

University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

Title: Security study in Cloud and Docker Environment

Supervisor Professor: Christos Xenakis

Name-Surname E-mail Student ID.

 Iason Bitchavas i.bitxavas@ssl-unipi.gr mte2023

Piraeus

12/5/2023

mailto:i.bitxavas@ssl-unipi.gr

2

Acknowledgements

This thesis concludes my studies at the Postgraduate Programme of “Digital Systems Security”

of the Department of Digital Systems at the University of Piraeus and I would like to express my

gratitude to the people that supported me throughout this period of my life.

I would like to thank my supervisor professor, Mr. Christos Xenakis for his guidance, his

valuable advices, and his clear vision towards this thesis.

I would also like to thank my family and my wife for supporting me selflessly throughout my

entire life, for their patience and for understanding the difficulties that emerged.

3

ABSTRACT

Virtualization has been dominating the world on the aspect of software development and

testing for quite some time. Nowadays, Containerization and Docker in particular have become

the new trend of developing software due to its simplicity, portability, scalability and it requires

less resources than a Virtual Machine. It has to be mentioned though, that despite the

advantages of Docker, there are some problems regarding security that need to be addressed.

In this thesis, we will analyze Virtualization and Containerization along with their advantages.

We will also examine the Docker architecture and functionality through some use cases.

Furthermore static and dynamic analysis of Docker images and containers will be presented

through the usage of certain tools. In addition, Docker forensics will be analyzed and tested

through a use case. Lastly, there will be a thorough description of best practices regarding the

Docker environment.

4

Image 1 Virtual Machine Architecture .. 9

Image 2 Cloud computing solutions ... 10

Image 3 Architecture comparison of Virtual Machine and Container.. 12

Image 4 Docker Architecture .. 20

Image 5 Dockerfile .. 22

Image 6 HTML page .. 23

Image 7 Docker image build ... 23

Image 8 Listing docker images .. 24

Image 9 Running the NGINX container ... 24

Image 10 NGINX webpage .. 24

Image 11 Docker-compose file ... 25

Image 12 NGINX docker-compose start ... 25

Image 13 Listing the NGINX container .. 25

Image 14 General Settings of Virtual Machine ... 27

Image 15 Setting memory size of Virtual Machine ... 27

Image 16 Setting disk size of Virtual Machine .. 28

Image 17 Setting number of processors of the Virtual Machine.. 28

Image 18 Setting network adapter of Virtual Machine .. 29

Image 19 Mounting OS image to Virtual Machine ... 29

Image 20 Installation of Ubuntu ... 30

Image 21 Running updates on the Virtual Machine ... 30

Image 22 Installation of Docker dependencies .. 31

Image 23 Adding key of Docker repository .. 31

Image 24 Adding Docker repository to the Host .. 32

Image 25 Docker installation .. 32

Image 26 Docker service status after installation .. 33

Image 27 Listing container for Docker Bench Security testing ... 33

Image 28 Initiation of Docker Bench Security container .. 34

Image 29 Docker Bench Security score before security improvements ... 35

Image 30 Warning of container running as root .. 35

Image 31 Warning of no PID limits for container ... 35

Image 32 Listing containers for Docker Bench Security testing ... 36

Image 33 Warning of one of the containers running as root ... 36

Image 34 Pass notification for container not running as root .. 36

Image 35 Docker Bench Security score after security improvements .. 36

Image 36 Trivy Scanning Ubuntu image ... 38

Image 37 Contents of a testing yaml file .. 39

Image 38 Contents of a testing Dockerfile ... 39

Image 39 Trivy scanning Dockerfile and yaml testing files ... 40

Image 40 Trivy warning about Dockerfile containing root user ... 40

Image 41 Trivy warning about privilege escalation setting .. 40

Image 42 Trivy warning about privileged container rights ... 41

Image 43 Trivy container scanning Ubuntu image ... 41

Image 44 Trivy container scan results for Ubuntu image ... 41

5

Image 45 Trivy scanning repository .. 42

Image 46 Docker Hub Malicious Image .. 42

Image 47 Docker Hub Image Cloning malicious repository .. 43

Image 48 Docker Hub Image Running malicious script .. 43

Image 49 Docker Hub Image Changing rights of executable .. 43

Image 50 Docker Hub Image executes malicious binary .. 44

Image 51 Falco service status after installation ... 45

Image 52 Running Falco .. 47

Image 53 Falco warning of reverse shell in a container ... 47

Image 54 Falco e-mail alert regarding reverse shell in container .. 48

Image 55 Falco alert about a running privileged container .. 48

Image 56 Falco alert about root folder mounted to container .. 49

Image 57 Falco alert about a try of creating file in bin folder .. 49

Image 58 Falco alert about editing of the /etc/shadow file ... 49

Image 59 Listing of a container for testing Falco .. 49

Image 60 Falco alert about updates running in a container ... 50

Image 61 Falco writing events inside specified file .. 50

Image 62 Docker diff results ... 51

Image 63 Docker diff Compromised /etc/shadow file.. 52

Image 64 Docker diff Container update event ... 52

Image 65 Starting container for testing cgroups .. 53

Image 66 Finding the rights of the container ... 54

Image 67 Running a container with PID limit ... 54

Image 68 Container unable to fork resources due to PID limit .. 55

Image 69 Enabling default namespace ... 56

Image 70 Result of using namespace on a container ... 56

Image 71 AppArmor configuration file ... 57

Image 72 Loading AppArmor profile .. 57

Image 73 Attaching an AppArmor profile to a starting container .. 58

Image 74 Functionality result of AppArmor ... 58

Image 75 Configuration of Seccomp profile ... 59

Image 76 Attaching a Seccomp profile to a starting container .. 59

Image 77 Functionality result of Seccomp.. 60

Image 78 Printing capabilities of a container ... 60

Image 79 Dropping only CHOWN capability of a container ... 61

Image 80 Printing capabilities after dropping CHOWN capability .. 61

6

Contents
1.Introduction ... 8

2.Basic Concepts ... 9

2.1 Virtualization ... 9

2.1.1 Types of Virtualization ... 9

2.1.2 Benefits of Virtualization ... 10

2.2 Containerization .. 11

2.2.1 Benefits of Containerization .. 11

2.3 Virtualization vs Containerization ... 11

3.Docker .. 12

3.1 Docker architecture .. 13

3.2 Docker Client ... 13

3.3 Docker Host ... 13

3.4 Images ... 14

3.5 Dockerfile .. 15

3.6 Containers ... 16

3.7 Differences between images and containers ... 17

3.8 Networks ... 17

3.9 Storage .. 18

3.10 Registries ... 19

3.11 Image tagging .. 19

3.12 Docker-compose ... 20

3.13 Security threats ... 21

4.Use case ... 22

4.1 Use case: Dockerfile .. 22

4.2 Use case: Docker-compose ... 25

5.Environment .. 26

5.1 Creation of the VM.. 26

5.2 Installation of Docker .. 31

6.Docker static analysis ... 33

6.1 Docker bench security ... 33

6.2 Trivy ... 36

6.2.1 Installation of Trivy .. 37

7

6.3 Static analysis through Docker Hub .. 42

7.Docker dynamic analysis .. 44

7.1 Falco .. 44

7.2 Falco Installation ... 44

7.3 Falco configuration ... 45

7.4 Falcosidekick ... 46

7.5 Falco scenarios .. 47

8.Docker Forensics .. 50

9.Docker Best Practices ... 53

9.1 Cgroups ... 53

9.2 Docker content trust ... 55

9.3 Namespaces .. 55

9.4 Apparmor .. 56

9.5 Seccomp .. 58

9.6 Capabilities .. 60

Appendix A .. 62

Appendix B .. 75

Bibliography .. 76

8

1. Introduction

Nowadays, the demand for faster and safer development and deployment processes is bigger than ever.

The containerization and Docker have been around for quite some time and they have helped a lot in

cutting down the development time. Those two features provide the ability to run applications in any

computer in a reliable way. The containers come with all the necessary dependencies of the

applications, which simplifies the whole process of deployment.

Docker has been dominating the containerization technology and is heavily used by developers around

the world. Nonetheless, Docker has some security risks and issues as well which need to be addressed

by the organizations and the development teams.

Throughout this thesis, we will try to analyze the risks and security issues of Docker, provide suggestions

for best practices regarding Docker and generally help the security posture of an organization that

utilizes Docker.

In Chapter 2, there is an analysis of the basic principles of Virtualization and Containerization.

In Chapter 3, the components, architecture and functionality of Docker are thoroughly described. Also,

the security threats regarding Docker are examined as well.

In Chapter 4, a use case of Docker deployment is presented.

In Chapter 5, there is a description of the creation of the environment that was used throughout this

thesis.

In Chapter 6, there is a description of the static analysis methodology, as well as execution of static

analysis in Docker through various techniques.

In Chapter 7, the dynamic analysis methodology is presented. Also, the execution of dynamic analysis in

Docker is executed by using the Falco project.

In Chapter 8, Docker forensics and their functionalities are introduced.

In Chapter 9, best practices regarding Docker are being proposed and examined.

9

2. Basic Concepts

2.1 Virtualization
Virtualization is a process which provides the ability to efficiently utilize physical computer hardware. It

could be described as the foundation of cloud computing.

