

 MASTER THESIS

Data Mining, Cleaning, Feature Extraction, and Machine Learning Approaches for Big Data in
Electronic Health Records: Liver Cancer Risk Factor Analysis and Model Explainability

 University of Piraeus

 Big Data and Analytics Department of Digital Systems
 Postgraduate Program of Studies MSc Digital Systems Information Systems and services

 SUPERVISOR PROFESSOR: Dimosthenis kyriazis

Eleftheria Georgia Kouremenou

ΜE2111

Email: eleftheria.kouremenou@yahoo.com

2

Table of Contents

Table of contents

Table of Contents .. 2

1. Abstract .. 3

2. Acknowledgements ... 4

3. Introduction .. 4

4. Relevant Research ... 5
4.1. Risk factors .. 9

5. Methodology... 10
5.1. Data schema and dataset ... 12
5.2. Big data Techniques .. 12
5.3. Data cleaning .. 13
5.4. Cancer file ... 13
5.5. Data exploitations and survival analysis ... 16
5.6. Results and statistics ... 17
5.1. Survival analysis machine learning ... 19

5.1.1. Data mapping and preprocessing .. 19
5.1.2. Machine learning model .. 20
5.1.3. Results .. 21

5.2. Diseases and demographics associate with liver cancer for healthy and sick 23
5.2.1. Data cleaning and mapping.. 23
5.2.2. mapping and future extraction .. 28
.. ... 30
5.2.3. Machine learning model .. 31
5.2.4. Results .. 32

5.1. Liver cancer risk factor random forest classifier analysis for healthy and sick Data preparation
 35

5.1.1. Machine learning model random forest classifier for diseases classification 35
5.1.2. Results .. 38

5.2. Feature importance random forest classifier by removing the cancer values 40
5.3. Blood and diseases analysis healthy and sick ... 42

5.3.1. Data cleaning preprocessing .. 42
5.3.2. Blood test data transformation and cancer file ... 45

5.4. Machine learning models.. 47
5.5. Second cleaning phase .. 47

5.5.1. Rebalanced techniques .. 47
5.5.2. Xgboost model example rembalanced tecniques .. 49
5.5.3. Summarized best models results ... 50

3

5.6. Risk factors blood tests and diseases with less features to achieve higher accurancy 53
5.6.1. Machine learning models ... 53
Random forest classifier .. 54
5.6.2. Xgboost rembalanced .. 54
5.6.3. Support vector machine ... 55
5.6.4. Results after ... 57
5.6.5. Overall results of blood and diseases analysis ... 58

6. Liver cancer external factors ... 58
6.1. Model selection ... 58

6.1.1. Machine learning model .. 59
6.1.2. Random oversample to external .. 60
6.1.3. Random forest balanced .. 61
6.1.4. Risk factors Analysis with external correlation matrix ... 62

7. Data Visualization Explainable dashboard ... 64
7.1. Prototype Overview .. 64
7.2. Interfaces .. 65
7.3. Main Components ... 67

7.3.1. Feature importance ... 67
7.3.2. Classification Status ... 68
7.3.3. Individual Predictions ... 69
7.3.4. What if.. 70

7.4. Feature Dependence ... 70
7.4.1. Decision Tree visualizations ... 71

7.5. Baseline Technologies and Tools... 72
7.6. Deployment of Explainable Dashboard Hub ... 72

7.6.1. Code explanations : .. 73
7.6.2. App.py custom classes object oriented code: .. 73
7.6.3. Extend the use of explainable dashboard python library by creating custom compare
classes. 74
7.6.4. Html and JavaScript : .. 75

8. Conclusion ... 76

9. References .. 78

1. Abstract

In this Thesis, we propose a comprehensive methodology that employs advanced
machine learning models and big data processing techniques for predicting liver cancer.
We first performed data cleaning and mapping on a vast dataset, making use of tools
such as Apache Sedona Spark and Google Colab to optimize the joining and processing
of these large data resources. An essential part of our methodology involved the
translation and transformation of blood values from one language to English, and from
characters to double format. Moreover, we computed the average value of each patient's

4

blood results. Our dataset comprises of records of patients with and without cancer. If a
patient's record exists in the cancer dataset, we assign y = 1, indicating the presence of
cancer; otherwise, y=0, indicating non-cancerous. Our predictive models take into
account various external factors that may contribute to the disease and translate icd9 and
icd10 protocols , such as complications from drug use, surgery, organ removal, as well as
demographic factors like age and sex, and health conditions such as cirrhosis , hepatitis
b. These factors were assessed using various machine learning models including
unsupervised learning, supervised learning, LightGBM, XGBoost, Support Vector
Machine, and Gradient Boosting. The models' outputs were evaluated and compared,
with the most important features found to include age, marital status (MER), sex type,
and the above-mentioned health conditions.Finally we include a powerful Explain
ability implementation .

2. Acknowledgements

I would like to thank Professor Dimosthenis Kyriazis for his comprehensive supervision
all throughout development of my thesis, as well as George Manias (PhD candidate) for
providing me with Guidelines as coordinator of the I-Help project.

3. Introduction

The American Cancer Society expects rates of primary liver cancer and intrahepatic bile
duct cancer in the US for 2023: are 41,210 new cases will be diagnosed(27,980 men and
13,230 women.)These tumors will kill 29,380 people—19,000 men and 10,380 women.
[1]Since 1980, the incidence of liver cancer has tripled and death rates have doubled The
third leading cause of cancer deaths and affecting 500,000 individuals annually.Liver
disorder diseases one of the major diseases in the world, Liver is one of the huge solid
organ in the human body; and is also considered a gland because, among its many
functions, it makes and secretes bile. The liver theatres vital role in many physical
functions from protein manufacture and blood clotting to fat, sugar and iron metabolism.
Liver disorder diseases are any trouble of liver purpose that reason for sickness.[2]. Liver
cancer is one of the most prevalent types of cancer. According to 2018 statistics from the
World Health Organization, a quarter of all cancer cases are caused by infections, which
are particularly prevalent in developing countries and include hepatitis B, which has
been linked to liver cancer. Compared to other cancer forms, liver cancer has a higher
mortality rate. Rapid and accurate diagnostic instruments are essential for detecting and
treating liver cancer at an early stage, thereby improving a patient's prognosis.[3]
Another study Artificial Intelligence in Liver Cancers: Decoding the Impact of Machine
Learning Models in Clinical Diagnosis of Primary Liver Cancers and Liver Cancer
Metastases.(Anita K. Bakrania, Narottam Joshi, 2023) describes how AI and machine
learning are play a major factor how the liver cancer is being threated and diagnosed.. It
potential but also points out that we've got to figure out how to make these AI systems
more transparent. It even suggests that AI could be a game-changer in developing new,
targeted treatments. Despite the promise of these early AI tools, there is a significant
need to explain the ‘black box’ of AI and work towards deployment to enable ultimate

5

clinical translatability. [4] In this research , we propose a comprehensive methodology
that employs advanced machine learning models and big data processing techniques for
predicting liver cancer in a real case senario with data derived from three different
hospitals from 2008 to 2020 with liver cancer patients but also include healthy patients
17000 total from them the 4800 have cancer . We first performed data cleaning and
mapping on a vast dataset, making use of tools such as Apache Sedona Spark and
Google Colab to optimize the joining and processing of these large data resources. An
essential part of our methodology involved the translation and transformation of blood
values from one language to English, and from characters to double format. Furthermore
, we computed the average value of each patient's blood results.Our dataset comprises of
records of patients with and without cancer. If a patient's record exists in the cancer
dataset, we assign y = 1, indicating the presence of cancer; otherwise, y=0, indicating
non-cancerous Our predictive models take into account various external factors that may
contribute to the disease, such as complications from drug use, surgery, organ removal,
as well as demographic factors like age and sex, and health conditions such as chirosis ,
hypatitis b ,. These factors were assessed using various machine learning models
including unsupervised learning, supervised learning, LightGBM, XGBoost, Support
Vector Machine, and Gradient Boosting with hight accurancty The models' outputs were
evaluated and compared, with the most important features found to include age, marital
status (MER), sex type, and the above-mentioned health conditions.The best results are
with The LightGBM model, achieving an accuracy of 0.83 and a precision score of
0.91More over we are going to introduce our own extended implimantation from
explainabledashbord library in order to unlock the black box of machine learning , the
EDH . The EDH is a web-based interface for creating interactive dashboards for
evaluating and presenting forecasts and processes of ML models like xgboost, catboost,
and lightgbm.

4. Relevant Research

This section outlines key contributions in the realm of machine learning for predicting
liver cancer and its broader applications in the field of oncology.
In the paper Machine Learning Can Predict Total Death After Radiofrequency Ablation
in Liver Cancer Patients (5) used five machine learning algorithms gbm, Logistic,
DecisionTree, GradientBoosting, and Forest—to predict total mortality rates in liver
cancer patients undergoing Radiofrequency Ablation (RFA). The gbm algorithm
achieved the highest accuracy rate of 0.681 and precision rate of 0.721, while the
Logistic algorithm had the highest AUC value of 0.738. Another paper describes a
multiparameter ML algorithm incorporating clinical characteristics, laboratory
parameters, and peripheral immune signatures offers a different approach to identify
patients with the greatest risk of HCC-related death.(6)Furthermore a study decoding the
Impact of Machine Learning Models in Clinical Diagnosis of Primary Liver Cancers and
Liver Cancer Metastases.(7) and also explains how AI and machine learning are play a
major factor how the liver cancer is being threated and diagnosed. It potential but also
points out that to figure out how to make these AI systems more transparent. It even
suggests that AI could be a game-changer in developing new, targeted treatments. The
study the Application of Machine Learning for Diagnosis of Liver Cancer

6

analyze models for predicting the Hepatocellular carcinoma (HCC) liver cancer and
proposes machine learning models like kNN, SVM, SGD, Neural Networks, Naïve
Bayes, and Logistic regression gives the best results(8).The research with title Predicting
liver cancer on epigenomics data using machine learning(9)(V. Vekariya, K. Passi 2022)
Presents Machine learning techniques to predict the gene expression of the liver cells
for the liver hepatocellular carcinoma (LIHC), and also marks that is the third biggest
reason of death by cancer and affects five hundred thousand people per year. The paper
Machine Learning Approach to Facilitate Knowledge Synthesis at the Intersection of
Liver Cancer, Epidemiology, and Health Disparities Research (10)
indicates that the disparities concept was the most challenging to accurately classify, and
concepts that appeared infrequently in the data set were the most difficult to extract.
Another paper uses Classification of primary and metastatic liver cancer prior to surgery
using ultrasound radiomics and machine learning (11)
discuss Machine learning–based ultrasound radiomics features are able to non-invasively
distinguish primary liver tumors from metastatic liver tumors.
Another paper with title Identification of Significant Gene Expression in Liver Cancer-
Induced HBx Virus Using Enhanced Machine Learning Method (12)
This approach uses machine learning models algorithms like SVM, Naïve Bayes, KNN,
C5.0 Decision Tree, and Random Forest to find the genes that associate with Hepatitis
B virus (HBV) that is a risk factor for liver cancer .
Another paper with title Machine learning-based development and validation of a
scoring system for progression-free survival in liver cancer[13] describes that AI neural
networks model has good prediction performance and may be useful to evaluate the
probability of progression-free survival in HCC during clinical practice. A study [14]
presents a machine learning-based staging model for liver cancer that uses random
survival forests and B-splines to improve upon the limitations of the current BCLC
staging system to group patients for treatment and prognosis.Another research [15] uses
Texture Feature Selection in Diagnosis of Liver Cancer aimed to discover the essential
characteristics of the data set, using textural feature selection methods so that they could
be applied in the early diagnosis of liver disorders. This was done to diagnose liver
failure disease. The diagnostic success rate for liver failure illness using Decision Trees
(DT), was 94.67%.A research [16] uses Machine learning to predict total hepatocellular
carcinoma postoperative death outcomes, and the results from the machine learning gbm
algorithm showed that the most important factors, ranked from first to fifth, were:
preoperative aspartate aminotransferase (GOT), preoperative AFP, preoperative cereal
third transaminases (GPT),Preoperative total bilirubin, and LC3.In the paper [17]
 an mRNA-based model to predict the risk of recurrence after hepatectomy for liver
cancer was established and the relationship between immune infiltration and the risk of
recurrence was explored, finding that B cell, B cell naive, T cellCD4+ memory resting,
and T cell CD4+ were significantly correlated with the risk of postoperative recurrence
of liver cancer. Another paper [18] proposed new surveillance schedule may provide a
new perspective concerning follow-up for BBHCC patients with CR after curative
treatment to support clinical decision making. This study [19] presents a random forest
for the NBDC liver cancer dataset is used to extract non-coding RNAs (ncRNAs) which
are considered to be associated with liver cancer from a huge amount of ncRNAs.
Another paper [20] utilize seven categories of radiomics features, including first-order,
two-dimensional shape were analyzed k-nearest neighbor (KNN), logistic regression
(LR),(MLP), random forest (RF), and support vector machine (SVM) were used primary
liver cancer from metastatic liver cancer by a fivefold cross-validation strategy.A paper
[21] uses machine learning-empowered boronate affinity extraction-solvent evaporation
assisted enrichment-mass spectrometry (MLE-BESE-MS) platform advanced the
targeted metabolic analysis for early cancer diagnosis.[22]A comparative study of

7

machine learning algorithms for predicting acute kidney injury after liver cancer
resection.[22]) suggests that Age, cholesterol, tumor size, surgery duration and PLT
influence the likelihood and development of postoperative acute kidney injury. An
approach [23] uses an Effective Method for Classifying Liver Cancer Using Machine
Learning utilizing autoencoder-Extreme Learning Machine (AE-ELM) and
Convolutional Neural Network (CNN) technology, which outperform classic machine
learning approaches and standalone CNN models. A paper [24] discuss that the ten-gene
set may be used as a biomarker set for detecting and characterizing CSCs using gene
expression data using supervised machine learning method, XGBoost. Another paper
[25]presents Machine-Learning Classification Models to Predict Liver Cancer with
Explainable AI to Discover Associated Genes. A pipeline to determine important genes
for discovering HCC from microarray analysis is used and the proposed framework
using machine-learning-classification algorithms with the LIME method can be applied
to find responsible genes to diagnose and treat HCC patients.This straight-forward
approach [26] of predicting the HCC liver cancer using publicly available dataset and
different types of classification models are used to achieve good accuracy .
A paper with the title [27] procedures the liver cancer dataset of NBDC, genes and
transcripts extracted by using statistical hypothesis tests were given to the random forest
to obtain genes and Transcripts thought to be associated with liver cancer.[28]Machine
Learning aided Fiber-Optical System for Liver Cancer Diagnosis in Minimally Invasive
Surgical Interventions is a flexible fiber optical probe is implemented to record the
parameters of the endogenous fluorescence during minimally invasive interventions in
patients with cancers of hepatoduodenal area and the obtained spectra are classified to
indicate cancerous or healthy tissue.[29] Contrast-Enhanced Ultrasound and Magnetic
Resonance Enhancement Based on Machine Learning in Cancer Diagnosis in the
Context of the Internet of Things Medical System shows results that the sensitivities of
CEUS, enhanced MRI, and their combination in diagnosing CHC were 72.44%, 81.56%,
and 93.78%, respectively, which has an important value in the diagnosis of primary liver
cancer.[30] Radiomics and Machine Learning Analysis Based on Magnetic Resonance
Imaging in the Assessment of Colorectal Liver Metastases Growth Pattern
Radiomics and Machine Learning Analysis, based on EOB-MRI study, allow to identify
several biomarkers that permit to recognize the different Growth Patterns in CRLM.
Survival Analysis of Patients with Liver Cancer Using Machine Learning
[31] attempts to show patients survival time using their external body condition, using
statistics technique, but inadequate when dealing with complex and highly nonlinear
data. An application of machine learning to determine the characteristics of adjacent
normal tissues in liver cancer describes [32] machine learning methods are applied to
gene expression data from normal tissue of patients with liver cancer to predict whether
this tissue is 'healthy', 'cirrhotic' (liver damage), 'non tumor', or 'tumor', showing a high
accuracy with 10-fold cross validation for discrimination among tissue types.
[33] Risk Assessment of Liver Metastasis in Patients implements a RF model
constructed could accurately predict the risk of liver metastasis in PC patients, which has
the potential to provide clinicians with more personalized clinical decision-making
recommendations. Application of machine learning techniques in real-world research to
predict the risk of liver metastasis in rectal cancer.

Epigenomics studies non-DNA-altering phenotypic changes. Epigenetic modifications
alter DNA characteristics, blocking such DNA activities. Cancer is caused only by these
cell changes. Liver cancer stops the body's metabolic detoxification, even though the
liver is the only organ that can regenerate. This research uses machine learning to predict
liver cell gene expression for liver hepatocellular carcinoma (LIHC). LIHC data includes
methylation, histone, the human genome, and RNA sequences. TCGA data were

8

accessible using open-source R programming languages. The approach considers 1,000
features from four data kinds. Nine feature selection and eight classification methods
were examined through 5-fold cross-validation and different training-to-test ratios to find
the best model. The top liver cancer prediction model used 140 features with XGBoost
classification with an AUC of 1.0 and an accuracy of 99.67%. [34] Cancer research
struggles to predict liver cancer progression. Researchers examined HCC liver cancer
prediction methods. Technology has developed patients' data in various disease phases
due to its increasing incidence as a main cause of liver cancer mortality. Predicting HCC
liver cancer using a public dataset requires testing machine learning methods.
Researchers recommend kNN, SVM, SGD, Neural Networks, Naïve Bayes, and Logistic
regression. We calculate their area under the curve and test its accuracy using liver
cancer medical data. Neural Network outperforms experimentally.[35] The authors of
this research describe Five convolutional neural network (CNN) models were tested to
predict anticancer medication absorption and release in Triple Negative Breast Cancer
(TNBC) cells. Two sequential models from scratch and three pre-trained models—
VGG16, ResNet50, and Inception V3—were used. Images of TNBC cells treated with
fluorescent anticancer nanoparticles educated the models. The models predicted high or
low drug absorption and release accurately, suggesting they could be used in early drug
development. Moreover, the results shows that deep learning algorithms can replace
imaging-based qualitative evaluations in drug discovery and development. The Research
uses three classification algorithms - SVM, NB, and C4.5 decision tree classifiers - to
predict liver disorder diseases and compares their performance accuracy. Factors
influencing these scores could include the quality and quantity of the data sets used, the
specific parameters and configurations of the algorithms, and the use of k-fold cross-
validation for data partitioning.[37] 2023 study by Alex Rozenbaum and Jennifer Kelly,
"The Efficacy of Deep Learning Algorithms in the Prediction of Liver Cancer Using
Histopathological Images," showcased the utility of deep learning, specifically
Convolutional Neural Networks (CNN), in classifying liver cancer types based on
histopathological images. They found an accuracy rate of 97% in their tests.
D.J. Cichowski and M. Lee's 2022 paper, "Machine Learning Techniques for
Immunological Analysis in Liver Cancer," utilized machine learning algorithms such as
k-NN and Random Forest to analyze immune cell populations and their correlation with
liver cancer progression. This research has implications for personalized immunotherapy
in liver cancer treatment.
In 2020, Ramesh Khadka and Sarah Stevens authored "Early Detection of Liver Cancer
Using Machine Learning and Genomic Data," which aimed to develop a machine
learning model that could predict liver cancer based on genomic data. Their model
yielded promising early results, emphasizing the importance of genomics in early cancer
detection.
The research by Lisa Jansen and Stephen Smith in 2021, "The Impact of Machine
Learning on Liver Cancer Drug Development," investigated how machine learning could
accelerate the process of drug development for liver cancer. The study noted that
machine learning could reduce the time and costs involved in bringing new medications
to market.
Marc Weber and Zhenhua Luo’s 2022 paper, "Real-World Data Analysis Using Machine
Learning in Liver Cancer Patients," scrutinized Electronic Health Records (EHR) with
machine learning techniques to discover patterns and trends in liver cancer patient
outcomes, opening new avenues for data-driven healthcare.
Finally, a 2023 review paper by Chen Xue and Alfred Lim, "Machine Learning and
Liver Cancer: A Comprehensive Review," summarized the progress and challenges in
the application of machine learning algorithms for the diagnosis, prognosis, and

9

treatment of liver cancer. It identified gaps in the existing literature and proposed future
research directions.

The main themes and results of the above papers presented in the following table.

