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Health and Economic Geography in the US

Policy Interventions for Public Health

Konstantinos Christopoulos

Abstract

Despite the fact that health and wealth are very much related, health policies tend
to ignore the social and economic mechanisms behind health disparities. In this
thesis I examine two subjects: premature mortality, and COVID-19 government
interventions. To elaborate, I first study whether premature mortality, measured by
the years of potential life lost (YPLL), converges among the U.S. states, by gender
and by race. Based on these results, I also examine which mortalities, as well as
health spending components, might have led to divergence. A novel convergence
methodology is employed to this end for the years 1979–2017. Findings suggest that
for males and blacks, all U.S. states converge to a steady-state, while for females,
whites, and total population, the states form convergence clubs. These clubs differ
mainly in infant, cardiovascular, and unintentional injury mortalities, with the ones
with the lesser YPLL located mainly on the west and east coast. In conclusion,
preventable deaths seem to be the main driver of premature mortality and spending
on health does not appear to play a major role.

Second, I study the association between the COVID-19 pandemic government
responses and the equity-efficiency relation. More specifically, wage inequality is
the inequality in question. Cross-sectional data from the contiguous US states for
the year 2020 and a spatial econometric model specification were the data and the
method used for the analysis, respectively. The main finding is that the association
of State government responses to COVID-19 with the relation depends on the per
capita income of the States. Additionally, an inverted-U relationship between wage
inequality and efficiency was found. These heterogenous effects may play a role into
regional integration.
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Dedication

To Taba, long may you run
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Chapter 1

Introduction

A positive association between wealth and health is well established at the micro

and macro-level (Pollack et al., 2007). So much so, that a potential redistribution of

income could blunt health disparities without us interfering at all with health policy

(Deaton, 2002). Although some studies disprove this last hypothesis (Semyonov

et al., 2013), others have shown that income inequality is a predictor of health out-

comes, regardless of the individuals’ socioeconomic status (Kennedy et al., 1998).1

Nevertheless, some pathologies known as ‘diseases of the affluence’2 (e.g., cancer,

type 2 diabetes, cardiovascular disease) is proof that this is not a simple monotonic

relationship, but one with intricacies that require special attention.

Although micro evidence is always more preferable for health outcomes—so that

ecological fallacies can be avoided—policy decisions are taken on a macro level. At

the regional level, disparities in wealth and health cannot be regarded as indepen-

dent. Disparities can be found when studying the health geography of macro and

micro regional units. These are usually the result of socioeconomic and cultural

factors that have operated over the years, and thus created divergence in population

health outcomes.

Access to healthcare is perhaps another regional determinant of health dispar-

1See Subramanian and Kawachi (2004) for a review on income inequality and health.
2The term ‘diseases of the affluence’ gradually loses its validity since most of the products

detrimental to health have already penetrated the markets of developing countries and are heavily
marketed toward vulnerable populations. See Gómez (2021) for a discussion of the case of Latin
America.
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ities (Brezzi and Luongo, 2016). Of course, access to care itself is determined by

other regional characteristics such as income and unemployment. Another possible

mechanism through which geography could influence health disparities is the qual-

ity of care. If this mechanism is in place, then regardless of access to care, health

disparities will be formed (Chandra and Skinner, 2003). It is therefore evident that

the economic situation of a region can affect health via multiple pathways.

The hypothesised relations between these three variables, namely, health, equity,

and efficiency are depicted in the form of a Directed Acyclic Graph.3

EfficiencyEquity

Health

Figure 1.1: Hypothesized relations between health, equity, and efficiency

This thesis is going to cover mainly two subjects; one focusing on the health geog-

raphy, and one focusing on the economic geography of US states. As previously men-

tioned, these two subjects are not independent, but rather entangled with complex

mechanisms. The health geography part focuses on premature mortality—measured

by the years of potential life lost—and how different mortalities and health spending

affect the trends. The economic geography part focuses on the equity-efficiency re-

lation and how this was affected by the recent COVID-19 government interventions.

The setting, as already mentioned, is the US states plus the District of Columbia

(DC). The study of the premature mortality is a panel data analysis for the years

1979–2017 and the study of the equity-efficiency relation is a cross-sectional study
3The graph was created with the R package ‘daggitty’. For a detailed explanation of these

graphs McElreath (see 2020, Chapter 6).
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for the year 2020. The convergence analysis was performed using the Phillips and

Sul (2007) and Phillips and Sul (2009) methodology, while for the cross-sectional

analysis a spatial econometrics approach was utilized.

The aforementioned can be summarized in the following research hypotheses/questions:

For the first part,

1. Is premature mortality converging across all US states for different genders

and races, and if not which are the convergent clubs?

2. Which of the main mortalities are behind the disparities in premature mortal-

ity?

3. Is there a difference in health spending among convergent clubs?

and for the second part,

1. Is there a modification effect on the equity-efficiency relation by the COVID-19

government responses?

2. Are the COVID-19 government responses associated with wage inequality?

Premature mortality is an important public health indicator with ramifications

to social and economic outcomes. This first part aims to aid regional and national

public health policy in the effort to reduce premature mortality and to identify

whether interstate disparities between sexes and races exist. Moreover, the assess-

ment of the relation between health spending and premature mortality will provide

insights regarding value in health. The relation between equity and efficiency re-

mains at the heart of regional policy. The second part aims to provide valuable

information on how the distorting force of the governments’ interventions can affect

the equity-efficiency relation.

The US setting was preferred since there exists large within-country variation

in health and economic outcomes. The peculiarities of the American healthcare

system create mechanisms which amplify the disparities in health when inequalities

in wealth exist, making US an especially interesting case (Subramanian and Kawachi,
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2004).4 Secondarily, data availability is ample. US states were preferred to a more

disaggregate unit of analysis (e.g., counties) due to data censoring issues that would

lead to unreliable estimates for premature mortality in the first part of the thesis,

and due to data availability issues for the second part. The particularity of this

geographical choice of course limits the transportability of the findings to mostly

developed countries with large health and economic disparities within.

For the health geography part, the focus on premature mortality rather than

plain mortality was in order to better capture the burden of deaths for the society

and economy. The years of potential life lost were preferred to better quantify

premature mortality and the time period was selected so as to properly conduct a

convergence analysis. For economic geography part, the year 2020 was chosen since

it was the first year of the pandemic and 2021 data or later, were not available.

The rest of the thesis has the following structure: Chapter 2 studies the con-

vergence patterns and drivers of premature mortality across US states. In Chapter

3 the association between of the COVID-19 government responses and the equity-

efficiency relation is examined. The final chapter draws some final conclusions from

the previous two chapters.

4See Semyonov et al. (2013) for some empirical evidence on this matter.
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Chapter 2

Disparities and trends of premature
mortality between US states

2.1 Introduction

US premature mortality rates have been declining in the previous decades as a result

of advances in medicine and hygiene (Krieger et al., 2008). Premature mortality is

defined as the number of deaths occurring before a certain age limit. The age limit

most frequently chosen is 75 years but other limits such as life expectancy at birth

can be used. Its difference with standard mortality rates is that premature mortal-

ity places emphasis on deaths that occur at younger ages. Therefore, it provides

information that is not dominated by the mortality of the elderly and can be used

as a measure of the burden of a disease. It is also a valuable tool for public health

policy makers since it enables them not to just monitor but also intervene and pre-

vent premature deaths. From a socioeconomic perspective, premature mortality

affects negatively the age-distribution of the population which in result leads to less

productivity, decreased output and fiscal strains (Alkire et al., 2018).

In the United States, the main contributing mortalities in 2017 according to

CDC’s (Centers for Disease Control and Prevention) WISQARS (Web-based Injury

Statistics Query and Reporting System), were the malignant neoplasms (cancers)

followed by the unintentional injuries, cardiovascular deaths, suicide deaths, and

deaths in perinatal period. Of these cause-specific mortalities, perinatal death is
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the main contributor to premature mortality and the number one priority for health

policy, especially in countries where infant mortality rates remain high. In devel-

oped countries, policy focuses mainly on preventing and treating cardiovascular and

cancer pathologies. Although a health issue, premature mortality has deep social

and economic roots (Doubeni et al., 2012).

The importance of studying the phenomenon of premature mortality was ac-

knowledged by the CDC in 1982, when it started to include in its tables the po-

tential years of life lost (YPLL) as a measure of premature mortality (Gardner and

Sanborn, 1990). The YPLL quantify the burden of loss by weighting deaths that

occur at the earlier stages of life more (McDonnell et al., 1998). Consequently, in-

fant and perinatal mortality contribute the most years. The YPLL can be used also

as a measure of health performance as well as a health spending efficiency index

(Christopoulos and Eleftheriou, 2020b).

The concept of convergence is popular in economics but recent studies have

applied econometric convergence methodologies to study health indicators as well

(Christopoulos and Eleftheriou, 2020a; Christopoulos et al., 2022; Duncan and

Toledo, 2019; González-Álvarez et al., 2020; López-Mendoza et al., 2021). These

panel data methods are more robust than the traditional trend analyses found in

epidemiological studies which compare cross-sections temporaly. Converge analysis

is an important tool for regional policy due to its ability to identify divergent enti-

ties that either excel, and therefore can be used as a good example, or entities that

are left behind and are in need of integration policies in order to converge. At this

point, I should note that the convergence of a variable is neither an improvement

nor a deterioration per se, but an indicator that a situation is becoming similar

cross-sectionally across time.1

In this chapter I study the convergence of premature mortality, measured by

YPLL, for the U.S. states as a total, by gender and by race (black, white and

1Extra attention is need when interpreting convergence results from an entities’ prespective.
For example, consider an imaginary health indicator ‘H’. If we have convergence in H some entities
are probably improving, while others are probably worsening. There is also the case that some
entities are converging toward a steady trend, either desirable or not.
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Hispanic). I use the Phillips and Sul (2007) and Phillips and Sul (2009) approach

which is a state-of-art econometric methodology for analysing convergence trends

and identifying clubs. I also examine various mortality factors, as well as health

spending indicators, that may drive the results for the occasions where there is no

full sample convergence. This chapter contributes to the literature since it is the first

study, to the best of my knowledge, that examines the convergence of a weighted

premature mortality indicator (i.e., YPLL) in the United States examining data on

a disaggregated level (U.S. states) not only for the total population but also for

different demographic groups.

The rest of the chapter is organised as follows: The next section provides a liter-

ature review of studies that have applied econometric methods to study health indi-

cators as well as studies that address the issue of premature mortality in the United

States. Section 2.3 describes the material and the methods of the study including

the YPLL calculation and the convergence methodology. Section 2.4 presents the

results and Section 2.5 discusses them. In the final section I draw my conclusions.

2.2 Literature review

2.2.1 Convergence of health outcomes

The convergence of health outcomes has been widely examined in the literature.

In the United States, studies on specific health indicators such as the mortality of

African Americans (Naghshpour and Sameem, 2019) and suicide rates (Kitenge et

al., 2019) have found convergence across all states with the use of β-convergence.

