
MSc Thesis Theodoros Mouzakitis

1
Development of a WebAPI software

UNIVERISTY OF PIRAEUS - DEPARTMENT OF INFORMATICS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ – ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

MSc «INFORMATICS»

ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ»

MSc Thesis

Μεταπτυχιακή Διατριβή

Thesis Title:

Τίτλος Διατριβής:

Development of a WebAPI software

Ανάπτυξη λογισμικού WebAPI

Student’s name-surname:

Ονοματεπώνυμο φοιτητή:

THEODOROS MOUZAKITIS

ΘΕΟΔΩΡΟΣ ΜΟΥΖΑΚΙΤΗΣ

Father’s name:

Πατρώνυμο:

MICHAIL

ΜΙΧΑΗΛ

Student’s ID No:

Αριθμός Μητρώου:
 ΜΠΠΛ17030

Supervisor:

Επιβλέπων:

EFTHIMIOS ALEPIS, Associate Professor

ΕΥΘΥΜΙΟΣ ΑΛΕΠΗΣ, Αναπληρωτής Καθηγητής

July 2023/ Ιούλιος 2023

MSc Thesis Theodoros Mouzakitis

2
Development of a WebAPI software

3-Member Examination Committee

Τριμελής Εξεταστική Επιτροπή

Efthimios Alepis

Associate Professor

Αλέπης Ευθύμιος

Αναπληρωτής Καθηγητής

Maria Virvou

Professor

Μαρία Βίρβου

Καθηγήτρια

Constantinos Patsakis

Associate Professor

Κωνσταντίνος Πατσάκης

Αναπληρωτής Καθηγητής

MSc Thesis Theodoros Mouzakitis

3
Development of a WebAPI software

Table of Contents
Summary .. 4

Introduction ... 4

Field review .. 5

User's Manual .. 6

API for Customers, Orders, and Products Management .. 6

Table of Contents ... 6

Introduction ... 6

API Authentication ... 6

API Base URL .. 6

Endpoints ... 6

Architecture ... 9

Dependency Injection .. 9

Command Query Responsibility Segregation ... 9

Mediator Pattern .. 9

Entity Framework ... 10

Data Annotations ... 10

Unit Testing .. 10

Repository Pattern with Unit of Work .. 12

Unit Of Work .. 14

Entity Framework ... 16

Appendices... 19

Conclusion .. 26

Thanks .. 27

References.. 27

MSc Thesis Theodoros Mouzakitis

4
Development of a WebAPI software

Summary

As the developer tasked with implementing the API for managing Customers, Orders, and Products, I
am passionate about creating efficient and robust solutions that meet the needs of the modern software
landscape. With a strong foundation in C# and a comprehensive understanding of software design
principles, I embarked on the challenge of developing an API that adheres to best practices and
incorporates essential features.

Throughout the implementation process, I prioritized the utilization of industry-standard tools and
patterns to ensure a scalable and maintainable solution. By employing Entity Framework as the
persistence framework and implementing the repository pattern, I established a clear separation
between the application logic and data persistence concerns. The inclusion of the unit of work pattern
further enhanced data integrity and consistency, guaranteeing reliable operations on multiple entities
within a single transaction.

To fulfill the requirements of the project, I integrated CRUD operations for Products, enabling
administrators to manage the master data while ensuring the integrity of the system. Additionally, I
ensured that the API handles scenarios where multiple Customers may share the same name, reflecting
the real-world complexity of customer data management.

Recognizing the significance of documentation, I meticulously documented the API using XML
comments, providing comprehensive and easily accessible information about its structure, usage, and
available methods. By incorporating unit tests using the NUnit framework, I verified the behavior and
functionality of the API, ensuring its correctness, reliability, and adherence to specifications.

Embracing modern software development principles, I implemented Domain-Driven Design (DDD) to
focus on the core domain logic and encapsulate business rules within the appropriate entities. The
adoption of the Command Query Responsibility Segregation (CQRS) pattern allowed for a clear
separation between write and read operations, optimizing performance and scalability.

Throughout the project, I made informed decisions based on assumptions and considerations, striving
to fulfill the objectives of the API. I ensured that the API supports necessary validations, such as the
maximum length of fields, the requirement for a Customer name, and constraints on price and quantity. I
also addressed crucial aspects like the non-deletion of Products and the exclusive availability of the
Products controller to administrators.

In conclusion, this paper outlines my journey in designing and implementing an API that manages
Customers, Orders, and Products, showcasing my technical skills, attention to detail, and commitment to
delivering a high-quality solution. By incorporating industry-standard practices, patterns, and
documentation, I have developed an API that meets the project requirements and demonstrates my
proficiency as a developer in designing and implementing reliable and scalable systems.

Introduction

In the dynamic landscape of software development, designing and implementing efficient application
programming interfaces (APIs) is vital for building robust systems. This paper presents the
implementation of a C# API that manages Customers, Orders, and Products for a hypothetical system.
The objective of this API is to provide comprehensive functionality for creating, updating, and deleting
Customers, managing Orders, and performing CRUD operations on Products, without the need for a user
interface. The API utilizes a local database for data storage, ensuring a self-contained environment for
managing the system's information. No authentication is required to access the API, allowing for
simplified testing and development scenarios.

When creating a Customer, the API mandates that a name is provided, while the address and postal
code fields are optional. This flexibility accommodates cases where customers may not have an address
or postal code on file.

To ensure data integrity and consistency, the API imposes maximum length limits on various fields.
These limits prevent the storage of excessively long or invalid data, promoting efficient and well-
structured information management.

