction

• Person2 - Person3: no interaction
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• Person2 - Person4: no interaction

• Person3 - Person4: no interaction

A person’s id is an integer starting from 1. In our example we have 4 persons
with ids from 1 to 4 and also in another video we may have the same ids as
numbers but they refer to other persons so we need to find a way to differentiate
them as pairs.
The solution comes if we create pair ids that contain also the source file name.
For instance if the source file is called wk1gt the pair ids in our examples would
be : wk1gt 1-2 , wk1gt 1-3 , wk1gt 1-4 etc.

5.3.2 Sliding window on video frames

A time series classification task requires specific pre-process in order to asso-
ciate signal data (in our case video frames) with the activity labels. A straight-
forward data partitioning approach is to divide the input data into time win-
dows where a given window may have a few timepoints of observation data.
This data preparation is called sliding window and it has many variations
[Laguna, 2011]. After we have stored our data by distinct pairs we can cre-
ate data chunks on a given time interval T of consecutive frames. Since in
the CAVIAR dataset the number of samples of consecutive frames is somehow
limited we apply the sliding window technique with coverage C in order
to increase the number of our samples. Let’s assume that we have the following
set of 18 consecutive frames for one person of the pair and we need to create
samples with 6 timepoints (window size T=6):

Figure 21: Sample of features for each time point
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If we create samples of size T=6 with a simple segmentation of the frames
we will end up with 18 / 6 = 3 samples (Figure 4)

Figure 22: Partitioning without sliding windows

By applying the sliding window technique with window size T=6 and cov-
erage C=50% we will end up with 5 samples (Figure 5)

5.3.3 Ground Truth Generation on Complex Events with ASP

In this section we will present the rules used to detect the complex events of the
task as proposed in WOLED [Katzouris, 2020]. The CAVIAR dataset provides
ground truth for both simple and complex events but in order to train the neu-
ral network to recognise simple events in a way that maximizes the predictive
performance of the rules we need to “extract” the ground truth for complex
events by following the described procedure bellow.
The Event Calculus axioms are domain independent axioms and describe
the law of inertia where an event holds at time point T +1 if it is initiated at
the previous time point T , or if it holds at T and it is not terminated at T .
In ASP we can define the law of inertia with these rules:

1. holdsAt(F,Ts+1) :- initiatedAt(F,Ts), fluent(F), next(Ts,Te).
2. holdsAt(F,Te) :- holdsAt(F,Ts), not terminatedAt(F,Ts),

fluent(F), next(Ts,Te).
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Figure 23: Partitioning with sliding windows

where:

fluent/1 predicate: captures properties that persist in time

next/2 predicate: defined as next(T1,T2) :- T2 = T1 + 1

In this thesis we focus on two types of complex events: the moving and
meeting complex event. Table 2 and Table 3 contain the rules that define
the moving complex event and meeting complex event respectively.

39



The moving Complex Event consists of the following rules:

1. initiatedAt(moving(X0,X1),T) :- happensAt(walking(X0),T),
happensAt(walking(X1),T),orientationMove(X0,X1,T),
close(X0,X1,D,T).

2. terminatedAt(moving(X0,X1),T) :- happensAt(walking(X0),T),
far(X0,X1,D,T).

3. terminatedAt(moving(X0,X1),T) :- happensAt(walking(X1),T),
far(X0,X1,D,T).

4. terminatedAt(moving(X0,X1),T) :- happensAt(active(X0),T),
happensAt(active(X1),T).

5. terminatedAt(moving(X0,X1),T) :- happensAt(active(X0),T),
happensAt(inactive(X1),T).

6. terminatedAt(moving(X0,X1),T) :- happensAt(active(X1),T),
happensAt(inactive(X0),T).

7. terminatedAt(moving(X0,X1),T) :- happensAt(running(X0),T),
person(X1).

8. terminatedAt(moving(X0,X1),T) :- happensAt(running(X1),T),
person(X0).

9. terminatedAt(moving(X0,X1),T) :- happensAt(disappear(X0),T),
person(X1).

10. terminatedAt(moving(X0,X1),T) :- happensAt(disappear(X1),T),
person(X0).

Table 2: Definition of moving complex event

The first rule dictates the moving event between two persons X0, X1 is initi-
ated at time T if both X0 and X1 are walking at T and their euclidean distance
at T (close/4 predicate) is less than a threshold D (which is explicitly provided
at runtime as a set of choices/bins for D) and their difference in orientation is
such that the two persons are moving almost in parallel at T (orientationMove/3
predicate). The rest of the rules define the termination of this event. For in-
stance (rules no2 and no3) dictate that the moving event is terminated at time
T if the eulcidean distance at T (far/4 predicate) is greater that the thershold
D. The moving event also terminates at time T if the two persons X0,X1 cease
to perform the walking simple event concurrently at T (X0 is walking and X1
is inactive) as dictated from rules 3-6. Finally the moving event terminates if
one of the persons X0, X1 starts running (rules no7 and no9) or one of them is
leaving the monitored area (disappear/2 predicate) at time T.
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The meeting Complex Event consists of the following rules:

1. initiatedAt(meeting(X0,X1),T):-happensAt(active(X0),T),
happensAt(active(X1),T),close(X0,X1,D,T).