Virtualization utilizes software in order to create an abstraction layer over computer hardware. The

hardware components of a single computer such as disk, processors, memory etc. can be divided to

multiple virtual computers. Those virtual computers are called Virtual Machines (VMs). [1]

Virtual Machines run their own operating systems and function like independent computers, while they

utilize the computer hardware of the host.

The initiation and monitoring of the Virtual Machines is achieved through the Hypervisor.

Hypervisor is a software that makes possible the functionality of Virtualization. It allows the creation,

running and monitor of VMs. Through the Hypervisor, the resources of the Host are allocated to the

Virtual Machines according to each VM’s needs.

After the allocation of the resources and the creation of the Virtual Machines, the users are able to

execute their work in an isolated environment. The resources of a Virtual Machine can be rearranged, in

case that the needs of a Virtual Machine increase or decrease.

An architectural depiction of Virtualization is the following:

Image 1 Virtual Machine Architecture

2.1.1 Types of Virtualization
Virtualization consists of certain types, which are:

• Storage Virtualization: It provides the ability to access and manage all the storage devices

which may be installed in either individual servers or storage units. Practically, storage

virtualization aggregates all blocks of storage in a storage pool. This pool is shared and can be

assigned to any Virtual Machine.

• Network Virtualization: It uses software which can be used to manage the network in a

centralized manner. This software runs on the hypervisor and controls network hardware and

functions such as routers, switches etc. Network virtualization

10

• CPU Virtualization: It is a vital part of Virtualization, since it is necessary for host and the

Virtual Machines. Through this technology, the CPU of the host can be divided into multiple

virtual CPUs, which can be used by multiple Virtual Machines.

• Cloud Virtualization: As it has already been mentioned, cloud technologies are greatly

dependent on Virtualization.

Image 2 Cloud computing solutions

2.1.2 Benefits of Virtualization
The process of Virtualization can provide major advantages to an organization that utilizes it. Through its

usage the organization can achieve lower costs, better scalability and business continuity and

management. An analysis of those advantages follows:

• Lower costs: Virtualization allows the organization to lower its operational costs, since its

hardware needs become less through the usage of Virtual Machines. As a consequence of the

above, the maintenance that is required for the hardware is also lessened. Lastly, the licensing

for the servers is not so extensive due to less physical running servers.

• Control and Speed: By using Virtualization, the organization’s server will be divided into

independent and isolated Virtual Machines. In order to test functionalities, the developers will

be able to create a VM, run important tests regarding the application and all that without

disrupting the production environment. This way, there is a major increase in the control of the

development process, while it is also sped up significantly.

• Business continuity: In case of a malfunction of a Virtual Machine, its working state can be

restored by using snapshots that have been taken. The snapshots are backup states of the

Virtual Machine which can be created before major changes or when the Virtual Machine

functions properly. Through this process the business continuity of the organization is improved

significantly, since such restoration of Virtual Machines actually needs only some minutes to

bring back a functioning Virtual Machine.

• Backup management: The backup management of virtualized environments is quite simple,

since scripts or processes can be used for the frequent creation of snapshots or backups of the

Virtual Machines.

11

2.2 Containerization
Containerization is a form of Virtualization where the processes/applications that are running on a host

can be isolated from each other. The isolated spaces where those applications run are called containers.

Through containers, the application with all its dependencies, libraries and configuration files are

packaged inside the particular container [2]. The usage of containers leads to abstraction of the

container from the host Operating System, Containerization provides the ability to create and deploy

applications faster and in a more secure manner.

Let’s think of an example in order to comprehend more the concept of Containerization. A developer

creates an application by using certain technology/technologies. The development process would take

place in a particular computing environment. The transportation of the application to another computer

or production VM/Server would possibly result in the appearance of bugs or errors. This happens

because the destination device might run different OS, processes, programs etc.

This problem is eliminated by packaging all the code, dependencies and configuration files inside the

container. The isolation and abstraction of the container allow its portability. This way, the container is

able to run on every possible computing system (Virtual Machine, Bare-metal Server, Cloud Servers,

personal computer).

2.2.1 Benefits of Containerization
The benefits of Containerization are several and should be thoroughly examined and taken into

consideration by developers, organizations and every part which is involved in the development of

software. A brief description of those benefits follows:

• Portability: The container packages the application and its dependencies, which all are

independent of the host operating system. This leads to the container being able to run in any

platform, operating system or cloud.

• Resouce allocation: Containers are lightweight since the images that there are based upon have

small size. They do not include operating system images. They also share the kernel of the

operating system of the host and have less overhead. This makes the containers greatly fast on

the aspect of deployment and they have quite low demands of system resources.

• Fault Isolation: The main feature of containerization is that it runs applications in the isolated

environment of the containers. This particular feature is important since every possible failure

of the container, will not affect in any way the rest of the containers. Furthermore, the

developers can identify the problem and resolve it afterwards.

• Security: The feature of isolation in containerization also improves greatly the security aspect,

because possible malicious code will not be able to affect the host or other containers.

• Continuity: The containers independently from each other, which makes the failure of a

container not able to have an impact on the functionality of the other running containers.

2.3 Virtualization vs Containerization
While Virtualization and Containerization share the same philosophy and similar functionality, they have

major differences as well. Virtualization allows the user to run multiple operating systems on the same

hardware hosted on a single physical server.

12

Containerization enables the user to run multiple applications while utilizing the same operating system

of a server or Virtual Machine.

Virtual Machines provide the ability to execute applications in an isolated environment, while a

container is an isolated process sharing the host’s kernel. Containers are a better choice when the

priority is to possess less physical servers. This occurs because containers are more lightweight on the

aspect of resources, and therefore demand less resources.

Containers are easier and faster on the aspect of deployment as well, while Virtual Machines need to

install the operating system from scratch.

Image 3 Architecture comparison of Virtual Machine and Container

3. Docker
Docker is an open source platform as a service (PaaS) which provides to developers the ability to build,

test and deploy applications. Those applications are packaged by Docker into units, which are called

containers. [3]

The containers include the necessary software in order for the application to run. Such essential

software would be the system tools, libraries and code.

Docker also provides the ability to execute those containers in an isolated environment, which leads to

better management of the services and more importantly safer deployment and execution of

applications. [4]

The security features of Docker and the isolation of the containers which are running through Docker,

allows the execution of different containers simultaneously.

13

The functionality of Docker is based upon Docker Engine and its components. Through, Docker Engine

the development, packaging and running of the applications is achieved. The components of Docker

Engine are described below:

• Docker Daemon: A process which runs in the background and manages the Docker containers,

images, networks and storage volumes. It listens constantly for Docker API requests and it can

also communicate with other Docker daemons.

• Docker Engine REST API: It is an API which is utilized by applications in order to interact with

the Docker daemon.

• Docker CLI: A command line interface client which is used for interaction with the Docker

daemon.

3.1 Docker architecture
Docker uses a Client-Server architecture and comprises Docker Client, Docker Host, Network and

Storage components and Docker Registry. Docker client communicates with the Docker daemon, which

is the component that executes vital processes such as building, running and distributing the containers.

The Docker client and Docker daemon could be running on the same host, but they can also be

connected through a remote Docker daemon [5]. The daemon and client can also communicate through

a network interface or UNIX sockets by using a REST API.

Next, an analysis of the architecture components will be introduced.

3.2 Docker Client
Docker Client is the process through which Docker users interact with Docker. Whenever a docker

command is executed it is forwarded to the daemon. The duty of the daemon is to carry out this

particular command. Any command that is to be executed, utilizes the Docker API.

An important feature of Docker Client is its ability to communicate with other daemons as well. This way

the Docker Client on a single machine is able to communicate with Docker on multiple hosts. This

feature arises a security issue regarding the Docker daemon socket, which will be analyzed in a following

section.

3.3 Docker Host
Docker Host is the device which provides the entire environment, where the packaged application are

executed and run. Docker Host consists of Images, Containers, Networks, Storage and Docker daemon.

Docker daemon is responsible for all the actions that are related to the containers. The commands are

carried out through the CLI or through the REST API. When the client requests the creation of a

container, the Docker daemon will pull the requested image. After the conclusion of the image pull, the

daemon will build the container by utilizing the instructions which are contained in a build file. The build

file may also contain instructions which are intended towards the Docker daemon. These instructions

14

inform the daemon for pre-loading certain components before the running of the container. They may

also describe command line instructions which will be executed after the build of the container.

Through the usage of Docker, a lot of components are created such as images, containers and other

objects. A description of the Docker objects follows.

3.4 Images
Images are templates which are read-only and contain the necessary instructions for the creation of a

container. Docker images are used for the creation of containers which will run in the Docker platform.

Docker images could be described as a blueprint, since it describes the entire environment that will be

created. They represent the application that will run as well as its virtual environment. This is a greatly

important feature since it provides developers the ability to test and experiment software in a stable

environment.

An example of using images for the creation of containers would be the running of a web server. The

developer creates the image which will be based on the Ubuntu operating system and it will run the

Apache Web Server software. The image could possibly specify as well the configuration settings for the

Apache Server.

Images are crucial to the functionality of Docker, since all the containers are based on the images. Some

important commands for Docker images can be found below.