MSc Thesis Theodoros Mouzakitis

5
Development of a WebAPI software

For the price and quantity fields, two decimal places are deemed sufficient for accuracy and precision.
This restriction optimizes storage efficiency without sacrificing the necessary level of detail for financial
calculations.

To maintain data validity, the API enforces that the quantity of a Product cannot be negative or zero.
This constraint ensures that only meaningful and realistic quantities are recorded for each Product.

When creating an Order, the API requires that both the associated Customer and the Products already
exist in the system. This requirement prevents the creation of Orders with non-existent or invalid
references, promoting data integrity and avoiding potential inconsistencies.

To safeguard the integrity of the system, Products are not allowed to be deleted. This limitation
ensures that Product data remains intact and prevents accidental removal of critical information.
However, the Products controller, responsible for manipulating master data, is restricted to
administrative access only. This restriction ensures that regular API consumers do not have access to
modify the Products data, maintaining control over the system's core product information.

The API accounts for the possibility of multiple Customers having the same name. This consideration
acknowledges scenarios where individuals with identical names may exist within the system, allowing for
accurate representation and management of customer data.

By incorporating these additional requirements, the API implementation addresses the challenges of
managing Customers, Orders, and Products in a controlled and consistent manner. It provides a flexible
and reliable foundation for building systems that meet the specific needs of the business domain, while
adhering to modern software development principles and patterns.

Field review

Here are some real-world examples of applications that share similarities with the features and
functionality described in my paper:

Shopify: Shopify is an e-commerce platform that provides an API for managing customers, orders, and
products. It allows developers to create, update, and delete customers, manage orders, and perform
CRUD operations on products. The API supports features like order management, inventory
management, and customer management.

WooCommerce: WooCommerce is a popular WordPress plugin that enables users to create and
manage online stores. It offers an API for handling customers, orders, and products. The API allows for
creating, updating, and deleting customers, managing orders, and performing CRUD operations on
products.

Square: Square is a comprehensive payment and point-of-sale solution for businesses. It provides an
API that allows developers to integrate customer and order management features into their applications.
The API supports creating and managing customer profiles, processing payments, and managing orders.

Stripe: Stripe is a payment processing platform that offers an API for managing customers, orders, and
payments. The API allows developers to create, update, and delete customer profiles, manage
subscriptions, and process payments securely.

OpenCart: OpenCart is an open-source e-commerce platform that provides an API for managing
customers, orders, and products. The API enables developers to create, update, and delete customers,
manage orders, and perform CRUD operations on products.

These examples demonstrate the implementation of APIs that encompass similar functionalities to
the ones outlined in my paper. They can serve as references to understand how real-world applications
handle customer and order management, product manipulation, and integration with various systems.

MSc Thesis Theodoros Mouzakitis

6
Development of a WebAPI software

User's Manual

API for Customers, Orders, and Products Management

Thank you for choosing the API for Customers, Orders, and Products Management. This user's manual
provides an overview of the API's functionality and guidelines for interacting with it effectively.

Table of Contents

1. Introduction

2. API Authentication

3. API Base URL

4. Endpoints for

• Customers

• Orders

• Products

Introduction

The API for Customers, Orders, and Products Management is designed to facilitate the creation,
retrieval, updating, and deletion of Customers, Orders, and Products. This user's manual aims to guide
you through the process of utilizing the API effectively.

API Authentication

The API does not require authentication to access its endpoints. However, appropriate security
measures should be implemented in your application to protect sensitive data and prevent unauthorized
access. The current project does not support native authorization and should BE implemented behind a
user management layer that handles authentication and authorization.

API Base URL

The base URL for accessing the API is [https://localhost:7035/]. Please ensure that you prefix the API
endpoint URLs with this base URL when making API requests.

Endpoints

Customers

The Customers endpoint allows you to manage customer-related operations.

• GET /customers
Retrieves all customers from the database.
Method: GET
URL: `/customers`
Response: Returns a collection of customers.

• GET /customers/{id}
Retrieves the corresponding customer based on the provided id.
Method: GET
URL: /customers/{id}
Parameters:

MSc Thesis Theodoros Mouzakitis

7
Development of a WebAPI software

Id: Unique identifier for the requested customer.
Response: Returns the customer information.

• POST /customers
Creates a new customer and returns the generated customer ID.
Method: POST
URL: `/customers`
Request Body: Model for customer creation.
Response: Returns the generated customer ID if the creation is successful. Otherwise,
returns an error status code (400) indicating the failure.

• PUT /customers/{id}
Updates the customer corresponding to the provided `id`.
Method: PUT
URL: `/customers/{id}`
Parameters:
id: Customer's ID.
Request Body: Model for customer update.
Response: Returns an error status code (400) if the update fails. Otherwise, returns a success
status code (200).

• DELETE /customers/{id}
Deletes a customer based on the provided `id`.
Method: DELETE
URL: `/customers/{id}`
Parameters:
id: The ID of the customer to be deleted.
Response: Returns an error status code (400) if the delete fails. Otherwise, returns a success
status code (200).

Orders

The Orders endpoint allows you to manage order-related operations.

• GET /orders
Retrieves all orders from the database.
Method: GET
URL: `/orders`
Response: Returns a collection of orders.

• GET /orders/{id}
Retrieves the corresponding order based on the provided id.
Method: GET
URL: `/orders/{id}`
Parameters:
`id`: The ID for the requested order.
Response: Returns the order information.

• GET /orders/customer/{customerId}
Retrieves all orders of the customer with the provided `customerId`, sorted by the orders'
date.
Method: GET
URL: `/orders/customer/{customerId}`
Parameters:
`customerId`: Customer's ID.
Response: Returns the orders associated with the customer. If the customer has no orders or
doesn't exist, returns a success status code (204) indicating the absence of content.

