
 
 

University of Piraeus 
 

MSc Big Data & Analytics 
Department of Digital Systems 

 
 

 
 
 

Master Thesis 
 
 

DATA PROCESSING FROM SENSORS AT THE EDGE 
 
 
 

Konstantinos Pagkos 
 
 
 
 
 
 

Supervisor:  
Ilias Maglogiannis, Professor 

 
  

 
 

 
 
 
 
 
 

Piraeus 
 

15/6/2023 
  



 
 

Master Thesis 
 
 
 

Data Processing from Sensors at the Edge 
 
 

Konstantinos Pagkos 

Α.Μ.: ME 2029 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  



ABSTRACT 

 

The purpose of this thesis is to test and examine the capabilities of different state-of-the-

art convolutional neural network architectures for edge applications and evaluate their 

maturity for use in real-time medical applications. For this reason, we utilize a publicly 

available annotated dataset containing images of the human gastrointestinal tract and the 

use of one of the most advanced AI edge accelerators. Ultimately, we test, evaluate and 

compare the performance of several models and provide insight both into the nature of 

the dataset, as well as into the capacity and potential of the latest advancements on the 

field of lightweight convolutional neural networks optimized for embedded devices. 
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1. Introduction 

 

1.1 Motivation 

 
The last decades we have experienced a sudden and rapid advancement in 

the field of Artificial Intelligence. Machine Learning and Deep Learning 
applications have touched and transformed many aspects of technology, from 
simple daily utilities to cutting edge development.  

One of the most promising and challenging fields for Machine Learning 
applications, has proven to be the medical one. Despite a heavy focus on this 
field from the research community, there is still a lot of room for improvement on 
Healthcare Machine Learning applications, mainly due to obstacles like the 
difficulty of gathering data annotated by certified practitioners, maintaining data 
privacy and a zero-error tolerance policy. 

Video and capsule endoscopy is a particular subfield that includes 
procedures where, either the practitioners insert a flexible fiber optic cable 
through cavities and skin incisions, or the patient’s shallow vitamin-size capsules 
equipped with cameras, in order to visually examine inner parts of the human 
body. Examples of such operations include laparoscopic procedures performed 
by surgeons, intubations performed by anaesthesiologists, colonoscopies etc. 
All these procedures can significantly benefit from Computer Vision algorithms. 
Image classification models can be used prevent misdiagnosis, while object 
detection and image segmentation models can provide real time assistance to 
practitioners during the procedures. 

Computational performance of the aforementioned algorithms, plays a 
significant role on real time procedures, e.x. laparoscopic surgeries, where a 
model’s latency and inference time contribute in the overall performance as 
much as its accuracy. Furthermore, combining small and efficient Convolutional 
Neural Networks with embedded devices can greatly extend the capabilities of 
telemedicine and self-diagnosis applications. 

While there is an extensive bibliography focusing on the development of 
Machine Learning models for classification and segmentation on images 
procured by endoscopic means, most of them focus mainly on achieving the best 
precision/accuracy possible, paying little to no consideration on the 
computational performance. 

In the scope of this thesis, we aim to test and explore the advancements on 
the field of embedded computer vision and how the development of edge 
computing Machine Learning applications, capable of processing endoscopic 
images with low latency and high Frames Per Second (FPS) throughput, can be 
utilized with the aim of providing assistance to the medical practitioners, 
facilitating telemedicine applications and ultimately reduce human errors and 
misdiagnosis. Specifically, we evaluate different Convolutional Neural Network 
(CNN) architectures on their performance on automatic disease detection of the 
Gastrointestinal Tract and their ability to run inference efficiently on Google’s 
state-of-the-art Edge Tensor Processing Unit (TPU) accelerator. 
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1.2 Diseases of the Gastrointestinal Tract 

 
Diseases, abnormalities and pathological findings of the Gastrointestinal (GI) 
Tract refer to conditions involving the esophagus, stomach, small / large 
intestine, rectum and the accessory organs of digestion, the liver, gallbladder 
and pancreas. Some common examples of GI diseases include peptic ulcers, 
irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), such as 
Crohn's disease and ulcerative colitis, as well as gastrointestinal cancers, such 
as stomach and colorectal cancer. Symptoms of GI diseases can vary 
depending on the condition and have a significant impact on a person's quality 
of life. According to the World Health Organization (WHO), GI diseases are a 
major public health problem worldwide. Gastrointestinal cancers are the third 
leading cause of cancer deaths globally, responsible for around 7.2 million 
deaths per year. In addition, IBD affects an estimated 3 million people in the 
United States alone and it's estimated to affect more than 5 million people 
worldwide. Furthermore, IBS is a common condition that affects up to 20% of 
the population in developed countries. 
 
As most of these diseases can be cured, proper diagnosis and treatment are 
crucial for managing symptoms and preventing life threatening situations.  For 
this reason, there has been an extensive bibliography of computer vision 
applications aiming to classify medical images produced by endoscopic means. 
These applications can identify patterns and markers associated with different 
diseases and as a result aid in the early detection of conditions such as polyps 
and tumors, which can lead to the diagnosis and treatment of gastrointestinal 
cancers.  
 
 

1.3 Healthcare Edge Applications 

 
Edge computer vision technology has the potential to play a key role in 
preventing and managing diseases of the gastrointestinal tract in remote or 
resource-limited settings. Edge computing is a technology that allows data 
analysis to happen at or near the source, rather than relying on transmitting it to 
a central location for processing. This enables real-time data diagnosis and 
decision-making at the point of care, which can be especially important in 
situations where internet connectivity or resources are limited. 
 
For example, a portable endoscope equipped with edge computer vision 
technology could enable a healthcare practitioner to capture images of the 
gastrointestinal tract and perform real-time diagnosis on remote locations. In the 
same manner, combining the images produced from capsule endoscopy with 
low computational complexity computer vision applications that can run on 
mobile devices, can effectively enable self-diagnosis in remote settings where 
access to specialized medical equipment and personnel may be limited. The 
aforementioned applications can be further utilized in post-operative monitoring, 
enabling doctors to track the healing process and detect any complications early 
on, without requiring their physical presence. 



13 
 

1.4 Structure of the Thesis 

 
Chapter 1 presents the scope of the thesis, its goals and the motivation behind 
it. In Chapter 2 we introduce the Kvasir v2, a dataset comprised of annotated 
images of the gastrointestinal tract, as well as the results of previous works found 
in literature that utilize it. Chapter 3 contains all the background theory related 
to the main topics revolving around the thesis. This includes the basic concepts 
of Deep Learning, convolutional neural networks, image processing and edge 
applications. Chapter 4 goes into detail about the architecture of different 
lightweight convolutional neural networks suitable for edge applications. 
Chapter 5 describes the methodology, specifically the end-to-end steps of the 
process used in this thesis, from data processing all the way to the evaluation of 
the models. Finally, Chapter 6 contains all the results from the experiments, the 
discussion and proposals for future work. 
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2. Dataset & Related Work  

 

2.1 Kvasir v2 Dataset 

 
In this thesis we have used the Kvasir v2 dataset, a multi-class image dataset 
for computer aided gastrointestinal disease detection. The dataset consists of a 
total of 8.000 medical images obtained through the means of endoscopic 
procedures in the gastrointestinal tract. The images have been collected with 
the use of appropriate equipment from the Vestre Viken Health Trust (VV) in 
Norway, which consists of four different hospitals that tend to the medical needs 
of 470.000 patients. Each image has been annotated and verified by certified 
medical professionals either from the VV or the Cancer Registry of Norway 
(CRN). 
 
The dataset consists of eight different classes, containing 1.000 images each. 
The resolution of these images differs, starting from 720x576 pixels up to 
1920x1072. Some of the images also contain a small green box in the lower left 
corner, depicting the position of the endoscope inside the tract. 
 
Below the eight different classes consisting this dataset are briefly presented: 
 

2.1.1 Anatomical Landmarks 

Anatomical landmarks are parts of the digestive tract that can be used as points 
of reference during endoscopic procedures. 
 
The Z-line marks the transition site between the esophagus and the stomach. 
This transition is made visible by the change in colour, where the white 
esophageal mucosa turns into the gastric red mucosa of the stomach. This 
border is of great interest, as many signs of disease can be detected here. 
 

 
Figure 1. Samples from the Z-line class 

The Pylorus is the small opening connecting the stomach with the first part of 
the small bowel. Correctly identifying the pylorus can be of assistance for 
maneuvering endoscopic equipment. 
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Figure 2. Samples from the Pylorus class 

 
    
The Cecum is a pouch within the peritoneum that is considered to be the start 
of the large intestine. This point marks the completion of a colonoscopy. 
 
 

 
Figure 3. Samples from the Cecum class 

           

2.1.2 Pathological Findings 

 
These findings refer to a number of conditions and diseases that can be visually 
detected in the GI tract.  
 
Esophagitis is essentially inflammation of the esophagus, presented in the form 
of visible breaks in the mucosa, which are created when gastric acid flows back 
from the stomach due to certain conditions. The extend and length of the breaks 
can be used in order to determine the severity. 
 
 

 
Figure 4. Samples from the Esophagitis class 

Polyps are lesions detected within the bowel in the form of outgrowing mucosa. 
Their size and shape can vary, but can be detected by inspecting thir colour and 
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texture. Polyps more often than not are harmless, but in cases they can lead to 
colorectal cancer if note removed. 
 
 

 
Figure 5. Samples from the Polyps class 

Ulcerative Colitis is a chronic inflammatory disease located within the large 
bowel. The severity of the disease can mild, made visible by swollen red areas, 
but in extreme cases it can lead to the development of ulcerations, negatively 
affecting the quality of life of the patient. 
 