In order to check the current images in the Docker Host, the following command must be issued:

Information regarding a Docker image can be gathered through the following command:

There is the ability to delete any unwanted Docker images as well:

If the user needs to run a container based on a particular image, this is achieved through this command:

$ docker images

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

$ docker inspect <name_of_image>

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

$ docker rmi <id_of_image>

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

$ docker run <name_of_image>

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

15

3.5 Dockerfile
The procedure of creating an image is based on Dockerfiles. They are text files which contain all the

commands that are needed, in order to build the given image. After writing the Dockerfile, Docker is

able to build the image by reading the instructions in the Dockerfile.

The important instructions that may be inside the Dockerfile are the following:

• FROM: The FROM statement defines the image that will be downloaded and used. It must be

the first command in a Dockerfile.

• RUN: The RUN statement is used in order to define a command that will be ran through the shell

at runtime.

• ADD: The ADD statement is used if it is necessary to copy files, directories or remote file URLs

and then add them to the filesystem of the image.

• ENV: The ENV statement is used for the setting of the environment variables during the build of

the image.

• ENTRYPOINT: The ENTRYPOINT statement is used in order to configure the executables that will

be ran after the initiation of the container.

• CMD: The CMD statement is also used for the running of executables after the start of a

container. The difference between ENTRYPOINT and CMD is that the default parameters that

are set by CMD can be overridden from the Docker CLI when a container is running. On the

contrary, the default parameters which are set by the ENTRYPOINT statement cannot be

overridden by Docker CLI parameters.

• EXPOSE: The EXPOSE statement is used in order to map a port into the container. The default

port is TCP, but they can also be UDP.

FROM <image_name>

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

RUN apt-get update -y

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

ADD <source_file> <destination_file>

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

ENTRYPOINT [“command”]

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

ENV key=value

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

CMD [“command”]

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

EXPOSE <port_number>

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

16

• VOLUME: The VOLUME statement is used in order to specify a mount point for a volume within

a container. This volume will be created after the build of the container is complete.

• WORKDIR: The WORKDIR statement is used in order to set the directory that the container will

start in.

• COPY: The COPY statement is used in order to copy files or directories from <source> and will

add them to the filesystem of the container at the path of <destination>

After creating the image, we need to build it in order to be usable for the execution of containers.

Before running the build command, the user must navigate to the same folder as the Dockerfile. Then,

the following command must be issued in order to initiate the building of the image:

The “.” at the end of the command is an alias for the current directory. This way, we specify that the

resources that are necessary for the creation of the image are in the current directory.

3.6 Containers
Containers are encapsulated environments where applications and all their dependencies can be run.

The applications run without affecting the rest of the system and the system is not able to impact the

application either. Containers have access only to the resources which are defined in the image.

This provided isolation makes containers a great solution for running an application securely, because

they restrict the access to every user on the system.

There are several important commands regarding Docker containers. Some of them are displayed

below.

There is the ability to run a container based on an image in the background. This is achieved by using the

following command:

A shell script can be opened inside a container as well:

$ docker run -itd <name_of_image>:<tag_name>

$ docker exec -it <name_of_container> sh

WORKDIR /directory

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

VOLUME [“/host/path” “/container/path”]

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

COPY <source> <destination>

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

$ docker build -t <name_of_image> .

$ echo "deb https://download.falco.org/packages/deb stable main" |

tee -a /etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

17

The containers that are currently running can be listed:

The containers that are currently are running, as well as the containers that ran at some point in the

Docker Host can be listed as well:

We can delete a container by issuing the following command:

A container can be stopped while running through this command:

A stopped container can be started again by issuing this command:

3.7 Differences between images and containers
Images and containers are vital to the functionality of Docker. Images can exist without any containers,

while containers cannot exist without using an image.

While containers are running the actual applications and contain their dependencies, they rely on

images in order to be started.

A Docker image is a read-only immutable template which will specify how a container will be ran.

Therefore, a Docker container should be considered as a running image instance. There is the ability to

create many containers by using the same image, but each of them will have its unique running state

and data.

3.8 Networks
The network functionality in Docker could be described as the passage through which all the containers

communicate. It is mainly used to establish communication between the containers as well as the

connections towards the Internet. This is achieved through the host machine where the Docker daemon

is running.

$ docker ps

$ docker ps -a

$ docker rm <name_of_container>

$ docker stop <name_of_container>

$ docker start <name_of_container>

18

The network drivers that are used in Docker networking are the following:

• Bridge: It is the default drive that is used by a container. It is used for the communication of

containers towards the Docker Host.

• Host: This driver removes the networking isolation between the Docker Host and the

containers.

• Overlay: This driver enables Swarm services to communicate with each other. It allows the

communication of containers which run on different Docker Hosts.

• Macvlan: This driver associates a container with a MAC address. It has the ability to route

traffic between containers by using their MAC addresses.

• None: This driver is used in order to disable networking in Docker.

Some fundamental commands regarding the networking of Docker will be presented below.

In order to list the Docker networks that are currently running on the Docker Host we can use the

following command:

The ability to dive into more information regarding a Docker network is available as well:

3.9 Storage
A vital aspect of every computer system in the world is the storage of data and Docker is not an

exception. By default, containers do not write data permanently to any storage location. If the container

is not running, data cannot be stored in it. Furthermore, if the container is deleted, the data are deleted

as well.

In Docker containers, the data can be stored in a permanent way. It can be achieved by utilizing the

options that Docker provides for permanent storage:

• Volumes: They are the most used technology for permanent storage of data in Docker. It

provides the ability to create a permanent storage volume, apply a name to it and associate it

with a particular container. They do not depend on the filesystem of Docker Host since they

have a dedicated filesystem on the Docker Host.

• Directory Mounts: It is the second option for permanent storage in Docker, but it provides less

configurations options than Docker Volume. The implementation of this technology consists of

mounting a local directory of the Docker Host into a container. There is no limitation for the

local directory mounts. Every folder in Docker Host can be mounted into a container, which

poses security risks.

• Storage Plugins: They allow the containers to store data to external storage platforms. Such

storage platforms could be NetApp, Google Compute Platform, Azure File Storage etc.

$ docker network ls

$ docker network inspect <name_of_network>

19

3.10 Registries
As it has already been mentioned, containers cannot be created and ran, without the use of an image.

The users who will utilize Docker need a centralized platform through where they can choose the

particular application and version of software that they need.

This is achieved by using Docker registries. They are services where the user can browse the image that

satisfies its needs. The user can also store images to them or download images from them.

Docker registries can be Public or private. The public registry of Docker is called Docker Hub. The

developers are able to browse images in Docker Hub and find the one that will satisfy their needs. In

Docker Hub there is a big number of different software. For each software, there are also different

versions of it [6]. Therefore, depending on what the developers need to deploy, they choose the images

accordingly. Private Docker registries can be used by enterprises in order to share images within the

enterprise.

In order to download an image to the host, the user has to issue the following command:

After pulling the image that is needed, the user can start a container by using the pulled image.

In case that the user needs to upload the image to the registry, the command that must be issued is:

3.11 Image tagging
An important part of Docker images is tagging. Docker tags are used in order to convey information

about a specific image version. During the building of an image we can specify its version, in order to

distinguish the different steps of the development or deployment. Docker tags can be perceived as a

particular commit of code in a repository.

Earlier, we described the command that must be issued in order to create an image. There is also the

ability to use tagging during the creation of the image. The format of such command would be the

following:

By using the dot at the end we specify that the necessary resources for the building of the image, are in

the current directory. Also, we inform the Docker daemon to build this particular image and issue to it

this specific tag. It has to mentioned that the tagging of the image is not necessary. In case of it not

being present during the creation of the image, the latest version is used. An example of image tagging

can be seen below.

$ docker pull <name_of_image>

$ docker push <name_of_image>

$ docker build -t <name_of_image>:<tag_name> .

20

Let us assume that we want to create an image based on the Ubuntu image. There are two scenarios

regarding the usage of image tagging. Here, the FROM statement does not contain any tagging for the

image:

Since there is no specified tag for the image, Docker will add the latest tag for the image and it will try to

pull the image of ubuntu:latest.

Here, the FROM statement contains a tag specification:

This will lead to Docker pulling the Ubuntu image with the tag 20.04.

A represenation of the Docker architecture can be seen below:

Image 4 Docker Architecture

3.12 Docker-compose
Docker compose is a very useful tool for the deployment of multi-container applications. It allows the

developer to run multiple containers as a single service. In order to comprehend better the usage of

Docker compose, let us think of an example:

FROM ubuntu

FROM ubuntu:20.04

21

A developer needs to create an e-shop for a client. Such project would demand a website, and different

databases (Users, Cart, Products etc.) in order to provide the necessary activities of an e-shop. Those

activities would be logging-in to the site, browsing products, adding products to the cart etc.

Every single one of the above could be considered as microservices. Each microservice should be located

in its container and be isolated from the other microservices, because the developer should be able to

intervene into them. Those containers should run isolated, but they have the ability to interact with

each other if that is necessary. Here is where the usefulness of Docker compose becomes clear. It allows

running multiple containers as a single service. [7]

The Docker compose files which will contain the configuration for running different containers as one

service, are written in an XML-based language called YAML.

Another important feature is that Docker compose can start all the containers through the usage of one

command.

The benefits of Docker compose are the following:

• Single host deployment: Everything can be run on a single device.