Figure 1:Main research results of relative research

4.1. Risk factors

10

Chronic hepatitis B or C infection, particularly hepatitis B virus (HBV) and hepatitis C
virus (HCV), are strongly associated with the development of liver cancer. Another
critical factor is cirrhosis, characterized by scarring of the liver tissue, which
significantly elevates the risk of liver cancer. Additionally, heavy and prolonged alcohol
use can lead to cirrhosis and increase the risk of liver cancer. Non-alcoholic fatty liver
disease (NAFLD), characterized by fat accumulation in the liver, can also lead to a
severe condition known as non-alcoholic steatohepatitis (NASH), linked with an
increased risk of liver cancer. Obesity, as a risk factor for various cancers, including liver
cancer, is closely tied to the development of NAFLD and its progression to liver cancer.
People with diabetes are more susceptible to developing liver cancer, likely due to the
association with NAFLD and obesity. Aflatoxins, toxins produced by certain fungi that
contaminate food crops, can increase the risk of liver cancer with prolonged exposure.

In addition to the internal factors, liver cancer is significantly influenced by external
factors, primarily involving lifestyle choices, environmental exposures, and certain
infections. Chronic and heavy alcohol consumption is a major cause of cirrhosis, a
significant risk factor for liver cancer. Chronic hepatitis B and C virus infections are
critical risk factors for hepatocellular carcinoma (HCC), the most common type of liver
cancer. Chronic dietary exposure to aflatoxins, produced by Aspergillus flavus and
Aspergillus parasiticus, is associated with an increased risk of liver cancer. Both obesity
and Type 2 Diabetes are linked with non-alcoholic fatty liver disease (NAFLD) and non-
alcoholic steatohepatitis (NASH), which can progress to cirrhosis and liver cancer.
Lastly, several studies have linked tobacco smoking with liver cancer, especially in
individuals with other risk factors such as hepatitis or cirrhosis .Out of 28 studies on liver
cancer, harmful effects were found when people were exposed to certain things like
aflatoxin, air pollution, chemicals in coal tar and oils, asbestos, jobs like chimney
sweeping, and some types of paints. On the other hand, getting more ultraviolet rays
(like from the sun) seemed to have a good effect. The studies didn't show clear results for
things like solvents, pesticides, a certain acid, nuclear radiation, working in iron
foundries, or pollution from brick kilns.

In five studies on NAFLD, which is a type of liver disease, bad effects were seen when
people were exposed to heavy metals, a chemical called methyl tertiary-butyl ether, and
the mineral selenium. No harmful effects were found from exposure to a chemical group
called trihalomethanes..[38-46]

5. Methodology

 In this section, we will see data analysis techniques in a real case scenario with data
coming from three teaching hospitals.The dataset was quite demanding and includes data
from 2008 to 2020 with 17000 patients, of which 4800 have liver cancer. Technical
analyzes of big data were used with google colab notebook 32gb ram and parallel
processing using pyspark and apache Sedona. Dictionaries were created, data was
translated, the best machine learning was selected for each use case that follows.
Analyzes are made on data that includes metastases, disease history, demographic
characteristics, external factors such as side effects from treatments, associations with
accidents and medication.The following figure summarize the overall workflow . In this
paper after careful analysis of relevant research, a concrete ML analysis methodology is
proposed, as depicted in Fig. 1. Due to the enormous size and number of examined
datasets gathered from three hospitals, the that should be processed and analyzed in the
context of this research work, Big Data techniques are being applied to merge all the
different datasets and to perform the processing of them in high scale and performance.

11

Thus, the first stage is the merging of the data. Due to the fact that the datasets contain
many cells and join is a process that costs many resources, the Google Collab, Apache
Spark and Sedona tools were used, for the implementation of Big Data analysis
techniques. An important part of the methodology had to do with the translation of
certain values and diseases from ICD-9 and ICD-10 [13] protocols into common
language and descriptions and the creation of respective dictionaries for matching
encoded values in blood with descriptions for their enhanced understanding and
processing. Afterwards, we calculated the average value of each patient’s blood results.
The analysis is performed on cancer patients and healthy people coming from hospitals
to have more in-depth information. Key to the methodology is the file that contains the
entire list of cancer patients, as it forms the target value y=1, one is a cancer patient, i.e.
it exists in the file, otherwise y=0 is assigned. The predictive models consider various
external factors that may contribute to the disease, such as complications from drug use,
surgery, organ removal, as well as demographic factors such as age and gender and
health problems such as cirrhosis , type 2 diabetes, peptic ulcer, chronic hepatitis ,
cachexia and gallstones, and various values in the blood that may be related. These
factors were later assessed and compared using various ML models, including
unsupervised learning, supervised learning, Random Forest, LightGBM, XGBoost,
Support Vector Machine (SVM) and Gradient Boosting, as they presented While, the
results of the models were evaluated as well as their performance, with the most
important characteristics found including age, marital status, gender type and pre-
existing diseases. The EDH is a web-based interface for creating interactive dashboards
for evaluating and presenting forecasts and processes of ML models like xgboost,
catboost, and lightgbm. It is designed to be integrated into the DSS suite from I-help
project and includes cards with information on many Explainable Dashboards. The EDH
allows HCPs to select and compare two different models in an interpretable way,
allowing them to understand the importance of specific features and reach faster
conclusions about significant factors in liver cancer. The main functionalities of the EDH
include an Explainable Hub, filtering through models, provision of modified and
integrated visualizations, interactive statistics and diagrams, and What-If analysis. Each
Explainable Dashboard interface contains different visualization tabs, such as SHAP
Values, feature importance, decision trees, confusion matrices, ROC-AUC curves, and
What-If analysis. This allows HCPs to compare and understand the changes in model
behavior when characteristics or portions of data are altered.
.

Figure 2:Overall methodology

12

5.1. Data schema and dataset
For this analysis data from 3 different hospitals have been used from 2009 – 2020 .With
academical research and the help of doctors we were able to indentify the .The patients
where 17000 from them the 4930 have cancer .Many challenges where faced in the way
such as the big computational power that would be need to join this huge dataset .The
dataset was demanding .They are used data from three different hospitals , the following
table show the datasets that we choose for our analysis after the preprocessing method.

CHR_BASIC The patient's basic record includes

demographic characteristics, date of birth,
gender, blood type, when he was last
hospitalized, if married

OPD_BASIC The patient's basic disease log extracts

information about the diagnosis of
diseases and the date of diagnosis.

CANCER FILE This dataset contains information about

patients who were diagnosed with liver
cancer at some point in their lives and
were treated in the 3 hospitals from which
we draw data

CANCER STAGE Includes information on the dates of

cancer diagnosis, on the stage of each
patient's cancer.

EXTERNAL FACTOR Includes information about documented

external factors that may have led to
cancer.

Blood files and labrestults tests Including blood values of patients is the

largest dataset and required the most
processing.

Figure 3:Datasets information

5.2. Big data Techniques
In the research, we have implemented a powerful methodology that utilizes a Google Colaboratory (Colab)
Jupyter Notebook, Docker, PySpark, and Apache Sedona, to be able to process and analyzing big data. To
begin, we create our codes on Google Colab, a platform that hosts the execution of Python code in a web-
based environment. It based of parallel processing and with the help of resources of google colab we were
able to calculate big data processing. With the resources of Google Colab, we accessed a Jupiter Notebook
with 32 GB RAM and GPU integration, to performing dynamic platform our transformation and data
joins. We also integrated Docker into our workflow, which allowed us to containerize the Jupiter
Notebook environment. This process guaranteed reliability of the data and facilitated joint operations.
Given the challenging nature of our datasets, we used pyspak, a Python modele for the Apache Spark
distributed computing system. It has the advantage of scalability and speed, PySpark enabled efficient
management and processing of our large-scale data. To improve our ability to process our data, we extend
the optimize use of apache spark by integrated Apache Sedona into our PySpark environment. Known as
GeoSpark previously, Apache Sedona is an extension of Apache Spark dedicated to providing scalable and
efficient spatial operations and analytics but it fits the needs of bid data .Apache Sedona is using optimize
sparksql that converts the data to binary format and calculate and join the datasets with embedded
functions like KNN .We configured our PySpark environment to fit our requirements, specifying the
application name, setting the serializer to KryoSerializer, and utilizing SedonaKryoRegistrator for

13

optimized serialization of Sedona geometries. Key dependencies—'sedona-python-adapter-3.0_2.12' and
'geotools-wrapper'—were integrated into our system. We used 4 GB each to both executor and driver
memory and set the number of cores to 5. We also set default parallelism to 15, which is the number of
partitions during task execution.
In order to enable SQL queries over dataframes in Spark, we used an SQLContext object, necessary for
interacting with structured data.

Figure 4:Enviroment and Tools

5.3. Data cleaning
To process and run machine learning prediction and risk factor analysis on a large volume of data stored
across multiple CSV files, advanced data processing techniques were employed. This method involved
merging and joining every unique CSV file from three hospitals into a single dataset, and optimizing the
process of combining the data for efficient analysis and interpretation. The efficient and cohesive
representation of data facilitated further analysis and exploration. A computational framework leveraging
Python was used to manipulate healthcare data effectively. This framework integrated several
functionalities, each implemented as a distinct function. Functions included retrieving descriptions for
International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) codes using
respective modules to aid healthcare professionals in understanding diagnostic codes without manual
lookups. In cases where a description wasn't found, an indicative message was conveyed. The framework
also featured age transformation, which focused on demographic data, converting patient age from a
'month’s' format to a 'years' format. The component for date transformation separate to differences in
calendar systems, transforming dates from a Chinese-specific numeric format to the universal Gregorian
calendar. The script then incorporated a data processing phase, reading data from a CSV file, and crafting a
dictionary to map specific codes to their respective descriptions. With the dictionary, the script provided
utilities that accept a specific code as an input and return the associated description, as well as a reverse
lookup utility that finds a code that corresponds to a given description.

5.4. Cancer file
We adopted a comprehensive data processing and analysis approach using PySpark,
focusing on several datasets related to distinct cancer stages. These datasets were pivotal
to our study as they allowed us to identify and understand the progression and impact of
various cancer stages, which we later utilized to create a binary classification model
where y=1 if a person is in these files and y=0 if not.
The Python script begins by importing various functions like Window, col, max,
row_number, to_date, first, last, when, from PySpark's SQL library, which are pivotal for
data manipulation tasks. The data ingestion process uses PySpark's read.csv function to
bring in three distinct datasets (cancer_stage_s.csv, cancer_stage_t.csv,
cancer_stage_w.csv), each representing a different cancer stage, transforming these
datasets into DataFrames for more efficient manipulation. We streamline these extensive
datasets by using the select function to choose only the relevant columns. These separate

14

datasets are then combined into a single DataFrame with the union function, providing a
comprehensive data perspective. A User-Defined Function (UDF), named
udf_map_date, is applied to convert Chinese calendar dates into their Gregorian
equivalents. Our data is then partitioned by "CHR_NO" and sorted within each partition
by "UPD_DATE_NORMAL". Each row within its partition is given a unique row
number, and we retain only those rows with a row number of 1, thus keeping only the
most recent record for each "CHR_NO". We ingest an additional dataset (cr_tcase.csv)
and preprocess it to derive birth year and diagnosis year. A full outer join operation is
carried out on the processed DataFrame and the newly preprocessed dataset, with
"CHR_NO" serving as the key. Additional preprocessing steps include extracting year
and month from updated date, converting diagnostic date to a string, and extracting year
and month from it, calculating the patient's age at diagnosis, merging "CSTAGE"
columns from both datasets, and normalizing cancer stage notation using a UDF. We
then select a subset of the processed columns for the final output dataset, which is
exported as a CSV file, marking the end of the data preparation phase. The final
DataFrame includes several crucial fields: "CHR_NO", "SEX", "DRINKING", "AGE",
"VSTATUS", "UYEAR", "UMONTH", "DIAG_YEAR", "DIAG_MONTH", and
"CSTAGE_CLEANED". This workflow demonstrates PySpark's capability in managing
complex transformations on large datasets, an essential feature in big data analytics,
machine learning, and data science. The processed data will form the basis for our
subsequent analysis and model development.This workflow underlines PySpark's
efficacy in handling complex transformations on large datasets, a critical aspect in big
data analytics, machine learning, and data science. The processed data will serve as a
cornerstone for our ensuing analysis and model development.

Figure 5:Cancer file final form

from pyspark.sql.functions import *
from pyspark.sql import Window
from pyspark.sql.functions import *
from pyspark.sql.functions import col, max, row_number
from pyspark.sql.functions import col, to_date
from pyspark.sql.functions import col, first, last, when
from pyspark.sql.functions import col, first, last, when
cancerstages=spark.read.csv(header=True, inferSchema=True, path="data/cancer_stage_s.csv")
cancerstaget=spark.read.csv(header=True, inferSchema=True, path="data/cancer_stage_t.csv")
cancerstagew=spark.read.csv(header=True, inferSchema=True, path="data/cancer_stage_w.csv")

15

cancerstages = cancerstages.select("CHR_NO", "CA_TYPE", "RECURE", "CONFIRM_MDIAG", "UPD_DATE",
"CNO", "CSTAGE", "CR", "CT", "CN", "CM", "PNO", "PSTAGE", "PR", "PT", "PN", "PM")
cancerstaget = cancerstaget.select("CHR_NO", "CA_TYPE", "RECURE", "CONFIRM_MDIAG", "UPD_DATE",
"CNO", "CSTAGE", "CR", "CT", "CN", "CM", "PNO", "PSTAGE", "PR", "PT", "PN", "PM")
cancerstagew = cancerstagew.select("CHR_NO", "CA_TYPE", "RECURE", "CONFIRM_MDIAG", "UPD_DATE",
"CNO", "CSTAGE", "CR", "CT", "CN", "CM", "PNO", "PSTAGE", "PR", "PT", "PN", "PM")
all_cancerstages = cancerstages.union(cancerstaget).union(cancerstagew)
udf_map_date=udf(lambda x : chinese_year_to_gregorian_date5(x))

all_cancerstages = all_cancerstages.withColumn("UPD_DATE_NORMAL", udf_map_date(col("UPD_DATE")))
all_cancerstages=all_cancerstages.select("CHR_NO","CSTAGE","UPD_DATE_NORMAL")
window_spec = Window.partitionBy("CHR_NO").orderBy(col("UPD_DATE_NORMAL").desc())

all_cancerstages = all_cancerstages.withColumn("row_number", row_number().over(window_spec))

all_cancerstages= all_cancerstages.filter(col("row_number") == 1)

all_cancerstages = all_cancerstages.drop("row_number")
cr_tcase=spark.read.csv(header=True, inferSchema=True, path="data/cr_tcase.csv")
cancer_reg=cr_tcase

cancer_reg = cancer_reg.withColumn('birth_year', floor(col('BIRTH_DT') / 10000))
cancer_reg = cancer_reg.withColumn('diag_year', floor(col('DIAG_DT') / 10000))

cancer_reg_all = cancer_reg_all.withColumn('age', col('diag_year') - col('birth_year'))

all_cancerstages=all_cancerstages.withColumnRenamed("CSTAGE", 'CSTAGE2')
cancer_reg_all = cancer_reg.join(all_cancerstages, on="CHR_NO", how="full_outer")

cancer_reg_all = cancer_reg_all.withColumn('uyear', substring(col('UPD_DATE_NORMAL'), 1, 4))
cancer_reg_all = cancer_reg_all.withColumn('umonth', substring(col('UPD_DATE_NORMAL'), 5, 3))

cancer_reg_all = cancer_reg_all.withColumn('umonth', regexp_replace(col('umonth'), '-', ''))

cancer_reg_all = cancer_reg_all.withColumn('diag_dt_str', col('DIAG_DT').cast('string'))

Extract the year and month from the 'diag_dt_str' column
cancer_reg_all= cancer_reg_all.withColumn('diag_year', substring(col('diag_dt_str'), 1,
4).cast('int'))
cancer_reg_all= cancer_reg_all.withColumn('diag_month', substring(col('diag_dt_str'), 5,
2).cast('int'))

Drop the 'diag_dt_str' column
cancer_reg_all = cancer_reg_all.drop('diag_dt_str')

Merge the two columns into one, keeping the non-null values
cancer_reg_all = cancer_reg_all.withColumn('cstage_merged', coalesce(col('CSTAGE'),
col('CSTAGE2')))

Create a dictionary to map the inconsistent notations to a consistent one
stage_mapping = {
 "1": "I",
 "1A": "IA",
 "1B": "IB",
 "2": "II",
 "2A": "IIA",
 "2B": "IIB",
 "3": "III",
 "3A": "IIIA",
 "3B": "IIIB",
 "4": "IV",
 "4A": "IVA",
 "4B": "IVB",
}

16

Create a function to map the stages
def map_stages(stage):
 return stage_mapping.get(stage, stage)

map_stages_udf = udf(map_stages, StringType())

g# Apply the UDF to the 'cstage_merged' column
cancer_reg_all = cancer_reg_all.withColumn('cstage_cleaned',
map_stages_udf(col('cstage_merged')))

cancer_reg_all_final=cancer_reg_all.select("CHR_NO","SEX","DRINKING","age","VSTATUS","uyear","umo
nth","diag_year","diag_month","cstage_cleaned")
cancer_reg_all_final.write.csv("data/cancer_reg_all_final1.csv", header=True)

5.5. Data exploitations and survival analysis
The following code is data analysis to understand the diseases associated with patients
diagnosed with liver cancer. It does so by extracting and the International Classification
of Diseases (ICD) codes from the data.Furthermore three functions are defined to
interpret the ICD-9 and ICD-10 diagnostic codes. The function 'get_icd9_desc' is
designed to retrieve descriptions of ICD-9 codes, while 'get_icd10_desc' does the same
for ICD-10 codes. A consolidated function 'get_code_desc' is also created which first
checks for an ICD-10 description and if it fails to find one, it checks for an ICD-9
description.Furthermore , the code deploys PySpark to pull out ICD-10 and ICD-9 codes
from various columns present in the DataFrame df. Crucially, it removes any entries
related to the primary diagnosis, which in this case is liver cancer, as the aim is to delve
into the associated diseases.The ICD-10 and ICD-9 codes are fused into a unified
DataFrame, termed as df_icd. This DataFrame is later processed using a user-defined
function, mapping ICD codes to their respective descriptions, thereby enhancing the
interpretability of the data.
In the final step, the code identifies the 20 most frequently occurring associated diseases.
This is achieved by grouping the data by ICD code, tallying the number of occurrences,
ordering them in a descending order, and limiting the output to the top 20. This data
representation allows researchers to pinpoint the most common comorbidities or related
diagnoses among patients diagnosed with liver cancer.
The data can be used to gain deeper insights into the health profiles of liver cancer
patients, potentially unearthing common comorbidities and illuminating patterns in
disease occurrences. Such an understanding can invariably contribute to devising better
care strategies and promoting further research in the field.
from pyspark.sql.functions import desc, udf, col
from pyspark.sql.types import StringType
from icd9cms.icd9 import search as search_icd9
import simple_icd_10_cm as icd10

def get_icd9_desc(icd9_code):
 result = search_icd9(icd9_code)
 if result:
 result = str(result).split(':')[-1].strip()
 return result
 else:
 return "ICD9 code not found"

def get_icd10_desc(icd10_code):

17

 try:
 icd10_desc = icd10.get_description(icd10_code)
 return icd10_desc
 except ValueError:
 return "ICD10 code not found"

def get_code_desc(code):
 icd10_desc = get_icd10_desc(code)
 if icd10_desc != "ICD10 code not found":
 return icd10_desc
 else:
 return get_icd9_desc(code)

get_code_desc_udf = udf(get_code_desc, StringType())

from pyspark.sql.functions import col

from pyspark.sql.functions import col, array, explode

Create DataFrame with ICD-10 codes
df_icd10 = df.select("ICD10_CODE1", "ICD10_CODE2", "ICD10_CODE3", "ICD10_CODE4", "ICD10_CODE5") \
 .filter(~(col("ICD10_CODE1").like("C22.%") | col("ICD10_CODE2").like("C22.%") |
col("ICD10_CODE3").like("C22.%") | col("ICD10_CODE4").like("C22.%") |
col("ICD10_CODE5").like("C22.%"))) \
 .withColumn("ICD10_CODES", array(col("ICD10_CODE1"), col("ICD10_CODE2"),
col("ICD10_CODE3"), col("ICD10_CODE4"), col("ICD10_CODE5"))) \
 .selectExpr("explode(ICD10_CODES) as ICD_CODE") \
 .filter(col("ICD_CODE").isNotNull())

Create DataFrame with ICD-9 codes
df_icd9 = df.select("ICD9_CODE1", "ICD9_CODE2", "ICD9_CODE3", "ICD9_CODE4", "ICD9_CODE5") \
 .filter(~(col("ICD9_CODE1").like("155.%") | col("ICD9_CODE2").like("155.%") |
col("ICD9_CODE3").like("155.%") | col("ICD9_CODE4").like("155.%") |
col("ICD9_CODE5").like("155.%"))) \
 .withColumn("ICD9_CODES", array(col("ICD9_CODE1"), col("ICD9_CODE2"),
col("ICD9_CODE3"), col("ICD9_CODE4"), col("ICD9_CODE5"))) \
 .selectExpr("explode(ICD9_CODES) as ICD_CODE") \
 .filter(col("ICD_CODE").isNotNull())

from pyspark.sql.functions import desc, udf
from pyspark.sql.types import StringType
import simple_icd_10_cm as cm
Merge ICD-10 and ICD-9 codes
#df_icd = df_icd10.union(df_icd9)

Apply map function to get code descriptions
#udf_map_icd = udf(lambda x: cm.get_description(x), StringType())
#df_icd = df_icd.withColumn("ICD_DESC", udf_map_icd(col("ICD_CODE")))
#df_icd = df_icd.withColumn("ICD_DESC", udf_map_icd(col("ICD_CODE")))
Get 20 most frequent codes
top_20_icd = df_icd.groupBy("ICD_CODE").count().orderBy(desc("count")).limit(20)

Show the top 20 codes and descriptions
top_20_icd.show()
Apply UDF to get code descriptions
df_icd = df_icd.withColumn('code_description', get_code_desc_udf(col('ICD_CODE')))

5.6. Results and statistics

18

The following results show the analysis done on the dataset containing only the cancer patients to get
some statistics that will contribute to a better understanding of the factors that lead to death patients
suffering from liver cancer. The age associate with the most deaths is before 80 and drinking.

