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Abstract 

This research has been conducted as part of the postgraduate program at the University of Piraeus, Department of 

Digital Systems, Big Data & Analytics. The work is divided in two main sections: overview of smart grids and 

short-term load forecasting for residential users. Energy grid is on a transition phase from a conventional grid to 

a smart one. This work presents the main differences between those two and highlights the main components and 

the benefits of a smart grid. The deployment of such an infrastructure and more specifically the installation of 

smart meter, has increased massively the amount of collected data. Providers started diving into those data in 

order to identify patterns and improve their services and profit margins. Artificial intelligence and machine 

learning technics are currently used in large scale for load forecasting, which is necessary for planning, demand 

response, supply-demand equilibrium. The past five years there is a high interest in load forecasting for residential 

consumers; a task that is very challenging due to the volatility of such data. There many different consumption 

patterns depending on the area, type of house, demographics of the residents, weather, existence of solar panels, 

existence of an electric vehicle. The data, examined in this work, was collected during the GridFlex Heeten project 

[99]. The data was collected between August 2018 and August 2020 in 77 households all situated in Heeten (The 

Netherlands) and consists of electricity consumption per minute per household. After performing an exploratory 

data analysis, we created individual models, SARIMAX, Vanilla-LSTM, Encoder-Decoder LSTM, for three 

houses and compared the results. 

 

Keywords: Smart grid, AMI, Timeseries, short-term load forecasting, SARIMAX, LSTM, Encoder-Decoder 

LSTM. 
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Περίληψη 

Η παρούσα έρευνα έχει διεξαχθεί στο πλαίσιο του μεταπτυχιακού προγράμματος στο Πανεπιστήμιο Πειραιώς, 

Τμήμα Ψηφιακών Συστημάτων, κατεύθυνση Μεγάλα Δεδομένα & Αναλυτική. Η εργασία χωρίζεται σε δύο κύριες 

ενότητες: επισκόπηση των έξυπνων δικτύων και βραχυπρόθεσμη πρόβλεψη ηλεκτρικής κατανάλωσης για 

οικιακούς χρήστες. Το ενεργειακό δίκτυο βρίσκεται σε φάση μετάβασης από συμβατικό δίκτυο σε έξυπνο. Αυτή 

η εργασία παρουσιάζει τις κύριες διαφορές μεταξύ αυτών και υπογραμμίζει τα κύρια χαρακτηριστικά και τα 

οφέλη ενός έξυπνου δικτύου. Η ανάπτυξη μιας τέτοιας υποδομής και πιο συγκεκριμένα η εγκατάσταση έξυπνων 

μετρητών, έχει αυξήσει σε τεράστιο βαθμό τον όγκο των δεδομένων που συλλέγονται. Οι πάροχοι ηλεκτρικής 

ενέργειας άρχισαν να εξετάζουν αυτά τα δεδομένα προκειμένου να εντοπίσουν μοτίβα και να βελτιώσουν τις 

υπηρεσίες και τα περιθώρια κέρδους τους. Η τεχνητή νοημοσύνη και οι τεχνικές μηχανικής μάθησης 

χρησιμοποιούνται επί του παρόντος σε μεγάλη κλίμακα για την πρόβλεψη κατανάλωσης ηλεκτρικής ενέργειας, 

κάτι απαραίτητο για τον σχεδιασμό, την απόκριση της ζήτησης, την ισορροπία προσφοράς-ζήτησης. Τα τελευταία 

πέντε χρόνια υπάρχει μεγάλο ενδιαφέρον για την πρόβλεψη φορτίου για οικιακούς καταναλωτές, πράγμα πολύ 

δύσκολο λόγω της αστάθειας τέτοιων δεδομένων. Υπάρχουν πολλά διαφορετικά μοτίβα κατανάλωσης ανάλογα 

με την περιοχή, τον τύπο του σπιτιού, τα δημογραφικά στοιχεία των κατοίκων, τον καιρό, την ύπαρξη ηλιακών 

συλλεκτών, την ύπαρξη ηλεκτρικού οχήματος. Τα δεδομένα, που εξετάστηκαν σε αυτή την εργασία, συλλέχθηκαν 

κατά τη διάρκεια του έργου GridFlexHeeten [97]. Τα δεδομένα συλλέχθηκαν μεταξύ Αυγούστου 2018 και 

Αυγούστου 2020 για 77 νοικοκυριά που βρίσκονται όλα στο Heeten (Ολλανδία) και αποτελούνται από 

κατανάλωση ηλεκτρικής ενέργειας ανά λεπτό ανά νοικοκυριό. Αφού κάναμε μια επεξηγηματική ανάλυση, 

δημιουργήσαμε μεμονωμένα μοντέλα, SARIMAX, Vanilla-LSTM, Encoder-Decoder LSTM, για τρία σπίτια και 

συγκρίναμε τα αποτελέσματα. 

 

Λέξεις Κλειδιά: Έξυπνο δίκτυο, Προηγμένη υποδομή μέτρησης AMI, Βραχυπρόθεσμη πρόβλεψη κατανάλωσης 

ηλεκτρικής ενέργειας για οικιακούς χρήστες,  Χρονοσειρές, SARIMAX, Vanilla-LSTM, Encoder-Decoder 

LSTM. 
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1. Introduction 

Electric energy plays an utmost role in humanity past, present and future. Energy demand is growing exponentially 

and the grid should go through a transformation in order to scale respectively. In the past years, smart grid 

technology has developed vigorously. Information and Communications technologies (ICTs) are incorporated into 

the grid and are responsible for its digitalization. Smart meters have also been widely deployed and drastically 

improved the observability of power grid. They also helped in accumulating a large amount of data, which laid a 

solid foundation for the application of various forecasting models. The increased penetration of renewable energy 

sources brings many challenges to the existing energy grid; hence the transformation should be accelerated. 

Electric energy is difficult to store, therefore on one hand should not be supplied in excess of demand and on the 

other hand should not be in short. First case results in wasting of energy, second case may cause outages. Load 

forecasting become very important to maintain the balance between energy supply and demand; supply – demand 

equilibrium [1]. 

 

Forecasting is the process of making predictions, based on past and present data and by analyzing trends/patterns. 

Load forecasting refers to the prediction of electricity demand. It began in the 1980s, mainly done using manual 

calculations by field experts. As the grid was becoming more advanced and complex achieving high accuracy 

became more and more difficult. The rapid development of machine learning and artificial intelligence played an 

important role in improving the accuracy of prediction. An accurate forecast plays an essential role in the upfront 

planning of generation facilities, controlling distribution systems, managing efficiently transmission lines, 

demand response (DR) programs, participating in day-ahead electricity market [2]. 

 
Based on the lead time, load forecasting has three main horizons: short-term load forecasting (STLF), medium-

term load forecasting (MTLF) and long-term load forecasting (LTLF) [3]. LTLF refers to horizon of months or 

even years and is necessary for maintenance, evolution, and scheduling of the energy grid. MTLF spans from one 

week to a year and it is crucial for fuel scheduling and utility assessments. STLF primarily spans over a few hours 

to a few weeks and it’s important for grid’s day to day operations. In this work we will focus on STLF and more 

specifically on residential users. The versatile and erratic nature of residential load consumption makes forecasts 

quite challenging. Therefore, more exogenous features need to be considered, e.g., square meters of the household, 

type of household, demographic information of the residents, weather. 

This work is organized as follows. chapter 2 presents a comprehensive overview of smart grids. Chapter 3 

presents the literature review on the field and on top educates the reader to some technical concepts like 

timeseries data, Box-Jenkins methos, SARIMAX models, Long Short-Term Memory (LSTM) model. 

Thereafter, chapter 4, named Methodology, provides the problem definition, describes the data, and proceeds 

with the analysis. Additionally, dives in some implementation details. Chapter 5 presents the results and 

comments on them. Finally, chapter 6 concludes the work and describes the intended future work. 
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2. Background 

2.1. Conventional Grid 

A conventional electrical grid is an interconnected network for electricity delivery from a small number of 

producers to a big number of consumers. Their size varies and could cover whole countries or potentially whole 

continents. These grids were designed in 1950s and implemented throughout 1960s and 1970s [1]. The main 

components of such a grid, shown in Figure 1, are: 

❖ Generation. Electricity generation is the process of generating power from an energy source, fossil fuels, 

solar power, water, wind, geothermal power. The factory responsible for that is called power station and 

is often located near the energy source and away from heavily populated areas. 

❖ Substations. Their main responsibility is to either transform voltage from high to low (step down) or 

from low to high (step up). 

❖ Transmission. Electric power transmission is the movement of the generated energy from the source to 

the substations. For efficient transmission in long distances, the wires installed are capable of carrying 

high voltages and low amperages. 

❖ Distribution. Electric power distribution to individual customers, where voltage is stepped down again 

to the required service voltage(s). 

❖ Storage. Electrical energy is stored when demand is low and returned to the grid when demand increases. 

 

 
Figure 1: Components of conventional grid [1]. 

The infrastructure of a conventional power grid is electromechanical, mechanical devices that are electrically 

operated. Such a setup has though no means of communication between deployed devices and very little internal 

regulation. The centralized and unidirectional notion of this grid makes it difficult, if not impossible, adjusting 

dynamically the energy flow from generators to consumers. The consumers on the other hand have a very 

restricted ability to integrate their own energy storage and generator cells into the grid. Also, they have very little 

insights regarding their their monthly electricity usage, bills and energy prices. 

 

In the beginning, none of this much mattered since the the electric power industry was blessed with enormous 

growth and scale. Making use of rate of return regulations, still in effect in many parts of the world, the major 

players of the industry were investing on building bigger power plants and more transmission and distribution 

lines. Fossil fuel power generation in combination with the growth in economies resulted in a rapid rise in demand 

and kept the prices low. Under these circumstances, suppliers didn’t even bother with energy efficiency or 

promoting demand management. On the contrary consumers were encourages to use more introducing also falling 

block tariffs, meaning the more the consumer’s use the lower per unit cost [6]. 
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This setup was planned and installed many years ago; at times that energy generation was based on fossil fuels 

and consumer profiles were totally different. Hence the disadvantages of conventional grids are exposed in a faster 

pace. Let’s state some of the disadvantages of such a grid [5]: 

❖ Centralized power generation. This eliminates the possibility of easily integrating alternative energy 

(renewable) sources into the grid. 

❖ Unidirectional network. Energy flows from generators to end consumers without the ability to get 

feedback from the other side. This means that the conventional power grid is not flexible in adjusting to 

the growing energy demands, facing challenges in locating grid failures, spontaneously rerouting 

electricity, and overheating of power lines. 

❖ Installed grid’s electromechanical elements were designed to meet historical energy demands rather than 

the current demand. 

❖ Inefficient load balancing. Load balancing is about keeping the demand curve in sync with the generation 

curve. If demand exceeds supply, then the grid collapses and electric power is not available to any user. 

Whenever supply exceeds demand, the result is unused energy and/or waste. 

❖ Small number of sensors. This makes it difficult to pinpoint the root cause and the location of a problem. 

❖ Monitoring electricity flows remains largely manual. 

❖ Manual restoration. Technicians have to physically go to the location of the failure. 

❖ Frequent failures and blackouts: outages have become common due to natural disasters, weather, and 

technical issues with grid controls; these outages increase risks of harm and loss. 

❖ Fewer customer choices. Customers don’t have access to flexible energy plans, don’t have insights on 

their consumption and cannot choose their source of energy. 

 

To address these issues, countries have started replacing and modifying the current grid to make it a smarter and 

more adaptive. The smart grid offers solutions to many of the problems described above. 
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2.2. Smart Grid 

The idea of our current electric grid was conceived more than 100 years ago, when electricity demands were 

limited. Homes had only small energy needs such as a few light bulbs, radio and a tv, hence power generation was 

built around these communities. The main concern of the utilities was to deliver energy to consumers and bill 

them once a month. This one-way interaction model is not able to keep the changing pace on energy demand of 

the 21rs century. Smart grid is considered the replacement of this aging infrastructure; it can be perceived as a 

network that IoT devices, communication protocols, data gathering, and data management tools are working 

together to build a more reliable, efficient, green, and secure grid. Smart grid introduces a two-way communication 

between the utility and the customer enabling efficient energy management on both sides. Smart meters, smart 

devices, thermostats, electric vehicles (EVs) are forming a Home Area Network (HAN) which connects to an 

energy management system, so devices adjust their run schedule considering peak times and availability of 

electricity. 

 

A very important feature introduced by smart grids is efficient demand management. Utilities turn power plants 

on and off depending on the amount of power needed at certain times. Peak hours are the most challenging since 

more power plants need to be run to meet the higher demand, hence the cost is higher. Smart grid enables utilities 

to manage and moderate usage with the cooperation of consumers especially on peak hours; devices run at other 

times deferring electricity usage from peak times, which leads to operating cost reduction. Keeping the balance 

between energy production and consumption is very crucial for the grid, smart grid provides near real-time insights 

regarding electricity demand reducing outages and evenly distribute electricity production throughout the day. 

Additionally, grid engineers will be able to more precisely and predictably manage electricity production reducing 

the need to fire up costly secondary power plants. 

 

Conventional distribution system routes power from the utility to residential and commercial customers through 

power lines, switches, and transformers, relying typically on complex power distribution schemes and manual 

switching to keep power flowing to customers. Any break in this system caused by storms, bad weather or sudden 

changes in electricity demand can lead to outages. Smart grid evolves the distribution system introducing 

intelligence; energy fluctuations and outages are countered by automatically identifying problems in power 

delivery. This distribution intelligence is key for prediction in electricity usage which leads to lower production 

cost. 

 

Another important change is that smart grid integrates distributed energy resources. Renewable resources such as 

wind and solar are a sustainable and growing source for electric power, however renewable power sources are 

variable by nature and add complexity to normal grid operations. Smart grid provides the data and automation 

needed to enable solar panels and wind farms to put energy onto the grid and optimize its use to keep up with 

constantly changing energy demands. 

