
1

University of Piraeus

Department of Digital Systems

MSc Information Systems & Services

Big Data and Analytics

Comparative Analysis of SQL Queries

Performance on Vehicle Sensor Data in

RDBMS and Apache Spark

Koutsimpogiorgos Grigorios

ME2022

Supervisor

Prof. Doulkeridis Christos

 Piraeus, September 2023

2

3

Abstract

In today's digital era, the exponential growth in data volume, variety, and velocity has

necessitated the exploration of advanced techniques for storing and analyzing big

data. The continuous improvement of hardware has led to the development of new

technologies for data storage and processing by expanding the traditional data

storages technologies and analysis frameworks. Many organizations are turning to

distributed computing frameworks to process and analyze large datasets.

One of the most popular technologies in this field is Apache Spark, a fast and general-

purpose cluster computing system. However, traditional relational databases, such as

Oracle, are still widely used for data storage and retrieval. In this thesis we are

comparing the performance of a specific set of queries, on a Vehicle Sensor Dataset,

executed on both a traditional RDBMS system as well as on Apache spark. Our goal is

to determine whether modern technologies can perform as well or even better than

relational databases when it comes to processing and analyzing large data sets like in

our case. Additionally, the thesis explores the optimization techniques that can be

used to improve the performance of Spark and Oracle.

4

Table of Contents
Abstract .. 3

Περίληψη .. 5

1. Introduction .. 6

2. Databases .. 7

2.1 Relational Database Management System ... 7

2.2 Non-Relational Databases .. 10

3. Big Data Frameworks ... 12

3.1 Big Data at Google ... 12

3.2 Apache Hadoop ... 13

4. Apache Spark... 16

4.1 Spark Core and Components.. 16

4.2 Spark Architecture ... 18

4.3 Spark Application ... 23

4.4 Transformations, Actions and Lazy Evaluation ... 24

4.5 Spark Optimization .. 25

5. Problem statement .. 27

6. Database schema & Environment .. 28

6.1 Database Schema and Design .. 28

6.2 Working Environment .. 30

7. Experimental Study and Evaluation.. 32

7.1 Queries .. 32

7.2 Evaluation method & Query benchmarking approach .. 36

7.3 Experiments & Results ... 41

8. Conclusion & Future Work ... 50

8.1 Future work and improvements ... 51

9. References .. 52

5

Περίληψη

Στη σημερινή ψηφιακή εποχή, η αύξηση στον όγκο, την ποικιλομορφία και την

ταχύτητα των δεδομένων έχει καταστήσει αναγκαία την αναζήτηση προηγμένων

τεχνικών αποθήκευσης και ανάλυσης μεγάλων δεδομένων. Η συνεχής βελτίωση των

υπολογιστών και η ανάπτυξη νέων τεχνολογιών για την αποθήκευση και επεξεργασία

δεδομένων επεκτείνουν τις παραδοσιακές τεχνολογίες αποθήκευσης δεδομένων και

πλαισίων ανάλυσης. Πολλοί οργανισμοί στρέφονται σε κατανεμημένα υπολογιστικά

συστήματα για την επεξεργασία και ανάλυση μεγάλων συνόλων δεδομένων.

Μία από τις πιο δημοφιλείς τεχνολογίες σε αυτόν τον τομέα είναι το Apache Spark,

ένα γρήγορο και γενικής χρήσης σύστημα που λειτουργεί πάνω σε υπολογιστικούς

κόμβους. Ωστόσο, τα παραδοσιακά σχεσιακά συστήματα βάσεων δεδομένων, όπως

η Oracle, χρησιμοποιούνται ακόμα ευρέως για την αποθήκευση και ανάκτηση

δεδομένων. Σε αυτήν την διπλωματική εργασία συγκρίνουμε την απόδοση ενός

συγκεκριμένου συνόλου ερωτημάτων, πάνω σε ένα σύνολο δεδομένων συλλεγμένα

από αισθητήρες οχημάτων, που εκτελέστηκαν τόσο σε ένα παραδοσιακό σύστημα

σχεσιακής βάσης δεδομένων όσο και στο Apache Spark . Στόχος μας είναι να

προσδιορίσουμε εάν οι σύγχρονες τεχνολογίες μπορούν να επιτύχουν ίση ή ακόμα

καλύτερη απόδοση από τις σχεσιακές βάσεις δεδομένων όταν πρόκειται για την

επεξεργασία και ανάλυση μεγάλων συνόλων δεδομένων, όπως στην περίπτωσή μας.

Επιπλέον, η εργασία εξερευνά τις τεχνικές βελτιστοποίησης που μπορούν να

χρησιμοποιηθούν για τη βελτίωση της απόδοσης του Spark καθώς και της Oracle.

6

1. Introduction

In recent years, big data has become an increasingly important topic and an integral

part of many organizations' operations, with an increasing amount of data being

generated and collected per day. Many organizations have begun to recognize the

value of large sets of data as they can be used to support decision making and gain

insights that can drive business growth. However, as the volume of data grows, so

does the complexity of managing and processing it. Two popular technologies that are

commonly used to manage and process (big) data are relational database

management systems (RDBMS) and Apache Spark.

Relational databases, such as Oracle, MySQL, and SQL Server, have been widely used

for decades to store, manage and query structured data. They are based on the

relational model and use SQL (Structured Query Language) as the main means of data

manipulation. RDBMSs are well-established, stable, and provide a powerful and

flexible way to model and query data, making them a popular choice for managing

structured data.

Apache Spark, is a more recent technology that has emerged as a powerful big data

processing framework. It is built on top of the Hadoop ecosystem and provides a fast,

in-memory data processing engine that can handle both structured and unstructured

data. It provides a distributed computing model that allows it to scale out to large

clusters of machines. Spark also has an interactive shell called Spark SQL, which allows

for the use of SQL for querying data.

This thesis aims to compare the performance of the specific set of SQL queries in both

RDBMS and Apache Spark for the Vehicle Sensor Dataset. The research will focus on

identifying the strengths and weaknesses of each technology in terms of query

performance and ease of use as well as investigating various performance

optimization techniques for both Oracle RDBMS and Spark. The goal of this study is to

provide insights that can help the organization to make informed decisions when

choosing a technology for managing and processing big data.

7

2. Databases

2.1 Relational Database Management System

The Relational Database Management system (RDBMS) is a database management

system that is based on the relational model introduced by Edgar F.Codd, an IBM

Researcher [S1]. According to Codd’s relational model, an RDBMS gives the

opportunity to users to construct, update, manage and interact with a relational

database.

In relational databases the data is structured into rows and columns, which collectively

form a table. These tables can be interconnected to numerous other tables based on

common data to each other, which are referred as keys. A key that can uniquely

identify of a particular row, it is called primary key. When that primary key is

incorporated into a record in another table, it is referred as foreign key. That

connection gives the opportunity to users to create new datasets from data existing

in various related tables with a single query.

The basic data structure used by relational databases are tables and views, with the

primary components being columns and rows. The data must adhere to a strict

schema, which allows a database management system to heavily co-optimize the data

storage and processing. The most common RDBMSs today are using the Structured

Query Language (SQL) and are mostly used to perform CRUD (create, read, update and

delete) operations.

The two main SQL workloads for relational databases can be:

 Online transaction processing (OLTP) workloads

OLTP workloads are typically high-concurrency, low-latency, simple queries

that read or update a few records at a time. Bank account transactions are a

typical example of an OLTP workload.

 Online analytical processing (OLAP)

8

OLAP workloads, like reporting, are typically complex queries (involving

aggregates and joins) that require high-throughput scans over many records.

Modern Datawarehouse solutions are OLAP systems.

2.1.1 Benefits of Relation Databases

The RDBMS offers a method for storing and fetching data, ensuring convenient access

to individual data points. Organizations employ relational databases when they

require the handling of structured data. Some of their main advantages of using

RDBMS to manage and store data are:

 Flexibility:

Adding, updating and deleting tables and relationships, adjusting data as

necessary can take place without changing the database structure or

impacting existing applications.

 ACID compliance:

RDBMS supports ACID (Atomicity, Consistency, Isolation, Durability)

operations.

 Ease of use:

Complex queries can be performed using SQL which enables even non-

technical users to interact with them.

 Database Normalization:

The technique of normalization can be used reducing data redundancy and

improving data integrity.

 Data Integrity:

Referential integrity refers to the accuracy and consistency of data and it is

achieved by using the primary and foreign keys.

These benefits collectively make relational databases a powerful and reliable choice

for managing structured data. By providing flexibility, ACID compliance, ease of use

through SQL, database normalization, and data integrity, RDBMS systems empower

organizations to effectively store, manage, and analyze their data, driving informed

decision-making and enabling efficient data operations.

9

2.1.2 Limitations of Relation Databases

One of the main limitations of RDBMS systems is scalability. The increased volume of

data, leads to difficulty of storing and retrieving data quickly and efficiently. This can

be particularly challenging when working with very large data sets.

Another limitation of RDBMSs regards the handling of unstructured data. RDBMSs are

designed to work with structured data, where each record has a predefined set of

fields and data types. However, many modern data sources, such as social media, IoT

devices, and log files, generate unstructured data, which can be difficult to store and

query using traditional RDBMSs. Additionally, RDBMSs are not designed for handling

data with high velocity, which can be a problem for real-time or near real-time

analytics applications.