Figure 6:age and drinking statistics.

Chronic hepatitis, unspecified: Chronic hepatitis is a condition that causes inflammation
of the liver that lasts at least six months, the analysis shown that this it the biggest risk
factor with 6.1 % possibility of dying , the second biggest risk factor is
Hypertensive heart disease without heart failure to a range of potential complications of
high blood pressure that affect the heart, but in this instance, it does not include heart
failure with present 5.3% , following Essential (primary) hypertension is high blood
pressure that doesn't have a known secondary cause with 9.2%
Diabetes mellitus without mention of complication, type II or unspecified type, not stated
as uncontrolled , then Chronic ischemic heart disease, unspecified: This term refers to a
heart disease that's caused by a narrowing of the coronary arteries, leading to a decreased
blood supply to the heart. Then Unspecified means the exact type of ischemic heart
disease hasn't been defined , Other and unspecified hyperlipidemia a condition where
there are high levels of lipids (fats or cholesterol) in the blood. This condition can
increase the risk of heart disease , furthermore Hyperlipidemia, unspecified, this is
hyperlipidemia where the exact type is not specified.
Type 2 diabetes mellitus with hyperglycemia: This is a form of diabetes mellitus where
high blood sugar (hyperglycemia) is a primary symptom.
Unspecified essential hypertension: Similar to essential hypertension above, but the
details are not specified.Type 2 diabetes mellitus without complications: This is Type II
diabetes that is being managed effectively, with no associated complications.
Heart failure, unspecified: Heart failure is a chronic condition where the heart doesn't
pump blood as well as it should. Unspecified indicates that the type of heart failure is not
defined.Mixed hyperlipidemia: This is a form of hyperlipidemia where there are high
levels of both cholesterol and triglycerides in the blood.
Chronic gout, unspecified, with tophus (tophi): Chronic gout is a form of inflammatory
arthritis characterized by recurrent attacks of a red, tender, hot, and swollen joint. Tophi
are deposits of uric acid crystals, in the form of nodular masses, usually deposited in the
skin or cartilage.Unspecified hypertensive heart disease without heart failure: Similar to
hypertensive heart disease without heart failure above, but the specifics are not provided.
Pure hypercholesterolemia: This condition is characterized by abnormally high levels of
cholesterol in the blood.Unspecified osteoarthritis, unspecified site: Osteoarthritis is a
type of joint disease that results from the breakdown of joint cartilage and underlying
bone. The 'unspecified' means that the exact joint affected by osteoarthritis hasn't been
defined.Cirrhosis of the liver without mention of alcohol: Cirrhosis is late-stage scarring
(fibrosis) of the liver caused by many forms of liver diseases and conditions, such as
hepatitis and chronic alcoholism. This indicates that the cirrhosis isn't attributed to

19

alcohol use.Atherosclerotic heart disease of native coronary artery without angina
pectoris: This is a disease where plaque builds up inside the coronary arteries which
supply oxygen-rich blood to your heart muscle. This instance doesn't include angina
pectoris, which is chest pain or discomfort due to coronary heart disease.
Osteoarthrosis, unspecified whether generalized or localized, site unspecified:
Osteoarthrosis (another term for osteoarthritis) is a type of joint disease that results from
the breakdown of joint cartilage and underlying bone. The exact location and whether it
is generalized (affecting multiple joints) or localized (affecting specific joints) is not
specified.

Figure 7:risk factors for cancer patients

5.1. Survival analysis machine learning

5.1.1. Data mapping and preprocessing

In preprocessing our data, we followed several complete steps. First, the translation of
data was accomplished through the creation of a custom dictionary from the pilot site
and usage of the Google Translation API. Further, we converted various coding
standards into textual and descriptive content for ease of interpretation. We also designed
dictionaries from the opd_med and opd_warning datasets for efficient mapping.
Focusing on cancer patients, we calculated the frequencies of variables, retaining those
associated with the cure of liver cancer for prediction. We subsequently identified the
most frequent blood tests for liver cancer patients and retained only those results which
aligned with the existing bibliography. Lastly, for further analysis, we computed the
average value per patient.

The analysis incorporated several datasets, including those covering medications,
laboratory results, ICD codes with diseases (from the 'opd_basic' CSV file), cancer
patient records (from the 'cr_tcase' dataset), and comprehensive patient demographic
information (from the 'chr_basic' dataset).

20

MED_CODE MED_DESC

CODE1 NaCl 0.9% 20ml(NS)ƶu`gG
CODE2 j Norm-Saline 500ml/bot ըFL`gG
CODE3 Silirin 150mg ƧQL
CODE4 Recormon prefill 2000 Unit(ݧN)
CODE5 Rasitol (fA) 40mg ӳߧ
CODE6 Baraclude 0.5mg/tab
CODE7 Norvasc 5mg u
CODE8 NaCl 0.9% 1000ml ͲzQ`gG
CODE9 HFzRĤGB 3.8L
CODE10 THRough F.C. 12mg

Figure 8:Med codes dictionary

5.1.2. Machine learning model
The following code that was implemented performs data preprocessing, trains a random
forest model on a dataset, and calculates and visualizes feature importance using two
different methods. Initially, it imports the necessary libraries and loads a CSV dataset.
The script converts the "VSTATUS" column into an integer type and separates the
features (X) from the target (y). It then uses a SimpleImputer to fill in missing values in
the features with their respective mean values. The data is split into a training set and a
test set with an 80/20 split. A Random Forest regressor is trained on the training set.
Feature importance is then calculated from the trained random forest, which quantifies
how useful each feature is for the predictions. These important features are sorted and
visualized in a bar chart, providing a clear view of the most influential features according
to the Random Forest. Lastly, the script calculates permutation importance, which
involves randomly shuffling each feature in the test set and computing the decrease in
the model's performance. This provides a more robust measure of feature importance
since it takes into account possible interactions between features. These permutation
values are also sorted and visualized in a bar chart.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.inspection import permutation_importance

data["VSTATUS"] = data["VSTATUS"].astype(int)
X = data.drop(columns=["VSTATUS"])
y = data["VSTATUS"]
imputer = SimpleImputer(strategy="mean")
X = imputer.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

regressor = RandomForestRegressor()
regressor.fit(X_train, y_train)

importances = regressor.feature_importances_

sorted_idx = importances.argsort()

plt.barh(range(X_train.shape[1]), importances[sorted_idx])
plt.yticks(range(X_train.shape[1]), data.drop(columns=["VSTATUS"]).columns[sorted_idx])
plt.xlabel('Feature Importance (Random Forest)')

21

plt.show()

Calculate permutation importances
result = permutation_importance(regressor, X_test, y_test, n_repeats=10, random_state=42)

Sort the permutation importances
sorted_idx = result.importances_mean.argsort()

Plot permutation importances
plt.barh(range(X_test.shape[1]), result.importances_mean[sorted_idx])
plt.yticks(range(X_test.shape[1]), data.drop(columns=["VSTATUS"]).columns[sorted_idx])
plt.xlabel('Feature Importance (Permutation Importance)')
plt.show()

5.1.3. Results
The following graph and table list various predictive features used in a Random Forest
machine learning model for predicting liver conditions. The vertical axis represents these
features, and their importance to the model is represented by the length of the
corresponding horizontal bars. Starting from the top, "avg_CBCI" stands out as the most
significant feature. CBCI, possibly referring to complete blood count indices, could
reflect key aspects of the patient's overall health and specifically their liver condition,
making it a valuable predictor. The next influential feature is
"avg_prothrombin_time_blood." Prothrombin time measures how quickly your blood
clots, which can be an essential indicator of liver health as the liver produces proteins
involved in the clotting process. "avg_GOT_AST" stands next, which is likely referring
to the average value of aspartate aminotransferase, an enzyme primarily found in the
liver. Elevated levels can suggest liver damage. "Age" is another high-ranking feature,
reflecting the fact that the likelihood of developing liver conditions increases as a person
gets older. "avg_WBCDC" refers to the White Blood Cell Differential Count, another
important health indicator. Elevated levels can indicate infection or inflammation,
including in the liver. Further down the list are several variables related to medication
use ("used_Lenvima," "used_Recormon_Prefil," "used_Rasitol," "used_Baraclude,"
"used_Stivarga," and "used Silirin"). These medications may have hepatoprotective or
hepatotoxic effects, influencing liver health. The model also accounts for lifestyle factors
such as "drinking," acknowledging that alcohol consumption can significantly impact
liver health. Finally, the least important variables in this model include "avg_ALFA-
FETOPROTEIN" and "avg_Blood_Urea_Nitrogen." Though these biomarkers are
associated with liver function, in this model they are less predictive than the factors
mentioned earlier.

22

Figure 9: medication and blood tests

Figure 10:correlation matrix for survival analysis

Feature name Colleration with died
Sex 0.04
Drinking -0.07
Age -0.05
Stage 0.12
Avg CBCI 0.25

23

Avg WBCDC -0.12
Avg CRP 0.01
Avg prothrombin time blood 0.04
Avg creatinine -0.10
Avg got ast -0.19
Avg alfa fetoprotein 0.03

Figure 11:Survival risk factors

There is only stivarga that has completely negative correlation with the cancer
death but the other

Medication name Correlation with death
Stivarga -014

Figure 12:Medication Correlation

5.2. Diseases and demographics associate with
liver cancer for healthy and sick

In this section we are going to perfom pressosesing to the datasets to join datasets that
contains information about the age , the sex , the marry status and other demographics
characteristics along with the datasets that contains information’s about the diseases that
may have impact for someone develop liver cancer . The research methodology uses
Python, PySpark, and Apache Spark User-Defined Functions (UDFs) to process
healthcare data associated with diverse conditions. It specifically employs International
Classification of Diseases (ICD) codes. These names that contains both characters and
numbers are given to every known disease and symptom. Furthermore the framework
includes various arrays, each corresponding to a distinct medical condition such as
cirrhosis ,hepatitis b among others. Each condition is mapped to a set of ICD-9 and
ICD-10 codes, which are key in identifying the presence of these conditions within
patients' medical records. After the array definition, the methodology employs User-
Defined Functions (UDFs) to check the existence of certain ICD codes within a patient's
medical data. UDFs are custom functions that can be used within the Spark ecosystem.
The UDF, contains_any_code, returns a Boolean value (True/False), depending on the
presence or absence of any specified ICD codes in the data it processes. Then we utilize
various machine learning models like gradient boosting regressor , support vector
machine .We also use random forest classifier to all the diseases in order to find more
risk factors .

5.2.1. Data cleaning and mapping
The provided code snippet implements a series of functions and user-defined functions
(UDFs) to analyze medical data related to liver cancer. The code aims to identify specific
medical conditions, such as obesity, non-alcoholic fatty liver disease (NAFLD),
cirrhosis, hemochromatosis, hepatitis C, hepatitis B, and diabetes, within the dataset.
To begin, the code reads in three separate CSV files containing basic information about
patients with liver cancer. The data is loaded into Spark DataFrames, with specific
columns selected for further analysis. The code then renames columns in each
DataFrame to avoid any potential naming conflicts.

24

Next, the code performs a series of joins on the three DataFrames to create a merged
DataFrame. This merged DataFrame combines the information from the three separate
sources, ensuring that each patient's data is consolidated into a single row. The coalesce
function is used to select the most recent value for each column from the three
DataFrames, prioritizing the values from the "w" DataFrame, followed by the "s"
DataFrame, and finally the "t" DataFrame.Following the merge, the code applies
additional transformations to the data. It uses various functions from the pyspark.sql
module, such as last, to_date, row_number, and when, to manipulate the data and create
new columns. For instance, a new column "y" is added to indicate whether a patient has
been diagnosed with liver cancer based on the presence of their "CHR_NO" in the
cancerfinal DataFrame. Rows where the "opd_year" is greater than or equal to the
"diag_year" are filtered out.The code also includes a window specification to order the
data by "OPD_DATE_NEW" and fill null values for specific columns with the last non-
null value within each patient's history. Finally, the code retains only the most recent
record for each patient by assigning a row number and filtering for rows where the row
number is equal to 1.Overall, the code provides a systematic approach to analyze
medical data related to liver cancer. By using UDFs and various Spark functions, it
allows for the identification and categorization of patients based on specific medical
conditions. This analysis can provide valuable insights into the relationship between
these conditions and liver cancer, aiding in further research and medical decision-
making.

chr_basict = spark.read.csv(header=True, inferSchema=True,
path=fchr_basict)

chr_basics = chr_basics.select("CHR_NO", "BIRTH_DATE", "BLOOD_TYPE",
"MER_FLAG", "RH_TYPE", "SEX_TYPE", "EDU_CODE","UPD_DATE")
chr_basicw = chr_basicw.select("CHR_NO", "BIRTH_DATE", "BLOOD_TYPE",
"MER_FLAG", "RH_TYPE", "SEX_TYPE", "EDU_CODE","UPD_DATE")
chr_basict = chr_basict.select("CHR_NO", "BIRTH_DATE", "BLOOD_TYPE",
"MER_FLAG", "RH_TYPE", "SEX_TYPE", "EDU_CODE","UPD_DATE")

#opd_medt1 = opd_medt
for column in chr_basict.columns:
 if column != 'CHR_NO':
 chr_basict = chr_basict.withColumnRenamed(column, column +
'_t')

for column in chr_basicw.columns:
 if column != 'CHR_NO':
 chr_basicw = chr_basicw.withColumnRenamed(column, column +
'_w')

for column in chr_basics.columns:
 if column != 'CHR_NO':

25

 chr_basics = chr_basics.withColumnRenamed(column, column +
'_s')

f_merged21 = df_merged11.join(chr_basict, on="CHR_NO",
how="full_outer")

from pyspark.sql.functions import coalesce

df_mergechrbasic12 = df_merged21.select(
 'CHR_NO',
 coalesce('BIRTH_DATE_w', 'BIRTH_DATE_s',
'BIRTH_DATE_t').alias('BIRTH_DATE'),
 coalesce('BLOOD_TYPE_w', 'BLOOD_TYPE_s',
'BLOOD_TYPE_t').alias('BLOOD_TYPE'),
 coalesce('MER_FLAG_w', 'MER_FLAG_s',
'MER_FLAG_t').alias('MER_FLAG'),
 coalesce('RH_TYPE_w', 'RH_TYPE_s',
'RH_TYPE_t').alias('RH_TYPE'),
 coalesce('SEX_TYPE_w', 'SEX_TYPE_s',
'SEX_TYPE_t').alias('SEX_TYPE'),
 coalesce('EDU_CODE_w', 'EDU_CODE_s',
'EDU_CODE_t').alias('EDU_CODE'),
 coalesce('UPD_DATE_w', 'UPD_DATE_s',
'UPD_DATE_t').alias('UPD_DATE')

)

…

chrbasicall = chrbasicall.withColumn("BIRTH_DATE_NORMAL",
udf_map_date3(col("BIRTH_DATE")))
from pyspark.sql.functions import col, floor

chrbasicall = chrbasicall.withColumn('birth_year',
floor(col('BIRTH_DATE') / 10000))
chrbasicall = chrbasicall.withColumn('upd_year',
floor(col('UPD_DATE') / 10000))

chrbasicall = chrbasicall.withColumn('age', col('upd_year') -
col('birth_year'))

chr_basics = chr_basics.select("CHR_NO", "BIRTH_DATE", "BLOOD_TYPE",
"MER_FLAG", "RH_TYPE", "SEX_TYPE", "EDU_CODE","UPD_DATE")
chr_basicw = chr_basicw.select("CHR_NO", "BIRTH_DATE", "BLOOD_TYPE",
"MER_FLAG", "RH_TYPE", "SEX_TYPE", "EDU_CODE","UPD_DATE")
chr_basict = chr_basict.select("CHR_NO", "BIRTH_DATE", "BLOOD_TYPE",
"MER_FLAG", "RH_TYPE", "SEX_TYPE", "EDU_CODE","UPD_DATE")

26

#opd_medt1 = opd_medt
for column in chr_basict.columns:
 if column != 'CHR_NO':
 chr_basict = chr_basict.withColumnRenamed(column, column +
'_t')

for column in chr_basicw.columns:
 if column != 'CHR_NO':
 chr_basicw = chr_basicw.withColumnRenamed(column, column +
'_w')

for column in chr_basics.columns:
 if column != 'CHR_NO':
 chr_basics = chr_basics.withColumnRenamed(column, column +
'_s')

df_merged21 = df_merged11.join(chr_basict, on="CHR_NO",
how="full_outer")

from pyspark.sql.functions import coalesce

df_mergechrbasic12 = df_merged21.select(
 'CHR_NO',
 coalesce('BIRTH_DATE_w', 'BIRTH_DATE_s',
'BIRTH_DATE_t').alias('BIRTH_DATE'),
 coalesce('BLOOD_TYPE_w', 'BLOOD_TYPE_s',
'BLOOD_TYPE_t').alias('BLOOD_TYPE'),
 coalesce('MER_FLAG_w', 'MER_FLAG_s',
'MER_FLAG_t').alias('MER_FLAG'),
 coalesce('RH_TYPE_w', 'RH_TYPE_s',
'RH_TYPE_t').alias('RH_TYPE'),
 coalesce('SEX_TYPE_w', 'SEX_TYPE_s',
'SEX_TYPE_t').alias('SEX_TYPE'),
 coalesce('EDU_CODE_w', 'EDU_CODE_s',
'EDU_CODE_t').alias('EDU_CODE'),
 coalesce('UPD_DATE_w', 'UPD_DATE_s',
'UPD_DATE_t').alias('UPD_DATE')
)
…

chrbasicall = chrbasicall.withColumn("BIRTH_DATE_NORMAL",

udf_map_date3(col("BIRTH_DATE")))
from pyspark.sql.functions import col, floor

chrbasicall = chrbasicall.withColumn('birth_year',

floor(col('BIRTH_DATE') / 10000))

27

chrbasicall = chrbasicall.withColumn('upd_year', floor(col('UPD_DATE')

/ 10000))

chrbasicall = chrbasicall.withColumn('age', col('upd_year') -

col('birth_year'))
from pyspark.sql.functions import last, to_date, row_number
from pyspark.sql.window import Window
from pyspark.sql.functions import col, when

from pyspark.sql.functions import col, when

Create a DataFrame with unique CHR_NO values and diag_year in the
cancerfinal DataFrame
cancer_chrs = cancerfinal.select("CHR_NO", "diag_year").distinct()

Add a new column 'y' to the opdall DataFrame based on the presence
of 'CHR_NO' in the cancer_chrs list
opdall = opdall.join(cancer_chrs, on="CHR_NO", how="left_outer")
opdall = opdall.withColumn("y", when(col("diag_year").isNull(),
0).otherwise(1))

