

University of Piraeus

MSc Big Data & Analytics
Department of Digital Systems

Master Thesis

DATA PROCESSING FROM SENSORS AT THE EDGE

Konstantinos Pagkos

Supervisor:
Ilias Maglogiannis, Professor

Piraeus

15/6/2023

Master Thesis

Data Processing from Sensors at the Edge

Konstantinos Pagkos

Α.Μ.: ME 2029

ABSTRACT

The purpose of this thesis is to test and examine the capabilities of different state-of-the-

art convolutional neural network architectures for edge applications and evaluate their

maturity for use in real-time medical applications. For this reason, we utilize a publicly

available annotated dataset containing images of the human gastrointestinal tract and the

use of one of the most advanced AI edge accelerators. Ultimately, we test, evaluate and

compare the performance of several models and provide insight both into the nature of

the dataset, as well as into the capacity and potential of the latest advancements on the

field of lightweight convolutional neural networks optimized for embedded devices.

KEYWORDS: Convolutional Neural Networks, Medical Image Processing, Edge

Applications

Acknowledgments

First of all, I would like to express my appreciation to my thesis supervisor, Professor Ilias
Maglogianis, without whose advice and guidance, this endeavor would be impossible. I
would also like to thank my family for the support and the encouragement they showed
me all these years. Last but not least, I want to thank the growing community of Data
Scientists and Machine Learning Engineers out there, who so kindly offer their knowledge
and experience to those following in their footsteps.

Contents

Contents
1. Introduction .. 11

1.1 Motivation ... 11

1.2 Diseases of the Gastrointestinal Tract ... 12

1.3 Healthcare Edge Applications .. 12

1.4 Structure of the Thesis ... 13

2. Dataset & Related Work .. 14

2.1 Kvasir v2 Dataset ... 14

2.1.1 Anatomical Landmarks .. 14

2.1.2 Pathological Findings .. 15

2.1.3 GI Procedures ... 16

2.2 Related Work ... 17

3. Background Theory ... 19

3.1 Machine Learning .. 19

3.2 Deep Learning & Artificial Neural Networks ... 19

3.2.1 Activation Functions .. 20

3.3 Deep Learning for Computer Vision ... 22

3.3.1 Convolutional Layers ... 23

3.3.2 Pooling Layers ... 25

3.3.3 Fully Connected Layers ... 26

3.3.4 Batch normalization ... 26

3.4 Artificial Neural Network Training ... 27

3.4.1 Loss Function .. 28

3.4.2 Optimizer ... 28

3.4.3 Regularization ... 28

3.4.4 Transfer Learning .. 30

3.5 Medical Image Processing ... 30

3.6 Tiny Machine Learning ... 31

3.6.1 Edge AI Accelerators ... 32

3.6.3 Edge Optimization Techniques .. 34

4. Convolutional Neural Networks for Edge Applications ... 38

4.1 MobileNetV2 .. 38

4.1.1 Inverted Residuals ... 38

4.1.2 Linear Bottlenecks ... 39

4.1.3 Architecture ... 39

4.2 GhostNet .. 40

4.2.1 Feature Map Redundancy and the GhostNet Module 40

4.2.2 Architecture ... 42

4.2.3 GhostNetEdgeTPU .. 43

4.3 MobileNetEdgeTPU V2 .. 43

4.3.1 Fused Inverted Bottlenecks ... 43

4.3.2 Architecture ... 44

4.4 EfficientNet-Lite .. 45

4.4.1 Compound Coefficient Scaling .. 45

4.4.2 EfficientNet-Lite ... 46

4.5 Ensemble Models .. 47

4.5.1 Ensemble Model 1 ... 47

4.5.2 Ensemble Model 2 ... 48

5. Methodology .. 50

5.1 Data Pre-processing .. 50

5.1.1 Split Images ... 50

5.1.2 MAPGI Framework .. 50

5.1.3 Resize & Rescale .. 53

5.1.4 Image Augmentation ... 53

5.2 Training Configuration .. 54

5.2.1 Training Setup ... 54

5.2.2 Training Parameters .. 54

5.3 Post Training Optimization ... 56

5.3.1 Post Training Quantization .. 56

5.3.2 Compilation for the Edge TPU processor .. 56

5.4 Inference .. 57

5.5 Evaluation .. 57

5.5.1 Metrics ... 57

5.5.2 Explainability ... 59

6. Results... 61

6.1 Model Results .. 61

6.2 Discussion & Conclusions .. 63

6.3 Future Work ... 69

APPENDIX .. 70

Training Curves .. 70

References .. 72

List of Figures

Figure 1. Samples from the Z-line class .. 14

Figure 2. Samples from the Pylorus class ... 15
Figure 3. Samples from the Cecum class .. 15
Figure 4. Samples from the Esophagitis class ... 15
Figure 5. Samples from the Polyps class .. 16
Figure 6. Samples from the Ulcerative Colitis class ... 16

Figure 7. Samples from the Dyed & Lifted Polyps class .. 17
Figure 8. Samples from the Dyed Resection Margins class .. 17
Figure 9. Simplified Visualization of an ANN ... 20
Figure 10. Visualization of a neuron .. 20
Figure 11. Hyperbolic Tangent graph .. 21

Figure 12. Sigmoid graph .. 21
Figure 13. ReLU graph .. 22

Figure 14. Layer visualization of a CNN .. 23
Figure 15. Visualization of the convolution operation .. 23
Figure 16. Feature map examples ... 24
Figure 17. Visualization of the depthwise convolution operation 25
Figure 18. Max pooling operation with 2x2 window and stride = 2 25

Figure 19. Batch Normalization during inference ... 27
Figure 20. Effects of dropout on an ANN ... 29

Figure 21. Google Coral Edge TPU Dev Board mini ... 33
Figure 22. Visualization of the effects of pruning ... 35
Figure 23. 32 Float format ... 36

Figure 24. Weight clustering visualization ... 37

Figure 25. Conventional residual Block ... 38
Figure 26. MobileNetV2 residual block .. 39
Figure 27. MobileNetV2 bottlenecks .. 39

Figure 28. MobileNetV2 architecture ... 40
Figure 29. GhostNet feature maps .. 41

Figure 30. Ghost module ... 42
Figure 31. Ghost Bottlenecks .. 42

Figure 32. GhostNet architecture ... 43
Figure 33. Inverted Bottleneck variants ... 44
Figure 34. MobileNetEdgeTPUV2 performance comparison on Pixel 6 CPU 45

Figure 35. Single scaling options vs. Compound Scaling .. 46
Figure 36. EfficientNetB0 architecture ... 47

Figure 37. Building blocks of ensemble model 1 ... 48
Figure 38. Building blocks of ensemble model 2 ... 49

Figure 39 MAPGI framework's steps: (a) Masking, (b) Crop, (c) MAVGA, (d) Lowpass
Filter, (e) Resize & Rescale ... 51
Figure 40. Image Augmentation example .. 53
Figure 41. Edge TPU compiler report .. 56
Figure 42 Ensemble Model 2 Confusion Matrix ... 63

Figure 43 MobileNetV2 Confusion Matrix .. 64
Figure 44. Vanilla Saliency map samples for each class ... 65
Figure 45. Vanilla Saliency map samples for Pylorus Class……………………………...66
Figure 45. Vanilla Saliency map samples for Z-Line Class…………………………….....66
Figure 45. Vanilla Saliency map samples for Esophagitis Class………………………....67

List of Tables

Table 1. Comparison of previous work .. 18

Table 2. Dev Board mini specifications .. 33
Table 3 Training Parameters ... 55
Table 4. Model results ... 61
Table 5. Quantized model results .. 61
Table 6. Model storage and computational requirements .. 62

Table 7. Model inference time on the Edge TPU ... 62

file:///C:/Users/ProAdmin/Google%20Drive/Big%20Data%20&%20Analytics/thesis_v0/παραδοτεο/pasta.docx%23_Toc128826139

List of Abbreviations

AI Artificial Intelligence OS Operating System

GI Gastrointestinal Tract API Application Programming Interface

FPS Frames per Second CPU Central Processing Unit

CNN Convolutional Neural Network GPU Graphics Processing Unit

TPU Tensor Processing Unit MDT Mendel Development Toolkit

IBS Irritable Bowel Syndrome FPS Frames per Second

IBD Inflammatory Bowel Disease FLOPS Floating-Point Operations per second

WHO World Health Organization SE Squeeze – Excitation

VV Vestre Viken Health Trust NAS Neural Architecture Search

CRN Cancer Registry of Norway IBN Inverted Bottleneck

EMR Endoscopic Mucosal resection GC-IBN Group Convolution-based IBN

ML Machine Learning SOC System-on-Chip

ANN Artificial Neural Network TP True Positive

Tanh Hyperbolic tangent TN True Negative

ReLU Rectified Linear Unit FP False Positive

SGD Stochastic Gradient Descent FN False Negative

DL Deep Learning MCC Mathew’s Correlation Coefficient

TinyML Tiny Machine Learning CVPR Conference on Computer Vision and

Pattern Recognition

MAPGI
Modular Adaptive Pre-processing
for GI tract images

MAVGA Mean-Approximated Gamma Value

Adjustment

CLAHE Contrast-Limited Adaptive Histogram

Equalization

11

1. Introduction

1.1 Motivation

The last decades we have experienced a sudden and rapid advancement in

the field of Artificial Intelligence. Machine Learning and Deep Learning
applications have touched and transformed many aspects of technology, from
simple daily utilities to cutting edge development.

One of the most promising and challenging fields for Machine Learning
applications, has proven to be the medical one. Despite a heavy focus on this
field from the research community, there is still a lot of room for improvement on
Healthcare Machine Learning applications, mainly due to obstacles like the
difficulty of gathering data annotated by certified practitioners, maintaining data
privacy and a zero-error tolerance policy.

Video and capsule endoscopy is a particular subfield that includes
procedures where, either the practitioners insert a flexible fiber optic cable
through cavities and skin incisions, or the patient’s shallow vitamin-size capsules
equipped with cameras, in order to visually examine inner parts of the human
body. Examples of such operations include laparoscopic procedures performed
by surgeons, intubations performed by anaesthesiologists, colonoscopies etc.
All these procedures can significantly benefit from Computer Vision algorithms.
Image classification models can be used prevent misdiagnosis, while object
detection and image segmentation models can provide real time assistance to
practitioners during the procedures.

Computational performance of the aforementioned algorithms, plays a
significant role on real time procedures, e.x. laparoscopic surgeries, where a
model’s latency and inference time contribute in the overall performance as
much as its accuracy. Furthermore, combining small and efficient Convolutional
Neural Networks with embedded devices can greatly extend the capabilities of
telemedicine and self-diagnosis applications.