2.2.1. Definition 

What is a Smart Grid? Writing a concise definition is not as easy as it sounds; the concept is relatively new and 

due to different designs of existing conventional grid there are various alternatives on the components used to 

compose such a network [7]. There are several; public and private sector, organizations, authors, and acts that 

have defined/visualized a smart grid: U.S. Department of Energy (DOE) [8], Electric Power Research Institute 

(EPRI) [9], Energy Independence and Security Act of 2007 (EISA-2007) [10], European Union Commission Task 

Force for Smart Grids [11], ABB [12] etc. 

 

National Institute of Standards and Technology (NIST) released the Smart Grid Framework, where common 

requirements of such networks are summarized [12]: 

❖ Improves the reliability of the power delivery system.  

❖ Optimizes facility utilization and averts construction of backup (peak load) power plants.  

❖ Enhances capacity and efficiency of existing electric power networks. 

❖ Improves resilience to disruption. 

❖ Enables predictive maintenance and self-healing responses to system disturbances. 

❖ Facilitates expanded deployment of renewable energy sources. 

❖ Accommodates distributed power generation resources. 

❖ Automates maintenance and operation. 

❖ Reduces greenhouse gas emissions by, for example, enabling the use of electric vehicles and new power 

sources. 

❖ Reduces oil consumption by reducing the need for inefficient generation during peak usage periods. 
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❖ Presents opportunities to improve grid security.  

❖ Enables new energy storage options.  

❖ Increases consumer choice. 

❖ Enables new products, services, and market. 

 

Considering the common characteristics/requirements of available definitions and/or visions, this work states the 

following definition: 

 

“Smart Grid is a modernized electric system that combines bidirectional communication between all components 

involved; production, transmission, distribution and consumption/market, in order to ensure an adaptive, 

interactive, predictive, secure, optimized and scalable network.” 

2.2.2. Smart Grid vs Conventional Grid 

The smart grid is an innovative concept that will revolutionize the transmission, distribution and conservation of 

energy. Figure 2 depicts the main differences between a conventional and a smart grid. The current electric power 

delivery system (left side) has a top to bottom (one-way) approach. Production is based at a limited number of 

large power plants which distribute the energy from a centralized transmission system. This is almost entirely an 

electromechanical system; the use of sensors is limited; the electronic communication is minimal and there is 

almost no electronic control. Customers remain passive and just pay their bills. To be more precise, bills are 

calculated based on only one piece of data a monthly or quarterly kWh consumption figure multiplied by cents 

[14].  

 

On the contrary, a smart grid (right side) advances many small power producers and the distribution system is 

decentralized/distributed. The communication in all stages is bidirectional by making use of Information and 

Communications technologies (ICTs). The grid is interconnected not only with energy cables, but also with 

communication ones to enable data flowing. Sensor networks are employed to make such a network functional, 

improve transparency and increase reliability and efficiency. Due to such an infrastructure, grid operators receive 

near to real-time information regarding energy consumption and can optimize their distribution management 

providing either more or less electricity from one or another source [15]. Another big change is that consumers 

are not passive anymore. They have the option to participate in the energy generation e.g., rooftop photovoltaics 

(PVs) or even in energy storage using batteries. On top, they are informed which device consumed how much 

energy, resulting in better consumption behaviors. 

 

 
Figure 2: Conventional Grid versus Smart Grid [16]  
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2.2.3. Smart Grid technologies 

Smart grid makes use of information technology to achieve efficiency and reliability. Such a grid consists of 

power generation and transmission utilities, sensing devices, smart meters and information gateways that operate 

in near real-time [17]. Sensing devices are responsible of monitoring performance and detecting of operational 

glitches, upon failure control messages are transmitted to operator’s control center. The communication between 

devices that close to the households and the utility is routed via intermediate devices, like gateways. Gateways 

(also called concentrators) are responsible of collecting the data of smart meters and sensing devices and 

communicating this information to the utility using Wide Area Network (WAN) connection. As we have 

mentioned earlier there is a two-way communication between all stages meaning that utility can send control 

messages back to smart meters or sensing devices using the same infrastructure.  

 

 
Figure 3: Smart Grid ecosystem 

 
Figure 3 depicts smart grid’s ecosystem which performs data collection and control of electricity delivery. A data 

acquisition control system gathers the data from substations (RTUs, circuit breaker, log servers, human machine 

interfaces, communication devices and gateways [18]) and power plants and outputs them into a data management 

system. The ecosystem incorporates several technologies such as Automatic Voltage Regulation (AVR), 

Automatic Generation Control (AGC), Energy Management System (EMS), Advanced Metering Infrastructure 

(AMI), Geographical Information System (GIS), Outage Management System (OMS), Meter Data Management 

(MDM), Distribution Management System (DMS), Wide Area Management System (WAMS), and Demand Side 

Management (DSM) [18]. 

 

AVR keeps the voltage profiles within the preconfigured limits, whereas AGC optimizes load distribution among 

generating units. EMS acts like an optimizer for the entire network, keeps the network reliable and secured the 

operating points for supervisory control and data acquisition. AMI is an integration of smart meters, 
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communication networks and management systems, so a two-way communication channel is opened between 

consumers and operators. GIS provides the infrastructure so the data can be integrated with geographical maps. 

OMS is responsible of automatic (if possible) restoration of the grid in case of outages. MDM is crucial on data 

flow and the decision-making process. DMS monitors and controls the distribution network, control messages to 

devices are spawned in case of needed action, hence the network is proactive. WAMS helps in grid 

synchronization in high voltage network and collects time measurements using Phasor Measurement Units 

(PMUs). DSM assists in load consumption management to improve energy efficiency and it is implemented 

through demand response (DR). 

2.2.4. Data Management on Smart Grid 

Data in a conventional grid are mainly limited to demand, voltage, and current data. On the contrary, smart grid 

has to deal with big data since it collects near real-time data through a huge number of data points. Examples of 

such data points are smart meters, sensors, weather forecasts, load profile patterns. Once the data are collected, 

data analysis takes place in order on one hand to help utilities efficiently manage the network and restore faulty 

networks and on the other hand to assist consumers to adjust their consumption (especially on peak times) to 

reduce cost. It is important to mention here that dealing with sensitive data brings new challenges such as data 

security, data privacy, data storage, data analysis, data retrieval. Figure 4 shows the data management flow in 

smart grids, where the data are collected, preprocessed, integrated, stored, analyzed, visualized in order to improve 

decision making. 

 

 
Figure 4: Data management flow in smart grid. 

2.2.4.1. Data Collection  

Data collection is the first step of the data management process, data are collected in frequent intervals (5 - 10 

mins). The main contributor of data is the advanced metering infrastructure (AMI) where the end user data are 

being reported. As mentioned earlier though within the network there are many other data points; sensors, power 

metrics, mobile terminals, control devices, field engineers etc. [19]. Data collection process should ensure the 

following [20]: 

❖ Standardization. Data should be collected in a pre-configured format. 

❖ Reliability. Data should not be altered by any means. 

❖ Security. The process should be secured against malicious actions. 

❖ Privacy. Sensitive information should be exposed. 

❖ Storage. Data should be efficiently stored for further analysis. 
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❖ Scalability. New data points, hence more data could be easily integrated into the network. 

2.2.4.2. Data Preprocessing 

Before performing any task of analysis, we need to check if the collected data are incomplete, inaccurate or need 

to be filtered, this process is known as data cleansing. There are five steps involved once erroneous data are 

received, data are defined, identified, corrected, documented, and modified so future faults will be avoided [21]. 

Another important contribution of data preprocessing is to identify and eliminate redundant or repeated data, 

which require more storage and add more cost. 

2.2.4.3. Data Integration  

Data collected from several data points are not uniform and, in many cases, need to be first integrated before 

analysis. For instance, consumer’s daily usage data need to be integrated with weather data to help utilities perform 
a next day load forecasting [22]. 

2.2.4.4. Data Storage  

Data should be stored in a database system in order to access/query them at any time. Data storage process phases 

three main challenges; the amount of data, the versatility of those data and the throughput (speed of processing 

input/output) [24]. An efficient way to address those challenges could be to use a graph storage [25].  

2.2.4.5. Data Mining and Data Analytics  

These processes try to uncover the hidden power of the massive amount of data gathered in a smart grid. There 

are operations; load forecasting, customer behavior analysis, customer profiling, that are not urgent and 

operations; smart meter data analysis, faults analysis, that need to be analyzed as quickly as possible. For some of 

these operations machine learning comes to the rescue [26]. 

2.2.4.6. Data Visualization  

A visual representation on the results of data analysis is more straight forward to understand and leads to better 

decision-making [27]. In most cases, graphs reveal patterns that help pinpointing network issues or opportunities. 

Consumers and utilities are able to see in a visual way the end-user electricity consumption, efficiency of 

renewable sources, and power quality data. 

2.2.4.7. Decision-Making  

All steps above allow a real-time and automated decision-making process. System engineers have a real-time 

overview of the network and are able to isolate and fix proactively faulty sections. The system is capable in many 

cases to take decisions on its own and perform self-healing operations [28]. Other important features can be 

unlocked, such as real-time pricing, on-demand renewable generation, and capacity constraints estimation. 

2.2.5. Pricing mechanisms in smart grid 

Conventional price model allowed utilities to set prices that covers their operating costs plus “some” profit. Some 

though is vague and cannot easily controlled by any public or private entity. Hence, there are arguments that this 

model lacks transparency, passes utilities cost mistakes to consumers and promotes monopoly. Public utilities are 

often close to governments and politics might intervene for on entity or another [29]. International Energy Agency 

(IEA) indicated that restructuring is necessary to encourage competition. The idea is to shift from the vertically 

integrated structure towards an open market where consumers have the choice of power suppliers [30]. 

 

Smart grid introduces a new pricing framework called, dynamic pricing, where consumers are encouraged to 

participate in demand management so they can reduce their bills. The main objective is to spread the load across 

the day so peak hours are limited. The most popular dynamic pricing models are Time-of-Use (TOU), Real-Time 

Pricing (RTP), Critical Peak Pricing (CPP), and Day-Ahead Pricing (DAP) 



 9 

2.2.5.1. Time-of-Use 

TOU [31] is the most common pricing scheme due to its simplicity and the fact that consumers are used to fixed 

tariffs. TOU is a time-dependent pricing model, where different tariffs for different instants of day or season are 

set. Utilities apply higher rates during peaking periods, hoping that the demand will shift from peak hours to off-

peak. 

2.2.5.2. Real-Time Pricing 

RTP is a dynamic pricing scheme that depends on the spot price of the wholesales market [32]. Once the price is 

finalized, a signal is sent to the retailers according to the market timeframe, day ahead, an hour ahead. The retailers 

notify the consumers for the prices so they can adjust their consumption accordingly. The risk/challenge of this 

scheme is the availability of the consumer to take the right action once the signal is received, hence an advanced 
infrastructure is required to automate these actions and eliminate those risks. 

2.2.5.3. Critical Peak Pricing 

CPP introduces a penalty for using energy within peaking periods that are known beforehand [33]. This model is 

less dynamic; however, it is considered an augmented TOU with the addition that critical events are announced a 

day ahead. The main challenge for the utilities is to set the right tariff. If prices are set high, consumers might not 

shift their demand. On the contrary, if prices are set low, consumers might not respond to new price signals. 

2.2.5.4. Day-Ahead Pricing 

DAP is a time-dependent scheme that is set day ahead. Consumers find this model attractive since they plan their 

energy consumption. The challenge for this pricing model is set the optimal price beforehand. Several factors [26] 

should be considered for this action; load forecasting, weather forecasting, supply availability, and energy price 

forecasting. The risk for the utilities is that they might have a loss if the peak hours occur during low price periods. 

2.2.6. Electric Vehicles (EVs) 

Consumer’s energy profile is changing drastically; smart appliances/devices are installed in households, rooftop 

panels are deployed, electric vehicles are replacing conventional cars. A huge challenge for the network will be 

the increasing number of electric vehicles. Charging such a vehicle is energy demanding and if the network cannot 

handle the charging process efficiently an overload might occur [34]. It is crucial for Distribution System 

Operators (DSOs) to build a communication and control system to handle charging according to the grid 

constraints and customer’s needs. 

 

Smart charging is the mechanism of controlling time and rate at which the car is charged. This mechanism involves 

signals from the operator, enabling the car to stop charging (especially on peak hours) on demand. A Home Area 

Network (HAN) receives the control signals to balance the demand for electricity across the household and 

prioritize between the plugged-in vehicle or other appliances. A very interesting concept is vehicle-to-grid (V2G) 

[35] charging. The main idea of this technology is that the car can be turned to a temporal storage system, which 

supplies power to the grid at peak times and the vehicle can continue charging when the demand is reduced.  
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2.3. Smart Meters 

A smart meter is an electronic device which records data such as electricity consumption, voltage levels, power 

factor and current. It reports data in short intervals (e.g., every 5 mins), allowing DSOs to analyze the data, identify 

consumption patterns, manage the network efficiently, automate billing [10]. The bidirectional data 

communication capabilities of such device allow operator to transmit control commands for better electricity 

management. 

 

 
Figure 5: Smart meter architecture. 

Figure 5 depicts smart meter’s architecture, a power supply gives life to the meter so the meter can gather 

information through voltage and current sensors. An analog-digital converter passes the data to the processor 

control unit which coordinates data storage, the user interface, and the communication unit. 

2.3.1. A glance in history 

The first known meter was created in 1872 from Samuel Gardiner. The meter was counting the time energy was 

supplied to a set of lamps. Thomas Edison made use of the electrochemical effect of DC current to patent his first 

meter in 1881. A decomposing, due to the passing current, strip of copper was measured at start and at the end, 

with the difference being equivalent with the consumed electricity. In 1889, Otto Titusz Blathy came up with an 

electric meter for alternating current. Similar induction meters are still manufactured today due to their low cost 

and reliability. In the second half of the 20th century electronic meters and remote metering was introduced [36]. 

2.3.2. First generation smart meters 

First generation smart meters (1G) share information between the meter and the Head-End-System (HES) [37]. 

