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Abstract 

Kubernetes is a widely used container orchestration tool that has greatly 

benefited the fast-paced development lifecycle. Its ability to manage thousands of 

containers and some of its key features, such as container lifecycle management, auto-

healing, and auto-scaling, have made it a top choice for managing demanding 

workloads such as large scale web applications. However, just like any other software 

tool, Kubernetes has its own set of security weaknesses as well. Many vulnerabilities 

that affect its components have surfaced in the past, but a large percentage of successful 

security breaches in Kubernetes environments are not actually attributed to security 

flaws in the platform itself. As a matter of fact, the most common security threats that 

Kubernetes faces are created by misconfigurations. Due to the complexity of 

Kubernetes and the inexperience of many administrators, securing a Kubernetes cluster 

and its workloads is still a challenge for many companies. In this thesis, we will discuss 

the deployment and configuration of a Kubernetes cluster, as well as the subsequent 

evaluation of its security posture with the use of the kube-hunter and Kubescape 

vulnerability scanning tools. The goal is to evaluate many aspects of the cluster's 

security by using several scanning techniques, such as internal and external scanning, 

YAML file scanning, inspection of its components for vulnerabilities, and even 

estimate the overall security risk. To make the configuration more realistic, real 

misconfiguration scenarios will be introduced to the cluster, and some sample 

applications will be deployed as well. Afterward, some of the discovered security flaws 

will be exploited to demonstrate the amount of damage a malicious actor could cause 

to the cluster and its workloads. Finally, to effectively strengthen the cluster, we will 

analyze and mitigate any discovered vulnerabilities that are actively exposing it at risk, 

while ignoring any false positive warnings. 
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Περίληψη 

Το Kubernetes είναι ένα ευρέως χρησιμοποιούμενο εργαλείο ενορχήστρωσης 

container που έχει ωφελήσει πολύ τον γρήγορο κύκλο ζωής ανάπτυξης λογισμικού. Η 

ικανότητά του να διαχειρίζεται χιλιάδες container και ορισμένα από τα βασικά 

χαρακτηριστικά του, όπως η διαχείριση κύκλου ζωής των container, η αυτόματη 

θεραπεία (auto-healing) και η αυτόματη κλιμάκωση (auto-scaling), το έχουν 

καταστήσει κορυφαία επιλογή για τη διαχείριση απαιτητικών φόρτων εργασίας, όπως 

εφαρμογές web μεγάλης κλίμακας. Ωστόσο, όπως και κάθε άλλο εργαλείο λογισμικού, 

το Kubernetes έχει επίσης το δικό του σύνολο αδυναμιών ασφαλείας. Κατά το 

παρελθόν έχουν ανακαλυφθεί πολλά τρωτά σημεία που επηρεάζουν τα στοιχεία του, 

αλλά ένα μεγάλο ποσοστό των επιτυχημένων παραβιάσεων ασφαλείας σε 

περιβάλλοντα Kubernetes δεν αποδίδονται στην πραγματικότητα σε ελαττώματα 

ασφαλείας στην ίδια την πλατφόρμα. Στην πραγματικότητα, οι πιο συνηθισμένες 

απειλές ασφαλείας που αντιμετωπίζει το Kubernetes δημιουργούνται από εσφαλμένες 

διαμορφώσεις στην παραμετροποίηση του. Λόγω της πολυπλοκότητας του Kubernetes 

και της απειρίας πολλών διαχειριστών, η προστασία ενός συμπλέγματος Kubernetes 

και του φόρτου εργασίας του, εξακολουθεί να αποτελεί πρόκληση για πολλές εταιρείες. 

Σε αυτή τη διατριβή, θα προχωρήσουμε στην ανάπτυξη και τη διαμόρφωση ενός 

συμπλέγματος Kubernetes, καθώς και στην επακόλουθη αξιολόγηση της ασφάλειας 

του με τη χρήση των εργαλείων σάρωσης ευπαθειών kube-hunter και Kubescape. Ο 

στόχος είναι να αξιολογηθούν πολλές πτυχές της ασφάλειας του συμπλέγματος 

χρησιμοποιώντας διάφορες τεχνικές σάρωσης, όπως εσωτερική και εξωτερική 

σάρωση, σάρωση αρχείων YAML, επιθεώρηση των στοιχείων του συμπλέγματος για 

τρωτά σημεία, ακόμη και εκτίμηση του συνολικού κινδύνου ασφάλειας. Για να γίνει η 

διαμόρφωση πιο ρεαλιστική, θα εισαχθούν πραγματικά σενάρια εσφαλμένης 

διαμόρφωσης στο σύμπλεγμα και θα αναπτυχθούν επίσης ορισμένα δείγματα 

εφαρμογών. Στη συνέχεια, ορισμένα από τα ελαττώματα ασφαλείας που θα 

ανακαλυφθούν, θα αξιοποιηθούν για να αποδειχθεί το μέγεθος της ζημιάς που θα 

μπορούσε να προκαλέσει ένας κακόβουλος παράγοντας στο σύμπλεγμα και στον φόρτο 

εργασίας του, αξιοποιώντας τα κενά ασφαλείας με τη χρήση κατάλληλων επιθέσεων. 

Τέλος, για να ενισχύσουμε αποτελεσματικά την ασφάλεια που παρέχει το σύμπλεγμα, 

θα αναλύσουμε και θα μετριάσουμε τυχόν ευπάθειες που ανακαλύφθηκαν που το 
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εκθέτουν ενεργά σε κίνδυνο, ενώ θα αγνοήσουμε τυχόν ψευδώς θετικές ειδοποιήσεις 

(false positives). 
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1. Introduction 

During the last twenty years, the ever increasing need for computing resources 

has led thousands of enterprises to search for alternative ways to manage their 

workloads. The first major transformation was caused by virtualization, a technology 

that allows multiple operating systems to share the same underlying hardware and at 

the same time optimize operational costs and increase the security, speed and backup 

capabilities of their virtualized systems. The logical grouping of resources that 

virtualization allowed for, facilitated the simpler and more effective creation and 

expansion of infrastructure, both features that the modern cloud computing platforms 

heavily depend on. 