   

 

 
Figure 6. Samples from the Ulcerative Colitis class 

 

2.1.3 GI Procedures 

The procedure of interest is called endoscopic mucosal resection (EMR) and is 
one of the most common polyp removal techniques. During this procedure, liquid 
is injected underneath the polyp in order to separate it from the underlying 
mucosa. The solution may also contain a staining dye, in order to highlight the 
polyp’s borders. The elevated polyp is then extracted.  
 
Dyed & Lifted Polyps are a visual example of a polyp after a coloured solution 
is applied. The margins between the polyp and the underlying tissue are clearly 
visible. 
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Figure 7. Samples from the Dyed & Lifted Polyps class 

Dyed Resection Margins refer to the area of interest, after the polyp has been 
extracted. Potential residual polyp tissue must be detected and accordingly 
removed. 
 
 
     

 
Figure 8. Samples from the Dyed Resection Margins class 

2.2 Related Work 

 
Taking into account the difficulties of the data collection procedure in the medical 
field and the fact that the Kvasir v2 dataset is not only one of the most complete 
annotated image datasets of the GI tract, but also publicly available, it is only 
logical that over the years there has been an extensive variety of deep learning 
and machine learning based approaches making use of it. For the sake of 
simplicity, we will use accuracy as the base metric for comparing them. 
 
Starting at 2017, when Pogorelov et al. [9] introduced the Kvasir v2 dataset, 
essentially doubling the sample size of the original Kvasir. Along with the data, 
they also experimented with 8 different classification approaches in order to 
establish a baseline for future researchers. These approaches included different 
CNNs and also other supervised classification methods, with the best performing 
being a 3-layer CNN, achieving 95.9% accuracy. 
 
Following their work, researchers experimented on the Kvasir v2 dataset using 
state of the art CNN architectures available at the time. These architectures 
included Resnet50 [24], GoogleNet [8], ResNet-18 [8], DenseNet-201 [7] 
MobileNetV2 [18] etc. As most of these models struggled to surpass the 
performance established by the original paper, modified architectures of the 
same CNNs, i.e., modified VGG-16 [8], and custom architectures with larger 
input size [11] were introduced, that seemed to fare better in terms of accuracy.  
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Another approach followed by [7] and [18] is the ensemble learning methods, 
combining a number of the aforementioned CNNs as features extractors and 
then retraining a classifier on the new feature maps. This approach yielded the 
best results, where [18] scored the best accuracy of value 99.2%.  
 
Last but not least, [26] focused on improving the classifier instead of the feature 
extractor, comparing the performance of the commonly used soft-max layer 
against a Support Vector Machine (SVM) and a Stacked LSTM classifier, and 
[25] used Capsule Networks based on DenseNet-121. 
 
Even though the metrics achieved by many approaches are considered more 
than sufficient, the limitations of previous works is that the researchers did not 
take heavily into account the computational complexity of their approaches. Most 
of the models proposed consist of tens of millions of parameters, rendering them 
unsuitable for applications at the edge. In order to further extend their work, we 
aim to explore the trade-off between model size and accuracy on the same 
dataset. 
 
  
 

Base Model Architecture Top 1 
Accuracy 

Parameters Reference 
 

3-layer CNN 92.40 ~23.000.000 [9] 

ResNet50 95.70 ~25.600.000 [24] 

Proposed CNN  96.80 ~2.666.312 [11] 

Ensemble Method 97.38 >20.000.000 [7] 

Modified VGG16 96.33 >100.000.00
0 

[8] 

Proposed Attention Model 92.84 19.920.000 [16] 

DenseNet121+I/O Modules 94.82 ~ [25] 

ResNet50 91.40 ~25.000.000 [18] 

MobileNetV2 88.00 ~2.600.000 [18] 

Xception 97.04 ~22.000.000 [18] 

Ensemble Method 99.29 >50.000.000 [18] 

Ensemble Method +  
Stacked LSTM classifier 

97.90 >70.000.000 [26] 

Table 1. Comparison of previous work 
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3. Background Theory 

 
 

3.1 Machine Learning 

Machine Learning is a specific branch of Artificial Intelligence that in the past few 
decades, came to challenge traditional programming. Through Machine 
Learning, we can build “intelligent machines” that are able to discover complex 
patterns in data, derive rules otherwise invisible to the human and ultimately 
make decisions and forecasts. The main difference of ML applications to 
traditional programming, is that the output of the latter is the result of a very 
specific set of rules described in detail by human programmers, where ML 
applications are able to “learn” and improve without human supervision. 
 
 
 
Typically, ML algorithms are divided into three main categories: 
 

• Supervised learning, usually involves models used in classification and 
regression tasks. In order to train these models, a labeled training dataset 
example needs to be provided. 
 

• Unsupervised learning: most common examples are clustering and 
association algorithms. These algorithms are used to explore and draw 
inferences describing hidden structures from unlabeled data. 

 

• Semi-supervised learning: models of this family are between 
supervised and semi-supervised, utilizing both labeled and unlabeled 
data. 
 
 

 

3.2 Deep Learning & Artificial Neural Networks 

Deep Learning is a subfield of Machine Learning, and in extend of Artificial 
intelligence. Deep Learning is associated with Artificial Neural Networks (ANNs), 
a complex group of algorithms loosely modeled after the human brain. The 
characterization Deep derives from the fact that ANNs are usually comprised 
from input / output layers and large number of hidden layers, able to discover 
and extract features from the data in a hierarchical way.  
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Figure 9. Simplified Visualization of an ANN 

The building block of every ANN is the perceptron, that resembles a neuron. A 
single perceptron is a multiple input – single output algorithm that can be 
described from the following linear equation: 
 
 

𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏 

𝑛

𝑖=0

(1) 

 
 
 
where, 𝑤 is the weight, 𝑏 is the bias and 𝑥 is the input.  
 
 
 

 
Figure 10. Visualization of a neuron 

 
 

3.2.1 Activation Functions 

 
An ANN is built from multiple layers, and each of these layers, from multiple 
perceptrons. Since the perceptron’s equation is linear, a combination of multiple 
perceptrons would still remain linear, thus prohibiting the network from 
simulating more complex algorithms. For this reason, the activation function is 
introduced. 
 
 
The activation functions practically allow the neural network to learn non-linear 
relations. With its implementation, a neuron’s equation transforms as follows: 
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𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜑 ∗ (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=0

) (2) 

 
 
 
Where 𝜑 , is the activation function 
 
There multiple activation functions. Here we present some of the most commonly 
used, their equations and their respective diagrams. 
 
 
Hyperbolic Tangent (tanh):  

 
 

𝜑𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3) 

 
 

 

 
Figure 11. Hyperbolic Tangent graph 

                                   
Sigmoid: 
 
 
 

𝜑𝑥 =
1

1 + 𝑒−𝑥
(4) 

 
 

 

 
Figure 12. Sigmoid graph 
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Rectified Linear Unit (ReLU): 
 
 
 
 

𝜑𝑥 = max(0, 𝑥) (5) 
 
 

 

    
Figure 13. ReLU graph 

 
 
Softmax is a very specific activation function, that combines all of its inputs and 
presents the same number of ouputs. It is commonly used at the last layer of an ANN 
and specifically in the task of classification. This function’s outputs lie in the range 
[0,1] and resemble probabilities, and consequently their sum equals 1.  
 

𝜑𝑥𝑖
=

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

(6) 

 
 
 
 
 
 

3.3 Deep Learning for Computer Vision 

 
Convolutional Neural Networks, or CNNs, are a class of artificial neural networks 
that are specifically used to extract features and patterns from signals, such as 
images, speech and audio. CNNs utilize multiple convolution layers in order to 
hierarchically extract features from the input. Earlier layers of the algorithms 
focus on simple features, such as edges and colors, whereas later convolutions 
are able to recognize larger objects and shapes and ultimately identify objects. 
CNNs advantage over other neural network architectures in computer vision 
tasks, is that the convolution takes into account the spatial correlation between 
pixels in an image. 
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Figure 14. Layer visualization of a CNN 

 
 
 

3.3.1 Convolutional Layers 

 
The main building layer of CNN architectures is the Convolution Layer. During 
the act of convolution, we use a set of weighted matrices called kernels, or filters, 
to extract information from an image. The width and height of a kernel is smaller 
than the input’s dimensions. In order to obtain the output, we iterate the kernel 
over every pixel in an image, starting from one side (i.e., top left). The output’s 
width and height depend on the input’s dimensions, the kernel’s dimensions, as 
well as the convolution stride and padding size. The stride describes how much 
a filter will be shifted over the image after each convolution operation, while 
padding is a technique that extends the dimensions of the original image in order 
to more efficiently detect patterns at the edges. 
 
 

 
Figure 15. Visualization of the convolution operation 

 
Accounting for all the parameters, given an image 𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐶𝑖𝑛, where 
𝑊𝑖𝑛,𝐻𝑖𝑛,𝐶𝑖𝑛 are the width, height and number of channels of the input image, the 
output 𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 × 𝐶𝑜𝑢𝑡 of the convolution layer can be computed as: 
 
 

𝑊𝑜𝑢𝑡 =
(𝑊𝑖𝑛 + 2𝑃 − 𝐾𝑊)

𝑆𝑊
+ 1 (7) 
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𝐻𝑜𝑢𝑡 =
(𝐻𝑖𝑛 + 2𝑃 − 𝐾𝐻)

𝑆𝐻
+ 1 (8) 

 
 

𝐶𝑜𝑢𝑡 = 𝐾𝐶 (9) 
 
 
Where 𝐾𝑤,𝐾𝐻,𝐾𝐶 are the width, height of the kernel and the number of filters 

respectively, 𝑃 is the padding size, assuming same size padding in every 
direction, and 𝑆𝑊,𝑆𝐻 are the strides across the two dimensions. 𝐶𝑜𝑢𝑡 is also 
referred to as the feature maps produced by a convolution layer. 
 