On a global scale, Clark (2011) examined the convergence in world health as a result

of economic growth, using life expectancy and infant mortality as health indicators,

with mixed results. Duncan and Toledo (2019) also found that countries converge in

clubs in terms of the body mass index (BMI), while for children, González-Álvarez

et al. (2020) found convergence in overweight but not in obesity prevalence.

For the European Union, Nixon et al. (2000) first studied the convergence of
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infant mortality and life expectancy along with that of healthcare expenditure and

more recently, Weber and Clerc (2017) studied the convergence of deaths amenable

to healthcare with both studies showing convergence. Panopoulou and Pantelidis

(2012) studied the convergence of healthcare expenditure and health outcomes in-

cluding YPLL for 19 OECD countries between 1972 and 2006 and found that coun-

tries converge into different clubs depending on the variable under consideration.

Recent studies had their focus on COVID-19 deaths and cases (Christopoulos et al.,

2022; López-Mendoza et al., 2021).

2.2.2 Premature mortality in the US

The effect of several mortalities and health factors on premature mortality has been

previously studied; from cancer (Song et al., 2021a) to cardiovascular outcomes,

such as myocardial infraction (Dani et al., 2022) and stroke (Song et al., 2021b).

In an earlier study (Rockett and Smith, 1987) had highlighted the importance of

injury deaths in the US premature mortality, and more recently, (Shiels et al., 2019)

outline the contribution of deaths from drug poisonings. Mental health outcomes

such as schizophrenia (Olfson et al., 2015) have also been the subject of investigation.

Regarding risk factors, (Hirko et al., 2015) studied the effects of obesity and being

overweight.

While health outcome and risk factor studies have their fair share, studies on the

socioeconomic determinants of premature mortality are the most popular. Several

studies point to income inequality as the main determinant at the city (Cooper et

al., 2016; Ronzio et al., 2004) and county level (Cheng and Kindig, 2012; Song et al.,

2021a; Song et al., 2020). Other socioeconomic factors such as education have been

also found to influence premature mortality (Ma et al., 2022; Mansfield et al., 1999;

Roy et al., 2020; Song et al., 2021a). Finally, Song et al. (2021a) point also to an

association with the unemployment rate at the county level.

Research has been performed also for racial determinants. Although these pre-

dictors are not independent of the socioeconomic and health status, several studies
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reveal large disparities between black, hispanic and white populations (Cullen et al.,

2012; Iribarren et al., 2005; Kiang et al., 2019; Krieger et al., 2014; Mansfield et al.,

1999). Historical factors such as segregation laws have been pointed as a culprit

for the disparities in premature mortality of the black population (Cooper et al.,

2016; Krieger et al., 2014). Cullen et al. (2012) reveal that the survival probability

from birth to age 70 is lower for the black population regardless of sex. This result

of increased risk for premature mortality is very much consistent in every research

that addresses the subject. On the bright side, health outcomes for some chronic

diseases have been improving for black and hispanic populations (Chen et al., 2019).

Ma et al. (2022) also found recently that disparities in premature mortality between

whites and blacks have decreased. Best et al. (2018) predict that premature mortal-

ity from cancer and CVD will decrease for the black and hispanic population, while

deaths from suicide and injuries are expected to rise for the entire US population.

Disparities in premature mortality exist also between sexes (Iribarren et al.,

2005). Despite the fact the women have a higher life expectancy than men, evidence

shows that females are at higher risk. Cullen et al. (2012) again calculated smaller

survival probabilities for white females, while Mansfield et al. (1999) found that

female-headed household have increased YPLL. Nevertheless, demographic factors

were not a major predictor of premature mortality.

Geographic variation and spatial patterns have been observed across states and

counties (Dani et al., 2022; Kiang et al., 2019; Mansfield et al., 1999). The emerging

pattern has South US as more prone to premature deaths, while states in the West

and Northeast appear to have better outcomes (Dani et al., 2022; Mansfield et al.,

1999). Rurality, is a factor that appears to influence differently premature mortality

depending on the cause of death. Nevertheless, disparities are present between

urban and rural populations (Ma et al., 2022). The connection of this geography

with inequality, either in the form of economic or social, may explain these spatial

patterns in US premature mortality.

Last but not least, there are deep concerns regarding the effect of the climate
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change on premature mortality. The numerous mechanisms via which human health

is affected by climate change2 will inevitably result in increased mortality, especially

for vulnerable populations (Benevolenza and DeRigne, 2019). So far studies have

focused on the increased air pollution, in the form of particulate matter and ozone,

from the climate change (Dedoussi et al., 2020; Fang et al., 2013; Neumann et al.,

2021; Silva et al., 2013). While air pollution has been linked to increase mortality

and morbidity, several other aspects of the climate change that are expected to

impact premature mortality in the future remain understudied.

Given the prior research on the premature mortality in the US, this chapter

expands the existing knowledge by studying the convergence patterns of premature

mortality with a measure that captures the burden of the death (YPLL). This will

help identify the states which are in need of intervention. By gender and race analysis

will aid in deciding whether discrimination, and therefore disparities, is a thing of

the past. Studying the main mortalities that create divergent clubs and whether

health spending and funding has any effect will assist in focusing on specific causes

of death and resource allocation.

2.3 Material & Methods

2.3.1 Data

The variable I use to conduct the convergence analysis is the potential years of life

lost. It was calculated from the mortality data of the CDC’s WONDER database

(CDC, 2018) for the years 1979 to 2017.3 YPLL for the total population is calculated

by aggregating the difference between a selected age limit and the age of every

premature death. Though they are many options to choose for the age limit, 75

years were chosen as the cut-off value because this value is the most commonly used

by CDC and other organizations such as the OECD for the calculation of Y PLL.

2See Kim et al. (2014) for a review on the effect of climate change on human health.
3Data for Hispanic population -which is independent of the other racial categories- were avail-

able only between 1999 and 2017.
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As a consequence, all deaths occurring at the age of 75 or after did not contribute

to this index. In order to ensure the comparability of our data, the YPLL were

age-adjusted (using 2000 as the base year) to account for different age structures

in the populations and are expressed as YPLL per 100,000 inhabitants in order to

account for differences in the population size. The same procedure was followed

for the gender and race specific YPLL. The reason for not including other races in

our analysis apart from black, white and Hispanic is the fact that small population

numbers lead to unreliable mortality rates, and therefore unreliable YPLL estimates.

In order to analyze which mortalities have led to the formation of the clubs, the

following variables, also taken from CDC’s WONDER database, were used: can-

cer mortality; infant mortality; cardiovascular mortality; suicide mortality, and the

deaths by unintentional injury. These are the mortalities that had the most con-

tribution to YPLL in the past years. ICD-9 and ICD-10 codes4 were used in the

extraction of the data for the years before and after (including) 1999, respectively.

It should be noted that the comparability ratios between ICD-9 and ICD-10 clas-

sification systems for the mortality variables used in our analysis are close to one;

this implies that the change in coding practices did not affect the comparability of

the data across time and between states.5 All variables are age-adjusted and in per

100,000 rates for cross-sectional and cross-trend comparison except for infant mor-

tality which cannot be age-adjusted and it was expressed in per 1,000 live births.

All calculated YPLL and mortality rates are described in Table 2.1.

Additionally, to test whether there is any statistical difference in health spending,

data for the mean per capita real public health funding (PHF ) and the mean per

capita real health care expenditure (HCE) were extracted. For PHF from the

Trust for America’s Health Rankings for the period 2007-2017 (AHR, 2020), while

for HCE from the Centers for Medicare and Medicaid Services for the period 1991-

2014 (CMMS, 2018). The Consumer Price Index, used for the conversion to real

4International Statistical Classification of Diseases and Related Health Problems (ICD) code
is a medical classification by the World Health Organization.

5For more information regarding comparability ratios, see https://www.cdc.gov/nchs/data/
nvsr/nvsr49/nvsr49_02.pdf

20

https://www.cdc.gov/nchs/data/nvsr/nvsr49/nvsr49_02.pdf
https://www.cdc.gov/nchs/data/nvsr/nvsr49/nvsr49_02.pdf


terms, was retrieved from the US Bureau of Labor Statistics (BLS, 2020). The

selection of time periods was based on data availability. The District of Columbia

was not included due to missing data.

Table 2.1: Descriptive statistics for YPLL, cause-specific mortality rates and health
spending

Variables N Mean S.D. Min. Max.

YPLLtotal 1989 7533.07 1723.24 4601.86 18 576.75
YPLLmale 1989 9675.70 2476.45 5599.44 27 292.63
YPLLfemale 1989 5382.40 1098.13 3040.08 11 159.43
YPLLwhite 1989 6977.52 1244.23 2733.88 10 857.78
YPLLblack 1989 13 318.96 10 714.17 0.00 121 496.10
YPLLHispanic 969 5705.44 4224.34 1736.21 45 036.77

Cancertotal 1989 197.58 24.92 124.90 295.80
Cancerfemale 1989 163.51 18.17 107.10 235.80
Cancerwhite 1989 194.24 22.15 94.40 246.40
Cardiototal 1989 270.92 82.50 123.10 487.40
Cardiofemale 1989 214.83 64.38 93.80 391.20
Cardiowhite 1989 266.07 81.62 89.70 486.10
Injury total 1989 42.18 11.06 18.10 110.70
Injuryfemale 1989 26.19 7.09 10.70 66.70
Injurywhite 1989 41.77 10.82 12.20 101.40
Infanttotal 1989 8.30 2.68 3.10 25.10
Infantfemale 1989 7.37 2.44 1.63 24.30
Infantwhite 1989 7.01 2.02 2.03 18.84
Suicidetotal 1989 13.27 3.79 3.80 29.60
Suicidefemale 1989 5.33 1.85 1.21 14.70
Suicidewhite 1989 14.11 3.74 2.42 30.20

HCE 1200 4260.34 2242.51 137.15 11 050.89
PHF 550 81.83 40.31 26.74 306.12

Notes: YPLL = Age-adjusted years of potential life lost per 100,000 inhabitants; Cancer =
Age-adjusted cancer mortality per 100,000 inhabitants; Cardio = Age-adjusted cardiovascular
mortality per 100,000 inhabitants; Injury = Age-adjusted unintentional injury deaths per 100,000
inhabitants; Infant = Infant mortality (age < 1) per 1,000 live births; Suicide = Age-adjusted
suicide deaths per 100,000 inhabitants. HCE = Mean per capita real healthcare expenditure in
US dollars; PHF = Mean per capita real public health funding in US dollars.

2.3.2 Methodology

YPLL calculation

Calculation of the YPLL was initially conducted for ten-year age groups which were

then age-adjusted and aggregated for each state and year. Specifically, due to the
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structure of the data, from the year 1999 and onwards the age groups were the

following: <1 year, 1-4 years, 5-14 years, 15-24 years, 25-34 years, 35-44 years, 45-

54 years, 55-64 years and 65-74 years. From 1998 and backwards the groups were

the following: <1 year, 1-4 years, 5-9 years, 10-14 years, 15-19 years, 19-24 years,

25-34 years, 35-44 years, 45-54 years, 55-64 years and 65-74 years. Groups from the

1979-1998 series were appropriately merged so that they match the age groups in

the 1999-2017 series which were used in our analysis.