The second important technological breakthrough that was developed as a 

solution for the modern fast-paced software lifecycle, are the containerization and 

container orchestration technologies. Containers are small software packages that 

consist of application code, dependencies and a minimal version of the operating 

system’s user space. Their small size allows for increased portability, efficiency and 

consistency that greatly benefit development, but since containers do not offer complete 

isolation from external resources like virtualization does, several security concerns are 

raised. Container orchestration software such as Kubernetes, enables the easier 

management of large numbers of deployed containers and enforces security policies for 

all cluster resources. To isolate management functions from workloads, Kubernetes 

splits its functionality into two planes, the control plane and the data plane. Like every 

other software, Kubernetes has its own security weaknesses as well and since it operates 

as an intermediate layer between the application and the underlying host, its security 

posture greatly affects its workloads. 

The goal of this thesis is to assess the current security state of Kubernetes, by 

first discovering already known vulnerabilities that arise either from misconfigurations 

or from security weaknesses of Kubernetes components. Afterwards, a detailed guide 

will be provided for the provisioning of a Kubernetes cluster that by default consists of 

three nodes (one master node and two worker nodes) and some of the discovered 

misconfigurations will be applied to the cluster. To make the scenario more realistic for 

the next steps, a couple of sample applications will be provided as well, alongside with 

guidance on deploying them to the cluster. Subsequently, a vulnerability assessment 

will be conducted with the use of the Kubescape and kube-hunter security scanning 
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tools and some of the discovered weaknesses will be exploited by performing security 

attacks against the cluster. Finally, for every discovered security weakness that affects 

the Kubernetes cluster, a variety of countermeasures will be created with the purpose 

of reducing the imposed security risk as much as possible without breaking the 

functionality of the cluster’s workloads. 
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2. Theoretical Background 

This section aims to provide some background on the concepts of virtualization 

and containerization, as well as the advantages that these technologies offer compared 

to bare-metal deployments. Kubernetes being a container orchestration tool, relies 

heavily on containers and therefore terms related to these technologies will be repeated 

multiple times throughout this thesis. 

 

2.1. Virtualization 

Virtualization first appeared in the 1960s, where for the first time an attempt 

was made from IBM to divide a mainframe computer’s system resources across 

different applications. It is the concept of creating a virtual system that replicates the 

functionality of a physical one. This system could be almost any component that is part 

of a modern information technology (IT) infrastructure, from servers and storage 

devices, to networking appliances and even operating systems [1].  

The basic idea behind virtualization is the creation of an abstraction layer 

between the actual hardware and the virtualized systems that run on top of it. This 

abstraction layer is responsible for creating, managing, and allocating the virtualized 

hardware (storage, networking, CPU’s, RAM, etc.) that the VM’s (Virtual Machines) 

rely on to operate. To achieve this, special software implementations called hypervisors 

are utilized. There are two types of hypervisors, the Type-1 Hypervisors which are also 

known as bare-metal hypervisors and Type-2 Hypervisors or hosted hypervisors. The 

main difference between them, is that bare-metal hypervisors run directly on the Host’s 

physical hardware, in contrast with hosted hypervisors that run as a process on an 

operating system as depicted in Figure 2.1. Type-1 hypervisors offer superior 

performance compared to Type-2 hypervisors and are by far the most common choice 

in production environments. 

 

Figure 2.1: Traditional vs Virtual Architecture [2] 
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2.1.1. Advantages and disadvantages of Virtualization 

Virtualization offers several advantages over traditional architectures and 

enables opportunities that would not be possible without it. One such example are 

modern data centers, which would never be able to offer the current service quality and 

reliability without virtualization. The advantages that virtualization offer, can be 

observed below [3] [4]: 

• Faster provisioning and scaling of resources: Resource provisioning is 

crucial in the modern world. Virtualized environments offer the ability to build 

and expand infrastructure quicker and thus the ability to keep up with the 

constant application growth. 

• Space management and cost reduction: Provisioning of multiple servers, no 

longer requires setting up the corresponding number of physical machines. In 

fact, a single host with enough resources, could run all these servers and 

preserve a lot of space and assets (racks, cables, network devices, etc.). 

Additionally, the utilization of less equipment to achieve the same result, offers 

better power consumption, confines the cost, and reduces e-waste significantly. 

• Improved backup and disaster recovery procedures: Virtualization enables 

the ability to copy the whole operating system along with its files and services 

on a single file. This file can be easily backed up and restored much faster than 

setting up a new or troubleshooting a physical server. 

• Vendor agnostic solutions: One of the main issues of the past, were the vendor 

specific protocols and protocols that made it almost impossible to integrate with 

other solutions. Virtualization pushes Vendors towards using open standards 

and technologies. 

• Testing and staging environments: Provisioning of testing and staging 

environments is fast and easy with virtualization. Software development can 

also benefit greatly, by providing adequate resources for testing. 

• Enhanced security: Virtual machines have the same security risks as physical 

systems, but virtualized environments offer greater monitoring capabilities. 

This implies that monitoring object associations, security policies, network and 

hardware changes is more efficient than managing multiple physical hosts. 

Beyond the advantages offered by virtualization, its implementation also comes with 

some disadvantages, such as [3]: 



Kubernetes Cybersecurity 

Ioannis Morfonios  5 

• Cost of implementation: In order to convert a traditional infrastructure to a 

virtualized one, there is a significant cost that companies are required to pay. 

More expensive and powerful equipment is required in order to efficiently run 

a large number of virtualized servers. There is also a steep learning curve for 

the administrators of these systems, so an additional cost for proper training and 

familiarization with this technology should be considered. 

• Security patching: Applying security fixes to the virtualized systems or the 

underlying hosts requires consideration and planning. Incompatibilities 

between the current and the updated software might cause downtime or delay 

the application of security patches. 

• Multiple services rely on a single host: Since a lot of virtualized servers rely 

on a single host to operate, a system failure on a host system could potentially 

disrupt the functionality of the services that run on its guest systems. 

 

2.2. Containerization 

Containerization as a concept appeared in 2008, a year after the Linux kernel 

introduced a new feature called c-groups or control groups. Control groups were 

designed to provide a way to limit, isolate and account for the resource usage for a 

group of processes. This specific Linux kernel feature paved the way for almost all the 

current container technologies that we encounter on cloud, on-premises, and hybrid 

environments today. 

Containers could be described as the evolution of virtualization in computing 

resource management. The main difference between virtualization and containers is 

that instead of running a complete operating system and applications on top of it, 

containers utilize only the user mode section of an operating system and make low level 

system calls to the host operating system’s kernel via the Container Manager. 