Figure 6 shows the high-level steps of such communication. Initially a connection is made between a smart meter 

and a secondary substation with low voltage (LV)/ medium voltage (MV) transformers where data concentrators 

are located. These concentrators receive, process, and reassemble data from potentially thousands of smart meters 

and forward them to HES. 

 

 
Figure 6: Smart metering reading high level architecture. 
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Communication in most cases is performed through Power Line Communications (PLC) or Transmission Line 

Communication (TLC) since these technologies can be deployed using the existing infrastructure and are 

reachable in installations deep in buildings. Alternatives such as Meter-Bus (WM-Bus); wireless communication, 

is more difficult to use since a separate network need to deployed and additional frequency planning is required. 

2.3.3. Second generation smart meters 

Second generation smart meters (2G) are meeting the demands of the future smart grid. Near real-time data are 

collected and transmitted to the DSO so they provide services such as home automation, real-time billing schemes, 

demand response programs, customer awareness. The frequency, the accuracy and the precision of the collected 

data makes the difference, Table 1, between the two generations [38]. 

 
Table 1: Comparison of 1G & 2G smart meters [35]. 

Metering Data 1G Smart Meter 2G Smart Meter 

Active energy withdrawn 3 values per month 15 min 

Active energy Injected 3 values per month 15 min 

Reactive energy withdrawn 3 values per month 15 min 

Reactive energy Injected 3 values per month 15 min 

Active power withdrawn 30 min (peak) 15 min (peak) and instantaneous 

value (1s) 

Active energy Injected No 15 min (avg) 

Min/max voltage Only occasionally 1 per week 

Voltage in limits Only occasionally and not 

compliant with EN50160 

Yes, compliant with EN50160 

Outages Implemented but not used On event occurrence 

 
2G smart meters use Home Area Network (HAN) or in-home devices (IHD) to provide insights on electricity 

consumption and suggest actions to decrease cost. The two-way communication, between smart meters and HANs 

or IHDs, enables the exchange of messages for performing certain operations and/or retrieving information. 

 

 
Figure 7: Smart meter evolution [35]. 

Figure 7 above show that the evolutions of smart meters create a whole new spectrum of domains, completing the 

circle around a satisfied consumer. Retailers could replace the fixed tariffs with flexible real-time pricing models. 

Data management/analysis allow DSOs to inform their consumers proactively in case of outages or even ask for 
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a demand response request in exchange for a reimbursement. Service providers have the opportunity to build 

useful applications to provide better insights to their consumers. 

2.3.4. Smart meter roll-out in Europe 

Smart meters play a major role in the digitalization of the conventional grid. European Union published its first 

provision of a potential smart meter roll-out back in 2009, the so-called Third Energy Package. Such provisions 

targeted a minimum of 80% roll-out by the year 2020 [39]. A necessary cost-benefit analysis (CBA) was 

conducted by the union members and supervised by Joint Research Centre of European Commission (JRC). The 

conclusion for a wide-scale roll-out was positive for most of the countries except Belgium, Czech Republic, 

Germany, Hungary, Ireland, Lithuania, Slovakia, Spain. 
Table 2: Status of smart metering roll-out [36]. 

Country Roll-out according [40] Roll-out according to [41] 

Austria 29% 11.8% 

Croatia n.a. 2.3% 

Denmark 80% 69.1% 

Estonia 100% 98.9% 

Finland 100% 99.8% 

France 80% 22.2% 

Greece 37% 2.6% 

Italy 100% 98.5% 

Latvia 50% 36.3% 

Luxemburg 80% 25.2% 

Malta 80% 97% 

Netherlands 85.2% 46.5% 

Poland 11.5% 8.3% 

Portugal 50% 25% 

Romania 12% 4.8% 

Slovenia 80% 58.2% 

Sweden 90% 100% 

United Kingdom 28% 19.9% 

 
Observing Table 2, we could conclude that the expected objective of 80% of electricity consumers equipped with 

smart meters by 2020 is not achieved. Roll-out percentages reported by ACER report [40] in most cases are higher 

that the respective ones reported by EU-28 report [41]. The main reason for this is that ACER’s report included 

smart meter installations in the industry. For instance, in Greece most industries are equipped with smart meters 

but the roll-out to residential consumers will start in 2022.  
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2.4. Advanced Metering Infrastructure (AMI) 

The transition from a conventional grid to a smart one was/is not easy, functions that before were performed 

manually or weren’t even possible had to be automated; electricity usage remote measurement, service 

connection/disconnection, tampering detection, voltage monitoring, outages identification/isolation, utilities - 

customer communication. Hence, an integrated system of smart meters, communications networks, and data 

management systems was designed to enable two-way communication. The name of such a system is Advanced 

metering infrastructure (AMI).  

2.4.1. Definition 

As per Gartner [42] AMI is defined as: “Advanced metering infrastructure (AMI) is a composite technology 

composed of several elements: consumption meters, a two-way communications channel, and a data repository 

(meter data management). Jointly, they support all phases of the meter data life cycle — from data acquisition to 

final provisioning of energy consumption information to end customers (for example, for load profile 

presentment) or an IT application (such as revenue protection, demand response or outage management).”  

2.4.2. AMI vs AMR 

Before commencing the discussion on details of AMI, it is important to differentiate two terms, Automatic meter 

reading (AMR) and AMI. AMR is an improvement of the conventional energy meter where the data collection, 

recording and billing is done manually. However, this process is unidirectional, energy meter responds to the 

device, but the device does not respond back. AMI on the other side, offers two-way communication between 

utility and metering end points. Energy management and energy conservation have become very important 

especially in times where the energy prices skyrocket. AMI, unlike AMR, proved to be a powerful tool for helping 

consumers improve their energy habits by recording energy patterns and informing consumers timely about their 

budgeting and billing, so energy wastage could be avoided [43]. 

2.4.3. High level Overview 

Considering the definition above, AMI is not a single technology; rather, it is an infrastructure/ecosystem 

integrating smart meters, communication networks and management systems. A very important aspect is that AMI 

enables two-way communication between consumer, smart meter, and distribution system operator (DSO) [44]. 

The two-way communication facilitates operations that were nearly impossible to fulfill before AMI; rapid 

detection, diagnosis, and resolution of power quality problems, automatic notification of outages and self-healing 

capabilities, energy consumption pattern identification detecting possible energy theft or tampering. 

 

Figure 8 depicts a high-level overview of an AMI system. Such a system consists of smart meters, transmitters, 

and a Meter Data Management System (MDMS) [45]. Smart meters collect time-based data that are transmitted 

through available fixed networks such as Power Line Communications (PLC), Broadband over Power Line (BPL), 

Fixed Radia Frequency, as well as public networks like cellular, landline. The communication equipment receives 

these data and forwards them to operator’s data center. An important security aspect is to keep customer’s usage 

data encrypted. The heart of operator’s data center should be the MDMS where data are being analyzed for 

producing accurate bill, monitor electricity system performance and discovering insights. A subset of usage data 

is being available in a refined way to the customer so they could manage electricity usage and cost. 
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Figure 8: Advanced Metering Infrastructure (AMI). 

2.4.4. Detailed Overview 

There are two key components in smart meters, meter board and communication board, connected using a serial 

port (see Figure 8). Meter board is responsible for measuring power consumption and storing in its set of tables 

sensitive information, keys, and passwords, required for a secure communication. The communication board 

gathers data/information from meter board in order to perform the communication with external nodes such as 

collectors and home appliances [46]. 

 
Figure 9 provides a more detailed overview of AMI system structure and the integrated technologies. Let’s 

describe the component of such a system: 

1) User Side: 

a) Smart Meters (SMs) [47]. A smart meter is an electronic device that records near real-time information 

and reports them in short intervals (e.g., every 5 mins) to the DSO. Such information could be electricity 

consumption, voltage levels, power factor and current. The enabled two-way communication provides 

on one side consumers with clarity and enhanced consumption profiles and on the other side DSOs with 

better monitoring capabilities and accurate billing. High-resolution data from smart meters provide rich 

information on the electricity consumption behaviors and lifestyles of the consumers [48]. 

b) Distributed Energy Resources (DERs) [49]. Distributed energy resources are small scale, modular in 

same cases renewable in many, energy generation and storage systems. Typically, their production does 

not exceed 10 megawatts (MV). Examples of DERs are wind turbines, photovoltaics (PV), microturbines 

etc. 

c) Gateways (GWs) [50]. As in digital networks, gateways are responsible for the conversion of protocol 

and communication between two heterogeneous networks, e.g., home are network, wide area network. 

2) Wide Area Communication Infrastructure [51]. Acts like a bridge between user side and DSO enabling a 

bidirectional communication. Cellular networks and power line communication system are examples of 

communication medians. 

3) Management side: 

a) Meter Data Management System (MDMS) [52]. MDMS is a system that handles storage, management, 

and analysis of metering data. It comprises of tools that facilitate the. Interaction between Distribution 

Management System (DMS), Outage Management System (OMS), Consumer Information System (CIS) 

and Geographic Information System (GIS). 

b) Demand Response (DR) [53]. Monitoring power flows is highly important since it enables DSOs to react 

in time on variations in consumption levels, this results in efficiency in investment on power generation, 
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transmission, and distribution assets. Another direct benefit is an accurate real-time pricing policy. 

Demand Response would enable loads to be controlled in response to supply side (generation) 

availability and associated tariffs. 

 

 
Figure 9: AMI structure & Integrated technologies. 

 

From communication perspective, AMI makes use of the following networks: 

❖ Home Area Network (HAN) [54]. This is a small-scale network (within home premises) that connects 

smart devices and smart meters. Wireless technologies such as 802.11 protocol, ZigBee and Home-Plug 
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are the most common used for building HANs. Lightweight security mechanisms are deployed in the 

smart meters as they are generally resource constrained [55]. 

❖ Neighborhood Area Network (NAN) [56]. It is formed by combining HANs. Power consumption and 

security alarm data are being transmitted for enhanced energy management. 

❖ Wide Area Network (WAN) [56]. A data concentrator/aggregator collects the data from a group of smart 

meters and then it sends them to the Head End (see Figure 9) through the Wide Area Communication 

Infrastructure. Hence the main task of such a network is to connect the local network to the Head End. 

❖ Smart Meter Gateway (SMGW) [57]. This gateway acts as an intermediate between a group of smart 

meters and the WAN. Its main task is to provide authentication and aggregation of meter messages. 

2.4.5. Security Challenges 

The development of such digital infrastructures brings along security concerns/challenges [58]. 

First let’s summarize the general security requirements [46]: 

❖ Confidentiality. It is of utmost importance ensuring the privacy of consumer’s information/data. 

Tampering of smart meter to access illegally the stored data or the unauthorized access to such data 

should be prevented [59]. 

❖ Integrity. Integrity is perceived as the mechanism of preventing alternations of the data in the process 

of bidirectional communication between the smart meter and DSO’s data center [60]. AMI should be 

robust against hackers who launch attacks by impersonating authorized entities. 

❖ Availability. User data should be collected within configured time intervals and control command 

should be delivered in time. Scenarios including component failures and communication failures due to 

network traffic, interference, band-width loss, degeneration should be avoided by any means [46]. 

❖ Accountability. It refers to the fact that data receivers will not deny receiving of data and vice versa 

[46]. Timestamping of data messages is therefore necessary to ensure accountability. Audit logs are the 

most common way of accountability maintenance. 

These security challenges can be categorized in three main topics: end user privacy, resilience against cyber-

attacks and power theft [46]. 

1) End User Privacy. User data are transmitted through wired/wireless networks for storage and further 

analysis, hence they become vulnerable to data theft and/or manipulation [37]. These data are possible 

to be reversed engineered [61] and derive critical information regarding consumer’s profiles, number of 

occupants in a household, time of occupancy, existence of electric vehicle, existence of alarm or security 

system etc. 

2) Resilience Against Cyber Attacks. Digitalizing the energy grid (smart grid) bring along the 

vulnerabilities of such networks in cyber-attacks. Attackers will try to hack the grid network and 

destabilize it. Smart meters should have a secure connection with the network and even if a smart meter 

is compromised it shouldn’t be possible to obtain critical information of other meters or even worse gain 

access to the network. 

3) Power Theft. Losses in energy can be occurred in any stage of the power flow, generation, transmission, 

distribution, utilization. Traditional (existing) systems use electro-mechanical meters which are easily 

manipulated. The main way to detect power theft is the direct connection to distribution lines and 

grounding the neutral wire [62]. The use of smart meters will almost eliminate this problem. 
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2.5. Load Forecasting 

Forecasting is an estimation of uncertain future events, which could be used to improve decision making and 

planning. Knowing in advance a possible outcome; even containing some error rate, allows to better manage 

expectations and avoid potential risks. Load forecasting is related to energy sector; Gartner [63] provides the 

following sophisticated definition: 

 

“Load forecasting minimizes utility risk by predicting future consumption of commodities transmitted or delivered 

by the utility. Techniques include price elasticity, weather and demand response/load analysis, and renewable 

generation predictive modeling. Forecasts must use regional customer load data, with time series customer load 

profiles. Accurate forecasts require adjustments for seasonality. Distribution load forecasting must be reconciled 

with distribution network configuration as part of the distribution circuit load measurements.” 

 

Let’s try to deconstruct a bit the definition above by presenting an overview of supply-demand equilibrium, the 

forecasting horizons, the affected stakeholders, and the factors affecting load forecasting. 

2.5.1. Supply – demand equilibrium 

One of the main challenges of system operators is to keep the balance between supply and demand; provide the 

amount of energy demanded and no more or less than that. Supply higher than demand leads to energy waste and 

in many cases, penalties are imposed. Supply lower that demand has as a result incapability of serving all 

consumers and might lead to blackouts. It is obvious that load forecasting is playing a very important role as a 

key operation of power grid planning and future evolvement [3]. 