2.1.3 Structured Query Language (SQL)

Structured Query Language (SQL) is a programming language for storing and

processing information in relational database management systems (RDBMS). It

serves as the standard language for interacting with databases, including popular

RDBMSs like Oracle and Microsoft SQL Server. SQL is used to create and modify

database structures, insert and update data, and retrieve data using queries. SQL

queries vary from simple commands that retrieve a small amount of data to complex

queries that process larger amounts of data and perform advanced calculations. The

performance of SQL queries can be critical for the overall performance of a database,

and optimizing the performance of queries can significantly improve the efficiency of

a database.

2.1.3.1 SQL Query Optimization in Oracle

SQL queries are an essential component of any database management system, and

their performance can have a significant impact on the overall performance of the

database. SQL query performance optimization involves identifying and addressing

bottlenecks in the queries to improve their performance. There are several

techniques for optimizing SQL queries in a RDBMS system and an Oracle database.

One technique for optimizing SQL queries in Oracle is the use of bind variables. Bind

variables allow a SQL statement to be executed multiple times with different values,

without the need to parse and optimize the statement each time it is executed. This

can significantly improve the performance of queries that are executed frequently

with different values, such as those used in web applications.

10

Another technique for optimizing SQL queries in Oracle is the use of indexes. Indexes

allow the database to quickly locate and retrieve data from specific columns or rows,

improving the performance of queries that filter or sort data. There are several types

of indexes available in Oracle, including B-tree indexes, bitmap indexes, and function-

based indexes. Choosing the right indexing strategy can significantly improve the

performance of the queries.

Materialized views can also be used to improve the performance of complex queries.

A materialized view is a separate table that stores the results of a query, allowing the

database to quickly retrieve the results without having to re-execute the query each

time. They can be useful for queries that are executed frequently or take a long time

to run, but they come with a cost as they require additional storage and maintenance

overhead.

The hardware and the infrastructure that the database runs on can also have an

impact on the query performance. Considering factors like CPU, memory, storage, and

network bandwidth, can help ensure that the database has the resources it needs to

execute queries efficiently.

Finally, the use of the EXPLAIN PLAN command can provide a better understanding on

how the database executes the query and find ways to optimize it.

Optimizing SQL queries in Oracle is an important task that can significantly improve

the performance of the database. By using techniques like bind variables, indexing,

materialized views, and choosing the right hardware and infrastructure, we can help

ensure that the database is running efficiently. It is important to regularly monitor and

optimize the performance of the queries.

By using these techniques, we can help ensure that the SQL queries are optimized for

maximum performance. It is important to regularly monitor and optimize the

performance of the queries to ensure that the database is running efficiently.

2.2 Non-Relational Databases

The non-relational database, NoSQL, is another mechanism for storing and retrieving

data but, unlike the relational database, they are not using tables, rows, primary keys

or foreign keys. Instead, they utilize a storage model tailored to the unique needs of

the data type they are storing.

Rather than using Structured Query Language (SQL) as in relational databases, NoSQL

databases utilize Object-Relational Mapping (ORM). ORM allows for crafting queries

in one's chosen programming language. Notable ORMs include Java, Javascript, .NET,

and PHP. Some of the more popular NoSQL databases are MongoDB (Document

11

based), Apache Cassandra (Columnar), Redis (Key Value Store), Neo4j (Graph

Database) and Apache HBase (Tabular) with each one using a different type.

2.2.1 NoSQL Databases Types

NoSQL databases can be classified into different types based on their data models.

Here are four commonly recognized types of NoSQL databases:

 Document data stores:

Data are stored in units known as “document, typically represented in JSON

format and can be encoded in multiple manners. These documents don't

adhere to a fixed schema or structure. An application can query and filter the

fields within a document using field values. An advantage of the document

stores is that is not required the same data structure for all the documents

which provide great flexibility.

 Columnar data stores:

In columnar databases the data is stored into columns which is similar to the

relational approach but the advantage is in the denormalization logic to

structing sparse data.

 Key Value Store:

The key value store databases store the data in a simply collection of key-value

pairs in which the key works as a unique identifier. This kind of databases are

can be portioned and can achieve high horizontal scaling, greater than other

types of databases can achieve.

 Graph database:

Graph databases are designed to store relations efficiently between entities

when data are interconnected and it is one of the most complex type of

databases.

Overall, these NoSQL database types offer diverse approaches to data storage and

retrieval, catering to various use cases and data requirements

12

3. Big Data Frameworks

3.1 Big Data at Google

In the rise of the 21st century, as the volume of data continued to grow exponentially,

major companies faced the challenge of managing and storing massive amounts of

information. Google was at the forefront of tackling this issue.

Traditional storage systems like relational databases (RDBMS) and imperative

programming approaches were inadequate for the scale of data that Google needed

to handle, especially for indexing and searching the vast number of documents on the

web. To address this need for a scalable infrastructure capable of storing and

processing large datasets, Google developed a set of cluster-based technologies[S2].

Among these technologies are the Google File System (GFS) [S3], which provided a

distributed file storage system designed for reliability and scalability. MapReduce [S4],

another key technology, enabled parallel processing of data across clusters, allowing

for efficient data processing. Additionally, Google developed Bigtable [S5], a

distributed, highly scalable NoSQL database, which served as the underlying storage

system for various Google services.

Figure 1 MapReduce example diagram
http://blog.jteam.nl/wp‐ content/uploads/2009/08/MapReduceWordCountOverview1.png

The GFS was able to provide a fault-tolerant and distributed filesystem across a cluster

of computers to store unstructured files and Bigtable was able to offer scalable

storage of structure data across the GFS.

13

The MapReduce proposed a parallel programming model for processing large scale

data sets distributed over GFS and Bigtable.

The work that Google did was proprietary but they were also many more companies

dealing with same data challenges. The three aforementioned papers about GFS, MR

and Bigtable provided solutions and inspired other researchers who they were trying

to tackle the same issues.

3.2 Apache Hadoop

Google's research team's computational challenges and solutions served as the

inspiration for the development of the Hadoop Distributed File System (HDFS) [S6] and

the Apache Hadoop framework. HDFS, in particular, adopted the concept of splitting

files into large blocks and distributing them across a cluster of nodes.

The Apache Hadoop framework is an open-source software suite designed to leverage

the power of distributed computing to solve problems involving massive amounts of

data. Hadoop achieves this by dividing the data into manageable chunks and

distributing them across multiple nodes in a cluster. This distributed storage approach

allows Hadoop to take advantage of data locality, where each node processes only the

data it holds, resulting in faster and more efficient data processing. [S7]

Furthermore, Hadoop employs the MapReduce programming model as a framework

for distributed computing. The data processing tasks are packaged as code and

distributed to the nodes, allowing for parallel execution across the cluster. This

parallelism and data locality enable Hadoop to handle large-scale data processing

tasks in a scalable and efficient manner.

MapReduce Paradigm

By adopting the principles and technologies developed by Google, Hadoop has

become a widely-used solution for big data processing, providing organizations with

the ability to leverage distributed computing and handle massive amounts of data

effectively.

14

The three main components of Apache Hadoop are:

1. HDFS:

Hadoop Distributed File System is a specialized file system designed for storing

vast amounts of data across a cluster of computres. It enables data to be stored

across numerous nodes in the cluster which ensures data security and fault

tolerance.

2. MapReduce:

Hadoop Distributed File System is a dedicated file system to store big data with

a cluster of commodity hardware or cheaper hardware with streaming access

pattern. It enables data to be stored at multiple nodes in the cluster which

ensures data security and fault tolerance.

3. YARN:

 stands for Yet Another Resource Negotiator. It is a dedicated operating system

for Hadoop which is responsible for managing computing resources in clusters

and using them for scheduling users' applications in Hadoop. The various types

of scheduling are First Come First Serve, Fair Share Scheduler and Capacity

Scheduler etc. [S8].

3.2.1 Hadoop Ecosystem

The Apache Hadoop ecosystem encompasses a wide range of components within the

Apache Hadoop software library. In addition to the core components like HDFS,

MapReduce, and YARN, the ecosystem includes various open-source projects and

complementary tools. The diagram below provides an overview of some commonly

used tools within the Hadoop ecosystem.

15

 Figure 2 Hadoop Ecosystem

While Hadoop has been a popular choice for developers working with big data, it does

have certain limitations. One of the drawbacks is the need to write intermediate

results to the local disk for each pair of MapReduce tasks. This frequent disk I/O

operation can significantly impact performance and lead to longer execution times for

large MapReduce jobs.

Furthermore, as additional tools were introduced to support different workloads

such as machine learning, streaming, and interactive SQL-like queries, the

operational complexity of the Hadoop framework increased. This complexity posed

challenges for users in terms of learning and managing the various components

effectively.

16

4. Apache Spark

As the data landscape continued to evolve, new challenges arose which exposed

limitations of Hadoop's MapReduce paradigm. The major challenge was the need for

easier, faster and more efficient processing of data than Hadoop and MapReduce.

Apache Spark emerged as a response to those challenges. Apache Spark is an open-

source data processing engine that has gained significant popularity in the field of big

data processing. It is a multi-language engine for executing data engineering, data

science, and machine learning on single-node machines or clusters. [S9]

It was developed at UC Berkeley in 2009 and has been open sourced since the year

2010 under BSD license. It finally became a project of Apache Software Foundation in

the year 2013 and now is the biggest project of the Apache foundation.