Additionally, containers contain just the required services, libraries, frameworks, and 

dependencies to run the application code and nothing else. This practice makes 

containers reliable for transferring between different systems and platforms and faster 

to deploy since all the application’s dependencies are already bundled in a single 

lightweight package. A visual representation of the virtualization and containerization 

technologies and their components can be seen in Figure 2.2 [5] [6] [7].  
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Figure 2.2: Virtualization vs Containerization [8] 

Security-wise containers do not provide the complete isolation capabilities of 

virtual machines, due to their dependency on the host operating system kernel. 

However, this does not mean that environments that utilize them are not secure. The 

isolation of applications in containerized environments, prevent the spreading of 

malicious code outside of the container and protects the host system and other 

containers from infection. In addition, replacing an affected container with a healthy 

one is a quick procedure with minimal risk, due to the ephemeral nature of containers. 

 

2.2.1. Advantages and disadvantages of Containerization  

When compared to virtual or physical systems, containers offer various 

advantages. Those benefits concern a wide variety of people from developers that will 

develop the applications, to IT engineers that will deploy the actual infrastructure. The 

advantages of containerization are the following [5] [7]: 

• Deployment speed and scalability: Deploying containers is much faster than 

deploying virtual machines or physical systems. The lightweight nature of 

containers allows for quicker startup times and better resource utilization. These 

elements allow for easier and faster scalability. 

• Portability: Containers can be easily and reliably migrated between different 

systems and architectures without the need to manually perform changes on the 

applications or images. 

• Security: Containers isolate the application code and all its dependencies in a 

single package and expose only the required services to the outside world by 

default. 
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• Fault tolerance: Failure of a container does not affect other containers or the 

host system. Replacement of affected containers with healthy ones is fast, easy 

and in many cases can be performed without manual intervention (self-healing). 

• Ease of management: Managing containers is faster and in many cases can be 

fully automated with the use of container orchestration platforms. 

• Improved software delivery: Software development can be greatly benefited 

by providing developers an easy way to write code without the need to 

constantly manage application dependencies. Additionally, the software 

delivery process can in many cases be automated by embracing the concepts of 

continuous integration / continuous delivery. 

• Testing and staging environments: Containerization offers an easy and quick 

way to provision testing and staging environments alongside production 

environments. Software quality can also be improved by providing to 

developers adequate resources for testing purposes. 

Even though containers offer a lot of benefits, there are also some considerations that 

need attention before utilizing them in production systems. These considerations are 

[7]: 

• Security: Containers have a potentially greater security risk than conventional 

virtual machines since they are not completely isolated from the host’s 

operating system. Due to their architecture, containers require multi-level 

security in order to be adequately protected, which means that the chosen 

container registry, the container runtime, the host operating system and the 

containerized application all need to be properly secured. 

• Storage: Containers are ephemeral, which means that in case they get destroyed 

and recreated their data will be permanently lost. For this reason, it is necessary 

to provide a persistent storage solution to the deployed containers to prevent 

data loss. 

• Monitoring: Observability in containerized environments requires planning 

and adds overhead to the deployed resources. This occurs due to the additional 

monitoring containers that need to be deployed as sidecars, alongside the actual 

application containers. 
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2.3. Container Orchestration 

The previous sections laid out the basics of containerization, its main 

characteristics, advantages, and the possibilities that it offers. The vast superiority of 

this technology in terms of speed and resource usage, caused its widespread adoption 

by millions of organizations worldwide. However, the increase in popularity caused the 

number of containers that organizations managed to grow exponentially, to the point 

that a simple change could take days to be deployed. The concept of container 

orchestration came around to solve this problem and provide a more reliable way to 

perform or even automate a variety of operations such as [9] [10]: 

• Container provisioning, configuration, and scheduling 

• Container scaling, removal, and replication 

• Performing health and availability checks 

• Resource management and allocation between nodes and containers 

• Management of networking operations between containers such as routing, load 

balancing, and service discovery 

• Storage management 

• Management of security interactions between the containers and the cluster with 

the outside world 

As of August 2022, the most common container orchestration tool is Kubernetes which 

will be further analyzed in the following chapter. Besides Kubernetes, there are other 

orchestration tools available such as Docker Swarm, OpenShift which is based on 

Kubernetes, HashiCorp Nomad and many more. It is worth mentioning that most of the 

popular container orchestration tools are open source software with communities that 

actively contribute to the projects. This has greatly benefited standardization, to the 

point where any of these tools can be used in multiple platforms and even support many 

container runtimes from different vendors out of the box [11]. 

 

2.4. Pods 

Pods are the smallest unit of work and the most basic deployable object in 

Kubernetes. They are high-level abstraction groups of one or more containers, with 

shared network and storage resources. The way pods run containers is governed by their 

specification. By default, inter-process communication between two different pods is 

not allowed, but containers in the same pod can communicate through localhost. To 
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avoid address conflict issues, Kubernetes assigns a unique IP address to each pod. This 

IP address is not static and is altered every time a pod is destroyed and re-created. 

Normally, the monitoring and management of the pods is performed by the Kubernetes 

API server, but pods can also be directly configured and managed by the kubelet utility. 

Those are called static pods and they are always bound to the kubelet component on a 

specific cluster node [40] [41] [42]. 
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3. Kubernetes Architecture 

Kubernetes is a free and open-source container orchestration platform that is 

currently hosted by the Cloud Native Computing Foundation. Its name originates from 

the Greek word «Κυβερνήτης», which means helmsman or pilot. It is based on a 

container management system named Borg, which was developed as an internal project 

by Google. Kubernetes was released in 2014 and up to this day, it is by far the most 

popular tool of its kind. The main purpose of Kubernetes is to ease the management of 

containerized workloads, but it has many more capabilities that can actively contribute 

towards automation, application scaling and generic application operations in 

containerized environments across multiple clusters [12] [13]. 

 Kubernetes is based on a client-server architecture which separates its 

functionality into two different planes, the control plane and the data plane. The control 

plane is responsible for the management operations of the cluster such as resource 

allocation, scheduling, state management and much more. The data place hosts the 

containers that serve the actual applications and services. These planes are designed to 

operate on different servers and thus Kubernetes deployments are normally a cluster 

that consists of multiple master and worker nodes. Each node, depending on its role, is 

utilizing a specific set of internal components or extensions to operate. Master nodes 

depend on control plane Kubernetes components while worker nodes depend on data 

plane components. The communication of these components relies on the Kubernetes 

API server, a control plane component that serves the Kubernetes API that acts as both 

an internal and external interface to the cluster. An overview of the Kubernetes 

architecture can be observed in Figure 3.1 [12] [13] [14]. 