• Configuration ease: The configuration of all the services is quick and gathered inside the YAML

file.

• High speed deployments: It reduces the deployment time of the services, since they are

started together.

• Security: The containers are isolated from each other, which reduces the security risks.

The command used for starting the applications which are contained inside the docker-compose file is

the following:

3.13 Security threats
The usage of Docker and containers comes with several security threats. A security threat could be

considered every possible malicious attack with the goal to access, steal or damage data, disrupt an

organization’s operation or demand ransom in order to release compromised resources. The origin of

the threats could be various actors such as competitors, criminal organizations, disgruntled employees,

lone hackers etc.

Containerization and Docker in particular arise several security challenges and possible threats. Some of

those challenges are addressed below:

• Containers are created and started through the usage of a base image. It is crucial to be certain

of the image source’s level of security. It is also important to check the image for possible

malicious commands or activity before using it.

• The base image of a container may have various vulnerabilities.

$ docker-compose up

22

• Running containers enables several microservices which leads to more difficult monitoring of

access control, data and network traffic.

• There are deployments where the containers are not isolated from other containers. A

compromised container could lead to possible compromisation of the rest of the containers.

• There are attacks regarding Docker where the attacker is able to break out of the container and

gain access to the Docker Host.

• The privileges of the containers have to be addressed as well.

4. Use case
The previous chapter described the architecture and the functionality of Docker. Now, we will examine a

use case in order to comprehend how Docker works.

4.1 Use case: Dockerfile
At this point, it would be useful to describe a use case regarding the functionality of Docker.

Let us think that a developer needs to run NGINX server, in order to create a website that returns the

date of the current timezone [8]. The index.html was created which will contain the content of the

webpage and it will be in the same folder as the Dockerfile.

Firstly, the developer uses the FROM statement for specifying the base image that will be used, which is

nginx. The RUN statement is used in order to execute the necessary updates inside the container. The

COPY statement is used for copying the file from the particular folder in the Docker Host inside the

/usr/share/nginx/html folder. With the EXPOSE statement it is specified that the 8080 port will be

listening. Lastly, the CMD statement is used in order to run the Nginx server:

Image 5 Dockerfile

23

Below we can see the index.html file, which contains the configuration of the webpage:

Image 6 HTML page

After the creation of the files of index.html and Dockerfile, we use the docker build command in order to

create the image that will be used for running the NGINX container. The name of the image will be

nginx_test:

Image 7 Docker image build

24

Next, we clarify that the image was created successfully:

Image 8 Listing docker images

Then, we use the following command in order to run the container based on the image that we created.

We use the -p parameter to specify the 8080 port in the container will be associated with the 80 port of

the Host:

The results of this command can be seen below. As we can see the container was started successfully.

Also, it was assigned by Docker a specific identifier, which can be used for the operations of Docker.

Image 9 Running the NGINX container

By browsing to the IP address of the NGINX server we can see the functionality of the container:

Image 10 NGINX webpage

$ docker run -d –name nginx_server -p 8080:80 nginx_test

25

4.2 Use case: Docker-compose
By using Docker-compose we clarify the necessary settings and configurations for the Docker containers.

Firstly, we specify the version of docker-compose that will be used which will be 3.7. We specify the

name of the service that will be running the NGINX application, and we name it “web”. The latest image

of NGINX will be used in order to run the container. We forward the 8080 port of the container to the 80

port of the Docker Host. Lastly, we mount the folder which contains the NGINX configuration to the

NGINX configuration file inside the container:

Image 11 Docker-compose file

Now, the docker-compose file is ready to be deployed. The command necessary for starting the

application can be seen below:

Image 12 NGINX docker-compose start

Below we can see the started container:

Image 13 Listing the NGINX container

26

The command that was issued is:

With the -d parameter, we specify that the container must be started in the background.

5. Environment
For the purposes of this particular thesis, a testing environment was created and configured. For the

environment, we used VirtualBox as a Hypervisor and a Virtual Machine running Ubuntu 20.04 LTS.

5.1 Creation of the VM
The first step for creating a Virtual Machine is to download the disk image of the operating system that

will be used [9]. The Ubuntu disk image that we used can be downloaded from the following resources:

• The official repository of Canonical regarding Ubuntu, which can be found here.

• The official repository of VirtualBox for Ubuntu images, which can be found here.

After the download of the disk image is complete, the setup of the Virtual Machine may commence.

Firstly, we run the VirtualBox application. Upon the opening of VirtualBox we choose Machine and then

New.

$ docker-compose up -d

https://ubuntu.com/download/desktop
https://www.osboxes.org/ubuntu/

27

The first step for creating the Virtual Machine is to clarify its name, the destination of its folder and the

Operating system that it will be running:

Image 14 General Settings of Virtual Machine

Next, the allocated memory to the Virtual Machine needs to be set:

Image 15 Setting memory size of Virtual Machine

28

The Virtual Disk size needs to be specified as well:

Image 16 Setting disk size of Virtual Machine

As a last step regarding the resources of the Virtual Machine, we allocate the needed processors to the

VM:

Image 17 Setting number of processors of the Virtual Machine

29

The network adapter is an important part of the configuration of the Virtual Machine. In this instance,

we used the Bridged Adapter. This particular setting connects the Virtual network adapter of the Virtual

Machine to the physical network adapter of the VirtualBox Host:

Image 18 Setting network adapter of Virtual Machine

Now that the creation of the Virtual Machine has concluded, we can start with the installation of the

operating system of Ubuntu 20.04 inside the VM. For this purpose, we mount the disk image of the

Operating system on the VM:

Image 19 Mounting OS image to Virtual Machine

30

We start the Virtual Machine and then, the installation of Ubuntu on the Virtual Machine is initiated:

Image 20 Installation of Ubuntu

Following the completion of the Ubuntu installation, the necessary updates should be installed as well.

In order to achieve that the following commands must be used:

Image 21 Running updates on the Virtual Machine

31

5.2 Installation of Docker
The process that needs to be executed for the installation of Docker is quite simple. Based on the

instructions that can be found in the Docker documentation, the official Docker repository will be used

for the installation. Firstly, some important dependencies must be installed. Those dependencies regard:

• The transportation of data and files through repositories which are accessed through HTTPS

• The curl software

• The management of the software sources and their distribution

The installation of the necessary dependencies can be achieved by issuing the below command:

Image 22 Installation of Docker dependencies

The next step of the installation will be the adding of the GPG key for the official Docker repository to

our system:

Image 23 Adding key of Docker repository

32

Now, the Docker repository will be added to the APT sources of our Ubuntu system:

Image 24 Adding Docker repository to the Host

The system is ready to install Docker. The command that will be run to achieve this is the following:

Image 25 Docker installation

33

The status of the Docker service should be checked after starting it, in order to validate its proper

functionality:

Image 26 Docker service status after installation

6. Docker static analysis
Static analysis refers to the operation of analysis on software against a set of rules. It provides the ability

to detect weaknesses in software which may lead to vulnerabilities [10]. Through the static analysis

method, samples are used, which in this case are Docker images, and those samples are analyzed for

vulnerabilities based upon certain attributes. The main idea is to find evidence about malware without

actually using the code, in this case the Docker image.

In Docker there are several tools that conduct static analysis. Such process should be executed before

using an image.

6.1 Docker bench security
Docker Bench Security is an auditing tool which can used to assess the security of Docker on the host

that it has been installed. It has the ability to evaluate the security of the Docker Host, as well as the

security of the containers that are present in the system [12].

It provides a checklist where flags inform the user about any misconfigurations or bad practices

regarding docker. More precisely, after the execution of Docker Bench Security, it returns the result of

the audit. The audit consists of a larger number of security tests and controls. If the Docker Host or the

container do not satisfy a security test, Docker Bench Security informs the user with a warning. In the

case that the Docker Host or containers satisfy the tests of the audit then the tool will return “Pass” in

that particular test.

An example of the usage of Docker Bench Security follows.

In this instance, an Ubuntu container is started with the name of vuln_test1:

Image 27 Listing container for Docker Bench Security testing

34

The Docker Bench Security tool can be ran as a container by issuing the following command:

The initiation of the tool can be seen below:

Image 28 Initiation of Docker Bench Security container

$ docker run --rm --net host --pid host --userns host --cap-add audit_control \

 -e DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST \

 -v /etc:/etc:ro \

 -v /usr/bin/containerd:/usr/bin/containerd:ro \

 -v /usr/bin/runc:/usr/bin/runc:ro \

 -v /usr/lib/systemd:/usr/lib/systemd:ro \

 -v /var/lib:/var/lib:ro \

 -v /var/run/docker.sock:/var/run/docker.sock:ro \

 --label docker_bench_security \

 docker/docker-bench-security

35

The results of Docker Bench can be seen below:

Image 29 Docker Bench Security score before security improvements

As it may be observed, 105 checks were conducted, and the current score of the Docker ecosystem is

19.

After getting the results of Docker bench, the user/administrator is able to correct any bad practices

concerning Docker.