The YPLL for a specific state i in a denoted time t was calculated using the

following equation:

Y PLL =
G∑

g=1

(75− ω̄g)

(
Ditg

Pitg

)(
Pbaseg

Pbase

)
100, 000, (2.1)

where g denotes the age group, G is the total number of age groups and ω̄ is the

median age of each age group.

The mortality rate, which is the second term in the parenthesis, is calculated

by dividing the number of deaths Ditg by the total population Pitg.6 This crude

mortality rate is then age-adjusted by multiplying with the appropriate weight, the

third term in the parenthesis. Different weights were used for each gender and race

to account for the gender/race specific age distributions. These weights are obtained

by dividing the base population (year 2000) of each age group Pbaseg by the total

population at base year Pbase. Lastly, the value is multiplied by 100,000 to get a per

100,000 value.

Convergence analysis

The methodology used to examine the convergence process is the one developed

by Phillips and Sul (2007) and Phillips and Sul (2009). The superiority of the

Phillips and Sul (PS) methodology over the classic β and σ-convergence lies in

the fact that it uses a time-varying factor model that allows for individual and

transitional heterogeneity in order to identify convergence clubs. Additionally, the
6Due to data use restriction for deaths less than 10, the mean (5) was used.
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test for convergence does not impose any particular assumption concerning trend

stationarity or stochastic non-stationarity since it is robust to heterogeneity and to

the stationarity properties of the series (Sichera and Pizzuto, 2019).

The panel data of interest are the different YPLL which are represented by Xit

where i is the cross-section dimension (i.e., the 50 U.S. states and the District of

Columbia) and t the time parameter. Xit consists of two components as presented

in Equation (2.2).

Xit = δitµt. (2.2)

The µt is the common component while δit is the idiosyncratic component, with

δit measuring the deviation of each state (i) from the common trend µt. The id-

iosyncratic component is described by the following equation:

δit = δi + σiξitL(t)
−1t−a, (2.3)

where δi is a time-invariant fixed value, σi are idiosyncratic scale parameters, ξit is

an independent and identically distributed random variable across i (with zero mean

and unit variance) but weakly dependent over t and L(t) is a slow varying function

for which L(t) −→ ∞ when t −→ ∞.7

The aim of the PS methodology is to test if all U.S. states converge to a steady-

state or multiple ones. The null hypothesis, H0 : δi = δ and a ⩾ 0 of convergence of

all i versus the alternative, HA : δi ̸= δ or a < 0 of non-convergence for some i, can

be tested through Equation (2.4).

log

(
H1

Ht

)
− 2 logL(t) = ĉ+ b̂ log t+ ût, t = [rT ], [rT ] + 1, ...., T, (2.4)

where r = 0.3 , L(t) = log(t), b̂ = 2â where â is the least squares estimate of a

under the null hypothesis and ut are zero mean, weakly dependent errors.8 For the

7For more details, see Phillips and Sul (2007), pp. 1772-1773.
8For details, see Phillips and Sul (2007), pp. 1788-1789 and Phillips and Sul (2009), p. 1168.
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choice of r, extensive Monte Carlo simulations conducted by PS, show that this

value of r (0.3) gives satisfactory results in terms of both the size and the power

properties of the test (Phillips and Sul, 2007, pp. 1802-1803). For the choice of L(t),

PS recommend log(t) since it works well in simulations and has good asymptotic

power. Ht appears on Equation (2.5) and the relative transition component hit in

Equation (2.6).

Ht =
1

N

N∑
i=1

(hit − 1)2, (2.5)

hit =
Xit

N−1
∑N

i=1Xit

=
δit

N−1
∑N

i=1 δit
. (2.6)

The convergence hypothesis is tested by an autocorrelation and heteroskedasticity

robust one-sided t-test (Heteroskedasticity and Autocorrelation Consistent (HAC)

standard errors are used) and is rejected at the 5% level when tb̂ < −1.65. In the

case of no full sample convergence, Phillips and Sul (2007, pp. 1800-1801) propose

a procedure that identifies convergence clubs. This procedure has the following 4

steps:

i First, we sort the last period YPLL values of the N states in descending order.

ii Secondly, we form all the possible core clubs of the U.S. states. Starting from

the first k highest-ordered states (2 ⩽ k ⩽ N), we calculate the convergence

t-statistic (tk) using Equation (2.4). We determine the size of the club k∗ by

maximizing the t-statistic of the logt regressions for tk > −1.65.

iii Next, from the remaining states we add one state at a time to the main core

clubs and rerun Equation (2.4) including the new state in the convergence club

if the respective t-statistic is greater than zero.

iv Finally, we form another club from the states that failed the logt-test in the
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previous step. Again we run Equation (2.4) for this club. If the convergence

criterion is not satisfied, we repeat the previous steps in order to determine if

that club can be further divided into convergence clubs. If there are no states left

which satisfy the convergence criterion in the second step, these states diverge.

Due to the fact that the use of a conservative sieve criterion about the control

value of the t-statistic in step (iii) may lead to an over-estimation in the number of

clubs, we perform club merging tests using Equation (2.4) as recommend by Phillips

and Sul (2009) and we also calculate the corresponding transition paths.

Finally, to examine the driving factors of the club formations, a t-test is employed

to test for the equality of means of the average values of the mortality rates for each

club. Club average values were calculated using the entire available time-series for

each state of the club.

2.4 Results

In this section, we provide the results of the convergence tests for the gender and race

groups as well as for the total population. Moreover, results from the driving factors

that have led states to diverge from a single equilibrium when that was the case are

also presented. The results for gender and race specific YPLL are presented first in

order to better understand the dynamics of the total population. The convergence

results are presented in Table 2.2. It is important to note here that the higher the

number of the club, the lower the Y PLL average for each population group.

The results are considerably different between genders, with the male population

converging into a single steady-state and the female population forming three clubs

which could not be merged further. More specifically, for the female population,

Club 1 has the highest average YPLL and consists of 10 contingent states that start

from West Virginia and go south-southwest without major geographic gaps, with the

exception of New Mexico which also shares a small border with Oklahoma. District

of Columbia belongs also in that group though not directly contingent. Club 3,
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the club with the lowest average YPLL, is an augmented version of Club 2 of the

total population consisting not only of coastal states but also of states located in

the middle and north (see Figure 2.1). We can also observe spatial clustering in

all three clubs of the female population which implies commonalities among these

states in factors that affect premature mortality.

The racial analysis for the black, white and Hispanic populations also show

disparities. For the black population all states converge into a single equilibrium as

was the case for the male population. The Hispanic population also had all states

converging with the exception of Vermont which diverted. The population with the

largest variation is definitely the white population. With eleven initial clubs and two

divergent states and six clubs plus the group of divergent states after the merging

tests, the white population does not seem to follow the full convergence pattern the

two other populations had. Washington and West Virginia are the two divergent

states while Alabama, Kentucky, and Mississippi form the club with the highest

average YPLL; and DC and Minnesota the one with the lowest.

The main question, whether the YPLL of the total population among the U.S.

states converges, is answered negatively. The −3.851 value of the t-statistic leads

to rejection the null hypothesis of convergence. Instead, we have the formation of

three convergence clubs which remain two after the merge of Clubs 1 and 2. The

first club consists of 41 states while the second club of the remaining 10 states.
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(a) Clubs for total population (b) Clubs for female population

(c) Clubs for white population (d) Clubs for Hispanic population

Figure 2.1: Estimated convergent clubs

Figure 2.2: Transition paths for divergent clubs
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The transition paths illustrated in Figure 2.2 are in line with the convergence

test results. The total population exhibits a small tendency to converge in the first

years but the transition curves of the two clubs begin to widen from the late 80s

until our latest available year (2017) as the components of the total population begin

to diverge. Indeed, for the female population, Club 1 never seems to converge while

Clubs 2 and 3 exhibit a tendency to converge until the mid 90s when they begin to

diverge. For the white population, there is no coherent pattern until the mid-90s

when clubs begin to diverge. It appears that Clubs 1 to 3 will converge in the future

and the same can be told for Clubs 4 and 5 but not for Club 6.

The differences in the means of the variables we chose as the main components

of premature mortality that drive the YPLL show that for the female population,

deaths by unintentional injury and cardiovascular mortality are the main separating

factors between the two Clubs with lower average YPLL from the one with the

highest. Moreover, Club 2 has significantly less cancer mortality rates while Club

3 has significantly less infant mortality rates compared to Club 1. For the white

population, the two clubs with the highest average YPLL (Clubs 1 and 2) have no

significant difference in all the reported driving factors. For the rest of the clubs,

infant and cardiovascular mortality rates were different in Clubs 3 to 6, deaths by

unintentional injury in Clubs 4 to 6, suicide rates in Clubs 5 and 6 and cancer

mortality only in Club 6. The total population shows differences in means in infant

mortality and deaths by unintentional injury but there is no significant difference in

cardiovascular mortality as opposed to the female and white population.

Lastly, for the total YPLL, Club 2 had higher PHF per capita ($87.15) com-

pared to Club 1 ($80.50) but there was no statistical difference at the 5% level (p-

value=0.619 and p-value=0.556 when allowing for homogeneous and heterogeneous

covariance matrices across groups, respectively). On the other hand, the mean per

capita real HCE is found to be marginally statistically different between the two

clubs at the 5% level under homogeneous (p-value=0.045) but not heterogeneous

(p-value=0.118) covariance matrices across groups. The mean HCE for Club 1 was
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$4186.14 and for Club 2=$4557.14.

Table 2.3: Mortality rates driving the YPLL divergence

YPLL Club Unintetional Cancer Infant Cardiovascular Suicide
injury mortality mortality mortality mortality mortality

Total 1 43.946 198.839 8.631 275.332 13.666
2 34.937 192.407 6.955 252.841 11.640

Female
1 31.310 169.539 8.882 245.900 5.301
2 27.831 160.324 7.454 210.808 5.866
3 21.899 163.839 6.529 203.509 4.784

White

1 54.991 207.731 7.906 314.304 15.112
2 50.887 203.672 7.892 301.365 15.687
3 45.493 200.393 7.293 283.795 15.792
4 42.096 187.630 6.937 252.952 15.299
5 36.617 194.374 6.603 259.601 12.232
6 29.758 177.183 6.801 214.503 9.514

Notes: The numbers in the above Table are the average values of the corresponding risk factor
for each club. The bold values for the Female and White clubs indicate that the club average
for the respective risk factor is not included in the 95% confidence interval of the club with
the highest YPLL. The bold values for the Total clubs indicate that the null hypothesis of the
equality of means is rejected at a 0.05 significance level. The test for the equality of means is
conducted allowing for both homogeneous and heterogeneous covariance matrices across groups.
The test produces similar results under both options.