 

Figure 3.1: Kubernetes cluster architecture [15] 
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 Additionally, to manage the state of the cluster, Kubernetes uses persistent 

entities that are called objects. Objects can be created, deleted, or edited with the use of 

YAML files. Once an object is created, Kubernetes always tries to retain its state 

unmodified by monitoring multiple aspects relative to the object, such as the resources 

that are available to this object, on which worker node it is running and the security 

policies that are applied to it. More information about objects, the available object 

types, and their properties, will be presented in chapter 3.4 [16]. 

 

3.1. Master Nodes 

Master nodes in Kubernetes clusters run the control plane and therefore are 

responsible for controlling the cluster. They act as the primary point of contact for 

administrators and perform global decisions for the cluster, such as: 

• manage objects (Deployments, ReplicaSets, etc.) and the cluster’s state 

• accepting and handling user requests 

• detecting and taking actions when cluster events are generated 

• schedule and distribute load across the available worker nodes 

• provide authentication for both clients and Kubernetes components 

• manage networking and storage for the whole cluster 

• perform health checks 

All Kubernetes clusters require at least one master node to operate and three or more 

master nodes in production environments, to provide redundancy and high availability. 

The main control plane components that run on these nodes are: 

• etcd 

• API server 

• Scheduler 

• Controller Manager 

• Cloud Controller Manager (used on cloud deployments) 

The above components can run independently on different servers, but for simplicity 

running them on a single server is usually preferred. In the sections below, the 

functionality of the four main control plane components will be further analyzed [13] 

[17]. 
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3.1.1. etcd 

etcd is a critical control plane component of Kubernetes. CoreOS's etcd project 

is an open-source, lightweight, distributed key-value datastore that may be configured 

to run over several nodes. Its main purpose is to provide distributed systems or clusters 

features such as common configuration, service discovery, and scheduler coordination. 

It also supports the setup of overlay networking for containers, allows the delivery of 

safer automated upgrades, and coordinates tasks being scheduled to nodes. As 

Kubernetes' core datastore, etcd stores and replicates all Kubernetes cluster state data. 

Kubernetes monitors these data and reconfigures itself when the cluster's state changes. 

Changes are then pushed back to etcd from the corresponding controller, always 

through the Kubernetes API server. By spreading its configuration and state data across 

several nodes, Kubernetes can maintain more consistent uptime and stay operational 

even in the face of individual node failure. To properly plan and execute services, etcd 

is configured in a way that prioritizes consistency over availability in case an 

unexpected network partition occurs. Due to the distributed nature of etcd, cluster 

configuration is frequently difficult, therefore modifications should be done with 

caution, especially in production environments. An overview of the etcd architecture in 

Kubernetes can be observed in Figure 3.2 [17] [18] [19]. 

 

Figure 3.2: etcd cluster inside a highly available Kubernetes cluster [20] 
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3.1.2. API Server (kube-apiserver) 

The Kubernetes API server is the core control plane component of Kubernetes. 

It is a web server that exposes the Kubernetes API and allows both internal (cluster 

nodes and their components) and external sources (clients) to interact with each other. 

It handles RESTful HTTP calls for multiple purposes such as the Kubernetes cluster’s 

administration, the coordination of the cluster and its components, component log 

streaming, internal control loop handling, and the creation, deletion, or modification of 

objects. Kubernetes returns JSON serialized objects by default, but protocol buffers are 

also supported to achieve better performance in large scale scenarios. Additionally, it 

supports varying degrees of support and stability, by providing a plethora of API 

variants at different paths and discovery endpoints. Since the API server is stateless, it 

cannot retain information or the status of the cluster’s objects. This is an important 

issue, because Kubernetes should be able to know the transient state of its managed 

objects to be able to recognize if they already exist and validate modifications before 

applying them to these objects. To achieve this, the Kubernetes API server stores its 

state in a distributed storage component called etcd. All the occurring modifications in 

state cause the API server to modify objects directly on the etcd datastore. As a matter 

of fact, the Kubernetes API server should be the only component that has direct access 

to etcd, and all the other components should communicate with it only via the API 

server. As a best practice, in production environments that high availability is a 

necessary precondition, at least three separate Kubernetes API server instances should 

exist for each cluster, to avoid issues during the leader master node election procedure 

in Leader Election Architectures [21] [22] [23]. 

 

3.1.3. Scheduler (kube-scheduler) 

The kube-scheduler is an extendable control plane component that ensures that 

newly created workloads are distributed across the worker nodes of a Kubernetes 

cluster. Its main role is to monitor for pods that have not been scheduled yet, examine 

the operational requirements of each workload, and select the most suitable worker 

node for that pod. On top of that, the scheduler constantly monitors the resource 

capacity of each worker node, to ensure that workloads do not exceed the available 

resources. To determine which node is more suited, the scheduler uses a two-step 

procedure. The first step is filtering, where it determines if there are any nodes that have 
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enough available resources to host the new pods. In case there are no worker nodes with 

enough resources, the new pod is not scheduled right away and is added to a queue for 

scheduling when enough resources are freed up. In case there are available worker 

nodes and more than one node have enough free resources, the scheduler moves to the 

second step of the worker node choosing procedure, which is scoring. The Kubernetes 

scheduler ranks each node by assigning a score and chooses the higher ranking node as 

the most suitable among the available nodes to host the new pod. The filtering and 

scoring algorithms can be finetuned by configuring scheduling policies or scheduling 

profiles. Furthermore, apart from kube-scheduler Kubernetes supports third party 

schedulers as well and even provides documentation on creating custom schedulers. An 

overview of the Kubernetes pod scheduling procedure is depicted in Figure 3.3 [13] 

[24] [25]. 