The container with the name vuln_test1 is initiated through the following command:

Here, Docker bench informs the user that the container will be running as root:

Image 30 Warning of container running as root

Also, there are no PIDs limits for this particular container:

Image 31 Warning of no PID limits for container

Next, another container will be created with the name of vuln_test2 and it will be run as the current

user:

docker run -itd –user 1000:1000 –name vuln_test2 ubuntu

$ docker run -itd –name vuln_test1 ubuntu

$ docker run -itd –user 1000:1000 –name vuln_test2 ubuntu

36

Below there are the containers will be checked by Docker Bench security:

Image 32 Listing containers for Docker Bench Security testing

Docker bench is once more run and it returns again that vuln_test1 is running as root, but vuln_test2 is

not.

Image 33 Warning of one of the containers running as root

After stopping the containers and running vuln_test1 with a user different than root, the 4.1 check

returns a status of PASS:

Image 34 Pass notification for container not running as root

Also, the score of the current system is raised from 19 to 21:

Image 35 Docker Bench Security score after security improvements

6.2 Trivy
Trivy provides the ability to scan a docker image for vulnerabilities. The results of the scan, a part of

which can be seen below, informs the administrator/user about which library is vulnerable, with which

CVE it is associated, as well as the installed version in the system.

Trivy utilizes different scanners which are able to scan for a variety of security issues. Also, there is a

variety of targets that Trivy can scan and return results about them.

37

The available targets which Trivy is able to scan are the following:

• Container images

• Filesystem

• Remote Git repository

• Kubernetes resources

The scanners that Trivy utilizes regard:

• OS packages

• Software dependencies

• Known vulnerabilities (based on CVEs)

• Sensitive information and secrets

Trivy performs best when it is used in the context of Continuous Integration (CI). For example, before

pushing an image or a container to a registry, Trivy can scan them for possible security issues or

misconfigurations. Also, before the deployment of an application, either through image or by running a

container, Trivy can identify security problems and reports them.

6.2.1 Installation of Trivy
The installation of Trivy is a straightforward process which is described thoroughly in its documentation

[13]. The commands that need to be ran in order to install Trivy successfully can be seen below:

After the installation is complete, the user is now able to execute static analysis regarding Docker.

The command of Trivy that is used for scanning an image for vulnerabilities is the following:

$ sudo apt-get install wget apt-transport-https gnupg lsb-release

$ wget -qO - https://aquasecurity.github.io/trivy-repo/deb/public.key | sudo apt-key add -

$ echo deb https://aquasecurity.github.io/trivy-repo/deb $(lsb_release -sc) main | sudo tee -a

/etc/apt/sources.list.d/trivy.list

$ sudo apt-get update

$ sudo apt-get install trivy

$ trivy image <name of image>

38

An example of such usage follows. Here, Trivy is used in order to scan the latest image of Ubuntu.

Image 36 Trivy Scanning Ubuntu image

Trivy is also able to detect any security misconfigurations of Dockerfiles or configs. Either the user has

created those files or if the user has pulled them through a repository, Trivy will report any findings

regarding security issues.

For example, in this instance configuration files have been created. The containers that are intented to

be started will do so through the use of docker-compose. In order to achieve that, a .yaml file is

necessary. An example of Dockerfile has been created as well, in order to test Trivy on such files too.

39

The content of those files can be seen below:

1) Contents of deploy.yaml file:

Image 37 Contents of a testing yaml file

Here, in the securityContext setting, the privileged and allowPrivilegeEscalation attributes have been set

to true.

2) Contents of Dockerfile:

Image 38 Contents of a testing Dockerfile

In this file, it is configured that the nginx image will be used and that the container will be run through

the root user.

40

The next step would be to run trivy in order to check the configuration files for security

misconfigurations or malpractices. Those files are located inside the trivy_scan folder.

The command to achieve this is: trivy config trivy_scan/

The results can be seen below:

Image 39 Trivy scanning Dockerfile and yaml testing files

Since the declaration of root as the one running the container, trivy returns the following report, where

it informs the user that such practice may lead to security incidents:

Image 40 Trivy warning about Dockerfile containing root user

In the deploy.yaml file it was declared that programs/processes inside the container could possibly

elevate their privileges and execute commands as root. Once more, trivy reports such an event, an

example of which can be seen below:

Image 41 Trivy warning about privilege escalation setting

41

Also, the container is set to be run as privileged, which is another malpractice of container deployments.

Trivy identifies that and returns the following report:

Image 42 Trivy warning about privileged container rights

Trivy can be run as a container as well, where its behavior is similar to the installed-on-host version.

The command to achieve this is the following:

An example of running trivy for checking the ubuntu:latest image can be seen in the following

screenshots:

Image 43 Trivy container scanning Ubuntu image

The results of the scan concluded by Trivy can be seen below:

Image 44 Trivy container scan results for Ubuntu image

Trivy has the ability to scan remote git repositories also.

$ docker run –rm -v ‘pwd’:/root/.cache/ aquasec/trivy image <name_of_image>

$ trivy repo <repository_URL>

42

As it can be seen below, it returns a report about the vulnerabilities regarding this particular repository:

Image 45 Trivy scanning repository

6.3 Static analysis through Docker Hub
Another way of inspecting an image is browsing to it through Docker Hub. There, the layers of the image

can be thoroughly examined.

For example, the image below seems quite malicious. Its name is ynprpagamentitk/liferay:latest.

since it clones a repository with the name of cpuminer-multi. It also executes the binary minerd and

associates it with the URL of the miner:

An overview of the malicious image can be seen below, where all the layers of actions of the image can

be seen:

Image 46 Docker Hub Malicious Image

43

After inspecting each step of the image, some malicious actions are detected. Here, we can see that the

image initiates a clone of the repository with the name of cpuminer-multi:

Image 47 Docker Hub Image Cloning malicious repository

Then, it navigates inside the directory of the repository, runs a script and then compiles it:

Image 48 Docker Hub Image Running malicious script

It changes the rights of the minerd file, in order to be able to be executed by the user:

Image 49 Docker Hub Image Changing rights of executable

44

Lastly, it executes the binary minerd and associates it with the URL of the miner:

Image 50 Docker Hub Image executes malicious binary

7. Docker dynamic analysis
As a next step of studying docker security, a functionality testing should be run in order to analyze the

behavior of a possibly malicious image or container.

The process that leads to the above results is dynamic analysis.

Through dynamic analysis, a container can be started in order to monitor and analyze any malicious

behavioral patterns, which may lead to system compromise [14].

The main idea here is to run the possible malware in an isolated and controlled environment in order to

monitor the malware process and behavior.

Regarding Docker, dynamic analysis would be about analyzing the behavior of running containers and

the data or traffic that they might produce.

7.1 Falco
Falco is a useful tool for the dynamic analysis of containers and images.The Falco Project is a runtime

security tool, which is open source and has been developed by Sysdig.

Falco has the ability to secure and monitor a system through a) parsing of the Linux system calls from

the kernel at runtime, b) audit of streams against falco rules, c) providing alerts after the violation of a

rule [15].

7.2 Falco Installation
At the site of the Falco project, there is a thorough guide regarding the installation of Falco. These steps

were followed as well during this thesis.

45

The installation process of Falco along with its dependencies can be achieved by running the can be seen

by running the following commands:

The status of the Falco service should be validated in order to ensure that there were not any issues

with the installation:

Image 51 Falco service status after installation

As it can be seen, the Falco service is running properly.

After the successful completion of the installation process, Falco needs to be configured in order to

function properly.

7.3 Falco configuration
Now, regarding the configuration of Falco, its functionality is based upon the config files. The first file

that needs to be edited is the one at the path /etc/falco/falco.yaml. The full content of the

configuration files can be found in the Appendix.

$ curl -s https://falco.org/repo/falcosecurity-packages.asc | apt-key add -

$ echo "deb https://download.falco.org/packages/deb stable main" | tee -a

/etc/apt/sources.list.d/falcosecurity.list

$ apt-get update -y

$ apt install -y dkms make linux-headers-$(uname -r)

$ apt install -y clang llvm

$ apt install -y dialog

46

The changes that we implemented inside this file are:

7.4 Falcosidekick
By default, Falco comes with five output technologies for the emerging events, which are:

• Stdout

• File

• gRPC

• Shell

• HTTP

While they are useful, Falco provides an extension to those technologies regarding outputs.

Falcosidekick is a daemon which extends the number of possible outputs with different purposes. This

particular daemon can be found here. After pulling this particular daemon, we can use it to integrate it

with other output technologies [16].

Falcosidekick provides integration of Falco with major available technologies such as:

• Microsoft Teams

• Slack

• Discord

• Datadog

• Prometheus

• AlertManager

• Elasticsearch

syslog_output:

 enabled: true

json_output: true

log_syslog: true

file_output:

enabled: true

keep_alive: true

filename: ./events.txt

stdout_output:

enabled: true

https://github.com/falcosecurity/falcosidekick

47

• Grafana

• Syslog

• AWS

• SMTP

The configuration file, which is a .yaml file, can be found in the Appendix B. In our case we configured

the SMTP server section, in order to receive the alerts from Falco through an e-mail.

After configuring the falcosidekick_config.yaml, we start Falcosidekick by issuing the following

command:

Image 52 Running Falco

7.5 Falco scenarios
After the start of Falco, we create some events in order to check its functionality.

Some of those scenarios can be seen below:

Scenario 1: Let us think of a scenario where a container has been compromised, and a reverse shell has

been opened. An example of such logs in falco are the following:

Image 53 Falco warning of reverse shell in a container

The shell has been spawned inside the container, which falco considers as malicious. The network

connection of the reverse shell can be seen as well. The attacker has been listening through the 4444

port at 172.17.0.1.