One of the standout features of Apache Spark that separates it from the previous big

data analytics software is its in-memory cluster computing capability, which increases

the processing speed of an application. Compared to Hadoop, Spark's performance

can be up to 100 times faster in memory and about 10 times faster on disk [S10]

Spark provides a programming interface that allows developers to work with entire

clusters, leveraging implicit data parallelism and ensuring fault tolerance. Its design

aims to accommodate a wide range of workloads, making it a flexible choice for

diverse data processing needs.

Apache Spark has become a vital tool in the big data analytics landscape, offering

enhanced performance and versatility for processing large-scale datasets. Its

robustness, scalability, and extensive ecosystem of libraries and tools have

contributed to its widespread adoption in the industry.

4.1 Spark Core and Components

Spark core or the computing engine of Spark contains all the basic functionality

including the four distinct components as libraries for diverse workloads. These

components are Spark SQL, Spark MLlib, Spark Structured Streaming, and GraphX.

Spark core also host the API which defines the Resilient Distributed Datasets (RDD)

[S11] which is an immutable distributed collection of objects, providing fault tolerance

and distributed computing capabilities in Apache Spark.

17

Figure 3 Apache Spark components

When we write Spark application, Spark converts it to a DAG(Directed Acyclic Graph)

and executes it in the core engine. That means that the Spark code, regardless of the

API used (Java, Scala, Python, SQL), decompose to highly compacted bytecode and it

is executed in the workers’ JVM across the cluster.

4.1.1 SPARK SQL

Spark SQL is an Apache Spark’s module that integrate relational processing with

Spark’s functional programming API[S12]. It gives the opportunity to manipulate

Dataframes, a data abstraction introduces by Spark SQL, in Scala, Java or Python. It

supports many data sources as it can read data stored in RDBMS tables or from file

formats like CSV, txt, JSON, Avro, Parquet etc.

Also, it gives the opportunity to query data using SQL-like queries combined with

Spark’s Structure APIs in Java, Scala, Python or R. Spark SQL is ANSI SQL:2003[S12]

compliant and functions as a SQL-engine.

4.1.2 Spark MLib

Spark comes with an open-source distributed library called Mlib which contains all the

common Machine Learning (ML) algorithms like classification, regression and

clustering. Mllib provides efficient functionality for a wide range of learning settings

and includes several underlying statistical, optimization, and linear algebra

primitives[S14] . All of these methods are designed to scale out across a cluster.

18

4.1.3 Spark Streaming

Stream processing is defined as the continuous processing of endless streams of data.

Spark Streaming extension of the core Spark API and it responsible for processing live

streams of data. Apache Spark Streaming is the previous generation of Apache Spark’s

streaming engine. After Apache Spark 2.0 a new higher-level API, Structured

Streaming has been implemented[S15]. Apache Spark Structured Streaming was built

on top of the Spark SQL Engine and DataFrame-based API. Under the hood of the

Spark’s Structured Streaming model, all the fault tolerance and late-data semantics

aspects are handling by the Spark SQL engine. In later versions, the range of streaming

data sources has been extended to include Apache Kafka, Kinesis and HDFS-based or

cloud storage.

4.1.4 GraphX

GraphX is an embedded graph processing framework built on top of Apache

Spark[S16]. It is a library for manipulating graphs performing graph-parallel

computations. Like other Apache Spark’s components, GraphX extends the Spark RDD

API. GraphX can bring low-cost fault tolerance by using the distributed dataflow

frameworks. Finally, it provides various operators for manipulating graphs and offers

the standard graph algorithms for analysis, connections and traversals.

4.2 Spark Architecture

Spark is a cluster computing framework, which supports applications with working

sets while providing similar scalability and fault tolerance properties to MapReduce.

It is a distributed data processing engine with all its components working

collaboratively on a cluster of machines.

19

Figure 4 Apache Spark components & architecture

At a high level, any spark application consists of a driver program that is the manager

of the Spark program and responsible for orchestrating parallel operations on the

cluster. It interfaces with the Cluster Manager to get the resources and lunch the

executors. Spark can run across different cluster managers. A Master/Worker node

architecture is implemented with one primary Master node (sometimes and a second

one as secondary Master node) and many workers (executors).

4.2.1 Spark driver

The driver is the main process of a Spark Application and it is responsible for

instantiating a SparkSession. It is the main controller of the execution of a Spark

Application and maintains all of the states of the Spark cluster. It must interface with

the cluster manager in order to request physical resources for Spark’s executors. Then

it transforms all the Spark operations into DAG computations, it schedules them and

finally distribute their execution as tasks across the executors. When the resources

are allocated, it communicates with the executors directly. The driver can run either

in the cluster or on the client machine that is running the Spark application.

At the end of the day, this is just a process on a physical machine that is responsible

for maintaining the state of the application running on the cluster.

20

4.2.2 SparkSession

From Spark 2.0 and onwards, the SparkSession became a unifies entry point of all

underlying Spark functionality. It subsumes previous entry points to Spark[S17] and

made working with Spark simple and easier. So, instead of having a SparkContext,

SQLContext, HiveContext, SparkConf, and StreamingContext, now all of it is

encapsulated in a Spark session. In order to maintain backward compatibility, the

individual contexts and their respective methods remained available.

In a standalone Spark application, the user can create a SparkSession using one of the

high-level APIs in any of the available programming languages while, in the Spark shell

the SparkSession is created automatically and can be accessed via a global variable

called spark or sc.

4.2.3 Spark Executors

Spark executors run on the worker nodes in the cluster and they perform tasks from

the Spark driver. Their main job is to take the tasks, that the Spark driver has assign to

them, execute them and then report back to the Spark driver their state and the

results. The executors communicate with the driver program and it is they’re

responsibility for executing the tasks on the worker nodes. In most cases there is only

one executor that operates per node. Usually, the executors run for the entirely

lifetime of a Spark application. If though an executor fails, Spark can continue to run

the program by recalculating only the lost data.

4.2.4 Cluster Manager

The cluster manager is responsible for managing and allocating resources for the

cluster on which the Spark application runs. Spark support four cluster managers: the

built-in standalone cluster manager, Apache Hadoop YARN, Apache Mesos, and

Kubernetes and either of them can be launched on-premise or in the cloud for a spark

application to run.

21

Mode Spark Driver Spark Executor Cluster Manager
Local Runs on a single

JVM, like a laptop or
single node

Runs on the same
JVM as the driver

Runs on the same
host

Standalone Can run on any node
in the cluster

Each node in the
cluster will launch
its own executor
JVM

Can be allocated
arbitrarily to any
host in the cluster

YARN (client) Runs on a client, not
part of the cluster

YARN’s Node
Manager’s container

YARN’s Resource
Manager works with
YARN’s Application
Master to allocate
the containers on
Node Managers for
executors

YARN (cluster) Runs with the YARN
Application Master

Same as YARN client
mode

Same as YARN client
mode

Kubernetes Runs in a
Kubernetes pod

Each worker runs
within its own pod

Kubernetes Master

Table 1 Apache Spark deployment modes

4.2.4.1 Cluster Manager Types

 Standalone

It is a simple cluster manager already included with Spark and make it easy to

set up a cluster and execute applications on it. It contains one master and

several workers, each having a configures memory size and CPU cores.

 Hadoop YARN

It was introduced in Hadoop 2.0. It supports utilizing varied data processing

frameworks on a distributed resource pool. It is placed on the same nodes as

Hadoop’s Distributed File System (HDFS) which give an extra advantage as it

allows Spark to access HDFS data swiftly, on the same nodes where the data is

kept.

YARN can be used easily by setting an environment variable that points to the

user’s Hadoop configuration directory and then submitting jobs to a special

master URL using spark-submit.

 Apache Mesos

22

It is a general common-purpose cluster manager that can run also Hadoop

MapReduce and service applications. The restriction for using Apache Mesos

though is that applications can run only on cluster mode, something which we

will talk more in depth later.

 Kubernetes

It is an open-source system for automating deployment, scaling and

management of containerized applications. It is a relative new addition as it

was only introduced with the launch of Spark 2.3 but it has been declared as

generally available with the release of Spark 3.1.

4.2.5 Execution Mode

An execution mode determines whether the aforementioned resources are physically

located when a Spark application runs.

 Cluster mode

It is the most common way to run a Spark Application. In cluster mode, the

user submits a JAR file, Python or R script to the cluster manager. The cluster

manager launches the driver program on one of the worker nodes inside the

cluster, in addition to the executor process. Cluster mode is most often used

for running production level jobs.

 Client mode

In this mode the driver will be launched on the machine where the spark-

submit command was executed. This means that the client machine is

responsible for maintaining the Spark driver process and the cluster manager

maintains the executor processes. These machines are usually referred as

gateway machines or edge nodes.

23

4.3 Spark Application

The core of every Spark application is the Spark driver program, which creates the

SparkSession object. When the SparkSession is initialized, spark operations can be

performed using any provided API.

4.3.1 Spark Jobs

During the execution of a Spark application, the driver converts the application to one

or more Spark jobs. Then each job is transformed into a DAG. This is the Spark’s

execution plan, where each node withing a DAG could be one or more Spark stages.

4.3.2 Spark Stages

Stages are part of the DAG nodes and are created based on the operations that can

be performed either serially or in parallel. Some Spark operation may not take place

in a single stage and they could be divided into multiple stages.