 

Figure 3.3: Kubernetes pod scheduling procedure [25] 

 

3.1.4. Controller Manager (kube-controller-manager) 

The Kubernetes controller manager is a control plane component with the 

purpose of managing the cluster’s controller processes. A controller is a control loop 

that monitors the cluster’s state through the API server and performs the required 

modifications to drive the cluster’s current state towards the desired state, by creating, 

deleting, or modifying its managed objects. There are multiple types of controllers, with 

the most common ones being the below: 

• Replication controller: Monitors the number of defined replicas per pod 
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• Job controller: Monitors for Job objects and creates pods  

• Node controller: Monitors the status and availability of the nodes 

• Endpoint controller: Binds services and pods 

• Service account and service token controllers: Creates accounts and API 

tokens for new namespaces 

In general, the state of Kubernetes clusters is constantly changing, so the cluster never 

actually reaches a stable state. If control loops are handled correctly by controllers and 

the random faults that might occur are automatically repaired, the cluster can operate 

normally and perform changes even though the desired state is never actually stable. 

The controller manager identifies the cluster's current state by reading it from the etcd 

datastore and every state modification it performs is written back to etcd through the 

API server [17] [26]. 

 

3.1.5. Cloud Controller Manager 

Another Kubernetes control plane component with comparable responsibilities 

to the kube-controller-manager is the cloud-controller-manager. The primary 

distinction between the two, is that the cloud controller manager provides the necessary 

functionality that allows Kubernetes clusters to connect with cloud provider API’s. It 

also imposes a logical separation between the internal components of the cluster and 

those that interface with the cloud platform. This decoupling of the Kubernetes cluster 

from the underlying cloud architecture, enables cloud providers to release new features 

without interfering with the functioning of Kubernetes clusters that operate on top of it 

or necessitating modifications to accommodate these capabilities. In addition, the cloud 

controller manager manages unique controllers for each cloud provider. Some of the 

controllers that may have cloud-related dependencies include [17] [27]: 

• Node controller: Monitors the cloud platform for missing nodes and determines 

if those nodes have been deleted or are unavailable  

• Route controller: Creates the required network routes in the underlying 

infrastructure 

• Service controller: Creates, deletes, or modifies the cloud provider’s load 

balancer services 
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3.2. Worker Nodes 

Worker nodes form the data plane of Kubernetes. These nodes are managed by 

the control plane nodes and are responsible for running the actual containerized 

workloads of the cluster. Worker nodes contain three main data plane components. The 

first component is the kubelet, an agent that allows the control plane to manage the 

nodes through the API server. The second component is the container runtime which 

runs and controls the containers. The third and final component is kube-proxy, which 

enables connectivity between the Kubernetes nodes by managing networking. The 

following sections contain more information about each component and its functions. 

Since worker nodes do not perform control actions on their own, a Kubernetes 

cluster should always contain at least one master node. Worker nodes are usually 

managed through the control plane, but self-management for certain tasks is possible 

as well. Additionally, for a worker node to become part of a Kubernetes cluster, it needs 

to be registered either by itself (through kubelet) to the cluster or manually by creating 

a node object and deploying it to the cluster [13] [28]. 

 

3.2.1. Kubelet 

As already mentioned, worker nodes in Kubernetes clusters rely heavily on 

master nodes to perform control related actions. For that reason, an extra component is 

required that interfaces with the control plane and allows it to interact with the data 

plane components. kubelet is a data plane component that acts as an agent. It runs on 

all the worker nodes of a Kubernetes cluster and ensures that containers are healthy and 

are running as expected on all the node’s pods. It can also conduct control plane-

directed activities such as launching, halting, and updating application containers. 

When kubelet detects a pod that is not in the desired state, it redeploys it on the same 

worker node as instructed by the corresponding controller. To inspect the containers’ 

state and health, kubelet uses a set of information called PodSpec, a YAML or JSON 

file that describes pods and their containers. Every time a new pod is scheduled, the 

API server forwards PodSpecs to kubelet, to inform it about the details of the new or 

modified pods. Once the kubelet is informed about the changes, it provides instructions 

to the container runtime, which will apply the requested modifications to the containers. 

The desired pod state for the kubelet, is the state described in the last PodSpec it 
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received from the API server about that specific pod. The most basic form of a simple 

PodSpec or pod manifest can be observed in the following figure [17] [29] [30]. 

 

Figure 3.4: Basic form of a PodSpec (pod manifest) 

 

3.2.2. Container Runtime 

The container runtime is another data plane component that is responsible for 

running and managing containers and containerized applications that run inside pods. 

At its most basic form, each unit of work on the cluster is expressed as one or more 

containers that need to be deployed. The component on each worker node that 

eventually executes the containers described in the workloads given to the cluster, is 

the container runtime. 

The most prevalent container runtime as of August 2022 is the Docker Engine, 

however Kubernetes also supports alternative runtimes such as CRI-O, containerd, rkt, 

runc, and other implementations that support the Kubernetes Container Runtime 

Environment (CRI). The Kubernetes CRI is a plugin interface that enables the kubelet 

component to utilize a wide variety of container runtimes, without the need to recompile 

the cluster components each time the container runtime in use is changed. It consists of 

a list of specifications, the protobuf API and container runtime libraries, which allow 

communication with each node's kubelet component. Without the Kubernetes CRI, for 

a container runtime to integrate with the kubelet, its developers would require having a 

thorough understanding of the kubelet’s architecture to contribute to the component’s 

code [17] [31] [32]. 

 

https://protobuf.dev/#what-are-protocol-buffers
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3.2.3. Kube-proxy 

The Kubernetes network proxy is the third and final required data plane 

component. Like kubelet and the container runtime, kube-proxy runs on all the worker 

nodes of the cluster. It is a minimal network proxy service and a simple load balancer. 

Its functions are based on the concept of services, a Kubernetes object that will be 

further analyzed in a later chapter. kube-proxy’s main role is to manage networking on 

the worker nodes and more specifically to create network rules that allow internally or 

externally initiated network sessions to reach the pods. It is also responsible for the 

routing of the network traffic to the correct container, based on the destination IP 

address and port number of the requests. To perform network filtering and traffic 

forwarding kube-proxy utilizes the operating system’s packet filtering layer (e.g., 

iptables), however it can also forward the network traffic by itself in case there is not 

one available. Currently, kube-proxy supports forwarding and load balancing (uses the 

round robin algorithm by default) for the TCP, UDP and SCTP layer four protocols. 

Finally, the Kubernetes network proxy aims to provide reliable and secure networking 

by exposing only the defined services of each pod, thereby enforcing a positive security 

model on the cluster [13] [17] [33]. 