While there is an extensive bibliography focusing on the development of
Machine Learning models for classification and segmentation on images
procured by endoscopic means, most of them focus mainly on achieving the best
precision/accuracy possible, paying little to no consideration on the
computational performance.

In the scope of this thesis, we aim to test and explore the advancements on
the field of embedded computer vision and how the development of edge
computing Machine Learning applications, capable of processing endoscopic
images with low latency and high Frames Per Second (FPS) throughput, can be
utilized with the aim of providing assistance to the medical practitioners,
facilitating telemedicine applications and ultimately reduce human errors and
misdiagnosis. Specifically, we evaluate different Convolutional Neural Network
(CNN) architectures on their performance on automatic disease detection of the
Gastrointestinal Tract and their ability to run inference efficiently on Google’s
state-of-the-art Edge Tensor Processing Unit (TPU) accelerator.

12

1.2 Diseases of the Gastrointestinal Tract

Diseases, abnormalities and pathological findings of the Gastrointestinal (GI)
Tract refer to conditions involving the esophagus, stomach, small / large
intestine, rectum and the accessory organs of digestion, the liver, gallbladder
and pancreas. Some common examples of GI diseases include peptic ulcers,
irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), such as
Crohn's disease and ulcerative colitis, as well as gastrointestinal cancers, such
as stomach and colorectal cancer. Symptoms of GI diseases can vary
depending on the condition and have a significant impact on a person's quality
of life. According to the World Health Organization (WHO), GI diseases are a
major public health problem worldwide. Gastrointestinal cancers are the third
leading cause of cancer deaths globally, responsible for around 7.2 million
deaths per year. In addition, IBD affects an estimated 3 million people in the
United States alone and it's estimated to affect more than 5 million people
worldwide. Furthermore, IBS is a common condition that affects up to 20% of
the population in developed countries.

As most of these diseases can be cured, proper diagnosis and treatment are
crucial for managing symptoms and preventing life threatening situations. For
this reason, there has been an extensive bibliography of computer vision
applications aiming to classify medical images produced by endoscopic means.
These applications can identify patterns and markers associated with different
diseases and as a result aid in the early detection of conditions such as polyps
and tumors, which can lead to the diagnosis and treatment of gastrointestinal
cancers.

1.3 Healthcare Edge Applications

Edge computer vision technology has the potential to play a key role in
preventing and managing diseases of the gastrointestinal tract in remote or
resource-limited settings. Edge computing is a technology that allows data
analysis to happen at or near the source, rather than relying on transmitting it to
a central location for processing. This enables real-time data diagnosis and
decision-making at the point of care, which can be especially important in
situations where internet connectivity or resources are limited.

For example, a portable endoscope equipped with edge computer vision
technology could enable a healthcare practitioner to capture images of the
gastrointestinal tract and perform real-time diagnosis on remote locations. In the
same manner, combining the images produced from capsule endoscopy with
low computational complexity computer vision applications that can run on
mobile devices, can effectively enable self-diagnosis in remote settings where
access to specialized medical equipment and personnel may be limited. The
aforementioned applications can be further utilized in post-operative monitoring,
enabling doctors to track the healing process and detect any complications early
on, without requiring their physical presence.

13

1.4 Structure of the Thesis

Chapter 1 presents the scope of the thesis, its goals and the motivation behind
it. In Chapter 2 we introduce the Kvasir v2, a dataset comprised of annotated
images of the gastrointestinal tract, as well as the results of previous works found
in literature that utilize it. Chapter 3 contains all the background theory related
to the main topics revolving around the thesis. This includes the basic concepts
of Deep Learning, convolutional neural networks, image processing and edge
applications. Chapter 4 goes into detail about the architecture of different
lightweight convolutional neural networks suitable for edge applications.
Chapter 5 describes the methodology, specifically the end-to-end steps of the
process used in this thesis, from data processing all the way to the evaluation of
the models. Finally, Chapter 6 contains all the results from the experiments, the
discussion and proposals for future work.

14

2. Dataset & Related Work

2.1 Kvasir v2 Dataset

In this thesis we have used the Kvasir v2 dataset, a multi-class image dataset
for computer aided gastrointestinal disease detection. The dataset consists of a
total of 8.000 medical images obtained through the means of endoscopic
procedures in the gastrointestinal tract. The images have been collected with
the use of appropriate equipment from the Vestre Viken Health Trust (VV) in
Norway, which consists of four different hospitals that tend to the medical needs
of 470.000 patients. Each image has been annotated and verified by certified
medical professionals either from the VV or the Cancer Registry of Norway
(CRN).

The dataset consists of eight different classes, containing 1.000 images each.
The resolution of these images differs, starting from 720x576 pixels up to
1920x1072. Some of the images also contain a small green box in the lower left
corner, depicting the position of the endoscope inside the tract.

Below the eight different classes consisting this dataset are briefly presented:

2.1.1 Anatomical Landmarks

Anatomical landmarks are parts of the digestive tract that can be used as points
of reference during endoscopic procedures.

The Z-line marks the transition site between the esophagus and the stomach.
This transition is made visible by the change in colour, where the white
esophageal mucosa turns into the gastric red mucosa of the stomach. This
border is of great interest, as many signs of disease can be detected here.

Figure 1. Samples from the Z-line class

The Pylorus is the small opening connecting the stomach with the first part of
the small bowel. Correctly identifying the pylorus can be of assistance for
maneuvering endoscopic equipment.

15

Figure 2. Samples from the Pylorus class

The Cecum is a pouch within the peritoneum that is considered to be the start
of the large intestine. This point marks the completion of a colonoscopy.

Figure 3. Samples from the Cecum class

2.1.2 Pathological Findings

These findings refer to a number of conditions and diseases that can be visually
detected in the GI tract.

Esophagitis is essentially inflammation of the esophagus, presented in the form
of visible breaks in the mucosa, which are created when gastric acid flows back
from the stomach due to certain conditions. The extend and length of the breaks
can be used in order to determine the severity.

Figure 4. Samples from the Esophagitis class

Polyps are lesions detected within the bowel in the form of outgrowing mucosa.
Their size and shape can vary, but can be detected by inspecting thir colour and

16

texture. Polyps more often than not are harmless, but in cases they can lead to
colorectal cancer if note removed.

Figure 5. Samples from the Polyps class

Ulcerative Colitis is a chronic inflammatory disease located within the large
bowel. The severity of the disease can mild, made visible by swollen red areas,
but in extreme cases it can lead to the development of ulcerations, negatively
affecting the quality of life of the patient.

Figure 6. Samples from the Ulcerative Colitis class

2.1.3 GI Procedures

The procedure of interest is called endoscopic mucosal resection (EMR) and is
one of the most common polyp removal techniques. During this procedure, liquid
is injected underneath the polyp in order to separate it from the underlying
mucosa. The solution may also contain a staining dye, in order to highlight the
polyp’s borders. The elevated polyp is then extracted.

Dyed & Lifted Polyps are a visual example of a polyp after a coloured solution
is applied. The margins between the polyp and the underlying tissue are clearly
visible.

17

Figure 7. Samples from the Dyed & Lifted Polyps class

Dyed Resection Margins refer to the area of interest, after the polyp has been
extracted. Potential residual polyp tissue must be detected and accordingly
removed.

Figure 8. Samples from the Dyed Resection Margins class

2.2 Related Work

Taking into account the difficulties of the data collection procedure in the medical
field and the fact that the Kvasir v2 dataset is not only one of the most complete
annotated image datasets of the GI tract, but also publicly available, it is only
logical that over the years there has been an extensive variety of deep learning
and machine learning based approaches making use of it. For the sake of
simplicity, we will use accuracy as the base metric for comparing them.

Starting at 2017, when Pogorelov et al. [9] introduced the Kvasir v2 dataset,
essentially doubling the sample size of the original Kvasir. Along with the data,
they also experimented with 8 different classification approaches in order to
establish a baseline for future researchers. These approaches included different
CNNs and also other supervised classification methods, with the best performing
being a 3-layer CNN, achieving 95.9% accuracy.

Following their work, researchers experimented on the Kvasir v2 dataset using
state of the art CNN architectures available at the time. These architectures
included Resnet50 [24], GoogleNet [8], ResNet-18 [8], DenseNet-201 [7]
MobileNetV2 [18] etc. As most of these models struggled to surpass the
performance established by the original paper, modified architectures of the
same CNNs, i.e., modified VGG-16 [8], and custom architectures with larger
input size [11] were introduced, that seemed to fare better in terms of accuracy.

18

Another approach followed by [7] and [18] is the ensemble learning methods,
combining a number of the aforementioned CNNs as features extractors and
then retraining a classifier on the new feature maps. This approach yielded the
best results, where [18] scored the best accuracy of value 99.2%.

Last but not least, [26] focused on improving the classifier instead of the feature
extractor, comparing the performance of the commonly used soft-max layer
against a Support Vector Machine (SVM) and a Stacked LSTM classifier, and
[25] used Capsule Networks based on DenseNet-121.

Even though the metrics achieved by many approaches are considered more
than sufficient, the limitations of previous works is that the researchers did not
take heavily into account the computational complexity of their approaches. Most
of the models proposed consist of tens of millions of parameters, rendering them
unsuitable for applications at the edge. In order to further extend their work, we
aim to explore the trade-off between model size and accuracy on the same
dataset.

Base Model Architecture Top 1
Accuracy

Parameters Reference

3-layer CNN 92.40 ~23.000.000 [9]

ResNet50 95.70 ~25.600.000 [24]

Proposed CNN 96.80 ~2.666.312 [11]

Ensemble Method 97.38 >20.000.000 [7]

Modified VGG16 96.33 >100.000.00
0

[8]

Proposed Attention Model 92.84 19.920.000 [16]

DenseNet121+I/O Modules 94.82 ~ [25]

ResNet50 91.40 ~25.000.000 [18]

MobileNetV2 88.00 ~2.600.000 [18]

Xception 97.04 ~22.000.000 [18]

Ensemble Method 99.29 >50.000.000 [18]

Ensemble Method +
Stacked LSTM classifier

97.90 >70.000.000 [26]

Table 1. Comparison of previous work

19

3. Background Theory

3.1 Machine Learning

Machine Learning is a specific branch of Artificial Intelligence that in the past few
decades, came to challenge traditional programming. Through Machine
Learning, we can build “intelligent machines” that are able to discover complex
patterns in data, derive rules otherwise invisible to the human and ultimately
make decisions and forecasts. The main difference of ML applications to
traditional programming, is that the output of the latter is the result of a very
specific set of rules described in detail by human programmers, where ML
applications are able to “learn” and improve without human supervision.