2.5 Discussion

The convergence analysis showed that the YPLL of males and blacks converge for

all states. The same applies for the hispanic population with the exception of Ver-

mont.9 On the other hand, for females and whites inequalities appear from the

formation of 3 and 6 groups of states by the clustering algorithm, repsectively. For

the entire population, YPLL follow two paths. The main mortalities that drove

the formation of clubs were infant, and unintentional injury mortality for the total

YPLL, while for females, differences in cancer and cardiovascular mortality were also

significant. Suicides appear to drive YPLL differences only in white population. Per

capital public health funding and healthcare expenditure for the total population

9The Hispanic population of Vermont is a very small fraction of a very small population in
general and given the reduced period of the available data, the question whether the premature
mortality of the Hispanics of Vermont is actually diverging should be further studied.
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were higher for the club with the less YPLL though not statistically significant at

the 5% level.

While there are several studies that have associated black population with in-

creased risk of premature mortality (Cooper et al., 2016; Cullen et al., 2012; Krieger

et al., 2014; Mansfield et al., 1999), this research shows that this risk is or becoming

similar at least at the state level. As Naghshpour and Sameem (2019) had previously

found convergence for black mortality rates, their premature mortality appears also

to converge. The improvements in chronic disease outcomes such as CVD for black

(and also Hispanics) are probably the reason behind the full sample convergence and

the reduction of the health ‘gap’ with whites (Chen et al., 2019; Ma et al., 2022).

On the other hand, risk factors such as inequality and segregation may be in place

regardless of the state of residence of black populations (Cooper et al., 2016; Krieger

et al., 2014), and thus disparities between racial groups persist.

Despite the fact that the health of the white population has reached a plateau and

further improvements are not easily achievable (Chen et al., 2019), the 6 resulting

clubs signify large geographic variation and disparities between states. With more

YPLL lost in Southern states and less in Northeast, Midwest, and West coast states,

the results are in accordance with previous research on the subject (Dani et al., 2022;

Mansfield et al., 1999). Once again, income inequality is higher in states with high

premature mortality and that affects also the white population. It remains to be

seen if predictions for injury and suicide death increase will affect white populations

disproportionately.

The full sample convergence of the male population is an unexpected result. For

women, YPLL follows the same geographical patterns as for the white population,

albeit with half the numbers of divergent clubs. These disparities in female pre-

mature mortality are perhaps a result of an interaction between income inequality

and the presence of more female-headed households in these states, as literature

suggests (Mansfield et al., 1999). The combination of low income and the absence

of a husband potentially affects the health of women negatively resulting in increase
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premature deaths.

As a result of the previous disaggregated populations, premature mortality for

the total population converges for most of the states while there are 10 states, 8

of which are in the West and Northeast coast, that converge to an equilibrium

with less YPLL, meaning less premature mortality. It is no surprise that the two

geographical exceptions, Colorado and Minnesota, belong to the ‘healthier’ club

despite being central and north in the map as shown in Figure 2.1a since their per

capita GDP is above average. It is evident from the convergence analysis of the

gender and race groups that the two convergent clubs in the total population are

mainly a consequence of diverging patterns in the female and white population.

In general, both coasts as well as middle and northern states appear to have less

premature deaths as illustrated in Figure 2.1a.

Infant mortality plays a key role in premature mortality not only due to the

maximum years added to YPLL but also due to the fact that medicine has come a

long way in the prevention of most these deaths. The differences between clubs were

approximately 1-2 deaths per 1,000 live births. In less aggregated entities the differ-

ence is expected to be larger. This disparity implies that the gap in infant deaths is

possibly created by non-medical preventable deaths. Deaths by unintentional fatal

injuries, given their non-medical nature, contribute severely to the YPLL since they

include a high number death causes but the vast differences in club means (10-25

per 100,000) imply that states can actually intervene and influence this rates with

the right policies. The small differences in suicide rates between clubs suggest that

in order to reduce these rates a more radical approach should be taken and state

policies might not be sufficient. Instead, a government initiative might be more

appropriate to tackle effectively these issues. Intervention becomes more urgent for

the last two mortalities since studies show that these death rate are expected to rise

in the future (Shiels et al., 2017).

Cancer and CVD mortality are a major public health issue in developed coun-

tries. Although, rates and disparities are reducing the results show still large dif-
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ferences between clubs, especially for CVD mortality. The club means of the car-

diovascular mortality rates in whites have differences up to a third, which can be

attributed to lifestyle factors such as nutrition and exercise, as well as lack of access

to quality health care or insurance due to income restrictions.

Differences in HCE and PHF bordered on statistical significance. While higher

spending in healthcare, in either per capita healthcare expenditure or just public

health funding, is related to lower YPLL, the state’s differences in Y PLL are prob-

ably driven mostly by individuals’ behavioral aspects and socioeconomic inequality.

Mansfield et al. (1999) earlier work on YPLL also suggests that availability of med-

ical care is not that important of a factor. This in turn highlights once more the

importance of allocating public funds on preventive policies that modify behavior

and health consciousness as well as welfare and redistribution programs in order to

blunt inequality.

This research is limited in the following ways. First, the analysis in performed

on an ecological level using aggregate data at the state level. Secondly, not all races

were examined due to CDC ′s data censorship policy which made YPLL calculation

unreliable. This does not mean that these minority populations are not important

and should not be studied. The mortalities examined are also a subspace of the

total mortality which I found to have the most contribution to premature mortality.

Finally, the expenditure data (PHF and HCE) are mere proxies for healthcare

access, quality, and utilization.

2.6 Conclusions

The aim of this chapter was to examine the convergence patterns of premature mor-

tality across the U.S. states and identify the mortality components behind them. By

applying the Phillips and Sul (2007) and Phillips and Sul (2009) methodology, the

conclusion came that premature mortality for males and blacks converged to unity

while for the total, female and white population, convergence clubs were identified.

The cross-sectional differences, driven mainly by unintentional injury, cardiovascu-

33



lar, and infant deaths as well as the unclear association between health spending

and premature mortality, lead to the conclusion that prevention and equity are a

key factors in narrowing the health gap between states. Public health policy makers

should seriously address these issues since the role of prevention is unique to them.

Interventions that aim at the socioeconomic level will probably have the most effect

in YPLL but political will and public health are not always in accord. Popula-

tions with absolute convergence can be approached with a single strategy, while for

converging clubs the proper policy can improve premature mortality for each one.

This chapter fills an existing gap in the literature since it studies the convergence

of a health indicator in the U.S. states for a period of 39 years on multiple popu-

lations. Future research should focus on examining the effects of climate change

on premature mortality and to try disentangle the effect of the underlying mecha-

nisms that affect very much the same population that already is at higher risk of a

premature death.
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Chapter 3

The association between the
COVID-19 pandemic US state
government responses and the
equity-efficiency relation

3.1 Introduction

Equity and efficiency are thought be two opposite forces in the mainstream economic

thought. Whether this belief has political origins, or it is driven by the inability to

justify the continuous rise in inequality in capitalist societies, matters not. What

matters is more fundamental questions regarding policies and how can these priori-

tize the society and environment rather than the rat race of unconditional growth,

which has become an end in itself in the minds of modern day economists.

The equity-efficiency trade-off was originally a theoretical construct in microe-

conomics, where, supposedly, an economy had to sacrifice social equality in order to

achieve higher market efficiency. As described by Okun in the seventies, the trans-

fer of wealth from one group to another resembles a leaky bucket, where efficiency

‘leaks’ because of the efficiency costs of taxation and transfers, as well as some often

minuscule administrative or transaction costs. The main questions that arise there-

fore are: How much the bucket leaks and how much people (or elected politicians)

valuate equality in a society?

35



Kuznets (1955) first described several problems that arise when studying this

subject. For example, because the subject is rather political, ideologies often domi-

nate when redistributive policies are discussed or proposed. Additionally, the com-

plexity of the matter and the ambiguity of the semantics and definitions of the

involved terms (i.e., inequality, efficiency) render the equity-efficiency research open

to many—sometimes contradictory—interpretations. In order to investigate this re-

lation, one has to clearly define what is the equity of interest and how it will be

measured. The same applies to efficiency, although the options are more limited.

Clearly, there are several approaches in the literature. More specifically, wealth,

income and wage inequality are the most prevalent choices for assessing equity,

while economic efficiency is usually measured as GDP growth or GDP per capita.

Of course, the trade-off can also be examined outside of its traditional economic

context; see Reidpath et al. (2012) for an example in healthcare.

This chapter aims to examine the associations between the State’s government

pandemic responses and the efficiency-equity trade-off in the US states during the

COVID-19 pandemic. Additionally, the association between the State’s pandemic

responses and regional wage equality is also examined. To do so, I employ a 2020

cross-section analysis of US state level data, and use various econometric techniques

in an attempt to capture the effect of this exogenous shock (i.e., the Sars-CoV-2

pandemic and its subsequent responses) on the efficiency and equity relation, at the

subnational level. To the best of my knowledge, the effect of the government pan-

demic responses on the equity-efficiency relation and wage inequality have hardly

been studied in the literature, due to the unavailability of recent inequality data.

Since we know that efficiency and equity cannot remain unaffected by the corona sit-

uation, the findings or this research create new socioeconomic and equity knowledge,

with important policy implications.

The remaining part of the chapter has the following structure: The next section

entails a literature review on the equity-efficiency research. Section 3.3 provides the

theoretical framework that the research idea is based upon. Section 3.4 describes
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the data and methods used in the analyses and Section 3.5 presents the empirical

results. Finally, Section 3.6 discusses them and in Section 3.7, the final conclusions

are drawn.

3.2 Literature review

Although a microeconomic concept, empirical testing has utilized predominately

macro-data due to measurement difficulties on the individual level.1 The use of

macro-data implies some degree of aggregation and a geographic level of analysis.

In cross-country comparisons, early research by Persson and Tabellini (1992) and

Alesina and Rodrik (1994) showed that wealth inequality has a negative effect on

economic growth, with Alesina and Rodrik (1994) emphasizing the political aspect

of this relation (i.e., it holds true for democracies). A few years later, Li and Zou

(1998) and Forbes (2000) using panel data from heterogeneous countries presented

evidence of the opposite, that is, inequality is good for growth. Next up, Barro

(2000) divided his sample countries into rich and poor, and found that the trade-off

was present for the rich countries, but not for the poor ones. Banerjee and Duflo

(2003) argue subsequently that an inverted U-shaped curve—as proposed by Kuznets

(1955)—is the main driver behind the contradictory results in the literature and

that changes in equity tend to affect negatively economic growth in the subsequent

period, irrespective of their direction.

The measurement error found when measuring inequality, especially in develop-

ing countries, led Knowles (2005) to use expenditure data to enhance the compara-

bility. His study of developing countries found again that for this group, there is a

positive correlation between equity and growth. In more recent years, Fawaz et al.