48

An example email alert of falco can be seen below:

Image 54 Falco e-mail alert regarding reverse shell in container

Scenario 2: Another scenario where falco’s alerts will be triggered, is when a privileged container is

started. Such an event will be written in the logs of falco, and an alert will be created.

Image 55 Falco alert about a running privileged container

49

Scenario 3: A container is started with root mounted to it. This event will generate an alert, since such

practice is considered malicious by falco:

Image 56 Falco alert about root folder mounted to container

Scenario 4: An attacker who has gained access to a container, tries to create a file in the /bin/ folder, in

order to run a script. The attempt to create a file in this certain path will also create an alert in falco:

Image 57 Falco alert about a try of creating file in bin folder

Scenario 5: A container has been compromised, and the attacker tries to print the /etc/shadow file,

which is vital for every host/container. Such attempt will generate an alert, as it is a considerably

important malicious attempt:

Image 58 Falco alert about editing of the /etc/shadow file

Scenario 6: An attacker gains access to a container, and initiates the update command in order to install

afterwards the needed packages for the attack:

The container running is the following:

Image 59 Listing of a container for testing Falco

50

An alert is created because the attacker ran updates inside the container:

Image 60 Falco alert about updates running in a container

7.6 Falco log writing

Falco provides the ability of logging either in a certain file which is located at the falco host, or by writing

to a remote syslog server. Below can be seen the writing of logs into a file. The path of the log file or of

the remote syslog server is configured in the falco.yaml file:

Image 61 Falco writing events inside specified file

8. Docker Forensics
Forensics and particularly Digital Forensics is a branch of science which mainly focuses on the

acquisition, processing and analysis of data that are stored electronically.

The main goal of those Forensics is to extract data which will help in understanding what happened

during a malicious action.

In the same context, Docker Forensics will help identifying the actions that were carried out during an

attack on containers. Through the usage of Forensics we can mitigate against such issues and proceed

with further security hardening of containers, Docker Hosts etc.

On the a aspect of Digital Forensics, Docker diff is a tool which provides the ability of inspecting changes

to files or directories of the containers [17].

Let us think of the following scenario: A container that is running into an organization’s infrastructure

has been compromised. The attacker manages to open a shell inside the container and therefore is

connected to it. The attacker creates a user and starts doing the actions that he intends in order to

achieve his purposes [18].

Docker diff provides the ability to understand the actions of the attacker inside the container.

51

Docker diff allows the user to list the changed files and directories in the filesystem of a container since

it’s creation. The types of changes that docker diff tracks are the following:

• A: This symbol is used in case that a file or directory was added

• C: This symbol is used in order to show that a file or directory was changed

• D: This symbol is used in case that a file or directory was deleted

The command which is used in order to check any changes through docker diff is the following:

After running docker diff for in a similar scenario as the one described above, the following results can

be observed:

Image 62 Docker diff results

Here, we observe that the /etc/shadow file has been changed. The /etc/shadow file is an important

system file of Linux, where the encrypted user passwords are stored. It is only accessible by root users,

which leads to the prevention of unauthorized users gaining access to a system.

$ docker diff <id_of_container>

52

In order to check the changes that happened inside the /etc/shadow file, the docker cp command is

used. The shadow file is copied to an isolated environment in order to examine it further. By printing the

contents of this file, it can be observed that there is a suspicious entry at the bottom of the file:

Image 63 Docker diff Compromised /etc/shadow file

This means that the attacker successfully created a user through the compromised container.

By analyzing further the results of Docker diff, it can be observed that updates where ran inside the

container. This occurred after the creation of the user by the attacker, which means that the attacker

possibly needed to install updates, malicious programs etc. The updates that were executed inside the

container are visible below:

Image 64 Docker diff Container update event

Also, the logs of the container should be saved, in order to further analyze what happened.

53

Those logs can be saved inside a file by issuing the following command:

9. Docker Best Practices
Now, some best practices will be introduced regarding the usage and functionality of Docker

architecture, images and containers.

Firstly, the below general best practices should be followed in order to establish a higher level of

security in Docker [23]:

• The Docker version should always be up to date

• The Docker daemon should be used only by trusted users of the system

• The registries though which the images will be pulled should have a legit registry certificate

• Do not allow containers to acquire new privileges

• The containers should be ran as non-root user

• Use only trusted images or images released by official authors

• Remove any unwanted capabilities from a running container

• Do not run containers with the –privileged flag

• Do not mount any sensitive directories of the host system on containers

• Specify only the necessary containers needed from a container

• Impose PID limits on the containers

Here, some practical best practices regarding Docker will be introduced.

9.1 Cgroups
Control groups is one of the many features that the Linux kernel provides. As it has already been

mentioned, all the containers share the same kernel.Through the usage of cgroups, a limit can be

imposed upon the containers so that they are allowed on specified resources. Those limits can be

implemented on RAM, CPU, network etc [19].

An example of such usage is the limit of processes (PIDs) that can be used by a container.

Firstly, an Ubuntu container is started with the name “testing_cgroups”:

Image 65 Starting container for testing cgroups

After that, the pids.max value must be examined in order to check the rights of the container.

$ docker logs <id_of_container> > logs.txt

54

For that purpose the following command is used:

Image 66 Finding the rights of the container

Next, there must be a navigation in the folder where the pids.max value is located, which in this instance

is located at the path: /sys/fs/cgroups/pids/docker/<identifier of this container>

Here, the content of pids.max is max.

This means that if an attacker gains access to the container, he will be able to exhaust the pid resources

on the host.

The prevention of a situation like the above can be achieved by setting a limit to the available pids of the

container.

Below, a new container is started but with an important change. The –pids-limit option is used on this

container, in order to narrow down the available pids.

Image 67 Running a container with PID limit

This particular container has pids.max of 5. After its initiation the container had 2 pids.

$ find /sys/fs/cgroup/ -name “<id_of_container>”

55

A shell is opened in the container and another 5 processes are executed. The result is that the container

can’t acquire any more resources:

Image 68 Container unable to fork resources due to PID limit

9.2 Docker content trust
It provides the ability to download only image that have been signed. That is not necessarily the best

practice though since any user is able to sign an image and upload/push it to docker hub [20].

The recommendations for pulling images from Docker hub are:

a) Images that are certified by Docker

b) Official images

c) Images that possess the Verified Publisher tag

Those recommendations should be followed in order to reduce the odds of using a possible malicious

image.

9.3 Namespaces
Namespaces are a feature of the Linux kernel that partitions kernel resources such that one set of

processes sees one set of resources and another set of processes sees a different set of resources. This

way, each process can utilize a set of its own resources. In Linux, namespaces are provided regarding ipc,

net, mnt, pid and user where each of them has its own properties.

IPC namespaces isolate the inter-process communication while net namespaces virtualize the network

stack meaning that it has its own independent network stack. Mnt namespaces regard the control of

mount points, meaning that a mount namespace will have independent mount points that will be seen

by this namespace. A process ID namespace (pid) will assign PIDs to certain processes that will be

independent from a set of PIDs in another namespace. A user namespace will have its own set of user

IDs and groups IDs that will be assigned to processes.

Thus, Docker uses namespaces to provide isolation to the containers from the host [21].

56

Below, the default namespace is enabled:

Image 69 Enabling default namespace

A container is started with the root folder mounted to the shared folder in the container.

Due to the namespace, the container doesn’t have the ability to access the root folder:

Image 70 Result of using namespace on a container

9.4 Apparmor
AppArmor is a Linux kernel security module which provides the ability to restrict the capabilities of

programs, based upon AppArmor profiles.

In the case of Docker, AppArmor can be used to protect containers from possible security threats. This is

achieved by associating an AppArmor security profile with each container [22].

57

When a container is started, an AppArmor profile must be provided, so that Docker finds the associating

AppArmor policy.

For this instance, an AppArmor configuration file is created. The settings of this particular file can be

seen below:

Image 71 AppArmor configuration file

Here, the ability to write to the /etc folder as well as the concurrent folders is denied.

The writing and reading of the /etc/shadow file is denied as well.

The AppArmor profile has to be loaded before usage, this is with the usage of this command:

In this instance we use the following:

Image 72 Loading AppArmor profile

The next step would be to start a container and attach to it the created AppArmor profile:

$ sudo apparmor_parser -r -W <name_of_apparmor_profile>

$ docker run -itd –security-opt apparmor=<name_of_apparmor>profile> <name_of_image>

58

Next, a container is started and the previously created apparmor-profile is attached to it:

Image 73 Attaching an AppArmor profile to a starting container

As it can be seen, the file /etc/shadow cannot be accessed in any way, and file cannot be

created/written inside /etc folder.

Image 74 Functionality result of AppArmor

9.5 Seccomp
Seccomp is a Linux kernel feature, which provides the ability to narrow down the privileges of a process.

This is achieved by restricting the syscalls that the container is able to make towards the kernel[21]. A

seccomp profile can be created in .json file, where the user can allow or deny system calls.

If seccomp is activated, every time a container is run it has the default profile attached to it. There is the

ability to exceed the default seccomp profile by using a profile created by the user.