Typically, ML algorithms are divided into three main categories:

• Supervised learning, usually involves models used in classification and
regression tasks. In order to train these models, a labeled training dataset
example needs to be provided.

• Unsupervised learning: most common examples are clustering and
association algorithms. These algorithms are used to explore and draw
inferences describing hidden structures from unlabeled data.

• Semi-supervised learning: models of this family are between
supervised and semi-supervised, utilizing both labeled and unlabeled
data.

3.2 Deep Learning & Artificial Neural Networks

Deep Learning is a subfield of Machine Learning, and in extend of Artificial
intelligence. Deep Learning is associated with Artificial Neural Networks (ANNs),
a complex group of algorithms loosely modeled after the human brain. The
characterization Deep derives from the fact that ANNs are usually comprised
from input / output layers and large number of hidden layers, able to discover
and extract features from the data in a hierarchical way.

20

Figure 9. Simplified Visualization of an ANN

The building block of every ANN is the perceptron, that resembles a neuron. A
single perceptron is a multiple input – single output algorithm that can be
described from the following linear equation:

𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=0

(1)

where, 𝑤 is the weight, 𝑏 is the bias and 𝑥 is the input.

Figure 10. Visualization of a neuron

3.2.1 Activation Functions

An ANN is built from multiple layers, and each of these layers, from multiple
perceptrons. Since the perceptron’s equation is linear, a combination of multiple
perceptrons would still remain linear, thus prohibiting the network from
simulating more complex algorithms. For this reason, the activation function is
introduced.

The activation functions practically allow the neural network to learn non-linear
relations. With its implementation, a neuron’s equation transforms as follows:

21

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜑 ∗ (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=0

) (2)

Where 𝜑 , is the activation function

There multiple activation functions. Here we present some of the most commonly
used, their equations and their respective diagrams.

Hyperbolic Tangent (tanh):

𝜑𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3)

Figure 11. Hyperbolic Tangent graph

Sigmoid:

𝜑𝑥 =
1

1 + 𝑒−𝑥
(4)

Figure 12. Sigmoid graph

22

Rectified Linear Unit (ReLU):

𝜑𝑥 = max(0, 𝑥) (5)

Figure 13. ReLU graph

Softmax is a very specific activation function, that combines all of its inputs and
presents the same number of ouputs. It is commonly used at the last layer of an ANN
and specifically in the task of classification. This function’s outputs lie in the range
[0,1] and resemble probabilities, and consequently their sum equals 1.

𝜑𝑥𝑖
=

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

(6)

3.3 Deep Learning for Computer Vision

Convolutional Neural Networks, or CNNs, are a class of artificial neural networks
that are specifically used to extract features and patterns from signals, such as
images, speech and audio. CNNs utilize multiple convolution layers in order to
hierarchically extract features from the input. Earlier layers of the algorithms
focus on simple features, such as edges and colors, whereas later convolutions
are able to recognize larger objects and shapes and ultimately identify objects.
CNNs advantage over other neural network architectures in computer vision
tasks, is that the convolution takes into account the spatial correlation between
pixels in an image.

23

Figure 14. Layer visualization of a CNN

3.3.1 Convolutional Layers

The main building layer of CNN architectures is the Convolution Layer. During
the act of convolution, we use a set of weighted matrices called kernels, or filters,
to extract information from an image. The width and height of a kernel is smaller
than the input’s dimensions. In order to obtain the output, we iterate the kernel
over every pixel in an image, starting from one side (i.e., top left). The output’s
width and height depend on the input’s dimensions, the kernel’s dimensions, as
well as the convolution stride and padding size. The stride describes how much
a filter will be shifted over the image after each convolution operation, while
padding is a technique that extends the dimensions of the original image in order
to more efficiently detect patterns at the edges.

Figure 15. Visualization of the convolution operation

Accounting for all the parameters, given an image 𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐶𝑖𝑛, where
𝑊𝑖𝑛,𝐻𝑖𝑛,𝐶𝑖𝑛 are the width, height and number of channels of the input image, the
output 𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 × 𝐶𝑜𝑢𝑡 of the convolution layer can be computed as:

𝑊𝑜𝑢𝑡 =
(𝑊𝑖𝑛 + 2𝑃 − 𝐾𝑊)

𝑆𝑊
+ 1 (7)

24

𝐻𝑜𝑢𝑡 =
(𝐻𝑖𝑛 + 2𝑃 − 𝐾𝐻)

𝑆𝐻
+ 1 (8)

𝐶𝑜𝑢𝑡 = 𝐾𝐶 (9)

Where 𝐾𝑤,𝐾𝐻,𝐾𝐶 are the width, height of the kernel and the number of filters

respectively, 𝑃 is the padding size, assuming same size padding in every
direction, and 𝑆𝑊,𝑆𝐻 are the strides across the two dimensions. 𝐶𝑜𝑢𝑡 is also
referred to as the feature maps produced by a convolution layer.

Figure 16. Feature map examples

In the scope of this thesis, we also mention a specific type of convolution called
depthwise separable convolution, which can reduce the total parameters of a
normal convolution layer more than 50%.

This is a two-step procedure. The first step is a depthwise convolution, which in
contrast to normal convolution, convolves each input channel with a different
filter and stacks the output feature maps.

25

Figure 17. Visualization of the depthwise convolution operation

The second step is a normal convolution utilizing a 1x1 dimensional kernel in
order to obtain the final output.

3.3.2 Pooling Layers

It is a quite common occurrence for a convolution layer to be followed by a
pooling layer, even though modern architectures opt to use strided convolutions
instead. The main purpose of a pooling layer is to compress the activation maps
and reduce the number of parameters between the layers. Pooling layers
typically have two parameters, kernel size and step, that work in the same
manner in the convolution layer.

Figure 18. Max pooling operation with 2x2 window and stride = 2

26

The most commonly used pooling layers are max pooling and average pooling.
Max pooling works by sliding a window over the input data and selecting the
largest value of the window as output, while average pooling calculates the
average value of the parameters inside the window.

3.3.3 Fully Connected Layers

Fully connected layers are the most basic layers of any ANN architecture. They
consist of a set of neurons, which are connected to every neuron of both the
previous and the next layers. In a CNN, fully connected layers are typically used
in the last few layers, after the desired features have been extracted from
previous convolutional layers, in order to map these features with the output.
Nowadays, these layers are also usually replaced by convolution layers.

3.3.4 Batch normalization

Batch normalization is a layer that has been an essential part of CNN
architectures since it was introduced. Batch normalization layers essentially
normalize the output of one hidden layer before it is inserted to the next. A layer
of this kind has a total of four parameters, two learnable ones called beta and
gamma, and two non-learnable called mean moving average and variance
moving average. The layer works as follows:

1. For each input vector, calculate the mean and variance of the values in
the mini-batch.

2. Normalize the above values, with zero mean and unit variance.
3. Shift and scale the values accordingly by multiplying by the factor gamma

and adding the factor beta.
4. Calculate the exponential moving average after each iteration and save

the final result after training has concluded. This result is then used during
inference, where we have only one input and not a batch.

27

Figure 19. Batch Normalization during inference

The utilization of Batch Normalization layers after activation functions has shown
significant improvement in weight convergence during training and subsequently
reduction in total training time required.

3.4 Artificial Neural Network Training

Training may be the most important part in the successful implementation of an
ANN. After choosing an appropriate ANN architecture for the task at hand, the
network must be trained until it is capable of efficiently mapping the data. In order
to achieve this, the weights and biases of every perceptron must be calibrated
accordingly.

The training process can be briefly summarized in the following steps:

1. The data are presented to the network and an output is produce. This part
is also called forward propagation.

2. Compare the output with the ground truth and estimate the error with the
use of a loss function.

3. Using the quantified error and an optimizer, calibrate the weights and
biases of the network in order to minimize the error. This process is also
called backward propagation

4. Repeat the above steps until there is no performance increase to be
gained, measured by the appropriate metrics.

In the following section, the above concepts, also called hyperparameters of a
neural network, are explained in depth.

28

3.4.1 Loss Function

Loss functions play one of the most important roles during the training of a
model, that of evaluating its performance of the task at hand. Every step of every
epoch, the loss function approximates the error between the model’s output and
the ground truth, with this error increasing the further the output deviates from
the true label.

During backward propagation, we utilize the partial derivatives of the loss
function in order to finetune the weights and biases of the whole neural network,
using a chaining rule from right-to-left, or output-to-input.

One of the most common loss functions used for multiclass classification is the
Cross-Entropy Loss. In order to use this function, the final layer of a model
should contain the same number of nodes as the classes of the dataset and a
softmax activation function. Cross-entropy will calculate a score, based on
maximum-likelihood, that summarizes the average difference between the
model’s output probabilities and the ground truth. There is also the option of
using class weights, where effectively the loss function “punishes”
misclassifications of different labels with different weights.

3.4.2 Optimizer

The optimizer is basically an optimization scheme that during backpropagation,
utilizes the partial derivatives of the loss function, or gradients, in order to
properly update the existing weights and biases. Stochastic Gradient Descent
(SGD) and its variants are the most used optimization algorithms.
SGD takes a step, called learning rate, towards the direction of the greatest
descent for each weight. The learning rate is an important parameter for
optimizing training. A higher learning rate might converge faster in contrast to a
lower one, but might also miss a local minimum. For this reason, we usually
utilize a learning rate schedule, where the training begins with a high learning
rate, but it gradually decreases over time.

In addition to the learning rate, we also add another term called momentum,
which basically determines how much impact the previous gradients should
have on a certain weight. It achieves this by accumulating an exponentially
decaying moving average of past gradients.

3.4.3 Regularization

With the term Regularization, we refer to a set of available techniques, which we
can utilize in order to reduce the risk of overfitting and sometimes even improve
model results. Below we present some of the most common techniques.

29

3.4.3.1 Dropout

Dropout is a regularization technique, that during a training epoch excludes,
“drops out”, a random number of neurons from a layer. By temporarily removing
a set of neurons from a layer, we essentially change the input and output
connections of it. This process has the benefit of making a model more robust,
because it effectively forces different nodes to assume more / less responsibility
in their decisions, making each neuron less dependent from other neurons.
Dropout has a proven record of improving the performance of neural networks.

Figure 20. Effects of dropout on an ANN

3.4.3.2 L1 / L2 Regularization

L1 and L2 Regularization, also known as “weight decay”, is a way of preventing
overfitting by adding an additional penalty to the prediction error of the loss
function. This penalty comes in the form of absolute value of magnitude for L1
regularization, and squared magnitude for L2. The key difference between the
two regularization techniques, is that the first shrinks the less important feature’s
coefficient towards zero, effectively leading to sparsity.