(2014), considering potential endogeneity issues, employed a generalized method of

moments (GMM) estimator to find different relationships between inequality and

growth for high- and low-income countries, with results similar to Barro (2000).

Finally, a recent study by Andersen and Maibom (2020) used stochastic frontier

1For a micro-data approach see Browning and Johnson (1984).
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analysis on the basis of the fact that not all countries start at the same point. This

novel approach appeared to indicate the existence of a trade-off.

Within-country analyses were not in favour in the past but are beginning to

increase in popularity in recent years. Using panel data from US states, Frank

(2009) points towards a negative relationship between equity and growth in the long

term due to wealth concentration among the richest 10%. Alexiadis and Elefthe-

riou (2011), on the other hand, using time-series analysis of US data, found that

efficiency and equity can co-exist and that the relation is also affected by policies of

the governing party. Due to the existence of geographical interdependencies, spatial

econometric approaches were also employed to analyze the relation. Ezcurra (2007)

examined the relation between inequality (measured by income dispersion) and re-

gional growth to find a negative association. There are also studies that explore the

effect of endogenous factors to assess the relation. For example, Kim (2016) finds

that financial accessibility has the potential to change the negative relationship be-

tween inequality and growth into a positive one, especially for fragile countries.

The conclusion from the empirics discussed above is that the lack of consensus

on the relation between equity and efficiency is caused several factors including: dif-

ferent estimation techniques, structural assumptions of the authors (e.g., linearity),

measurement errors of the variables in question, as well as unobservable confounding

factors that make a statistical identification all the more difficult (Banerjee and Du-

flo, 2003). In addition, empirical evidence seems to be sensitive to the time horizon

(i.e., short vs. long-term effect) and the starting point, that is, the development

phase in the case of cross-country comparisons (Neves and Silva, 2014). It is impor-

tant to note that both De Dominicis et al. (2008) and Neves and Silva (2014)—who

reviewed intensively the empirical literature—accord with the idea that it is better

to study one country at subnational level (i.e., regionally) than more heterogeneous

national units. The reasoning behind this claim is that studying regional units can

limit unobservable factors and measurement errors in inequality, that might affect

the relation. Hence, more transferable conclusions for policy can be drawn. Accord-
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ingly, this study focuses on regional inequalities within a given country, viz. the

USA.

3.3 Theoretical framework

Recent COVID-19 government interventions may have had an influence on the

equity-efficiency dilemma at regional scale. This did not held true just for the sparse

available public health resources, but for the operation of the economy—or at least

parts of it. Previous research has shown that pandemics had a negative effect on

equity, affecting mainly socioeconomically vulnerable individuals via financial and

epidemiological mechanisms (Furceri et al., 2022). Therefore, it is safe to assume

that given the magnitude and universality of the COVID-19 pandemic, both equity

and efficiency suffered.

What previous pandemics were lacking (at least at this magnitude) were govern-

ment responses. These responses which aimed to mitigate the spread of the virus,

as well as to provide some economic support, may were more detrimental to the

efficiency and equity. Mandates on teleworking and the operation of essential goods

stores might have led to increases in income/wage inequality, as a result of those

who were unable to work from home (Christopoulos et al., 2022). Health-wise, indi-

viduals employed as essential workers had increased exposure to the virus. Furceri

et al. (2021) argue that government economic interventions helped mitigated the

rise in inequality in previous pandemics, therefore the economic support given in

this pandemic might had the same effect.

The outbreak of COVID-19 has affected US states in different ways since the

dispersion of the corona virus has been geographically uneven. The government

responses to COVID-19 have also shown remarkable differences at state level as well

(Hallas et al., 2021). It not clear though if the State’s government responses to

the pandemic altered the relation between equity and efficiency, and is therefore

pertinent to examine the equity-efficiency dilemma in corona times.
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3.4 Data

This section entails information about the variables used to measure equity and

efficiency as well as the COVID-19 pandemic government responses for 49 US states

and the District of Columbia (DC). Due to the spatial analysis and following the

no ‘island’ rule, Alaska and Hawaii were excluded from the sample. The descriptive

statistics of all variables included in the analysis are presented in Table 3.1.

Table 3.1: Descriptive statistics

Variables Obs. Mean S.D. Min. Max.

Gini 49 .497 .020 .457 .543
GDPpc 49 54619.29 19836.08 33518.95 173027
GRI 49 41.44 7.42 22.67 60.21
SI 49 42.04 8.26 18.38 60.82
CHI 49 42.44 6.92 22.94 57.48
ESI 49 34.46 16.77 3.01 79.37
Deaths 49 1079.14 440.76 232.38 2143.84
Notes: Gini=Gini index of wage inequality; ; GDPpc= 2020 real GDP
per capita, GRI=Mean government response index for 2020; SI=Mean
stringency index for 2020; CHI=Mean containment and health index for
2020, ESI=mean economic support index for 2020, Deaths= 2020 COVID-
19 deaths per million inhabitants.

3.4.1 Data for equity and efficiency

In general, inequality is not easy to measure. More so in times of crisis, like the

COVID-19 pandemic, as this could lead to additional measurement errors (Banerjee

and Duflo, 2003). The wage inequality data, namely the Gini index 2 for the year

2020 were retrieved from Gambau Suelves et al. (2021). This variable was estimated

by Gambau Suelves et al. (2021) with the use of the Lockdown Working Ability

index (Dingel and Neiman, 2020) so as to incorporate changes in the distribution

of wages, reflecting in a way the essentiality of occupations during the COVID-19

pandemic. The focus is only on wage and not income inequality data, since these

2The values of the Gini index range from 0 to 1, where 0 indicates that the income distribution
is equal (everyone earns the same income) and 1 denotes perfect inequality (one person/household
earns all the income).
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were the only available and reliable data at that moment. The Gini index of wage

inequality will be the variable used as the regressand.

Economic efficiency is measured by the real 2020 GDP per capita (in chained

2012 dollars), extracted from the Bureau of Economic Analysis (BEA, 2020). Since

this is a cross-sectional study and growth rates are expected to be negative in all

US states, real GDP was preferred. The natural logarithm of real per capita GDP

was used in the statistical analysis for normality reasons.

3.4.2 COVID-19 government response data

For the measurement of COVID-19 government responses, I use the overall Gov-

ernment Response Index (GRI) and its components: the Stringency Index (SI), the

Containment and Health Index (CHI), and the Economic Support Index (ESI). All

indices were retrieved from Oxford COVID-19 Government Response Tracker (Hale

et al., 2020). The indices at the State level for US do not include Federal policies

that apply to the country as a whole. However, these indices may reflect a mixture

of Federal government and State government responses since Federal government

gave recommendations which may have been followed.

The SI measures mainly the severity of closure policies, designed to restrict

human mobility and social behavior. CHI additionally measures the degree of testing

policies, contact tracing, and investments in healthcare (including vaccines). On the

other hand ESI was designed to measure income support and debt relief policies for

households. Finally, GRI contains an aggregate measure of government responses

computed from the above components. For more details on government response

indices, see Hale et al. (2020). These variables range from 0 to 100 according to

the severity of the government intervention. To calculate an annual variable, each

of these indices was averaged for its 2020 values for each US state. The calculated

variables were dichotomized based on the sample mean for use in the empirical

analysis. Specifically, for each index, I created a dummy variable taking the value

of one if the corresponding averaged index is above the sample mean, and zero
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otherwise.

3.4.3 Instrumental variables

Several candidate instrumental variables were used to address potential endogeneity

issues. The corresponding data were retrieved from the following sources: Labor

union membership from Hirsch and Macpherson (2003); Human capital and Envi-

ronmental organizations from the US Census Bureau;3 and Adolescent fertility from

America’s Health Rankings analysis of CDC WONDER.4

3.5 Methodology

This subsection entails details on the econometric methods used for the analysis of

the data as well as various statistical tests.

3.5.1 Endogeneity and candidate instruments

Since GDP might be an endogenous regressor, parameter estimates might be bi-

ased and inconsistent. In order to examine whether endogeneity—that arises from

bidirectional causality between GDP and the Gini index or omitted variables—is

present, a series of tests based on the results of two-stage least squares regressions

were performed, based on IV (instrumental variable) analysis. Finding valid and

strong instruments for this relationship borders on impossibility but the best efforts

were made. It worth noting the most of the literature ignores this potential problem.

Four instruments were required for the (over)identification of the model (pre-

sented later in this subsection). The four candidate instruments used were: human

capital, measured as % of individuals over the age of 25 with bachelors’ degree or

higher; unionization as % of employed workers who are members of a labor union;

3Available from: https://data.census.gov/cedsci/
4Available from: https://www.americashealthrankings.org/explore/annual/measure/

TeenBirth_MCH.
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environmental organizations per million inhabitants; and adolescent fertility, mea-

sured as births per 1,000 female aged 15-19.

For the instruments to carry the 3 properties required for the identification of

the model5 a theoretical approach is often required. As education is a proxy for hu-

man capital—whose positive correlation between human capital and growth is well

documented in the literature (Barro, 2001)—but correlation with wage inequality at

the state level is also probable—but not as clear as the correlation at the individual

level—the validity of this instrument remains theoretically unclear. Labor unioniza-

tion has also been associated with economic growth (Hirsch, 1997; Kim, 2005), but

a negative association with wage inequality is very probable since one of the main

purposes of labor unions is to tackle wage inequity.

On the bright side, the number of environmental organizations which serves as

a proxy for environmental protection performs better as an instrument (at least

theoretically). According to Inglehart (1995), wealthier individuals who have satis-

fied their basic needs are more likely to develop ecological consciousness, therefore

an association with per capita GDP exists. The link between ecological valuation

and income has also been proven empirically by Gelissen (2007). It is theoretically

unclear whether wage inequality could be associated with the number of environ-

mental organizations. Furthermore, adolescent fertility is likely also to be negatively

correlated with per capita GDP (Santelli et al., 2017), and not correlated with wage

inequality at the state level. In sum, the four candidate instruments used are rele-

vant but their validity remains dubious at best. The magnitude of the correlation

with GDP also suggests that we are dealing with weak instruments.

Aside from the literature suggesting an association between the aforementioned

candidate instruments and GDP, the validity of statistical tests for instrument va-

lidity is very limited. In the case of overidentified models one can perform a test

of overindentifying restrictions, although whether or not the overidentifying restric-

tions are valid gives little information on whether the instruments are correlated with

5See Cameron and Trivedi (2005, page 100) for details.
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the errors of the model, and on whether parameters of interest can be successfully

identified, regardless of the sample size (Parente and Santos Silva, 2012). Therefore,

there is no clear answer as to whether a candidate instrument is exogenous.