2. initiatedAt(meeting(X0,X1),T) :- happensAt(active(X0),T),
happensAt(inactive(X1),T),close(X0,X1,D,T).

3. initiatedAt(meeting(X0,X1),T) :- happensAt(inactive(X0),T),
happensAt(active(X1),T),close(X0,X1,D,T).

4. initiatedAt(meeting(X0,X1),T) :- happensAt(inactive(X0),T),
happensAt(inactive(X1),X2),close(X0,X1,D,X2).

5. terminatedAt(meeting(X0,X1),T) :- happensAt(running(X0),T),
person(X1).

6. terminatedAt(meeting(X0,X1),T) :- happensAt(running(X1),T),
person(X0).

7. terminatedAt(meeting(X0,X1),T) :- happensAt(disappear(X0),T),
person(X1).

8. terminatedAt(meeting(X0,X1),T) :- happensAt(disappear(X1),T),
person(X0).

9. terminatedAt(meeting(X0,X1),T) :- happensAt(walking(X0),T),
far(X0,X1,D,T).

10. terminatedAt(meeting(X0,X1),T) :- happensAt(walking(X1),T),
far(X0,X1,D,T).

Table 3: Definition of meeting complex event

The first 4 rule dictate the meeting event between two persons X0, X1 is
initiated at time T if both X0 and X1 are active or inactive at T and their
euclidean distance at T (close/4 predicate) is less than a threshold D. The rest
of the rules define the termination of this event. The meeting event terminates
if one of the persons X0, X1 starts running or walking or one of them is leaving
the monitored area (disappear/2 predicate) at time T.
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Given the provided definitions for the two complex events we can create
helper rules that define “types” of domain variables such as the complex events
and express them by using the domain independent axioms of Event Calculus
in the form of fluents that are subjects to inertia.

1. fluent(moving(X,Y)) :- person(X), person(Y), X != Y.
2. fluent(meeting(X,Y)) :- person(X), person(Y), X != Y.
3. time(T) :- happensAt(disappear( ),T).
4. time(T) :- happensAt(appear( ),T).
5. time(T) :- happensAt(active( ),T).
6. time(T) :- happensAt(inactive( ),T).
7. time(T) :- happensAt(walking( ),T).
8. time(T) :- happensAt(running( ),T).
9. time(T) :- coords( , , ,T).
10. time(T) :- orientation( , ,T).
11. person(X) :- happensAt(disappear(X), ).
12. person(X) :- happensAt(appear(X), ).
13. person(X) :- happensAt(active(X), ).
14. person(X) :- happensAt(inactive(X), ).
15. person(X) :- happensAt(walking(X), ).
16. person(X) :- happensAt(running(X), ).

Table 4: Helper rules that define “types” of domain variables

The first two rules define the complex event as fluents. (the fluent atom is
used in the inertia law ASP definition).
The happensAt atom is used to associate:

• time : when the event started or ended

• event: what event started or ended (events such as walking , inactive ,
active and running)

• person: the id of the person that performs the event that started or ended

Given a pair of persons in a time range with the rules mentioned above
we can determine if those persons are moving together , meeting or having no
interaction at all. (there is no rule for no interaction event because if those two
persons are not moving together or meeting the ASP program will not output
anything about the given time range so it is assumed that there is no interaction
at all).
Since we have parsed and organized our data by unique pairs we can create
separate asp programs for each individual pair and retrieve the time intervals
in which the complex events hold continuously. Each ASP program contains:
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• The rule of inertia and the complex event definitions as background
knowledge.

• The coordinates , orientation , the ids of the persons and the frame number
encoded as asp atoms. (coords , orientation etc)

• The ground truth of the simple events performed by each person in the
pair encoded as happensAt atoms.

As mentioned our goal is to maximize the predictive performance of the defined
complex event rules (Table 2 and Table 3) through neuro-symbolic training.
We treat those rules as the “golden standard” and by providing as input the
ground truth on simple events as given from CAVIAR we extract the ground
truth for complex events.
After running each ASP program we obtain time intervals where the complex
event holds. In our experiments we will use those intervals as ground truth
for the complex events.

5.3.4 Stable Model generation for time windows

In digit addition [Section 4.2] we provided observations regarding the result of
the addition between two digits and with ASP we generated the possible stable
models. By applying the same logic we provide observations regarding the com-
plex event that two persons are performing and we will generate stable models
on the simple events that those two persons may perform individually.

Let’s assume that we have two persons that are performing a meeting complex
event in the time range 73-77. For this time range of 5 frames we create the
following choice rules that will generate all the possible combinations of the
simple event that a person may perform:

1{simpleEvent(T,person 1,active); simpleEvent(T,person 1,inactive);
simpleEvent(T,person 1,walking); simpleEvent(T,person 1,running)}1 :-
T=72..78.

1{simpleEvent(T,person 2,active); simpleEvent(T,person 2,inactive);
simpleEvent(T,person 2,walking); simpleEvent(T,person 2,running)}1 :-
T=72..78.

Note that in the time range of the choice rules we added one frame to the
start and one to the end ( the original time range was 73-77 but in the choice
rules is 72-78) where we assume that the complex event does not hold. This
addition is needed to trigger the rules that use the law of inertia.