4.3.3 Spark Tasks

Each stage includes Spark tasks (unit of execution) which are federated across each

Spark executor. Each task maps to a single core and works on a single partition of data.

Figure 5 Apache SparkJ Jobs, Stages and Tasks

24

4.4 Transformations, Actions and Lazy

Evaluation

The two types of Spark operations are Transformations and Actions.

With transformations, Spark transform a DataFrame into a new DataFrame without

altering the original one, making each DataFrame immutable.

All types of transformations are evaluated lazily. That means that their results are not

calculated immediately, but they are recorded or remembered. A recorded lineage

allows Spark to create a more optimal execution plan by rearranging certain

transformations, coalesce them, or optimizing them into stages and provide a more

efficient execution.

Lazy evaluation is Spark’s strategy for delaying execution until an action take place. An

action triggers the lazy evaluation of all the recorded transformations until that point.

The lazy evaluation allows Spark to optimize the queries by peeking into the chained

transformations, lineage and data immutability provide fault tolerance.

In the below table there is an example of some basics Transformations and Actions.

Transformations Actions
orderBy() show()
groupBy() take()

filter() count()
select() collect()
join() save()

Table 2 Apache Spark Transformation & Actions

4.4.1 Narrow and Wide Transformations

Transformations can be further classified as Narrow and Wide regarding to their

dependencies. Transformations where a single output partition can be calculated from

a single input partition is called Narrow transformation. An example of a narrow

transformation is filter() because it operates on a single partition and produce the

result without any data exchange. An example of a wide Transformation is groupBy(),

where a shuffle of data from each of the executor’s partitions across the cluster will

be needed.

25

Figure 6 Narrow and Wide Transformations

4.5 Spark Optimization

Like any distributed system, Spark can benefit from optimization and performance

tuning to ensure that it is running more efficiently and effectively. Below are described

some of the key areas that can be considered when optimizing and tuning the

performance of Spark

Cluster configuration

Configuration of the Spark cluster can have a significant impact on the performance.

Should be ensured that the cluster has sufficient resources, including CPU, memory,

and storage, to meet the needs of the workloads. Also, there is the need of considering

the number and size of the worker nodes and the network infrastructure connecting

them.

Data representation and partitioning

The way the data are represented and partitioned can have an impact on Spark

performance. An optimized data representation should be chosen according to the

type of processing that takes place and the data should be portioned in a way that

allows Spark to effectively parallelize the workloads. Repartitioning is one the

techniques in Spark to optimize the execution of queries by reshuffling the data across

partitions and It can have a significant impact on the performance of operations.

At its essence, repartitioning in Spark involves redistributing the data across a

specified number of partitions. By default, Spark might not always partition data

optimally for the specific operations you're going to perform. Repartitioning allows for

manual intervention, ensuring that the data is distributed in a manner that's more

conducive to efficient querying.

26

By reportioning, a more balancing load can be achieved as uneven distribution of data

across nodes (data skew) can lead to performance issues. Additionally, join operations

can become for efficient and data shuffling can be reduced.

Caching and persistence

 Spark provide the possibility to cache data in memory or persist it to disk, which can

improve the performance of iterative or interactive workloads. Caching is a

mechanism to speed up operations that access the same dataset multiple times.

The `cache()` method on a DataFrame, use the default storage level, which is

StorageLevel.MEMORY_ONLY. This means that the DataFrame is stored in memory as

deserialized JVM objects. If the DataFrame does not fit into memory, some partitions

will not be cached and they will have to be recomputed every time that they are

needed.

With the `persist()` method, StorageLevel that determines how the dataset is stored

can be specified. With StorageLevel.MEMORY_AND_DISK, the DataFrame is stored in

memory as deserialized JVM objects, but if it doesn't fit in memory, the excess

partitions spill to disk. This ensures that even if the DataFrame is larger than the

available memory, all its partitions remain available for quick access without needing

any re computation.

The trade-offs between memory and disk usage should be considered when deciding

which data to cache or persist.

Executor and task configuration

The executors and tasks that Spark uses to execute the workloads can also be

optimized for performance. Factors like the number of cores and memory per

executor and the number of tasks per executor should be taken under consideration

when configuring a Spark application.

The optimization and tuning of these factors, can help ensure that Spark applications

are running efficiently and effectively. The specific optimization and tuning strategies

that will be most effective will always depend on the characteristics of the workloads

and the resources available to the cluster.

27

5 Problem statement

In our use-case we are having a database with tables filled with records collected from

sensors mounted on moving vehicles. In the current setting the data that are been

collected are stored in an Oracle database. This configuration, while robust and

reliable, presents significant challenges as these records frequently undergo complex

queries. The queries could be of various types like aggregated queries, queries with

filter conditions or queries that require full table scan which often having multiple

joins and nested queries. Another challenge is the increasing data volumes as this

tables could be populated each day with additional data.

The primary objective of this thesis, hence, is to explore the benefits and drawbacks

of transitioning from the current Oracle database setup - a baseline solution and the

prevailing production setup in this use-case - to a more distributed, highly scalable

environment such as Apache Spark. The main focus is on optimizing the execution

time of the queries using Spark's inherent capabilities of handling large datasets in a

distributed manner.

The goal is to assess the capabilities and efficiency of these two technologies in

handling and processing large datasets for various types of SQL Queries. By conducting

an experimental comparison, we can gain insights into the strengths and weaknesses

of each approach and determine which technology is better suited for the specific data

processing scenarios we are facing. This study will not only compare their general

strengths and weaknesses but will be tailored to the specific challenges we are facing

on our use-case for the vehicular sensor data. Additionally, we will explore

optimization techniques to improve the performance of both Oracle and Spark in

executing the beforementioned type of SQL queries.

The outcome of this research would be to determine whether executing the set of

queries in a big data framework like Spark could offer advantages on execution time

over the current baseline solution of Oracle. This study will provide empirical evidence

as to whether the shift to a distributed environment like Spark could present a

significant improvement, for those types of queries, over a traditional database

system like an Oracle Database.

Even though our results could have a broader implication, in our case we will focus on

the specific use-case and for the specific set of queries.

28

6 Database schema & Environment

6.1 Database Schema and Design

The Dataset used in our use-case for our experiments consists entries that have been

collected from sensors on moving objects and their related metrics. The initial data

and the DDLs of the tables were provided by Company X and it has a real-world

application scenario. The database design adheres to the third normal form (3NF) to

avoid data redundancy and maintain data integrity. The schema of the database is

depicted below:

Figure 7 Database schema representation

6.1.1 Tables description

As we can see, we have two main tables, rd_sensor_analog_history and

rd_sensor_digital_history. These tables store the historical data from analog and

digital sensors respectively. The key attributes include asset_id, point_id, device_date,

server_date, sensor_id, health_id and value with the ID as Primary Key. The key

attributes are also Foreign Keys (FK) for the rest of the configuration tables with

 ASSET_ID to be FK of A_ASSET table

29

 POINT_ID to be FK of A_MEASURING_POINT table

 SENSOR_ID to be FK of S_SENSOR table

 HEALTH_ID to be FK of S_HEALTH_STATUS table

 UNIT_ID to be FK of S_UNIT table

 The union of those two tables is our main entity and the core of our database. These

tables have the information sent by the sensors while the rest of the tables are used

as configuration tables.

Then we have TE_SENSOR_TEMPLATE which stores metadata related to different

sensor templates, their types, their measurements and other configuration settings.

Constraints are added to enforce non-null values for most of the fields. The ID is the

primary key while SENSOR_ID and CUSTOMER_LIMIT_ID are Foreign Keys (FK)

referencing to the S_SENSOR table and S_CUSTOMER_LIMIT respectively. It is also

connected with A_ASSET table with the TEMPLATE_ID column.

The table S_CUSTOMER_LIMIT is used for setting and monitoring various limits for

customers with ID as Primary Key.

The A_ASSET table is at the heart of our database, capturing comprehensive

information about all assets, which in our case our vehicles. The ID is the Primary Key

which is a unique identifier for all assets.

The S_SENSOR table represents the various sensors available in the system where the

ID is the primary key having a unique identifier for each sensor.

The S_UNIT table manages the units of measurement.

The S_HEALTH_STATUS table stores information related to the health status of the

sensors. The column CRITICALITY_INDEX is an indicator of how much severe or not the

health of the sensor is. When 0 the sensor is normal, when 1 it means that it has

accuracy issues.

The A_MEASURING_POINT table captures information related to specific measuring

points where sensors are fitted.

The final dataset was based on the initial data provided by Company X which were

augmented with additional data in order to increase the size of our test dataset. These

were the datasets that we executed our experiments on.

Our purpose is to test whether it would be an advantage of executing those queries

on a big data framework, instead of a relational database.

30

6.2 Data Flow

In our business case every day we get 10 million new records which are appended to

rd_sensor_analog_history and rd_sensor_digital_history. The way that the two main

tables are populated daily is the following:

We have one thousand (1000) unique assets where:

 each asset sends every day one thousand (1.000) batches and

 each batch consists of 10 rows.

The total number of rows per day can be calculate with the following equation:

𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑤𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑠𝑠𝑒𝑡𝑠 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑤𝑠 𝑝𝑒𝑟 𝐵𝑎𝑡𝑐ℎ

So, for one day we have 10 million rows, while for the time span of a full week we will

have 70 million records.