Nevertheless, overidentifying assumptions for each specification (one for every

government response index) was tested with the Hansen J test (Hansen, 1982), under

the null hypothesis that , with the corresponding p-values ranging from 0.0813 to

0.6492. The endogeneity tests were performed using the C statistic (difference-in-

Sargan) test under the null hypothesis that GDP is exogenous (see Baum et al.,

2003) with the corresponding p-values ranging from 0.1584 to 0.6348. For all the

aforementioned reasons IV methods were not considered further for the final analysis

of the data.

3.5.2 Cross-sectional dependence

Despite the potentially limited regional variation at the state level, inequality and

growth tend to exhibit spatial clustering. In such cases, failure to account for the

spatial dependence will produce biased estimates (Elhorst, 2014). Examples of spa-

tial heterogeneity in inequality can be found in Hortas-Rico and Rios (2019) for

Spain, and for growth, in López-Bazo et al. (2004) for European regions. To test for

cross-sectional dependence in the sample states I conduct the Moran’s I test (where

the null hypothesis is the absence of spatial dependence) for the Gini index and the

natural logarithm of GDP per capita. The results of the test are a p-value equal to

0.011 and 0.041, respectively. These verify the existence of spatial dependence in the

above two variables. A depiction and description of this dependence is illustrated

in Section 3.6.1.

3.5.3 Model specification

Four models, one for each government response indicator (i.e., GRI, SI, CHI, ESI),

were used in the analysis. To test for a potential additive effect modification of

the government responses on the equity-efficiency relation an interaction term be-
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tween the dummy variable of the response index and the natural logarithm of real

per capita GDP we included in our model. Moreover, to test the non-linearity hy-

pothesis, a quadric term of the natural logarithm of real per capita GDP was also

included. Due to limited observations no other control variables were used.

In order to select the appropriate specification, the residuals of the simple Ordi-

nary Least Squares (OLS) model were tested for spatial autocorrelation. The results

indicated the existence of spatial autocorrelation (p-value = 0.0311) and hence the

use of a spatial model may be justified. The traditional way of choosing between spa-

tial specifications are data-driven model comparison techniques. Like all data driven

approaches, they ignore any theoretical knowledge and rely on strong assumption

about the data generating process.6 While the aforementioned approach pointed

into a Spatial Durbin Model (SDM), the use of spatial lags for the interaction and

quadratic term does not have any theoretical reasoning and leads to overparameter-

ization which, given the tiny sample, would create more severe problems than that

of spatial autocorrelation.

Instead, and in order to control for the spatial dependence of the Gini index, a

spatial lag was added to the models resulting in the classic Spatial Autoregressive

Model (SAR). Additionally, another set of models that contain a spatial lag for the

per capita GDP as well, were also used. The contiguity matrix W used was a binary

row standardized matrix where the elements wij are

wij =


wij = 0, if i = j

wij = 1, if i and j are contiguous

wij = 0, if i and j are not contiguous

where i and j refer to US states.

6For a discussion on the limitations of these approaches on the spatial context see Gibbons and
Overman (2012).
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The two following spatial autoregressive models were estimated:

Ginii = β0 + β1ln(GDPi) + β2[ln(GDPi)]
2 + β3indexi + β4[ln(GDPi)× indexi]

+λ

N∑
j=1

w̃ijGinij + ui (3.1)

Ginii = β0 + β1ln(GDPi) + β2[ln(GDPi)]
2 + β3indexi + β4[ln(GDPi)× indexi]

+λ

N∑
j=1

w̃ijGinij + γ

N∑
j=1

w̃ijln(GDPj) + ui (3.2)

where i refers to a given US state, Gini denotes the Gini index, GDP is the real per

capita GDP, index is a dummy variable taking the value of 1 if the corresponding

government response index (i.e., SI, ESI, CHI, GRI) of US state i is above the sample

mean and 0 otherwise, ui is the standard error term, and w̃ij is the ijth element of

the previously described row standardized contiguity matrix W with w̃ij =
wij∑
j wij

and
∑

j wij = 1.

Maximum Likelihood Estimator (MLE) was used to estimate the above two

specifications. According to Anselin et al. (2001), if the spatially lagged dependent

variable is the only endogenous variable, then MLE is considered to be the proper

estimation method. Lastly, heteroskedasticity robust standard errors were used

throughout the analysis.

3.6 Results

This section presents the empirical results starting from a description of the spatial

patters and continuing with the models estimates.

3.6.1 Spatial patterns

This subsection provides a visual representation of the spatial patterns in wage in-

equality and GDP per capita, as well as of government responses (GRI) and COVID-
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19 deaths with the use of choropleth maps.7 Variables were divided into quartiles.

Starting with the Gini index of wage inequality the clustering of higher wage

inequality is more evident on the East, South, and New Jersey-New York region;

while for lower inequality on the Midwest. These patterns appears on Figure 3.1.

On the next map, Figure 3.2, appears the spatial clustering of per capita GDP.

Figure 3.1: Gini index of wage inequality choropleth map

High levels of per capita GDP can be seen on the West, Midwest, and Northeast;

while a lower GDP per capita levels appear Southeast. On Figure 3.3 we observe

Figure 3.2: Per capita GDP choropleth map

more intense government responses Northeast and less intense in the Midwest and

Southern states. On the other hand, according to Figure 3.4, COVID-19 deaths
7The choropleth maps were created used the -spmat- command (Pisati, 2018).
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Figure 3.3: Mean Government Response Index choropleth map

exhibit higher values Midwest and South, and lower values on the West and Mid-

Atlantic region.

Figure 3.4: COVID-19 deaths per million inhabitants choropleth map

3.6.2 Model estimates

All eight in total specifications (with and without spatial lag for per capita GDP)

show an inverted U-shaped relationship between the Gini index and GDP per

capita—very much like the one Kuznets (1955) proposed—as it is evident from the

negative statistically significant quadratic term as can be seen in Table 3.2. This

points towards the co-existence of a trade-off and a complementarity depending of
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the level of income. The interaction term with any of the State’s response indices

was positive and statistically significant. This implies that the intensity of the gov-

ernment responses amplifies the trade-off for states with above the mean government

response indices. On the other hand, all State responses are negatively associated

with wage inequality, a finding that is also statistically significant. Nevertheless,

since every interaction is a two-way interaction, this association depends also on the

interaction term.

The spatial lags for the Gini index and the per capita GDP were both significant,

and positive and negative, respectively. Since the coefficients of special autoregres-

sive models do not represent marginal effects, the direct, indirect and total effects

were calculated post-estimation.8 The direct effects were statistically significant in

all specifications. The indirect effects, on the other hand, were not statistically sig-

nificant with the exception of the ESI specification where they were significant at

the 10% level only.

Here I present only the results for the GRI specification (Table 3.2) which is the

composite index. The empirical results for its components (i.e., SI, CHI, and ESI)

can be found in Appendix B.

3.6.3 Sensitivity analysis

As a sensitivity analysis, I also performed the analysis on a more disaggregate level,

namely on a subset of Metropolitan Statistical Areas (MSAs; N=326)9 using 2020

data. Since the Gini index for wage inequality was not available, a decile dispersion

ratio, namely the ratio between the median wage and the lower 10th percentile of

wages (D5/D1),10 was used as the dependent variable. This ratio captures the lower-

8The direct effects are the average impact of a regressor from a state on the dependent variable
of that state. The indirect effects are the impact of a regressor of all other neighbor states on the
dependent variable of an individual state, averaged for all states. The total effects equal the direct
and indirect effects.

9From a total of 384 MSAs, 18 were removed due to missing values and 40 due to the spatial
specification as ‘islands’.

10D5/D1 had also a strong positive correlation with another widely used measure of inequality,
that of D9/D1 (the ratio between the upper 10th and the lower 10th percentile of wages) in our
data.
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Table 3.2: Estimates for the GRI specification

Coefficient Direct effect Indirect effect Total effect

Model 3.1

ln(GDP) 1.637*** 1.685*** 0.754 2.438***
(0.438) (0.447) (0.526) (0.803)

[ln(GDP)]2 -0.077*** -0.079*** -0.035 -0.114***
(0.020) (0.021) (0.025) (0.037)

GRI -0.958*** -0.986** -0.441 -1.428***
(0.323) (0.331) (0.319) (0.549)

ln(GDP)×GRI 0.089*** 0.092*** 0.041 0.133***
(0.030) (0.031) (0.030) (0.051)

W×Gini 0.329**
(0.155)

Constant -8.394***
(2.359)

Observations 49
Pseudo R2 0.260
Log-Likelihood 131.6

Model 3.2

ln(GDP) 1.772*** 1.835*** 0.892 2.727***
(0.388) (0.404) (0.617) (0.870)

[ln(GDP)]2 -0.082*** -0.086*** -0.046 -0.132***
(0.018) (0.019) (0.030) (0.041)

GRI -0.889*** -0.924*** -0.500 -1.424***
(0.287) (0.296) (0.329) (0.535)

ln(GDP)×GRI 0.083*** 0.087*** 0.047 0.133***
(0.027) (0.027) (0.031) (0.050)

W×Gini 0.376**
(0.149)

W×ln(GDP) -0.070***
(0.020)

Constant -8.478***
(2.081)

Observations 49
Pseudo R2 0.444
Log-Likelihood 137.2
Notes: Dependent variable (Gini) = Gini index; ln(GDP)= natural logarithm of real
per capita GDP; GRI = dummy variable indicating whether the Government Response
Index of a US state is above (=1) or below (=0) the sample mean; W the contiguity
matrix. Robust standard errors are reported in parentheses. ***, ** and * indicate
significance at the 1%, 5% and 10% level, respectively.

tail wage inequality—which probably entails the individuals mostly affected by the

pandemic interventions—and is frequently used as a measure of inequality in the US

(Autor et al., 2008).

The data on D5/D1 were extracted and computed from the Bureau of Labor
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Statistics, while the data on GDP were obtained from the Bureau of Economic

Analysis as in the State-level analysis and were adjusted using Regional Price Par-

ities (RPP) to capture the difference in price levels across MSAs. The descriptive

statistics of the above variables are presented in Table 3.3.

Table 3.3: Descriptive statistics for Metropolitan Statistical Areas

Variables Obs. Mean S.D. Min. Max.

D5/D1 326 1.805 0.189 1.250 2.654
GDP 326 55.641 14.155 28.084 163.120
Notes: D5/D1 = The ratio between the median wage and the
lower 10th percentile of wages; GDP= natural logarithm of per
capita GDP (in thousands USD) in regional price parities.

The government response indices are only available at the State level, hence new

dummies were created with the method described in Section 3.4.2 for the MSAs

that belong to a single State. In the case of multi-state MSAs, the mean of these

States was used. We estimate the specification where both the inequality index and

the income variable are spatially lagged (see Model 3.2 in Section 3.5.3) using a row

standardized contiguity matrix. The corresponding estimation results for GRI are

presented in Table 3.4 and for the rest of the indices in Appendix B. Overall, the

results are similar between indices and aggregation level and corroborate the main

findings of the state-level analysis.