Given that we know that those two persons are meeting in the range of 73-
77 we can create the following set of observations with the addition of set of
rules where the complex event does not hold (set1 / set7).
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Note that these observations are encoded via ASP constraints that enforce
their satisfaction by an ASP program used for reasoning:

1. :- holdsAt(meeting(person 1,person 2),72).
:- holdsAt(meeting(person 2,person 1),72).

2. :- not holdsAt(meeting(person 1,person 2),73).
:- not holdsAt(meeting(person 2,person 1),73).

3. :- not holdsAt(meeting(person 1,person 2),74).
:- not holdsAt(meeting(person 2,person 1),74).

4. :- not holdsAt(meeting(person 1,person 2),75).
:- not holdsAt(meeting(person 2,person 1),75).

5. :- not holdsAt(meeting(person 1,person 2),76).
:- not holdsAt(meeting(person 2,person 1),76).

6. :- not holdsAt(meeting(person 1,person 2),77).
:- not holdsAt(meeting(person 2,person 1),77).

7. :- holdsAt(meeting(person 1,person 2),77).
:- holdsAt(meeting(person 2,person 1),78).

These observation rules contain in their body the holdsAt atom that is used
to define the complex event definitions and will filter out any generated model
that violates any of those rules leaving behind only the models that comply.
Essentially, these constraints enforce that the complex events ground truth that
corresponds to the rules of Table 2 and Table 3 is satified.
In order to generate models that contain simpleEvent atoms we add the follow-
ing rules that map the happensAt atoms to simpleEvent atoms:

1 .happensAt(active(X),T) :- simpleEvent(T,X,active).
2 .happensAt(inactive(X),T) :- simpleEvent(T,X,inactive).
3 .happensAt(walking(X),T) :- simpleEvent(T,X,walking).
4. happensAt(running(X),T) :- simpleEvent(T,X,running).

Finally we provide atoms such as coordinates , orientation and visibility
extracted from the XML files and we create separate ASP programs for each
time window. Here we will emphasize the main difference with the
previous phase of ASP code generation. In this phase we do not provide
any information about the simple events performed since we need to do the
“reverse procedure”. Specifically:

• In the first phase we generated models that contained atoms with time
intervals (frames) where a complex event holds given the simple events
provided by the XML files. We did this in order to acquire the deduc-
tive consequences of our “teacher” rules (the meeting/moving definitions)
as the complex event ground truth that will be used in the neuro-symbolic
training.
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• In this case given that the complex event holds we generate models
that contain atoms with time intervals where the two involved persons
perform a simple event individually. Therefore, in this phase we are
abductively explaining the complex event ground truth (encoded as a as
set of constraints) in terms of the simple event labels. Note that the latter
are the “latent concept” labels that the Neural Network needs to learn
how to predict using the complex event rules as a “teacher”. We are thus
following the standard NeurASP approach here, properly adapted to the
particular use case.

In our example ASP will generate the following models:

Figure 24: stable models

ASP in fact will generate a lot more stable models. The fact that the initiation
and the termination time-point of a complex event requires to not hold, ASP
will assign all possible combinations of simple events to those time-points. In
order to tackle this we made the assumption that once a complex event is not
re-initiated within an interval, the generated simple events within this interval
match those of the initiating time-point. This simplifying assumption is justified
by the fact that it is often natural to expect that the conditions that initiate a
durative event are likely to re-occure for as long as the event holds. Given the
assumption we made, we are interested only in the intermediate frames that
the complex event holds so we discard the start frame and the end frame. Note
that we need to keep the unique stable models of the intermediate frames
and in our example model2 and model3 are the same. So in the time range
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of our interest we keep only two instances of stable models.

Figure 25: Unique instances of stable models

5.3.5 Input and Label Tensors

In this thesis we are evaluating three different experimental setups. All experi-
mental setups are presented and described in following sections but we will make
a short introduction here since each setup requires different input tensors and
data structures:

• Only Deep Learning methods (setup1): this setup involves only tra-
ditional deep learning methods without the intervention of logic.

• Training on simple events / Infer with NeurAsp (setup2): this
method lets the neural network train with the usual back-propagation
using the ground truth as provided by the CAVIAR dataset.

• NeurAsp training and inference (setup3): this method uses the
NeurAsp framework for training and inference.

Before we begin the description of the input and label tensors we remind the 5
features provided by the CAVIAR Dataset: [orientation, xc ,xy ,h ,w].

Since neural network operations are numerical, tensors must only contain num-
bers. In order to compare the predictions made by a neural network with non
numeric target values such as in our task we need to create tensors with num-
bers that map with each target label. So we have chosen the following label
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encoding for complex and simple events.

Figure 26: Label encoding for simple and complex events

After all the steps of data pre-processing that we described are completed
,the following three sets of data structures and tensors (one set for each
method) are produced and we provide a visual representation of each one for
window size T=6:

• Set1 of tensors (Only Deep Learning methods)

– Input tensors of size Tx11:this tensor contains the features of
two persons concatenated row wise for each time point. We added
the euclidean distance between the coordinates of the two persons
involved as an additional feature. ( 5 features for each person plus
the distance feature).

– Label tensors with complex events of size Tx1: this tensor
contains the encoded labels for the complex events for each time step
as generated from the ASP programs.
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Figure 27: Tensors used in setup1

• Set2 of tensors (Training on simple events / Infer with NeurAsp)

– Input tensors of size Tx5: Each one of these tensors contain
features of one person.