Figure 8 Daily Data Flow

6.3 Working Environment

The working environment consists of two main components. The relation database

and the Apache Spark.

The Oracle database version that was used was the Oracle Database 23c and it was

set up on a local working environment with 2 CPU cores and 8GB of RAM running on

Windows 10 machine.

For Spark we employed two distinct computational environments. Initially, we utilized

the same local working environment that was used for Oracle Database as we are

31

aiming to facilitate a direct comparison between the two systems. Thus, utilizing a

mutual environment ensured that external variables were minimized and that any

observed differences in performance were related to the systems themselves and not

influenced by differing operational conditions. In this local setting, the Spark version

that was deployed was 3.0.2, with Scala version 2.12. Additionally, we integrated

Spark with the Jupyter Notebook environment using the Spylon-kernel.

Jupyter Notebook is an open-source interactive computing environment that enables

researchers and data scientists to create, share, and document live code,

visualizations, and explanatory text, fostering reproducible research and collaborative

analysis[S17]. Spylon-kernel [S18] is an integration tool designed to bridge the gap

between the Jupyter Notebook environment and Apache Spark, enabling users to

execute Spark computations directly within notebooks using the Scala programming

language.

This integration made sure we could harness Spark's powerful processing right within

the interface of Jupyter. This meant that Spark tasks could be executed in the

Notebook while still using Scala as programming language, which is the language in

which Spark is written.

While this setup is suitable for developmental purposes and testing, it does not exploit

Spark's primary advantage: distributed data processing across multiple nodes in a

cluster. Since Spark is a distributed computing framework designed to process vast

amounts of data across many nodes, by its nature was design for clusters. It has been

built on the principal of distributing data and computations across multiple nodes

where data can be partitioned and processed in parallel across nodes. Thus, a

distributed environment was needed for further exploration.

For the distributed environment of the Spark cluster, after comparing and evaluating

various options like a Hadoop cluster, a spark stand-alone cluster and cloud-based

environments, the Azure Databricks decided to be the optimal approach.

Azure Databricks[S20] is a cloud-based collaborative environment for big data

analytics. It provides a managed Apache Spark platform that seamlessly integrates

with other Azure services, offering scalability, reliability, and simplified cluster

management.

The Spark cluster in Azure Databricks consisted of one Master node and three workers.

Each node is equipped with 14GB of main memory and 4 cores. Additionally, the Azure

Databricks Spark Cluster was utilizing Databricks runtime version 12.2 LTS using Spark

3.0.2 and Scala 2.12.

Since Azure Databricks was decided to be used for the implementation of the Spark

cluster, another component of the azure ecosystem, the Azure Blob Storage [S21], was

decided as the main Data storage option for the Big Data tasks.

32

7 Experimental Study and Evaluation

As part of our research, we conducted performance tests on two datasets: one for a

single day and another for a full week. These datasets were used to evaluate the

performance of four queries in both Oracle and Spark. The configuration tables remain

the same in both datasets while the two main tables, rd_sensor_analog_history and

rd_sensor_digital_history are appended with data. The cumulative size of the two

main tables for the daily dataset is 1 GB and a total of 10 million rows. The

corresponding size of the dataset for the whole week is 7 GB and 70 million rows.

 We conduct our experiments on the aforementioned datasets for four different

queries. Two queries, Q1a and Q2, were provided by the Company X and are

commonly used to derive valuable business insights. The third one, Q3, was an

aggregated query that was specifically designed by us, following the same business

logic, to assess the performance of the two systems when handling aggregated results.

Additionally, one more query was created (Q1b), based on the first one provided

(Q1a), to examine the behavior of the system when we are using a where clause.

7.1 Queries

7.1.1 Query 1 (Q1)

a) Without filter
 This query extracts a comprehensive view for all the sensors by reading both digital

and analog sensor data, along with their associated attributes.

The core of the query is a UNION ALL operation on the digital and analog sensor history

tables, rd_sensor_digital_history and rd_sensor_analog_history. By joining with the

configuration tables, we are able to retrieve enriched information for each sensor.

An extra column is created with a nested CASE statement and it is called message.

When the unit id is 1, it compares the sensor value (rd.val) with a Boolean flag

(li.normal_bool) in the customer limit table. If they are equal, the normal_message

from the customer limit table is returned; otherwise, the outlimits_message is

returned.

This query, thus, presents an enriched view of the sensor history, incorporating

readings, sensor details, associated units, and health status, along with customer-

specific information and any potential messages based on the data readings. For this

33

query we do not apply any filter condition and a full scan of the table will be

implemented.

SELECT mp.id mespiid

 ,mp.name mspname

 ,te.name templname

 ,se.id

 ,se.name

 ,u.name unitname

 ,u.symbol

 ,rd.val

 ,rd.device_date

 ,hs.name healthanme

 ,li.min_value

 ,li.max_value

,CASE

 WHEN u.id = 1

 THEN CASE

 WHEN li.normal_bool = rd.val

 THEN li.normal_message

 ELSE li.outlimits_message

 END

 END message

FROM (

 SELECT asset_id

 ,point_id

 ,device_date

 ,sensor_id

 ,health_id

 ,VALUE val

 FROM rd_sensor_digital_history

 UNION ALL

 SELECT asset_id

 ,point_id

 ,device_date

 ,sensor_id

 ,health_id

 ,VALUE val

 FROM rd_sensor_analog_history

) rd

LEFT JOIN a_measuring_point mp ON rd.point_id = mp.id

LEFT JOIN s_sensor se ON rd.sensor_id = se.id

LEFT JOIN a_asset a ON rd.asset_id = a.id

LEFT JOIN s_unit u ON se.unit_id = u.id

LEFT JOIN s_health_status hs ON rd.health_id = hs.id

LEFT JOIN te_sensor_template te ON mp.id = te.measuring_point_id

 AND a.template_id = te.template_id

LEFT JOIN s_customer_limit li ON te.customer_limits_id = li.id

34

b) With filter
This query uses the same tables and the joins like the previous one but in this case a

where clause is added to filter the search criteria only for one ASSET (WHERE

rd.asset_id = 1000)

7.1.2 Query 2 (Q2)

The second query refers to the alerts section and is used to display related alerts to

the customers, regarding their assets. The SQL query is designed to retrieve detailed

information regarding alerts triggered by various sensor readings. It is structured to

provide comprehensive data, including sensor identification, time of reading, the

sensor value, as well as detailed sensor, unit, and health status information.

This information is gathered from several tables including 'rd_sensor_digital_history'

and 'rd_sensor_analog_history', which store sensor reading histories and then are

joined with several other tables to enrich it with additional details. The output of this

query can be used to generate alerts or to populate UI components that provide

sensor data details and statuses.

SELECT se.id sensorid

 ,rd.device_date latestutcdate

 ,rd.val sensorvalue

 ,se.name sensorname

 ,u.name unitname

 ,u.symbol unitsymbol

 ,hs.name healthstatus

 ,te.display_in_ui displayinui

 ,te.display_in_grid displayingrid

 ,te.display_in_mappopup displayinmappopup

 ,te.ui_order uiorder

 ,a.id assetid

 ,te.sort_name sortname

 ,CASE

 WHEN u.id = 1

 THEN CASE

 WHEN li.normal_bool = rd.val

 THEN li.normal_message

 ELSE li.outlimits_message

 END

 END message

 ,te.measuring_point_id measuringpointid

 ,amp.name measuringpointname

 ,te.name customermeasuringpointname

 ,te.is_graph_preselected isgraphpreselected

35

7.1.3 Query 3 (Q3)

The third query is an aggregated one and counts the health condition of the assets.

This query is used to give an overview of the health status of all sensor readings across

both digital and analog sensors, by providing a count of sensor readings per health

status. This data can be instrumental in providing insights into the overall health and

performance of the sensors in the vehicles.

FROM (

 SELECT asset_id

 ,point_id

 ,sensor_id

 ,device_date

 ,server_date

 ,TO_CHAR(value) AS val

 ,health_id

 FROM rd_sensor_digital_history

 UNION ALL

 SELECT asset_id

 ,point_id

 ,sensor_id

 ,device_date

 ,server_date

 ,TO_CHAR(value) AS val

 ,health_id

 FROM rd_sensor_analog_history

) rd

LEFT JOIN a_asset a ON rd.asset_id = a.id

LEFT JOIN a_measuring_point amp ON rd.point_id = amp.id

LEFT JOIN s_health_status hs ON rd.health_id = hs.id

 AND hs.id != 1

LEFT JOIN s_sensor se ON rd.sensor_id = se.id

LEFT JOIN s_unit u ON se.unit_id = u.id

LEFT JOIN a_measuring_point mp ON rd.point_id = mp.id

LEFT JOIN te_sensor_template te ON mp.id = te.measuring_point_id

 AND a.template_id = te.template_id

LEFT JOIN s_customer_limit li ON te.customer_limits_id = li.id

36

7.2 Evaluation method & Query benchmarking

approach

Our goal is to compare the execution time of each query in both Oracle and Spark. In

the case of Oracle, this evaluation was more straightforward as we could measure

the execution time using an integrated development environment (IDE) such as SQL

Developer. To ensure accurate results, we implemented a PL/SQL script to iterate

over the whole results dataset in order to validate that the query was executed over

the entire result set and not just over a sample of it. An example of the PL/SQL script

described above for the first query (Q1a) is presented below.