MSc Thesis Theodoros Mouzakitis

8
Development of a WebAPI software

• POST /orders
Creates a new order and returns the generated order ID.
Method: POST
URL: `/orders`
Request Body: Model for order creation.
Response: Returns the generated order ID if the creation is successful. Otherwise, returns an
error status code (400) indicating the failure.

• PUT /orders/{id}
Updates the order corresponding to the provided `id`.
Method: PUT
URL: `/orders/{id}`
Parameters:
`Id`: Order's ID.
Request Body: Model for order update.
Response: Returns an error status code (400) if the update fails. Otherwise, returns a success
status code (200).

• DELETE /orders/{id}
Deletes an order based on the provided `id`.
Method: DELETE
URL: `/orders/{id}`
Parameters:
`id`: The ID of the order to be deleted.
Response: Returns an error status code (400) if the delete fails. Otherwise, returns a success
status code (200).

• GET /orders/ofcustomer/{customerId}
Gets all orders of the customer with the provided `customerId`, sorted by the order dates.
Method: GET
URL: `/orders/ofcustomer/{customerId}`
Parameters:
`customerId`: Customer's ID.
Response: Returns the orders associated with the customer, sorted by the order dates. If the
customer has no orders or doesn't exist, returns a success status code (204) indicating the
absence of content.

Products

The Products endpoint allows you to manage product-related operations.

• GET /products
Retrieves all products from the database.
Method: GET
URL: `/products`
Response: Returns a collection of products.

• GET /products/{id}
Retrieves the corresponding product based on the provided `id`.
Method: GET
URL: `/products/{id}`
Parameters:
`id`: Unique identifier for the requested product.
Response: Returns the product information.

• POST /products
Creates a new product and returns the generated product ID.
Method: POSTURL: `/products`

MSc Thesis Theodoros Mouzakitis

9
Development of a WebAPI software

Request Body: Model for product creation.
Response: Returns the generated product ID if the creation is successful. Otherwise, returns
an error status code (400) indicating the failure.

• PUT /products/{id}
Updates the product corresponding to the provided id.
Method: PUT
URL: `/products/{id}`
Parameters:
`id`: Product's ID.
Request Body: Model for product update.
Response: Returns an error status code (400) if the update fails. Otherwise, returns a success
status code (200).

• DELETE /products/{id}
Deletes a product based on the provided `id`.
Method: DELETE
URL: `/products/{id}`
Parameters:
`id`: The ID of the product to be deleted.
Response: Returns an error status code (400) if the delete fails. Otherwise, returns a success
status code (200).

Architecture

The architecture of the project was designed with a focus on domain logic and draws inspiration from
the principles of Domain-Driven Design (DDD). By following DDD principles, the project aims to align
closely with the business domain and ensure a clear separation of concerns. Utilizing the following
concepts, we achieve a serviceable, maintainable, and robust codebase.

Dependency Injection

The project utilizes Dependency Injection to achieve loose coupling and improve testability and
maintainability. By decoupling dependencies, different components can be easily swapped or mocked
during testing, promoting flexibility and modularity.

Command Query Responsibility Segregation

The Command Query Responsibility Segregation (CQRS) pattern was employed to segregate
commands (write operations) and queries (read operations) into separate paths. This separation allows
for optimized handling of read and write operations, improving performance and scalability. For the
current implementation, the Mediator pattern is utilized to mediate communication between the
command and query handlers, enabling loose coupling and promoting reusability.

Mediator Pattern

In object-oriented programming, objects often need to communicate with each other to perform
certain tasks or exchange information. However, directly coupling objects together can lead to tight
dependencies, making the system less flexible and harder to maintain. This is where the Mediator
pattern comes in.

The Mediator pattern aims to reduce the direct dependencies between communicating objects by
introducing a central component called the mediator. Instead of objects directly communicating with
each other, they interact with the mediator, which encapsulates the communication logic and facilitates
the exchange of information between the objects.

MSc Thesis Theodoros Mouzakitis

10
Development of a WebAPI software

Here are some key points to elaborate on regarding the reduction of direct dependencies:

1. Loose Coupling:
The Mediator pattern promotes loose coupling between objects by removing their direct
knowledge and dependency on each other. Objects don't need to have explicit references to
other objects they need to communicate with. Instead, they rely on the mediator to handle
the communication.

2. Decoupled Communication:
By relying on the mediator, objects can communicate without needing to know the details of
how the other objects are implemented. They only need to understand the mediator's
interface and the messages they can send and receive. This decoupling allows for greater
flexibility and extensibility as objects can interact with new objects or be modified without
affecting the entire system.

3. Simplified Object Interfaces:
With the Mediator pattern, objects only need to expose a simplified interface for
communication with the mediator. This interface typically includes methods or events to
send and receive messages. By having a standardized interface, objects can focus on their
core responsibilities, resulting in cleaner and more maintainable code.

4. Centralized Control:
The mediator acts as a centralized control unit that manages the communication and
coordination between objects. It becomes responsible for routing messages between
objects, handling message routing logic, and managing the state of the communication
process. This centralized control allows for better organization and control over complex
communication flows.

5. Independence of Object Changes:
Objects participating in the mediation process can evolve independently. Modifying or
adding new objects to the system typically requires changes only within the mediator and
the objects themselves. Other objects in the system are not directly affected, as they
communicate through the mediator's interface.