 

However, reliability, security and optimization of grid operations become more and more complicated with the 

penetration of renewable and distributed generation sources. The dynamic nature of those resources makes it 

harder for the utilities to forecast how much energy they need to cover the demand [64]. As a result, there is a 

potential money and resource waste for generating/purchasing power that is not needed. Predicting energy 

consumption allows the utilities to plan ahead and optimize their resource planning and future energy generation. 

An accurate load forecast is of significant important due to the large amount of money involved in energy budgets 

[65]. 

2.5.2. Forecast Horizons 

Based on the lead time, load forecasting has four main horizons: very short-term load forecasting (VSTLF), short-

term load forecasting (STLF), medium-term load forecasting (MTLF) and long-term load forecasting (LTLF) [3]. 

VSTLF is used for near real-time control and it’s prediction horizon spans from minutes to 1h ahead. STLF is 

used for the day-to-day operations of the utilities such as optimal scheduling on energy generation and 

transmission and its horizon spans from 1h to 7 days. MTLF’s horizon ranges from 1 week to 1 year. Its main 

purpose is for forecasting fuel purchase, maintenance, utility assessments. At last, but not least, LTLF forecasts 

beyond a year and up to 20 years ahead. It is suitable for strategic planning, new generations, long term changes 

in infrastructure or in economic model [64]. 

2.5.3. Affected Stakeholders 

The following stakeholders could benefit from accurate load forecasting [66]: 

❖ Transmission System Operators (TSOs), DSOs, grid operators. Awareness of future load 

transmission/distribution requirements helps on avoiding grid hotspots and congestions, investment 

planning, grid reinforcements, and optimal load distribution. 

❖ Energy retailers. As the market is decentralized and becomes more open, load forecasting is of utmost 

importance since retailers have to build sustainable short-, mid- and long-term business models to survive 

in such a competitive environment. 

❖ Energy market participants. Their main goal is to buy or sell energy or derivatives on energy. Forecasting 

load fluctuations helps them ameliorating their transaction strategy. 

❖ End-users. Load forecasting helps retailers secure more competitive prices on stock market; hence the 

consumers benefit from lower prices. On top, awareness of forecasted consumption gives consumers the 

flexibility to adjust their energy consumption habits accordingly. 
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2.5.4. Factors affecting load forecasting 

The total load of the system consists at all times of the sum of the demand of individual consumers, who depending 

on the behavior of their electricity demand could be divided into industrial, commercial, agricultural, domestic, 

etc. The electricity consumed by them is affected from a number of different and in many cases indeterminate 

factors, which can be summarized in the following four categories [67]:  

❖ Financial factors. The economic environment of a household directly affects the demand and usage of 

energy. Such a household uses a variety of electric appliances or EVs, which in most cases are of a higher 

energy class; hence energy saving is achieved. Financial factors do not affect STLF since the financial 

profile of a household does not change in such a time span. Their impact, however, is particularly 

important in the long run. 

❖ Chronological factors. There are three main chronological factors; seasonal changes, weekly/daily cycle, 

national holidays, and religious fests. Seasonal changes are more bind to seasonal variables like 

temperature and hours of sunshine. These variables strongly influence the use of heating or air 

conditioning appliances, at the same time they affect human activity. For instance, during summer 

holidays there is a decrease in demand in urban centers and an increase in tourist resorts. Other important 

seasonal factors are the change of time (winter/summer) and the start of the school year. The weekly/daily 

periodicity of the load is a result of the periodicity of the work-rest cycle of the population. Weekdays 

present a different load pattern than weekends. The load profile is also different in national holidays and 

festive periods.  

❖ Weather. Weather conditions cause significant changes in the electricity consumption. This is because 

the operation of many electrical appliances (heating, air conditioning) depends on weather conditions. 

Humidity, rainfall, wind, and sunshine affect demand. However, the main role in the consumption of 

electricity is played by the temperature, which is a basic condition for a satisfactory load forecast in both 

the short and medium term. In fact, for systems that cover a large geographical area, it is necessary to 

take into account the temperatures in different areas in order to calculate the exact effect on the load. 

❖ Ad-hoc. Such factors are certain events - such as large strikes, elections, special programs on television 

- which, although known in advance, are difficult to assess their impact on demand. Some other events 

like a pandemic are not even possible to predict. Finally, we should mention factors such as the 

development prospects of an area, and the growth rate of the population, which affect the long-term 

consumption of electricity and are characterized by great uncertainty. 

❖ demographics 
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3. Literature Review 

As technology advances and societies develop the electricity supply plays a crucial role in economic activities and 

daily life. The power network needs to keep so it has been transformed to a smart grid where the power generation, 

transmission and utilization processes are empowered with ICT technologies. The increased amount of collected 

data refined load forecasting contributing the maximum to a transition toward an intelligent power system. 

Load forecasting can be divided into three categories considering the forecast step size: long-term, mid-term and 

short-term. LTLF predicts on a horizon of a year or more and it is crucial for electricity infrastructure 

construction/development planning [68]. MTLF ranging from one week to several months and one of its main 

goals is to develop an efficient fuel supply plan. STLF on the other hand has a very short forward projection time 

frame; hours to a small number of days and plays an important role in energy demand management and day-to-

day operations, e.g., energy trading [69]. In this work we are going to focus on STFL for residential users. 

Since productions methods and consumers lifestyle diversifies more and more, accurate STLF on residential level 

is of great importance for power system operation. Smart grids create opportunities but bring challenges along, 

utilities are exploring ways to manipulate commercial and residential loads in near real-time [70]. However, 

integration of intermittent renewable electricity generation rises the complexity of such function since renewable 

sources such as sun or wind are highly volatile. Accurate forecasts of those non controllable electrical loads are 

necessary for an efficient DR. High accuracy of energy demand real-time prediction helps utilities broadcasting 

signals to consumers to take actions to sustain the demand – supply equilibrium. If the forecast model over-

predicts the redundant energy requires the use of expensive storage or in the worst-case scenario will lead to 

energy waste. On the other hand, if the model under-predicts the demand, utilities need to spin-up expensive 

quick-response generation mechanisms so they can compensate the supply shortfall. 

STLF desires to maintain supply quality and attain cost reduction by anticipating demand fluctuations and 

weather, especially when renewable sources are being integrated into the electricity generation mix. Extreme 

demand peaks could be avoided by using load shifting and load scheduling applications. Utilities on their side use 

STFL output to create a more efficient power generation plan; spin-up production sources e.g., generators that 

require time to produce output. Additionally, in case of a multi-generation system, STLF can be used to develop 

a schedule for the different sources [71].  

Residential electricity load is affected by weather, electricity price, lifestyle, holidays etc., something that makes 

STLF on residential level difficult and challenging. STLF predicts future load trends by ingesting knowledge of 

current and historic data. Numerous factors have to be considered to lead to an accurate forecast: weather forecast, 

time of the day, type of day (workday/holiday), historical demand trends. Classical modeling techniques have 

tough times considering the impact of all these factors; hence Artificial Intelligence (AI) techniques have become 

more and more popular. 

Traditional statistical models such as regression analysis [72], moving average [73], exponential smoothing [74], 

and stochastic time series models [75] are applied for time series forecasting. Time series decomposition model 

[76] investigates the factors that affect load forecasting and notifies that this approach might ignore the correlation 

between time periods; hence might lead to biases forecasting. Another work [77] proposes a lifting wavelets 

method, which removes noise from historic data and performs nonlinear feature extraction. Researchers have used 

models like ARIMA, SARIMA and, SARIMAX [78][79][80]. However, the evolution of machine learning 

technologies and available data retrieved from smart meters shifted the focus to computational models. 

The development of AMI, hence the integration of smart meters into the grid boosted the interest of researchers 

on short-term load forecasting on residential level. One of the first work on the area [81] proved that the near real-

time data gathered by AMR technology greatly improves accuracy but at the same time increases computational 

complexity. In recent years, the evolution of deep learning models made them very appealing and effective on 

short-term load forecasting. A hybrid model is proposed in [82], combining an extreme learning machine and an 

extended Kalman filter for online short-term load prediction. The dataset in this study is relatively small, including 

hourly consumption data of two residential and two commercial buildings. The lack of data is not an ally when 

using deep learning methods. Traditional recurrent neural network (RNN) has the problem of gradient 

disappearance and long-term dependence [83], therefore the focus shifted more to LSTMs. In [84], the proposed 
framework based on LSTM [85] recurrent network, forecasts the load of 69 consumers. In addition, the study 

performs benchmarking (mean absolute percentage error, MAPE) between the proposed model and various state-
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of-the-art techniques. However, the researchers pre-screened the users, which might have affected the results. A 

deep-based conditional probability density function was used in [86]. The model achieved high accuracy in both 

single households and aggregated load of 3500 residential houses. Studies [87] and [88] proved the positive impact 

of weather load forecasting accuracy. The cross-correlation between load and several weather factors has been 

examined to select the factors with the strongest correlation. Both studies used LSTM model for the short-term 

load forecasting on residential consumers. Work [89] results in high accuracy and generalization ability, using a 

stacked self-encoder model. Self-encoders are unsupervised deep learning models have strong feature extraction 

capabilities. Seq2Seq approach based on RNN [90] demonstrated promising results in load forecasting for a 

commercial and a residential consumer. Another work [91] performed in one residential consumer supported the 

efficiency of such an approach. 
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3.1. Theoretical Background 

3.1.1. Time Series Analysis 

Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and 

other characteristics of the data. The main goal is to identify the effect of one variable on either itself or another 

over time, in order to get insights regarding the nature of a problem or/and create predictive models. 

 

The set of data which is collected over time and expresses the evolution of the values of a variable during equal 

time periods, is called a timeseries or sequence. By a timeseries we usually mean a sequence of observations 

{𝑋𝑡: 𝑡 = 0,1,2, ⋯ , 𝑇} where 𝑋𝑡 expresses the state of a system at time t. According to the mathematical definition, 

a time series is defined as the set of observations 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 of the values 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 of a random variable 𝑋 

at equidistant moments in time 𝑡1, 𝑡2, ⋯ , 𝑡𝑛. Therefore, this sequence of random variables is called a stochastic 

process and is denoted as 𝑋(𝑡) [91]. 

 

For the statistical processing of timeseries it is particularly useful to distinguish its four components [93]: 

❖ Trend: The long-term movement, upwards or downwards, of a timeseries when observed over an 

extended period of time, could be defined as trend. The trend does not exist when its movement is parallel 

to the axis of time, without fluctuations. The most common methods of determining trend are moving 

average and least squares. 

❖ Seasonality: A timeseries exhibits seasonality when its dispersion exhibits the same behavior over time 

periods t. Usually periodic fluctuations refer to time intervals shorter than a year. An example of 

seasonality is the increase on energy consumption during the winter. 

❖ Cyclicity: Cyclicity expresses the cyclical fluctuations for periods longer than a year that are repeated at 

equal time intervals and are due to external factors. 

❖ Irregular Fluctuations / Outliers: They are values that are significantly different from the rest of the 

observations, where they are usually due to some unpredictable factor and create problems in modeling. 

3.1.2. SARIMAX 

Autoregressive and moving average models work with stationary and linear data. However, in many cases, the 

data is non-stationary. Autoregressive Integrated Moving Average (ARIMA) models are used to deal with non-

stationary data. An ARIMA model consists of three parts, namely autoregressive (AR) terms, moving average 

(MA) terms and differencing operations (I). The differencing operation is used to create a stationary series for 

modelling [94]. In this operation, a value is replaced with the difference of the value and its previous value [94]. 

A generalized form of the ARIMA model known as the Seasonal ARIMA (SARIMA) is used to handle seasonality 

in data. This class of ARIMA models deals explicitly with seasonality in data by using seasonal AR, MA, and 

differencing terms in the model. External variables can also be added to the model through an exogenous regressor 

term. Seasonal ARIMA with exogenous regressors (SARIMAX) enables the user to add the effects of external 

variables to the model. Exogenous variables are defined as variables that influence a model but are not influenced 

by it. The weather is considered an exogenous variable in the context of an energy consumption model of a 

building. 

 

The SARIMA model is defined as: 

 

 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)𝑠 (3.1.2-1) 

 

Where: 

Trend Elements are: 

• p: Autoregressive order (AR). 

• d: Difference order (I). 

• q: Moving average order (MA). 

Seasonal Elements are: 

• P: Seasonal autoregressive order (SAR). 

• D: Seasonal difference order. D=1 would calculate a first order seasonal difference (SI). 

• Q: Seasonal moving average order. Q=1 would use a first order errors in the model (SMA). 

• s: Single seasonal period. 

Exogenous variables 
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• X: exogenous variable/features. Exogenous variables like weather data and the hour of day have been 

used in this research. Those have been picked up because they have a strong correlation with 

consumption. 

 

A SARIMAX is mathematically represented as [94]: 

 

 𝑦𝑡

= 𝛽0 + 𝛽1𝑋1,𝑡 + 𝛽2𝑋2,𝑡 + ⋯ + 𝛽𝑘𝑋𝑘,𝑡

+
(1 − 𝜃1Β − 𝜃2Β2 − ⋯ − 𝜃𝑞Β𝑞)(1 − Θ1Β𝑠 − Θ2Β2𝑠 − ⋯ − Θ𝑄Β𝑄𝑠)

(1 − 𝜑1Β − 𝜑2Β2 − ⋯ − 𝜑𝑝Β𝑝)(1 − Φ1Β𝑠 − Φ2Β2𝑠 − ⋯ − Φ𝑃Β𝑃𝑠)
𝑍𝑡 

(3.1.2-2) 

 

where: 

❖ 𝑦𝑡 denotes the value of the series at time t.  

❖ Χ1,𝑡 , Χ2,𝑡 , ⋯ , Χ𝑘,𝑡 denote observations of the exogenous variables.  

❖ 𝛽0 , 𝛽1 , ⋯ , 𝛽𝑘  denote the parameters of the regression part.  

❖ 𝜑1, 𝜑2, ⋯ , 𝜑𝑝 denote the weight of the nonseasonal autoregressive terms.  

❖ Φ1, Φ2 , ⋯ , Φ𝑃 denote the weight of the seasonal autoregressive terms.  