SELECT count(*)

 ,rd.health_id

 ,hs.name

FROM (

 SELECT asset_id

 ,point_id

 ,sensor_id

 ,device_date

 ,server_date

 ,TO_CHAR(value) AS val

 ,health_id

 FROM rd_sensor_digital_history

 UNION ALL

 SELECT asset_id

 ,point_id

 ,sensor_id

 ,device_date

 ,server_date

 ,TO_CHAR(value) AS val

 ,health_id

 FROM rd_sensor_analog_history

) rd

JOIN s_health_status hs ON rd.health_id = hs.id

 AND hs.id != 1

GROUP BY rd.health_id,hs.name

37

 DECLARE

 t1 timestamp;

 t2 timestamp;

 l_name varchar2(30);

BEGIN

 t1 := systimestamp;

 FOR c1 IN (SELECT mp.id mespiid

 ,mp.name mspname

 ,te.name templname

 ,se.id

 ,se.name

 ,u.name unitname

 ,u.symbol

 ,rd.val

 ,rd.device_date

 ,hs.name healthanme

 ,li.min_value

 ,li.max_value

 ,CASE

 WHEN u.id = 1

 THEN CASE

 WHEN li.normal_bool = rd.val

 THEN li.normal_message

 ELSE li.outlimits_message

 END

 END message

 FROM (

 SELECT asset_id

 ,point_id

 ,device_date

 ,sensor_id

 ,health_id

 ,value val

 FROM rd_sensor_digital_history

 UNION ALL

 SELECT asset_id

 ,point_id

 ,device_date

 ,sensor_id

 ,health_id

 ,value val

 FROM rd_sensor_analog_history

) rd

 LEFT JOIN a_measuring_point mp ON rd.point_id =

mp.id

 LEFT JOIN s_sensor se ON rd.sensor_id = se.id

 LEFT JOIN a_asset a ON rd.asset_id = a.id

 LEFT JOIN s_unit u ON se.unit_id = u.id

 LEFT JOIN s_health_status hs ON rd.health_id = hs.id

 LEFT JOIN te_sensor_template te ON mp.id =

te.measuring_point_id

 AND a.template_id = te.template_id

 LEFT JOIN s_customer_limit li ON

te.customer_limits_id = li.id) LOOP

 l_name := c1.id;

 t2 := systimestamp;

 END LOOP;

 dbms_output.put_line('Start: '||t1);

 dbms_output.put_line(' End: '||t2);

 dbms_output.put_line('Elapsed Seconds: '||TO_CHAR(t2-t1,

'SSSS.FF'));

END;

38

However, evaluating Spark queries was more complex due to its lazy evaluation

mechanism that has been already mentioned. Spark delays the execution of

transformations until a Spark action is performed. To assess the performance of Spark

queries, we leveraged the 'noop' (no operation) option. By specifying 'noop' as the

format for writing a DataFrame, Spark would perform the same computations used in

writing a file but without actually saving any records. This allowed us to evaluate the

query performance without the overhead of data storage.

Below are the Spark scripts that were executed for the first query (Q1a) in order to

calculate the executed time. The two scripts correspond to the two different ways to

execute a Spark query, with DataFrame API on Scala and with SparkSQL using the

‘noop’ option.

//Q1a with DataFrame API

// Read congig csv files into csv

val df_mespoint = spark.read.option("header",true).csv("")

val df_sensor = spark.read.option("header",true).csv("")

val df_asset = spark.read.option("header",true).csv("")

val df_unit = spark.read.option("header",true).csv("")

val df_health = spark.read.option("header",true).csv("")

val df_senstempl = spark.read.option("header",true).csv("")

val df_custlimit = spark.read.option("header",true).csv("")

// Read RD csv files for 1DAY into df

val df_rdA = spark.read.option("header",true).csv("")

val df_rdD = spark.read.option("header",true).csv("")

val joindf1a = df_rdA.unionAll(df_rdD).as("rd")

 .join(df_mespoint.as("mp"), col("rd.point_id") ===

col("mp.id"), "left")

 .join(df_sensor.as("se"),col("rd.sensor_id") ===

col("se.id"),"left")

 .join(df_asset.as("a"), col("rd.asset_id") ===

col("a.id"),"left")

 .join(df_unit.as("u"), col("se.unit_id") ===

col("u.id"),"left")

 .join(df_health.as("hs"), col("rd.health_id") ===

col("hs.id"),"left")

 .join(df_senstempl.as("te"), col("mp.id") ===

col("te.measuring_point_id") &&

col("a.template_id") === col("te.template_id"),"left")

 .join(df_custlimit.as("li"),

col("te.customer_limits_id") === col("li.id"),"left")

39

//Q1a with SparkSQL

// Read congig csv files into csv

val df_mespoint = spark.read.option("header",true).csv("")

val df_sensor = spark.read.option("header",true).csv("")

val df_asset = spark.read.option("header",true).csv("")

val df_unit = spark.read.option("header",true).csv("")

val df_health = spark.read.option("header",true).csv("")

val df_senstempl = spark.read.option("header",true).csv("")

val df_custlimit = spark.read.option("header",true).csv("")

// Read RD csv files for 1DAY into df

val df_rdA = spark.read.option("header",true).csv("")

val df_rdD = spark.read.option("header",true).csv("")

// Register DataFrames as TempViews

df_rdA.createOrReplaceTempView("rd_sensor_digital_history1")

df_rdD.createOrReplaceTempView("rd_sensor_analog_history1")

df_mespoint.createOrReplaceTempView("a_measuring_point1")

df_sensor.createOrReplaceTempView("s_sensor1")

df_asset.createOrReplaceTempView("a_asset1")

df_unit.createOrReplaceTempView("s_unit1")

df_health.createOrReplaceTempView("s_health_status1")

df_senstempl.createOrReplaceTempView("te_sensor_template1")

df_custlimit.createOrReplaceTempView("s_customer_limit1")

val maindf1a = joindf1a

.select(

 $"mp.id".alias("mespiid"),

 $"mp.name".alias("mspname"),

 $"te.name".alias("templname"),

 $"se.id".alias("sensorid"),

 $"se.name".alias("sensorname"),

 $"u.name".alias("unitname"),

 $"u.symbol".alias("unitsymbol"),

 $"rd.value".alias("sensorvalue"),

 $"rd.device_date".alias("latestutcdate"),

 $"hs.name".alias("healthanme"),

 $"li.min_value",

 $"li.max_value",

 when($"u.id" === 1, when($"li.normal_bool" === $"rd.value",

$"li.normal_message").otherwise($"li.outlimits_message")).alias("mes

sage")

)

.write.format("noop").mode("overwrite").save()

40

The 'noop' approach was used for the first three queries (Q1a, Q1b & Q2), while for

the aggregated query (Q3), counting the result and calling with the `.show()` method

was sufficient to evaluate its performance. Here, it worths mentioning that even

though `.count()` in spark is an action when it is used with aggregated data as part of

an aggregation transformation (like `groupBy().count()`) it returns a

RelationalGroupedDataset object. That means that it works as a transformation and it

returns a new Dataframe. For this reason, it is important to use the `.count()` method

inside the aggregation and then triggering it with an action like `.show()`.

val sqlQ1a = spark.sql("""

 SELECT mp.id mespiid,

 mp.name mspname,

 te.name templname,

 se.id,

 se.name,

 u.name unitname,

 u.symbol,

 rd.val,

 rd.device_date,

 hs.name healthanme,

 li.min_value,

 li.max_value,

 CASE

 WHEN u.id = 1

 THEN CASE

 WHEN li.normal_bool = rd.val

 THEN li.normal_message

 ELSE li.outlimits_message

 END

 END message

 FROM (

 SELECT asset_id, point_id, device_date, sensor_id,

health_id, VALUE val FROM rd_sensor_digital_history1

 UNION ALL

 SELECT asset_id, point_id, device_date, sensor_id,

health_id, VALUE val FROM rd_sensor_analog_history1

) rd

 LEFT JOIN a_measuring_point1 mp ON rd.point_id = mp.id

 LEFT JOIN s_sensor1 se ON rd.sensor_id = se.id

 LEFT JOIN a_asset1 a ON rd.asset_id = a.id

 LEFT JOIN s_unit1 u ON se.unit_id = u.id

 LEFT JOIN s_health_status1 hs ON rd.health_id = hs.id

 LEFT JOIN te_sensor_template1 te ON mp.id = te.measuring_point_id

AND a.template_id = te.template_id

 LEFT JOIN s_customer_limit1 li ON te.customer_limits_id =

li.id""")

 .write.format("noop").mode("overwrite").save()

41

7.3 Experiments & Results

In the preceding chapters, we laid the foundation for our study, detailing the

methodology, tools, and frameworks in use. This chapter aims to bring these elements

together and present a cohesive analysis of our experimental findings.

In the experimental evaluation, we aimed to compare the performance of the selected

four queries on both Oracle and Spark platforms. Initially, the queries were executed

without the incorporation of optimization techniques. Subsequent to this preliminary

run, the same queries were re-executed with optimization strategies applied. Given

the multifaceted nature of Spark, which offers various modes for query execution, we

chose to implement and assess two prominent approaches: using SparkSQL and the

DataFrame API in Scala. The experiments took place on the local environment to be

comparable between the platforms. Moreover, the experiments and Spark

evaluations were extended to a distributed computing environment, Azure

Databricks. This inclusion not only enhanced the depth of our study but also mirrored

the real-world scenarios.