It has to be mentioned that if the container is started with the privileged attribute, then the seccomp

restrictions will not work.

59

Below, there is the configuration file for a seccomp profile. Here, the chown syscall is restricted for the

process that this profile will be attached to.

Image 75 Configuration of Seccomp profile

The command to start a container with a seccomp profile attached to it is the following:

Here, the container is started with the above seccomp profile attached to it:

Image 76 Attaching a Seccomp profile to a starting container

$ docker run -itd –security-opt seccomp=<name_of_secccomp_file> <name_of_image>

60

We open a shell to the running container The container tries to use the chown syscall, but the attached

seccomp profile does not permit such activity:

Image 77 Functionality result of Seccomp

9.6 Capabilities
The Linux kernel has the ability to break down the privileges of the root user into units, which are known

as capabilities. One example of such capability is cap_chown, which allows the root user to execute

changes to the user/group ownership of a file.

In this instance, a connection through shell is opened to a container.

The capsh –print is used in order to check the current capabilities of this particular container. Here, the

container possesses all capabilities.

Image 78 Printing capabilities of a container

61

In order to test the functionality of capabilities, a container is ran but only cap_chown capability is

disabled. The result is that when the user inside the container tries to use chown, the system returns

that there is no permission for such activity:

Image 79 Dropping only CHOWN capability of a container

By printing again the available capabilities of the container, it can be observed that the container misses

the cap_chown capability indeed.

Image 80 Printing capabilities after dropping CHOWN capability

It is possible to drop all the capabilities of the containers, and add only those that are needed. This

functionality can be achieved by the following command:

The ability to allow certain capabilities while all others are dropped is available as well. An example of

such functionality would be the following:

$ docker run -itd –cap-drop ALL <name of image>

$ docker run -it –cap-drop ALL –cap-add <name_of_capability> <name_of_image>

62

Appendix A

Copyright (C) 2022 The Falco Authors.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

File(s) or Directories containing Falco rules, loaded at startup.

The name "rules_file" is only for backwards compatibility.

If the entry is a file, it will be read directly. If the entry is a directory,

every file in that directory will be read, in alphabetical order.

falco_rules.yaml ships with the falco package and is overridden with

every new software version. falco_rules.local.yaml is only created

if it doesn't exist. If you want to customize the set of rules, add

your customizations to falco_rules.local.yaml.

The files will be read in the order presented here, so make sure if

you have overrides they appear in later files.

63

rules_file:

 - /etc/falco/falco_rules.yaml

 - /etc/falco/falco_rules.local.yaml

 - /etc/falco/rules.d

Plugins that are available for use. These plugins are not loaded by

default, as they require explicit configuration to point to

cloudtrail log files.

To learn more about the supported formats for

init_config/open_params for the cloudtrail plugin, see the README at

https://github.com/falcosecurity/plugins/blob/master/plugins/cloudtrail/README.md.

plugins:

 - name: k8saudit

 library_path: libk8saudit.so

 init_config:

 # maxEventSize: 262144

 # webhookMaxBatchSize: 12582912

 # sslCertificate: /etc/falco/falco.pem

 open_params: "http://:9765/k8s-audit"

 - name: cloudtrail

 library_path: libcloudtrail.so

 # see docs for init_config and open_params:

 # https://github.com/falcosecurity/plugins/blob/master/plugins/cloudtrail/README.md

 - name: json

 library_path: libjson.so

64

Setting this list to empty ensures that the above plugins are *not*

loaded and enabled by default. If you want to use the above plugins,

set a meaningful init_config/open_params for the cloudtrail plugin

and then change this to:

load_plugins: [cloudtrail, json]

load_plugins: []

Watch config file and rules files for modification.

When a file is modified, Falco will propagate new config,

by reloading itself.

watch_config_files: true

If true, the times displayed in log messages and output messages

will be in ISO 8601. By default, times are displayed in the local

time zone, as governed by /etc/localtime.

time_format_iso_8601: false

If "true", print falco alert messages and rules file

loading/validation results as json, which allows for easier

consumption by downstream programs. Default is "false".

json_output: true

When using json output, whether or not to include the "output" property

itself (e.g. "File below a known binary directory opened for writing

(user=root") in the json output.

json_include_output_property: true

65

When using json output, whether or not to include the "tags" property

itself in the json output. If set to true, outputs caused by rules

with no tags will have a "tags" field set to an empty array. If set to

false, the "tags" field will not be included in the json output at all.

json_include_tags_property: true

Send information logs to stderr and/or syslog Note these are *not* security

notification logs! These are just Falco lifecycle (and possibly error) logs.

log_stderr: true

log_syslog: true

Minimum log level to include in logs. Note: these levels are

separate from the priority field of rules. This refers only to the

log level of falco's internal logging. Can be one of "emergency",

"alert", "critical", "error", "warning", "notice", "info", "debug".

log_level: info

Falco is capable of managing the logs coming from libs. If enabled,

the libs logger send its log records the same outputs supported by

Falco (stderr and syslog). Disabled by default.

libs_logger:

 enabled: false

 # Minimum log severity to include in the libs logs. Note: this value is

 # separate from the log level of the Falco logger and does not affect it.

 # Can be one of "fatal", "critical", "error", "warning", "notice",

 # "info", "debug", "trace".

 severity: debug

66

Minimum rule priority level to load and run. All rules having a

priority more severe than this level will be loaded/run. Can be one

of "emergency", "alert", "critical", "error", "warning", "notice",

"informational", "debug".

priority: debug

Whether or not output to any of the output channels below is

buffered. Defaults to false

buffered_outputs: false

Falco uses a shared buffer between the kernel and userspace to pass

system call information. When Falco detects that this buffer is

full and system calls have been dropped, it can take one or more of

the following actions:

- ignore: do nothing (default when list of actions is empty)

- log: log a DEBUG message noting that the buffer was full

- alert: emit a Falco alert noting that the buffer was full

- exit: exit Falco with a non-zero rc

Notice it is not possible to ignore and log/alert messages at the same time.

The rate at which log/alert messages are emitted is governed by a

token bucket. The rate corresponds to one message every 30 seconds

with a burst of one message (by default).

The messages are emitted when the percentage of dropped system calls

with respect the number of events in the last second

is greater than the given threshold (a double in the range [0, 1]).

67

For debugging/testing it is possible to simulate the drops using

the `simulate_drops: true`. In this case the threshold does not apply.

syscall_event_drops:

 threshold: .1

 actions:

 - log

 - alert

 rate: .03333

 max_burst: 1

Falco uses a shared buffer between the kernel and userspace to receive

the events (eg., system call information) in userspace.

Anyways, the underlying libraries can also timeout for various reasons.

For example, there could have been issues while reading an event.

Or the particular event needs to be skipped.

Normally, it's very unlikely that Falco does not receive events consecutively.

Falco is able to detect such uncommon situation.

Here you can configure the maximum number of consecutive timeouts without an event

after which you want Falco to alert.

By default this value is set to 1000 consecutive timeouts without an event at all.

How this value maps to a time interval depends on the CPU frequency.

syscall_event_timeouts:

 max_consecutives: 1000

68

 # --- [Description]

This is an index that controls the dimension of the syscall buffers.

The syscall buffer is the shared space between Falco and its drivers where all the syscall events

are stored.

Falco uses a syscall buffer for every online CPU, and all these buffers share the same dimension.

So this parameter allows you to control the size of all the buffers!

--- [Usage]

You can choose between different indexes: from `1` to `10` (`0` is reserved for future uses).

Every index corresponds to a dimension in bytes:

[(*), 1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, 128 MB, 256 MB, 512 MB]

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

| | | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

As you can see the `0` index is reserved, while the index `1` corresponds to

`1 MB` and so on.

These dimensions in bytes derive from the fact that the buffer size must be:

(1) a power of 2.

(2) a multiple of your system_page_dimension.

(3) greater than `2 * (system_page_dimension)`.

According to these constraints is possible that sometimes you cannot use all the indexes, let's

consider an

example to better understand it:

If you have a `page_size` of 1 MB the first available buffer size is 4 MB because 2 MB is exactly

`2 * (system_page_size)` -> `2 * 1 MB`, but this is not enough we need more than `2 *

(system_page_size)`!

69

 # So from this example is clear that if you have a page size of 1 MB the first index that you can use

is `3`.

Please note: this is a very extreme case just to let you understand the mechanism, usually the

page size is something

like 4 KB so you have no problem at all and you can use all the indexes (from `1` to `10`).

To check your system page size use the Falco `--page-size` command line option. The output on a

system with a page

size of 4096 Bytes (4 KB) should be the following:

"Your system page size is: 4096 bytes."

--- [Suggestions]

Before the introduction of this param the buffer size was fixed to 8 MB (so index `4`, as you can

see

in the default value below).

You can increase the buffer size when you face syscall drops. A size of 16 MB (so index `5`) can

reduce

syscall drops in production-heavy systems without noticeable impact. Very large buffers

however could

slow down the entire machine.

On the other side you can try to reduce the buffer size to speed up the system, but this could

increase the number of syscall drops!

As a final remark consider that the buffer size is mapped twice in the process' virtual memory so

a buffer of 8 MB

will result in a 16 MB area in the process virtual memory.