❖ 𝜃1, 𝜃2, ⋯ , 𝜃𝑞 denote the weight of the nonseasonal moving average terms.  

❖ Θ1, Θ2, ⋯ , Θ𝑄 denote the weight of the seasonal moving average terms.  

❖ 𝐵𝑠 denotes the backshift operator such that 𝐵𝑠𝑦𝑡 = 𝑦𝑡−𝑠. 

❖ 𝑍𝑡 denotes the white noise terms. 

 

3.1.3. Box-Jenkins Method 

The Box-Jenkins methodology is one of the most adopted forecasting methods using ARIMA models and is 

applicable to several domains. According to Box and Jenkins [95], the modelling process is broken down into 

three iterative steps, namely identification, estimation, and diagnostic checking. 

 

 
Figure 10: Box-Jenkins method. 
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Identification is the process where data and all related information are used to select a subclass of models that 

best suit the data. Initially, we need to assess whether the time series is stationary or not using unit root statistical 

tests. If not, we need to convert it stationary by differencing. Differencing is a technique that attempts to increase 

stationarity by subtracting a previous observation from the current observation. Subtracting the observation 

immediately preceding the current observation produces a first difference. We should avoid over differencing 

since it will result in extra serial correlation and complexity. Another part of identification process is to configure 

Autoregression (AR) and Moving Average (MA) models. AR is a model that uses the dependent relationship 

between an observation and some number of lagged observations. MA is model that uses the dependency between 

an observation and residual errors from a moving average model applied to lagged observations. The number of 

lag observations included in the model, also called the lag order 𝑝 and the size of the moving average window, 

also called the order of moving average 𝑞, are derived with the help of two diagnostic plots Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF). 

 

❖ ACF plot summarizes the correlation of an observation with lag values. The x-axis shows the lag and the 

y-axis shows the correlation coefficient between -1 and 1 for negative and positive correlation. 

❖ PACF plot summarizes the correlations for an observation with lag values that is not accounted for by 

prior lagged observations. 

 

Some useful patterns you may observe on these plots are: 

 

❖ The model is AR if the ACF trails off after a lag and has a hard cut-off in the PACF after a lag. This lag 

is taken as the value for p. 

❖ The model is MA if the PACF trails off after a lag and has a hard cut-off in the ACF after the lag. This 

lag value is taken as the value for q. 

❖ The model is a mix of AR and MA if both the ACF and PACF trail off. 

 

Estimation is the process to train the model using different parameters and choose the best model based on some 

criteria. The most common criterion for model selection is Akaike’s Information Criterion (AIC) [33]. AIC 

essentially measures how well it fits the data, while penalizing complexity. Therefore, AIC reduces the risk of 

both overfitting and underfitting. A model that fits the data well and uses many predictors will have a larger AIC 

compared to a model that has the same goodness of fit but uses fewer predictors. Therefore, when comparing 

models, the one with the least AIC is chosen as the winner. It should be emphasized that the AIC of a model is a 

relative measure and is meaningful when compared to other models. 

 

Diagnostic checking is the process of finding evidence that the model is not a good fit for the data. The first check 

is to check whether the model overfits the data. Generally, this means that the model is more complex than it 

needs to be and captures random noise in the training data. This is a problem for time series forecasting because 

it negatively impacts the ability of the model to generalize, resulting in poor forecast performance on out of sample 

data. Careful attention must be paid to both in-sample and out-of-sample performance and this requires the careful 

design of a robust test harness for evaluating models. Residuals errors, a review of the distribution of errors can 

help tease out bias in the model. The errors from an ideal model would resemble white noise, that is a Gaussian 

distribution with a mean of zero and a symmetrical variance. For this, you may use density plots, histograms, and 

Q-Q plots that compare the distribution of errors to the expected distribution. A non-Gaussian distribution may 

suggest an opportunity for data pre-processing. A skew in the distribution or a non-zero mean may suggest a bias 

in forecasts that may be correct. 

3.1.4. LSTM 

A Recurrent Neural Network (RNN) [96] is a special type of artificial neural network that handles time series data 

or sequences effectively. Feed forward neural networks have hard time on these problems since in sequences the 

present data point depends in the previous one. RNNs trying to solve this problem by introducing the concept of 

memory, hence storing the states of previous inputs to generate the next output. However, RNNs suffer from the 

problem of long-term dependencies [97]. Sometimes we only need to look up recent information to predict the 

outcome; if for instance we are trying to predict the next work in phrase “the apple tree grows …”, we won’t need 

further context come up with the word apple. In such cases the gap between the relevant information and the 

intended outcome is small. The more this gap grows the harder is to accurately predict the next output. 
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Long Short-Term Memory (LSTM) network was introduced by [98] and is a temporal cyclic neural network [85], 

which solved the problem described above. LSTM replaces the hidden layer neurons of a RNN with memory 

units. The main idea is to delete invalid information and/or retain important information as the time series 

progresses. The ability to identify and remember temporal correlations makes these networks ideal for applications 

such as speech recognition and language translation. Electricity consumption of individual households is based 

on consumers behavior, and it is quite ad-hoc. LSTM is designed to extract a consumption pattern, then keep it in 

its memory and finally make the forecast [84]. 

 
Figure 11: LSTM block structure 

The structure of an LSTM cell block is shown in Figure 11. Such block is consisted of a memory cell, an input 

gate, an output gate and a forget gate. The memory cell is responsible of remembering the previous state and 

keeping also track of the correlation between the elements in the input sequence. 

 

 
Figure 12: LSTM walkthrough step 1. 

Initially, Figure 12, the LSTM network needs to decide what information is redundant and needs to be thrown 

away. This is achieved by a sigmoid layer called forget gate layer. It combines the current input 𝑥𝑡 with the 

previous cell state 𝐶𝑡−1 and outputs a number between 0 and 1. A 0 means do not keep this while a 1 means keep 

this. The formula of the forget gate is defined as: 

 

 𝑓𝑡 = 𝜎(𝑊𝑓[𝑠𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3.1.4-1) 
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Where 𝑊𝑓 is the weight matrix and 𝑏𝑓 is the bias of the forget gate. 

 

 
Figure 13: LSTM walkthrough step 2. 

The next step, Figure 13, decides what new information needs to be stored in the cell state. First the input gate 

layer, sigmoid layer, decides which values needs to be updated. Next a 𝑡𝑎𝑛ℎ layer constructs a vector of new 

candidate values, 𝐶𝑡. There are two formulas describing the two parts: 

 

 𝑖𝑡 = 𝜎(𝑊𝑖[𝑠𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3.1.4-2) 

 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑠𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3.1.4-3) 

 
After combining the two parts calculated above, the actual update needs to be performed; update the old cell 

state 𝐶𝑡−1 in the new one 𝐶𝑡.  

 

 
Figure 14: LSTM walkthrough step 3. 

As shown in Figure 14, the old state 𝐶𝑡−1 is multiplied by the forget gate 𝑓𝑡. Then we add the new candidate 

values, scaled by the updated of each state value; described by the following formula. 
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 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡  (3.1.4-4) 

 
Finally, Figure 15, the output will be based on a filtered version of our cell state. A sigmoid layer is applied to 

determine the parts of the cell state that are going to be outputted. Thereafter the cell state is passed through a 

𝑡𝑎𝑛ℎ to limit values between -1 and 1 and multiply it by the output of the sigmoid gate, 𝑜𝑡. The reason of doing 

this is to output only the parts we have decided. 

 

 
Figure 15: LSTM walkthrough step 4. 

The formulas related to this step are the following: 

 

 𝑜𝑡 = 𝜎(𝑊𝑜[𝑠𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3.1.4-5) 

 

 𝑆𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (3.1.4-6) 
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4. Methodology 

4.1. Problem definition 

The idea is that a device (agent) is connected to the smart meter of a residential house, which makes an accurate 

load forecast of the household and adapts to changing conditions in energy use. The forecast has a 24 hour horizon 

considering the consumption of the past 24 hours plus the weather forecast. 24 hours after the forecast is made, 

an evaluation takes place of how well the forecasts of IMPORT_KW corresponded to reality. 

Smart meter data fall under the time series category, more specifically in our case they fall under the category or 

Multivariate Time Series (MTS). MTS has more than one time-dependent variable. Each variable depends not 

only on its past values but also has some dependency on other variables. This dependency is used for forecasting 

future values. Our dataset includes consumption data and it is combined with weather data, therefore there are 

multiple variables to be considered to optimally predict consumption. 

4.2. GridFlexHeeten dataset 

The data in this dataset was collected during the GridFlex Heeten project [99]. The data was collected between 

August 2018 and August 2020 in 77 households all situated in Heeten (The Netherlands) and consists of electricity 

consumption and gas usage per minute per household. All participating households specified their data could be 

used in further research and the data of this project was collected in accordance with a privacy-by-design approach. 

4.2.1. Energy Consumption Data 

The data in this dataset is subdivided as a value per house, per appliance-group, per measurement type, per time 

interval. These subdivisions/columns are explained further: 

❖ "time":  

o YYYY-MM-DDThh:mm:ssZ: one-minute time interval (PT1m/YYYY-MM-DDThh:mm:ssZ) 

at the end of which the measurement value is taken, denoted in ISO 8061 (second precision), 

ranges from 2018-08-01T01:59:00+02:00 to 2020-08-31T23:58:00+02:00. Note that this date 

is denoted in local time, so CET (or CEST), taking Daylight Saving Time into account. 

❖ "house": 

o HouseX: The household identifier, with X ranging from 1 to 77. 

o HouseTest: A dummy household to test if the connection is working. 

❖ "appliance": 

o SMARTMETER: Contains the measurements related to the smart meter, so the complete 

household. 

o PVMETER: Contains the measurements related to the PV system (not available in all 

households). 

o BATTERY: Contains the measurements related to the battery system (not available in all 

households). 

❖ "measurement": 

o BATTERY_EXPORT_KW: Total energy the battery discharged since it was connected to the 

system, in kWh. 

o BATTERY_IMPORT_KW: Total energy the battery charged since the battery was connected 

to the system, in kWh. 

o BATTERY_KW: Average power output of the battery in the last minute (negative means 

charging), in kW. 

o BATTERY_TARGET_KW: The requested power output of the battery, in kW. 

o BATTERY_TARGET_MODE: Optimization strategy of the battery, where 0 = local, so the 

battery tries to match BATTERY_TARGET_KW to BATTERY_KW, 1 = household, so the 

battery tries to steer BATTERY_KW such that TOTAL_KW matches 

BATTERY_TARGET_KW, 2 = failsafe, so the battery charges to a safe State of Charge (SoC) 

regardless of BATTERY_TARGET_KW. 
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o CHARGE_MODE: Indicates the mode of battery which dictates what the battery can do, where 

0 = battery is idle, 1 = battery can only charge, 2 = battery can only discharge, 3 = battery can 

do both. 

o CURRENT_PHASE_1: Household current on phase 1, in A. Value is very inaccurate, but can 

be used to identify the phase the household is connected to. 

o CURRENT_PHASE_2: Household current on phase 2, in A. Value is very inaccurate, but can 

be used to identify the phase the household is connected to. 

o CURRENT_PHASE_3: Household current on phase 3, in A. Value is very inaccurate, but can 

be used to identify the phase the household is connected to. 

o EXPORT_KW: Average power output of the household in the last minute (difference of 

consecutive measurements of EXPORT_KWH), in kW. 

o EXPORT_KWH: Total energy the household has exported since the household was connected 

to the smart meter, in kWh. 

o GAS_USAGE_M3: Total cubic meters of gas used since it was connected to the smart meter, 

in m3. 

o IMPORT_KW: Average power input of the household in the last minute (difference of 

consecutive measurements of IMPORT_KWH), in kW. 

o IMPORT_KWH: Total energy the household has imported since the household was connected 

to the smart meter, in kWh. 

o MAX_BATTERY_KW: Discharge limit of the battery, so the maximum value BATTERY_KW 

is allowed to attain, in kW. 

o MIN_BATTERY_KW: Charge limit of the battery, so the minimum value BATTERY_KW is 

allowed to attain, in kW. 

o MOMENTARY_EXPORT_KW: Power output from the household at the exact time of the 

measurement, in kW. Value is slightly inaccurate. 

o MOMENTARY_IMPORT_KW: Power input from the household at the exact time of the 

measurement, in kW. Value is slightly inaccurate. 

o MOMENTARY_PV_KW: Power output from the PV system at the exact time of the 

measurement, in kW. Value is slightly inaccurate. 

o OPERATIONAL_STATE: Indicates what the battery did do where 0 = battery was idle, 1 = 

battery was charging, 2 = battery was discharging, 3 = battery had an error. 

o PV_KW: Average power production of the PV system in the last minute (difference of 

consecutive measurements of PV_KWH), in kW. 

o PV_KWH: Total energy produced by the PV system since the PV system was connected to the 

pulse meter, in kWh. 

o REQ_CHARGE_MODE: The CHARGE_MODE that was requested from the battery. 

o STATE_OF_CHARGE: The state of charge of the battery as a percentage of the capacity. Value 

is extremely inaccurate. 

o TOTAL_KW: Average power usage of the household in the last minute (neg. means exporting 

power, difference of consecutive measurements of TOTAL_KWH), in kW. 

o TOTAL_KWH: Total energy the household has used since the household was connected to the 

smart meter (neg. means exported energy, difference of EXPORT_KWH and IMPORT_KWH), 

in kWh. 

o UNC_KW: Average power usage of the household excluding PV and battery in the last minute, 

in kW. 

❖ "value": 

o X: The value of the measurement (unit indicated in the measurement explanation). 

Figure 16 depicts the energy flow on a household. The data in this dataset was collected by installing an energy 

management system (EMS) in each household. These EMS were connected to the P4 port on the smart meter and 

read out the consumption data once per minute. Furthermore, if a battery was present, the battery management 

system was separately connected to the EMS. Also, if a PV system was present, a pulse meter was installed and 

connected to the EMS to separately measure the output. All this data was then sent over Wi-Fi to a cloud. Solar 

panels produce energy that can be either used directly or stored in the battery. In case of redundancy the extra 

energy can be redirected to the grid. Battery could also perform the same action. The total consumption of the 

household is calculated considering the amount of energy consumed minus the amount of energy produced; 

𝐼𝑀𝑃𝑂𝑅𝑇_𝐾𝑊 − 𝐸𝑋𝑃𝑂𝑅𝑇_𝐾𝑊. 
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Figure 16: Energy flow in a household. 