 

3.3. Extending the functionality of Kubernetes 

As already mentioned, Kubernetes at the time of writing is by far the most 

popular container orchestration tool since almost half of the organizations that use 

containers rely on Kubernetes (managed or not) for container orchestration [34]. It is 

also open-source, extensible and very well documented, which has led to the 

establishment of a big and active community that is contributing code to either the main 

Kubernetes project or to third party tools, add-on components and even develop 

extensions for the main components of Kubernetes. Many of these projects are today 

an important part of Kubernetes, even in large production environments that manage 

thousands of containers. In the below sections, the main characteristics of Kubernetes 

component extensions, add-on components and package management will be further 

analyzed. 
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3.3.1. Extensions 

Extensions are aimed towards cluster administrators and are a way of properly 

customizing Kubernetes clusters to operate in any work environment. The purpose of 

extensions may vary, but the most popular use cases are to either provide support for 

the underlying infrastructure and hardware (e.g., deploying Kubernetes clusters on a 

cloud provider that Kubernetes does not officially support yet), or enable automation 

by creating client programs. The two main extension categories are the API extensions 

and the infrastructure extensions. API extensions are related to the following set of 

control based actions [35] [36]: 

• Authentication and authorization 

• Admission control 

• Access to the Kubernetes API 

• Definition of custom types and resources 

• Combining custom resource API with automation (Operator pattern) 

Infrastructure extensions aim to provide support for specific hardware types and 

network fabrics by using: 

• Network plugins 

• Storage plugins 

• Device plugins 

• Scheduler plugins 

There are three extension patterns that indicate how a Kubernetes cluster 

interacts with an extension. The first one is the controller pattern, in which Kubernetes 

reads an object’s «spec» field, performs the described operations, and then updates the 

object’s «status» field. The second pattern is the webhook pattern, where Kubernetes 

acts as a client and performs requests to a remote service. The third and final extension 

pattern is the binary plugin pattern, in which Kubernetes executes binary extensions 

that are used by the kubelet or kubectl. A simplified overview of the mentioned 

extension patterns can be observed in Figure 3.5 [35] [36]. 
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Figure 3.5: Kubernetes extension patterns interaction with the cluster 

In addition, Kubernetes defines seven extension points that indicate the main entry 

points that Kubernetes provides for the execution of extensions. Each extension point 

defines a scope that exposes certain parts of the cluster to the extensions that comes 

with each own set of advantages and disadvantages. The mentioned extension points 

are the following [35] [36]: 

• kubectl: kubectl extensions extend the functionality of the kubectl binary. 

These extensions affect only the local user’s environment. 

• API server: Authentication, authorization, and request handling related 

extensions. 

• API server resources (pods, nodes, etc.): Creation of custom Kubernetes 

resources that extend the functionality of the stock resources. 

• Scheduler: Resource scheduling related extensions. 

• Controllers: Definitions of custom controllers that are used with custom 

resources. 

• Network: Plugins that extend the networking capabilities of pods. 

• Storage: Plugins that add support for new storage types. 

3.3.2. Add-ons 

In general, setting up a Kubernetes cluster and deploying applications to it is 

not a difficult task. However, like every piece of software Kubernetes has some 

deficiencies. Due to the extensible nature of Kubernetes, these deficiencies are usually 

handled by third party plugins, called add-ons. Kubernetes add-ons are plugins 

designed to extend the functionality of Kubernetes’ main components. There are many 
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plugins available, which in terms of functionality can be organized into the following 

categories: 

• Networking and Network Policy (e.g., Calico, Flannel) 

• Service Discovery (e.g., CoreDNS) 

• Service Mesh (e.g., Istio) 

• Resource Scheduling and Resizing (e.g., Descheduler) 

• Security (e.g., Falco) 

• Visualization and Management (e.g., Kubernetes Dashboard) 

• Storage (e.g., Portworx) 

• Package Management and Deployment (e.g., Helm) 

• Infrastructure (e.g., KubeVirt) 

• Monitoring and Logging (e.g., Kubernetes Prometheus, Elasticsearch) 

Addition or deletion of add-ons is usually easy, but there are also add-ons that require 

a configuration and specific settings to run properly. To handle the added plugins, an 

additional component called addon-operator is utilized to make the installation and 

management of add-ons easier. Finally, add-ons should be used with caution, especially 

in production environments. Even though add-ons integrate well with the existing 

Kubernetes components, many of these plugins are not compatible with other add-ons. 

This can lead to unexpected behavior and traffic disruption, so cluster administrators 

should always be aware of the components they use and how they cooperate with each 

other. In addition, since add-ons are individually developed from the main Kubernetes 

project, their installation might introduce new attack vectors to the cluster in case these 

add-ons contain security vulnerabilities [17] [37] [38] [39] [40] . 

 

3.3.3. Package Management 

In many cases, large and complex application deployments in Kubernetes 

require planning, creation of declarative YAML configuration files and provisioning of 

Kubernetes objects (e.g., pods, services, etc.). To make these steps easier Kubernetes 

has its own package manager, which allows cluster administrators and developers to 

package and deploy complex applications to Kubernetes clusters. The name of this 

package manager is Helm. Helm is maintained by its own community and is a graduated 

project of the Cloud Native Computing Foundation (CNCF). Its main capabilities are 

the following: 
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• Install and upgrade applications 

• Resolve application dependencies 

• Setup of Kubernetes deployments 

• Download software packages from remote repositories 

In addition, the Helm package manager makes use of three main components. The first 

component is the Helm command line utility, which acts as a client that end users can 

utilize to interact with Helm. The second component is Helm’s own packaging format 

called «charts», which consist of configuration files in YAML format and templates 

that are later translated into Kubernetes manifest files and deployed via the Kubernetes 

API server. The third and final component is a server called «tiller». Tiller runs on the 

Kubernetes cluster and its main purpose is to listen for commands. It is responsible for 

installing, removing, and upgrading charts by interacting directly with the Kubernetes 

API server [41] [42]. 

An important characteristic of Helm that rapidly increased its popularity, is that 

charts can be shared by the developers that created them and re-used by other cluster 

administrators. By using charts, application deployments can be sped up significantly 

even for simple applications and make operations teams capable of handling the 

increasing rate of software releases more reliably and efficiently. Helm even provides 

a chart repository with various open-source prepackaged charts, which can be freely 

downloaded and deployed by everyone. An overview of a typical application 

deployment in Kubernetes with the use of Helm charts can be observed in the following 

figure [42]. 