Please pay attention when you use this parameter and change it only if the default size doesn't

fit your use case.

syscall_buf_size_preset: 4

70

 # Falco continuously monitors outputs performance. When an output channel does not allow

to deliver an alert within a given deadline, an error is reported indicating

which output is blocking notifications.

The timeout error will be reported to the log according to the above log_* settings.

Note that the notification will not be discarded from the output queue; thus,

output channels may indefinitely remain blocked.

An output timeout error indeed indicate a misconfiguration issue or I/O problems

that cannot be recovered by Falco and should be fixed by the user.

The "output_timeout" value specifies the duration in milliseconds to wait before

considering the deadline exceed.

With a 2000ms default, the notification consumer can block the Falco output

for up to 2 seconds without reaching the timeout.

output_timeout: 2000

A throttling mechanism implemented as a token bucket limits the

rate of Falco notifications. One rate limiter is assigned to each event

source, so that alerts coming from one can't influence the throttling

mechanism of the others. This is controlled by the following options:

- rate: the number of tokens (i.e. right to send a notification)

gained per second. When 0, the throttling mechanism is disabled.

Defaults to 0.

- max_burst: the maximum number of tokens outstanding. Defaults to 1000.

With these defaults, the throttling mechanism is disabled.

For example, by setting rate to 1 Falco could send up to 1000 notifications

after an initial quiet period, and then up to 1 notification per second

afterward. It would gain the full burst back after 1000 seconds of

no activity.

71

 outputs:

 rate: 0

 max_burst: 1000

Where security notifications should go.

Multiple outputs can be enabled.

syslog_output:

 enabled: true

If keep_alive is set to true, the file will be opened once and

continuously written to, with each output message on its own

line. If keep_alive is set to false, the file will be re-opened

for each output message.

Also, the file will be closed and reopened if falco is signaled with

SIGUSR1.

file_output:

 enabled: false

 keep_alive: false

 filename: ./events.txt

stdout_output:

 enabled: true

Falco contains an embedded webserver that is used to implement an health

endpoint for checking if Falco is up and running. These config options control

the behavior of that webserver. By default, the webserver is enabled and

the endpoint is /healthz.

72

 #

The ssl_certificate is a combination SSL Certificate and corresponding

key contained in a single file. You can generate a key/cert as follows:

$ openssl req -newkey rsa:2048 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem

$ cat certificate.pem key.pem > falco.pem

$ sudo cp falco.pem /etc/falco/falco.pem

webserver:

 enabled: true

 # when threadiness is 0, Falco automatically guesses it depending on the number of online cores

 threadiness: 0

 listen_port: 8765

 k8s_healthz_endpoint: /healthz

 ssl_enabled: false

 ssl_certificate: /etc/falco/falco.pem

Possible additional things you might want to do with program output:

- send to a slack webhook:

program: "jq '{text: .output}' | curl -d @- -X POST https://hooks.slack.com/services/XXX"

- logging (alternate method than syslog):

program: logger -t falco-test

- send over a network connection:

program: nc host.example.com 80

If keep_alive is set to true, the program will be started once and

continuously written to, with each output message on its own

line. If keep_alive is set to false, the program will be re-spawned

for each output message.

Also, the program will be closed and reopened if falco is signaled with

SIGUSR1.

73

 program_output:

 enabled: false

 keep_alive: false

 program: "jq '{text: .output}' | curl -d @- -X POST https://hooks.slack.com/services/XXX"

http_output:

 enabled: true

 url: "http://172.17.1.68:2801/"

 #user_agent: "falcosecurity/falco"

Falco supports running a gRPC server with two main binding types

1. Over the network with mandatory mutual TLS authentication (mTLS)

2. Over a local unix socket with no authentication

By default, the gRPC server is disabled, with no enabled services (see grpc_output)

please comment/uncomment and change accordingly the options below to configure it.

Important note: if Falco has any troubles creating the gRPC server

this information will be logged, however the main Falco daemon will not be stopped.

gRPC server over network with (mandatory) mutual TLS configuration.

This gRPC server is secure by default so you need to generate certificates and update their paths

here.

By default the gRPC server is off.

You can configure the address to bind and expose it.

By modifying the threadiness configuration you can fine-tune the number of threads (and

context) it will use.

grpc:

enabled: true

bind_address: "0.0.0.0:5060"

when threadiness is 0, Falco sets it by automatically figuring out the number of online cores

threadiness: 0

74

private_key: "/etc/falco/certs/server.key"

cert_chain: "/etc/falco/certs/server.crt"

root_certs: "/etc/falco/certs/ca.crt"

gRPC server using an unix socket

grpc:

 enabled: false

 bind_address: "unix:///run/falco/falco.sock"

 # when threadiness is 0, Falco automatically guesses it depending on the number of online cores

 threadiness: 0

gRPC output service.

By default it is off.

By enabling this all the output events will be kept in memory until you read them with a gRPC

client.

Make sure to have a consumer for them or leave this disabled.

grpc_output:

 enabled: false

Container orchestrator metadata fetching params

metadata_download:

 max_mb: 100

 chunk_wait_us: 1000

 watch_freq_sec: 1

75

Appendix B

#listenaddress: "172.17.1.68" # ip address to bind falcosidekick to (default: "" meaning all

addresses)

#listenport: 2801 # port to listen for daemon (default: 2801)

debug: false # if true all outputs will print in stdout the payload they send (default: false)

#customfields: # custom fields are added to falco events and metrics, if the value starts with % the

relative env var is used

Akey: "AValue"

Bkey: "BValue"

Ckey: "CValue"

#templatedfields: # templated fields are added to falco events and metrics, it uses Go template +

output_fields values

Dkey: '{{ or (index . "k8s.ns.labels.foo") "bar" }}'

#mutualtlsfilespath: "/etc/certs" # folder which will used to store client.crt, client.key and ca.crt

files for mutual tls (default: "/etc/certs")

smtp:

hostport: "ip_of_server:port" # host:port address of SMTP server, if not empty, SMTP output is

enabled

authmechanism: "plain" # SASL Mechanisms : plain, oauthbearer, external, anonymous or ""

(disable SASL). Default: plain

 user: "your_username" # user for Plain Mechanism

 password: "your_password" # password for Plain Mechanism

 #token: "" # OAuthBearer token for OAuthBearer Mechanism

 #identity: "" # identity string for Plain and External Mechanisms

 #trace: "" trace string for Anonymous Mechanism

 from: "your_email_address" # Sender address (necessary if SMTP is enabled)

to: "your_recipient_email_address" # comma-separated list of Recipident addresses, can't be

empty (mandatory if SMTP output is enabled)

 outputformat: "" # html (default), text

 # minimumpriority: "" # minimum priority of event for using this output, order is

emergency|alert|critical|error|warning|notice|informational|debug or "" (default)

76

Bibliography
[1] “What is Virtualization”, https://www.redhat.com/en/topics/virtualization/what-is-virtualization

[2] João Carlos Maduro,"Automatic Service Containerization with Docker", July 26, 2021

[3] Docker, https://www.docker.com/

[4] Docker Documentation, https://docs.docker.com/

[5] Docker architecture, https://www.aquasec.com/cloud-native-academy/docker-container/docker-

architecture/

[6] Docker Hub, https://hub.docker.com/

[7] Docker-compose, https://github.com/docker/compose

[8] NGINX, https://nginx.org/en/

[9] VirtualBox, https://www.virtualbox.org/

[10] Static Analysis, https://www.checkpoint.com/cyber-hub/cloud-security/what-is-static-code-

analysis/

[11] Vipin Jain, Dr. Baldev Singh, Medha Khenwar, Milind Sharma, "Static Vulnerability Analysis of

Docker Images", 2019, https://iopscience.iop.org/article/10.1088/1757-899X/1131/1/012018

[12] Docker Bench Security, https://github.com/docker/docker-bench-security

[13] Trivy, https://github.com/aquasecurity/trivy

[14] Static and Dynamic Analysis, https://www.paloaltonetworks.com/cyberpedia/why-you-need-static-

analysis-dynamic-analysis-machine-learning

[15] Falco, https://github.com/falcosecurity/falco

[16] Falcosidekick, https://github.com/falcosecurity/falcosidekick

[17] Docker Diff, https://docs.docker.com/engine/reference/commandline/diff/

[18] Andreas Dewald, Matthias Luft, Julian Suleder, INCIDENT ANALYSIS AND FORENSICS IN DOCKER

ENVIRONMENTS, ERNW WHITE PAPER 64/ (02, 2018)

[19] Cgroups, https://man7.org/linux/man-pages/man7/cgroups.7.html

[20] Docker Content Trust, https://docs.docker.com/engine/security/trust/

[21] Michael Andersson & Robert Hysing Berg, Concerns about available container image scanning tools

and image security, 2022

[22] Zhu, H., Gehrmann, C. Lic-Sec, "An enhanced AppArmor Docker security profile generator" J. Inf.

Secur. Appl. 2021, 61, 102924

77

[23] Olivier FLAUZAC,Fabien MAUHOURAT, Florent NOLOT, "A review of native container security for

running applications, The 17th International Conference on Mobile Systems and Pervasive Computing

(MobiSPC) August 9-12, 2020, Leuven, Belgium

[24] Wayne Jansen,Timothy Grance, "Guidelines on Security and Privacy in Public Cloud Computing",

Special Publication 800-144, 2011