4.2.2. Weather data 

We consider that the house data are in The Netherlands, hence the weather data have been retrieved from 

weather station 278 – Heino, which is 15km from the houses. Source: Royal Dutch Meteorological Institute 

(KNMI) https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens. 

Data attributes are described below: 

❖ YYYYMMDD = Date (YYYY = year, MM = month, DD = day) 

❖ HH = Time (HH hour/hour, UT. 12 UT = 13 CET, 14 MES. Hourly division 05 runs from 04.00 UT to 

5.00 UT) 

❖ DD = Mean wind direction (in degrees) during the 10-minute period preceding the time of observation 

(360 = north, 90 = east, 180 = south, 270 = west, 0 = calm, 990 = variable) 

❖ FH = Hourly mean wind speed (in 0.1 m/s) 

❖ FF = Wind speed (in 0.1 m/s) during the 10-minute period preceding the time of observation 

❖ FX = Maximum wind gust (in 0.1 m/s) during the hourly division 

❖ T = Temperature (in 0.1 degrees Celsius) at 1.50 m at the time of observation 

❖ T10N = Minimum temperature (in 0.1 degrees Celsius) at 0.1 m in the preceding 6-hour period 

❖ TD = Dew point temperature (in 0.1 degrees Celsius) at 1.50 m at the time of observation 

❖ SQ = Sunshine duration (in 0.1 hour) during the hourly division, calculated from global radiation (-1 

for <0.05 hour)) 

❖ Q = Global radiation (in J/cm2) during the hourly division 

❖ DR = Precipitation duration (in 0.1 hour) during the hourly division 

❖ RH = Hourly precipitation amount (in 0.1 mm) (-1 for <0.05 mm) 

❖ P = Air pressure (in 0.1 hPa) reduced to mean sea level, at the time of observation 

❖ VV = Horizontal visibility at the time of observation (0 = less than 100m, 1 = 100-200m, 2 = 200-

300m, ..., 49 = 4900-5000m, 50 = 5-6km, 56 = 6-7km, 57 = 7-8km, ..., 79 = 29-30km, 80 = 30-35km, 

81 = 35-40km, ..., 89 = more than 70km) 

❖ N = Cloud cover (in octants), at the time of observation (9 = sky invisible) 

❖ U = Relative atmospheric humidity (in percent) at 1.50 m at the time of observation 

❖ WW = Present weather code (00-99), description for the hourly division. 

❖ IX = Indicator present weather code (1 = manned and recorded (using code from visual observations), 

2-3 = manned and omitted (no significant weather phenomenon to report, not available), 4 = 

automatically recorded (using code from visual observations), 5-6 = automatically omitted (no 

significant weather phenomenon to report, not available), 7 = automatically set (using code from 

automated observations) 

❖ M = Fog 0 = no occurrence, 1 = occurred during the preceding hour and/or at the time of observation 

❖ R = Rainfall 0 = no occurrence, 1 = occurred during the preceding hour and/or at the time of 

observation 

❖ S = Snow 0 = no occurrence, 1 = occurred during the preceding hour and/or at the time of observation 

https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens
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❖ O = Thunder 0 = no occurrence, 1 = occurred during the preceding hour and/or at the time of 

observation 

❖ Y = Ice formation 0 = no occurrence, 1 = occurred during the preceding hour and/or at the time of 

observation 

4.3. Data Preprocessing 

The main goal of data preprocessing, in our case, was to end up with a single csv file for each (77) house containing 

columns/features both from energy and weather data set. Energy data set entries are in a minute interval and on 

the other hand weather data are on an hour interval; hence energy data have also been aggregated per hour. The 

file retrieved from [99] has a size of 66GB. 

4.3.1. Energy Consumption Data 

Figure 17 shows a sample of the top 200k rows of the raw data file. Data seem out of order, however within the 

same house, e.g., House6, and the same measurement, e.g., BATEERY_KW, they are in chronological order.  

 

 
Figure 17: Raw data - sample of top 200k rows. 

Carefully following the data description on the previous section 4.2.1, we notice that some data points are marked 

as inaccurate e.g., CURRENT_PHASE_1, some are related to gas e.g., GAS_USAGE_M3, some indicating 

modes e.g., REQ_CHARGE_MODE, some are totals since the connection e.g., BATTERY_IMPORT_KW. Our 

first decision was to limit the size of the file by keeping only the averages per minute values for consumption, 

production, or storage of energy. These values were: IMPORT_KW, EXPORT_KW, PV_KW, BATTERY_KW. 

For streaming such a large file, we used the Dask [100], a flexible open-source Python library for parallel 

computing. The size dropped to the reasonable amount of 11.75GB, see Figure 18. 
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Figure 18: Energy Data - Preprocessing flow 

Since data are in order within the same house and measurements, we extract the different measurement to separate 

csv files per house. Then for each of those files we convert the timestamp to UTC in order to get rid of the daylight 

savings and the change the date format to %Y-%m-%d %H:%M:%S. Trying to reduce a bit our data points and 

to be easy to join with weather data, each file is aggregated per hour. Thereafter, files are joined per house. Extra 

features like year, month, day, hour of day, holiday indicator (is weekend or public holiday), and weather data 

have added. 

 
The result for house1 is shown below, Figure 19. 
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Figure 19: House 1 data, first 5 rows (top), column info (middle), stats (bottom). 

4.3.2. Weather data 

Figure 20 shows the format of the raw data (as described in 4.2.2), the types of the columns and some stats 

regarding the data. 
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Figure 20: Top 5 lines of weather data set (top), column types (bottom right), stats (bottom left) 

Initially, empty columns (P, VV, N, WW, M, R, S, O, Y) have been dropped. Column T10N was present only for 

3048 entries; hence we drop it as well. STN was the last column to be dropped since it is the weather station id, 

which in our case is irrelevant. Next task was to create a timestamp column, by combining columns YYYYMMD 

and HH with format ‘%Y%m%d%H’. Then columns YYYYMMD and HH have been dropped. The final output 

is shown in Figure 21. 

 

 
Figure 21: Weather data cleaned and formatted. 
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4.4. Exploratory Data Analysis (EDA) 

Exploratory Data Analysis refers to the critical process of performing an initial investigation on data so as to 

discover patterns, to spot anomalies, to test hypothesis and to check assumptions with the help of summary 

statistics and graphical representations. After pre-processing, we ended up with 77 csv files, one for each house. 

The first step was to visualize the consumption data of all houses to identify patterns, trends, missing values. 

4.4.1. Data Visualization after pre-processing 

Data visualization is one of the steps of the data science process, which states that after data has been collected, 

processed and modeled, it must be visualized for conclusions to be made.Visualization is an increasingly key tool 

to make sense of the trillions of rows of data generated every day. On top it is useful for data cleaning, exploring 

data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, 

evaluating modeling output, and presenting results. It is essential for exploratory data analysis and data mining to 

check data quality and to help analysts become familiar with the structure and features of the data before them. 

Data visualization helps to tell stories by curating data into a form easier to understand, highlighting the trends 

and outliers. A good visualization tells a story, removing the noise from data and highlighting useful 

information. Graphics reveal data features that statistics and models may miss: unusual distributions of data, local 

patterns, clusterings, gaps, missing values, evidence of rounding or heaping, implicit boundaries, outliers, and so 

on. Graphics raise questions that stimulate research and suggest ideas. In fact, interpreting graphics needs 

experience to identify potentially interesting features and statistical nous to guard against the dangers of 

overinterpretation. Just as graphics are useful for checking model results, models are useful for checking ideas 

derived from graphics. 

 

Since the number of houses is relatively high and it wouldn’t be intuitive to display all of them, we took as 

reference three houses: house 2, house 3, house 69. The main reason was that we identified different consumption 

patterns; thus, was interesting to dive in further. In this work we will focus only on consumption data 

IMPORT_KW column in combination with weather data. Features like EXPORT_KW, PV_KW and 

BATTERY_KW won’t be considered since their data are incomplete and we need more business context on how 

to use them. 
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Figure 22: House 2 (top), House 3 (middle), House 69 (bottom). Data after preprocessing. 

Houses 3 and 69 show a clear seasonal pattern, where the consumption during winter is higher that summer. On 

the opposite side this does not seem to be the case in house 2. House 2 has higher consumption from August 2018 

– February 2019, then there is period where data are missing and then the pattern is almost the same for the rest 

months. House 69 seems to have higher average consumption that the other two houses. In all three houses there 

are steep valleys, in such cases the smart meter didn’t work for a small period; hours to a few days, resulting in 

missing values. Steep peaks are much more challenging to interpret. These might be related to erroneous values 

reported from the meter. 

 

Figure 23 below visualizes the weather data set. As expected, weather attributes e.g., Temperature, follow a 

seasonal pattern. 
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Figure 23: Weather data. 

4.4.2. Data Cleaning 

After going through the plots of all houses, we concluded that is necessary to proceed with filtering out houses 

with erratic data, replacing missing values and smooth out steep peaks that were hard to explain.  
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Figure 24: Example of houses with erratic data. House 11 (top), House 17 (bottom). 

Figure 24 above, depicts two houses with erratic data. Let’s first define erratic in our case. Houses with erratic 

data could be either houses with incomplete data and more specifically not a complete year; see house 11, or 

houses that do not have a consumption pattern; see house 17. The following houses, eighteen houses in total, 

have been filtered out: 11, 12, 13, 16, 17, 34, 36, 38, 40, 42, 49, 58, 59, 65, 67, 68, 71, 74, 76. 

 

For the remaining fifty seven houses, we identified the missing values and the results are shown in the following 

table. 

 
Table 3: Overview of missing values count. 

House id Missing values count Total rows 

1 2601 18286 

2 1396 18286 

3 1097 18286 

4 3598 18286 

5 3206 18286 

6 4869 18274 

7 1451 18286 

8 529 18286 

9 2268 18286 

10 3765 18286 

14 2952 18286 

15 1896 18286 

18 1441 16402 

19 3223 18286 

20 2731 18286 

21 4067 18195 
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22 534 18286 

23 1773 18286 

24 2678 18286 

25 3263 18286 

26 379 15993 

27 1873 18286 

28 3068 18286 

29 1267 18286 

30 491 18286 

31 4146 18286 

32 4311 18002 

33 2750 18286 

35 4110 18020 

37 570 18286 

39 3494 18286 

41 1851 18286 

43 2054 18231 

44 1086 18286 

45 2045 18286 

46 2736 18286 

47 2031 18286 

48 1336 18286 

50 1346 18286 

51 1664 18286 

52 575 18286 

53 4402 18286 

54 489 18286 

55 719 18286 

56 2782 18286 

57 3809 18286 

60 3919 18286 

61 498 18286 

62 714 18286 

63 1957 18286 

64 3043 18286 

66 1821 18286 

69 1209 18286 

70 2668 18286 

72 683 18286 

73 517 18286 

75 2498 18286 

77 3084 18286 

 

There are some entries marked in orange. These houses miss some entries either in the beginning and/or the end 

of the full period August 2018 – August 2020, so when replacing missing values, we should also consider those 

periods. Missing data replacement mechanism considers two cases: 

❖ Long periods > week. 

❖ Short periods <= week. 

For the first case, we replace the missing values from the respective period either in previous or next year; 

depending on the availability of the data. Noise was introduced so the values are not exactly the same. This 

approach was based on the fact that electricity consumption, Figure 22, and weather, Figure 23, show a seasonal 

pattern. For short periods, the values have been replaced from the median of the month adding noise on top. 

 

As mentioned before house data contain some high peaks that are not easy to interpret. We define high peak as a 

value three (rule of thumb) times higher than the median of the month. We replace high peaks with the median of 

the month introducing again noise.  

 

Table below shows house statistics after data cleaning process. 
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Table 4: House data statistics after replacing missing data. 

House id Min kW Max kW Mean kW Median kW 
1 0.06 34.14 12.88 11.32 

2 0.12 40.08 14.93 13.15 

3 0.06 24.30 8.23 7.92 

4 0.06 27.13 8.88 7.83 

5 0.002 27.54 9.58 8.88 

6 0.001 76.93 26.34 25.04 

7 0.06 32.52 10.36 10.02 

8 0.12 55.80 20.95 17.58 

9 0.60 30.96 11.37 9.91 

10 0.003 35.99 12.69 11.46 

14 0.06 20.52 6.97 6.71 

15 0.06 23.22 7.87 7.74 

18 0.004 14.27 4.34 4.32 

19 0.01 27.66 9.16 8.76 

20 0.06 20.28 7.56 6.71 

21 0.003 98.23 33.89 31.35 

23 0.06 88.62 31.73 29.71 

24 0.06 40.08 13.95 13.35 

25 0.06 36.72 12.92 11.94 

26 0.01 36.55 10.51 9.34 

27 0.09 67.14 23.13 21.64 

28 0.06 59.76 21.59 19.07 

29 0.06 75.78 24.49 23.84 

30 0.24 52.67 20.28 17.03 

31 0.0008 21.42 6.98 7.02 

32 0.002 37.44 13.35 12.24 

33 0.02 24.66 9.03 8.37 

35 0.82 28.62 10.33 9.57 

37 0.24 48.18 18.14 15.60 

39 0.03 45.72 16.45 14.16 

41 0.24 72.84 27.66 24.18 

43 0.06 114.66 41.69 37.93 

44 0.06 61.73 24.13 20.10 

45 0.02 33.84 12.37 10.98 

46 0.02 19.07 6.61 5.84 

47 0.29 72.01 26.83 23.58 

48 0.06 35.94 12.80 11.27 

50 0.06 23.51 7.82 7.84 

51 0.06 43.74 15.37 14.82 

52 0.06 17.81 6.62 5.52 

53 0.44 62.01 25.46 22.56 

54 0.11 38.46 14.98 12.50 

55 0.06 53.64 19.85 17.28 

56 0.06 17.82 6.23 5.34 

57 0.23 37.97 14.51 12.84 

60 0.06 29.45 10.73 9.72 

61 0.18 57.24 20.91 18.34 

62 0.12 31.31 12.03 9.96 

63 0.06 38.34 13.32 12.23 

64 0.06 36.54 12.64 11.54 

66 0.008 39.54 14.72 12.89 

69 0.06 53.98 20.43 17.82 

70 0.0005 39.60 13.15 12.35 

72 0.06 45.84 15.56 13.91 
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73 0.11 19.74 7.46 6.59 

75 0.06 30.59 10.15 9.06 

77 0.06 37.74 14.58 12.16 

 

4.4.3. Time series analysis 

The analysis will be performed in house3,  and similarly was applied on all houses. Let’s have a look on house3 

data, Figure 25. 