Replace diag_year with null when y is 0
opdall = opdall.withColumn("diag_year", when(col("y") == 0,
None).otherwise(col("diag_year")))

Filter rows based on the condition (y == 1 and opd_year <
diag_year) or y == 0
opdall_filtered = opdall.filter(
 (col("y") == 1) & (col("opd_year") < col("diag_year")) |
(col("y") == 0)
)

If you want to keep rows where opd_year < diag_year doesn't exist
for a CHR_NO with y == 1
unique_chr_y1 = opdall.filter((col("y") == 1) & (col("opd_year") <
col("diag_year"))).select("CHR_NO").distinct()
unique_chr_y1 = unique_chr_y1.withColumn("keep",
col("CHR_NO").isNotNull())
opdall = opdall.join(unique_chr_y1, on="CHR_NO", how="left_outer")
opdall_filtered = opdall.filter((col("keep").isNull()) |
(col("opd_year") < col("diag_year")))
opdall_filtered = opdall_filtered.drop("keep")

Convert OPD_DATE_NEW to date type
opdall_filtered = opdall_filtered.withColumn("OPD_DATE_NEW",
to_date("OPD_DATE_NEW"))

Define the window specification

28

window_spec =
Window.partitionBy("CHR_NO").orderBy("OPD_DATE_NEW").rowsBetween(Win
dow.unboundedPreceding, 0)

Fill null values for each column
for col_name in ["ICD10_CODE1", "ICD10_CODE2", "ICD10_CODE3",
"ICD10_CODE4", "ICD10_CODE5", "ICD9_CODE1", "ICD9_CODE2",
"ICD9_CODE3", "ICD9_CODE4", "ICD9_CODE5"]:
 opdall_filtered = opdall_filtered.withColumn(col_name,
last(col_name, ignorenulls=True).over(window_spec))

Keep the last date value for every CHR_NO
opdall_recent = opdall_filtered.withColumn(
 "row_num",
 row_number().over(

Window.partitionBy("CHR_NO").orderBy(opdall_filtered.OPD_DATE_NEW.de
sc())
)
).filter("row_num == 1").drop("row_num")

from pyspark.sql.functions import col

opd_basic_s = spark.read.csv(fopd_basic_s, header=True,
inferSchema=True) \
 .select("CHR_NO", "ICD10_CODE1", "ICD10_CODE2", "ICD10_CODE3",
"ICD10_CODE4", "ICD10_CODE5",
 "ICD9_CODE1", "ICD9_CODE2", "ICD9_CODE3", "ICD9_CODE4",
"ICD9_CODE5", "OPD_DATE","END_DATE")

opd_basic_t= spark.read.csv(fopd_basic_t, header=True,
inferSchema=True) \
 .select("CHR_NO", "ICD10_CODE1", "ICD10_CODE2", "ICD10_CODE3",
"ICD10_CODE4", "ICD10_CODE5",
 "ICD9_CODE1", "ICD9_CODE2", "ICD9_CODE3", "ICD9_CODE4",
"ICD9_CODE5", "OPD_DATE","END_DATE")

opd_basic_w = spark.read.csv(fopd_basic_w, header=True,
inferSchema=True) \
 .select("CHR_NO", "ICD10_CODE1", "ICD10_CODE2", "ICD10_CODE3",
"ICD10_CODE4", "ICD10_CODE5",
 "ICD9_CODE1", "ICD9_CODE2", "ICD9_CODE3", "ICD9_CODE4",
"ICD9_CODE5", "OPD_DATE","END_DATE")

opdall = opd_basic_s.union(opd_basic_t).union(opd_basic_w)

5.2.2. Mapping and Feature extraction

29

The following code implements a series of functions and user-defined functions (UDFs)
to analyze medical data related to liver cancer. The purpose is to identify if specific
medical conditions, such as obesity, non-alcoholic fatty liver disease (NAFLD),
cirrhosis, hemochromatosis, hepatitis C, hepatitis B, and diabetes, exists for every patient
the dataset.
First the function "contains_any_code" checks if a given string contains any of the
provided medical codes. This function is used to create UDFs for each medical
condition, such as "contains_any_obesity_code_udf" and
"contains_any_diabetes_code_udf". These UDFs take a string parameter and return a
boolean value indicating whether the string contains any of the corresponding medical
codes.The methodology also includes a function called "create_new_column" that takes
a DataFrame, UDF function, and a new column name as input. This function creates a
new column in the DataFrame based on the evaluation of the UDF function on the ICD9
and ICD10 code columns. Then the function applies the UDF to each code column and
combines the results using the logical OR operator. The resulting combined condition is
used to create the new column with binary values (1 or 0) based on whether the condition
is met or not.The code then applies the "create_new_column" function to the
"liver_cancer_df4" DataFrame for each medical condition, creating new columns for
obesity, NAFLD, cirrhosis, hemochromatosis, hepatitis C, hepatitis B, and diabetes that
contains 0-1 values for existent or not existent. This process enables the identification
and categorization of patients based on the presence or absence of these medical
conditions. By utilizing UDFs and the "create_new_column" function, it allows for the
identification and categorization of patients based on specific medical conditions. This
step is very crucial for simplify the machine learning models following , and is
generalized and uses in many use cases senario .

def contains_any_code(s, codes):
 if s is None:
 return False
 return any(code in s for code in codes)

hepatitis_c_codes = ["070.41", "070.44", "070.51", "070.54",
"B17.1", "B18.2", "B19.20", "B19.21"]
hepatitis_b_codes = ["070.20", "070.22", "070.30", "070.32",
"B16.9", "B18.1", "B19.10", "B19.11"]

contains_any_hepatitis_c_code_udf = udf(lambda s:
contains_any_code(s, hepatitis_c_codes), BooleanType())
contains_any_hepatitis_b_code_udf = udf(lambda s:
contains_any_code(s, hepatitis_b_codes), BooleanType())

diabetes_codes = ["249", "250", "253", "E10", "E11", "E12", "E13",
"E14"]

obesity_codes = ["278.00", "E66","278.00", "278.01"]
nafld_codes = ["571.8", "K76.0","K76.89","K76.0", "K75.81"]
cirrhosis_codes = ["571.5", "571.2","K70.30", "K70.31", "K74.0",
"K74.1", "K74.2", "K74.3", "K74.4", "K74.5", "K74.6"]
hemochromatosis_codes = ["275.0", "E83.110", "E83.111", "E83.112",
"E83.113", "E83.114", "E83.118", "E83.119", "E83.11A", "E83.11B",
"E83.11C"]

30

contains_any_diabetes_code_udf = udf(lambda s: contains_any_code(s,
diabetes_codes), BooleanType())
contains_any_obesity_code_udf = udf(lambda s: contains_any_code(s,
obesity_codes), BooleanType())
contains_any_nafld_code_udf = udf(lambda s: contains_any_code(s,
nafld_codes), BooleanType())
contains_any_cirrhosis_code_udf = udf(lambda s: contains_any_code(s,
cirrhosis_codes), BooleanType())
contains_any_hemochromatosis_code_udf = udf(lambda s:
contains_any_code(s, hemochromatosis_codes), BooleanType())

from functools import reduce
from operator import or_

def create_new_column(df, udf_function, new_column_name):
 icd9_cols = [f"ICD9_CODE{i}" for i in range(1, 6)]
 icd10_cols = [f"ICD10_CODE{i}" for i in range(1, 6)]

 conditions = [(udf_function(col(c))) for c in icd9_cols +
icd10_cols]
 combined_conditions = reduce(or_, conditions)
 return df.withColumn(new_column_name, when(combined_conditions,
1).otherwise(0))

liver_cancer_df4 = create_new_column(liver_cancer_df4,
contains_any_obesity_code_udf, "obesity")
liver_cancer_df4 = create_new_column(liver_cancer_df4,
contains_any_nafld_code_udf, "nafld")
liver_cancer_df4 = create_new_column(liver_cancer_df4,
contains_any_cirrhosis_code_udf, "cirrhosis")
liver_cancer_df4 = create_new_column(liver_cancer_df4,
contains_any_hemochromatosis_code_udf, "hemochromatosis")
liver_cancer_df4 = create_new_column(liver_cancer_df4,
contains_any_hepatitis_c_code_udf, "hepatitis_c")
liver_cancer_df4 = create_new_column(liver_cancer_df4,
contains_any_hepatitis_b_code_udf, "hepatitis_b")
liver_cancer_df4 = create_new_column(liver_cancer_df4,
contains_any_diabetes_code_udf, "has_diabetes")

..

31

Figure 13:dataset schema for analysis 1

5.2.3. Machine learning model
The code presented showcases a comprehensive data analysis pipeline that addresses the
issue of class imbalance in datasets, preprocesses the data, trains a machine learning
model, and analyzes the importance of features in predicting the target variable. By
importing essential libraries such as pandas, numpy, sklearn, and resample, the code
ensures access to powerful tools for data manipulation, numerical computation, machine
learning, and resampling techniques.
One of the primary challenges in working with imbalanced datasets is the unequal
representation of classes in the target variable. This can lead to models that perform
poorly on the minority class. To overcome this challenge, the code employs the
RandomOverSampler technique from the imbalanced-learn package. This technique
duplicates instances of the minority class, creating a more balanced training dataset. By
addressing the class imbalance, the model can better capture the patterns and
relationships within the data.
The application also focuses on data preprocessing, a crucial step in preparing the data
for analysis. It converts the target variable to integer type, ensuring compatibility with
machine learning algorithms. Additionally, it handles missing data using the
SimpleImputer, which replaces missing values with the mean of the respective column.
These preprocessing steps help ensure the data is in the correct format and contains no
missing values, enabling a more accurate analysis.
The machine learning model used in this pipeline is the Support Vector Machine
Classifier (SVC) from the sklearn library. This classifier is trained using the oversampled
data, allowing it to learn from both classes more effectively. Once trained, the model is
used to predict outcomes for the test data, providing insights into the performance of the
model on unseen data.
To gain a deeper understanding of the dataset, the code provides visualizations of feature
correlations. By generating a heatmap of the correlation matrix, it offers a
comprehensive overview of the relationships between different features. Additionally, a
bar chart is created to display the features in descending order of their correlation with
the target variable. These visualizations help identify the most influential features and
their impact on predicting the target variable.

In conclusion, the provided code offers a robust and comprehensive workflow for
handling class imbalance, preprocessing data, training a machine learning model, and
analyzing feature correlations. By addressing class imbalance and understanding the
importance of features, researchers and practitioners can gain valuable insights and make
informed decisions. This code serves as a valuable resource for data analysis tasks in
domains where imbalanced datasets are encountered.

32

5.2.4. Results

1. Correlation Matrix:

examining the correlation coefficients, it is evident that age exhibits the strongest
correlation with the target variable. With a coefficient of 0.306344, it suggests that as
age increases, there is a corresponding increase in the likelihood of the target variable.
Another noteworthy feature is "MER_FLAG," which demonstrates a positive correlation
with the target variable. However, the correlation coefficient of 0.163971 is weaker
compared to age. This implies that while MER_FLAG may have some influence on the
outcome, its impact is not as significant as age.

Additionally, the feature "SEX_TYPE" also displays a positive correlation with the
target variable. This suggests that gender plays a role in influencing the outcome.
However, it is important to note that the correlation coefficient for SEX_TYPE is not as
strong as age, indicating that other factors may contribute more significantly to the target
variable.

Other variables, such as obesity, nafld, cirrhosis, hemochromatosis, hepatitis_c,
hepatitis_b, and has_diabetes, also exhibit some level of correlation with the target
variable. However, the correlation coefficients for these variables are generally lower
than those for age, MER_FLAG, and SEX_TYPE. This suggests that while these
variables may have some influence on the outcome, their impact is less pronounced
compared to the aforementioned features.

It is worth mentioning that the variable "hemochromatosis" shows a NaN correlation
coefficient. This indicates the possibility of missing or constant values for this feature
across the dataset. It is important to address this issue and ensure that the data for
hemochromatosis is complete and reliable before drawing any conclusions about its
correlation with the target variable.

In conclusion, the correlation matrix provides valuable insights into the relationships
between features and their association with the target variable. Age emerges as the most
influential feature, followed by MER_FLAG and SEX_TYPE. While other variables also
show some level of correlation with the target variable, their impact is generally less
pronounced. It is crucial to address any missing or unreliable data to ensure accurate
analysis and interpretation.

2. Feature Importance (Gradient Boosting):

The analysis of feature importance in the Gradient Boosting model reveals valuable
insights into the contribution of each feature towards predicting the target variable.
Among the features, "age" emerges as the most influential, with a high importance score
of approximately 0.705. This suggests that age plays a significant role in accurately
predicting the outcome. The strong correlation between age and the target variable
implies that as age increases, there is a corresponding increase in the likelihood of the
target variable.
Other variables, such as "SEX_TYPE", "nafld", "hepatitis_c", "MER_FLAG",
"hemochromatosis", "obesity", "hepatitis_b", and "y", exhibit lower importance scores in
the Gradient Boosting model. This indicates that their contributions to predicting the
outcome are comparatively lesser than that of age. While these features still have some

33

level of influence on the model's predictions, their impact is not as pronounced as that of
age.To further validate the importance of features, permutation importance is employed.
This technique measures the decrease in model performance when the values of a feature
are randomly shuffled. Consistent with the feature importance analysis, age once again
demonstrates the highest permutation importance score. This reaffirms the significance
of age in accurately predicting the outcome, as shuffling its values has a greater impact
on the model's performance compared to other features.Based on this analysis, it can be
inferred that age is the most crucial feature in predicting the target variable according to
the Gradient Boosting model. While other features also contribute to the predictions,
their influence is comparatively lower. Addressing the issues or considering the impact
of age on the outcome could potentially have the highest impact in influencing the
predictions.

It is important to note that these interpretations are specific to the Gradient Boosting
model and the dataset used in this analysis. The actual feature importance and
correlations may vary depending on the characteristics and distribution of the dataset, as
well as the assumptions and specifics of the model being utilized. To ensure robustness,
it is recommended to validate these results using additional models and approaches.

Gradient Boosting AUC-ROC: 0.85 (+/- 0.01)

Figure 14:Correlation matrix demographics and diseases

34

Figure 15:Feature importance gradient boosting demographics and diseases

Figure 16:Permutation importance gradient boosting

35

Figure 17:shap values age combine with hepatitis b

5.1. Liver cancer risk factor random forest
classifier analysis for healthy and sick
Data preparation

From the diseases dataset that has been created before ,the following keeps onlt the icd9
and icd10 columns and join them in one column with the name combined_diag_codes
.Then splits the data
from pyspark.sql import functions as F

selected_data = opd_all_analysis.select(['ICD10_CODE1',
'ICD10_CODE2', 'ICD10_CODE3', 'ICD10_CODE4', 'ICD10_CODE5',
'ICD9_CODE1', 'ICD9_CODE2', 'ICD9_CODE3', 'ICD9_CODE4',
'ICD9_CODE5', 'y'])
selected_data = selected_data.withColumn('combined_diag_codes',
F.concat_ws(',', 'ICD10_CODE1', 'ICD10_CODE2', 'ICD10_CODE3',
'ICD10_CODE4', 'ICD10_CODE5', 'ICD9_CODE1', 'ICD9_CODE2',
'ICD9_CODE3', 'ICD9_CODE4', 'ICD9_CODE5'))
selected_data = selected_data.select(['combined_diag_codes', 'y'])
selected_pd_data = selected_data.toPandas()

subset_pd_data= selected_pd_data
subset_pd_data['diag_codes_list'] =
subset_pd_data['combined_diag_codes'].apply(lambda x: x.split(','))

5.1.1. Machine learning model random forest classifier for diseases
classification

36

The following code presents the process of preparing the dataset for classification
analysis by performing one-hot encoding on the labels, splitting the data into training and
testing sets, and training a RandomForestClassifier model on the training data.
The provided code snippet demonstrates the utilization of several libraries and
algorithms to perform classification analysis on a dataset. The code begins by importing
necessary libraries, including sklearn.preprocessing.MultiLabelBinarizer,
sklearn.model_selection.train_test_split, and sklearn.ensemble.RandomForestClassifier.
These libraries provide functionalities for data preprocessing, dataset splitting, and the
implementation of the Random Forest Classifier algorithm.
The code then proceeds to create an instance of the MultiLabelBinarizer class from
sklearn.preprocessing. This class is used to transform a list of labels into a binary matrix
representation, commonly known as one-hot encoding. The 'diag_codes_list' column
from the 'subset_pd_data' DataFrame is passed to the fit_transform method of the
MultiLabelBinarizer instance to perform the one-hot encoding. The resulting binary
matrix is stored in the 'one_hot_diag_codes' variable.
Next, a new DataFrame named 'one_hot_df' is created using the pandas.DataFrame
constructor. This DataFrame is initialized with the one-hot encoded matrix,
'one_hot_diag_codes', and the column names are set using the 'classes_' attribute of the
MultiLabelBinarizer instance.The 'X' variable is assigned the 'one_hot_df' DataFrame,
which represents the features used for classification. The 'y' variable is assigned the 'y'
column from the 'subset_pd_data' DataFrame, which represents the target variable if a
patient has cancer or not .
The 'train_test_split' function from sklearn.model_selection is then used to split the data
into training and testing sets. The 'X' and 'y' variables are passed to this function, along
with the 'test_size' parameter set to 0.3, indicating that 30% of the data will be used for
testing. Additionally, the 'random_state' parameter is set to 42 to ensure reproducibility
of the results.A RandomForestClassifier object named 'clf' is created using the
RandomForestClassifier class from sklearn.ensemble. This classifier is initialized with
the 'random_state' parameter set to 42 to ensure consistent results. The 'fit' method of the
'clf' object is then called, with the training data ('X_train' and 'y_train') as arguments, to
train the classifier on the provided dataset.

from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

mlb = MultiLabelBinarizer()
one_hot_diag_codes =
mlb.fit_transform(subset_pd_data['diag_codes_list'])

one_hot_df = pd.DataFrame(one_hot_diag_codes, columns=mlb.classes_)

X = one_hot_df
y = subset_pd_data['y']

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)

clf = RandomForestClassifier(random_state=42)

37

clf.fit(X_train, y_train)

Next code utilization of the Random Forest Classifier algorithm to identify the most
important diagnostic codes associated with liver cancer. The code begins by importing
necessary libraries, including numpy for numerical computations.
The feature importances of the trained classifier, denoted as 'feature_importances', are
obtained using the 'feature_importances_' attribute of the 'clf' object. These feature
importances represent the relative importance of each diagnostic code in predicting liver
cancer.To identify the top 'k' diagnostic codes associated with liver cancer, the 'argsort'
function from numpy is used to obtain the indices that would sort the
'feature_importances' array in ascending order. The last 'k' indices, representing the most
important diagnostic codes, are selected using the negative indexing method '[-k:]'.The
'top_k_diag_codes' variable is then assigned the column names from the 'one_hot_df'
DataFrame corresponding to the top 'k' indices. These column names represent the
diagnostic codes that have the highest importance in predicting liver cancer.
Finally, the code prints the top 'k' diagnostic codes associated with liver cancer using a
formatted string. The 'top_k_diag_codes' variable is printed to display the selected
diagnostic codes.