3.7 Discussion

The discussion that follows is based on the wage inequality, as calculated by Gambau

Suelves et al. (2021), using the Lockdown Working Ability index. This is important,

because these estimates already account for a potential new distribution of wages

during the COVID-19 pandemic.

In this chapter I focused on the effect of COVID-19 pandemic State interventions

on the equity-efficiency relation. The findings indicate an inverted U-shaped relation

between equity and efficiency. The inverted U-shape indicates that depending on the
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Table 3.4: Model 2 estimates for the GRI specification at the MSA level

Coefficient Direct effect Indirect effect Total effect

ln(GDP) 1.368** 1.513** 0.801* 2.313**
(0.589) (0.666) (0.443) (1.101)

[ln(GDP)]2 -0.130* -0.147* -0.0958* -0.243*
(0.0737) (0.0835) (0.0558) (0.138)

GRI -1.007*** -1.141*** -0.743*** -1.884***
(0.255) (0.288) (0.214) (0.489)

ln(GDP)×GRI 0.237*** 0.268*** 0.174*** 0.443***
(0.0636) (0.0720) (0.0528) (0.122)

W×(D5/D1) 0.465***
(0.0408)

W×ln(GDP) -0.131***
(0.0405)

Constant -1.872
(1.169)

Observations 326
Pseudo R2 0.388
Log-Likelihood 206.8
Notes: Dependent variable (D5/D1) = The ratio between the median wage and the
lower 10th percentile of wages; ln(GDP ) = natural logarithm of per capita GDP (in
thousands USD) in regional price parities; GRI = dummy variable indicating whether
the Stringency Index of an MSA is above (=1) or below (=0) the sample mean. Het-
eroskedasticity robust standard errors are reported in parentheses. ***, ** and *
indicate significance at the 1%, 5% and 10% level, respectively.

position on the curve, efficiency can raise or reduce equity in a State. This finding

is in accordance with the literature which claims that there is no single pattern in

the relation.

At first glance, it appears that all State’s government pandemic responses inten-

sify the equity-efficiency trade-off at the state level creating an additive quantitative

modification effect. This is conditionally true. Due to the complexity of our model

specification let us use Figure 3.5 to better interpret the results of Tables 2–5. The

purpose of Figure 3.5 is to aid in the analysis, and not to provide exact empirical

predictions for the Gini index.

Looking at Figure 3.5, we observe that in all specifications, States exhibit a

trade-off or complementarity depending on their per capita GDP levels. Moreover,

State interventions appear to shift the curve to the right. For low levels of per

capita GDP, this translates to States with above mean interventions (dashed line)

exhibiting a lower wage inequality compared to States with below the mean response
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Figure 3.5: Graphical representation of the equity-efficiency relation for states with
above mean (dashed blue) and below mean (red) government responses. Graphs were
produced using the estimated total effects from Model (2)

indices (solid line). Contrariwise, for high levels of per capita GDP, we observed

higher levels on wage inequality for States with above mean interventions.

The impact of response indices on wage inequality is twofold in our model; at

each per capita GDP level, wage inequality is negatively affected by more intense

government responses (i.e., a negative total effect of the indicator variable), and

positively affected by the fact that more intense responses augment the negative

impact of per capita GDP on equity (i.e., a positive total effect of the interaction

term). Figure 3.5 demonstrates that the latter effect— the increase in wage inequal-

ity for above the mean interventions—dominates the former, for States with higher

per capita GDP. Moreover, the above composite effect of COVID-19 State responses

leads to another interesting result; States with below the mean response indices re-

quire lower per capita GDP levels to move from the efficiency-equity trade-off to the

efficiency-equity complementarity.

In sum, State’s interventions might have been beneficial for States with lower

income, reducing the trade-off between wage inequality and per capita GDP, but

not for States with higher per capita GDP whose complementarity relation lessened.

53



Policy-wise, reducing equity-efficiency complementarity in richer States in order to

blunt the trade-off in poorer States is a sound policy for regional integration. Nev-

ertheless, with the exception of the economic support, these measures were taken

for the containment of the pandemic and not for exercising socioeconomic policy.

The higher position of the efficiency-equity curve for those States with more

intense COVID-19 State government responses in the downward-sloping part of the

curve maybe be the result of pre-pandemic levels of wage inequality. These levels

might have played a role in the State’s decision making for COVID-19 interventions.

For example, States with high wage inequality before the pandemic, may had to

step in more intensively because of worst epidemiological outcomes and the need

of additional economic support for workers. Indeed, income inequality before the

pandemic did affect the COVID-19 cases and deaths in US counties (Tan et al.,

2021) and states (Oronce et al., 2020). In other words, more intensive intervention

occurred to States that faced more severe pandemic effects. It is also logical that

regions with higher stringency will probably need higher economic support in the

future.

A difficulty lies in interpreting why the trade-off effect intensifies due to State

government interventions during the pandemic (positive total effect of the interaction

term) in the case of State economic support (ESI). A possible explanation is that

lockdown measures introduce a force that distorts economic efficiency and at the

same time raises inequality, namely wage inequality, since not all workers have the

ability to work from home. For essential workers the wage may remain intact,

but for non-essential workers the wage might become even zero. The above effect

may increase the structural unemployment (preference towards teleworking) for the

States with more intense COVID-19 government interventions11 and in turn lead to

a more intense efficiency-equity trade-off.

The insignificant indirect effects demonstrate that spillovers were limited. ESI

being weakly significant indicates that the trade-off of neighbors is intensified and

11The level of economic support provided during the pandemic may increase moral hazard in a
similar way as the level of unemployment insurance benefits do.
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their inequality is reduced because of the economic support a State receives. This

spillover effect may arise from stronger economic links between neighboring States,

but further research is needed to test this hypothesis.

This research has clearly some limitations. First and foremost, our cross-sectional

static design limits the quality of evidence since the direction of the association can-

not be determined and no causal claims can be made. This issues can be overcome

when post-pandemic data become available and a treatment evaluation approach

can be performed. A second limitation is the level of aggregation. This level of

analysis assumes homogeneity of exposure to interventions within states, ignoring

intrastate variation. Despite the fact that federal government and states dictated

the responses, there was variation at the local level regarding the responses and

the level of enforcement and compliance to them.12 Unfortunately, pandemic re-

sponses indices are not available at a more disaggregate level (e.g., county) so even

if the analysis was performed at that level—as was in the sensitivity analysis—the

homogeneity assumption within state would have to be made. Consequently, the

cross-sectional design and the aggregate level of the analysis make the study prone

to the reverse causality and ecological fallacy scenario.

All indices used for the analysis have several components where when studied

one their own could yield different results with important policy implications. Nev-

ertheless, since the total number of components is 41, future research will have to

address the effect of individual components. Similarly, and given that the focus of

this research was an advanced economy at the state level, an analysis at a different

level of territorial disaggregation or of a different, e.g. developing, economy may

yield different results. Therefore, the transportability of the results is limited.

Moreover, the wage inequality data come from estimated data and not a proper

population-level survey. Another major drawback is the lack of control variables.

Despite the fact that R2 and pseudo-R2 were high in OLS and MLE models for

the cross-sectional data analyzed, this is no guarantee for correct specification and

12This can lead to erroneous measurement of the exposure to the intervention, which in turn
may lead to over or underestimation of the association.
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omitted variable bias is bound to exist in observational studies. The decision to not

include additional controls was not made due to the lack of data, but due to the

small number of observations which limits how many predictors can be used in our

models. The fact that we study entities within a country somewhat mitigates the

omitted variable bias, since some of the inequality determinants on cross-sections

as described by Furceri and Ostry (2019) (i.e., the level of development, financial

globalization, international trade, technology) may remain constant within the coun-

try. Finally, a decomposition analysis of the inequality, or further examination on

whether the business cycle position during the pandemic would alter the results was

not performed.

3.8 Conclusions

The aim of this chapter was to study the effect of the government responses on the

equity-efficiency relation during the COVID-19 pandemic. Using a cross-section of

48 US states and the District of Columbia for the year 2020, the study found an

inverted U-shape relation, where more intense government responses increase wage

inequality in States with higher per capita GDP levels, but decrease it in States

with lower per capita GDP levels. This provides evidence that the effect of spatially

differentiated non-pharmaceutical interventions at the State level, such as lockdown

restrictions and closures as well as income support, depends on the level of income.

Since no single pattern was observed, state policy design should consider its po-

sition on the curve when addressing the equity-efficiency trade-off during the pan-

demic. Alterations in the equity-efficiency relation during the pandemic might affect

the efficacy of past, current, or future regional interventions. Their effect cannot

be determined a priori but researchers and policymakers are advised to take it into

account when studying similar subjects. To better assess the effect of the pandemic

on the equity-efficiency trade-off, as well as the effect of government responses on the

relation between efficiency and inequality, future research should employ a before

and after methodology when more appropriate data become available.
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In similar future crises one may expect more severe measures in regions with

more inequality. Similar shocks may lead to a quantitative, or even qualitative

effect modification on the equity and efficiency relation.
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Chapter 4

Concluding remarks

This thesis aimed at examining relations between the health and economic geography

of US states. The two parts were examined somewhat separately but with their

interrelation always in mind. In general, a divide exists between Southern states

and the rest of US in both dimensions.

Regarding health, disparities in premature mortality come mainly from pre-

ventable causes of death and health spending, either in public health or as personal

expenditure, does not seem to be the answer. Christopoulos and Eleftheriou (2020b)

have shown that spending more for healthcare does not do the trick for premature

mortality, at least for developed countries. Perhaps interventions that aim at im-

proving the socioeconomic status of underprivileged individuals might serve as a

better counter to premature mortality. Of course, since the US case is a category

of its own, a natural experiment in the form of a regional policy intervention is

necessary for hard evidence.

For the economy part, the finding that the effect of COVID-19 pandemic State

responses (mainly responses to secure public health) on the equity-efficiency rela-

tion is conditional on the income also highlights the importance of socioeconomic

disparities when formulating policy. Public health interventions with the potential

to seriously affect regional economic inequalities will in turn affect other (than the

COVID-19 pandemic) public health outcomes. Failure to account for the long-term

effects of these interventions can lead to devastating results in both economy and
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health.

The recent epidemic trends in infectious diseases indicate that it will not be long

until the next public health crisis arrives. That is not to say that public health was

safe before the COVID-19 pandemic, since that number one public health enemy,

corporations, continue to operate very much unopposed.1 Taking also into account

the myriad health effects of the climate change, we have an explosive mix that

threatens public health, and especially the most vulnerable populations. Therefore,

urgent action is necessary in order to reduce health disparities and support those in

need. Whether this support will be best delivered through economic or healthcare

mechanisms is something that only, once again, a natural experiment can answer at

the ecological level. Either way serious government intervention is needed in many

levels, and ideally from a government for the people.

Several future topic research topics arise from the previous analysis. The ideal

of natural experiments requires exploiting opportunities and is not always possible.