By reducing direct dependencies between communicating objects, the Mediator pattern
enhances the flexibility, maintainability, and extensibility of the system. It allows objects to
interact in a decoupled manner, simplifies object interfaces, provides centralized control over
communication, and enables independent evolution of participating objects. This results in a
more modular and loosely coupled architecture, making the system easier to understand, modify,
and maintain.

Entity Framework

The project leverages Entity Framework, a popular object-relational mapping (ORM) framework, to
handle database interactions. Entity Framework simplifies data access and provides an abstraction layer
that maps the domain entities to the underlying database tables.

Data Annotations

Data Annotations are used in conjunction with Entity Framework to define metadata and validation
rules for the domain entities. These annotations allow for declarative configuration of the entities,
ensuring data integrity and enforcing business rules.

Unit Testing

The project incorporates unit tests using the NUnit framework to verify the behavior and correctness
of the implemented functionalities. Unit tests enable early detection of bugs, aid in code refactoring, and
ensure that the project functions as expected.

MSc Thesis Theodoros Mouzakitis

11
Development of a WebAPI software

Unit testing is a fundamental practice in software development that involves testing individual units of
code to ensure they function correctly in isolation. In the context of our web API creation objective, unit
testing plays a crucial role in verifying the functionality, reliability, and robustness of the API endpoints
and business logic. In this subchapter, we will explore the key concepts and benefits of unit testing in the
context of our web API.

Overview of Unit Testing

Unit testing involves writing automated tests that target specific units of code, such as individual
methods or classes, and verify their behavior against expected outcomes. The goal is to isolate each unit
of code and test it in isolation, independently of other components or external dependencies.

Key concepts in unit testing include:

• Test Cases:
A test case is a set of inputs, preconditions, and expected outputs designed to exercise a
specific unit of code. Test cases should cover a range of scenarios to ensure comprehensive
coverage and identify potential issues or bugs.

• Test Framework:
A test framework provides the tools and utilities to write and execute unit tests. It typically
includes assertion libraries to compare expected and actual results, test runners to execute
the tests, and reporting mechanisms to provide feedback on the test outcomes.

• Test Doubles:
Test doubles, such as mocks, stubs, and fakes, are used to simulate external dependencies or
collaborator objects to isolate the unit under test. They help control the behavior of external
dependencies and enable focused testing of the unit.

Benefits of Unit Testing

Unit testing offers several benefits in the context of our web API creation objective:

• Early Bug Detection:
By identifying issues at the unit level, unit testing helps catch bugs early in the development
process. It allows for quick feedback on the correctness of individual units of code, enabling
prompt debugging and fixing of issues.

• Improved Code Quality:
Writing unit tests often leads to better code design and improved quality. It promotes
modular, reusable, and loosely coupled code by enforcing encapsulation and separation of
concerns. Unit testing encourages the use of best practices such as dependency injection,
single responsibility principle, and testable design patterns.

• Regression Testing:
Unit tests serve as a safety net against unintended regressions. As the codebase evolves, unit
tests can be executed automatically to ensure that existing functionality remains intact after
modifications or refactoring.

• Documentation and Collaboration:
Well-written unit tests act as living documentation for the codebase. They provide insights
into the expected behavior and usage of the units, making it easier for other developers to
understand and collaborate on the project.

Unit Testing Web API Components

In the context of our web API, unit testing can be applied to various components, including:

• API Endpoints:
Unit tests can verify the correct handling of incoming requests and the generation of

MSc Thesis Theodoros Mouzakitis

12
Development of a WebAPI software

appropriate responses. They can validate input validation, error handling,
authentication/authorization mechanisms, and adherence to API contracts.

• Business Logic:
Unit tests can validate the behavior and correctness of the business logic components of the
web API. They can ensure that business rules, calculations, and data transformations are
functioning as expected.

• Data Access Layer:
Unit tests can validate the interaction between the web API and the underlying data access
layer. They can verify the correctness of CRUD operations, data integrity, and proper handling
of database transactions.

Testing Frameworks and Tools

To facilitate unit testing in our web API project, we will utilize a testing framework such as NUnit.
NUnit provides a rich set of features, including assertion libraries, test runners, and reporting
capabilities. Additionally, we can utilize other tools and libraries, such as mocking frameworks like Moq,
to create test doubles and simulate external dependencies.

Test-Driven Development (TDD)

Test-Driven Development (TDD) is a development practice that involves writing tests before
implementing the corresponding code. It follows a red-green-refactor cycle, where tests are written to
fail initially, then the necessary code is implemented to make the tests pass, and finally, the code and
tests are refactored for clarity and maintainability. TDD can provide additional benefits, such as improved
code coverage, design clarity, and faster feedback loops.

Test Coverage and Continuous Integration

To ensure comprehensive testing, we will strive for high test coverage, aiming to cover critical code
paths and edge cases. Test coverage tools, such as OpenCover or DotCover, can be utilized to measure
the percentage of code covered by unit tests. Additionally, integrating unit tests into a continuous
integration pipeline, using tools like Jenkins or Azure DevOps, can automate the execution of tests and
provide timely feedback on the health of the codebase.

Repository Pattern with Unit of Work

The Repository pattern is employed to encapsulate the data access logic and provide a consistent and
simplified interface for working with data entities. The Unit of Work pattern is utilized to manage
transactions and ensure atomicity when working with multiple entities within a single operation.

By adopting these architectural modules, the project achieves a modular and maintainable codebase
that adheres to best practices. The use of Dependency Injection, CQRS with Mediator Pattern, Entity
Framework, Data Annotations, Unit Testing with NUnit, and the Repository Pattern with Unit of Work
collectively contribute to a scalable, testable, and domain-driven architecture.