3.4.3.3 Early Stopping

Early Stopping is the process of terminating the training of a neural network
early, in order to avoid the deterioration of the training and validation losses, and
ultimately overfitting. This technique, though simple, is widely used and it often
produces networks that generalize better to the training data.

30

3.4.3.4 Data augmentation

As data augmentation, we define the process of creating new training data from
the existing ones, by applying different transformations. These transformations
vary, from simpler ones, e.x. rotating an image, to more advanced, like histogram
equalization etc. Different use cases and data require different data
augmentation techniques that match the task. Data augmentation is especially
popular in Deep Learning applications, because more often than not, it is difficult
to acquire new data in real world applications.

3.4.4 Transfer Learning

In real world applications, acquiring large volumes of data and training an ANN
can prove expensive, both in terms of money and time. For this reason, we
commonly used Transfer Learning, by using pre-trained models that have been
trained on big datasets. There are many advantages in using Transfer Learning,
such as:

1. Significant decrease in training time.

2. Increase in performance, because existing pretrained weights are more
often than not better than random weight initialization.

3. Reduced risk of overfitting for small datasets, because during through

Transfer Learning we can freeze some layers of the model and finetune
the rest, or even freeze the whole model and use it as a feature extractor.

For Transfer Learning to be effective, both the data at hand and the data used
to train the pretrained model should showcase at least some degree of similarity.

3.5 Medical Image Processing

Deep Learning applications have proved successful and further promising in
various different fields, and the medical field is no exception. Massive amounts
of medical data are produced daily worldwide and in many different forms, with
images being one of the most common. Medical images are generated through
a plethora of diagnostic procedures, like X-rays, magnetic resonance-imaging,
tomographies etc. In addition to that there are number of procedures that utilize
real time video applications, like laparoscopies.

Though the automatic processing of all these images using Deep Learning
models is quite promising, the medical field also presents. some unique
challenges. One challenge in particular that every developer has to account for,
are the differences between similar images generated by different medical

31

apparatuses. Even though these differences can be quite subtle, like variations
in hue or contrast, if left unaddressed, they can prove critical in the successful
operation of a model. There are several different techniques, i.e. contrast
enhancement via gamma correction, that aims to adjust the relative brightness
difference between objects and their backgrounds in images, in order to improve
their visibility. These methods are an essential part in medical image processing,
as they reduce the noise contained in the image and improve the robustness of
CNNs, by countering low contrast occurring from inconsistent illumination and
other factors.

Another common issue that derives from the nature of the field, is the no-error
tolerance in the deployment of AI applications. Medical applications must
provide a high degree of robustness and state-of-the-art performance, because
errors in a model’s output can potentially have grave consequences. Due to this
reason, until today, most applications are considered as a supporting tool for
consulting by practitioners, instead of producing a definitive diagnosis.

Last but not least, another major challenge is the perseverance of the data
privacy, due to the sensitive nature of an individual’s medical information. This
fact can prove a significant barrier in the attempt to share data and create
efficiently big datasets for such applications.

3.6 Tiny Machine Learning

The recent growth of AI applications in combination with the massive adoption
of IoT devices have presented researchers with a new, challenging field, often
referred to as Edge AI or Tiny Machine Learning (TinyML), By definition, TinyML
is the deployment of AI applications in embedded devices, where the
computations are performed close to the data source with minimal latency.
These applications carry substantial benefits, such as real-time inference &
insights, reduced costs and power consumption, increased privacy, high
availability etc.

This kind of applications also present significant challenges. In order to deploy
neural networks at resource constrained environments, one has to take into
account multiple factors. Some of the main challenges are:

• The limited computational resources of embedded devices, in
contrast with the high computational complexity of neural
networks.

• The unpredictability that derives from continually receiving data
through sensors from the real world.

• The high demand for robustness and resiliency

Due to these factors, there has been heavy focus on the research and
development of efficient processors for edge AI and optimization techniques for
neural networks. This effort can be broken down into two different approaches,

32

creating efficient hardware accelerators and optimizing the architecture of neural
networks. These explained below:

3.6.1 Edge AI Accelerators

In order to support the rise of TinyML applications, many organizations and
manufacturers have focused on developing efficient hardware architectures and
chips for Edge AI. These devices have only one purpose, to efficiently tackle the
challenges of TinyML and bridge the gap between the high computational effort
required by AI and the low processing capabilities of embedded microprocessors
and integrated circuits. Along with many new startup companies, almost all major
competitors in the semiconductor industry, like NVIDA, Google and Intel, have
already shifted their focus and developed solutions for accelerating inference at
the edge. Namely, some of the most popular solutions are listed below:

• NVIDIA Jetson series

• AMD EPYC Embedded series

• Intel’s Movidius Vision Processing Units

• Qualcom’s DM.2

• ARM Mali C-55

• Google Coral Edge TPU

In the scope of this thesis, we provide further information only on Google’s Edge
TPU, and specifically the Google Coral Dev Board mini single-board computer.

3.6.1.1 Google Coral Dev Board mini

The Coral Dev Board mini is a single-board fully-functional embedded system
that can be used as an evaluation and prototyping device for the Accelerator
Module, a surface mounted module that incorporates an Edge TPU. The Edge
TPU is capable of performing 4 tera-operations per second (TOPS), using 0.5
watts for each TOPS, making it one of the state-of-the-art ML accelerators on
the edge.

The Board is also a fully-functional embedded system, featuring a Quad-core
Arm Cortex Architecture and 2 GB RAM. The Board’s OS, Linux Mendel, in
combination with the Wi-Fi access it offers, provides an easy-to-use
development and testing environment. Furthermore, the Coral Team has
provided the PyCoral API (Python), which provides an easier alternative to
lower-level C++ libraries that are often required for such tasks.

33

Figure 21. Google Coral Edge TPU Dev Board mini

Technical Specifications:

CPU MediaTek 8167s SoC (Quad-core Arm Cortex-A35)
GPU IMG PowerVR GE8300 (integrated in SoC)
ML Accelerator Google Edge TPU coprocessor: 4 TOPS (int8); 2 TOPS per watt
RAM 2 GB LPDDR3

Wireless Wi-Fi 5 (802.11a/b/g/n/ac); Bluetooth 5.0

Audio / Video 3.5mm audio jack; digital PDM microphone; 2.54mm 2-pin
speaker terminal; micro HDMI (1.4); 24-pin FFC connector for
MIPI-CSI2 camera (4-lane); 24-pin FFC connector for MIPI-DSI
display

Flash Memory 8 GB eMMC

Input/Output 40-pin GPIO header; 2x USB Type-C (USB 2.0)

Table 2. Dev Board mini specifications

Software:

The board’s OS is a lightweight Debian Linux variation, called Linux Mendel.
This OS offers most of the commonly used Linux utilities. This fact, in addition
to the board’s hardware capabilities (Wi-Fi connection, 2GB RAM, enough space
to store the validation dataset into the board), enables the developers to test
their models in a fast and easy way.

The Mendel Development Tool (MDT) is a command line interface tool that
allows easy access to devices running Mendel Linux, both for Windows 10 and
Linux. After the board’s initial setup, the MDT is used to gain instant access to
the board’s OS through WiFi, efficiently moving files from a PC to the board &
vice versa.

PyCoral API

34

The PyCoral API is a small set of convenience functions that initialize the
TensorFlow Lite Interpreter with the Edge TPU delegate and perform other
inferencing tasks such as parse a labels file, pre-process input tensors, and post-
process output tensors for common models. A Python script utilizing the PyCoral
API is used for testing the models on the images already stored in the board.

Despite the Edge TPU’s advantages, it comes with some constraints and/or
drawbacks, such as:

• Models aiming to run inference on the Edge TPU, must be developed

completely within TensorFlow’s ecosystem, disabling the developer from

using the vast selection of available models developed in PyTorch

without significant effort.

• The Google Coral Edge TPU only supports specific operations (layers).

Failure to meet these constraints results in a model that utilizes the

Board’s CPU, adding significant overhead on the inference time.

• Models aiming to run inference on the Edge TPU, must have a total size

less than the Edge TPU’s Cache (<8 MB,) after being converted to

TFLite and compiled for the Edge TPU.

3.6.3 Edge Optimization Techniques

Apart from creating efficient devices, there are many techniques and
conversions that can help reduce a model’s size and latency. Below we present
some of the most common ones.

3.6.3.1 Pruning

 Neural Network pruning is a process that aims to reduce the size of a model,
while minimizing the loss in performance and accuracy. It is a method of model
compression that involves the removal of weights from a pretrained model,
ultimately leading to networks smaller in terms of size, that require less training
time and offer faster inference.

35

Figure 22. Visualization of the effects of pruning

The main idea behind pruning, is that while all neurons in an ANN are connected
with every other neuron in adjacent layers through synapses, every neuron or
synapse contributes differently in the final outcome. By ranking the contribution
of the above, we can reduce the total size of the network by removing the lowest
scoring neurons and synapses, while retaining a healthy size – accuracy
balance.

Pruning techniques fall into two major categories, structured and unstructured.
Unstructured pruning commonly involves directly removing parameters in an
ANN, by setting their weighs to zero. This is a fine-grain approach that allows
the removal of very specific parameters, even within convolution kernels. The
disadvantage is that networks pruned this way contain many weights with zero
value, and these so called “sparse” networks do not offer significant performance
increase on most hardware architectures. On the other hand, structured pruning
techniques aim to remove whole structures from the network, such as feature
maps. This approach has a stronger impact on the resulting network, but should
always be used with caution, as it can sometimes remove whole layers, leading
to unconnected synapses.

Last but not least, before pruning there are various pruning criteria in order to
decide the relative importance of the parameters. The weight magnitude
criterion, that removes weights with the smallest absolute value, is one of the
most commonly used and efficient of the aforementioned criteria used, even
though it is not easy to implement in a structured way. Gradient magnitude
pruning follows the same principle, but this time removing the parameters with
the smallest gradient.

3.6.3.2 Quantization

Briefly, quantization is a process of converting weights and biases into a lower
precision format in order to reduce the total storage size of a model. The
parameters of an ANN are more often than not in a standard 32-bit floating-point
arithmetic format. By converting these parameters into a lower precision format,
like 16-bit floating point or 8-bit integers, we can effectively lower the storage
size required for the model, reduce memory consumption and reduce latency
during inference.