 

 
Figure 16. Feature map examples 

 
In the scope of this thesis, we also mention a specific type of convolution called 
depthwise separable convolution, which can reduce the total parameters of a 
normal convolution layer more than 50%. 
 
This is a two-step procedure. The first step is a depthwise convolution, which in 
contrast to normal convolution, convolves each input channel with a different 
filter and stacks the output feature maps. 
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Figure 17. Visualization of the depthwise convolution operation 

 
 
 
The second step is a normal convolution utilizing a 1x1 dimensional kernel in 
order to obtain the final output. 
 
 

3.3.2 Pooling Layers 

 
It is a quite common occurrence for a convolution layer to be followed by a 
pooling layer, even though modern architectures opt to use strided convolutions 
instead. The main purpose of a pooling layer is to compress the activation maps 
and reduce the number of parameters between the layers. Pooling layers 
typically have two parameters, kernel size and step, that work in the same 
manner in the convolution layer.  
 
 

 
Figure 18. Max pooling operation with 2x2 window and stride = 2 
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The most commonly used pooling layers are max pooling and average pooling. 
Max pooling works by sliding a window over the input data and selecting the 
largest value of the window as output, while average pooling calculates the 
average value of the parameters inside the window.  

 

 

3.3.3 Fully Connected Layers 

 
Fully connected layers are the most basic layers of any ANN architecture. They 
consist of a set of neurons, which are connected to every neuron of both the 
previous and the next layers. In a CNN, fully connected layers are typically used 
in the last few layers, after the desired features have been extracted from 
previous convolutional layers, in order to map these features with the output. 
Nowadays, these layers are also usually replaced by convolution layers. 
 
 

 
 

3.3.4 Batch normalization 

 
Batch normalization is a layer that has been an essential part of CNN 
architectures since it was introduced. Batch normalization layers essentially 
normalize the output of one hidden layer before it is inserted to the next. A layer 
of this kind has a total of four parameters, two learnable ones called beta and 
gamma, and two non-learnable called mean moving average and variance 
moving average. The layer works as follows: 
 

1. For each input vector, calculate the mean and variance of the values in 
the mini-batch. 

2. Normalize the above values, with zero mean and unit variance. 
3. Shift and scale the values accordingly by multiplying by the factor gamma 

and adding the factor beta. 
4. Calculate the exponential moving average after each iteration and save 

the final result after training has concluded. This result is then used during 
inference, where we have only one input and not a batch.  
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Figure 19. Batch Normalization during inference 

 
 
The utilization of Batch Normalization layers after activation functions has shown 
significant improvement in weight convergence during training and subsequently 
reduction in total training time required. 
 
 

3.4 Artificial Neural Network Training 

 
Training may be the most important part in the successful implementation of an 
ANN. After choosing an appropriate ANN architecture for the task at hand, the 
network must be trained until it is capable of efficiently mapping the data. In order 
to achieve this, the weights and biases of every perceptron must be calibrated 
accordingly.  
 
 
 
The training process can be briefly summarized in the following steps: 
 

1. The data are presented to the network and an output is produce. This part 
is also called forward propagation. 
 

2. Compare the output with the ground truth and estimate the error with the 
use of a loss function. 
 
 

3. Using the quantified error and an optimizer, calibrate the weights and 
biases of the network in order to minimize the error. This process is also 
called backward propagation 
 

4. Repeat the above steps until there is no performance increase to be 
gained, measured by the appropriate metrics. 

 
In the following section, the above concepts, also called hyperparameters of a 
neural network, are explained in depth. 
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3.4.1 Loss Function 

 
Loss functions play one of the most important roles during the training of a 
model, that of evaluating its performance of the task at hand. Every step of every 
epoch, the loss function approximates the error between the model’s output and 
the ground truth, with this error increasing the further the output deviates from 
the true label.  
 
During backward propagation, we utilize the partial derivatives of the loss 
function in order to finetune the weights and biases of the whole neural network, 
using a chaining rule from right-to-left, or output-to-input. 
 
One of the most common loss functions used for multiclass classification is the 
Cross-Entropy Loss. In order to use this function, the final layer of a model 
should contain the same number of nodes as the classes of the dataset and a 
softmax activation function. Cross-entropy will calculate a score, based on 
maximum-likelihood, that summarizes the average difference between the 
model’s output probabilities and the ground truth. There is also the option of 
using class weights, where effectively the loss function “punishes” 
misclassifications of different labels with different weights. 
 
 

3.4.2 Optimizer 

 
The optimizer is basically an optimization scheme that during backpropagation, 
utilizes the partial derivatives of the loss function, or gradients, in order to 
properly update the existing weights and biases. Stochastic Gradient Descent 
(SGD) and its variants are the most used optimization algorithms.  
SGD takes a step, called learning rate, towards the direction of the greatest 
descent for each weight. The learning rate is an important parameter for 
optimizing training. A higher learning rate might converge faster in contrast to a 
lower one, but might also miss a local minimum. For this reason, we usually 
utilize a learning rate schedule, where the training begins with a high learning 
rate, but it gradually decreases over time. 
 
In addition to the learning rate, we also add another term called momentum, 
which basically determines how much impact the previous gradients should 
have on a certain weight. It achieves this by accumulating an exponentially 
decaying moving average of past gradients. 
 
 

3.4.3 Regularization 

 
With the term Regularization, we refer to a set of available techniques, which we 
can utilize in order to reduce the risk of overfitting and sometimes even improve 
model results. Below we present some of the most common techniques. 
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3.4.3.1 Dropout 
 
Dropout is a regularization technique, that during a training epoch excludes, 
“drops out”, a random number of neurons from a layer. By temporarily removing 
a set of neurons from a layer, we essentially change the input and output 
connections of it. This process has the benefit of making a model more robust, 
because it effectively forces different nodes to assume more / less responsibility 
in their decisions, making each neuron less dependent from other neurons. 
Dropout has a proven record of improving the performance of neural networks. 
 
 
 
 

 
Figure 20. Effects of dropout on an ANN 

 
 

 
 

3.4.3.2 L1 / L2 Regularization 
 
L1 and L2 Regularization, also known as “weight decay”, is a way of preventing 
overfitting by adding an additional penalty to the prediction error of the loss 
function. This penalty comes in the form of absolute value of magnitude for L1 
regularization, and squared magnitude for L2. The key difference between the 
two regularization techniques, is that the first shrinks the less important feature’s 
coefficient towards zero, effectively leading to sparsity. 
 
 

3.4.3.3 Early Stopping 
 
Early Stopping is the process of terminating the training of a neural network 
early, in order to avoid the deterioration of the training and validation losses, and 
ultimately overfitting. This technique, though simple, is widely used and it often 
produces networks that generalize better to the training data. 
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3.4.3.4 Data augmentation 
 
As data augmentation, we define the process of creating new training data from 
the existing ones, by applying different transformations. These transformations 
vary, from simpler ones, e.x. rotating an image, to more advanced, like histogram 
equalization etc. Different use cases and data require different data 
augmentation techniques that match the task. Data augmentation is especially 
popular in Deep Learning applications, because more often than not, it is difficult 
to acquire new data in real world applications.  
 

3.4.4 Transfer Learning 

 
In real world applications, acquiring large volumes of data and training an ANN 
can prove expensive, both in terms of money and time. For this reason, we 
commonly used Transfer Learning, by using pre-trained models that have been 
trained on big datasets. There are many advantages in using Transfer Learning, 
such as: 
 

1. Significant decrease in training time. 
 

2. Increase in performance, because existing pretrained weights are more 
often than not better than random weight initialization.  

 
3. Reduced risk of overfitting for small datasets, because during through 

Transfer Learning we can freeze some layers of the model and finetune 
the rest, or even freeze the whole model and use it as a feature extractor. 
 

For Transfer Learning to be effective, both the data at hand and the data used 
to train the pretrained model should showcase at least some degree of similarity. 
 
 
 
 
 

3.5 Medical Image Processing 

 
Deep Learning applications have proved successful and further promising in 
various different fields, and the medical field is no exception. Massive amounts 
of medical data are produced daily worldwide and in many different forms, with 
images being one of the most common. Medical images are generated through 
a plethora of diagnostic procedures, like X-rays, magnetic resonance-imaging, 
tomographies etc. In addition to that there are number of procedures that utilize 
real time video applications, like laparoscopies.  
 
Though the automatic processing of all these images using Deep Learning 
models is quite promising, the medical field also presents. some unique 
challenges. One challenge in particular that every developer has to account for, 
are the differences between similar images generated by different medical 
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apparatuses. Even though these differences can be quite subtle, like variations 
in hue or contrast, if left unaddressed, they can prove critical in the successful 
operation of a model. There are several different techniques, i.e. contrast 
enhancement via gamma correction, that aims to adjust the relative brightness 
difference between objects and their backgrounds in images, in order to improve 
their visibility. These methods are an essential part in medical image processing, 
as they reduce the noise contained in the image and improve the robustness of 
CNNs, by countering low contrast occurring from inconsistent illumination and 
other factors. 
 
Another common issue that derives from the nature of the field, is the no-error 
tolerance in the deployment of AI applications. Medical applications must 
provide a high degree of robustness and state-of-the-art performance, because 
errors in a model’s output can potentially have grave consequences. Due to this 
reason, until today, most applications are considered as a supporting tool for 
consulting by practitioners, instead of producing a definitive diagnosis.  
 