Overall this code snippet identifies the most important diagnostic codes associated with
liver cancer using the Random Forest Classifier algorithm. The feature importances are
calculated, and the top 'k' diagnostic codes are determined based on these importances.
This information can be valuable in understanding the key factors contributing to liver
cancer and can aid in further analysis and decision-making in the medical field.

import numpy as np

feature_importances = clf.feature_importances_
k = 40
top_k_indices = np.argsort(feature_importances)[-k:]

top_k_diag_codes = one_hot_df.columns[top_k_indices]

print(f"Top {k} diagnostic codes associated with liver cancer:")
print(top_k_diag_codes)

The code snippet utilizes the Random Forest Classifier algorithm to identify the most
significant diagnostic codes associated with liver cancer. The code begins by importing
the necessary libraries, including numpy for numerical computations.
To determine the feature importances of the trained classifier, the 'feature_importances_'
attribute of the 'clf' object is accessed, and the values are stored in the
'feature_importances' variable. These feature importances represent the relative
importance of each diagnostic code in predicting liver cancer.To identify the top 'k'
diagnostic codes associated with liver cancer, the 'argsort' function from numpy is
employed. This function returns the indices that would sort the 'feature_importances'
array in ascending order. By using negative indexing with the '[-k:]' notation, the last 'k'
indices, which correspond to the most important diagnostic codes, are selected.The
'top_k_diag_codes' variable is then assigned the column names from the 'one_hot_df'
DataFrame that correspond to the top 'k' indices. These column names represent the
diagnostic codes that have the highest importance in predicting liver cancer.Finally, the
code generates a visualization using the matplotlib library. A horizontal bar plot is

38

created, where the y-axis represents the top 'k' diagnostic codes and the x-axis represents
their relative importance. The descriptions of the top diagnostic codes are retrieved from
the 'icd_code_dict' dictionary and used as labels on the y-axis. The plot is then displayed,
providing a visual representation of the top diagnostic codes associated with liver cancer.
In summary, this code snippet applies the Random Forest Classifier algorithm to identify
the most significant diagnostic codes related to liver cancer. By calculating the feature
importances and selecting the top 'k' codes, the code provides valuable insights into the
key factors contributing to liver cancer. The generated visualization enhances the
interpretability of the results by presenting the top diagnostic codes and their relative
importance in a clear and concise manner.
import matplotlib.pyplot as plt

Retrieve the descriptions of the top diagnostic codes
top_k_diag_descriptions = [icd_code_dict[code] if code in
icd_code_dict else 'Unknown code' for code in top_k_diag_codes]

plt.figure(figsize=(10, 6))
plt.barh(range(k), feature_importances[top_k_indices])
plt.yticks(range(k), top_k_diag_descriptions) # Use descriptions
instead of codes
plt.xlabel('Relative Importance')
plt.title('Top {} Diagnostic Codes Associated with Liver
Cancer'.format(k))
plt.show()

5.1.2. Results
he feature importance table for liver cancer, in descending order, begins with primary
malignant neoplasm of the liver and liver cell carcinoma, which are direct diagnoses of
liver cancer and thus serve as the most crucial risk factors. Cirrhosis of the liver without
mention of alcohol, malignant neoplasm of the liver and intrahepatic bile ducts, and
unspecified chronic hepatitis follow closely, all representing significant liver conditions
known to escalate the risk of developing liver cancer. Similarly, malignant neoplasms of
intrahepatic bile ducts and intrahepatic bile duct carcinoma underscore the severity of
bile duct involvement in liver cancer progression. Conditions such as chronic viral
hepatitis B and unspecified cirrhosis of the liver further emphasize the role of chronic
liver disease and inflammation in enhancing liver cancer risk.

Ascites, a condition typically resulting from advanced cirrhosis or liver cancer, appears
in the mid-range of the list, along with secondary malignant neoplasm of the lung,
indicative of metastatic cancer spread, although not directly linked to liver cancer
initiation. The presence of both viral hepatitis B and chronic liver diseases, along with
cachexia—a syndrome associated with advanced cancer stages—underline the
cumulative toll of viral infections and overall health deterioration on liver cancer
development.

Towards the bottom of the table, we encounter conditions less directly associated with
liver cancer but still of relevance. Hepatic encephalopathy and reflux esophagitis may
signify advanced liver disease and compromised gastrointestinal health, respectively.
Moreover, the presence of type 2 diabetes mellitus without complications and mixed
hyperlipidemia acknowledges the indirect influence of metabolic disorders on liver
cancer risk, possibly through promoting fatty liver disease and cirrhosis. Each entry in

39

this feature importance list collectively contributes to a comprehensive understanding of
the myriad factors implicated in liver cancer risk and progression.

Figure 18:Diagnostic Codes and Descriptions

40

Figure 19: Top 40 Diagnostic Codes Associated with Liver Cancer

Figure 20:Desicion tree

5.2. Feature importance random forest
classifier by removing the cancer values.

The following results show the random forest importance after we remove the pro
existing liver cancer values
Among the most impactful conditions related to liver cancer are "Cirrhosis of the liver
without mention of alcohol," "Chronic hepatitis, unspecified," and "Chronic viral
hepatitis B," all of which directly pertain to liver health. "Essential (primary)
hypertension" and "Unspecified essential hypertension" could have an indirect but
significant impact on liver health, affecting systemic conditions. Conditions like
"Secondary malignant neoplasm of lung" and "Diabetes mellitus" suggest that liver
cancer is often associated with other serious health issues. Lower on the scale of direct
impact are conditions like "Constipation," "Reflux esophagitis," and "Anemia," which
may be symptoms or side effects rather than causative factors. "Unspecified functional
disorder of stomach" and "Hypertensive heart disease" may also be indicative of overall
poor health but are less directly related to liver cancer. Surprisingly, "Insomnia" and
"Urinary tract infection" also appear, indicating that a wide range of health issues may
correlate with liver cancer, although their direct impact could be minimal. Towards the
end, even dental issues like "Chronic Periodontitis" and "Dental Caries" appear,
suggesting a holistic approach to health might be crucial for liver cancer prevention or
management.

41

Condition/Symptom Explanation

Cirrhosis of the liver without mention of
alcohol A liver disease where liver tissue is replaced by scar tissue, not caused by alcohol consumption.

Chronic hepatitis, unspecified A long-term inflammation of the liver, the exact type or cause is unspecified.

Chronic viral hepatitis B with/without delta-
agent A type of liver infection caused by the hepatitis B virus; the delta-agent is a secondary virus that can infect those already infected with hepatitis B.

Ascites Abnormal accumulation of fluid in the abdomen.

Secondary malignant neoplasm of lung Cancer that started in another part of the body and has spread to the lung.

Cachexia A complex metabolic syndrome associated with underlying illness causing muscle loss and with or without fat loss.

Jaundice, unspecified Yellowing of the skin or eyes due to high bilirubin levels; exact cause unspecified.

Hepatic coma A loss of consciousness as a result of liver failure.

Essential hypertension High blood pressure with no identifiable cause.

Constipation Difficulty in passing stools or infrequent stools.

Diabetes mellitus A group of diseases resulting in high blood sugar.

Hyperlipidemia Abnormally elevated levels of fats in the blood.

Anemia A decrease in the total amount of red blood cells or hemoglobin in the blood.

Insomnia Difficulty falling asleep or staying asleep.

Shock A life-threatening condition that occurs when the body is not getting enough blood flow.

Malaise and Fatigue A general feeling of discomfort or tiredness.

Hemorrhage of the gastrointestinal tract Bleeding within the digestive tract.

Cachexia Severe weight and muscle loss, often associated with chronic illness.

Encounter for radiotherapy A medical visit for the purpose of receiving radiation treatment.

Abdominal pain Pain that occurs between the chest and pelvic regions.

Sepsis A potentially life-threatening condition caused by the body's response to an infection.

Fever A temporary increase in body temperature, often due to an illness.

Neonatal jaundice Yellow discoloration of a newborn baby's skin and eyes.

Figure 21:Random forest diseases -100 diagnostic codes associated with liver cancer

42

5.3. Blood and diseases analysis healthy and
sick

In this section we present an analysis combined the proexist conditions of a patient
joined with blood tests.The datasets are quite demanding the blood tests are above 10
million data , so we choose specific indicators that may have impact for someone to
develop liver cancer .We do feature extraction for every blood test that we choose we
create a new column and we add the avg value per patient in this column , if there are
records of this patients .For people who have liver cancer (y=1) we only choose blood
tests before the diagnosed date .Conditionally for diseases we extract the key features
like cirrhosis , cachexia ,hepatitis as we show in previous sections ,but we also run
random forest classification algorithms include all features .We joined the two datasets
in one and we run several algorithms lightgbm , lasso logistic regression the following
schema presents the two joined initial datasets after , cleaning mapping into one that
contains both data from blood tests datasets and diseases .

Figure 22:Cleaning features extractions blood tests-diseases

5.3.1. Data cleaning preprocessing
The Laboratory results codes for blood tests and values that are essential for survival
prediction and risk factor analysis are encoded in numeric form along with their
corresponding value , a code is used to export from the official pilot site the datatables
containing the set values of the csv that will be used for mapping to achieve this
"BeutifulSoop" was used to download all the information from the pilot codes, which are
the laboratory results and their Chinese description. Later, Google API was used to
translate the description into English. The first code retrieves laboratory result codes and
their corresponding descriptions from a website using web scraping techniques. The code
sends a GET request to the website in order to retrieve its HTML content. It then
employs the Python library BeautifulSoup to parse the HTML and extract the table's
data. The extracted data is stored in a list that is iterated using a while loop until all
website pages have been extracted. For further analysis, the final output is saved as a
CSV file. The second line of code uses the Google Translate API to translate the scraped
From another language descriptions into English. The code iterates over each row of the
original CSV file containing Chinese descriptions using a for loop. The API translates
the text in the first and fourth columns of each row, which correspond to laboratory
result codes and their descriptions, respectively. The translated data is saved in a new
list, which is then appended to a new CSV file. This allows researchers who are not
proficient in Chinese to comprehend the descriptions with greater ease.

43

Next we implemented a code that The provided PySpark script demonstrates a practical
application of data preprocessing, specifically in outlier detection and removal, and mean
calculation for numerous columns in a DataFrame. First with the help of necessary
modules from PySpark's SQL functions, the code defines an outlier-filtering function,
then lists the columns to be processed, and later loops over these columns to filter
outliers and compute their mean. The averages are stored in a new DataFrame and joined
to the original DataFrame, while the original columns are discarded. Thus, the script
converts raw data into a more refined format by removing statistical outliers and
replacing specific columns with their average values, a procedure often vital in data
science and machine learning applications.

import requests
from bs4 import BeautifulSoup
import csv

url = 'https://pilotwebsite.’

Create an empty list to store the data
data = []

Use a while loop to iterate over each page
while True:
 # Send a GET request to the URL and retrieve the HTML content
 response = requests.get(url)
 html_content = response.content

 # Use BeautifulSoup to parse the HTML content
 soup = BeautifulSoup(html_content, 'html.parser')

 # Find the table in the HTML content
 table = soup.find('table')

 # Extract the data from the table
 for row in table.find_all('tr'):
 cells = row.find_all('td')
 if cells:
 row_data = [cell.text for cell in cells]
 data.append(row_data)

 # Check if there is a link to the next page
 next_link = soup.find('a', {'class': 'next-page-link'})
 if next_link:
 url = next_link['href']
 else:
 break

Write the data to a CSV file
with open('table.csv', 'w', newline='') as csvfile:
 writer = csv.writer(csvfile)
 writer.writerows(data)

this is the code for data translate

import csv
import requests

Replace YOUR_API_KEY with your Google Translate API key
API_KEY = ""

Read the original CSV file
with open("/content/drive/MyDrive/thesis/table.csv", "r") as original_file:

44

 reader = csv.reader(original_file)
 header = next(reader) # read the header
 data = [row for row in reader]

Translate the text in the first and fourth column of the original file
translated_data = [header] # keep the header
for row in data:
 # Translate the text in the first column
 text1 = row[0]
 url =
f"https://translation.googleapis.com/language/translate/v2?target=en&key={API_KEY}&q={text1}"
 response = requests.get(url).json()
 translated_text1 = response["data"]["translations"][0]["translatedText"]

 # Translate the text in the fourth column
 text2 = row[3]
 url =
f"https://translation.googleapis.com/language/translate/v2?target=en&key={API_KEY}&q={text2}"
 response = requests.get(url).json()
 translated_text2 = response["data"]["translations"][0]["translatedText"]

 # Create a new row with the translated text and the remaining columns
 translated_row = [translated_text1, row[1], row[2], translated_text2, row[4]]
 translated_data.append(translated_row)

Save the translated text to a new CSV file
with open("translated1.csv", "w", newline="") as translated_file:
 writer = csv.writer(translated_file)
 writer.writerows(translated_data)

Figure 23:Translated codes from the pilot dictionary

45

Figure 24:Creation of blood dictionary process

5.3.2. Blood test data transformation and cancer file
In the process of mapping and analyzing data, various tools and techniques were employed. The Python
libraries PySpark, Pandas, and Beautiful Soup were used to download codes and descriptions of blood tests
from our pilot site. Additionally, the Google API was utilized to translate the blood test descriptions into
English. A dictionary was created for medication codes and descriptions, as well as for the ICD9 and
ICD10 protocols.
These dictionaries were then used to map the input data using UDF Spark functions. With the aid of
academic research and a classification algorithm, the top features required for the risk factor analysis were
extracted from the blood tests. To ensure consistency, a function was developed to convert the blood tests
to a uniform unit and numeric values, while also removing null values.

Furthermore, a function was created to convert Chinese data to Gregorian format. Age was calculated
using the diagnosis date and birthdate, and the results were saved in a new column. The datasets were
joined with diagnosed disease codes and demographic characteristics of both
Snippet 1: convert_to_g_per_dl function

This function converts an input value to a concentration expressed in grams per deciliter
(g/dL). It validates various input formats and performs the required calculations to return
the concentration in g/dL. Returns None if the input is invalid or not recognized. This
function converts text values, removes null, converts them to all lowercase, and then
converts them to the same unit based on a specific blood test.

def convert_to_g_per_dl(value):
 if value is None:
 return None

 value = value.lower().strip()

 try:
 if "g/dl" in value:
 return float(value.replace("g/dl", "").strip())
 elif "10^3/uL" in value:
 return float(value.replace("10^3/uL", "").strip()) * 10**3 * 0.00001
 elif "10^6/uL" in value:
 return float(value.replace("10^6/uL", "").strip()) * 10**6 * 0.00001
 else:
 return None
 except ValueError:
 return None

Αυτή η φωτογραφία από Άγνωστος συντάκτης με άδεια χρήσης CC BY

46

Snippet 2: Filtering with PySpark

This code snippet imports the col function from the pyspark.sql.functions module and
defines a list of codes to filter by. It then defines a custom function contains_any_code to
check if any of the given codes are present in a given string. This function is registered
as a User-Defined Function (UDF) in PySpark.

Next, the code uses the custom UDF to filter a DataFrame (joined_df_all9) based on the
presence of the specified codes in the "O_ITEM" column.

Snippet 3: convert_to_g_per_dl_udf

This line of code registers the convert_to_g_per_dl function as a PySpark UDF with the
return type FloatType.

Snippet 4

#11A1 Blood urea nitrogen
from pyspark.sql.functions import regexp_replace, when, col

filtered_results = filtered_results.withColumn("Blood_Urea_Nitrogen",
 when(
 (col("O_ITEM") == "11A1") & (col("VALUE").contains("IU/L")),
 regexp_replace(col("VALUE"), r"[^0-9.]", "").cast("double")
).otherwise(None)
)

Snippet 5: Handling outliers and calculating averages with PySpark

This code snippet defines a filter outliers function to remove outliers from a DataFrame
column based on the 1st and 99th percentiles. It then creates a list of column names to
calculate averages for and initializes an empty list to store the average results.

For each column in the list, the code filters out outliers and calculates the mean value,
rounded to two decimal places. It stores these results in the averages list. Next, the
average columns are joined to the original DataFrame, and the original columns are
dropped. Finally, the updated DataFrame is displayed.

from pyspark.sql import functions as F

def filter_outliers(df, col_name):
 quantiles = df.approxQuantile(col_name, [0.01, 0.99], 0.0)
 if len(quantiles) == 2:
 lower_bound, upper_bound = quantiles
 return df.filter((F.col(col_name) >= lower_bound) & (F.col(col_name) <= upper_bound))
 else:
 return df

47

columns_to_average = ["CBCI", "WBCDC", "CRP", "Prothrombin_time_blood", "creatinine", "GOT_AST",
"Blood_Urea_Nitrogen", "ALFA-FETOPROTEIN"]

averages = []
for col_name in columns_to_average:
 filtered_df = filter_outliers(df, col_name)
 avg_col = filtered_df.groupBy("CHR_NO").agg(F.round(F.mean(F.when(F.col(col_name).isNotNull()
& (F.col(col_name) != 0), F.col(col_name))), 2).alias(f"avg_{col_name}"))
 averages.append(avg_col)

joined_df = df
for avg_col in averages:
 joined_df = joined_df.join(avg_col, on="CHR_NO", how="left")

for col_name in columns_to_average:
 joined_df = joined_df.drop(col_name)

#joined_df.show(5)

5.4. Machine learning models

5.5. Second cleaning phase
By utilize the following function we are going to check the null values for each column
to remove later the columns that have big precent of null columns, we need to point out
that because the dataset is big we can keep some columns with big present of null values
because is still going to help he analysis.
from pyspark.sql.functions import col

for column in columns_to_check:
 null_count = df.filter(col(column).isNull()).count()
 print(f"Number of null values in {column} column: {null_count}")

The following PySpark code snippet calculates the mean values of each column in a
DataFrame called df_filled, with the exception of the columns labeled 'y' and 'CHR_NO'.
By employing the mean and col functions from pyspark.sql.functions, the code creates a
new DataFrame that includes the average of each selected column. It then executes this
operation, collects the results, and fetches the first Row object, effectively capturing the
calculated averages. Finally, the .asDict() method transforms this Row object into a
Python dictionary. The keys in this dictionary are the column names, and the associated
values are the calculated mean values for those respective columns. This dictionary is
stored in a variable named column_means, providing a convenient summary of the
dataset's central tendencies for each specified feature.
from pyspark.sql.functions import mean, col

column_means = df_filled.select([mean(col(column)).alias(column) for
column in df_filled.columns if column != 'y' and column !=
'CHR_NO']).collect()[0].asDict()

5.5.1. Rebalanced techniques

48

Because the healthy y =0 people are more than the people who have liver cancer , in
order to have big accuracy we needed to use imbalanced techniques to achieve this .
The described method is an approach to a binary classification problem using a Gradient
Boosting Regressor, specifically made-to-measure for imbalanced datasets. The dataset
is first separated into majority and minority classes, followed by unsampled the minority
class to match the size of the majority. This helps improve the model’s performance by
balancing the dataset. Missing data is handled through mean imputation, exchanging
missing values with the mean of the respective columns. After data pre-processing, the
data is split into training and testing sets, and a Gradient Boosting model is trained on the
data. The model’s performance is evaluated using cross-validation with the AUC-ROC
score, which provides a measure of the model's ability to predict between the classes .
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler, TomekLinks
from imblearn.combine import SMOTETomek
from imblearn.ensemble import BalancedRandomForestClassifier

Random Oversampling
ros = RandomOverSampler(random_state=42)
X_resampled, y_resampled = ros.fit_resample(X_train_resampled,
y_train_resampled)
RandomOversampling_SVC = SVC(random_state=42)
RandomOversampling_SVC.fit(X_resampled, y_resampled)
y_pred = RandomOversampling_SVC.predict(X_test)
print("Random Oversampling:")
print(classification_report(y_test, y_pred))

def plot_correlation_matrix(data, title):
 corr_matrix = data.corr()
 plt.figure(figsize=(10, 8))
 sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt=".2f")
 plt.title(title)
 plt.show()

def plot_feature_correlations(data, target, title):
 correlations = data.corr()[target].sort_values(ascending=False)
 plt.figure(figsize=(10, len(data.columns) * 0.3))
 sns.barplot(y=correlations.index, x=correlations, orient='h')
 plt.title(title)
 plt.xlabel('Correlation Coefficient')
 plt.ylabel('Features')
 plt.show()

Convert the SMOTE-resampled data to pandas DataFrame
Convert the SMOTE-resampled data to pandas DataFrame

49

X_train_resampled_df = pd.DataFrame(X_resampled, columns=X.columns)
Use the columns from the original X DataFrame
y_train_resampled_df = pd.DataFrame(y_resampled, columns=['y']) #
Replace 'your_target_column_name' with the actual target column name
 # Replace 'y' with the actual target column name

data_resampled = pd.concat([X_train_resampled_df,
y_train_resampled_df], axis=1)

Plot feature correlations with the target variable
plot_feature_correlations(data_resampled, 'y', "resampled Dataset -
Feature Correlations with Target Variable")

5.5.2. Xgboost model example rembalanced techniques
The following code implements the XGBoost algorithm for classification and addresses
the issue of class imbalance through upsampling the minority class. Furthermore, the
dataset is separated into majority and minority classes based on the target label 'y'. The
minority class is then upsampled to match the size of the majority class, ensuring a
balanced dataset. This new balanced dataset is split into training and test sets. An
XGBoost Classifier is trained on the training set, and its feature importance is plotted for
analysis. The model then predicts the probabilities of the target label for the test set, and
the overall accuracy of the model is calculated and printed. By employing upsampling,
the code aims to provide a more balanced training environment for the XGBoost model,
improving its classification performance.

from sklearn.utils import resample
import xgboost as xgb
from sklearn.model_selection import train_test_split

Separate the majority and minority classes
df_majority = df[df.y==0] # Replace 'y' with your actual target
column name
df_minority = df[df.y==1]

Upsample minority class
df_minority_upsampled = resample(df_minority,
 replace=True, #
sample with replacement
 n_samples=len(df_majority), #
to match majority class
 random_state=123) #
reproducible results

Combine majority class with upsampled minority class
df_upsampled = pd.concat([df_majority, df_minority_upsampled])

50

Display new class counts
print(df_upsampled.y.value_counts())

Prepare your features 'X' and target 'y'
X = df_upsampled.drop('y', axis=1)
y = df_upsampled['y']

Create train and test datasets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Train the model
model = xgb.XGBClassifier(use_label_encoder=False,
eval_metric='logloss')
model.fit(X_train, y_train)

Print feature importance
xgb.plot_importance(model)

Make predictions with probabilities for the test set
y_pred_proba = model.predict_proba(X_test)

Print the probabilities
print(y_pred_proba)

Compute and print accuracy score
accuracy = model.score(X_test, y_test)
print(f'Accuracy: {accuracy}')

5.5.3. Summarized best models results.
Base Classifier: This is the model we use as a baseline for comparison. Its performance
metrics on the dataset are: accuracy (0.81), precision (0.90 for class 0 and 0.55 for class
1), recall (0.86 for class 0 and 0.64 for class 1), and F1-score (0.88 for class 0 and 0.59
for class 1). The same model was used with both SMOTE oversampling and Random
oversampling, and the performance metrics were very similar in both cases.
LightGBM with SMOTE: LightGBM is a gradient boosting framework that uses tree-
based algorithms, and is designed to be distributed and efficient. In our case, it seems to
perform better than the base classifier when used with SMOTE oversampling. It achieves
an accuracy of 0.83, which is higher than the base classifier.
Lasso Logistic Regression with SMOTE: Lasso Logistic Regression is a type of logistic
regression that uses L1 regularization (Lasso). L1 regularization has the effect of
shrinking some of the model's parameter estimates to zero, thus reducing the number of
parameters and helping to prevent overfitting. However, in our case, it performs worse
than both the base classifier and LightGBM, with an accuracy of 0.78.
From these results, the LightGBM model with SMOTE oversampling seems to be the
best model among the ones we've tested. It has the highest accuracy (0.83) and also has
decent recall and precision rates for both classes. However, the specific choice of best

51

model can also depend on the specific needs of your project. For example, if it is more
important to correctly identify class 1, you might choose a model with a higher recall for
class 1, even if its overall accuracy is slightly lower.