36

Figure 23. 32 Float format

For example, a single precision, or 32-bit floating point number can be
represented as shown in Figure 23 where the actual value can be calculated in
the decimal format with the following formula:

(−1)𝑠𝑖𝑔𝑛 × (1 + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−𝑏𝑖𝑎𝑠 (10)

During quantization, for example 8-bit quantization, we can approximate this
floating-point binary number into an 8-bit integer by using the follow equation:

𝑖𝑛𝑡8𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑙𝑖𝑝(𝑟𝑜𝑢𝑛𝑑 (
𝑟𝑒𝑎𝑙𝑣𝑎𝑙𝑢𝑒

𝑠𝑐𝑎𝑙𝑒
) (11)

Where the real value can be calculated as:

𝑟𝑒𝑎𝑙𝑣𝑎𝑙𝑢𝑒 = (𝑖𝑛𝑡8𝑣𝑎𝑙𝑢𝑒 − 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡) × 𝑠𝑐𝑎𝑙𝑒 (12)

The result is an 8-bit integer in the range of [-128,127]. By lowering the precision,
a model’s size can be reduced up to four times. This performance increase
comes with the danger of accuracy loss.

There are two commonly used kinds of quantization, post-training quantization
and quantization-aware training. With post-training quantization, as the name
implies, the neural network is trained with 32-bit floating point parameters and
then quantized. Though this approach is easier, the parameters after
quantization are frozen and there is no way to improve accumulative errors
caused to lowering the precision. On the other hand, quantization-aware training
tries to compensate for the quantization-related errors by utilizing the quantized
weights during forward propagation.

37

3.6.3.3 Weight Clustering

Weight Clustering, or weight sharing, is an optimization technique that aims to
reduce the total memory size of a model by reducing the number of unique
weights in it. The first step in weight clustering is running a clustering algorithm
over the weights of a specific layer, in order to obtain the desired number of
centroids. Similar weights are replaced by the centroid’s index they correspond
to. The result is that instead of the weights, we can now store just an index table
and a set of indices.

Figure 24. Weight clustering visualization

Weight clustering has an immediate advantage in reducing model storage and
transfer size across serialization formats, as a model with shared parameters
has a much higher compression rate than one without

38

4. Convolutional Neural Networks for Edge Applications

4.1 MobileNetV2

The MobileNet family of neural networks, is a well-established series of
convolutional neural networks developed by Google, with the aim of improving
performance and reducing inference time in mobile applications. MobileNet V1
introduced the concept of depthwise separable convolutions. Mobilenet V2
superseded V1, still utilizing the same type of depthwise separable convolutions
but also introducing a new module called Inverted Residuals and Linear
Bottlenecks.

For our use case we selected the MobileNet V2 CNN that was released in 2018.
Even though by this time, MobileNet V3 has already succeeded it, according to
Google Coral’s official benchmarks, MobileNet V2 seems to outperform its
successor in terms of inference time. This difference in performance derives
primarily from two factors:

1. MobileNet V3 makes use of the hard-swish activation function, which is
not supported from the Edge TPU processor.

2. Like many of the state-of-the-art models, MobileNetV3 utilizes channel
attention mechanisms, specifically squeeze-excitation modules. During
our experimentation we concluded that these modules perform poorly on
the Edge TPU processor in terms of runtime.

4.1.1 Inverted Residuals

The term residuals describe skip connections between the start and end of
convolutional blocks. By using these skip connections, the CNN is able to access
earlier activations that have not been modified by the convolutional block,
ultimately improving performance the deeper the network gets.

Usual residual blocks followed a wide-narrow-wide approach, utilizing different
kernel sizes in order to squeeze or expand the parameters in the channel
dimension.

Figure 25. Conventional residual Block

39

MobileNetV2 introduced residual blocks following a narrow-wide-narrow
approach, which, in contrast to the previous approach, carry a reduced number
of parameters.

Figure 26. MobileNetV2 residual block

4.1.2 Linear Bottlenecks

Inverted residuals introduced skip connections after squeezed layers instead of
expanded. This fact, in combination with the commonly used ReLU activation
function, which discards values lower than zero, had a negative impact in the
performance of the network. For this reason, the researchers introduced linear
bottlenecks, where they essentially discard the activation function after the last
convolutional layer of a block.

4.1.3 Architecture

Using the modules we mentioned above, MobileNetV2’s convolutional blocks
can be seen in Figure 27.

Figure 27. MobileNetV2 bottlenecks

40

The whole architecture can be seen in Figure 28, where 𝑡 is the expansion factor,
𝑐 the number of output channels, 𝑛 is the repeating number and 𝑠 the stride.
Convolutional layers utilize a 3x3 kernel. The width of the network can also be
modified by specifying a width multiplier.

Figure 28. MobileNetV2 architecture

MobileNetV2 with a width multiplier set to 1 and input size 224x224, requires a
total of 300 million multiply-adds and has 3.4 million parameters. The network
achieved a top-1 accuracy of 72% on the ImageNet classification task.

4.2 GhostNet

GhostNet: More Features from Cheap Operations was introduced in CVPR 2020
and was one of the most notable breakthroughs that year. The idea behind this
paper is that many of the feature maps generated from a convolutional layer are
redundant or show a high degree of similarity. With this in mind, the researchers
proposed an alternative method to calculate a percentage of the total feature
maps, which requires less computational effort than the standard convolution.
Using these methods and the MobileNetV3 CNN as a backbone, they presented
the GhostNet CNN.

4.2.1 Feature Map Redundancy and the GhostNet Module

Taking a closer look at the feature maps generated by a convolutional layer in
Figure 29, researchers noticed that there many similar copies of unique intrinsic
feature maps generated through the computationally expensive convolution.
They called these feature maps “Ghost Feature Maps” and they proposed a way
to generate them using a cheap operation, the Ghost Module.

41

Figure 29. GhostNet feature maps

The main goal of the Ghost Module is to replace the standard convolutional
layer and reduce the FLOPS required. Assuming the input and output tensors
of a convolutional layer, with 𝐶 and 𝐶′ channels respectively, the Ghost Module
works as follows:

1. Compute a percentage 𝑥% of the desired output’s feature maps, 𝑥𝐶′,
through standard convolution. Pass the output through a batch
normalization layer and a ReLU activation function.

2. Using the output of step one as input, compute the rest of the feature
maps, (1 − 𝑥)𝐶′, through a depthwise convolution. Again, pass the
output through a batch normalization layer and a ReLU activation
function.

3. Stack the results of the two steps along the channel axis.

42

Figure 30. Ghost module

4.2.2 Architecture

Utilizing the Ghost Module, the researchers proposed a new backbone
architecture called GhostNet. This architecture is essentially a “ghosted”
MobileNetV3, where the bottleneck is replaced by the Ghost Bottleneck, as seen
in Figure 31.

Figure 31. Ghost Bottlenecks

GhostNet is comprised from a stem convolution layer, which was not replaced,
several grouped in stages Ghost Bottlenecks following an incrementing number
of channels and a classifier head. In all the Ghost Bottlenecks a stride of 1 was
applied, except for the last bottleneck where the stride 2 design was used. For
some residual connections in the Ghost bottlenecks the developers also used
Squeeze-Excitation (SE) blocks to provide channel attention, thus improving

43

accuracy with a small computational overhead. The whole architecture can be
better inspected in Figure 32.

Figure 32. GhostNet architecture

4.2.3 GhostNetEdgeTPU

In addition to the original GhostNet, we also introduce a modified variation of it,
called GhostNetEdgeTPU, which is more suitable for inference on edge devices.
Specifically, retaining the original architecture, we remove the channel attention
modules, squeeze-excitation modules, and we replace the ReLU activation
function with ReLU6.

4.3 MobileNetEdgeTPU V2

Google has developed MobileNetEdgeTPUV2 as a set of models for carrying
out efficient on-device inference. This particular architecture is the outcome of
using Neural Architecture Search (NAS), which is a method for automatically
designing neural network architectures that are efficient. One of the important
aspects of using NAS involves creating a "search space" containing various
potential modules that can be evaluated based on desired metrics, ultimately
leading to the final architecture.

4.3.1 Fused Inverted Bottlenecks

One widely-used building block in neural networks for various on-device vision
tasks is the Inverted Bottleneck (IBN), as explained in chapter 4.1. The IBN block
has several variants, each with different tradeoffs, and is built using regular

44

convolution and depthwise convolution layers. While IBNs with depthwise
convolution have been conventionally used in mobile vision models due to their
low computational complexity, fused-IBNs, wherein depthwise convolution is
replaced by a regular convolution, have been shown to improve the accuracy
and latency of image classification models on TPU.

Figure 33. Inverted Bottleneck variants

However, fused-IBNs, in contrast to the depthwise-IBN, come with high
computational and memory requirements, especially for convolutional layers at
the latter stages of a neural network. In order to overcome this obstacle, the
researchers introduced IBNs that utilize grouped convolutions, further expanding
the search space and improving model flexibility. Grouped convolutions
essentially slice the features maps into smaller subsets before performing the
convolution. This results in significantly reduced computational cost. These
blocks, also called Group Convolution-based IBNs (GC-IBNs), provide a way to
balance the trade-off between model quality and latency.

4.3.2 Architecture

Which IBN variant to use at which stage of a deep neural network depends on
the latency on the target hardware and the performance of the resulting neural
network on the given task. We construct a search space that includes all of these
different IBN variants and use NAS to discover neural networks for the image
classification task that optimize the classification accuracy at a desired latency
on TPU. The resulting MobileNetEdgeTPUV2 model family improves the
accuracy at a given latency (or latency at a desired accuracy) compared to the
existing on-device models when run on the TPU. MobileNetEdgeTPUV2 also
outperforms their predecessor, MobileNetEdgeTPU, the image classification
models designed for the previous generation of the TPU.

45

Figure 34. MobileNetEdgeTPUV2 performance comparison on Pixel 6 CPU

MobileNetEdgeTPUV2 models are built using blocks that also improve the
latency/accuracy tradeoff on other compute elements in the Google Tensor SoC,
such as the CPU. Unlike accelerators such as the TPU, CPUs show a stronger
correlation between the number of multiply-and-accumulate operations in the
neural network and latency. GC-IBNs tend to have fewer multiply-and-
accumulate operations than fused-IBNs, which leads MobileNetEdgeTPUV2 to
outperform other models even on Pixel 6 CPU.

4.4 EfficientNet-Lite

The EfficientNet family of CNNs is considered state-of-the-art since its
introduction by Google AI in 2019. The main goal of the EfficientNet is to provide
a method of scaling model architectures in a principled and effective manner, in
contrast to older techniques that required manual oversight. To achieve this, the
authors introduced compound coefficient scaling and based on it, seven different
model variants - EfficientNet B0-B7 - that obtained state-of-the-art performance
on the ImageNet challenge.

4.4.1 Compound Coefficient Scaling

In search for an efficient method of compound scaling, the researchers studied
the impact of different scaling techniques on model performance. Ultimately,
they reached the conclusion that even though scaling single dimensions can

46

help improve performance, balancing the scaling across all three dimensions-
width, depth and resolution- yielded better performance overall.