Last but not least, another major challenge is the perseverance of the data 
privacy, due to the sensitive nature of an individual’s medical information. This 
fact can prove a significant barrier in the attempt to share data and create 
efficiently big datasets for such applications. 
 
 
 

3.6 Tiny Machine Learning 

The recent growth of AI applications in combination with the massive adoption 
of IoT devices have presented researchers with a new, challenging field, often 
referred to as Edge AI or Tiny Machine Learning (TinyML), By definition, TinyML 
is the deployment of AI applications in embedded devices, where the 
computations are performed close to the data source with minimal latency. 
These applications carry substantial benefits, such as real-time inference & 
insights, reduced costs and power consumption, increased privacy, high 
availability etc. 
 
This kind of applications also present significant challenges. In order to deploy 
neural networks at resource constrained environments, one has to take into 
account multiple factors. Some of the main challenges are: 
 

• The limited computational resources of embedded devices, in 
contrast with the high computational complexity of neural 
networks. 

• The unpredictability that derives from continually receiving data 
through sensors from the real world. 

• The high demand for robustness and resiliency  
 
Due to these factors, there has been heavy focus on the research and 
development of efficient processors for edge AI and optimization techniques for 
neural networks. This effort can be broken down into two different approaches, 
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creating efficient hardware accelerators and optimizing the architecture of neural 
networks. These explained below: 
 
 

3.6.1 Edge AI Accelerators  

 
In order to support the rise of TinyML applications, many organizations and 
manufacturers have focused on developing efficient hardware architectures and 
chips for Edge AI. These devices have only one purpose, to efficiently tackle the 
challenges of TinyML and bridge the gap between the high computational effort 
required by AI and the low processing capabilities of embedded microprocessors 
and integrated circuits. Along with many new startup companies, almost all major 
competitors in the semiconductor industry, like NVIDA, Google and Intel, have 
already shifted their focus and developed solutions for accelerating inference at 
the edge. Namely, some of the most popular solutions are listed below: 
 
 

• NVIDIA Jetson series 

• AMD EPYC Embedded series 

• Intel’s Movidius Vision Processing Units 

• Qualcom’s DM.2 

• ARM Mali C-55 

• Google Coral Edge TPU 
 
In the scope of this thesis, we provide further information only on Google’s Edge 
TPU, and specifically the Google Coral Dev Board mini single-board computer. 

 

3.6.1.1 Google Coral Dev Board mini 
 
 
The Coral Dev Board mini is a single-board fully-functional embedded system 
that can be used as an evaluation and prototyping device for the Accelerator 
Module, a surface mounted module that incorporates an Edge TPU. The Edge 
TPU is capable of performing 4 tera-operations per second (TOPS), using 0.5 
watts for each TOPS, making it one of the state-of-the-art ML accelerators on 
the edge. 
 
The Board is also a fully-functional embedded system, featuring a Quad-core 
Arm Cortex Architecture and 2 GB RAM. The Board’s OS, Linux Mendel, in 
combination with the Wi-Fi access it offers, provides an easy-to-use 
development and testing environment. Furthermore, the Coral Team has 
provided the PyCoral API (Python), which provides an easier alternative to 
lower-level C++ libraries that are often required for such tasks. 
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Figure 21. Google Coral Edge TPU Dev Board mini 

 
Technical  Specifications: 
 

CPU MediaTek 8167s SoC (Quad-core Arm Cortex-A35) 
GPU IMG PowerVR GE8300 (integrated in SoC) 
ML Accelerator Google Edge TPU coprocessor: 4 TOPS (int8); 2 TOPS per watt 
RAM 2 GB LPDDR3 

Wireless Wi-Fi 5 (802.11a/b/g/n/ac); Bluetooth 5.0 

Audio / Video 3.5mm audio jack; digital PDM microphone; 2.54mm 2-pin 
speaker terminal; micro HDMI (1.4); 24-pin FFC connector for 
MIPI-CSI2 camera (4-lane); 24-pin FFC connector for MIPI-DSI 
display 

Flash Memory 8 GB eMMC 

Input/Output 40-pin GPIO header; 2x USB Type-C (USB 2.0) 
 

Table 2. Dev Board mini specifications 

 
Software: 
 
The board’s OS is a lightweight Debian Linux variation, called Linux Mendel. 
This OS offers most of the commonly used Linux utilities. This fact, in addition 
to the board’s hardware capabilities (Wi-Fi connection, 2GB RAM, enough space 
to store the validation dataset into the board), enables the developers to test 
their models in a fast and easy way.  
 
The Mendel Development Tool (MDT) is a command line interface tool that 
allows easy access to devices running Mendel Linux, both for Windows 10 and 
Linux. After the board’s initial setup, the MDT is used to gain instant access to 
the board’s OS through WiFi, efficiently moving files from a PC to the board & 
vice versa. 
 
PyCoral API 
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The PyCoral API is a small set of convenience functions that initialize the 
TensorFlow Lite Interpreter with the Edge TPU delegate and perform other 
inferencing tasks such as parse a labels file, pre-process input tensors, and post-
process output tensors for common models. A Python script utilizing the PyCoral 
API is used for testing the models on the images already stored in the board. 
 
Despite the Edge TPU’s advantages, it comes with some constraints and/or 
drawbacks, such as: 
 

• Models aiming to run inference on the Edge TPU, must be developed 

completely within TensorFlow’s ecosystem, disabling the developer from 

using the vast selection of available models developed in PyTorch 

without significant effort. 

 

• The Google Coral Edge TPU only supports specific operations (layers). 

Failure to meet these constraints results in a model that utilizes the 

Board’s CPU, adding significant overhead on the inference time. 

 
 

• Models aiming to run inference on the Edge TPU, must have a total size 

less than the Edge TPU’s Cache (<8 MB,) after being converted to 

TFLite and compiled for the Edge TPU. 

 
 
 
 

3.6.3 Edge Optimization Techniques 

Apart from creating efficient devices, there are many techniques and 
conversions that can help reduce a model’s size and latency. Below we present 
some of the most common ones. 
 

3.6.3.1 Pruning  
 
 Neural Network pruning is a process that aims to reduce the size of a model, 
while minimizing the loss in performance and accuracy. It is a method of model 
compression that involves the removal of weights from a pretrained model, 
ultimately leading to networks smaller in terms of size, that require less training 
time and offer faster inference. 
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Figure 22. Visualization of the effects of pruning 

 
The main idea behind pruning, is that while all neurons in an ANN are connected 
with every other neuron in adjacent layers through synapses, every neuron or 
synapse contributes differently in the final outcome. By ranking the contribution 
of the above, we can reduce the total size of the network by removing the lowest 
scoring neurons and synapses, while retaining a healthy size – accuracy 
balance. 
 
Pruning techniques fall into two major categories, structured and unstructured. 
Unstructured pruning commonly involves directly removing parameters in an 
ANN, by setting their weighs to zero. This is a fine-grain approach that allows 
the removal of very specific parameters, even within convolution kernels. The 
disadvantage is that networks pruned this way contain many weights with zero 
value, and these so called “sparse” networks do not offer significant performance 
increase on most hardware architectures. On the other hand, structured pruning 
techniques aim to remove whole structures from the network, such as feature 
maps. This approach has a stronger impact on the resulting network, but should 
always be used with caution, as it can sometimes remove whole layers, leading 
to unconnected synapses. 
 
Last but not least, before pruning there are various pruning criteria in order to 
decide the relative importance of the parameters. The weight magnitude 
criterion, that removes weights with the smallest absolute value, is one of the 
most commonly used and efficient of the aforementioned criteria used, even 
though it is not easy to implement in a structured way. Gradient magnitude 
pruning follows the same principle, but this time removing the parameters with 
the smallest gradient.  
 

3.6.3.2 Quantization 
 
Briefly, quantization is a process of converting weights and biases into a lower 
precision format in order to reduce the total storage size of a model. The 
parameters of an ANN are more often than not in a standard 32-bit floating-point 
arithmetic format. By converting these parameters into a lower precision format, 
like 16-bit floating point or 8-bit integers, we can effectively lower the storage 
size required for the model, reduce memory consumption and reduce latency 
during inference.  
 



36 
 

 
 

 
Figure 23. 32 Float format 

 
 
For example, a single precision, or 32-bit floating point number can be 
represented as shown in Figure 23 where the actual value can be calculated in 
the decimal format with the following formula: 
 
 

(−1)𝑠𝑖𝑔𝑛 × (1 + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−𝑏𝑖𝑎𝑠 (10) 

 

 
During quantization, for example 8-bit quantization, we can approximate this 
floating-point binary number into an 8-bit integer by using the follow equation: 
 

 
 

𝑖𝑛𝑡8𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑙𝑖𝑝(𝑟𝑜𝑢𝑛𝑑 (
𝑟𝑒𝑎𝑙𝑣𝑎𝑙𝑢𝑒

𝑠𝑐𝑎𝑙𝑒
) (11) 

 
Where the real value can be calculated as: 
 
 
 

𝑟𝑒𝑎𝑙𝑣𝑎𝑙𝑢𝑒 = (𝑖𝑛𝑡8𝑣𝑎𝑙𝑢𝑒 − 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡) × 𝑠𝑐𝑎𝑙𝑒 (12) 
 

 
 
The result is an 8-bit integer in the range of [-128,127]. By lowering the precision, 
a model’s size can be reduced up to four times. This performance increase 
comes with the danger of accuracy loss. 
 