 

 
Figure 25: House 3 data, first 5 rows (top), column info (middle), stats (bottom). 

At the first glance there isn’t an extreme deviation between mean and median values of IMPORT_KW. As 

expected after data cleaning, there are no missing values, middle section of the figure above. When checking the 

stats at the bottom we noticed that IX weather feature is a constant with value 6. It does not bring any value to 

consider it, so we dropped it. 

 

Figure 26 below depicts the distribution of house3. Data distribution is an important aspect to consider when 

modeling the data that will be fed in a model. 
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Figure 26: House 3 IMPORT_KW distribution. 

Next step is to check the correlation of the features within our dataset. We notice that HOUR_OF_DAY, U, DR 

have a strong positive correlation with IMPORT_KW, while on the other hand T, TD, SQ, SQ, Q have a strong 

negative correlation. The rest of the feature do not seem to affect IMPORT_KW that much; hence we won’t use 

them in our model. 

 

 
Figure 27: Pearson correlation heatmap. 
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Plotting the timeseries help unveiling temporal pattern. Let’s take a look on house3 data. It is clear that there is a 

seasonal pattern. Consumption is higher during winter and lower during summer. October 2019 shows a sudden 

low consumption. If this is not a pattern also in the future it might bring a challenge forecasting October. 

 

 
Figure 28: House 3 IMPORT_KW data 

In 3.1.1, we talked about timeseries components, decomposing a timeseries helps interpreting those. We notice 

that the trend is following a seasonal pattern, increasing during winter, and decreasing during summer. The 

seasonal component also shows a pattern but we need to zoom in a bit in order to identify yearly, monthly, daily 

patterns. Residuals look quite steady throughout. 

 

 
Figure 29: House 3 timeseries decomposition. 

Next, we will examine the distribution of energy consumption using different internals. Boxplots are ideal for this. 

Boxplots are a standardized way of displaying the distribution of data based on a five number summary: minimum, 

first quartile Q1, median, third quartile Q3, and maximum. 

❖ Median (Q2/50th percentile): The middle value of the data set. 

❖ First Quartile (Q1/25th percentile): The median value between the smallest number of the dataset and 

the median of the data set. 

❖ Third Quartile (Q3/75th percentile): The median value between the median and the highest number of 

the dataset. 

❖ Interquartile Range (IQR): 25th to the 75th percentile. 
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❖ maximum: 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅. 

❖ minimum: 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅. 

❖ Whiskers: The lines which connect the minimum to Q1 and Q3 to maximum. 

❖ Outliers: Values that are outside minimum or maximum. 

 

Figure 30 depicts consumption distribution by month. The boxplot below cancels our assumption that there is a 

yearly pattern for this house. We see that winter months have more or less the same median values as summer 

ones. Low consumption occurs in May, September, and October. We also notice the presence of outliers. This 

plot backs up the correlation matrix Figure 27, indicating that YEAR and MONTH could be excluded as features 

since they do not have a considerable effect on consumption. 

 

 
Figure 30: Distribution of energy consumption by month. 

Figure 31 presents consumption distribution by week. House 3 does not show any clear weekly pattern. Outliers 

are present here as well. Hence, excluding feature DAY, was a decision in the right direction.  

 

 
Figure 31: Distribution of energy consumption by week 

It is also interesting to examine consumption distribution by hour. As shown in Figure 32 demand is relatively 

stable during the night. In the morning and noon, there is a drop in consumption. Assuming that heating demands 

during the day are less and that people are working, this pattern seems logical. From 5pm to 11pm the consumption 

increases. People are returning home and use the house in full capacity; heating, lighting, cooking, charging 

devices, charging a car, etc. 

It is obvious that HOUR_OF_DAY is an important feature since it affects much the consumption. 
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Figure 32: Distribution of energy consumption by hour. 

Another interesting aspect to investigate is how consumption behaves between holidays and non-holidays, Figure 

33. In our case, holidays do not have an effect on consumption; hence HOLIDAYS feature can be dropped. 

 

 
Figure 33: Distribution of consumption between holidays and non-holidays. 

4.4.4. Stationary analysis 

A stationary time series is one whose statistical properties such as mean, variance, autocorrelation, etc. are all 

constant over time. Most statistical forecasting methods assume that the time series can be rendered approximately 

stationary using mathematical transformations. A stationarised series is relatively easy to predict; its statistical 

properties will be the same in the future as they have been in the past. Another reason for trying to make the time 

series stationary is to be able to obtain meaningful sample statistics such as means, variances, and correlations 

with other variables. Such statistics are useful as descriptors of future behavior only if the series is stationary. For 

example, if the series is consistently increasing over time, the sample mean and variance will grow with the size 

of the sample, and they will always underestimate the mean and variance in future periods. And if the mean and 

variance of a series are not well-defined, then neither are its correlations with other variables. 

 

Fluctuating rolling mean and standard deviation can be a first indication of non-stationary time series. Judging 

from Figure 34 the series does not look stationary, since the mean and the variance of timeseries are not constant 

over time. 
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Figure 34: Stationary check using rolling mean and std. 

 

With this in mind lets perform two statistical tests to discover if series have unit root, Augmented Dickey-Fuller 

(ADF), or if it is trend stationary, Kwiatkowski–Phillips–Schmidt–Shin (KPSS). 

ADF test: 

❖ The null hypothesis for this test is that there is a unit root. 

❖ The alternate hypothesis is that there is no unit root in the series. 

KPSS test: 

❖ The null hypothesis for the test is that the data is stationary. 

❖ The alternate hypothesis for the test is that the data is not stationary. 

 

If we fail to reject the null hypothesis, we can say that the series is non-stationary. If both mean and standard 

deviation are flat lines (constant mean and constant variance), the series becomes stationary. 

 

Figure 35, shows the results of both tests, applying differencing only once is enough to make our time series is 

stationary. This will be our parameter d = 1 for the SARIMA model. 

 

 
Figure 35: Results of ADF and KPSS tests. 

4.4.5. Autocorrelation and partial autocorrelation analysis 

Autocorrelation Function (ACF) is a statistical correlation, which summarizes the strength of the relationship 

between two variables. Pearson’s correlation coefficient is a number between -1 and 1 that describes a negative 

or positive correlation respectively. A value of zero indicates no correlation. We can calculate the correlation for 

time series observations with previous time steps, called lags. Because the correlation of the time series 

observations is calculated with values of the same series at previous times, this is called a serial correlation, or an 

autocorrelation. A plot of the autocorrelation of a time series by lag is called the Autocorrelation Function, or the 

acronym ACF. This plot is sometimes called a correlogram or an autocorrelation plot. 

 

Partial Autocorrelation Function (PACF) is a summary of the relationship between an observation in a time series 

with observations at prior time steps with the relationships of intervening observations removed. The partial 

autocorrelation at lag k is the correlation that results after removing the effect of any correlations due to the terms 

at shorter lags. The autocorrelation for observation and observation at a prior time step is comprised of both the 



 46 

direct correlation and indirect correlations. It is these indirect correlations that the partial autocorrelation function 

seeks to remove. 

 

The autocorrelation and partial autocorrelation plots show a clear association between one hour's consumption 

and previous hours, as well as between one hour's consumption and the same hour's consumption on previous 

days. This type of correlation is an indication that autoregressive models can work well. 

 

 
Figure 36: Auto and partial correlation for energy consumption. 

As we already knew our series are seasonal and our ACF plot confirms this pattern. First significant lag is lag 1. 

The energy consumption raises/decreases, depends on the hour of day, gradually from hour to hour. Hence the 

energy value during the previous hour might tell us something about energy during the current hour. Next 

important lag is 24. 24-hour lag shows that energy consumption today at 4pm might hint about energy 

consumption tomorrow at 4pm. With PACF we can see that lags 1 and 24 have the highest correlation. This means 

that seasons 24 hours apart are directly correlated regardless of what is happening in between. 

4.5. Evaluation Metrics 

For assessing the performance of machine learning models used for load forecasting, we are going to use the 

following evaluation metrics based on error calculation. The most common used evaluation metrics in the 

literature [101] around this area is Root Mean Square Error (RMSE). RMSE calculates the standard deviation of 

the prediction errors to indicate the way the predicted data is clustered across the best fit line. Low values of 

RMSE shows that the model is more accurate in forecasting the load [101]. The mathematical formula is defined 

as: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (4.5-1) 

where n is the number of outputs, �̂� =  {�̂�1, �̂�2, ⋯ , �̂�𝑛} is the output of the forecasting model and 𝑦 =
 {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} is the actual value corresponding to the forecasting result. 
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4.6. Implementation 

All models have been developed using Keras API on top of TensorFlow [103]. The machine used for the analysis 

has the following specifications:  

❖ Processor: 2.6 GHz 6-Core Intel Core i7 

❖ Memory: 32 GB 2400 MHz DDR4 

❖ Graphics: Radeon Pro 560X 4 GB, Intel UHD Graphics 630 1536 MB 

The experiments were run on CPU, due to complex setup of enabling GPU processing for this specific graphics 

card. 

There models had been applied on individual house data; SARIMAX, Vanilla-LSTM and Encoder-Decoder 

LSTM.  For all models, last month (August 2020) has been kept for validation and the rest (August 2018 – July 

2020) were used for training. 

4.6.1. SARIMAX 

Parameter estimation is the process of specifying the parameters (see 3.1.2) of a SARIMAX model. A good 

understanding of the data and the context they represent is crucial to identify the right parameters. There are 

modern/automated approaches like grid-search and auto.arima() for that, however in our case we used Box–

Jenkins (see 3.1.3) method instead. Box–Jenkins forces you to deep dive in the problem and not brute force the 

way to the parameters. Let’s estimate the parameters based on our theoretical understanding of ACF and PACF 

plots (see 4.4.5)  

 

Estimates: 

• s: In ACF plot there is one peak and one valley every 24 hours. Thus, seasonal period could the set to 24. 

• p: In ACF plot 𝑦𝑡−1 is the first significant lag. We also notice that there is a gradual change where 𝑦𝑡−1  

is not drastically different from 𝑦𝑡, hence trend autoregressive order will be set to 1. 

• d: Using stationary check performed in 4.4.4 we could set trend differencing to 1. 

• q: Based on PACF correlations we can set moving average order to 1, since its the most significant lag. 

• P: Setting seasonal autoregressive order to 2 will allow us to use the first and second seasonally offsets 

(24) in the model. 

• D: Using stationary check performed in 4.4.4 we can use first degree seasonal differencing 1. 

• Q: As shown in our PACF graph first lag have a significant correlation; hence seasonal moving average 

will be set to 1.  

 

We concluded on the following model: 

𝑆𝐴𝑅𝐼𝑀𝐴(1,1,1) × (2,1,1)24 

4.6.2. Vanilla LSTM 

A Vanilla LSTM is an LSTM model with a single hidden layer of LSTM units and an output layer, which is used 

to make the prediction. Our model is shown in the following code snippet: 

 
units = 256 

initializer = tf.keras.initializers.TruncatedNormal(mean=0.0,       

stddev=0.5, seed=22) 

model = tf.keras.models.Sequential() 

model.add(tf.keras.layers.LSTM(units,  

input_shape=(x_train.shape[1], x_train.shape[2]),  

kernel_initializer=initializer)) 

model.add(tf.keras.layers.Dense(units=args.horizon)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

 

 

In this case, we define a model with 256 LSTM units in the hidden layer and an output layer that predicts a horizon, 

24 hours in this work. An output/dense layer is a fully connected layer that helps in changing the dimensionality 

of the output from the preceding layer. The model is fit using the efficient “adam” [104] version of stochastic 

gradient descent and optimized using the mean squared error, or “mse” loss function. The model expects the input 

shape to be three-dimensional with [samples, timesteps, features], therefore, train data have been reshaped before 

fitting them to the model. After trial and error, we ended up using also a kernel initializer. Initializers define the 
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way to set the initial random weights of Keras layers. TruncatedNormal initializer generates tensors with a normal 

distribution but values that are more than two standard deviations from the mean are discarded and re-drawn. 

 

Keras utils includes a method to have a visual representation of the defined model. Figure 37 below depicts our 

Vanilla LSTM. The initial input is the past 24 hours of consumption along with the weather and hour of day 

features (8 in total). The final output is the prediction of consumption for the next 24 hours. 

 

 
Figure 37: Vanilla LSTM model plot. 

The code snippet below represents the fitting command. Keras supports early stopping of training via a callback 

called EarlyStopping. This callback allows you to specify the performance measure to monitor, the trigger, and 

once triggered, it will stop the training process. In our case we monitor the loss metric as decreases. A delay to 

the trigger in terms of the number of epochs on which we would like to see no improvement is configured. This 

can be done by setting the patience argument. However, we do not want to exit too early, so we allow the network 

to run at least for half the number of epochs. 