By structuring the project in this manner, it becomes easier to understand, maintain, and extend the
application as it evolves over time. The architecture promotes modularity, separation of concerns, and
adherence to domain-driven principles, resulting in a robust and flexible solution.

 Repository Pattern

The Repository Pattern is a design pattern commonly used in the development of web APIs to abstract
and encapsulate data access logic. It provides a layer of separation between the data access code and
the rest of the application, promoting modularity, maintainability, and testability. In this subchapter, we

MSc Thesis Theodoros Mouzakitis

13
Development of a WebAPI software

will explore the key concepts and benefits of the Repository Pattern in the context of our web API
creation objective.

The Repository Pattern introduces the concept of repositories, which act as mediators between the
application's business logic and the underlying data storage. Repositories encapsulate the operations
required for data access, retrieval, modification, and deletion, providing a clean and consistent interface
for interacting with the data.

The primary goals of the Repository Pattern are as follows:

• Abstraction of Data Access:
By utilizing repositories, the details of how the data is stored and accessed are abstracted
away from the rest of the application. This abstraction simplifies the codebase, as other
components do not need to be aware of the specific data access implementation details.

• Separation of Concerns:
The Repository Pattern facilitates the separation of concerns between the business logic and
data access layers. Business logic interacts with repositories using a well-defined interface,
without being tightly coupled to the underlying data storage technology or implementation.

• Centralized Data Access Logic:
 Repositories consolidate the data access logic within a single component, allowing for
consistent implementation of common data operations across the application. This
centralization avoids code duplication and promotes maintainability by having a single point
of change for data access behavior.

• Testability:
The Repository Pattern enhances testability by enabling the use of mock repositories during
unit testing. By abstracting the data access operations behind a repository interface, the
business logic can be easily tested in isolation without requiring a live database connection.

Repository Pattern Implementation

The implementation of the Repository Pattern typically involves the following components:

• Repository Interface:
The repository interface defines a set of methods that represent the common data
operations such as Create, Read, Update, and Delete (CRUD) operations. It acts as a contract
between the business logic and the repository implementation.

• Concrete Repository:
The concrete repository implements the repository interface and provides the actual
implementation for the data access operations. It interacts with the underlying data storage,
which could be a relational database, document database, or any other data storage
mechanism.

• Data Context:
The data context represents the connection or session with the underlying data storage. It
provides the necessary infrastructure to perform data access operations and manages the
lifecycle of the data access operations within a unit of work.

Benefits of the Repository Pattern

The Repository Pattern offers several benefits in the context of our web API creation objective:

• Improved Maintainability:
By encapsulating data access logic within repositories, changes to the underlying data
storage or schema can be easily accommodated without affecting the rest of the application.
This modularity and separation of concerns contribute to improved maintainability.

MSc Thesis Theodoros Mouzakitis

14
Development of a WebAPI software

• Flexibility in Data Source:
The Repository Pattern allows for flexibility in choosing different data sources or storage
technologies without impacting the business logic. It enables seamless switching between
different databases or even transitioning to a different data storage approach, such as using a
web service instead of a local database.

• Code Reusability:
Repositories encapsulate common data access operations, promoting code reusability across
different components of the application. By utilizing the same repository interfaces, the
same data access logic can be shared among multiple parts of the application, reducing code
duplication, and promoting consistency.

• Testability and Mockability:
The abstraction provided by repositories facilitates easier testing by allowing the use of mock
repositories during unit testing. Business logic can be tested independently without relying
on the actual data storage, improving testability and reducing dependencies on external
resources.

Application of the Repository Pattern in our Web API

In our web API implementation, we will utilize the Repository Pattern to separate the data access logic
from the business logic. We will define repository interfaces for each entity or aggregate in our domain
model, and concrete repository implementations will handle the interaction with the chosen data
storage, such as a relational database.

The repositories will provide the necessary methods for creating, reading, updating, and deleting
entities, ensuring consistency and uniformity in data access operations. The business logic components
of our web API will interact with these repositories through the defined interfaces, promoting loose
coupling and modularity.

By adopting the Repository Pattern, our web API will benefit from improved maintainability, flexibility
in data sources, code reusability, and enhanced testability. These advantages will contribute to a scalable
and maintainable architecture that can easily evolve and adapt to changing requirements.

Unit Of Work

The Unit of Work pattern is a design pattern commonly used in the development of web APIs to
manage transactions and ensure consistency when working with multiple entities within a single
operation. It provides a way to treat multiple database operations as a single logical unit, enabling
atomicity, integrity, and concurrency control. In this subchapter, we will explore the key concepts and
benefits of the Unit of Work pattern in the context of our web API creation objective.

Overview of the Unit of Work Pattern

The Unit of Work pattern introduces the concept of a unit of work, which represents a cohesive set of
operations that should be treated as a single transaction. It allows you to group multiple database
operations together and ensures that they are either all committed, or all rolled back, providing
transactional consistency.

The primary goals of the Unit of Work pattern are as follows:

• Transaction Management: The Unit of Work pattern helps manage database transactions by
encapsulating a group of related database operations within a single transaction. It ensures
that all operations within the unit of work are either committed or rolled back together,
maintaining data integrity and consistency.

• Atomicity: By treating multiple operations as a single unit of work, the pattern ensures that
all operations are executed or none. If any operation within the unit of work fails, the entire

MSc Thesis Theodoros Mouzakitis

15
Development of a WebAPI software

unit of work is rolled back, preventing partial updates, and maintaining the integrity of the
data.

• Concurrency Control: The Unit of Work pattern helps manage concurrent access to data by
providing a centralized control point for managing transactional operations. It ensures that
only one transaction can modify the data being worked on, preventing conflicts and
maintaining data consistency.