 

Figure 3.6: Helm workflow overview [43] 

https://www.cncf.io/reports/helm-project-journey-report/
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3.4. Objects 

To provide compute and storage resources to its hosted applications, Kubernetes 

heavily relies on the concept of abstraction. Abstraction comes in the form of workload 

objects, which are persistent entities that reflect the status of a Kubernetes cluster. By 

abstracting away infrastructure from high level applications and services, Kubernetes 

makes applications more portable, flexible and fault tolerant. Kubernetes objects depict 

the desired state of the cluster and once an object is created, Kubernetes tries to ensure 

that it exists, and its configuration does not change unless an authorized administrator 

specifically requests it. The current and desired state of objects are specified by the 

«status» and «spec» object fields respectively, which are present in the configuration 

files of most of the workload objects. The most prevalent way to create or modify 

Kubernetes objects is by using the kubectl utility. Before deploying new objects to the 

cluster, administrators need to describe objects in YAML format. The YAML files are 

later passed to the API server, get validated and then deployed to the cluster if no errors 

were found. Finally, objects can describe which containerized applications are currently 

in use, the available resources for each application and the policies that govern how 

these software applications operate. A complete overview of the most popular 

Kubernetes objects and the associations between them is depicted in Figure 3.7. In the 

following sections, the eleven most common workload objects will be analyzed [16] 

[44] [45]. 

 

Figure 3.7: Overview of Kubernetes objects and their associations [46] 
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3.4.1. Deployments and ReplicaSets 

Deployment objects are the most popular way of provisioning applications to 

Kubernetes. By using configuration files in YAML format, Deployments can create, 

update, or delete pods by providing declarative updates and creating a new desired state 

for the Kubernetes cluster. Deployment controllers will later change the current state of 

the cluster to the desired state. Deployments can also utilize a lower level object called 

ReplicaSets, to create and manage additional identical pods for scalability purposes. 

The main aim of ReplicaSets is to ensure that a set of replicated pods is always running 

at any moment. By utilizing ReplicaSets, Kubernetes can support self-healing. 

Replication controllers continuously monitor the status and health of the containerized 

applications and create new pods if necessary to maintain the availability of the defined 

number of replicated pods. ReplicaSets can be used directly to provision applications 

but is recommended to use Deployments instead. In contrast with ReplicaSets, 

Deployments can provide automatic updates to the pods without the need to make 

changes to the cluster’s managed pods, like scaling up and then scaling down specific 

pods to accommodate the incoming requests while manually updating the rest of the 

pods. The following figures present a basic configuration of the Deployment and 

ReplicaSet objects [45] [47] [48] [49]. 

          

Figure 3.8: Basic configuration of a Deployment (left) and a ReplicaSet (right) 
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3.4.2. DaemonSets 

DaemonSets make sure that every worker node that is part of a Kubernetes 

cluster runs a specified pod at any given time. If a new worker node is added to the 

cluster, that pod will be added to that node as well and in case a node is removed from 

the cluster, the pod is garbage collected. In general, DaemonSets could be useful when 

running storage, log collection or monitoring daemons on every worker node is required 

[45] [47] [50]. 

 

3.4.3. StatefulSets 

An important factor that every administrator should consider before deploying 

applications to Kubernetes, is if those applications are stateful or not. In general, 

handling applications that require affinity or persistence is harder, especially when it 

comes to scaling. To deal with this issue Kubernetes provides another workload object, 

called StatefulSets. In terms of functionality StatefulSets are connate to Deployments. 

The main difference between them, is that StatefulSets are meant to be used for the 

deployment of stateful applications (e.g., databases). More specifically, pods that are 

provisioned with the use of StatefulSets are provided with a sticky and predictable 

(consist of the pod name and the governing service domain) identity (e.g., db-01, db-

02, etc.) that is persistent across any re-scheduling and have predetermined DNS names 

that are not modifiable. In addition, stateful pods are separated into master and worker 

pods. The master pod is used for reading and writing operations and the worker nodes 

are used for data replication and read operations. Incoming requests are load balanced 

across all the pods for read operations, but changes happen only to the master pod and 

then replicated to the worker nodes. It is also important to mention that every pod that 

is deployed with StatefulSets has its own storage [45] [47] [51]. 

 

3.4.4. Namespaces 

Kubernetes namespaces are logical constructs that separate cluster resources 

into non-overlapping groups that provide segregation between multiple users. 

Resources that do not belong to a particular namespace are global or cluster wide. By 

using namespaces Kubernetes provides the ability to avoid naming conflicts between 

resources, to isolate the resources between different teams and share global services 
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between namespaces to minimize resource utilization. By default, Kubernetes comes 

with the following four pre-existing namespaces: 

• default: The default namespace for all user created objects that are not created 

with a declared namespace 

• kube-node-lease: Each cluster node has an associated lease object in this 

namespace that determines its availability by sending heartbeats  

• kube-public: Contains publicly available data 

• kube-system: Contains Kubernetes system related processes 

It is worth noting that all cluster resources are stored to the etcd. Kubernetes uses the 

API server to accept or drop access requests from users to specific resources, based on 

the defined RBAC (Role Based Access Control) policy. This means that all access 

control policies in Kubernetes clusters are applied by the API server and by gaining 

access to etcd, a user could potentially access resources from every cluster namespace 

[45] [52]. 

 

3.4.5. Services and Ingress 

Kubernetes services are logical abstractions for groups of deployed pods on a 

Kubernetes cluster. Services establish both internal and external connectivity to the 

cluster. Internal connectivity is provided by assigning IP addresses and DNS names to 

the pods, and thus enabling communication between nodes, pods, and external users. 

To enable external connectivity, services act as proxies that handle incoming traffic and 

load balance it between the available pods that are associated with the service. The 

association between pods and their service is done by using label selectors. Service 

discovery can happen by either defying environmental variables or through DNS. 

Furthermore, the life cycles of services and pods are not connected, so every time a pod 

dies and a new one takes its place the service IP address remains the same. Kubernetes 

provides the following types of services [45] [53]: 

• ClusterIP: The default service type. It creates a basic service that listens to the 

specified ports and load balances traffic between the available pod groups that 

are associated with it. 