One-Day Dataset

For the dataset of one day, as already mentioned, an extensive analysis was concluded

by running all four queries on both platforms (Oracle and Spark) on the local

environment and on Azure Databricks. Each query was executed multiple times and

the average of the execution time is presented.

Execution Time Without Optimizations (seconds):

Query Oracle Spark
DataFrame

API

Spark SQL Databricks
DataFrame

API

Databricks
SparkSQL

Q1a 50.0 30.0 25.0 8.0 7.0
Q1b 7.0 16.0 12.0 6.5 5.0
Q2 55.0 25.0 20.0 8.0 7.0
Q3 7.0 15.0 13.0 5.0 5.0

Table 3 Execution Times in Seconds without Optimization for 1 Day dataset

For Oracle the queries Q1b, where a filter selection was applied, and Q3, the

aggregated one, were those that performed better in the current set up. While Q1a

and Q2 are general retrieval queries that require a full table scan, Q1b introduces

specific conditions which in systems, like Oracle, can be highly efficient. Q3 is

essentially an aggregation query, and Oracle is highly optimized for such operations.

Moreover, the exclusion of hs.id != 1 can also facilitate faster data processing. Spark,

being a distributed system, introduces overhead for task partitioning, shuffling, and

data movement, which for such aggregation tasks, can introduce a delay for machines

with limited computing power.

42

The Q1a and Q2 perform better on Spark as they are comprehensive queries without

too many filters. Spark can efficiently distribute the load and process the data

concurrently.

Queries in Spark were executed with two methods, Spark DataFrame API and

SparkSQL. While both of them provide ways to process data, Spark SQL tends to be

more expressive and human-readable. However, the DataFrame API, with its

programmatic nature, often allows for more fine-tuned optimizations. Given the

similarity of the operations in both of the queries, as they have the same business logic

and will produce the same result set, the logical plans will be very similar. Catalyst will

convert the logical plan into the same physical plan, because the operations' intent is

the same and that is the reason why the differences in practice are negligible in terms

of performance.

Running Spark on Azure Databricks reduced the execution times noticeably. Even with

a relatively smaller dataset, Databricks showcased superior performance, emphasizing

the optimized and distributed nature of Spark, which allows it to harness the power

of multiple nodes.

Figure 9 One Day Execution times

43

After the initial tests, optimization techniques were applied in both environments to

understand their impact on performance. For the Oracle database the optimization

technique that was applied, was the creation of Indexes. Indexes are data structures

that allow databases to locate rows faster. Without indexes, the database system

would need to scan the entire table to find a specific row. By using indexes, a roadmap

is for the database to quickly find the data without having to search every row.

In this case, the indexes were created on the primary keys of all tables, along with one

composite index for each of the main tables on the foreign keys used for the joining

operations.

Execution Time With Optimizations (seconds):

Query

Oracle

Spark
DataFrame

API

Spark SQL

Databricks
DataFrame

API

Databricks
SparkSQL

Q1a 49.0 13.0 13.0 3.5 3.5
Q1b 1.0 7.0 6.0 1.5 1.5
Q2 50.0 14.0 14.0 4.0 4.0
Q3 2.0 14.0 13.0 1.5 1.5

Table 4 Execution Times in Seconds with Optimization for 1 Day dataset

The introduction of indexes in Oracle made a marked difference, especially for the

aggregated query Q3 and queries that involved filtering like the Q1b.

An examination of the execution plan of Oracle for Q1b before and after the indexes

showcases the impact of the index on the specific query.

Q1b Execution Plan in Oracle Before Index

44

Q1b Execution Plan in Oracle After Index

However, for the rest of the Queries, no big difference was spotted. This can be

attributed to the absence of filtering conditions, leading to a full table scan by the

optimizer.

Spark on the other hand, applies some automatic optimizations using its Catalyst

optimizer, which analyzes the user's program and determines the most efficient

execution plan for data operations. These optimizations are performed behind the

scenes, helping to improve the performance and efficiency of Spark applications.

One notable optimization is the broadcast join, where Spark broadcasts smaller

datasets to the executors. When a dataset is broadcasted, it is sent to all worker nodes

once and cached. This can be represented as an optimization to reduce data transfer:

Without broadcast: 𝐷𝑎𝑡𝑎 × 𝑁𝑜𝑑𝑒𝑠

With broadcast: 𝐷𝑎𝑡𝑎 + 𝑁𝑜𝑑𝑒𝑠

Spark employs this technique to mitigate the need for shuffling data during the join

process.

The cost of shuffling can be represented as:

Equation 1 Shuffling equation

45

Where:

 𝑁 is the number of nodes

 S is the average size of data sent to a node

 P is the overhead of opening a connection to a node

By broadcasting smaller datasets to the executors, Spark avoids the costly data

shuffling operation, resulting in improved performance.

However, by our experience we know that Spark may sometimes try to broadcast

larger datasets as well, resulting in decreased performance. This option can be

manually disabled by setting the spark.sql.autoBroadcastJoinThreshold parameter to

‘-1’, emphasizing the importance of examining the execution plan to understand

Spark's execution strategy.

These Spark optimizations were applied by default in the first place, and that is

another reason why Spark on some queries performed better than Oracle before

applying any custom optimization.

Further to the Spark default optimizations, two optimization techniques,

repartitioning and caching, were applied.

The main Dataframe was repartitioned based on the columns used in the join

conditions and then cached. For our specific use and case and with the current set up

we could utilize `.cache()` as the Dataframe fits in memory. That way all operations

will be held entirely on memory which could offer faster access times.

Since, in our case repartition was intended to optimize the join operations we first

applied the repartition and after we cached the DataFrame. Any operation post-

caching (like joins) can take advantage of the co-located data. This can speed up these

operations as, data that needs to be joined might already be in the same partition,

reducing the need for further shuffling.

Upon applying the techniques of repartitioning and caching, there was a significant

drop in the execution times in all the queries executed on the local Spark environment

except the aggregated one, Q3, where it almost remained the same. These methods

optimize Spark's in-memory processing capabilities and its distributed data

partitioning. The improvements were more pronounced in some queries than others,

indicating the varying influence of optimization techniques based on the nature of the

query.

The combination of Spark optimizations and Azure Databricks led to further reduced

execution times. The contrast between local Spark and Databricks was more evident

with optimizations, emphasizing the advantages of a distributed environment. Even

with a relatively smaller dataset, Databricks showcased superior performance,

emphasizing its optimized nature.

46

Whole-week Dataset

It was important for our experiments to be implemented on a larger dataset so the

same procedure like before was implemented for the whole-week dataset as well. The

bigger dataset increases the complexity of the execution making very important for

our performance analysis of the two platforms as it offers a broader perspective on

their performance.

Execution Time Without Optimizations (seconds):

Query Oracle Spark
DataFrame

API

Spark SQL Databricks
DataFrame

API

Databricks
SparkSQL

Q1a 450.0 125.0 135.0 37.0 36.0
Q1b 3.0 85.0 58.0 23.0 22.0
Q2 500.0 127.0 130.0 39.0 38.0
Q3 53.0 95.0 86.0 22.0 22.0

Table 5 Execution Times in Seconds without Optimization for whole-week dataset

We observed similar trends when evaluating the larger dataset of the full week.

Again, the initial execution of the queries happened before any custom optimization

was applied. Oracle’s performance was again poorer, when a full table scan was

required was again poorer compare to Spark, for both local and Databricks

implementations indicating Oracle's relative inefficiency for handling large-scale

datasets on those scenarios. Those were the queries Q1a and Q2 where the difference

between the two platforms was noticeable. On contrast for the aggregated query

Oracle could perform better than Spark running on the same environment. The biggest

advantage of Oracle was for the query, Q1b, where we apply a filter. In this case Oracle

achieved the best performance even when compared to the execution times of the

Databricks cluster.

For those queries that required the full table scan the performance of Spark was

significant better compared to Oracle running on the same environment. Even

compared to the one-day dataset the difference of the two frameworks was

increased, highlighting once more that Spark’s true potential shines through in

scenarios with bigger data volumes.

Additionally, the gap between local Spark instances and Azure Databricks widened as

well. Databricks, with its multi-node capabilities, significantly outperformed its local

counterpart on all queries. It also outperformed Oracle on the aggregated query Q3

but not for the one with the filter condition, Q1b, where still Oracle hold the best

performance.

47

Figure 10 Whole-week execution times

After weaving in again the same optimization techniques as described above the

performance of the same queries reevaluated. The impact of the indexes on Oracle

for Queries Q1b and Q3 was again noticeable, reducing the execution time drastically

but, again with out any adding any significant improvement to the rest of the queries.