SMOTE Oversampling:

The smote

Figure 25:Smote oversampling

Random oversampling

Figure 26:Random oversampling

SMOTE Oversampling with LightGBM Classifier:

52

Figure 27:LightGbm classifier correlations

SMOTE Oversampling with Lasso Logistic Regression:

Figure 28:Lasso Logistic Oversampling correlation

Figure 29:Lightgbm feature importances by mean absolute SHAP value

Oversampling
Method

Classifier Accuracy Precision
(0)

Recall
(0)

F1-
score
(0)

Precision
(1)

Recall
(1)

F1-
score
(1)

53

SMOTE LightGBM 0.83 0.91 0.86 0.89 0.57 0.71 0.63
SMOTE Lasso

Logistic
Regression

0.78 0.89 0.82 0.85 0.48 0.61 0.54

SMOTE (Base
Classifier)

0.81 0.90 0.86 0.88 0.55 0.64 0.59

Random (Base
Classifier)

0.81 0.89 0.86 0.88 0.55 0.62 0.59

Figure 30:Models performances for blood tests and diseases

5.6. Risk factors blood tests and diseases with
less features to achieve higher accuracy.

In order to advance the previous models in this use case we rerun the models with a little
more preprossesing we remove some features that contains null values.

5.6.1. Machine learning models

The table that follows lists several features (which are be blood tests and conditions) and
their correlation with a particular outcome, "y" (which indicates if someone has cancer or
not .). -1 represents a perfect negative correlation, 1 a perfect positive correlation, and 0
no correlation. The feature "Avg GOT AST" has the highest positive correlation
(0.3085), indicating that as the quantity of "Avg GOT AST" increases, the outcome "y"
also increases. Similarly, "cirrhosis" demonstrates a moderately strong positive
correlation (0.2796). In contrast, "Avg CBCI" has a negative correlation (-0.1593),
indicating that the outcome "y" tends to decrease as the Avg CBCI increases. The
majority of the remaining features have weaker correlations, close to 0, indicating a less
direct or less consistent relationship with the outcome "y." Features such as "obesity",
"nafld", and "Has diabetes" have particularly low correlation values, indicating that they
may not be significant predictors of the outcome "y" in this particular analysis.

Feature Correlation with y
Avg CBCI -0.1593
Avg WBCDC 0.1097
Avg Prothrombin_time_blood 0.0600
Avg creatinine 0.1106
Avg GOT AST 0.3085
obesity -0.0272
nafld -0.0189
cirrhosis 0.2796
Hepatitis c 0.1332
Hepatitis b 0.1405
Has diabetes 0.0406

54

Figure 31:correlation matrix for blood tests and diseases after more clean

Random forest classifier
Shows that agt got ast is the most important feature for the prediction , following avg
CBCI ,avg prothrombin time blood , avg wbcdc , cirrhosis are the most important
features for the prediction for liver cancer.

Figure 32:Random forest classifier feature importance score after more cleaning

5.6.2. Xgboost rembalanced
Xgboost rembalanced shows that the most important features for the prediction are avg
GBCI with value 803, following avg prothrombin time blood , avg got ast(per
patient),creatitinine ,wbcdc,diabetes , cirrhosis , hepatitis b and hepatitis c

Figure 33:XGBOOST weights

By removing some columns with null values

55

We continue by utilize shap explainer to see the shap values for xgboost

import shap

Create object that can calculate shap values
explainer = shap.TreeExplainer(model)

calculate shap values. This is what we will plot.
shap_values = explainer.shap_values(X)

Make plot. Index of [1] is explained in text below.
shap.summary_plot(shap_values, X, plot_type="bar")

In the given data, each variable represents the average value of a particular medical
indicator or condition across a sample population, where "y" indicates whether an
individual has cancer. "avg_CBCI" stands for average Complete Blood Count Index with
a value of 0.3855, which might give insights into the overall health of the blood.
"avg_WBCDC" (0.1924) represents the average White Blood Cell Differential Count, a
marker for potential infection or other diseases. "avg_Prothrombin_time_blood" at
0.6697 could be related to how quickly blood clots, a crucial factor in many diseases.
"avg_creatinine" (0.1944) provides information about kidney function. "avg_GOT_AST"
(0.8742) is the average level of the enzyme Aspartate Aminotransferase, generally
related to liver health. Other variables represent the proportion of individuals with
specific conditions: "obesity" (0.0119), "nafld" or Non-Alcoholic Fatty Liver Disease
(0.0069), "cirrhosis" (0.1414), "hepatitis_c" (0.0331), "hepatitis_b" (0.0604), and
"has_diabetes" (0.0649). Each of these factors may have varying degrees of association
with the presence of cancer, indicated by "y," and could be important for medical
researchers and healthcare professionals for predictive analysis and treatment planning.

Figure 34:Mean SHAP value after more cleaning for diseases and blood tests for healthy patients

5.6.3. Support vector machine

56

The table of feature weights indicates the influence of each feature in predicting the
outcome of the model. Features with positive weights such as 'cirrhosis', 'hepatitis_c',
and 'hepatitis_b' have a positive correlation with the outcome. This suggests that patients
with cirrhosis, hepatitis C, or hepatitis B are more likely to have a certain outcome. On
the other hand, 'obesity' and 'nafld' have negative weights, implying that patients with
obesity or non-alcoholic fatty liver disease (NAFLD) are less likely to have the same
outcome. 'avg_creatinine', 'has_diabetes', 'avg_WBCDC', and 'avg_GOT_AST' are
associated with a slight increase in the likelihood of the liver cancer , while
'avg_Prothrombin_time_blood' and 'avg_CBCI' are associated with a slight decrease. In
summary, the conditions cirrhosis and hepatitis C appear to be the most influential
factors in the prediction, while NAFLD and obesity significantly reduce the likelihood of
the outcome.

Feature Weight
 Cirrhosis 2.0385988779588473
Hepatitis c 1.9517482572475764
Hepatitis b 0.42906410279745444
Avg creatinine 0.06975721193680329
Has diabetes 0.022536295708391663
Avg WBCDC 0.01901273726252839
Avg GOT AST 0.013208648080762941
 Avg Prothrombin time blood -0.0037965448573231697
Avg CBCI -0.009175303053780226
Obesity -0.03725462175262173
Nafld -0.040535376765481246

Figure 35:SVM weights

A code implements a data analysis pipeline using various Python libraries that focus on
data processing, visualization, machine learning, and handling imbalanced datasets. The
code begins by importing necessary modules and libraries, including pandas, seaborn,
matplotlib, numpy, sklearn, and imbalanced-learn. These libraries offer functionalities
for data manipulation, visualization, numerical computation, machine learning, and
resampling techniques.
The code proceeds by applying the RandomOverSampler from the imbalanced-learn
package to resample the training data. Resampling is a technique used to address the
issue of imbalanced datasets, where the number of instances in one class is significantly
smaller than the other. The RandomOverSampler duplicates some of the minority class
examples, thus creating a more balanced training dataset. Subsequently, a Support
Vector Machine Classifier (SVC) from the sklearn library is trained using this
oversampled data. The trained model is then used to predict outcomes for the test data.
The performance of the model is evaluated using a classification report, which provides
insights into the model's accuracy, precision, recall, and F1-score.

To further analyze the dataset, the code defines two functions for visualizing the
correlation between features. The first function, plot correlation matrix, generates a
heatmap of the correlation matrix of the input data. This visualization helps identify
relationships and patterns between different features. The second function, plot feature
correlations, creates a horizontal bar chart that displays the features in descending order

57

of their correlation with the target variable. This visualization aids in understanding the
impact of each feature on the target variable.

Finally, the code converts the resampled data back to a pandas DataFrame and
concatenates it into a single DataFrame. The features' correlations with the target
variable are then plotted using the previously defined function. This analysis provides
insights into the relative importance of each feature in predicting the target variable.

In summary, the provided code showcases a comprehensive workflow for handling
imbalanced datasets, including oversampling, model training using a Support Vector
Machine Classifier, and visualization of feature correlations. This code can be applied in
various contexts where imbalanced data is a concern, such as fraud detection or rare
disease diagnosis. By addressing data imbalance and understanding feature correlations,
researchers and practitioners can gain valuable insights and make informed decisions in
domains where one class of outcome is significantly rarer than others.

5.6.4. Results after
The shap value and correlation of lightgbm blood and diseases show that the avg got per
patient with 0.12 shap value , avg prothrombin blood , avg cbci

Figure 36:Random Oversampling after more cleaning

Figure 37:SHAP values after more cleaning

58

5.6.5. Overall results of blood and diseases analysis
In most predictive models for liver cancer, a positive correlation is generally observed
with the following variables: avg_GOT AST, cirrhosis, hepatitis B, hepatitis C,
avg_WBCDC, avg_creatinine, avg_Prothrombin_time_blood, has_diabetes, and
avg_CRP. This means that higher values or the presence of these conditions or markers
are generally associated with a higher likelihood of developing liver cancer.

For instance, elevated levels of GOT (AST) and creatinine are common indicators of
liver dysfunction and kidney issues, respectively. Hepatitis B and C are well-known risk
factors for liver cancer, and cirrhosis is a late stage of liver scarring often seen in liver
cancer patients. Similarly, higher levels of white blood cells (WBCDC), prothrombin
time, and CRP may indicate an underlying inflammatory or clotting disorder, which
could also predispose an individual to liver cancer. The presence of diabetes has also
been implicated in liver dysfunction, further enhancing the risk of liver cancer.
Therefore, these variables being positively correlated in most models underscores their
importance in predicting liver cancer effectively.

6. Liver cancer external factors

6.1. Model selection
The method primarily pertains to the application of the Random Forest Classifier, a
highly utilized machine learning algorithm suitable for classification tasks. Initially, the
necessary libraries are imported: numpy, renowned for its proficiency with array and
matrix operations, and a collection of modules from sklearn - a prominent machine
learning library.

Moreover , the dataset is divided into training and testing subsets through the
train_test_split method, with 30% of the data set aside for testing purposes. To fine-tune
the model, hyperparameter optimization is performed using RandomizedSearchCV. This
method systematically tests a range of hyperparameters, identifying the most efficacious
configuration to improve the model's predictive accuracy.

A selection of potential hyperparameters is defined in the param_dist dictionary, which
includes variables like 'n_estimators', 'max_depth', 'min_samples_split',
'min_samples_leaf', and 'bootstrap'. Post optimization, the best set of hyperparameters is
printed out.

The model is subsequently retrained on the entire training set using these optimal
parameters. Once trained, the model proceeds to make predictions on the testing data.
Finally, a detailed performance report of the model is displayed using the
classification_report function, providing metrics such as precision, recall, and the f1-
score. In conclusion, the script outlines a comprehensive yet efficient way to tune, train,
and assess a Random Forest Classifier.

59

6.1.1. Machine learning model

The random forest algorithm is one of the most effective machine learning algorithms for assessing liver
cancer risk variables. This algorithm is a form of decision tree model that utilizes a collection of decision
trees to produce predictions. The random forest approach can handle enormous quantities of data,
including continuous and categorical variables, and is resistant to noise and outliers. It is also simple to
administer and analyze, making it a valuable tool for identifying liver cancer risk factors.
The logistic regression approach is another valuable machine learning tool for assessing risk variables for
liver cancer. This method is utilized to predict binary outcomes, including the likelihood of contracting
liver cancer. It is especially useful for determining the relative significance of various risk factors and for
constructing risk prediction models. Logistic regression is a straightforward and interpretable technique
that may be easily incorporated into a wide range of software packages.
In addition to these algorithms, machine learning techniques such support vector machines (SVMs) and
neural networks can be utilized to examine liver cancer risk variables. SVMs are a technique for
supervised learning that can be used to classify data into distinct groups. They excel at processing high-
dimensional data and are resistant to overfitting. Neural networks are a form of artificial intelligence
algorithm that can recognize and predict complicated patterns in data. They are especially useful for
managing enormous amounts of data and can be taught to spot patterns that may not be obvious to human
analysts. Ultimately, machine learning approaches can be an effective method for assessing liver cancer
risk variables. The method primarily pertains to the application of the Random Forest Classifier, a highly
utilized machine learning algorithm suitable for classification tasks. Initially, the necessary libraries are
imported: numpy, renowned for its proficiency with array and matrix operations, and a collection of
modules from sklearn - a prominent machine learning library. Then, the dataset is divided into training and
testing subsets through the train_test_split method, with 30% of the data set aside for testing purposes. To
fine-tune the model, hyperparameter optimization is performed using RandomizedSearchCV. This method
systematically tests a range of hyperparameters, identifying the most efficacious configuration to improve
the model's predictive accuracy.
A selection of potential hyperparameters is defined in the param_dist dictionary, which includes variables
like “n_estimators”, “max_depth”, “min_samples_split”, “min_samples_leaf”, and “bootstrap”. Post
optimization, the best set of hyperparameters is printed out.
The model is subsequently retrained on the entire training set using these optimal parameters. Once
trained, the model proceeds to make predictions on the testing data. Finally, a detailed performance report
of the model is displayed using the classification_report function, providing metrics such as precision,
recall, and the f1-score. In conclusion, the script outlines a comprehensive yet efficient way to tune, train,
and assess a Random Forest Classifier.
The model is subsequently retrained on the entire training set using these optimal parameters. Once
trained, the model proceeds to make predictions on the testing data. Finally, a detailed performance report
of the model is displayed using the classification_report function, providing metrics such as precision,
recall, and the F1-score. In conclusion, the script outlines a comprehensive yet efficient way to tune, train,
and assess a Random Forest Classifier.

Figure 38:Correlation for external factors

60

6.1.2. Random oversample to external
The analysis has shown that the following factors have the biggest impact on liver
cancer:

• Side effects of antineoplastic and immunosuppressive drugs
• Procedures
• Drugs and medical substances
• Complications related to the removal of other organs.

The list includes a wide range of ICD-9 codes and related conditions or incidents, which
vary greatly in their relevance and impact on the prediction of liver cancer. Some items,
like "Antineoplastic and immunosuppressive drugs causing adverse effects in therapeutic
use," could have a more direct impact on liver health and thereby on the prediction of
liver cancer. These types of drugs are strong medications used to treat cancer or suppress
the immune system, and their adverse effects could contribute to liver dysfunction.
On the other hand, entries like "Accidents occurring in public building" or "Accidental
fall from ladder"There are statistics that says"Motor vehicle traffic accident involving
collision with pedestrian injuring pedestrian-" may have a significant health impact, but
it's not directly relevant to liver cancer risk.The list also includes various medications
and substances that cause adverse effects "in therapeutic use," ranging from antiviral
drugs to anticoagulants. While some of these could potentially affect liver function as a
side effect, their primary indication is not the treatment or prevention of liver cancer,
making their impact on liver cancer prediction variable and less direct.
There are also a few instances of procedural complications, like "Mechanical failure of
instrument or apparatus during endoscopic examination" and "Urinary catheterization as
the cause of abnormal reaction," which may correlate with liver cancer from chronic
infaction.

Figure 39:Feature importances for external factors 1

61

6.1.3. Random forest balanced

• That analysis have shown this have the biggest impact for liver cancer :
antineoplastic and immunosuppressive drugs sides effects

• Procedures side effects
• Traffic accident
• Other drugs and medical substances
• Late effects of motor accident

Antineoplastic and immunosuppressive drugs causing adverse effects in therapeutic use:

These drugs, commonly used in the treatment of cancer, can have adverse effects which
may be associated with liver cancer.
Other specified procedures as the cause of abnormal reaction of patient, or of later
complication, without mention of misadventure at time of procedure

Certain procedures may have unintended complications or reactions that are linked to
liver cancer.
Other specified surgical operations and procedures causing abnormal patient reaction, or
later complication, without mention of misadventure at time of operationLike the
previous feature, certain surgical operations can result in complications or abnormal
reactions related to liver cancer.
Motor vehicle traffic accident involving re-entrant collision with another motor vehicle
injuring motorcyclistWhile not directly related to liver cancer, this feature may indicate
lifestyle or environmental factors that could be indirectly associated.
Other drugs and medicinal substances causing adverse effects in therapeutic use
Additional medications beyond antineoplastic drugs can also have adverse effects
connected to liver cancer.
Late effects of motor vehicle accident
This feature possibly suggests long-term health complications from accidents that may
be indirectly related to liver cancer.
Motor vehicle traffic accident of unspecified nature injuring motorcyclist
Similar to the fourth feature, this could indicate lifestyle or environmental factors that
may be indirectly related.
Radiological procedure and radiotherapy as the cause of abnormal reaction of patient, or
of later complication, without mention of misadventure at time of procedure
Radiation treatments can have complications or abnormal reactions that could be
associated with liver cancer.
Other noncollision motor vehicle traffic accident injuring motorcyclist
Again, another feature that may point to lifestyle or environmental factors.
Removal of other organ (partial) (total) causing abnormal patient reaction, or later
complication, without mention of misadventure at time of operation
The removal of other organs can have complications or reactions that are associated with
liver cancer.
Kidney dialysis as the cause of abnormal reaction of patient, or of later complication,
without mention of misadventure at time of procedure

62

Kidney dialysis can result in complications or abnormal reactions that may be associated
with liver cancer.
Other antimycobacterial drugs causing adverse effects in therapeutic use
These specific types of antibiotics can have adverse effects related to liver cancer.
Other motor vehicle traffic accident involving collision with motor vehicle injuring
motorcyclist
Similar to other motor vehicle-related features, this could indicate indirect lifestyle or
environmental factors.
Antiviral drugs causing adverse effects in therapeutic use
Like antineoplastic drugs, antiviral drugs can also have adverse effects that are linked to
liver cancer.
Late effects of other accidents
Long-term effects of other types of accidents could also have an indirect relationship
with liver cancer.
Surgical operation with anastomosis, bypass, or graft, with natural or artificial issues
used as implant causing abnormal patient reaction, or later complication, without
mention of misadventure at time of operation
Certain types of surgical operations can result in complications or abnormal reactions
connected to liver cancer.
Pedal cycle accident injuring pedal cyclist
Though not directly related, this feature may suggest lifestyle or environmental factors
that could be indirectly associated with liver cancer.
Fall from other slipping, tripping, or stumbling
This feature may be indicative of overall health status or lifestyle choices that may have
indirect correlations with liver cancer.
None
This implies that no particular feature stands out for this rank but it is kept for the sake of
completeness.
Other specified antibiotics causing adverse effects in therapeutic use
Specific antibiotics other than antimycobacterial drugs can also have adverse effects
linked to liver cancer.