– Label tensors with simple events of size Tx1: this tensor con-
tains the labels on simple events as given from the XML files.

– Lists of atoms: For each sample tensor there is a list that con-
tains coordinates , orientation and visibility atoms that match their
respective frames.

– Label tensors with complex events of size Tx1: this tensor
contains the labels on complex events for each time step as generated
from the ASP programs.
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Figure 28: Tensors used in setup2

• Set3 (Training and Infer with NeurAsp)

– Tuple of input tensors of size Tx5: The tensors of the two per-
sons involved in the complex event are stored in a tuple of size 2.

– Lists of stable models: Each tuple is accompanied with a list that
contains the stable models produced from ASP.

– Lists of atoms: For each tuple of tensors there is a list that con-
tains coordinates , orientation and visibility atoms that match their
respective frames.

– Label tensors with complex events of size Tx1: this tensor
contains the labels on complex events for each time step as generated
from the ASP programs.
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Figure 29: Tensors used in setup3

5.3.6 CAVIAR Dataset Cross Validation Split

After we have obtained the desired format of our tensors we selected 38 unique
pairs of persons for our Dataset that perform complex events. Some pairs were
omitted since they performed only the “no interaction” complex event in the
entire frame sequence and this class has already the majority of the samples as
we can see in the following distribution diagram:

Figure 30: Distribution of complex events

As we can observe, our dataset is heavily imbalanced. In order to have valid
and robust results we need to perform a form of a stratified k-fold cross
validation. The term stratified implies that we must retain the distribution
ratio in our folds. We consider each pair to be independent from the other
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so the folds that are used for testing contain pairs that are not present in the
training dataset each time.
Note that the number of complex events performed by each unique pair are not
evenly distributed so in order to keep the distribution ratio both in the training
and in the testing segments, the number of unique pairs in each fold varies but
the distribution ratio is the same.
For example let’s assume that we have 10 unique pairs with the following dis-
tribution:
All samples

• no interaction: 180 samples

• meeting: 50 samples

• moving: 80 samples

We split to 80% training and 20% testing:
Training

• no interaction: 144 samples

• meeting: 40 samples

• moving: 64 samples

Testing

• no interaction: 36 samples

• meeting: 10 samples

• moving: 16 samples

The split between the unique persons is visualized below:
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Figure 31: 3-fold between distinct pairs of persons

As mentioned we have 39 unique pairs and we have created 3 folds that each
one has a training and testing dataset of the following distribution(with minor
differences in the distribution of the classes of the testing dataset):

Figure 32: Complex event distribution in each fold
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5.4 NeurAsp Learning in Activity Recognition

The deep learning network type chosen for the Complex Event Recognition task
is a Many-to-many Bi-directional LSTM where a sequence of T consecu-
tive frame features are given as input and the output is a matrix of size 1xT
which contains classification results for each time step of the sequence.The
classification on all time steps is achieved by applying a softmax activation
function to the last hidden layer.

5.4.1 Window Size Selection

One very important parameter of our task is the window size which de-
fines the size of the sequence that needs to be classified. Larger windows require
slower training and inference times whereas smaller windows allow faster activ-
ity inference and also have reduced needs in terms of resources[Banos, 2014].
There are no best practices for the selection of an optimal window size, and it
really depends on the specific model being used and the ideal size is determined
through experimentation. We observed that lager window sizes performed bet-
ter regarding the discrimination between the classes of our task. Given
that we will try to give a intuitive interpretation why lager windows perform
better by visualizing the sequence for three different window sizes. In the images
bellow we have drawn the bounding boxes and the center of a person on a
black image so we can observe how the coordinates of the bounding box move
through the consecutive frames:

• 6 frames:

Figure 33: Visualized simple events in 6-framed time windows

• 12 frames:
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Figure 34: Visualized simple events in 12-framed time windows

• 24 frames:

Figure 35: Visualized simple events in 24-framed time windows

As we can observe the more we increase the window size the more the classes are
distinctable especially for the active and walking classes since the inactive
class is the most trivial class to identify because the person’s bounding box and
center does not change through time. Given that we have concluded that
the window size for the presented experiments of this thesis will be 24.

5.4.2 NeurAsp program of the Task

The NeurAsp program for the task is:

window(P1). window(P2).
nn(simpleEvent(T,S), [active, inactive, running, walking]) :- window(S).

The NeurAsp program expects two input windows of size T (one for each person
P1, P2) and will output classifications for each step of the window using the
4 provided labels for the simple events. NeurAsp will internally translate the
NeurAsp program to actual ASP code (choice rules) just as we explained in the
digit addition example and will generate atoms with all the possible choices for
each person in every frame in the form of (for convienience instead of sim-
pleEvent we write se):

se(0,P1,active), se(0,P1,inactive),se(0,P1,running), se(0,P1,walking),
se(1,P1,active), se(1,P1,inactive),se(1,P1,running), se(1,P1,walking),
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se(2,P1,active), se(2,P1,inactive),se(2,P1,running), se(2,P1,walking),
se(0,P2,active), se(0,P2,inactive),se(0,P2,running), se(0,P2,walking),
se(1,P2,active), se(1,P2,inactive),se(1,P2,running), se(1,P2,walking),
se(2,P2,active), se(2,P2,inactive),se(2,P2,running), se(2,P2,walking)

For our example of 3 timepoints we have 24 generated atoms.