Figure 35. Single scaling options vs. Compound Scaling

In order to keep the scaling balanced, a constant ratio 𝜑 representing the
increase in computational resource to the network, also called compound
coefficient, is used, in a way that:

𝑑𝑒𝑝𝑡ℎ = 𝑎𝜑 , 𝑤𝑖𝑑𝑡ℎ = 𝛽𝜑, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝛾𝜑

So that:

𝛼 ∗ 𝛽2 ∗ 𝛾2 ≈ 2 (13)

Where the variables 𝛼, 𝛽, 𝛾 ≥ 1 are determined using a grid search algorithm.
The compound scaling method is justified by the intuition that if the input image
is bigger, then the network needs more layers to increase the receptive field
and more channels to capture more fine-grained patterns on the bigger image.

4.4.2 EfficientNet-Lite

Following the success of the EfficientNet classification models, Google released
the EfficieNet-Lite family of CNNs, a variation of the original models deisgned
for performance on mobile CPUs, GPUs and EdgeTPUs.

47

4.4.2.1 Architecture

The base EfficientNet-B0 network is based on the inverted bottleneck residual
blocks of MobileNetV2, as described previously.

Figure 36. EfficientNetB0 architecture

EfficientNet-Lite, builds further on this model, making it more suitable for mobile
devices by introducing ReLU6 activation functions and removing the squeeze-
excitation blocks.

4.5 Ensemble Models

In addition to the rest of the CNNs presented on this chapter, we also introduce
two more models base on Ensemble Learning. Since ensemble models
comprise of a number of smaller in size models, they tend to be bigger in terms
of parameters, but also more efficient. For these reasons, they provide a good
measure for the size-accuracy trade-off, but also offer insight on how the width
and depth of a model affect the inference time on the EdgeTPU.

4.5.1 Ensemble Model 1

The first ensemble model follows a more traditional architecture, by utilizing a
combination of the previously described CNN architectures.

48

Figure 37. Building blocks of ensemble model 1

In this approach, three of the previously described models are used as feature
vectors in order to extract critical information from the input images. Their results
are later combined and passed through a final convolution and a classifier.

Specifically, the three models used are the MobileNetv2, the EfficientNetLiteB0
and the MobileNetEdgeTPUv2. These models are already individually pretrained
on the Kvasir-v2 dataset.

For the purpose of utilizing them as feature vectors, the final convolution and the
classifier of each model are being stripped and the remaining layers are frozen
during the final training procedure, where we aim only to train the combined
convolution and the final classifier.

4.5.2 Ensemble Model 2

Τhe second model proposed comes after having trained and evaluated all the
previous models. Its purpose is to address weaknesses, which were identified
and found to be common to all previous models. Further insight into the logic
behind this model is provided in Chapter 6.

49

Figure 38. Building blocks of ensemble model 2

Its architecture is similar to the previous ensemble model. It consists of two
MobileNetV2 models that are utilized as feature vectors. They share a common
input and after stripping the final layers of the base models, their outputs are
combined at the final stage and pass through a convolutional layer and the
classifier.

It is important to note that in contrast to the previous ensemble model, due to
several differences in this approach that will be further explained in Chapter 5,
these models are trained from scratch.

50

5. Methodology

5.1 Data Pre-processing

The image pre-processing pipeline consists of a total of four steps:

1. Split images into training/test/validation
2. Perform Modular Adaptive Pre-processing for GI tract images (MAPGI)
3. Resize and rescale the images appropriately for training
4. Increase the total number of images through data augmentation

These steps are explained in detail on the following sections.

5.1.1 Split Images

5.1.1.1 Default Process

The dataset includes 8.000 images in total. For training purposes, these images
have been split into training – validation – test subsets with a ratio of 0.765 –
0.135 – 0.1 respectively. This results in a training set of 6.120 images, 765 of
each class, a validation set of 1.080 images, or 135 of each class and a test set
of 800 images, 100 from each class respectively.

5.1.1.2 Special Case

Ensemble model 2 is considered a special case and requires a different splitting
method. The two MobileNetV2 networks that comprise the ensemble model are
trained on two different subsets of the Kvasir v2 dataset. We refer to these
datasets as 3-class dataset and 7-class dataset.

The 3-class dataset consists of a total of three classes, two originally found in
the Kvsair v2 dataset, the Esophagitis and the Normal Z-line classes, and a new
class called Other, which consists of random samples from the six remaining
classes. The 7-class dataset follows the same logic, with the difference that it
consists of a total of seven classes. These are six classes of the original dataset,
specifically all classes except the Esophagitis and Normal Z-line classes. The
latter two are randomly sampled and combined into a new class called Other.
Each class from both subsets has a total of 1000 images that are splatted into
train-validation-test with ratio 0.765 – 0.135 – 0.1 respectively.

5.1.2 MAPGI Framework

The Modular Adaptive Preprocessing for Gastrointestinal Tract images
framework, or MAPGI, was introduced by T.Cogan and M.Cogan [13] as a way
to improve the performance of CNNs on the classification task of the Kvasir v2
dataset. Within the framework, images are represented in the YUV color space,
instead of the common RGB, because the Y component solely encodes image

51

luminance, and as such it can be treated as a grayscale image itself, making the
framework robust against different color spaces.

The framework consists of a total of 5 steps, which are described in detail in the
following sections.

Figure 39 MAPGI framework's steps: (a) Masking, (b) Crop, (c) MAVGA, (d) Lowpass Filter, (e) Resize &

Rescale

5.1.2.1 Masking

As mentioned before, many images contain a small box on the left bottom
corner, depicting the position of the endoscope. This information is not always
available and can mislead ANNs into learning from information that will not be
available in the future, negatively impacting their robustness. For this reason, at
the first stage of the pre-processing framework, an image processing algorithm
has been used in order to mask the aforementioned box. Because the position
and the colour of the box are constants, this algorithm detects the box by
measuring pixel intensity on all three channels and then proceeds to mask the
pixels detected.

5.1.2.2 Intelligent Cropping

On the second step, we appropriately crop the images in order to reduce areas
of the image that contain no valuable information for the ANNs, like black edges
etc. This procedure is performed by checking the mean pixel intensity for row
and columns, starting from all the four borders of the image. Every row or column
that has a mean pixel intensity lower than a user specified threshold, is cropped.
The cropping continues until a row of pixels is met, which has a pixel intensity
higher than the threshold specified.

52

5.1.2.3 MAVGA Module

The MAVGA Module, or Mean-Approximated Gamma Value Adjustment
Μodule, is a function for performing contrast enhancement via gamma
correction, that was proposed by the same authors, instead of most commonly
used methods, such as Contrast-Limited Adaptive Histogram Equalization.

The MAVGA Module uses recursive method in order to perform gamma
correction. At first, we compare the mean pixel value of an image to the desired
mean pixel value, in our case 90 ± 1. After this, the algorithm estimated a
gamma value needed in order to correct the image’s brightness, and then
applies a gamma correction. This procedure is repeated until the mean pixel
value is in the desired range. Specifically, let 𝑏 be the desired mean pixel value
then we want:

1

𝑛
∑ (

𝐼𝑖

255
)

𝜆

= 𝑏

𝑛

𝑖=1

(15)

Where 𝐼𝑖 represents pixel values and 𝜆 is the desired gamma correction
coefficient. Replacing the pixels by the average pixel value of the image, 𝑎, and

solving for 𝜆:

𝜆 =
ln 𝑏 − ln 255

ln 𝑎 − ln 255
(16)

The process works recursively as follows:

53

5.1.2.4 Lowpass filter

At the last step of the MAPGI framework, we use a simple low-pass filter in order
to reduce out-of-band noise. This filtering is only applied to the luminance
channel. The filter is performed by convolving a kernel {[0.1, 0.1, 0.1], [0.1, 1,
0.1], [0.1, 0.1, 0.1]}/1.8 kernel through the entire image.

5.1.3 Resize & Rescale

As mentioned before, the images are in the RGB format with image resolutions
that vary from 720x576 to 1920x1072. Following the MAPGI framework, the
images are resized down to 224x224, due to the fact that this is the native input
size for many of the CNNs utilized. Another vital step is the rescaling of the
images. In the RGB format every pixel is in the range [0,255] but before using
them for training, we rescale them so that every pixel has values in the range
[0,1], or [-1,1] in cases concerning the EfficientNet family of CNNs.

5.1.4 Image Augmentation

In order to increase the effective size of the dataset and counter overfitting, we
used a set of image augmentation transformations that seemed appropriated for
our use case. These transformations are the following:

• Random Flip, Horizontal and Vertical

• Random Rotation with rotation factor 0.45

• Random Contrast with contrast factor 0.30

• Random Zoom with zoom factor 0.30

Figure 40. Image Augmentation example

54

5.2 Training Configuration

5.2.1 Training Setup

All data and image processing scripts have been implemented using the Python
v.3.9.0 programming language. Specifically for the development of the MAPGI
framework, the OpenCV library has been used. All model architectures have
been implemented using the Keras and TensorFlow 2.7.0.

CNN models have been trained and evaluated on a desktop consisting of an
AMD Ryzen 5 3600X 6-core processor, 16 GB DDR4 RAM and a RTX 3060Ti
NVIDIA GPU.

5.2.2 Training Parameters

Below, we briefly present the training parameters as set before training:

55

Table 3 Training Parameters

56

5.3 Post Training Optimization

5.3.1 Post Training Quantization

Following training, optimization techniques for edge inference and model
compression take place for all CNNs. This includes the methods explained in Ch
2., like quantization and pruning. This process leads to models in TensorFlow
Lite format, which are suitable for edge applications.

5.3.2 Compilation for the Edge TPU processor

In order to prepare the quantized models for inference on Google Coral Edge
TPU, they have to be compiled. During this procedure, all model operations are
mapped out and optimized for the edge accelerator.

Figure 41. Edge TPU compiler report

One of the main considerations of this process is the utilization of the Edge
TPU’s Cache. If the converted model’s size is small enough and all operations
are supported, the compiler will map all operations to the aforementioned cache,
improving the inference time. Bigger size models, or models with not allowed
operations, can still run on the processor, but will use the off-chip memory. In
this case, the inference time suffers significantly

57

5.4 Inference

In order to conduct inference, we setup the Google Coral Dev Board mini. Then
we proceed to download all the compiled models, the test images as well as a
benchmark model. Google Coral’s website offers a variety of already tested
models with their benchmarks. In order to establish a more accurate baseline for
our tests, we downloaded their official EfficientNet-EdgeTpu-S model and
compared the inference time with their benchmarks. This is necessary in order
to better identify the impact of the differences between the Google Coral Dev
Board and its mini version. Even though the AI accelerator is exactly the same
between these two versions, the mini version utilizes a USB connection between
the edge TPU and the board’s CPU, in contrast to the PCI-E connection of the
original board. Additionally, the mini version has less powerful system-on-
module (SoC) with a dual-core processor, that might affect the time required for
processing images through the MAPGI network.