Unit of Work Implementation

The implementation of the Unit of Work pattern typically involves the following components:

• Unit of Work:
The unit of work is a central component that represents the context for a group of related
database operations. It provides methods for managing the transaction, such as starting,
committing, and rolling back the transaction. It also coordinates the persistence operations
across multiple repositories.

• Repositories:
Repositories are responsible for performing data access operations for specific entities or
aggregates. Within the unit of work, repositories work together to perform database
operations as part of a single transaction. They communicate with the unit of work to
coordinate their operations and ensure consistency.

Benefits of the Unit of Work Pattern

The Unit of Work pattern offers several benefits in the context of our web API creation objective:

• Transactional Consistency:
The Unit of Work pattern ensures that multiple database operations within a single unit of
work are treated as a single transaction. This guarantees that all operations are committed or
rolled back together, maintaining data integrity and consistency.

• Atomicity:
By treating multiple operations as a single unit, the Unit of Work pattern ensures atomicity. If
any operation within the unit of work fails, the entire unit of work is rolled back, preventing
inconsistent or partially updated data.

• Concurrency Control:
The Unit of Work pattern provides a centralized control point for managing transactional
operations. It helps prevent conflicts and data corruption by ensuring that only one
transaction can modify the data being worked on at a time.

• Improved Performance:
By grouping related operations into a single unit of work, the Unit of Work pattern can
optimize performance by reducing the number of databases round-trips. It allows for
efficient batching and optimizing database operations.

Application of the Unit of Work Pattern in our Web API

In our web API implementation, we will utilize the Unit of Work pattern to manage transactions and
ensure consistency when working with multiple entities within a single operation. The unit of work will
be responsible for coordinating the persistence operations across multiple repositories.

By encapsulating related database operations within a unit of work, we will ensure that changes to
the data are treated atomically and consistently. The unit of work will manage the transaction and
provide methods for starting, committing, or rolling back the transaction. It will coordinate with the
repositories to ensure that all operations are performed within the scope of the transaction.

MSc Thesis Theodoros Mouzakitis

16
Development of a WebAPI software

The Unit of Work pattern will enable us to achieve transactional consistency, atomicity, and
concurrency control in our web API. It will contribute to the reliability, integrity, and performance of our
data operations, providing a robust foundation for our application.

Entity Framework

Introduction to Entity Framework

Entity Framework (EF) is an open-source, object-relational mapping (ORM) framework developed by
Microsoft. It allows .NET developers to interact with databases using .NET objects.

Entity Framework is a powerful tool that can help you to reduce the amount of code you need to
write to access your database and improve the performance of your database access code. It is also
extremely useful to maintain your database access code and abstract away the details of the database
schema from your application code.

Entity Framework is a mature framework that has been used by many developers to build successful
applications. It is a good choice for .NET developers who need to access databases.

Benefits

Using Entity Framework provides a multitude of benefits. It significantly reduces the amount of code
you need to write and takes care of mapping your database tables to objects, so you don't have to write
as much code to access your data. Additionally, it improves the performance of your database access
code using a variety of techniques such as lazy loading and caching.

Makes it easier to maintain your database access code: Entity Framework uses a consistent object-
oriented API, so your database access code is easier to read, understand, and maintain.

Abstracts away the details of the database schema from your application code: Entity Framework
allows you to work with your data in terms of objects, so you don't have to worry about the details of
the database schema.

If you are a .NET developer who needs to access databases, Entity Framework is a good choice. It is a
powerful tool that can help you to reduce the amount of code you need to write, improve the
performance of your database access code, and make it easier to maintain your database access code.

The concept of entities

In Entity Framework, an entity is a .NET object that represents a row in a database table. Entities are
used to represent data in a way that is both object-oriented and relational.

There are two main types of entities in Entity Framework: POCO entities and complex entities.

POCO entities (Plain Old CLR Objects) are simple entities that do not have any relationships with other
entities. POCO entities are the simplest type of entity and are the easiest to create.

Complex entities are entities that have relationships with other entities. Complex entities are more
complex than POCO entities, but they provide more flexibility and functionality.

Benefits of using the entities of Entity Framework:

• Object-oriented: Entities are objects, so they can be used in a natural way with other object-
oriented code.

• Relational: Entities are mapped to database tables, so they can be used to access data in a
relational database.

• Abstraction: Entities abstract away the details of the database schema, so you don't have to
worry about how the data is stored in the database.

MSc Thesis Theodoros Mouzakitis

17
Development of a WebAPI software

• Different types of entities that can be created in Entity Framework:

• Value entities: Value entities are entities that represent simple data types, such as integers,
strings, and dates.

• Reference entities: Reference entities are entities that represent complex data types, such as
objects and collections.

• Derived entities: Derived entities are entities that are derived from other entities. Derived
entities can be used to represent a specialization of a base entity.

Relationships

There are four types of relationships that can be created between entities:

• One-to-one: A one-to-one relationship is a relationship between two entities where each
entity in the first entity can have only one corresponding entity in the second entity, and vice
versa.

• One-to-many: A one-to-many relationship is a relationship between two entities where each
entity in the first entity can have zero or more corresponding entities in the second entity,
but each entity in the second entity can only have one corresponding entity in the first entity.

• Many-to-many: A many-to-many relationship is a relationship between two entities where
each entity in the first entity can have zero or more corresponding entities in the second
entity, and each entity in the second entity can have zero or more corresponding entities in
the first entity.

• Self-referential: A self-referential relationship is a relationship between two entities of the
same type.