5.4.3 Learning Procedure

The training of our bi-directional LSTM through the NeurAsp network requires
the 3rd set of data structures and tensors as described in section 4.3.5 where the
input tensors come as pair within a tuple accompanied with their pre-computed
stable models.
The training procedure is similar with the digit addition but more complex since
we have classifications in each timestep (frame). Let’s assume that we have the
following tensor pair of window size T=3 for the two involved persons p1
and p2:

Figure 36: Example of input tensors

The output of the forward pass for the two input tensors is a 3x4 tensor which
contains a probability distribution over simple events (active, inactive, run-
ning, walking) as such:
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Figure 36: Example of output tensors

Note that the timestep column and the column names in all tensors are used
only for illustration purposes. The indexing between the atoms and the cells of
a tensor is achieved using the row and the column numbering. Specifically the
column indices are the encoded numbers that correspond to the labels 0 ,1, 2,
3 respectively. For instance , row=0 and column=3 refers to the first timestep
of the walking simple event probability.

The pre-computed stable models (we assume 3 unique stable models) in the
given time range and their probabilities:

model1:[ se(0,P1,active), se(0,P2,inactive),se(1,P1,active), se(1,P2,inactive)
se(2,P1,active), se(2,P2,inactive) ]

P(model1) = P(se(0,P1,active))+P(se(0,P2,inactive))
+ P(se(1,P1,active))+P(se(1,P2,inactive))
+ P(se(2,P1,active))+P(se(2,P2,inactive))
= 0.2×0.4×0.15×0.15×0.2×0.1 = 0.000036

model2:[ se(0,P1,inactive), se(0,P2,inactive),se(1,P1,inactive), se(1,P2,inactive)
se(2,P1,active), se(2,P2,active) ]

P(model2) = P(se(0,P1,inactive))+P(se(0,P2,inactive))
+ P(se(1,P1,inactive))+P(se(1,P2,inactive))
+ P(se(2,P1,active))+P(se(2,P2,active))
= 0.4×0.1×0.4×0.15×0.2×0.45 = 0,000216

model3:[ se(0,P1,inactive), se(0,P2,active),se(1,P1,inactive), se(1,P2,active)
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se(2,P1,active), se(2,P2,active) ]

P(model3) = P(se(0,P1,inactive))+P(se(0,P2,active))
+ P(se(1,P1,inactive))+P(se(1,P2,active))
+ P(se(2,P1,active))+P(se(2,P2,active))
= 0.4×0.4×0.15×0.4×0.2×0.45 = 0,000864

Note that the probability of each atom se(frame num,person id,event label)
map directly to the two output tensors of the neural network as such:

• person id denotes which tensor to lookup(P1 or P2 tensor)

• frame num which row

• event label which simple event column

For instance P(se(2,P2,inactive) is referring the to P2 tensor , 3rd row and
simple event’s inactive column.

In a similar way as the digit addition example NeurAsp also keeps a tensor
for the gradient updates initialized to zeroes. For our example with T=3 and 4
classes its a 3x4 tensor(the timestep column is used only for representation):

Figure 36: Gradient tensor filled with zeroes

The next step is the gradient update calculation which is the same iterative
procedure with the digit addition example. NeurAsp will iterate through all
the atoms created by the choice rules and will compare them against all the
stable models one by one. Let’s remember the formula of the NeurAsp loss
function:
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Figure 37: Formula break down

As we did with digit addition example we will go through a step by step execu-
tion for some of the atoms generated by the choice rules.
The Denominator is the sum of probabilities of each stable model that we have
already calculated.∑

I:|=O PΠ(θ)(I)) = P(model1) + P(model2) +P(model3)

= 0,000036 + 0,000216 + 0,000864
= 0,001116

The Numerator and its parts is calculated through the mentioned iterative pro-
cedure:

- se(0,P1,active) is in model1 (part1 of the numerator):

[ se(0,P1,active), se(0,P2,inactive),se(1,P1,active), se(1,P2,inactive),
se(2,P1,active), se(2,P2,inactive) ]

There will be a positive update of
P (model1)

P (se(0,P1,active)) =
0.000036

0.2 =0,0018

- se(0,P1,active) is not in model2 (part2 of the numerator):

[ se(0,P1,inactive), se(0,P2,inactive),se(1,P1,inactive), se(1,P2,inactive),
se(2,P1,active), se(2,P2,active) ]

There will be a negative update of
P (model2)

P (se(0,P1,inactive)) =
0.000216

0.4 =0,00054

- se(0,P1,active) is not in model3 (part2 of the numerator):

[ se(0,P1,inactive), se(0,P2,active),se(1,P1,inactive), se(1,P2,active),
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se(2,P1,active), se(2,P2,active) ]

There will be a negative update of
P (model3)

P (se(0,P1,inactive)) =
0,000864

0.4 =0,00216

For this execution so far the gradient update from person P1 for the weight
of active simple event in the first frame can be computed:

P1 update =
0,000036−0,00054−0,00216

0,001116 = −2,387

The procedure will continue for the rest of the atoms that are referring to
P1 and their contribution in terms of gradient updates will be calculated and
stored to their respective cells of the gradient tensor. We remind that there is
a mapping between the indices of the gradient tensor and the atoms using the
rows to map the timesteps and the columns to map the simple event
labels. In the image below we can see the first populated cell while the rest of
them are calculated using the procedure we described step by step:

Figure 37: Gradient tensor containing the computed gradients of one person

When the iteration reaches the atoms that are referring to P2 the update contri-
butions will be added to the already P1 calculated values. In the image below
we can see how the populated gradient matrix looks like after all atoms are
checked:
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Figure 37: Gradient tensor containing the computed gradients of both persons

Finally the gradient update tensor is computed, gets multiplied by the value
of learning rate and when the number of samples that are contributing to
gradient updates reaches the value of batch size, the backpropagation is
triggered.