Execution Time With Optimizations (seconds):

Query Oracle Spark
DataFrame

API

Spark SQL Databricks
DataFrame

API

Databricks
SparkSQL

Q1a 430.0 82.0 81.0 11.0 11.0

Q1b 0.5 29.0 28.0 2.0 3.0
Q2 490.0 87.0 83.0 13.0 14.0
Q3 20.0 39.0 36.0 1.5 2.0

Table 6 Execution Times in Seconds with Optimization for 1 Week dataset

The impact on Spark optimizations was again more noticeable on both environments,

as with the one-day Dataset. But, the synergy between Spark distributed environment

on Databricks and the optimizations was what resulted to the best performance in

48

almost all of the queries. The advantages of distributed processing, as exhibited by

Spark in environments like Azure Databricks, made a difference in the performance of

the queries, especially when dealing with extensive datasets where the benefits of

parallel processing and distribution become exceedingly clear. Even though, for the

filtering query, Q1b, Oracle’s performance was still better, the difference was

marginal.

Datasets comparison

Finally, we proceeded with a comparison in the percentage increase of the execution

time between the two datasets, 1-day and whole-week. The graph (figure 11)

illustrates the scalability of each platform in handling larger datasets As the dataset

expands from a 1-day span to a full week, there's a corresponding rise in execution

times across every platform and for all queries. This is expected due to the larger

volume of data being processed.

Figure 11 Percentage increase in execution times

Oracle consistently demonstrated significant percentage increases in execution times

when transitioning from the smaller to the larger dataset. Especially for the types of

queries that required a full table scan, Oracle's execution time soared, being up to 8

times longer on the whole-week dataset. This suggests potential scalability concerns

for Oracle when dealing with extensive data. In contrast, Spark showcased better

adaptability to the increased dataset size, with relatively smaller percentage increases

49

in execution times. Additionally, the effectiveness of optimizations was evident in the

reduced percentage increases for some queries, highlighting the importance of

tailored optimization techniques.

It is worth mentioning that the increase on the Databricks platform was marginal,

emphasizing its optimized distributed processing capabilities in distributed

environments.

50

8 Conclusion & Future Work

In conclusion, the evaluation of the four queries on both Spark and Oracle SQL led us

to some interesting insights regarding their performance. Initially, without

implementing any optimization techniques, Spark demonstrated improved execution

times for most of the queries compared to Oracle, particularly for the larger dataset

and especially when was executed on a distributed environment. However, the

aggregated query and the query with the filter condition performed better in Oracle,

in some cases. That indicated than not all queries can show improved performance

when moving to Spark. The performance variations among different queries express

the need of handling each query separate and there is no one unique solution for all

problems.

The effect of optimizations, both in Oracle and Spark, highlights the importance of

fine-tuning but again the systems should be tailoring according to the data and

queries. We noticed that is not only the queries that were not created equal but also

the optimizations are not all equal. While some queries significantly benefit from

specific optimization techniques, others might remain relatively unaffected. This

emphasizes once more the importance of understanding the data and query

characteristics.

Additionally, and especial for Spark, the platform on which the queries will be

executed plays a pivotal role on the performance. As shown, Azure Databricks

significantly enhanced Spark's performance in comparison to a local configuration on

both scenarios with and without optimizations.

On the other hand, the difference between SparkSQL and DataFrame API in

performance terms is negligible. Both have their advantages and disadvantages and it

is on the user’s hand to decide which fits best his purpose.

Overall, this study highlights the importance of considering optimization techniques

and understanding the strengths and characteristics of each system and each query.

Both Spark and Oracle have their own advantages and use cases and it is important to

effectively utilize the appropriate optimizations and tailor them to the specific

workload and dataset size, in order to achieve efficient and high-performance data

processing and analysis.

For queries with complex joins, filtering conditions and aggregations executed on

moderate size Datasets Oracle remains a reliable platform. However, for larger

datasets, particularly when the nature of the query necessitates reading the entirety

of the dataset, Spark emerges as a viable alternative that can enhance query

performance. Furthermore, Spark offers the possibility of a distributed computing

environment, bringing about significant performance boosts which could have an

impact on the vast majority of workload.

51

Nonetheless, while considering this approach, it is essential to weigh these benefits

against potential challenges like increased costs and the complexity of setting up and

managing a distributed system.

8.1 Future work and improvements

Moving forward, there are several areas that can be explored for further research and

improvements.

Firstly, expanding the cluster size by adding more nodes can potentially enhance the

performance and scalability of the executed queries. The horizontal scale up is one of

the main advantages of the distributed computing.

Secondly, exploring the integration of Spark with SQL engines through JDBC drivers

could be beneficial, especially in corporate environments where relational databases

are already established. This integration would enable direct connectivity to SQL

engines and would eliminate the need for data transfers, even though that in our case

it would not impact the query performance.

Furthermore, there are various other optimization techniques and configurations in

Spark that can be investigated and could potentially lead to further improvements in

query performance and overall system efficiency.

Lastly, it is important to continue monitoring and evaluating the advancements and

updates in both Oracle and Spark technologies. As new versions and optimizations are

released, it is essential to assess their impact on performance and explore

opportunities for incorporating them into the existing system.

By continuing to explore these avenues and staying abreast of the latest

developments, it is possible to further enhance the performance and capabilities of

both Oracle and Spark in processing and analyzing large datasets.

52

9 References

[S1] Codd, E. F. (1970), 'A Relational Model of Data for Large Shared Data Banks', Commun.

ACM 13 (6), 377-387.

[S2] Passing, Johannes. (2008). The Google File System and its application in MapReduce.

[S3] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google File System, ACM SOSP

[S4] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters

[S5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike

Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber. “Bigtable: A Distributed Storage

System for Structured Data”, 2006.

[S6] K. Shvachko, H. Kuang, S. Radia and R. Chansler, "The Hadoop Distributed File

System," 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST),

2010

[S7] Wang, Yandong; Goldstone, Robin; Yu, Weikuan; Wang, Teng (October 2014).

"Characterization and Optimization of Memory-Resident MapReduce on HPC Systems". 2014

[S8] Murthy, Arun (15 August 2012). "Apache Hadoop YARN – Concepts and Applications".

hortonworks.com. Hortonworks

[S9] https://spark.apache.org/

[S10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.

2010. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing. 10–10

[S11] Zaharia, M. et al. Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In Proceedings of the Ninth USENIX NSDI Symposium on

Networked Systems Design and Implementation (San Jose, CA, Apr. 2527, 2012).

[S12] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley,

Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark

SQL: Relational data processing in Spark. In Proceedings of the ACM SIGMOD International

Conference on Management of Data. ACM, 1383–1394

[S13] https://en.wikipedia.org/wiki/SQL:2003

[S14].Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,

Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin,

Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. 2016. MLlib: Machine

learning in apache spark. Journal of Machine Learning Research 17, 34 (2016), 1—7

[S15] https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

https://spark.apache.org/
https://en.wikipedia.org/wiki/SQL:2003
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

53

[S16]. J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. Graphx:

Graph processing in a distributed dataflow framework. In 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14), pages 599--613, 2014.

[S17] https://www.databricks.com/blog/2016/08/15/how-to-use-sparksession-in-apache-

spark-2-0.html

[S18] Kluyver, T. et al., 2016. Jupyter Notebooks – a publishing format for reproducible

computational workflows. In F. Loizides & B. Schmidt, eds. Positioning and Power in

Academic Publishing: Players, Agents and Agendas. pp. 87–90.

[S19] https://pypi.org/project/spylon-kernel/

[S20] https://azure.microsoft.com/en-us/products/databricks

[S21] https://azure.microsoft.com/en-us/products/storage/blobs

https://www.databricks.com/blog/2016/08/15/how-to-use-sparksession-in-apache-spark-2-0.html
https://www.databricks.com/blog/2016/08/15/how-to-use-sparksession-in-apache-spark-2-0.html
https://pypi.org/project/spylon-kernel/
https://azure.microsoft.com/en-us/products/databricks

	Abstract
	Περίληψη
	1. Introduction
	2. Databases
	2.1 Relational Database Management System
	2.1.1 Benefits of Relation Databases
	2.1.2 Limitations of Relation Databases
	2.1.3 Structured Query Language (SQL)
	2.1.3.1 SQL Query Optimization in Oracle

	2.2 Non-Relational Databases
	2.2.1 NoSQL Databases Types

	3. Big Data Frameworks
	3.1 Big Data at Google
	3.2 Apache Hadoop
	3.2.1 Hadoop Ecosystem

	4. Apache Spark
	4.1 Spark Core and Components
	4.1.1 SPARK SQL
	4.1.2 Spark MLib
	4.1.3 Spark Streaming
	4.1.4 GraphX

	4.2 Spark Architecture
	4.2.1 Spark driver
	4.2.2 SparkSession
	4.2.3 Spark Executors
	4.2.4 Cluster Manager
	4.2.4.1 Cluster Manager Types

	4.2.5 Execution Mode

	4.3 Spark Application
	4.3.1 Spark Jobs
	4.3.2 Spark Stages
	4.3.3 Spark Tasks

	4.4 Transformations, Actions and Lazy Evaluation
	4.4.1 Narrow and Wide Transformations

	4.5 Spark Optimization

	5 Problem statement
	6 Database schema & Environment
	6.1 Database Schema and Design
	6.1.1 Tables description

	6.2 Data Flow
	6.3 Working Environment

	7 Experimental Study and Evaluation
	7.1 Queries
	7.1.1 Query 1 (Q1)
	a) Without filter
	b) With filter

	7.1.2 Query 2 (Q2)
	7.1.3 Query 3 (Q3)

	7.2 Evaluation method & Query benchmarking approach
	7.3 Experiments & Results

	8 Conclusion & Future Work
	8.1 Future work and improvements

	9 References