Utilizing all the above, we test the quantized models directly on the Board, in
order to compare their inference time. We also calculate the average time the
MAPGI pre-processing framework requires for the processing of one image on
the Edge TPU.

5.5 Evaluation

5.5.1 Metrics

In order to evaluate the models, we use all the suggested metrics from the
original Kvasir v2 paper. For this reason, we conduct inference using the test
images that have been hidden from the models and collect the following basic
metrics:

True Positive (TP): The number of correctly classified positive images.

True Negative (TN): The number of correctly classified negative images.

False Positive (FP): The number of falsely classified positive images.

False Negative (FN): The number of falsely classified negative images.

It is important to note that these basics metrics are extracted for each class
separately, since the task at hand involves multi-class classification. For a single
class, positive is considered a sample belonging to the specific class, while
negative is considered a sample belonging to any other class.

58

In the next step we calculate the following advanced metrics for each class,
based on the previous ones:

Accuracy is the percentage of correctly classified images.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙
(17)

Precision, also called the positive predictive value, represents the ratio of
correctly classified positive samples among all returned values.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑎𝑙𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(18)

Recall also known as sensitivity, probability of detection or true positive rate,
represents the ratio of samples that are classified as positive among all positive
samples.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(19)

Specificity, or true negative rate, shows the ratio of the negatives that are
correctly classified as such.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑎𝑙𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
(20)

Matthew Correlation Coefficient (MCC) takes into account true and false
positives and negatives, and is an efficient metric for unbalanced classes.

59

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(21)

F1 Score is a measure of test’s accuracy through the calculation of the harmonic
mean of the precision and recall.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(22)

After obtaining these for each individual class, we then calculate the weighted
average to procure the final results for a model.

In addition to the above metrics, we also take into consideration the total
inference time as measured on the Edge TPU, the size of a quantized model
and the total count of its parameters. These added metrics are of crucial
importance for edge applications.

5.5.2 Explainability

Saliency maps are not a metric but a group of visualization techniques used in
the field of explainable artificial intelligence to help understand the features of an
image that a convolutional neural network is using to make its predictions. In a
CNN, each layer applies a set of filters to the input image, creating a feature map
that highlights certain features or patterns in the image. Saliency maps use this
information to create a heatmap that indicates the importance of different regions
of the input image for the CNN's prediction. Saliency maps are typically
generated by computing the gradient of the output of the CNN with respect to
the input image, and then normalizing the gradients to highlight the most
important regions of the image. This allows us to see which parts of the image
the network is paying the most attention to when making its prediction, which
can help provide insights into how the network is making its decision. By
examining the saliency map, we can identify the most important features of an
image for a given classification task. This can help us better understand how the
neural network is making its predictions, which in turn can help us improve the
network's performance, troubleshoot issues, and ensure that the network is
making decisions in a way that aligns with our expectations.

 In Chapter 6 we will use one of the simplest techniques called Gradient-based
Saliency (Vanilla Saliency) in order to provide insight and better understand our
models and input data. Vanilla Saliency works by computing the gradient of the
output class score with respect to the input image pixels. The gradient values
reflect how much the output score would change if a small perturbation is made

60

to a specific pixel in the input image. By assigning the absolute value of these
gradient values to each pixel, a saliency map is obtained that indicates which
parts of the input image are most important to the model's decision. Delving
deeper into saliency maps and explainability in general, is considered beyond
the scope of this thesis.

61

6. Results

Following the steps described in the previous chapter, we present the following
results.

6.1 Model Results

These results refer to the trained CNNs after conducting inference on the 800
images kept aside for test purposes. Table 4 shows the metrics for the models
before quantization, while they are still in Floating Point 32-bit format. The
training curves for validation accuracy and loss for each base model can be
found in the Appendix.

Float32 Model Accuracy Precision Recall Specificity F1 MCC

MobileNetv2 91.87% 91.96% 91.87% 98.83% 91.88% 90.72%

GhostNet 84.25% 84.23% 84.25% 97.75% 84.20% 82.01%

GhostNetEdgeTPU 86.00% 86.22% 86.00% 98.83% 91.88% 84.04%

MobileNetEdgeTPUv2 90.75% 90.79% 90.75% 98.67% 90.71% 89.44%

EfficientNetLiteB0 90.37% 90.64% 93.00% 98.82% 90.31% 89.05%

Ensemble Model 1 93.00% 93.02% 93.00% 99.00% 92.99% 92.00%

Ensemble Model 2 91.75% 91.85% 91.75% 98.82% 91.71% 90.59%

Table 4. Model results

After quantizing the models in the integer 8-bit format, we repeat the tests and
obtain the following metrics, as shown in Table 5.

Quantized Model Accuracy Precision Recall Specificity F1 MCC

MobileNetV2 92.75% 92.77% 92.75% 98.96% 92.73% 91.72%

GhostNet 82.37% 82.66% 82.37% 97.48% 82.35% 79.90%

GhostNetEdgeTPU 85.62% 85.84% 85.62% 97.94% 85.58% 83.61%

MobileNetEdgeTPUv2 90.00% 90.06% 90.00% 98.57% 89.98% 88.58%

EfficientNetLiteB0 89.87% 90.28% 89.87% 98.55% 89.83% 88.50%

Ensemble Model 1 93.12% 93.16% 93.12% 99.01% 93.11% 92.15%

Ensemble Model 2 92.00% 92.07% 92.00% 98.85% 91.98% 90.87%
Table 5. Quantized model results

62

For the purpose of comparing the models and drawing conclusions, we also
present the total memory, as well as the parameter count and the floating-point
operations required from each model, as shown in Table 6.

Model
Float
Model

Size (MB)

Quantized
Model Size

(MB)

Compiled
Model Size

(MB)
Parameters FLOPS

MobileNetV2
21.3 2.5 2.8 2.234.112 612.746.728

GhostNet
36.3 4.2 5.2 3.899.816 266.165.256

GhostNetEdgeTPU
25.0 2.6 3.3 2.429.872 284.026.128

MobileNetEdgeTPUv2
28.4 2.8 3.2 2.528.168 1.031.731.120

EfficientNetLiteB0
30.0 3.7 4.3 3.423.264 781.709.896

Ensemble Model 1
65.0 11.1 12.4 10.221.576 ~2.400.000.000

Ensemble Model 2
26.9 5.1 5.6 4.528.586 1.025.303.256

Table 6. Model storage and computational requirements

Last but not least, we evaluate the inference time of each model, as well as the
average time required to process one image with the MAPGI framework, on the
Coral Edge TPU. The results are shown in Table 7.

Model EdgeTPU Runtime (ms)

MobileNetV2
14.87

GhostNet
36.73

GhostNetEdgeTPU
20.21

MobileNetEdgeTPUv2
16.63

EfficientNetLiteB0
16.12

Ensemble Model 1
176.39

Ensemble Model 2
22.56

MAPGI Framework <1
Table 7. Model inference time on the Edge TPU

63

6.2 Discussion & Conclusions

Before diving into the specific results for each model and performing the
comparison between them, we first want to point out the main observation that
is shared through all models. Even though the top-1 accuracy of the CNNs tested
ranges from 82% up to 93%, all models showcase a top-2 accuracy >=98%.
Combining this information with the confusion matrices as shown in Figures 42
and Figure 42, we conclude that the misclassifications between the Esophagitis
and Z-line classes are responsible for the significant part of the errors occurred
during inference.

Figure 42 Ensemble Model 2 Confusion Matrix

64

Figure 43 MobileNetV2 Confusion Matrix

This conclusion also highlights the thought process behind the introduction of
Ensemble Model 2, as an effort to utilize a dedicated network in order to reduce
the misclassifications between these aforementioned problematic classes.
However, even a MobileNetV2 trained on the 3-class dataset showcased the
same behavior and results, leaving us to believe that the learning capacity of
these lightweight CNN’s cannot further adapt and better learn to differentiate
these two classes.

To further understand and visualize the difficulties of Kvasir V2 dataset, we also
present the Gradient based Saliency, or Vanilla Saliency, maps produced from
MobileNetV2 inference. It is made apparent that model extracts regions of
interest different than the human eye. These regions, apart from the center of
the pictures where most of the landmarks can be found, also include analysis of
the inner walls of the GI tract. A combination of these results in the efficient
classification of the test images. Closer depiction also confirms the similarities
between the Esophagitis and Z-line gradient heatmaps. It’s also made apparent
that the CNN struggles to correctly identify regions of interest when it comes to
these classes.

65

Dyed Lifted Polyps

Pylorus

Dyed Resection Margins Z-line

Esophagitis Polyps

Cecum

Ulcerative Colitis

Figure 44. Vanilla Saliency map samples for each class

Most Correctly Classified Class: Pylorus

Original Image Saliency Map

66

Figure 45. Vanilla Saliency map samples for Pylorus Class

Most Misclassified Classes: Z-line – Esophagitis

Z-Line

Original Image Z-Line Saliency Map

Figure 46. Vanilla Saliency map samples for Z-Line Class

Esophagitis

Original Image Z-Line Saliency Map

67

Figure 47. Vanilla Saliency map samples for Esophagitis Class

In terms of specific model results, Ensemble Model 1 scored the best result with
an accuracy of 93.12%. MobileNetV2 follows closely with a quantized accuracy
of 92.75%. It is notable that both Ensemble Model’s 1 and MobileNet’s accuracy
increased after the quantization process, an uncommon occurrence that
presents when the rounding of the network’s weights after quantization leads to
a model that generalizes better on the data. Taking into account the overall
model size and inference time, MobileNetV2 is the best performing network.
Even though it scored slightly less on most metrics than Ensemble Model 1, it
achieved the best inference time at 14.87ms with only 1/5th of the total parameter
count, while the ensemble model showcased the worst inference time of
176.39ms. Such difference on runtime occurs due to the fact that the ensemble
model’s compiled size slightly exceeds the Edge TPU’s cache size by 0.4 MB,
but comes to show the great effect it has on computation time.

The MobileNetEdgeTPUv2 and EfficientNetLiteB0 CNNs showcased similar
overall performance, both in accuracy and inference time, but still lacking behind
in comparison with MobileNetV2 in terms of parameters-to-runtime ratio. The
fact that MobileNetEdgeTPUv2 is slower than the original MobileNetV2 on the
Coral Edge TPU, even though it is much faster on a Google Pixel 6 according to
its authors, further goes to highlight the importance of matching suitable neural
network and hardware architectures.

Ensemble Model 2 performed poorly considering the increase in all aspects,
from parameter count to model size and FLOPS, but was an informative tool that
provided deep insights into the nature of the dataset.