5.5 NeurAsp Inference in Activity Recognition

In this section we will demonstrate how the outputs of the LSTM are integrated
with ASP code. We will go through on how simple event atoms are generated
using the LSTM outputs and how those atoms are used to infer on complex
events by combining the rules we introduced in section 4.3.4 Ground Truth
Generation on Complex Events with ASP.

5.5.1 Simple Events atoms generation from LSTM outputs

Since the output tensors of the neural network is a probability distribution over
simple events we apply an argmax operation to retrieve the event with the
highest probability as shown in the picture below:
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Figure 38: Predictions for each person

Using the mapping of each output tensor we can generate asp atoms in the form:
simpleEvent(frame num,person id,simple ev label). For instance in our
depicted example we will retrieve the following simple event atoms:

P1 atoms: se(0,P1,inactive), se(1,P1,inaswsctive), se(2,P1,inactive)
P2 atoms: se(0,P2,active), se(1,P2,active), se(2,P2,active)

This way we have encoded the LSTM outputs as ASP atoms. We remind that
the that each sample consists of two persons involved and the classification out-
puts of the LSTM comes one at the time so first we obtain the output results
of P1 and then the results of P2.

5.5.2 Application of logic on LSTM outputs with ASP

We remind that we will infer on three complex event classes: no interaction,
meeting, moving. The no iteraction complex event holds when neither of
the other two holds. Regarding the meeting and moving complex events we
have defined them as ASP code where the law of inertia was used as a ba-
sis. Besides the atoms generated from LSTM outputs the rules need additional
information in order to operate such as the coordinates , visibility and ori-
entation atoms. This additional information comes alongside with each time
window sample as we have described in 4.3.5 Input and Label Tensors where
we keep a list of atoms extracted directly from the XML files. To summarize
we need the following to perform inference using the NeurAsp framework:

• atoms from LSTM outputs

• information atoms directly from XMLs

• complex event rules definitions.
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For the ASP part that we have described so far we can imagine an additional
”logic layer” at the end of our LSTM where the complex event definitions
reside as background knowledge (BK) , takes as inputs the P1 and P2
LSTM output atoms and the additional XML information atoms. By
using clingo the logic layer outputs results on complex events. An illustration
is given below:

Figure 38: Diagram on how the logic layer fits

6 Experimental Methods

In this section we will describe the methods used in order to investigate how
the application of logic could benefit deep learning methods in terms of in-
ference and training in the Complex Event Recognition Task.
We remind that the complex events that we want to classify are 3: no inter-
action, meeting, moving whereas the simple events are 4: active, inactive,
walking, running.
In the data pre-processing procedure we have created 3 sets of of data struc-
tures and tensors which correspond to 3 different approaches:

• Only deep learning methods/method1: In this setup we will train
a neural network to classify the complex events by giving as input a
single sequence tensor that contains features for two persons.

• Traditional neural network training and inference with logic/method2:
In this setup we train a neural network to classify simple events by giv-
ing as input individual sequence tensors that contain features for one per-
son at the time. The ground truth for the simple events is provided
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directly from the CAVIAR dataset.The classification on complex
events is achieved by applying ASP rules at the output layer.

• NeurAsp Integration/method3: Finally we will use the NeurAsp
framework for training and inference. In this setup no ground truth
will be provided for the simple events but rather stable ASP
models that contain simple events. Again the classification on com-
plex events is achieved by applying ASP rules at the output layer

6.1 Bi-directional LSTM Hyperparameters

The bi-directional LSTM is the core component of all 3 approaches and in
order to make a concrete comparison we have chosen the same main hyper-
parameters for all methods. There are differences between the some hyperpa-
rameters:

• input layer: in method1 we provided a tensor that contains the concate-
nated features of the two persons.

• output layer: in method1 the output of LSTM contains predictions on
complex events whereas in the two remaining methods the output contains
predictions on simple events.

• loss function: in method3 we do not use the cross entropy loss since we
use the semantic loss described in Learning with NeurAsp section.