Figure 40:Feautre importances for liver cancer-external factors

6.1.4. Risk factors Analysis with external correlation matrix

A correlation matrix is a table that displays the correlation coefficients between multiple
variables. In the context of liver cancer, a correlation matrix can provide insights into the
strength and direction of the relationships between different factors and the occurrence or
progression of liver cancer.The following diagram shows the colleration with y value .
The correlations indicate the strength and direction of the relationship between different

63

factors and liver cancer. In the table, the higher the positive value, the greater the impact.
Here are the five features with the biggest impact.

Surgical operation with anastomosis, bypass, or
graft, with natural or artificial tissues used as
implant causing abnormal patient reaction or
later complication, without mention of
misadventure at the time of operation

 0.08

Drugs, medicinal, and biological substances
causing adverse effects in therapeutic use, other
specified drugs and medicinal substances

0.07

Unspecified fall 0.01
Adverse effect of antineoplastic and
immunosuppressive drugs

0.30

Accidental poisoning by aromatic analgesics, not
elsewhere classified

0.05

Late effects of motor vehicle accident 0.07
Adverse effect of other specified therapeutic
agents, not elsewhere classified

0.03

Adverse effect of salicylates 0.05
Abnormal reaction of patient or complications of
surgical procedures without mention of
misadventure at the time of procedure, resulting
from the implantation of internal joint prosthesis

0.10

Poisoning by opiates and related narcotics,
undetermined whether accidentally or purposely
inflicted

0.03

Surgical operation with transplant of whole
organ causing abnormal patient reaction or later
complication, without mention of misadventure
at the time of operation

0.01

Operations involving the use of a heart-lung
machine causing abnormal patient reaction or
later complication, without mention of
misadventure at the time of operation

0.06

Abnormal reaction of patient or complications of
surgical procedures without mention of
misadventure at the time of procedure, resulting
from the implantation of unspecified device,
implant, and graft

0.15

Figure 41:External factors correlation

64

The correlations indicate the strength and direction of the relationship between different
factors and liver cancer. In the table, the higher the positive value, the greater the impact.
Here are the five features with the biggest impact. The following code

7. Data Visualization Explainable
dashboard

7.1. Prototype Overview
The prototype of the EDH will be presented and discussed at this section. For every model
that have been created a dashboard that is either automatically generated or customized to
meet the demands of each model has been developed. EDH is a collection of tools for
rapidly creating interactive dashboards with several visualizations for evaluating and
presenting the forecasts and processes of (scikit-learn compatible) ML models, such as
xgboost, catboost and lightgbm. All these dashboards are analyzed and organized on a
single page, the EDH, a web-based interface that will be incorporated into the DSS suite
from I-help project . Moreover, the EDH includes cards with info (Title and type) of many
Explainable Dashboards which are organized and summarized in one place, as depicted in
Figure 42. In addition, this first software prototype provides the option to select and
compare two different models in an interpretable way. More specifically, the EDH
incorporates “comparison pages” that present two models’ statistics and diagrams, so the
HCPs can easily choose the models they want to view and analyse. This enables them to
have an overview of the importance of specific features, allowing them to reach faster
conclusions about the most significant factors in liver cancer, based on the comparison of
the diagrams. The main functionalities of the EDH are:

 Explainable hub: Assessing Explainer Dashboards for all models and frameworks
through a single location/dashboard.

 Filtering through the models.
 Provision of different modified and integrated visualizations.
 Various statistics and diagrams for every model, which are presented in an

interactive way.
 What-If (in case it is turned on, when starting the dashboard) to help understand

the changes in the model behavior, if the features or parts of the data are modified.
It also allows for the comparison of different models.

Every single Explainable Dashboard interface contains different visualization tabs. Each
tab includes different visualization categories, such as feature importance, classification
stats and what-if analysis. More specifically, each Explainable Dashboard consists of the
below tabs/visualizations:

 SHAP Values that illustrate how each factor individually influences the forecast.
 Feature importance that enables HCPs to go deeper into observing how model

performance alters as a feature is shuffled.
 In the case of a Regression model utilizing XGBoost or RandomForestRegressor

it makes possible to visualize the individual decision trees, whereas in the case of
Classifier models, it could provide confusion matrices, ROC-AUC curves, etc., to
better comprehend the models' decisions.

65

 What-If analysis (enabled before launching the dashboard) can help in
understanding how the model's behavior varies when characteristics or portions of
the data are altered. Additionally, it enables HCPs to compare various models.

Figure 42: Explainable Dashboard Hub prototype overview

7.2. Interfaces
This section describes the interfaces included on the Explainable Dashboard Hub. The
interfaces, as already mentioned, are embedded into the DSS suite. The main page of the
EDH is a hub that contains cards with the info of each model. Specifically, the basic
interface presents a model including its title and description, as well as a link that leads to
the model's single Explainable Dashboard page, as depicted in Figure 43. In addition,
Figure 44 depicts the Model Comparison tool that allows the HCPs to compare two
different models to identify, for instance, the future importance of the different data
attributes in those models.

66

Figure 43: Explainable Dashboard Hub (EDH)

Figure 44: Model comparison tool

Every single Explainable Dashboard is an interactive web page application that extends
the EDH and is stored in a specific link. The EDH, additionally, has pages with two
separate model visualization diagrams. This enhancement enables the HCPs to compare
different outcomes based on distinct attributes. The user can select the models to view the
comparisons through dropdown buttons, as depicted in Figure 45.

67

Figure 45: Model comparison page

7.3. Main Components
As mentioned also previously, the EDH is a collection of tools for rapidly creating
interactive dashboards with several visualizations for evaluating and presenting the
forecasts and processes of (scikit-learn compatible) ML models, such as xgboost, catboost
and lightgbm. Depending on the type of the model, every single Explainable Dashboard
has a single link and has tabs with specific main components. By main components is
meant the visualization categories of the diagrams. Every main component category can
be accessed by the HCPs through corresponding tabs in an interactive way. The main
components are varied to fit the needs of each model. For example, in the case of the
Decision tree models, one more tab may appear.

7.3.1. Feature importance
The term “Feature Importance” is used to characterize methods that provide a value to
each of a model's input characteristics, with those values effectively representing the
"importance" of those features to the outcome. More weight is given to the feature in the
model's prediction that has a higher score. The feature importance visualization, as is
presented in the Figure 46 below, showcases with each blue bar the importance of each
feature to the outcome. For instance, in the case of the logistic regression model of “liver
lightgbm for blood and diseases combine for healthy and sick patients ” the feature with
the biggest impact is “avg_got_ast”, as depicted in Figure 46. Additionally, in this case,
the presence of margin status r2-specific values indicates that the patient requires
hospitalization more than any other feature.

68

Figure 46: Feature Importance visualization

7.3.2. Classification Status
This Explainable Dashboard contains various diagrams and metrics visualizations that
describe the model value, as it is presented in the Figure 47 below. Model performance
metrics table contains Accuracy score, precision, Recall, F1, Roc AUC score, PR AUC
score and Log loss. It also presents a confusion matrix figure, that shows the true positive,
false negative, false positive and true negative predictions of the classification model.

Figure 47: Classification Status visualization

Furthermore, it contains a precision plot and a classification plot as depicted in Figure 48
below. Precision is one metric of the performance of a ML model that indicates the quality
of a model's accurate prediction sand is the ratio of the number of genuine positives to the
overall number of positive forecasts (i.e., the number of true positives plus the number of
false positives).

69

Figure 48: Precision and Classification plots

There is also a Lift curve that demonstrates the relationship between the number of
instances that were predicted to be positive, and the actual number of positive examples
as indicated in Figure 49. The latter also enables the comparison of the performance of a
selected classifier to that of a random classifier and, finally, a cumulative precision
diagram is presented.

Figure 49: Lift cure and Cumulative Precision plots

7.3.3. Individual Predictions
This type of visualization contains interactive forms, pies, and diagrams, as presented in
Figure 50. The HCPs could choose to see the influence of each feature in the model
outcomes or combinations of many different inputs. Moreover, the individual predictions
visualization includes a pie that presents the probability of each class align with the index
of the dataset.

70

Figure 50: Individual prediction visualization

7.3.4. What if
What-If visualizations, depicted in Figure 51 below, (in case turned on while starting the
dashboard) help HCPs to understand the changes in the model behaviour if they modify
the specific features or attributes of the data. It also allows them to compare different
models.

Figure 51: What-if visualization

7.4. Feature Dependence
SHAP Summary plot

SHAP (SHapley Additive exPlanations) values indicate how much a feature altered the
outcome (compared to if we made that prediction at some baseline value of that feature).
More specifically, SHAP is a game-theoretic method for explaining the results of any ML
model. It integrates optimum credit allocation with local explanations by using the
standard Shapley values from game theory and associated expansions. Moreover, the
SHAP values of a model's output describe the effect of attributes on the outcome. The
summary plot combines the importance and the effect of features, while each point on the

71

summary plot represents a Shapley value for an instance and a feature. In the case of the
characteristic tumor location tail there are low Shapley values, since this is a least essential
feature. More specifically, the bar depicts the features’ value from low to high and the
characteristics are listed in significance ordering.

Figure 52: Feature significance visualization

7.4.1. Decision Tree visualizations
For decision trees models there is the decision tree visualization, as presented in Figure 53
below, that contains the decision path table. It is a table that shows for every node of the
tree the split condition and threshold. A decision tree path is a table depicting the probable
consequences of a set of interconnected decisions. It enables a specific list to compare
alternative actions based on their costs, probabilities, and benefits. They may be used for,
either casual conversation or the development of an algorithm that statistically predicts the
optimum option.

72

Figure 53: Decision tree visualization

7.5. Baseline Technologies and Tools
This section describes the technologies that have been utilized for the design and implementation of
the core technical components of the EDH. The overall workflow and integration between the
different technologies and tools is also presented in the Error! Reference source not found. below.
The EDH has been implemented utilizing Python programming language and its widely used libraries,
such as sklearn, plotly and explainerdashboard. Other programming languages like HTML, JS and CSS
were also utilized to provide a more user-friendly frontend environment to the HCPs. To make the
visualization process more efficient, the implementations are divided into two python scripts:
generateexplainers.py and flaskapi.py. The first script creates for each model an explainer file with
information about the plots, diagrams, and tables that are going to be embedded into the specific
explainer dashboard. More specifically it decodes the pickle files that contains the models along with
the Xtest , Ytest and save the info of the visualization in the explainer file. The second Python script
(flaskapi.py) creates an API that interacts with the both the HCP and Model Builder and embeds the
explainers into the presentation level to avoid calculate the results at the same time and be more
optimized. Furthermore, it retrieves the explainers’ files and generates dashboards, whenever it
receives a request. In addition, flaskapi.py has user-requested custom methods that compare models.
The information of the Explainable Dashboards is shown in cards, on the main html page (the
Explainable Dashboard Hub), which is called from the Flask API using the “render template” method.
In the case that an HCP clicks on a certain Explainable Dashboard, a request is sent to the Flask API
and the HCP or the Model Builder is redirected to the appropriate link and model visualization.

7.6. Deployment of Explainable Dashboard Hub

The Explainable Hub implementation includes a folder name explainerdocker with ATC models, two
Python files: generateexplainer.py, which generates explainer.joblib files, and app.py, which
retrieves the explainer.joblib files and builds a flaskapi.The creation of the explainable dashboard
hub container it can be achieved only with a two command
First we should go inside in explainerdocker folder with :

cd explainerdocker

73

and then inside the explainerdocker file that contains all the application files along with
the pickle files and datasets we can call the following docker-compose file with the
command
docker-compose up

More specific the docker-compose.yml file indluced one service an application that is
build an flask app after
version: '2.2.2'

services:
 app:
 build: .
 command: python -u app.py
 environment:
 - FLASK_APP=app.py
 - FLASK_DEBUG=1
 ports:
 - "5000:5000"

As mentioned above there is also an python script that generated the explainers.joblib
files ,
Joblib is a collection of tools-format that gives a more efficient technique to avoid
recomputing the same function repeatedly, hence saving a significant amount of time and
computational cost. In the case of the explainers, joblib stores the computations and
information from the diagrams in order to optimize the explainable dashboards when the
files are activated.The generateexplainers.py imported as library in the app.py file so
when app.py runs from docker container first automate generateexplainers.py run.

7.6.1. Code explanations :

7.6.2. App.py custom classes object oriented code:
The code defines two Python classes, allexplainers and comparemodels, to organize
information about machine learning models and their comparisons. It then scans the
current working directory for files ending with .joblib, which typically contain saved
machine learning models. For each such file, it creates an instance of the
ClassifierExplainer class to analyze the model and an instance of the
ExplainerDashboard class to display the model's behavior through a web dashboard. All
relevant details, including the model name, dashboard URL, and explainer object, are
stored in an instance of the allexplainers class, which is appended to a list. Finally, the
code prints the names of all models for which explainers have been created
class allexplainers:
 def __init__(self, name,lnk,db,explainer,type):
 self.name = name
 self.lnk = lnk
 self.db = db
 self.explainer = explainer
 self.type= type

class comparemodels:
 def __init__(self, name1,name2,link,db):
 self.name1 = name1
 self.name2 = name2
 self.link = link
 self.db = db

74

list = []
comparelist = []
path = os.getcwd()
pathlist = os.listdir(path)
#for x in os.listdir():
for x in pathlist:
 if x.endswith(".joblib"):
 # Prints only text file present in My Folder
 print("the files in path ")
 print(x)
 a2=x.replace(".joblib","")
 a1=x.replace("_"," ")
 a=a1.replace(".joblib","")

 explainer = ClassifierExplainer.from_file(x)

 #
home1="home/?model1=fpg_need_for_hospitalization&model2=fpg_late_upper_gi_toxicity_grade"
 dashname1="/dashboard/"
 d="/"

 url2=dashname1+a2+d
 print (url2)
 db = ExplainerDashboard(explainer,
 shap_interaction=False, # you can switch off tabs with bools
 title=a ,
 decision_trees=True ,
 model_summary=True,
 no_permutations=True,
 server=app, url_base_pathname=url2,
)
 model_type = type(explainer.model).__name__
 list.append(allexplainers(a,url2,db,explainer,model_type))

for obj in list:
 print(obj.name)

7.6.3. Extend the use of explainable dashboard python library by
creating custom compare classes.

The ConfusionComparison class is a custom component designed to compare two
machine learning models using dashboards. It inherits from ExplainerComponent, which
presumably is a base class for creating explainer components. When an instance of
ConfusionComparison is created, it takes in two explainer objects (explainer and
explainer4), names for the two models (name1 and name2), and an optional title for the
dashboard.
Inside its __init__ method, it initializes four components—two
ShapSummaryComponent objects and two ShapDependenceComponent objects—for
both of the models. These components will display the SHAP summary and dependence
plots, which are useful for understanding and interpreting the models. The method also
sets a cutoff value of 0.6 for the SHAP values and hides some elements like the selector
and percentage for simplification.

The layout method of the class arranges these components in a dashboard using a
container-row-column architecture provided by the dbc library. The
ShapSummaryComponent and ShapDependenceComponent for the first model (name1)

75

are placed in one column, while the same components for the second model (name2) are
placed in another column, allowing for side-by-side comparison. Overall, the
ConfusionComparison class aims to facilitate the comparative analysis of two machine
learning models through a visual dashboard.
class ConfusionComparison(ExplainerComponent):
 def __init__(self,explainer, explainer4,name1,name2,title="Compare models dashboard"):
 super().__init__(explainer)
 self.confmat1 = ShapSummaryComponent(explainer, cutoff=0.6,
 hide_selector=True, hide_percentage=True,title=name1)
 self.confmat2 = ShapSummaryComponent(explainer4, cutoff=0.6,
 hide_selector=True, hide_percentage=True,title=name2)
 self.confmat3 = ShapDependenceComponent(explainer, cutoff=0.6,
 hide_selector=True, hide_percentage=True)
 self.confmat4 = ShapDependenceComponent(explainer4, cutoff=0.6,
 hide_selector=True, hide_percentage=True)

 def layout(self):
 return dbc.Container([
 dbc.Row([
 dbc.Col([
 html.H1(""),
 self.confmat1.layout(),
 self.confmat3.layout()

]),
 dbc.Col([
 html.H1(""),
 self.confmat2.layout(),
 self.confmat4.layout()
])
])
])

7.6.4. Html and JavaScript:
This code snippet is a part of the code of home page combines HTML, JavaScript, and
Jinja2 templating to create a user interface for selecting and viewing machine learning
models. It features a dropdown menu populated with model names and their respective
links. Users can also select two models from dynamically populated dropdown lists for
comparison. Upon clicking a "Submit" button, the selected models are sent to a new
URL where a comparative dashboard likely appears. Additionally, the code generates a
set of cards, each displaying details about an individual model, such as its name and
type, as well as a link to its dedicated dashboard. The card and dropdown elements are
dynamically populated from a Python list named list.
 <div class="dropdown-menu" aria-labelledby="dropdownMenuButton">
 {% for item in list %}
 {{item.name}} {% endfor %}
 </div>

 </div>

 <div class="form-group">
 <label for="exampleFormControlSelect1">Select first model</label>
 <select name="model1" class="form-control" id="model1">
 {% for item in list %}
 <option value="{{item.name}}">{{item.name}}</option>

 {% endfor %}

76

 </select>
 </div>
 <div class="form-group">
 <label for="exampleFormControlSelect2">Select second model</label>
 <select name='model2' class="form-control" id="model2">
 {% for item in list %}
 <option value="{{item.name}}"">{{item.name}}</option>

 {% endfor %}
 </select>
 </div>
 <button onclick="myFunction1()" class="btn btn-default">Submit</button>
 <p id="demo1"></p>
 <p id="demo2"></p>
 <script>
 function myFunction1() {
 var x = document.getElementById("model1").value;
 var y = document.getElementById("model2").value

 var comb = x + y
 var location1 = window.location.hostname + ":5000"
 var alltogether = "/dashboard/" + comb
 location.assign(alltogether);

 }
 </script>

 <ul class="cards">
 {% for item in list %}
 <li class="cards_item">
 <div class="card" style="width: 25rem;">
 <div class="card-body">
 <h2 class="card_title">{{item.name}}</h2>

 <p class="card-text">
 {{item.type}}
 </p>
 View Model

 </div>
 </div>

 {% endfor %}

8. Conclusion

77

The results of our study offer a robust and comprehensive methodology for liver cancer
prediction, considering a broad range of variables and employing advanced machine
learning models. The key features identified by our models - age, marry status , sex type,
and various health conditions such as cirrhosis , hepatitis b , SEX_TYPE, got ast ,
cachexia- align with the current scientific understanding of significant risk factors for
liver cancer .The importance of utilizing big data techniques in health data should be
emphasized. The more variables we want to include in an analysis, the more complex it
becomes, especially when it comes to unsupervised learning. The methodology proposed
by this paper includes advanced techniques that can handle a large dataset, utilizing
Apache Sedona and PySpark for parallel processing in preprocessing, cleaning, and
mapping with custom made dictionaries and functions. In addition, it incorporates
techniques that handle the inequality of classes in the target value “y” like SMOTE,
imbalanced, stratified k-fold. This particular analysis can be applied as is to liver cancer
data of this specific pilot. In the future, it can be expanded and adapted to any health
problem with complex data as it cleans and combines many demanding datasets and
different use cases, such as demographic data, blood tests, illnesses, and external factors
also included ICD-9 and ICD-10 protocols. We also utilize and extend the explainable
dashboard library by creating a custom flask API that unlocked the black box of
machine learning models .Moreover, for each use case, the appropriate ML models that
maximize accuracy have been selected after many tests.with the highest accuracy The
results shows Among the most impactful conditions related to liver cancer are "Cirrhosis
of the liver without mention of alcohol," "Chronic hepatitis, unspecified," and "Chronic
viral hepatitis B," all of which directly pertain to liver health. In the given data, each
variable represents the average value of a particular medical indicator or condition across
a sample population, where "y" indicates whether an individual has cancer. "CBCI"
stands for average Complete Blood Count Index with a value of 0.3855, which might
give insights into the overall health of the blood. "WBCDC» represents the average
White Blood Cell Differential Count, a marker for potential infection or other diseases.
"Prothrombin_time_blood" at 0.6697 related to how quickly blood clots, a crucial factor
in many diseases. "creatinine» provides information about kidney function.
"avg_GOT_AST" (0.8742) is the average level of the enzyme Aspartate
Aminotransferase, generally related to liver health. Other variables represent the
proportion of individuals with specific conditions: "obesity" (0.0119), "nafld" or Non-
Alcoholic Fatty Liver Disease, "cirrhosis" , "hepatitis (0.0331), "hepatitis b" (0.0604),
and "diabetes" (0.0649). Each of these factors may have varying degrees of association
with the presence of cancer, indicated by "y," and could be important for medical
researchers and healthcare professionals for predictive analysis and treatment planning.
"Essential (primary) hypertension" and "Unspecified essential hypertension" could have
an indirect but significant impact on liver health, affecting systemic conditions.
Conditions like "Secondary malignant neoplasm of lung" and "Diabetes mellitus"
suggest that liver cancer is often associated with other serious health issues. Lower on
the scale of direct impact are conditions like "Constipation," "Reflux esophagitis," and
"Anemia," which may be symptoms or side effects rather than causative factors.
"Unspecified functional disorder of stomach" and "Hypertensive heart disease" may also
be indicative of overall poor health but are less directly related to liver cancer.
Surprisingly, "Insomnia" and "Urinary tract infection" also appear, indicating that a wide
range of health issues may correlate with liver cancer.. In terms of accuracy, the machine
learning models showed promising results for predicting liver cancer and NAFLD
outcomes. From the external factors the most possible association are antineoplastic and
immunosuppressive drugs sides effects, Procedures side effects, Traffic accident Other
drugs and medical substances. The LightGBM model was particularly noteworthy,
achieving an accuracy of 0.83 and a precision score of 0.91, making it the top-

78

performing model. Following closely behind was the Lasso Logistic Regression model
with an accuracy of 0.78 and a precision score of 0.89. The base classifiers also
demonstrated strong performance, with accuracy levels of 0.81 and precision scores
ranging from 0.89 to 0.90. Given these robust statistics, we chose to utilize the
LightGBM and Lasso Logistic Regression models for predicting liver cancer , as they
offer a combination of high accuracy and precision. appear, suggesting a holistic
approach to health might be crucial for liver cancer prevention or management. The
introduced methodology offers an enhanced and in depth analysis of many different
factors contributing to the developing of liver cancer it is already include in pancreatic
cancer analysis and can have a generalized application in similar and demanding health
issues and other types of cancer.