There are two commonly used kinds of quantization, post-training quantization 
and quantization-aware training. With post-training quantization, as the name 
implies, the neural network is trained with 32-bit floating point parameters and 
then quantized. Though this approach is easier, the parameters after 
quantization are frozen and there is no way to improve accumulative errors 
caused to lowering the precision. On the other hand, quantization-aware training 
tries to compensate for the quantization-related errors by utilizing the quantized 
weights during forward propagation. 
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3.6.3.3 Weight Clustering 
 
Weight Clustering, or weight sharing, is an optimization technique that aims to 
reduce the total memory size of a model by reducing the number of unique 
weights in it. The first step in weight clustering is running a clustering algorithm 
over the weights of a specific layer, in order to obtain the desired number of 
centroids. Similar weights are replaced by the centroid’s index they correspond 
to. The result is that instead of the weights, we can now store just an index table 
and a set of indices. 
 

 
Figure 24. Weight clustering visualization 

 
Weight clustering has an immediate advantage in reducing model storage and 
transfer size across serialization formats, as a model with shared parameters 
has a much higher compression rate than one without 
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4. Convolutional Neural Networks for Edge Applications 

 
 

4.1 MobileNetV2  

 
 
The MobileNet family of neural networks, is a well-established series of 
convolutional neural networks developed by Google, with the aim of improving 
performance and reducing inference time in mobile applications. MobileNet V1 
introduced the concept of depthwise separable convolutions. Mobilenet V2 
superseded V1, still utilizing the same type of depthwise separable convolutions 
but also introducing a new module called Inverted Residuals and Linear 
Bottlenecks. 
 
For our use case we selected the MobileNet V2 CNN that was released in 2018. 
Even though by this time, MobileNet V3 has already succeeded it, according to 
Google Coral’s official benchmarks, MobileNet V2 seems to outperform its 
successor in terms of inference time.  This difference in performance derives 
primarily from two factors: 
 

1. MobileNet V3 makes use of the hard-swish activation function, which is 
not supported from the Edge TPU processor. 
 

2. Like many of the state-of-the-art models, MobileNetV3 utilizes channel 
attention mechanisms, specifically squeeze-excitation modules. During 
our experimentation we concluded that these modules perform poorly on 
the Edge TPU processor in terms of runtime. 

 
 

4.1.1 Inverted Residuals 

The term residuals describe skip connections between the start and end of 
convolutional blocks. By using these skip connections, the CNN is able to access 
earlier activations that have not been modified by the convolutional block, 
ultimately improving performance the deeper the network gets.  
 
Usual residual blocks followed a wide-narrow-wide approach, utilizing different 
kernel sizes in order to squeeze or expand the parameters in the channel 
dimension.  
 

 
Figure 25. Conventional residual Block 
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MobileNetV2 introduced residual blocks following a narrow-wide-narrow 
approach, which, in contrast to the previous approach, carry a reduced number 
of parameters. 
 

 
Figure 26. MobileNetV2 residual block 

 

4.1.2 Linear Bottlenecks    

 
Inverted residuals introduced skip connections after squeezed layers instead of 
expanded. This fact, in combination with the commonly used ReLU activation 
function, which discards values lower than zero, had a negative impact in the 
performance of the network. For this reason, the researchers introduced linear 
bottlenecks, where they essentially discard the activation function after the last 
convolutional layer of a block.  
 
 
 

4.1.3 Architecture 

 
Using the modules we mentioned above, MobileNetV2’s convolutional blocks 
can be seen in Figure 27.  
 

 
Figure 27. MobileNetV2 bottlenecks 
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The whole architecture can be seen in Figure 28, where 𝑡 is the expansion factor, 
𝑐 the number of output channels, 𝑛 is the repeating number and 𝑠 the stride. 
Convolutional layers utilize a 3x3 kernel. The width of the network can also be 
modified by specifying a width multiplier. 
 

 
Figure 28. MobileNetV2 architecture 

 
 
MobileNetV2 with a width multiplier set to 1 and input size 224x224, requires a 
total of 300 million multiply-adds and has 3.4 million parameters. The network 
achieved a top-1 accuracy of 72% on the ImageNet classification task. 
 
 
 

4.2 GhostNet 

GhostNet: More Features from Cheap Operations was introduced in CVPR 2020 
and was one of the most notable breakthroughs that year. The idea behind this 
paper is that many of the feature maps generated from a convolutional layer are 
redundant or show a high degree of similarity. With this in mind, the researchers 
proposed an alternative method to calculate a percentage of the total feature 
maps, which requires less computational effort than the standard convolution. 
Using these methods and the MobileNetV3 CNN as a backbone, they presented 
the GhostNet CNN. 
 

4.2.1 Feature Map Redundancy and the GhostNet Module 

 
Taking a closer look at the feature maps generated by a convolutional layer in 
Figure 29, researchers noticed that there many similar copies of unique intrinsic 
feature maps generated through the computationally expensive convolution. 
They called these feature maps “Ghost Feature Maps” and they proposed a way 
to generate them using a cheap operation, the Ghost Module. 
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Figure 29. GhostNet feature maps 

 
 
The main goal of the Ghost Module is to replace the standard convolutional 
layer and reduce the FLOPS required. Assuming the input and output tensors 
of a convolutional layer, with 𝐶 and 𝐶′ channels respectively, the Ghost Module 
works as follows: 
 
 

1. Compute a percentage 𝑥% of the desired output’s feature maps, 𝑥𝐶′,  
through standard convolution. Pass the output through a batch 
normalization layer and a ReLU activation function. 

2. Using the output of step one as input, compute the rest of the feature 
maps, (1 − 𝑥)𝐶′, through a depthwise convolution. Again, pass the 
output through a batch normalization layer and a ReLU activation 
function. 

3. Stack the results of the two steps along the channel axis. 
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Figure 30. Ghost module 

 

4.2.2 Architecture 

 
Utilizing the Ghost Module, the researchers proposed a new backbone 
architecture called GhostNet. This architecture is essentially a “ghosted” 
MobileNetV3, where the bottleneck is replaced by the Ghost Bottleneck, as seen 
in Figure 31.  
 

 
Figure 31. Ghost Bottlenecks 

 
 
GhostNet is comprised from a stem convolution layer, which was not replaced, 
several grouped in stages Ghost Bottlenecks following an incrementing number 
of channels and a classifier head. In all the Ghost Bottlenecks a stride of 1 was 
applied, except for the last bottleneck where the stride 2 design was used. For 
some residual connections in the Ghost bottlenecks the developers also used 
Squeeze-Excitation (SE) blocks to provide channel attention, thus improving 
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accuracy with a small computational overhead. The whole architecture can be 
better inspected in Figure 32. 
 

 
Figure 32. GhostNet architecture 

 
 

4.2.3 GhostNetEdgeTPU 

In addition to the original GhostNet, we also introduce a modified variation of it, 
called GhostNetEdgeTPU, which is more suitable for inference on edge devices. 
Specifically, retaining the original architecture, we remove the channel attention 
modules, squeeze-excitation modules, and we replace the ReLU activation 
function with ReLU6. 
 

4.3 MobileNetEdgeTPU V2  

 
Google has developed MobileNetEdgeTPUV2 as a set of models for carrying 
out efficient on-device inference. This particular architecture is the outcome of 
using Neural Architecture Search (NAS), which is a method for automatically 
designing neural network architectures that are efficient. One of the important 
aspects of using NAS involves creating a "search space" containing various 
potential modules that can be evaluated based on desired metrics, ultimately 
leading to the final architecture. 
 

4.3.1 Fused Inverted Bottlenecks 

 
One widely-used building block in neural networks for various on-device vision 
tasks is the Inverted Bottleneck (IBN), as explained in chapter 4.1. The IBN block 
has several variants, each with different tradeoffs, and is built using regular 
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convolution and depthwise convolution layers. While IBNs with depthwise 
convolution have been conventionally used in mobile vision models due to their 
low computational complexity, fused-IBNs, wherein depthwise convolution is 
replaced by a regular convolution, have been shown to improve the accuracy 
and latency of image classification models on TPU. 
 

 
Figure 33. Inverted Bottleneck variants 

 
 
However, fused-IBNs, in contrast to the depthwise-IBN, come with high 
computational and memory requirements, especially for convolutional layers at 
the latter stages of a neural network. In order to overcome this obstacle, the 
researchers introduced IBNs that utilize grouped convolutions, further expanding 
the search space and improving model flexibility. Grouped convolutions 
essentially slice the features maps into smaller subsets before performing the 
convolution. This results in significantly reduced computational cost. These 
blocks, also called Group Convolution-based IBNs (GC-IBNs), provide a way to 
balance the trade-off between model quality and latency. 
 

4.3.2 Architecture 

 
Which IBN variant to use at which stage of a deep neural network depends on 
the latency on the target hardware and the performance of the resulting neural 
network on the given task. We construct a search space that includes all of these 
different IBN variants and use NAS to discover neural networks for the image 
classification task that optimize the classification accuracy at a desired latency 
on TPU. The resulting MobileNetEdgeTPUV2 model family improves the 
accuracy at a given latency (or latency at a desired accuracy) compared to the 
existing on-device models when run on the TPU. MobileNetEdgeTPUV2 also 
outperforms their predecessor, MobileNetEdgeTPU, the image classification 
models designed for the previous generation of the TPU. 
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Figure 34. MobileNetEdgeTPUV2 performance comparison on Pixel 6 CPU 

 
MobileNetEdgeTPUV2 models are built using blocks that also improve the 
latency/accuracy tradeoff on other compute elements in the Google Tensor SoC, 
such as the CPU. Unlike accelerators such as the TPU, CPUs show a stronger 
correlation between the number of multiply-and-accumulate operations in the 
neural network and latency. GC-IBNs tend to have fewer multiply-and-
accumulate operations than fused-IBNs, which leads MobileNetEdgeTPUV2 to 
outperform other models even on Pixel 6 CPU. 
 