 
# This will be used to avoid overfitting 

es = tf.keras.callbacks.EarlyStopping(monitor='loss', mode='min', 

verbose=1, patience=10, start_from_epoch = int(500/2.0)) 

history = model.fit(x_train, y_train, epochs=500, batch_size=32, verbose=2, 

shuffle=False, callbacks=[es]) 

4.6.3. Encoder-Decoder LSTM 

Encode-decoder architecture is quite popular for sequence-to-sequence forecasting problems. It consists of at least 

two RNN/LSTMs, where one acts like an encoder while the other as decoder. The main task of encoder is to read 
and interpret the input. On top, it compresses the input to a fixed-length vector and passes that to the next level. 

A RepeatVector layer is used to repeat the context vector for a number of future steps (24 in our case) and then it 

is fed to the decoder part. The decoder performs the forecasting and passes the output, to a fully connected Dense 

layer is applied to each time step via TimeDistributed wrapper, so separates the output for each time step. 

 
n_timesteps, n_features, n_outputs = x_train.shape[1], x_train.shape[2], 

y_train.shape[1] 

model = tf.keras.models.Sequential() 

model.add(tf.keras.layers.LSTM(200, input_shape=(n_timesteps, n_features))) 

model.add(tf.keras.layers.RepeatVector(n_outputs)) 

model.add(tf.keras.layers.LSTM(200, return_sequences=True)) 

model.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(100))) 

model.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(1))) 

model.compile(loss='mse', optimizer='adam') 

 

As we can see in the code snippet above, we define an encoder LSTM layer with 200 units, which reads the input 

and will output a 200 element vector. The input consists of sequences of 24 hour consumption along with weather 

data and the hour of day. Input sequence is repeated multiple times, once for each time step; hence the 

RepeatVector layer. The decoder layer is also defined with 200 units and it is important to output the entire 

sequence; return_sequences=True. This means that each of the 200 units will output a value for each of the 24 

hours. After the decoder, we added two dense layers wrapped in TimeDistributed layer. In that way, the model is 
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able to extract the context of each time step and interpret each time step separately by reusing the same weights. 

Figure 38 helps comprehending the process providing a visual representation. 

 

 
Figure 38: Encoder-Decoder LSTM model plot. 

Hyperparameter of fitting the models remained the same as the Vanilla LSTM. 

 
# This will be used to avoid overfitting 

es = tf.keras.callbacks.EarlyStopping(monitor='loss', mode='min', 

verbose=1, patience=10, start_from_epoch = int(500/2.0)) 

history = model.fit(x_train, y_train, epochs=500, batch_size=32, verbose=2, 

shuffle=False, callbacks=[es]) 

 

5. Results 

In this section we are going to present the results of our experiments and pinpoint useful learnings. The 

introductory idea was to create a unified model based on aggregated data; 80% (46 houses) of the houses were 

considered in the aggregated dataset by calculating the media of those houses per hour. 5 houses were kept unseen 

in order to validate the model. A Vanilla LSTM model was fitted in the aggregated dataset and then we applied it 

on the unsees houses 2 and 3. Results are shown in Figure 39 below. 
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Figure 39: Vanilla LSTM on aggregated model applied on houses 2 and 3. 

It is obvious that the model is not good since it is not able to follow the hourly pattern of neither of the two houses. 

The model does not follow neither the peaks nor the valleys, it predicts values close to a specific mean range. 

Specifically, for house 2 it constantly underestimates the consumption and it does not predict values higher than 

20kW. On house 3 the model is a bit better and at least it tries to follow the hourly pattern. The main reason for 

this behavior is that the mean consumption of house 3 is closer to the aggregated dataset mean consumption ~8kW. 

Aggregating data is like collapsing multiple houses to one; hence if we want to get to that direction the houses 

that are part of the aggregation should follow a similar load pattern. 

Since the model cannot be generalized, we decided to create a model for each house. Our dataset consists of 57 

houses so the idea is to create respective models. For production environments this approach might be not ideal 

since we need to maintain/improve/deploy many models. In this work, we created models for houses 2, 3 and 69. 
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5.1. SARIMAX 

Figure 40 below depicts the diagnostics of SARIMAX model for house 2 (top) and house 3 (bottom). The 

standardize residuals (top left) don’t display any obvious patterns over time. They appear as white noise. The 

Normal Q-Q (bottom left) indicates that the ordered distribution of residuals follows the linear trend of the samples 

taken from a standard normal distribution with N(0, 1). However, the slight curving indicates that our distribution 

is heavy tailed. This pattern seems a bit smoother in house 69. 

 

 

 
Figure 40: SARIMAX model diagnostics for house 2 (top), house 3 (middle) and house 69 (bottom) . 
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A heavy tailed distribution has a tail that’s heavier than an exponential distribution. In other words, a distribution 

that is heavy tailed goes to zero slower than one with exponential tails. Heavy tailed distributions tend to have 

many outliers with very high values. The heavier the tail, the larger the probability that you’ll get one or more 

disproportionate values in a sample.  

 

Histogram and estimated density (top right) shows that Kernel Density Estimation (KDE) follows the N(0,1) line 

however with noticeable differences. As mentioned before our distribution has heavier tails. The Correlogram 

(bottom right) shows that the time series residuals have low correlation with lagged versions of itself. 

 
Figure 41, depicts the result of applying house2 SARIMAX model on test data. RMSE is ~7.9kW. The top plot 

indicates that the model does not follow the real pattern that well. The model shows a strong seasonality and 

cannot follow steep peaks. RMSE is a qualitative metric and in cases like this considering only that might be 

misleading. Thus, it is important to have a visual representation where we actually see how the model behaves. 

 

 
Figure 41: SARIMAX on house 2 (top). RMSE per day (bottom). 

Figure 42 depicts the result of applying house3 SARIMAX model on test data. RMSE is low ~5.6kW. The model 

tends to follow the valleys but does not keep up with peaks, proving that SARIMAX is quite sensitive in outliers. 

Hardest days to predict were day 9 and day 14, with an RMSE ~6.6kW and ~6.8 respectively. 
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Figure 42: SARIMAX on house 3 (top). RMSE per day (bottom). 

Figure 43 below visualizes how SARIMAX model of house 69 performs. House 69 proves to be more challenging, 

thus the RMSE is ~15kW. As in previous cases, the model is able to predict low values, but it is unable to predict 

high consumption and constantly underestimates. Highest RMSE value occurs in day 17. 



 54 

 
Figure 43: SARIMAX on house 69 (top). RMSE per day (bottom). 

5.2. Vanilla LSTM 

Figure 44 top part depicts the real consumption (green line) vs the predicted one (red dotted line) for August 2020. 

The mean RMSE of the month is 7.4kW. August 1st (first 24 hours in the top figure) is not predicted since our 

model needs the previous 24 hours as an input; hence the prediction for that day is 0. This specific house has no 

deep valleys but instead has some high peaks. The reason the smart meter registers those values is unknow and 

needs more characteristics (business context, property’s square meters, residents’ demographics) to conclude. We 

notice though that the model tries to follow those peaks. 
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Figure 44: Vanilla LSTM on house 2 (top). RMSE per day (bottom). 

The bottom part of the figure shows the RMSE per day. We notice that days 2, 7, 9, 12, 15, 21 have quite low 

RMSE <=5kW. On the contrary, there are days that the error is high, 13, 17, 29, and reaching the maximum 

~11kW on day 26. 

 

As shown in Figure 45, model of house 3 behaves quite well; this argument has been supported also from RMSE’s 

value, 5.2kW. It seems that it does not have much trouble following both peaks and valleys. Some of the peaks 

though are quite steep and the model cannot predict them well. This pattern should be investigated further, because 

it is not very common to have such a high difference between two or three consecutive hours. 
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Figure 45: Vanilla LSTM on house 3 (top). RMSE per day (bottom). 

Looking both plots in combination we notice that some hours are harder to predict due to these high peaks. For 

instance, in day 9, hours 193 – 216, the error is higher than 7kW. Similarly, on day 17 and 29 the model has hard 

time and the error is 6kW and 8kW respectively. 

 

House 69, Figure 46, proved to be more challenging. The RMSE is significantly higher than the other two houses, 

14.5kW. There is a mixture of good days/range of hours and bad ones where the model underestimates load 

consumption. This is an indication that model would probably need more units, however due to the incapability 

of running on GPU that wasn’t possible in our case. 
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Figure 46: Vanilla LSTM on house 69 (top). RMSE per day (bottom). 

A series of days have RMSE >=15kW: 8, 9, 13, 16, 17, 18, 19, 26; proving in combination with top plot that 

model underestimates. 

5.3. Encoder-Decoder LSTM 

Figure 47 depicts encoder-decoder LSTM model for house 2. First thing to notice is that RMSE is slightly lower 

from 7.4kW to 7.3kW. The model is relative realistic in its predictions; however, it has a bit the tension to 

overestimate. For instance, take a closer look on hours range 650-680 and 710-720, the model there predicts higher 

for a sequence of hours than the actual consumption values. 
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Figure 47: Encoder-Decoder LSTM on house 2 (top). RMSE per day (bottom). 

Comparing the RMSE per day with the respective one from Vanilla LSTM model we notice that it is more 

balanced and has only to steep peaks; days 25 and 26, hence the error is more spread out throughout the month. 

 

Next, Figure 48, is related to house 3 where the RMSE is a bit higher in this case 5.3kW. The model behaves more 

or less the same way as Vanilla LSTM and follows the consumption pattern efficiently. It underestimates a bit the 

high peaks, a pattern that occurs in the previous model as well. 
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Figure 48: Encoder-Decoder LSTM on house 3 (top). RMSE per day (bottom). 

Judging from RMSE per day figure the model has hard time predicting values in days 14 and 29. A pattern we 

noticed also in the previous model. 

 

Figure 49, visualizes the pattern and the respective errors for house69. The performance didn’t change much 

comparing with the previous model. The mean RMSE remained more or less the same ~14.5kW, same the 

prediction pattern. The model mostly underestimates consumption. The highest RMSE occurs in day 9 with a 

value of 20kW. 
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Figure 49: Encoder-Decoder LSTM on house 69 (top). RMSE per day (bottom). 

5.4. Apply model on unseen houses 

We performed some more experiments applying the Vanilla LSTM house models on unseen houses. The main 

idea is to apply an existing model on a house that has a similar consumption pattern, Table 4. House 2 model is 

applied on house 66. 
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Figure 50:Vanilla LSTM house 2 model applied on house 66 (top). RMSE per day (bottom). 

Figure 50 above, shows the result of applying house 2 vanilla LSTM model on house 66. From the top graph we 

could notice that consumption pattern of house 66 is similar to house 2; hence the model performs well on this 

“unseen” house. RMSE is only a bit higher ~7.6kW from ~7.4kW of house 2. Only exception is day 5 where the 

RMSE peaks on ~12kW. 

 

Another experiment is shown in Figure 51 below, we applied vanilla LSTM house 3 model on house 4. As we 

can see in most cases the model follows the pattern even though it hasn’t been trained on house 4 data. However, 

it is again obvious that the consumption pattern is similar. RMSE is a bit higher ~5.2kW. There are some hour 

ranges that the model mostly overestimates, e.g., 160-180, 210-230, 670-685, but in general the RMSE per day 

stays low. 
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Figure 51: Vanilla LSTM house 3 model applied on house 4 (top). RMSE per day (bottom). 

6. Conclusion & Future Work 

This work started with an overview on smart grids. Transforming the existing grid to a smart one brings many 

challenges, but it is important for scaling and incorporating renewable energy sources. ICT technologies provide 

all the necessary tooling for a step-by-step transition to a smart grid. 

 

Next topic was to study short-term load forecasting for residential users. It is a quite challenging problem 

considering the versatility of consumption in a house. Smart meter data were obtained from [99], consisting of 

consumption data of 77 individual houses for the period August 2018 – August 2020. After data retrieval, we 

performed data pre-processing, data cleaning and explanatory data analysis, in order identify patterns and draw 

conclusions. Initially, we attempted to create a unique model that could fit all houses. However, this approach 

proved to be wrong, see 5. Aggregated data set is like collapsing the houses to 1, judging from the result we see 

that prediction cannot follow an unseen house's pattern. It cannot follow neither the peaks nor the valleys. It 

predicts values close to a specific mean range. In our use-case then it is best to create a model for each house or 

one model per cluster of houses (similar load pattern). 

Thereafter, we created separate models, SARIMAX, Vanilla-LSTM, Encoder-Decoder LSTM, and presented the 

results. An overview can be seen in the following table. 
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Table 5: Summing up results of short-term load forecasting. 

House id RMSE SARIMAX RMSE Vanilla LSTM RMSE Enc-Dec LSTM 

2 7.9683 7.4302 7.3293 

3 5.6436 5.1557 5.3238 

4 (unseen) - 5.2411 - 

66 (unseen) - 7.6253 - 

69 15.035 14.539 14.701 

 

It is very important to combine the calculation of RMSE with a plot of true value vs predicted. We noticed also 

that models in some cases cannot follow the pattern and report wrong values, the following reasons might give an 

explanation: 

❖ There might be the case that we have erratic values (ground truth) due to malfunctioning smart meters; 

hence the predicted value could be actually close to reality. 

❖ Acceptable model error within a reasonable boundary. Acceptable should always be defined by the 

business. 

 

Another thing to consider, is that SARIMAX models are quite large ~14GB compared to LSTM ~6MB. Hence, 

they cannot be deployed in a resource constraint environment, like raspberry pi. 

 

For future work , we would like to perform the following actions: 

❖ Apply more sophisticated ways for replacing missing values, e.g., consider the hour of the previous day, 

replace long periods using distributions. In a production environment, it is unlikely to have long periods 

of missing data since alerts have been set and engineers fix the issues. 

❖ Incorporate more features like EXPORT_KW, PV_KW, BATTERY_KW. 

❖ Apply a classification algorithm, e.g.,  K-Nearest Neighbor (k-NN) [105], for grouping houses with 

similar patterns and then create models based on those profiles. 

❖ Test Prophet and CNN/LSTM Encoder – Decoder. 

 

The following saying sums up what we have experienced throughout this work. 

 

“The most reliable way to forecast the future is to try to understand the present.” 

⎯  John Naisbitt 
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