The benefits of using relationships in Entity Framework:

• Represents real-world relationships: Relationships can be used to represent real-world
relationships between entities. For example, a one-to-one relationship can be used to
represent the relationship between a person and their address.

• Enforces referential integrity: Relationships can be used to enforce referential integrity in
your database. For example, a one-to-many relationship can be used to ensure that a
product cannot be deleted if there are still orders for that product.

• Improves performance: Relationships can be used to improve the performance of your
database access code. For example, a one-to-many relationship can be used to fetch all the
orders for a product in a single query.

Methods

Entity Framework provides several methods for performing CRUD operations on entities.

Create: To create an entity, you can use the Add method of the DbContext class.

Read: To read an entity, you can use the Find method of the DbContext class.

Update: To update an entity, you can use the Update method of the DbContext class.

Delete: To delete an entity, you can use the Delete method of the DbContext class.

Here are some additional considerations for performing CRUD operations in Entity Framework:

• Transactions: Entity Framework transactions are used to ensure that all of the changes made
to an entity are committed to the database or rolled back if an error occurs.

• Validation: Entity Framework validation is used to ensure that the data in an entity is valid
before it is saved to the database.

• Lazy loading: Lazy loading is a technique that is used to load entities only when they are
needed. Lazy loading can improve the performance of your application by reducing the
amount of data that is loaded from the database.

MSc Thesis Theodoros Mouzakitis

18
Development of a WebAPI software

Migrations

This section would discuss how to use Entity Framework migrations to manage changes to your
database schema. Entity Framework migrations are a way to manage changes to your database schema.
Migrations allow you to track the changes that you make to your database schema and to apply those
changes to your database in a consistent way.

To use Entity Framework migrations, you need to create a migration file. A migration file is a text file
that contains the SQL statements that are used to make changes to your database schema.

To create a migration file, you can use the Add-Migration command-line tool or the Add-Migration
method in Visual Studio. For example, the following command creates a migration file called
InitialCreate:

Add-Migration

Once you have created a migration file, you can apply the changes to your database by running the
Update-Database command-line tool or the Update-Database method in Visual Studio. For example, the
following command applies the changes in the InitialCreate migration file to your database:

Update-Database

Entity Framework migrations provide several benefits, including:

• Trackability: Migrations allow you to track the changes that you make to your database
schema. This makes it easy to see what changes have been made to your database and to
revert those changes if necessary.

• Consistency: Migrations allow you to apply changes to your database in a consistent way.
This ensures that your database schema is always consistent with your code.

• Reliability: Migrations are reliable. They have been used by many developers to manage
changes to their database schemas.

Here are some additional considerations for using Entity Framework migrations:

• Versioning: Migrations use a versioning system to track the changes that you make to your
database schema. This allows you to roll back changes to a previous version of your database
schema if necessary.

• Dependencies: Migrations can depend on each other. This means that you need to apply the
migrations in the correct order.

• Rollback: If you make a mistake when creating a migration file, you can roll back the changes
by running the Rollback-Migration command-line tool or the Rollback-Migration method in
Visual Studio.

Entity Framework Performance

To utilize the framework’s full performance gain there are implementations techniques to consider:

• Use the right mapping strategy.
The mapping strategy that you use can have a significant impact on the performance of your
application. If you are using a complex mapping strategy, you may want to consider using a simpler
mapping strategy.

• Use lazy loading.
Lazy loading is a technique that is used to load entities only when they are needed. Lazy loading can
improve the performance of your application by reducing the amount of data that is loaded from the
database.

MSc Thesis Theodoros Mouzakitis

19
Development of a WebAPI software

• Use indexes.
Indexes can improve the performance of your application by making it easier for Entity Framework to
find the data that you need.

• Use batching.
Batching is a technique that is used to send multiple queries to the database at once. Batching can
improve the performance of your application by reducing the number of round trips to the database.

• Use caching.
Caching is a technique that is used to store frequently accessed data in memory. Caching can improve
the performance of your application by reducing the number of times that data needs to be retrieved
from the database.

• Use profiling.
Profiling is a technique that is used to measure the performance of your application. Profiling can
help you to identify the areas of your application that are causing performance problems.

There are also some considerations that affect each use case.

• The size of the database.
The size of your database can have a significant impact on the performance of your application. If
your database is large, you may want to consider using a different database engine.

• The number of concurrent users.
The number of concurrent users that are accessing your application can also have a significant impact
on the performance of your application. If you have many concurrent users, you may need to scale
your application.

• The hardware that you are using.
The hardware that you are using can also have a significant impact on the performance of your
application. If you are using old or outdated hardware, you may need to upgrade your hardware.

Appendices

Figure 1:Example Of Dependency Injection

MSc Thesis Theodoros Mouzakitis

20
Development of a WebAPI software

Figure 2 Customer DB Model

Figure 3 DB Context

MSc Thesis Theodoros Mouzakitis

21
Development of a WebAPI software

Figure 4 Unit Of Work Implementation

Figure 5 Create Order Command

MSc Thesis Theodoros Mouzakitis

22
Development of a WebAPI software

Figure 6 Create Order Handler Part A

Figure 7 Create Order Handler Part B

MSc Thesis Theodoros Mouzakitis

23
Development of a WebAPI software

Figure 8 Get Order By Id Query

Figure 9 Order Repository Part A

MSc Thesis Theodoros Mouzakitis

24
Development of a WebAPI software

Figure 10 Order Repository Part B

Figure 11 IUnitOfWork Interface

MSc Thesis Theodoros Mouzakitis

25
Development of a WebAPI software

Figure 12 CustomerServiceTest Part A

Figure 13 CustomerServiceTest Part B

MSc Thesis Theodoros Mouzakitis

26
Development of a WebAPI software

Figure 14 CustomerServiceTest Part C

Conclusion

In conclusion, this thesis explored the creation of a web API for performing CRUD operations on a
shop's data. The API has been designed and implemented using various architectural patterns and best
practices to ensure a robust and maintainable solution.