 

4.4 EfficientNet-Lite 

The EfficientNet family of CNNs is considered state-of-the-art since its 
introduction by Google AI in 2019. The main goal of the EfficientNet is to provide 
a method of scaling model architectures in a principled and effective manner, in 
contrast to older techniques that required manual oversight. To achieve this, the 
authors introduced compound coefficient scaling and based on it, seven different 
model variants - EfficientNet B0-B7 - that obtained state-of-the-art performance 
on the ImageNet challenge. 
 
 

4.4.1 Compound Coefficient Scaling 

 
In search for an efficient method of compound scaling, the researchers studied 
the impact of different scaling techniques on model performance. Ultimately, 
they reached the conclusion that even though scaling single dimensions can 
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help improve performance, balancing the scaling across all three dimensions-
width, depth and resolution- yielded better performance overall. 
 

 
Figure 35. Single scaling options vs. Compound Scaling 

 
 
In order to keep the scaling balanced, a constant ratio 𝜑 representing the 
increase in computational resource to the network, also called compound 
coefficient, is used, in a way that: 
 
 

𝑑𝑒𝑝𝑡ℎ =  𝑎𝜑 ,    𝑤𝑖𝑑𝑡ℎ =  𝛽𝜑,  𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝛾𝜑 
 
 

So that: 
 
 

𝛼 ∗ 𝛽2 ∗ 𝛾2 ≈ 2 (13) 

 
 
 
Where the variables 𝛼, 𝛽, 𝛾 ≥ 1 are determined using a grid search algorithm.  
The compound scaling method is justified by the intuition that if the input image 
is bigger, then the network needs more layers to increase the receptive field 
and more channels to capture more fine-grained patterns on the bigger image. 
 

4.4.2 EfficientNet-Lite 

 
Following the success of the EfficientNet classification models, Google released 
the EfficieNet-Lite family of CNNs, a variation of the original models deisgned 
for performance on mobile CPUs, GPUs and EdgeTPUs.  
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4.4.2.1 Architecture 
 
The base EfficientNet-B0 network is based on the inverted bottleneck residual 
blocks of MobileNetV2, as described previously.  
 

 
Figure 36. EfficientNetB0 architecture 

     
 
EfficientNet-Lite, builds further on this model, making it more suitable for mobile 
devices by introducing ReLU6 activation functions and removing the squeeze-
excitation blocks. 
 
 

4.5 Ensemble Models 

In addition to the rest of the CNNs presented on this chapter, we also introduce 
two more models base on Ensemble Learning. Since ensemble models 
comprise of a number of smaller in size models, they tend to be bigger in terms 
of parameters, but also more efficient. For these reasons, they provide a good 
measure for the size-accuracy trade-off, but also offer insight on how the width 
and depth of a model affect the inference time on the EdgeTPU. 
 
 

4.5.1 Ensemble Model 1 

The first ensemble model follows a more traditional architecture, by utilizing a 
combination of the previously described CNN architectures.  
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Figure 37. Building blocks of ensemble model 1 

 
In this approach, three of the previously described models are used as feature 
vectors in order to extract critical information from the input images. Their results 
are later combined and passed through a final convolution and a classifier.  
 
Specifically, the three models used are the MobileNetv2, the EfficientNetLiteB0 
and the MobileNetEdgeTPUv2. These models are already individually pretrained 
on the Kvasir-v2 dataset.  
 
For the purpose of utilizing them as feature vectors, the final convolution and the 
classifier of each model are being stripped and the remaining layers are frozen 
during the final training procedure, where we aim only to train the combined 
convolution and the final classifier. 
 
 
 

4.5.2 Ensemble Model 2 

Τhe second model proposed comes after having trained and evaluated all the 
previous models. Its purpose is to address weaknesses, which were identified 
and found to be common to all previous models. Further insight into the logic 
behind this model is provided in Chapter 6. 
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Figure 38. Building blocks of ensemble model 2 

 
Its architecture is similar to the previous ensemble model. It consists of two 
MobileNetV2 models that are utilized as feature vectors. They share a common 
input and after stripping the final layers of the base models, their outputs are 
combined at the final stage and pass through a convolutional layer and the 
classifier.  
 
It is important to note that in contrast to the previous ensemble model, due to 
several differences in this approach that will be further explained in Chapter 5, 
these models are trained from scratch. 
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5. Methodology 

 

5.1 Data Pre-processing  

The image pre-processing pipeline consists of a total of four steps: 
 

1. Split images into training/test/validation 
2. Perform Modular Adaptive Pre-processing for GI tract images (MAPGI) 
3. Resize and rescale the images appropriately for training 
4. Increase the total number of images through data augmentation 

 
These steps are explained in detail on the following sections. 
 

5.1.1 Split Images 

 

5.1.1.1 Default Process 
 
The dataset includes 8.000 images in total. For training purposes, these images 
have been split into training – validation – test subsets with a ratio of 0.765 – 
0.135 – 0.1 respectively. This results in a training set of 6.120 images, 765 of 
each class, a validation set of 1.080 images, or 135 of each class and a test set 
of 800 images, 100 from each class respectively. 
 

5.1.1.2 Special Case  
 
Ensemble model 2 is considered a special case and requires a different splitting 
method. The two MobileNetV2 networks that comprise the ensemble model are 
trained on two different subsets of the Kvasir v2 dataset. We refer to these 
datasets as 3-class dataset and 7-class dataset.  
 
The 3-class dataset consists of a total of three classes, two originally found in 
the Kvsair v2 dataset, the Esophagitis and the Normal Z-line classes, and a new 
class called Other, which consists of random samples from the six remaining 
classes. The 7-class dataset follows the same logic, with the difference that it 
consists of a total of seven classes. These are six classes of the original dataset, 
specifically all classes except the Esophagitis and Normal Z-line classes. The 
latter two are randomly sampled and combined into a new class called Other. 
Each class from both subsets has a total of 1000 images that are splatted into 
train-validation-test with ratio 0.765 – 0.135 – 0.1 respectively. 
 

5.1.2 MAPGI Framework 

 
The Modular Adaptive Preprocessing for Gastrointestinal Tract images 
framework, or MAPGI, was introduced by T.Cogan and M.Cogan [13] as a way 
to improve the performance of CNNs on the classification task of the Kvasir v2 
dataset. Within the framework, images are represented in the YUV color space, 
instead of the common RGB, because the Y component solely encodes image 
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luminance, and as such it can be treated as a grayscale image itself, making the 
framework robust against different color spaces.  
 
The framework consists of a total of 5 steps, which are described in detail in the 
following sections. 
 

 
Figure 39 MAPGI framework's steps: (a) Masking, (b) Crop, (c) MAVGA, (d) Lowpass Filter, (e) Resize & 

Rescale 

 

5.1.2.1 Masking 
 
As mentioned before, many images contain a small box on the left bottom 
corner, depicting the position of the endoscope. This information is not always 
available and can mislead ANNs into learning from information that will not be 
available in the future, negatively impacting their robustness. For this reason, at 
the first stage of the pre-processing framework, an image processing algorithm 
has been used in order to mask the aforementioned box. Because the position 
and the colour of the box are constants, this algorithm detects the box by 
measuring pixel intensity on all three channels and then proceeds to mask the 
pixels detected. 
 
 

5.1.2.2 Intelligent Cropping 
 
On the second step, we appropriately crop the images in order to reduce areas 
of the image that contain no valuable information for the ANNs, like black edges 
etc. This procedure is performed by checking the mean pixel intensity for row 
and columns, starting from all the four borders of the image. Every row or column 
that has a mean pixel intensity lower than a user specified threshold, is cropped. 
The cropping continues until a row of pixels is met, which has a pixel intensity 
higher than the threshold specified. 
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5.1.2.3 MAVGA Module 
 
 
The MAVGA Module, or Mean-Approximated Gamma Value Adjustment 
Μodule, is a function for performing contrast enhancement via gamma 
correction, that was proposed by the same authors, instead of most commonly 
used methods, such as Contrast-Limited Adaptive Histogram Equalization.  
 
The MAVGA Module uses recursive method in order to perform gamma 
correction. At first, we compare the mean pixel value of an image to the desired 
mean pixel value, in our case 90 ± 1. After this, the algorithm estimated a 
gamma value needed in order to correct the image’s brightness, and then 
applies a gamma correction. This procedure is repeated until the mean pixel 
value is in the desired range. Specifically, let 𝑏 be the desired mean pixel value 
then we want: 
 
 

1

𝑛
∑ (

𝐼𝑖

255
)

𝜆

= 𝑏

𝑛

𝑖=1

(15) 

 
 
Where 𝐼𝑖 represents pixel values and 𝜆 is the desired gamma correction 
coefficient. Replacing the pixels by the average pixel value of the image, 𝑎, and 

solving for 𝜆: 
 

𝜆 =
ln 𝑏 − ln 255

ln 𝑎 − ln 255
(16) 

 
 
The process works recursively as follows: 
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5.1.2.4 Lowpass filter 
 
At the last step of the MAPGI framework, we use a simple low-pass filter in order 
to reduce out-of-band noise. This filtering is only applied to the luminance 
channel. The filter is performed by convolving a kernel {[0.1, 0.1, 0.1], [0.1, 1, 
0.1], [0.1, 0.1, 0.1]}/1.8 kernel through the entire image. 
 
 
 

5.1.3 Resize & Rescale 

 
As mentioned before, the images are in the RGB format with image resolutions 
that vary from 720x576 to 1920x1072. Following the MAPGI framework, the 
images are resized down to 224x224, due to the fact that this is the native input 
size for many of the CNNs utilized. Another vital step is the rescaling of the 
images. In the RGB format every pixel is in the range [0,255] but before using 
them for training, we rescale them so that every pixel has values in the range 
[0,1], or [-1,1] in cases concerning the EfficientNet family of CNNs. 
 