Finally we provide the complete list of the overall hyperparameters:

• Loss function: crossEntropy (method1,method2) / semantic (method3)

• Learning rate: 0.0000015

• Number of hidden layers: 2

• Number of neurons in each hidden layer: 256

• Dropout: 0.3

• Epochs: 1000

• Batch size: 8

• Input Layer size: 11 (method1) / 5 (method2 , method3)

• Softmax Output Layer size: 3 (method1) / 4 (method2 , method3)

• window size T: 24
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The stratified 3-fold split has yielded 3 folds where each fold is split to training
and testing/unseen data. For every method we let the LSTM train for 1000
epochs for each fold. During the training procedure we keep the best macro
f1 score on the training data. After the training procedure is completed for
each fold the results are compared to unseen data as selected from the stratified
3-fold validation.
For every method we provide the results of each fold individually by providing
the confusion matrices and the tables that contain more detailed evaluation
metrics(precision , recall , f1-score).The macro f1-score of each fold is computed
by averaging the individual f1-scores for each complex event class.
Finally we aggregate the macro average f1-scores of each fold to form the
final evaluation metric of the method. The macro average f1-score as we have
mentioned is the most suitable evaluation metric for imbalanced datasets such
as ours.
In the first method where no logic is applied the LSTM outputs results directly
on complex events. On the other hand the two remaining methods use the
”logic layer” we described in the previous section.
Finally it is important to emphasize that the essential difference between the
three methods besides the inference method is the computation of the loss
and the gradient updates so we will provide an illustration of the training
pipeline for each method.

6.2 Method1: Only Deep Learning methods

This method is the most straightforward since it does not involve any logic
integration.The input tensor is of size 24x11 which contains the concatenated
features of both persons plus the distance between their coordinates.

6.2.1 Method1 Pipeline Details

This method uses a traditional deep learning pipeline. In the picture below
we can see two distinct phases of the pipeline, the training phase and the
inference phase:
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Figure 39: Method 1 diagram

• training phase: The tensor with the concatenated features is given as
input to the LSTM and an output tensor is produced which contains a
probability distribution over complex events for each time step. This out-
put tensor is propagated along with the ground truth tensor to the Cross
Entropy Loss. Then using the gradient descent algorithm the gradi-
ent updates that minimize the loss are computed and backpropagated
to the network when the number of processed samples reaches the batch
size.

• inference phase: The inference phase is achieved by applying an argmax
operation to the output tensor and obtain the classes that have the highest
probability. The network is evaluated by comparing the predictions with
the ground truth.

6.2.2 Method1 Results
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Fold1 Results
Confusion Matrix Evaluation Metrics Tables

m
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t

1712 96 232

86 91 241

809 0 429

no int meeting moving

Complex Event Precision Recall f1-score

no int 0.66 0.84 0.74

meeting 0.49 0.22 0.30

moving 0.48 0.35 0.40

Overall Metrics

Accuracy 0.60

Macro f1-score 0.48

Fold2 Results
Confusion Matrix Evaluation Metrics Tables

m
o
v
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g
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e
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t

1220 414 406

36 295 82

685 16 542

no int meeting moving

Complex Event Precision Recall f1-score

no int 0.63 0.60 0.61

meeting 0.41 0.71 0.52

moving 0.53 0.44 0.48

Overall Metrics

Accuracy 0.56

Macro f1-score 0.54

Fold3 Results
Confusion Matrix Evaluation Metrics Tables

m
o
v
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g

m
e
e
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n
g
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o
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t

1718 123 199

29 311 76

730 0 508

no int meeting moving

Complex Event Precision Recall f1-score

no int 0.69 0.84 0.76

meeting 0.72 0.75 0.73

moving 0.65 0.41 0.50

Overall Metrics

Accuracy 0.69

Macro f1-score 0.67

Average macro f1 score = 0.56
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6.3 Method2: Training on simple events and Infer with
NeurAsp

In this method we use the ground truth of simple events as provided
directly from the annotators in the XML files.The input is a pair of
tensors of size 24x5 that contain the features of each person individually.

6.3.1 Method2 Pipeline Details

This method for the training phase uses the traditional deep learning approach
and uses the ”logic layer” to produce predictions:

Figure 40: Method 2 diagram

• training phase: Here we have two individual tensors that are given one
at the time. When the LSTM produces their respective output tensors
they are sent alongside with their ground truth on simple events to the
cross entropy loss function. Similarly with the first method the updates
are computed using the gradient descent algorithm and then back-
propagation is initiated when the number of samples reaches the batch
size. (the batch size for this method is at minimum 2 since the tensors
come as a pair so in order to have the same batch size as the previous
method we declare a batch size of 16)

• inference phase: After the LSTM has produced an output tensor for
each person the argmax operation is applied individually and we get the
predictions on simple events. Those predictions are translated to simple
events atoms (se atoms) and alongside with the needed information XML
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atoms (coordinates, visibility ,etc) are given to the ”logic layer”. The
”logic layer” outputs predictions on complex events using clingo and the
evaluation of the network is done by comparing the predictions with the
ground truth on complex events.