The utilization of Entity Framework has simplified the data access layer by providing an object-
relational mapping framework. This has reduced the amount of code needed to interact with the
underlying database, allowing for efficient and seamless data operations.

The adoption of the Repository Pattern with the Unit of Work pattern has facilitated the separation of
concerns and improved the maintainability of the application. By encapsulating the data access logic
within repositories and managing transactions through the unit of work, the application ensures
transactional consistency and concurrency control.

Domain Driven Design principles have been applied to focus on the core domain logic of the shop.
The emphasis on modeling the business domain accurately has led to a better alignment between the
codebase and the actual problem domain, resulting in a more understandable and maintainable system.

The Mediator Pattern, implemented for Command Query Responsibility Segregation (CQRS), has
enhanced the separation of commands and queries within the API. The mediator acts as a central
component that routes messages between the command and query handlers, enabling loose coupling
and scalability.

Unit tests, implemented using NUnit, have played a vital role in ensuring the correctness and
reliability of the web API. By covering critical code paths and edge cases, unit tests have provided a
safety net against regressions and facilitated code quality and maintainability.

Overall, the combination of Entity Framework, Repository Pattern with Unit of Work, Domain-Driven
Design, Mediator Pattern for CQRS, and comprehensive unit testing has resulted in the successful
creation of a robust and scalable web API for CRUD operations on a shop's data. The architectural
choices and patterns applied have promoted modularity, maintainability, and extensibility, aligning with
industry best practices.

This thesis project not only provides a functional web API but also serves as a reference
implementation for future development projects. It showcases the importance of architectural patterns
methodologies in creating reliable and high-quality software solutions.

MSc Thesis Theodoros Mouzakitis

27
Development of a WebAPI software

As technology continues to evolve and business requirements change, the architectural principles and
patterns employed in this project will serve as a solid foundation for future enhancements and
iterations. By following these best practices, developers can build upon this web API, adapt it to specific
business needs, and continue delivering value to end-users.

In conclusion, the successful creation of this web API demonstrates the effectiveness of employing
Entity Framework, Repository Pattern with Unit of Work, Domain-Driven Design, Mediator Pattern for
CQRS, and comprehensive unit testing to create a reliable, maintainable, and scalable solution for
managing shop data through CRUD operations.

Thanks

I want to express my deepest gratitude for the people and things that have helped me in my academic
journey. From the bottom of my heart, I want to thank all those who have been a part of this incredible
journey with me.
 First and foremost, I would like to thank my family – starting with my father, my mother and my
brother. They have been a constant source of encouragement and support throughout this process.
From helping me with assignments to providing emotional support, they have been there for me every
step of the way. Their unwavering commitment has enabled me to reach new heights academically,
something which I am extremely thankful for!
 I would also like to thank Charalampos Sideris and Nicoleta Samara, two amazing classmates who
provided both emotional and practical support when needed. Whether it was helping with an
assignment or just being there as a listening ear during tough times – their friendship has made this
journey much more enjoyable!
 Last but not least, I would like to thank Professor Mr. Alepis for believing in my potentials from day one
and pushing me out of my comfort zone so that I could reach new heights academically. His guidance has
enabled me to be successful in this field, something which I will be forever grateful for!
So once again, thank you all for being part of this journey – it has been an amazing experience!

References

1. Programming Entity Framework, 2nd Edition (2010): By Julia Lerman
2. Pro ADO NET Entity Framework 4 0 (2011): By Roger Jennings
3. Beginning ASP NET 4 5 in C# and VB (2012): By Imar Spaanjaars
4. Programming Entity Framework, 3rd Edition (2013): By Julie Lerman
5. Design Patterns in C#: A Hands-On Guide, by Steve Metsker.
6. Head First Design Patterns: A Brain-Friendly Guide, by Eric Freeman and Elisabeth Robson.
7. Pro .NET Design Pattern Framework 4.5, by Steven John Metsker and Matthew B Jones.
8. C# 6 for Programmers (6th Edition), by Paul Deitel and Harvey Deitel.
9. Professional C# 7 and .NET Core 2, by Christian Nagel et al..

10. C# 7 and .NET Core 2.0 – Modern Cross-Platform Development, Third Edition, by

Mark J. Price.

11. Pro C# 7: With .NET and .NET Core, Eighth Edition, by Andrew Troelsen

12. CLR via C# (Developer Reference), Fifth Edition, by Jeffrey Richter

13. Programming in C# Exam Ref 70-483: Second Edition, by Wouter de Kort

14. Effective C#: 50 Specific Ways to Improve Your C# (Effective Software. Development

Series), Sixth Edition, by Bill Wagner

15. Murach's Beginning Visual C# 2019, Fifth Edition ,by Anne Boehm & Joel Murach
16. Pro ASP.NET Core MVC 2, Adam Freeman (Apress)
17. Professional ASP.NET MVC 5, Jon Galloway et al (Wrox)
18. Programming Microsoft ASP.NET MVC, Dino Esposito (Microsoft Press)
19. Beginning ASP NET 4 in C# and VB, Imar Spaanjaars (Wrox)
20. Pro C# 7: With .NET and .NET Core, Andrew Troelsen & Philip Japikse (Apress).

MSc Thesis Theodoros Mouzakitis

28
Development of a WebAPI software