 
 

5.1.4 Image Augmentation 

 
In order to increase the effective size of the dataset and counter overfitting, we 
used a set of image augmentation transformations that seemed appropriated for 
our use case. These transformations are the following: 
 

• Random Flip, Horizontal and Vertical 

• Random Rotation with rotation factor 0.45 

• Random Contrast with contrast factor 0.30 

• Random Zoom with zoom factor 0.30 
 

 
Figure 40. Image Augmentation example 
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5.2 Training Configuration 

 

5.2.1 Training Setup 

 
All data and image processing scripts have been implemented using the Python 
v.3.9.0 programming language. Specifically for the development of the MAPGI 
framework, the OpenCV library has been used. All model architectures have 
been implemented using the Keras and TensorFlow 2.7.0. 
 
CNN models have been trained and evaluated on a desktop consisting of an 
AMD Ryzen 5 3600X 6-core processor, 16 GB DDR4 RAM and a RTX 3060Ti 
NVIDIA GPU. 
 
 

5.2.2 Training Parameters 

 
Below, we briefly present the training parameters as set before training: 
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Table 3 Training Parameters 
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5.3 Post Training Optimization 

 

5.3.1 Post Training Quantization  

 
Following training, optimization techniques for edge inference and model 
compression take place for all CNNs. This includes the methods explained in Ch 
2., like quantization and pruning. This process leads to models in TensorFlow 
Lite format, which are suitable for edge applications. 
 
 

5.3.2 Compilation for the Edge TPU processor 

In order to prepare the quantized models for inference on Google Coral Edge 
TPU, they have to be compiled. During this procedure, all model operations are 
mapped out and optimized for the edge accelerator. 
 

 
Figure 41. Edge TPU compiler report 

 
One of the main considerations of this process is the utilization of the Edge 
TPU’s Cache. If the converted model’s size is small enough and all operations 
are supported, the compiler will map all operations to the aforementioned cache, 
improving the inference time. Bigger size models, or models with not allowed 
operations, can still run on the processor, but will use the off-chip memory. In 
this case, the inference time suffers significantly 
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5.4 Inference 

 
 
In order to conduct inference, we setup the Google Coral Dev Board mini. Then 
we proceed to download all the compiled models, the test images as well as a 
benchmark model. Google Coral’s website offers a variety of already tested 
models with their benchmarks. In order to establish a more accurate baseline for 
our tests, we downloaded their official EfficientNet-EdgeTpu-S model and 
compared the inference time with their benchmarks. This is necessary in order 
to better identify the impact of the differences between the Google Coral Dev 
Board and its mini version. Even though the AI accelerator is exactly the same 
between these two versions, the mini version utilizes a USB connection between 
the edge TPU and the board’s CPU, in contrast to the PCI-E connection of the 
original board. Additionally, the mini version has less powerful system-on-
module (SoC) with a dual-core processor, that might affect the time required for 
processing images through the MAPGI network. 
 
 
Utilizing all the above, we test the quantized models directly on the Board, in 
order to compare their inference time. We also calculate the average time the 
MAPGI pre-processing framework requires for the processing of one image on 
the Edge TPU. 
 
 
 

5.5 Evaluation 

 

5.5.1 Metrics 

 
In order to evaluate the models, we use all the suggested metrics from the 
original Kvasir v2 paper. For this reason, we conduct inference using the test 
images that have been hidden from the models and collect the following basic 
metrics: 
 
True Positive (TP): The number of correctly classified positive images. 
 
True Negative (TN): The number of correctly classified negative images. 
 
False Positive (FP): The number of falsely classified positive images. 
 
False Negative (FN): The number of falsely classified negative images. 
 
 
It is important to note that these basics metrics are extracted for each class 
separately, since the task at hand involves multi-class classification. For a single 
class, positive is considered a sample belonging to the specific class, while 
negative is considered a sample belonging to any other class. 
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In the next step we calculate the following advanced metrics for each class, 
based on the previous ones: 
 
 
 
 
Accuracy is the percentage of correctly classified images. 
 
  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

# 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙
(17) 

 
 
 
Precision, also called the positive predictive value, represents the ratio of 
correctly classified positive samples among all returned values. 
 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

# 𝑎𝑙𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(18) 

 
 
 
Recall also known as sensitivity, probability of detection or true positive rate, 
represents the ratio of samples that are classified as positive among all positive 
samples. 
 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

# 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(19) 

 
 
 
Specificity, or true negative rate, shows the ratio of the negatives that are 
correctly classified as such. 
 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

# 𝑎𝑙𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
(20) 

 
 
 
 
 
 
Matthew Correlation Coefficient (MCC) takes into account true and false 
positives and negatives, and is an efficient metric for unbalanced classes. 
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𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(21) 

 
 
 
 
F1 Score is a measure of test’s accuracy through the calculation of the harmonic 
mean of the precision and recall. 
 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(22) 

 
 
 
After obtaining these for each individual class, we then calculate the weighted 
average to procure the final results for a model.  
 
In addition to the above metrics, we also take into consideration the total 
inference time as measured on the Edge TPU, the size of a quantized model 
and the total count of its parameters. These added metrics are of crucial 
importance for edge applications. 
 

5.5.2 Explainability 

Saliency maps are not a metric but a group of visualization techniques used in 
the field of explainable artificial intelligence to help understand the features of an 
image that a convolutional neural network is using to make its predictions. In a 
CNN, each layer applies a set of filters to the input image, creating a feature map 
that highlights certain features or patterns in the image. Saliency maps use this 
information to create a heatmap that indicates the importance of different regions 
of the input image for the CNN's prediction. Saliency maps are typically 
generated by computing the gradient of the output of the CNN with respect to 
the input image, and then normalizing the gradients to highlight the most 
important regions of the image. This allows us to see which parts of the image 
the network is paying the most attention to when making its prediction, which 
can help provide insights into how the network is making its decision. By 
examining the saliency map, we can identify the most important features of an 
image for a given classification task. This can help us better understand how the 
neural network is making its predictions, which in turn can help us improve the 
network's performance, troubleshoot issues, and ensure that the network is 
making decisions in a way that aligns with our expectations. 
 
 In Chapter 6 we will use one of the simplest techniques called Gradient-based 
Saliency (Vanilla Saliency) in order to provide insight and better understand our 
models and input data. Vanilla Saliency works by computing the gradient of the 
output class score with respect to the input image pixels. The gradient values 
reflect how much the output score would change if a small perturbation is made 
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to a specific pixel in the input image. By assigning the absolute value of these 
gradient values to each pixel, a saliency map is obtained that indicates which 
parts of the input image are most important to the model's decision. Delving 
deeper into saliency maps and explainability in general, is considered beyond 
the scope of this thesis. 
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6. Results 

Following the steps described in the previous chapter, we present the following 
results. 
 

6.1 Model Results 

These results refer to the trained CNNs after conducting inference on the 800 
images kept aside for test purposes. Table 4 shows the metrics for the models 
before quantization, while they are still in Floating Point 32-bit format. The 
training curves for validation accuracy and loss for each base model can be 
found in the Appendix. 
 
 

Float32 Model Accuracy Precision Recall Specificity F1 MCC 

MobileNetv2 91.87% 91.96% 91.87% 98.83% 91.88% 90.72% 

GhostNet 84.25% 84.23% 84.25% 97.75% 84.20% 82.01% 

GhostNetEdgeTPU 86.00% 86.22% 86.00% 98.83% 91.88% 84.04% 

MobileNetEdgeTPUv2 90.75% 90.79% 90.75% 98.67% 90.71% 89.44% 

EfficientNetLiteB0 90.37% 90.64% 93.00% 98.82% 90.31% 89.05% 

Ensemble Model 1 93.00% 93.02% 93.00% 99.00% 92.99% 92.00% 

Ensemble Model 2 91.75% 91.85% 91.75% 98.82% 91.71% 90.59% 

Table 4. Model results 

 
 
After quantizing the models in the integer 8-bit format, we repeat the tests and 
obtain the following metrics, as shown in Table 5. 
 
 
 

Quantized Model Accuracy Precision Recall Specificity F1 MCC 

MobileNetV2 92.75% 92.77% 92.75% 98.96% 92.73% 91.72% 

GhostNet 82.37% 82.66% 82.37% 97.48% 82.35% 79.90% 

GhostNetEdgeTPU 85.62% 85.84% 85.62% 97.94% 85.58% 83.61% 

MobileNetEdgeTPUv2 90.00% 90.06% 90.00% 98.57% 89.98% 88.58% 

EfficientNetLiteB0 89.87% 90.28% 89.87% 98.55% 89.83% 88.50% 

Ensemble Model 1 93.12% 93.16% 93.12% 99.01% 93.11% 92.15% 

Ensemble Model 2 92.00% 92.07% 92.00% 98.85% 91.98% 90.87% 
Table 5. Quantized model results 
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For the purpose of comparing the models and drawing conclusions, we also 
present the total memory, as well as the parameter count and the floating-point 
operations required from each model, as shown in Table 6. 
 
 

Model 
Float 
Model 

Size (MB) 

Quantized 
Model Size 

(MB) 

Compiled 
Model Size 

(MB) 
Parameters FLOPS 

MobileNetV2 
21.3  2.5 2.8 2.234.112 612.746.728 

GhostNet 
36.3 4.2 5.2 3.899.816 266.165.256 

GhostNetEdgeTPU 
25.0 2.6 3.3 2.429.872 284.026.128 

MobileNetEdgeTPUv2 
28.4 2.8 3.2 2.528.168 1.031.731.120 

EfficientNetLiteB0 
30.0 3.7 4.3 3.423.264 781.709.896 

Ensemble Model 1 
65.0 11.1 12.4 10.221.576 ~2.400.000.000 

Ensemble Model 2 
26.9 5.1 5.6 4.528.586 1.025.303.256 

Table 6. Model storage and computational requirements 

 
Last but not least, we evaluate the inference time of each model, as well as the 
average time required to process one image with the MAPGI framework, on the 
Coral Edge TPU. The results are shown in Table 7. 
 