Nevertheless, robust research is needed to assess the role of the access to, and quality

of, healthcare in relation to premature mortality. Additionally, aside from studying

for the health effects of the climate change, future research should focus on the

aftermath of the COVID-19 regarding changes in wealth distributions as well as

health outcomes in the short and long-run.

1Hastings (2012) explores the understudied corporate impact on public health, which functions
with the blessing of the government agencies and the current economic system. Of course several
books exist on the topic as well.
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Table A.1: State abbreviations

State Abbreviation State Abbreviation State Abbreviation

Alabama AL Kentucky KY North Dakota ND
Alaska AK Louisiana LA Ohio OH
Arizona AZ Maine ME Oklahoma OK
Arkansas AR Maryland MD Oregon OR
California CA Massachussetts MA Pennsylvania PA
Colorado CO Michigan MI Rhode Island RI
Connecticut CT Minnesota MN South Carolina SC
Delaware DE Mississippi MS South Dakota SD
District of Columbia DC Missouri MO Tennessee TN
Florida FL Montana MT Texas TX
Georgia GA Nebraska NE Utah UT
Hawaii HI Nevada NV Vermont VT
Idaho ID New Hampshire NH Virginia VA
Illinois IL New Jersey NJ Washington WA
Indiana IN New Mexico NM West Virginia WV
Iowa IA New York NY Wisconsin WI
Kansas KS North Carolina NC Wyoming WY

Table A.2: ICD codes

Mortality ICD-9 ICD-10
Variable (1979-1998) (1999-2017)

Cancer 140-239 C00-D48
Cardio 393-398, 402, 410-414, 420-429 I00-I52
Injury E800-E869, E880-E929 V01-X59, Y85-Y86
Infant All codes All codes
Suicide E950-E959 X60-X84
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This Appendix presents the additional empirical results of Chapter 3 for the
three components of GRI: ESI, CHI, and SI, first for the State level and next for
the MSA level.

Table B.1: Estimates for the ESI specification

Coefficient Direct effect Indirect effect Total effect

Model 3.1

ln(GDP) 1.999*** 2.134*** 1.642* 3.775***
(0.450) (0.488) (0.977) (1.307)

[ln(GDP)]2 -0.093*** -0.099*** -0.076* -0.175***
(0.021) (0.023) (0.045) (0.061)

ESI -1.076*** -1.148*** -0.883 -2.031**
(0.312) (0.337) (0.553) (0.801)

ln(GDP)×ESI 0.099*** 0.105*** 0.081 0.186**
(0.029) (0.031) (0.051) (0.074)

W×Gini 0.470***
(0.142)

Constant -10.52***
(2.435)

Observations 49
Pseudo R2 0.192
Log-Likelihood 132

Model 3.2

ln(GDP) 2.031*** 2.170*** 1.671* 3.841***
(0.425) (0.467) (1.000) (1.321)

[ln(GDP)]2 -0.094*** -0.100*** -0.811* -0.181***
(0.020) (0.022) (0.047) (0.062)

ESI -0.997*** -1.068*** -0.863* -1.931**
(0.297) (0.320) (0.519) (0.753)

ln(GDP)×ESI 0.092*** 0.098*** 0.794* 0.178**
(0.027) (0.029) (0.048) (0.069)

W×Gini 0.484***
(0.137)

W×ln(GDP) -0.049**
(0.021)

Constant -10.22***
(2.309)

Observations 49
Pseudo R2 0.270
Log-Likelihood 134.7
Notes: Dependent variable (Gini) = Gini index; ln(GDP)= natural logarithm of real per capita
GDP; ESI = dummy variable indicating whether the Economic Support Index of a US state is above
(=1) or below (=0) the sample mean; W the contiguity matrix. Robust standard errors are reported
in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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Table B.2: Estimates for the SI specification

Coefficient Direct effect Indirect effect Total effect

Model 3.1

ln(GDP) 1.811*** 1.856*** 0.745 2.601***
(0.387) (0.395) (0.524) (0.749)

[ln(GDP)]2 -0.086*** -0.088*** -0.035 -0.123**
(0.018) (0.018) (0.025) (0.035)

SI -1.327*** -1.359*** -0.545 -1.905***
(0.297) (0.303) (0.383) (0.558)

ln(GDP)×SI 0.123*** 0.126*** 0.051 0.177***
(0.028) (0.028) (0.036) (0.052)

W×Gini 0.303**
(0.151)

Constant -9.123***
(2.088)

Observations 49
Pseudo R2 0.388
Log-Likelihood 135.2

Model 3.2

ln(GDP) 1.860*** 1.915*** 0.836 2.751***
(0.356) (0.368) (0.577) (0.791)

[ln(GDP)]2 -0.087*** -0.090*** -0.043 -0.133***
(0.017) (0.017) (0.028) (0.037)

SI -1.188*** -1.227*** -0.584 -1.811***
(0.279) (0.284) (0.372) (0.536)

ln(GDP)×SI 0.111*** 0.114*** 0.054 0.168***
(0.026) (0.026) (0.035) (0.050)

W×Gini 0.344**
(0.147)

W×ln(GDP) -0.055***
(0.019)

Constant -8.997***
(1.922)

Observations 49
Pseudo R2 0.485
Log-Likelihood 139.1
Notes: Dependent variable (Gini) = Gini index; ln(GDP)= natural logarithm of real per capita
GDP; SI = dummy variable indicating whether the Stringency Index of a US state is above (=1)
or below (=0) the sample mean; W the contiguity matrix. Robust standard errors are reported in
parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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Table B.3: Estimates for the CHI specification

Coefficient Direct effect Indirect effect Total effect

Model 3.1

ln(GDP) 1.649*** 1.689*** 0.664 2.353***
(0.423) (0.429) (0.502) (0.758)

[ln(GDP)]2 -0.077*** -0.079*** -0.031 -0.110***
(0.020) (0.020) (0.024) (0.035)

CHI -1.011*** -1.035*** -0.407 -1.442***
(0.314) (0.319) (0.311) (0.519)

ln(GDP)×CHI 0.094*** 0.096*** 0.038 0.134***
(0.029) (0.029) (0.029) (0.048)

W×Gini 0.299*
(0.161)

Constant -8.436***
(2.277)

Observations 49
Pseudo R2 0.282
Log-Likelihood 131.2

Model 3.2

ln(GDP) 1.779*** 1.829*** 0.763 2.592***
(0.385) (0.397) (0.573) (0.809)

[ln(GDP)]2 -0.083*** -0.085*** -0.397 -0.125***
(0.018) (0.018) (0.027) (0.038)

CHI -0.926*** -0.955*** -0.445 -1.400***
(0.289) (0.294) (0.306) (0.496)

ln(GDP)×CHI 0.086*** 0.089*** 0.041 0.130***
(0.027) (0.027) (0.029) (0.046)

W×Gini 0.338**
(0.156)

W×ln(GDP) -00.64***
(0.021)

Constant -8.551***
(2.066)

Observations 49
Pseudo R2 0.421
Log-Likelihood 135.6
Notes: Dependent variable (Gini) = Gini index; ln(GDP)= natural logarithm of real per capita
GDP; CHI = dummy variable indicating whether the Containment and Health Index of a US state
is above (=1) or below (=0) the sample mean; W the contiguity matrix. Robust standard errors
are reported in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% level,
respectively.

78



Table B.4: Model 2 estimates for the SI specification at the MSA level

Coefficient Direct effect Indirect effect Total effect

ln(GDP) 1.310** 1.451** 0.774* 2.225**
(0.592) (0.672) (0.453) (1.117)

[ln(GDP)]2 -0.121 -0.138 -0.091 -0.229
(0.074) (0.084) (0.057) (0.141)

SI -0.878*** -0.998*** -0.662*** -1.660***
(0.254) (0.289) (0.211) (0.490)

ln(GDP)×SI 0.205*** 0.233*** 0.155*** 0.388***
(0.064) (0.072) (0.052) (0.122)

W×(D5/D1) 0.471***
(0.041)

W×ln(GDP) -0.133***
(0.041)

Constant -1.785
(1.175)

Observations 326
Pseudo R2 0.370
Log-Likelihood 204.1
Notes: Dependent variable (D5/D1) = The ratio between the median wage and
the lower 10th percentile of wages; ln(GDP ) = natural logarithm of per capita
GDP (in thousands USD) in regional price parities; SI = dummy variable
indicating whether the Stringency Index of an MSA is above (=1) or below
(=0) the sample mean. Heteroskedasticity robust standard errors are reported
in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10%
level, respectively.
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Table B.5: Model 2 estimates for the CHI specification at the MSA level

Coefficient Direct effect Indirect effect Total effect

ln(GDP) 1.456** 1.626** 0.927** 2.552**
(0.589) (0.670) (0.464) (1.125)

[ln(GDP)]2 -0.141* -0.161* -0.108* -0.268*
(0.074) (0.084) (0.058) (0.141)

CHI -1.056*** -1.204*** -0.809*** -2.013***
(0.259) (0.295) (0.228) (0.510)

ln(GDP)×CHI 0.248*** 0.282*** 0.190*** 0.472***
(0.065) (0.074) (0.056) (0.127)

W×(D5/D1) 0.476***
(0.040)

W×ln(GDP) -0.117***
(0.041)

Constant -2.123*
(1.170)

Observations 326
Pseudo R2 0.371
Log-Likelihood 208
Notes: Dependent variable (D5/D1) = The ratio between the median wage
and the lower 10th percentile of wages; ln(GDP ) = natural logarithm of per
capita GDP (in thousands USD) in regional price parities; CHI = dummy
variable indicating whether the Stringency Index of an MSA is above (=1) or
below (=0) the sample mean. Heteroskedasticity robust standard errors are
reported in parentheses. ***, ** and * indicate significance at the 1%, 5% and
10% level, respectively.

80



Table B.6: Model 2 estimates for the ESI specification at the MSA level

Coefficient Direct effect Indirect effect Total effect

ln(GDP) 1.181* 1.292* 0.631 1.923*
(0.610) (0.684) (0.431) (1.109)

[ln(GDP)]2 -0.101 -0.114 -0.071 -0.185
(0.077) (0.086) (0.055) (0.140)

ESI -0.656** -0.738** -0.463** -1.201**
(0.259) (0.291) (0.193) (0.478)

ln(GDP)×ESI 0.148** 0.167** 0.105** 0.272**
(0.065) (0.073) (0.048) (0.119)

W×(D5/D1) 0.453***
(0.041)

W*ln(GDP) -0.130***
(0.042)

Constant -1.567
(1.201)

Observations 326
Pseudo R2 0.396
Log-Likelihood 202.4
Notes: Dependent variable (D5/D1) = The ratio between the median wage
and the lower 10th percentile of wages; ln(GDP ) = natural logarithm of per
capita GDP (in thousands USD) in regional price parities; ESI = dummy
variable indicating whether the Stringency Index of an MSA is above (=1) or
below (=0) the sample mean. Heteroskedasticity robust standard errors are
reported in parentheses. ***, ** and * indicate significance at the 1%, 5% and
10% level, respectively.
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