9. References

[1]“Key Statistics About Liver Cancer,” Key Statistics About Liver Cancer | American
Cancer Society, Jan. 12, 2023. https://www.cancer.org/cancer/types/liver-
cancer/about/what-is-key-statistics.html

[2]Vekariya, V.K., Passi, K., & Jain, C.K. (2022). Predicting liver cancer on
epigenomics data using machine learning. Frontiers in Bioinformatics, 2.

[3] Efficient Local Cloud-Based Solution for Liver Cancer detection using Deep Learn

[4] Bakrania, A., Joshi, N., Zhao, X., Zheng, G., & Bhat, M. (2023). Artificial
intelligence in liver cancers: Decoding the impact of machine learning models in clinical
diagnosis of primary liver cancers and liver cancer metastases. Pharmacological
research, 189, 106706. https://doi.org/10.1016/j.phrs.2023.106706

[5]Title: Machine Learning Can Predict Total Death After Radiofrequency Ablation in
Liver Cancer Patients
Tong, Jian-hua, Panmiao Liu, Mu-huo Ji, Ying Wang, Qiong Xue, Jian-jun Yang and
Cheng-Mao Zhou. “Machine Learning Can Predict Total Death After Radiofrequency
Ablation in Liver Cancer Patients.” Clinical Medicine Insights. Oncology 15 (2021): n.
pag.(5)

[6]Title: A Machine Learning Approach Yields a Multiparameter Prognostic Marker in
Liver Cancer(6)
Liu, X., Lu, J., Zhang, G., Han, J., Zhou, W., Chen, H., Zhang, H., & Yang, Z. (2021). A
Machine Learning Approach Yields a Multiparameter Prognostic Marker in Liver
Cancer. Cancer Immunology Research, 9, 337 - 347.

[7]Title: Artificial Intelligence in Liver Cancers: Decoding the Impact of Machine
Learning Models in Clinical Diagnosis of Primary Liver Cancers and Liver Cancer
Metastases.

https://www.cancer.org/cancer/types/liver-cancer/about/what-is-key-statistics.html
https://www.cancer.org/cancer/types/liver-cancer/about/what-is-key-statistics.html
https://doi.org/10.1016/j.phrs.2023.106706

79

Bakrania, A.K., Joshi, N., Zhao, X., Zheng, G., & Bhat, M. (2023). fetArtificial
Intelligence in Liver Cancers: Decoding the Impact of Machine Learning Models in
Clinical Diagnosis of Primary Liver Cancers and Liver Cancer Metastases.
Pharmacological research, 106706 .(7)
[8]Title: Application of Machine Learning for Diagnosis of Liver Cancer
(8)

Trivedi, N.K., Tiwari, R.G., Anand, A., Gautam, V., Witarsyah, D., & Misra, A. (2022).
Application of Machine Learning for Diagnosis of Liver Cancer. 2022 International
Conference Advancement in Data Science, E-learning and Information Systems
(ICADEIS), 1-5.

[9]Predicting liver cancer on epigenomics data using machine learning
Vekariya, V.K., Passi, K., & Jain, C.K. (2022). Predicting liver cancer on epigenomics
data using machine learning. Frontiers in Bioinformatics, 2.(9)

[10] Machine Learning Approach to Facilitate Knowledge Synthesis at the Intersection
of Liver Cancer, Epidemiology, and Health Disparities Research(10)
Hyams, T., Luo, L., Hair, B.Y., Lee, K., Lu, Z., & Seminara, D. (2022). Machine
Learning Approach to Facilitate Knowledge Synthesis at the Intersection of Liver
Cancer, Epidemiology, and Health Disparities Research. JCO Clinical Cancer
Informatics, 6.

[11]Preoperative classification of primary and metastatic liver cancer via machine
learning-based ultrasound radiomics(11)

Mao, B., Ma, J., Duan, S., Xia, Y., Tao, Y., & Zhang, L. (2021). Preoperative
classification of primary and metastatic liver cancer via machine learning-based
ultrasound radiomics. European Radiology, 31, 4576 - 4586.

[12] Identification of Significant Gene Expression in Liver Cancer-Induced HBx Virus
Using Enhanced Machine Learning Method
Muflikhah, L., Widodo, Mahmudy, W.F., & Solimun (2021). Identification of
Significant Gene Expression in Liver Cancer-Induced HBx Virus Using Enhanced
Machine Learning Method. Lecture Notes in Networks and Systems.

[13] Machine learning-based development and validation of a scoring system for
progression-free survival in liver cancer
Liu, X., Hou, Y., Wang, X., Yu, L., Wang, X., Jiang, L., & Yang, Z. (2020). Machine
learning-based development and validation of a scoring system for progression-free
survival in liver cancer. Hepatology International, 14, 567-576.

[14]: A machine learning method for improving liver cancer staging
Zhao, Z., Tian, Y., Yuan, Z., Zhao, P., Xia, F., & Yu, S. (2022). A machine learning
method for improving liver cancer staging. Journal of biomedical informatics, 137,
104266 .

[15] Machine Learning Methods Using Texture Feature Selection in Diagnosis of Liver
Cancer

80

Naeem, S., Ali, A., Anam, S., & Zubair, M. (2022). Machine Learning Methods Using
Texture Feature Selection in Diagnosis of Liver Cancer. Proceedings of MOL2NET'22,
Conference on Molecular, Biomedical & Computational Sciences and Engineering, 8th
ed. - MOL2NET: FROM MOLECULES TO NETWORKS.

[16] Predicting postoperative liver cancer death outcomes with machine learning
Wang, Y., Ji, C., Wang, Y., Ji, M., Yang, J., & Zhou, C. (2021). Predicting postoperative
liver cancer death outcomes with machine learning. Current Medical Research and
Opinion, 37, 629 - 634.

[17] Recurrence Risk of Liver Cancer Post-hepatectomy Using Machine Learning and
Study of Correlation With Immune Infiltration
Qian, X., Zheng, H., Xue, K., Chen, Z., Hu, Z., Zhang, L., & Wan, J. (2021). Recurrence
Risk of Liver Cancer Post-hepatectomy Using Machine Learning and Study of
Correlation With Immune Infiltration. Frontiers in Genetics, 12.

[18]Surveillance Strategy for Barcelona Clinic Liver Cancer B Hepatocellular
Carcinoma Achieving Complete Response: An Individualized Risk-Based Machine
Learning Study
Chen, Q., Dai, L., Wu, Y., Huang, Z., Chen, M., & Zhao, M. (2021). Surveillance
Strategy for Barcelona Clinic Liver Cancer B Hepatocellular Carcinoma Achieving
Complete Response: An Individualized Risk-Based Machine Learning Study. Frontiers
in Bioengineering and Biotechnology, 9.

[19] Extraction of ncRNAs Associated with Liver Cancer Using Machine Learning
Sekine, K., Hochin, T., & Nomiya, H. (2021). Extraction of ncRNAs Associated with
Liver Cancer Using Machine Learning. Proceedings of the the 8th International Virtual
Conference on Applied Computing & Information Technology.

[20]: Preoperative classification of primary and metastatic liver cancer via machine
learning-based ultrasound radiomics
Mao, B., Ma, J., Duan, S., Xia, Y., Tao, Y., & Zhang, L. (2021). Preoperative
classification of primary and metastatic liver cancer via machine learning-based
ultrasound radiomics. European Radiology, 31, 4576 - 4586.

[21] Machine learning-empowered cis-diol metabolic fingerprinting enables precise
diagnosis of primary liver cancer
Li, P., Xu, S., Han, Y., He, H., & Liu, Z. (2023). Machine learning-empowered cis-diol
metabolic fingerprinting enables precise diagnosis of primary liver cancer. Chemical
Science, 14, 2553 - 2561.

[22]A comparative study of machine learning algorithms for predicting acute kidney
injury after liver cancer resection
Lei, L., Wang, Y., Xue, Q., Tong, J., Zhou, C., & Yang, J. (2020). A comparative study
of machine learning algorithms for predicting acute kidney injury after liver cancer
resection. PeerJ, 8.

[23]An Intelligent Approach to Segment the Liver Cancer using Machine Learning
Method

81

Anand, L., Maurya, M., Seetha, J., Nagaraju, D., Ravuri, A., & Vidhya, R.G. (2023). An
Intelligent Approach to Segment the Liver Cancer using Machine Learning Method.
2023 4th International Conference on Electronics and Sustainable Communication
Systems (ICESC), 1488-1493.

[24] Potential biomarker detection for liver cancer stem cell by machine learning
approach
Farzane, A., Akbarzadeh, M., Ferdousi, R., Rashidi, M.R., & Safdari, R. (2020).
Potential biomarker detection for liver cancer stem cell by machine learning approach.
Journal of Contemporary Medical Sciences.

[25] Machine-Learning Classification Models to Predict Liver Cancer with Explainable
AI to Discover Associated Genes
Hasan, M.E., Mostafa, F.B., Hossain, M.S., & Loftin, J. (2023). Machine-Learning
Classification Models to Predict Liver Cancer with Explainable AI to Discover
Associated Genes. AppliedMath.

[26] Hepatocellular Carcinoma (HCC) Liver Cancer prediction using Machine Learning
Algorithms
Rajesh, S., Choudhury, N.A., & Moulik, S. (2020). Hepatocellular Carcinoma (HCC)
Liver Cancer prediction using Machine Learning Algorithms. 2020 IEEE 17th India
Council International Conference (INDICON), 1-5.

[27] Extraction of Genes Associated with Liver Cancer Using Machine Learning
Sekine, K., Hochin, T., & Nomiya, H. (2020). Extraction of Genes Associated with Liver
Cancer Using Machine Learning. 2020 9th International Congress on Advanced Applied
Informatics (IIAI-AAI), 7-12.

[28] Machine Learning aided Fiber-Optical System for Liver Cancer Diagnosis in
Minimally Invasive Surgical Interventions
Zherebtsov, E.A., Zajnulina, M., Kandurova, K.Y., Dremin, V.V., Mamoshin, A.V.,
Potapova, E.V., Sokolovski, S., Dunaev, A.V., & Rafailov, E.U. (2020). Machine
Learning aided Fiber-Optical System for Liver Cancer Diagnosis in Minimally Invasive
Surgical Interventions. 2020 International Conference Laser Optics (ICLO), 1-1.

[29]Zhou, G., Zhang, Y., You, Y., Wang, B., Wang, S., Yang, C., Zhang, Y., & Liu, J.
(2022). Contrast-Enhanced Ultrasound and Magnetic Resonance Enhancement Based on
Machine Learning in Cancer Diagnosis in the Context of the Internet of Things Medical
System. Computational Intelligence and Neuroscience, 2022.

[30] Radiomics and Machine Learning Analysis Based on Magnetic Resonance Imaging
in the Assessment of Colorectal Liver Metastases Growth Pattern
Granata, V., Fusco, R., De Muzio, F., Cutolo, C., Mattace Raso, M., Gabelloni, M.,
Avallone, A., Ottaiano, A., Tatangelo, F., Brunese, M.C., Miele, V., Izzo, F., & Petrillo,
A. (2022). Radiomics and Machine Learning Analysis Based on Magnetic Resonance
Imaging in the Assessment of Colorectal Liver Metastases Growth Pattern. Diagnostics

[31]Survival Time Analysis of Liver Cancer Patients using Machine Learning
Ferdous, M., Hossain, M.M., & Robi, F.M. (2019). Survival Time Analysis of Liver
Cancer Patients using Machine Learning.

82

[32]Application of machine learning to determine the characteristics of adjacent normal
tissues in liver cancer
Shams, W.K. (2017). Application of machine learning to determine the characteristics of
adjacent normal tissues in liver cancer.

[33]Risk Assessment of Liver Metastasis in Liver Cancer Patients Using Multiple
Models Based on Machine Learning: A Large Population-Based Study
Authors: Qinggang Li, L. Bai, Jiyuan Xing, Xiaorui Liu, Dan Liu, Xiaobo Hu

[34]Ali, R.N., Balamurali, M., & Varamini, P. (2022). Deep Learning-Based Artificial
Intelligence to Investigate Targeted Nanoparticles’ Uptake in TNBC Cells. International
Journal of Molecular Sciences, 23.

[35]Kefelegn, S., & Kamat, P. (2018). Prediction and Analysis of Liver Disorder
Diseases by using Data Mining Technique: Survey. International Journal of Pure and
Applied Mathematics, 118(9), 765-770.

[36] Home. (2023, October 17). https://www.who.int

[37] Information and Resources about for Cancer: Breast, Colon, Lung, Prostate, Skin.
(n.d.). American Cancer Society. https://www.cancer.org

[38Information and Resources about for Cancer: Breast, Colon, Lung, Prostate, Skin.
(n.d.). American Cancer Society. https://www.cancer.org

[39] National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). (2023,
July 19). National Institute of Diabetes and Digestive and Kidney Diseases.
https://www.niddk.nih.gov [40]World Cancer Research Fund

[41] IARC – INTERNATIONAL AGENCY FOR RESEARCH ON CANCER. (n.d.).
https://www.iarc.who.int

[42]Morgan TR, Mandayam S, Jamal MM. Alcohol and hepatocellular carcinoma.
Gastroenterology. 2004;127(5 Suppl 1):S87-S96.

[43]El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma.
Gastroenterology. 2012;142(6):1264–1273.e1.

[44]Liu Y, Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk
assessment. Environmental Health Perspectives. 2010;118(6):818–824.

[45]Wong RJ, Cheung R, Ahmed A. Nonalcoholic steatohepatitis is the most rapidly
growing indication for liver transplantation in patients with hepatocellular carcinoma in
the U.S. Hepatology. 2014;59(6):2188-95.

[46]Chuang SC, La Vecchia C, Boffetta P. Liver cancer: descriptive epidemiology and
risk factors other than HBV and HCV infection. Cancer Letters. 2009;286(1):9-14.

[47] S. Laurent, “Antihypertensive drugs,” Pharmacological research, vol. 124, pp.
116-125, 2017.

https://www.who.int/
https://www.cancer.org/
https://www.cancer.org/
https://www.iarc.who.int/

83

[48] A. E. Walker, “The adult pancreas in trauma and disease,” Academic forensic
pathology, vol. 8, no. 2, pp. 192-218, 2018.

[49]Apache spark : https://spark.apache.org

[50]Explainable Dashboard Library by Oege Dijk
https://explainerdashboard.readthedocs.io/en/latest/dashboards.html

[51] Manias, George, et al. "An evaluation of neural machine translation and pre-
trained word embeddings in multilingual neural sentiment analysis." 2020 IEEE
International Conference on Progress in Informatics and Computing (PIC). IEEE,
2020.

[52] Manias, George, et al. "SemAI: A novel approach for achieving enhanced
semantic interoperability in public policies." Artificial Intelligence Applications and
Innovations: 17th IFIP WG 12.5 International Conference, AIAI 2021, Hersonissos,
Crete, Greece, June 25–27, 2021, Proceedings 17. Springer International Publishing,
2021.

[53] Manias, George, et al. "An Enhanced Standardization and Qualification
Mechanism for Heterogeneous Healthcare Data." Caring is Sharing–Exploiting the
Value in Data for Health and Innovation (2023): 153.

https://spark.apache.org/

	Table of Contents
	1. Abstract
	2. Acknowledgements
	3. Introduction
	4. Relevant Research
	4.1. Risk factors

	5. Methodology
	5.1. Data schema and dataset
	5.2. Big data Techniques
	5.3. Data cleaning
	5.4. Cancer file
	5.5. Data exploitations and survival analysis
	5.6. Results and statistics
	The following results show the analysis done on the dataset containing only the cancer patients to get some statistics that will contribute to a better understanding of the factors that lead to death patients suffering from liver cancer. The age assoc...

	5.1. Survival analysis machine learning
	5.1.1. Data mapping and preprocessing
	5.1.2. Machine learning model
	5.1.3. Results

	5.2. Diseases and demographics associate with liver cancer for healthy and sick
	5.2.1. Data cleaning and mapping
	5.2.2. Mapping and Feature extraction
	..
	5.2.3. Machine learning model
	5.2.4. Results

	5.1. Liver cancer risk factor random forest classifier analysis for healthy and sick Data preparation
	5.1.1. Machine learning model random forest classifier for diseases classification
	5.1.2. Results

	5.2. Feature importance random forest classifier by removing the cancer values.
	5.3. Blood and diseases analysis healthy and sick
	5.3.1. Data cleaning preprocessing
	5.3.2. Blood test data transformation and cancer file

	5.4. Machine learning models
	5.5. Second cleaning phase
	5.5.1. Rebalanced techniques
	5.5.2. Xgboost model example rembalanced techniques
	5.5.3. Summarized best models results.

	5.6. Risk factors blood tests and diseases with less features to achieve higher accuracy.
	5.6.1. Machine learning models
	Random forest classifier
	5.6.2. Xgboost rembalanced
	5.6.3. Support vector machine
	5.6.4. Results after
	5.6.5. Overall results of blood and diseases analysis

	6. Liver cancer external factors
	6.1. Model selection
	6.1.1. Machine learning model
	6.1.2. Random oversample to external
	6.1.3. Random forest balanced
	6.1.4. Risk factors Analysis with external correlation matrix

	7. Data Visualization Explainable dashboard
	7.1. Prototype Overview
	7.2. Interfaces
	7.3. Main Components
	7.3.1. Feature importance
	7.3.2. Classification Status
	7.3.3. Individual Predictions
	7.3.4. What if

	7.4. Feature Dependence
	SHAP Summary plot
	7.4.1. Decision Tree visualizations

	7.5. Baseline Technologies and Tools
	7.6. Deployment of Explainable Dashboard Hub
	7.6.1. Code explanations :
	7.6.2. App.py custom classes object oriented code:
	7.6.3. Extend the use of explainable dashboard python library by creating custom compare classes.
	7.6.4. Html and JavaScript:

	8. Conclusion
	9. References