 

Model EdgeTPU Runtime (ms) 

MobileNetV2 
14.87 

GhostNet 
36.73 

GhostNetEdgeTPU 
20.21 

MobileNetEdgeTPUv2 
16.63 

EfficientNetLiteB0 
16.12 

Ensemble Model 1 
176.39 

Ensemble Model 2 
22.56 

MAPGI Framework <1 
Table 7. Model inference time on the Edge TPU 
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6.2 Discussion & Conclusions 

 
Before diving into the specific results for each model and performing the 
comparison between them, we first want to point out the main observation that 
is shared through all models. Even though the top-1 accuracy of the CNNs tested 
ranges from 82% up to 93%, all models showcase a top-2 accuracy >=98%. 
Combining this information with the confusion matrices as shown in Figures 42 
and Figure 42, we conclude that the misclassifications between the Esophagitis 
and Z-line classes are responsible for the significant part of the errors occurred 
during inference.  
 
 
 

 
Figure 42 Ensemble Model 2 Confusion Matrix 
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Figure 43 MobileNetV2 Confusion Matrix 

 
 
 
This conclusion also highlights the thought process behind the introduction of 
Ensemble Model 2, as an effort to utilize a dedicated network in order to reduce 
the misclassifications between these aforementioned problematic classes. 
However, even a MobileNetV2 trained on the 3-class dataset showcased the 
same behavior and results, leaving us to believe that the learning capacity of 
these lightweight CNN’s cannot further adapt and better learn to differentiate 
these two classes.  
 
 
To further understand and visualize the difficulties of Kvasir V2 dataset, we also 
present the Gradient based Saliency, or Vanilla Saliency, maps produced from 
MobileNetV2 inference. It is made apparent that model extracts regions of 
interest different than the human eye. These regions, apart from the center of 
the pictures where most of the landmarks can be found, also include analysis of 
the inner walls of the GI tract. A combination of these results in the efficient 
classification of the test images. Closer depiction also confirms the similarities 
between the Esophagitis and Z-line gradient heatmaps. It’s also made apparent 
that the CNN struggles to correctly identify regions of interest when it comes to 
these classes. 
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Dyed Lifted Polyps 

 
Pylorus 

 
 

 
 

 
Dyed Resection Margins Z-line 
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Ulcerative Colitis 

  
 

 
Figure 44. Vanilla Saliency map samples for each class 

 
 
Most Correctly Classified Class: Pylorus 
 

Original Image Saliency Map 
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Figure 45. Vanilla Saliency map samples for Pylorus Class 

 
Most Misclassified Classes: Z-line – Esophagitis 
 
Z-Line 

Original Image Z-Line Saliency Map 

  

  
Figure 46. Vanilla Saliency map samples for Z-Line Class 

 
 
Esophagitis 

Original Image Z-Line Saliency Map 
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Figure 47. Vanilla Saliency map samples for Esophagitis Class 

 
 
 
In terms of specific model results, Ensemble Model 1 scored the best result with 
an accuracy of 93.12%. MobileNetV2 follows closely with a quantized accuracy 
of 92.75%. It is notable that both Ensemble Model’s 1 and MobileNet’s accuracy 
increased after the quantization process, an uncommon occurrence that 
presents when the rounding of the network’s weights after quantization leads to 
a model that generalizes better on the data. Taking into account the overall 
model size and inference time, MobileNetV2 is the best performing network. 
Even though it scored slightly less on most metrics than Ensemble Model 1, it 
achieved the best inference time at 14.87ms with only 1/5th of the total parameter 
count, while the ensemble model showcased the worst inference time of 
176.39ms. Such difference on runtime occurs due to the fact that the ensemble 
model’s compiled size slightly exceeds the Edge TPU’s cache size by 0.4 MB, 
but comes to show the great effect it has on computation time. 
 
The MobileNetEdgeTPUv2 and EfficientNetLiteB0 CNNs showcased similar 
overall performance, both in accuracy and inference time, but still lacking behind 
in comparison with MobileNetV2 in terms of parameters-to-runtime ratio. The 
fact that MobileNetEdgeTPUv2 is slower than the original MobileNetV2 on the 
Coral Edge TPU, even though it is much faster on a Google Pixel 6 according to 
its authors, further goes to highlight the importance of matching suitable neural 
network and hardware architectures. 
 
Ensemble Model 2 performed poorly considering the increase in all aspects, 
from parameter count to model size and FLOPS, but was an informative tool that 
provided deep insights into the nature of the dataset. 
 
A case of great interest is that of GhostNet and GhostNetEdgeTPU. First of all, 
it is important to mention that these two models are the only original networks 
that were trained from scratch, as there were no pretrained weights available for 
the TensorFlow ecosystem, thus falling of behind significantly in accuracy and 
related metrics. However, these models come with the lowest requirements in 
FLOPs, requiring less than half of that of MobileNetV2. Unfortunately, this 
difference does not impact the inference time as expected. The reason behind 
is that the Ghost Modules utilize depthwise convolutions much more often than 
the rest of the architectures, and this operation is not as optimized on the edge 
accelerator than other variants. Finally, the removal of the channel attention 
mechanisms and the introduction of the ReLU-6 activation function led to 
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significant improvements. The GhostNetEdgeTPU model improved in all metrics 
in comparison with the original architecture. Most importantly the inference 
runtime on the accelerator dropped from 36ms down to 20ms, confirming the 
fact that squeeze-excitation modules are not a good match for this specific 
hardware architecture. 
 
Last but not least, there is a significant difference between the inference time of 
our MobileNetV2 and Google Coral’s official benchmark. Specifically, the official 
benchmarks claim a total inference time of 2.6ms, in contrast to our 14.87ms. 
This is only logical considering the differences in the hardware and the 
implementation. This gap occurs due to two main factors. First, the Dev Board 
mini we used utilizes a USB connection between the Edge TPU and the board’s 
CPU, in contrast to the PCI-E connection of the original Board. This adds 
significant overhead when transferring data from and to the accelerator. The 
other factor is that the official models are tested using TensorFlow’s low level 
C++ API, whereas we used Python, which lacks in terms of performance. 
 
To summarize some of the conclusions of this thesis: 
 
 

1. The Kvasir v2 dataset, though small, requires careful preprocessing and 
handling, in order to minimize the errors presented mainly between the 
Esophagitis and Z-Line classes. 

 
2. MobileNetV2 was the best model put into test, reaching accuracy levels 

lower than those presented in literature, but still comparable, and it does 
so with only a fraction of the parameters and computational effort.  With 
inference time less than 15ms, in addition to the total time required to 
process one image with the MAPGI framework, which is less than 1ms, 
we can conservatively expect more than 45 FPS throughput on the 
Google Coral Dev Board mini. 
 

3. Even though the Google Coral Edge TPU is a powerful edge accelerator 
that can effectively promote edge applications, like many of its 
competitors it has not yet reached its full potential in terms of compatibility 
and optimization regarding the inference of CNNs. Its performance is 
highly dependent on the correct match between neural network and 
hardware architecture. While it responds impressively with many 
convolutional modules, it still lacks proper support for many common 
operations. 
 

 
All things consider, we find the results of this thesis encouraging for the 
promotion of telemedicine, telediagnosis and a variety of real-time computer 
vision applications on the medical field. The combination of relatively powerful 
low-cost edge accelerators and the continuous optimization of convolutional 
neural networks achieved by the technological advancements of the last decade, 
has reached a level of maturity that will lead to an ever-increasing adoption of 
computer vision edge applications. 
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6.3 Future Work 

 
For researchers aiming to improve this work we propose the following: 
 

1. On the context of model accuracy on the Kvasir v2 dataset, one should 
mainly focus on the two classes responsible for the majority of the 
misclassifications. As concluded by the results of Ensemble Model 1, the 
final model metrics are almost equal to the metrics derived by the test 
classifications performed on the Esophagitis and Z-Line classes. Thus, 
creating a subset of these two classes, like we did on Ensemble Model 1, 
and testing the proposed models only on this smaller dataset, can 
effectively save a lot of training time and produce accurate insights. 
 

2. In terms of model architecture and hardware compatibility, as derived by 
the comparison of GhostNet and GhostNetEdgeTPU, small changes can 
have great effect. One “tweak” we have not been able to test is the use 
of Grouped Convolutions in replacement of the traditional ones, due to 
the fact that these operations are not yet natively supported by 
TensorFlowLite. According to Google’s official blogpost [28], we have 
reason to believe that this could lead to significant improvement, and that 
support for these operations should be implemented in the near future. 
 

 
Furthermore, for researchers with the goal of extending this work further we 
present the following ideas: 
 

1. Instead of focusing only on models for image classification, this work can 
be easily extended to include performance benchmarks on image 
segmentation models. For this purpose, we propose the use of Kvasir 
SEG, a dataset comprised of 1000 annotated polyp images and their 
accompanying masks. 
 

2. Last but not least, we highly encourage the performance comparison of 
the same tasks between different state-of-the-art AI edge accelerators. 
Given that the development of efficient embedded devices optimized for 
deep learning inference is still an ever-changing field, this procedure 
could produce important insights on their differences and lead to 
generalized conclusions in the way one should approach such tasks. 
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