6.3.2 Method2 Results

Fold1 Results
Confusion Matrix Evaluation Metrics Tables

m
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g

m
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e
ti
n
g

n
o
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t

2040 0 0

0 55 363

0 0 1238

no int meeting moving

Complex Event Precision Recall f1-score

no int 1 1 1

meeting 1 0.13 0.23

moving 0.92 90 0.87

Overall Metrics

Accuracy 0.92

Macro f1-score 0.79

Fold2 Results
Confusion Matrix Evaluation Metrics Tables

m
o
v
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g

m
e
e
ti
n
g

n
o

in
t

1951 0 89

58 227 128

35 0 1208

no int meeting moving

Complex Event Precision Recall f1-score

no int 0.95 0.96 0.96

meeting 1 0.55 0.71

moving 0.85 0.97 0.91

Overall Metrics

Accuracy 0.92

Macro f1-score 0.86
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Fold3 Results
Confusion Matrix Evaluation Metrics Tables

m
o
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g
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g
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t

1954 0 86

18 269 131

0 0 1238

no int meeting moving

Complex Event Precision Recall f1-score

no int 0.99 0.96 0.97

meeting 1 0.64 0.78

moving 0.85 1 0.92

Overall Metrics

Accuracy 0.94

Macro f1-score 0.89

Average macro f1 score = 0.82

6.4 Method3: NeurAsp Training and Inference

This final method uses the NeurAsp training for both training and inference.
The LSTM is trained to classify simple events just like method2 but instead
of providing ground truths we provide stable models that we generated
using the procedure we described in subsection Stable Model generation for
time windows.

6.4.1 Method3 Pipeline Details

The method3 pipeline seems quite similar with the pipeline of the previous
method since the inference phase is the same but there is a big difference in the
training procedure:
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Figure 41: Method 3 diagram

• training phase: Again we have two individual tensors that are given one
at the time. As we have described in section NeurAsp Learning on
Complex Event Recognition the NeurAsp program has produced asp
atoms using choice rules for all possible simple event outcome for every
timestep. Those atoms are mapped with the probabilities that the LSTM
has produced and the iterative procedure that checks each stable model
begins. The backpropagation is initiated when the number of processed
samples is equal to the batch size.

• inference phase: The inference method is exactly the same as method2.
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6.4.2 Method3 Results

Fold1 Results
Confusion Matrix Evaluation Metrics Tables

m
o
v
in
g

m
e
e
ti
n
g

n
o
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t

2040 0 0

113 240 65

74 22 1142

no int meeting moving

Complex Event Precision Recall f1-score

no int 0.95 1 0.97

meeting 0.94 0.41 0.57

moving 0.87 0.96 0.92

Overall Metrics

Accuracy 0.92

Macro f1-score 0.82

Fold2 Results
Confusion Matrix Evaluation Metrics Tables

m
o
v
in
g

m
e
e
ti
n
g

n
o

in
t

1957 0 83

48 216 149

0 0 1243

no int meeting moving

Complex Event Precision Recall f1-score

no int 0.98 0.96 0.97

meeting 1 0.52 0.69

moving 0.84 1 0.91

Overall Metrics

Accuracy 0.92

Macro f1-score 0.86
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Fold3 Results
Confusion Matrix Evaluation Metrics Tables

m
o
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g
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g
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t

2040 0 0

24 336 58

59 4 1175

no int meeting moving

Complex Event Precision Recall f1-score

no int 0.96 1 0.98

meeting 0.99 0.80 0.89

moving 0.95 0.95 0.95

Overall Metrics

Accuracy 0.96

Macro f1-score 0.94

Average macro f1 score = 0.87

7 Experimental Evaluation

In this section we will summarize and compare the results of the presented
methods. The stratified 3-fold has provided three sets of training and testing
datasets where each fold consists of 3344 training sample frames (or 556 time
windows of size 24) and 3696 testing sample frames (or 154 time windows of
size 24). All methods are trained for 1000 epochs for each fold. The table
below compares the average macro f1 score calculated from all folds and the
training time needed from each method for one fold.

Method Avg Macro f1 score Training Time

Only Neural 0.56 37 mins

Neural Train and NeurAsp Inf 0.82 47 mins

NeurAsp Train and Inf 0.87 62 mins

Table 5: Overall results

The first method (Only Neural) has by far the worst performance where
the input was the concatenated features of the two involved individuals and
the classification was performed directly on complex events. In fact the LSTM
could not make a clear distinction between the no interaction class and the two
remaining classes.
Following the second method (Neural Train and NeurAsp Inf) there is a
significant improvement regarding the performance. The addition of the logic
layer at the end of the LSTM proves that the integration of neural and logic
methods could yield better results in this specific task.
Finally the third method (NeurAsp Train and Inf) has the best results
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of all the presented methods. Using the NeurAsp framework for training has
added an overhead in training time due to the internal iterative procedure but
the results show a clear improvement regarding the overall performance.

8 Results Summary Discussion

The aim of this thesis was to investigate and present the capabilities of neuro-
symbolic AI through the usage of NeurAsp framework. We have presented how
it integrates deep-learning and logic-based methods, how it works internally and
finally we applied the challenging task of human activity recognition in videos.
With the presentation of three different experimental setups which compared
a pure neural approach, a method that apply logic mechanisms in inference
and finally a method that uses logic both in inference and training, we have
concluded that neuro-symbolic methods could yield promising results. Given
that CAVIAR is an old dataset with low resolution images we used the provided
features that we mentioned such as coordinates and bounding box sizes. In case
we had a dataset with good resolution images we could extract more informative
features that involve human body, hand, facial, and foot keypoints. There are
several frameworks and systems with impressive results in real time video such
as openpose4 and and media pipe pose5. Many approaches in HAR use those
features [Sawant, 2020] [Noori, 2019] so a future work could be focused on
creating logic rules that apply on body keypoints. Finally since the position
of the camera or actors is one of the biggest challenges in HAR, future works
could focus on creating logic rules dedicated to the camera angle and the overall
homography of the area of interest.
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