A case of great interest is that of GhostNet and GhostNetEdgeTPU. First of all,
it is important to mention that these two models are the only original networks
that were trained from scratch, as there were no pretrained weights available for
the TensorFlow ecosystem, thus falling of behind significantly in accuracy and
related metrics. However, these models come with the lowest requirements in
FLOPs, requiring less than half of that of MobileNetV2. Unfortunately, this
difference does not impact the inference time as expected. The reason behind
is that the Ghost Modules utilize depthwise convolutions much more often than
the rest of the architectures, and this operation is not as optimized on the edge
accelerator than other variants. Finally, the removal of the channel attention
mechanisms and the introduction of the ReLU-6 activation function led to

68

significant improvements. The GhostNetEdgeTPU model improved in all metrics
in comparison with the original architecture. Most importantly the inference
runtime on the accelerator dropped from 36ms down to 20ms, confirming the
fact that squeeze-excitation modules are not a good match for this specific
hardware architecture.

Last but not least, there is a significant difference between the inference time of
our MobileNetV2 and Google Coral’s official benchmark. Specifically, the official
benchmarks claim a total inference time of 2.6ms, in contrast to our 14.87ms.
This is only logical considering the differences in the hardware and the
implementation. This gap occurs due to two main factors. First, the Dev Board
mini we used utilizes a USB connection between the Edge TPU and the board’s
CPU, in contrast to the PCI-E connection of the original Board. This adds
significant overhead when transferring data from and to the accelerator. The
other factor is that the official models are tested using TensorFlow’s low level
C++ API, whereas we used Python, which lacks in terms of performance.

To summarize some of the conclusions of this thesis:

1. The Kvasir v2 dataset, though small, requires careful preprocessing and
handling, in order to minimize the errors presented mainly between the
Esophagitis and Z-Line classes.

2. MobileNetV2 was the best model put into test, reaching accuracy levels

lower than those presented in literature, but still comparable, and it does
so with only a fraction of the parameters and computational effort. With
inference time less than 15ms, in addition to the total time required to
process one image with the MAPGI framework, which is less than 1ms,
we can conservatively expect more than 45 FPS throughput on the
Google Coral Dev Board mini.

3. Even though the Google Coral Edge TPU is a powerful edge accelerator
that can effectively promote edge applications, like many of its
competitors it has not yet reached its full potential in terms of compatibility
and optimization regarding the inference of CNNs. Its performance is
highly dependent on the correct match between neural network and
hardware architecture. While it responds impressively with many
convolutional modules, it still lacks proper support for many common
operations.

All things consider, we find the results of this thesis encouraging for the
promotion of telemedicine, telediagnosis and a variety of real-time computer
vision applications on the medical field. The combination of relatively powerful
low-cost edge accelerators and the continuous optimization of convolutional
neural networks achieved by the technological advancements of the last decade,
has reached a level of maturity that will lead to an ever-increasing adoption of
computer vision edge applications.

69

6.3 Future Work

For researchers aiming to improve this work we propose the following:

1. On the context of model accuracy on the Kvasir v2 dataset, one should
mainly focus on the two classes responsible for the majority of the
misclassifications. As concluded by the results of Ensemble Model 1, the
final model metrics are almost equal to the metrics derived by the test
classifications performed on the Esophagitis and Z-Line classes. Thus,
creating a subset of these two classes, like we did on Ensemble Model 1,
and testing the proposed models only on this smaller dataset, can
effectively save a lot of training time and produce accurate insights.

2. In terms of model architecture and hardware compatibility, as derived by
the comparison of GhostNet and GhostNetEdgeTPU, small changes can
have great effect. One “tweak” we have not been able to test is the use
of Grouped Convolutions in replacement of the traditional ones, due to
the fact that these operations are not yet natively supported by
TensorFlowLite. According to Google’s official blogpost [28], we have
reason to believe that this could lead to significant improvement, and that
support for these operations should be implemented in the near future.

Furthermore, for researchers with the goal of extending this work further we
present the following ideas:

1. Instead of focusing only on models for image classification, this work can
be easily extended to include performance benchmarks on image
segmentation models. For this purpose, we propose the use of Kvasir
SEG, a dataset comprised of 1000 annotated polyp images and their
accompanying masks.

2. Last but not least, we highly encourage the performance comparison of
the same tasks between different state-of-the-art AI edge accelerators.
Given that the development of efficient embedded devices optimized for
deep learning inference is still an ever-changing field, this procedure
could produce important insights on their differences and lead to
generalized conclusions in the way one should approach such tasks.

70

APPENDIX

Training Curves

MobileNetV2

GhostNet

GhostNetEdgeTPU

71

MobileNetEdgeTPUv2

EfficientNetLiteB0

72

References

[1] M. Sandler, A. Howard et al, “MobileNetV2: Inverted Residuals and Linear Bottlenecks”

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018

[2] T. Agrawal et al, “SCL-UMD at the Medico Task-MediaEval 2017: Transfer learning-

based Classification of Medical Images”, MediaEval’17, 13-15 September 2017

[3] S. Han, S. Mao and W.J.Dally, “Deep Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

[4] J. H. Lee et al, “Spotting malignancies from gastric endoscopic images using deep

learning”, part of Springer Nature 2019

[5] J. Ribeiro, S. Nobrega and A. Cunha, “Polyps Detection in Colonoscopies”, Procedia

Computer Science 196 (2022), p. 477–484

[6] T. Agrawal, R. Gupta and S. Narayanan, “On Evaluating CNN Representations for Low

Resource Medical Image Classification”, IEEE ICASSP 2019

[7] C. Gamage et al, “GI-Net: Anomalies Classification in Gastrointestinal Tract through

Endoscopic Imagery with Deep Learning”, Moratuwa Engineering Research

Conference, 2019

[8] J. Yogapriya et al, “Gastrointestinal Tract Disease Classification from Wireless

Endoscopy Images Using Pretrained Deep Learning Model”, Computational and

Mathematical Methods in Medicine, v.2021

[9] K. Pogorelov et al, “Kvasir: A Multi-Class Image Dataset for Computer Aided

Gastrointestinal Disease Detection”, MMSys ’17, June 20–23, 2017, Taipei, Taiwan

[10] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning”,

arXiv:1603.07285v2

[11] S. Lafraxo and M. El Ansari, “GastroNet: Abnormalities Recognition in Gastrointestinal

Tract through Endoscopic Imagery using Deep Learning Techniques”, 2020 8th

International Conference on Wireless Networks and Mobile Communications

[12] K. Han, Y. Wang and Q. Tian, “GhostNet: More Features from Cheap Operations”, 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

[13] T. Cogan, M. Cogan and L. Tamil, “MAPGI: Accurate identification of anatomical

landmarks and diseased tissue in gastrointestinal tract using deep learning”, Computers

in Biology and Medicine, vol. 111, August 2019

[14] M. Tan and Q.V. Le,” EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks”, International Conference on Machine Learning, 2019

[15] S. Voghoei et al, “Deep Learning at the Edge”, 2018 International Conference on

Computational Science and Computational Intelligence (CSCI)

[16] Z.M. Lonseko et al, “Gastrointestinal Disease Classification in Endoscopic Images

Using Attention-Guided Convolutional Neural Networks”, MDPI, Appl. Sci. 2021

[17] S. Ioffe and C. Szegedy,” Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift”, ICML'15: Proceedings of the 32nd International

Conference on International Conference on Machine Learning, vol. 37, July 2015, pp.

448–456

73

[18] O.R.A. Almanifi et al, “Automated Gastrointestinal Tract Classification Via Deep

Learning and The Ensemble Method”, 21st International Conference on Control,

Automation and Systems (ICCAS 2021)

[19] D. Jha, S. Ali et al, “A comprehensive analysis of classification methods in

gastrointestinal endoscopy imaging”, Elsevier, Medical Image Analysis, vol.70, 2021

[20] S. A. Magid, F. Petrini and B. Dezfouli, “Image Classification on IoT Edge Devices:

Profiling and Modeling”, Cluster Computing, vol 23, issue 2, June 2020, pp. 1025–1043

[21] Andreas M. Kist, “Deep Learning on Edge TPUs”

[22] A. Boroumand et al, “Google Neural Network Models for Edge Devices: Analyzing and

Mitigating Machine Learning Inference Bottlenecks”, 30th International Conference on

Parallel Architectures and Compilation Techniques (PACT), 2021

[23] A. Yazdanbakhsh, K. Seshadri, B. Akin et al, “An Evaluation of Edge TPU Accelerators

for Convolutional Neural Networks”

[24] S. Poudel, Y.J.Kim, D.M.Vo, “Colorectal Disease Classification Using Efficiently Scaled

Dilation in Convolutional Neural Network”, IEEE Acess, May 2020

[25] W.Wang, X.Yang et al, Convolutional-capsule network for gastrointestinal endoscopy

image classification, Wiley, December 2021

[26] Öztürk, Ş., Özkaya, U. Gastrointestinal tract classification using improved LSTM based

CNN. Multimed Tools Appl 79, 28825–28840 ,2020.

[27] https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-

efficientnet-lite.html

[28] https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html

[29] G. Menghani, “Efficient Deep Learning: A Survey on Making Deep Learning Models

Smaller, Faster, and Better”, Google Research USA, June 2021

[30] S. Ioffe and C.Szegedy, “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift”, 2015

[31] Dumoulin, Vincent and Visin, Francesco, “A guide to convolution arithmetic for deep

learning”, 2016

[32] Magid, Salma and Petrini, Francesco & Dezfouli, Behnam,” Image classification on IoT

edge devices: profiling and modeling”, Cluster Computing. 23. 10.1007/s10586-019-

02971-9, 2020

[33] Han, Song & Mao, Huizi & Dally, William. (2016). “Deep Compression: Compressing

Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.”

[34] Yazdanbakhsh, Amir & Seshadri, Kiran & Akin, Berkin & Laudon, James &

Narayanaswami, Ravi. (2021). “An Evaluation of Edge TPU Accelerators for

Convolutional Neural Networks.”

[35] Boroumand, Amirali & Ghose, Saugata & Akin, Berkin & Narayanaswami, Ravi &

Oliveira, Geraldo & Ma, Xiaoyu & Shiu, Eric & Mutlu, Onur. (2021). “Google Neural

Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference

Bottlenecks.” 159-172. 10.1109/PACT52795.2021.00019.

[36] Gholami, Asghar & Kwon, Kiseok & Wu, Bichen & Tai, Zizheng & Yue, Xiangyu & Jin,

Peter & Zhao, Sicheng & Keutzer, Kurt. (2018). SqueezeNext: Hardware-Aware Neural

Network Design.