• LoadBalancer: The LoadBalancer type makes the service externally accessible 

through the cloud provider’s load balancer. 
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• NodePort: This service type creates a service that is accessible through a 

defined port on each worker node in the cluster. 

• ExternalName: The ExternalName service type acts as a proxy that forwards 

traffic to a destination that exists outside the cluster. 

Even though it is possible to make the cluster services publicly available by 

exposing services to the internet, services provide little to no management options for 

application layer related operations. Some of these operations might be the definition 

of routing rules that forward traffic to certain pod groups when a specific application 

path is accessed (which is common in microservices architectures), the protection of 

the application by defining a TLS certificate and private key, the definition of a 

hostname that makes the application more user friendly and more. All this can be 

achieved by utilizing the Ingress object. Ingress is responsible for managing external 

access to the cluster’s services. It is implemented with the use of an Ingress controller 

that evaluates the incoming traffic and acts as an entry point to the cluster. There are 

many available choices that can act as an Ingress controller, with the most popular being 

the NGINX web server. An overview of traffic handling by the Kubernetes Ingress is 

depicted in figure 3.9 [45] [54]. 

 

Figure 3.9: Ingress traffic routing [55] 

 

3.4.6. Volumes 

Kubernetes does not provide persistent storage out of the box. The default disk 

files that containers use to store data are bound to the pod’s lifecycle. This means that 

every time a pod is restarted, all its stored data are lost. To prevent this, Kubernetes 

clusters should utilize storage that is not dependent on the status of the pods. In addition, 

this storage should be available to every worker node of the cluster. These requirements 

can be fulfilled with the use of Persistent Volumes (PV), a cluster resource that acts as 
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a representation of a storage volume and abstracts the physical storage device that is 

mounted to the Kubernetes cluster. Like other Kubernetes resources, PV’s can be 

created with the use of YAML files that specify information such as the storage 

capacity, the required access type (read, write), mount options, and more. To allow 

applications to claim the PV’s, another Kubernetes object needs to be used that is called 

Persistent Volume Claim (PVC). More specifically, PVC’s define a set of requirements 

(e.g., storage size, access type, etc.) that will be requested from a PV. If those 

requirements are valid and can be fulfilled, the pod that references the PVC and all its 

containers will gain access to the PV’s storage. In contrast with PV’s, PVC’s are not 

globally available inside the cluster and should always exist in the same namespace 

with the pods that reference it. By abstracting storage with PV’s and PVC’s, Kubernetes 

provides increased flexibility and portability for its deployed applications, but this 

model has a major flaw. Each time a new application that requires persistent storage is 

deployed, a new PV should be created as well to accommodate its storage requirements. 

In large Kubernetes environments that hundreds of applications are deployed in a daily 

basis, this task can become time consuming and hard to manage. To deal with this issue, 

Kubernetes adds yet another level of abstraction to the storage claim flow, by providing 

the Storage Class (SC) object. With the use of SC’s, each time a PVC attempts to claim 

a PV, SC’s dynamically provision PV’s. Like PV’s and PVC’s, SC’s are also created 

via YAML files that define information such as the storage backend (provisioner field) 

and parameters like the filesystem type and the supported data transfer rate. Kubernetes 

supports many types of persistent volumes through plugins. Some of the most common 

and well known types are the following [45] [56] [57] [58]: 

• local storage devices that are mounted directly on the cluster worker nodes 

• iSCSI storage 

• Network File System (NFS) shares 

• CephFS volumes 

• Fibre Channel (FC) storage 

• Cloud provider storage solutions such as AWS Elastic Block Store (EBS), 

Azure Disks and Shares Google Cloud Engine Persistent Disks 

An overview of the Kubernetes storage objects and the associations between them can 

be observed in Figure 3.10. 
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Figure 3.10: Associations of storage objects in Kubernetes [59] 

 

3.4.7. Secrets and ConfigMaps 

To efficiently manage stored configuration data for use between multiple 

objects, Kubernetes provides the Config Map (CM) and Secret objects. CM’s are used 

for storing an application’s non-confidential configuration data in key-value pairs. 

Secrets are preferred when the stored data are confidential (e.g., passwords, keys, etc.). 

Both objects can be independently created from the pods that utilize them and can be 

used in four different ways, as arguments or environmental variables inside a container, 

as a read-only file that an application can fetch and parse, or by executing code inside 

a pod that interacts with the Kubernetes API server to get data from the CM or Secret 

objects. The main benefit of these objects is the decoupling of environment related 

configuration data from the application’s code, which leads to improved portability 

between different environments. Moreover, modification of data is easier when 

performed on a single object and then automatically applied to all its related objects. 

Pods can fetch the new stored values directly after data changes to ConfigMaps or 

Secrets are deployed to the cluster. Finally, since these objects are not designed to store 

large amounts of data, the maximum size of stored data is limited to one megabyte. In 

case the data to be stored exceed this limit, it is also possible to utilize a separate 

datastore such as a database [60] [61]. 
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4. Common Misconfiguration Scenarios and Attack Surfaces 

Undoubtedly, containerization has benefited the software lifecycle a lot in the 

last decade by improving scalability, fault-tolerance, elasticity and of course portability, 

in both testing and production environments. One aspect of software that the 

containerization technology did not improve though, is security. By constantly 

deploying new expendable containers, organizations gradually lost the ability to 

efficiently manage these containers and keep up with their applications’ exponentially 

increasing security requirements. As already mentioned in the previous chapters, 

container orchestration tools like Kubernetes were developed to cope with these issues 

by retaining all the benefits of containerization. Even though Kubernetes offers many 

advantages, it remains a large and complex container orchestration system. It provides 

a large variety of configurable objects, which can be utilized across multiple 

environments and support various use cases and workloads. In many cases, the 

management of a Kubernetes cluster can be quite challenging even for experienced 

administrators and the lack of sufficient security skills further increases the risk of 

drifting away from good security practices.  

It is apparent that a significant portion of Kubernetes related security incidents 

result from misconfigurations. In 2021 and 2022, RedHat conducted research to 

identify the most common security issues in Kubernetes environments. According to 

RedHat, 93% of the IT and security research participants experienced a security 

incident that was related to containers or Kubernetes during the past 12 months. Most 

of these incidents were caused by misconfigurations, while the second most common 

factor were vulnerabilities that were discovered in Kubernetes. The result of the 

conducted research can be observed in the following figure [62]. 

 

Figure 4.1: Percentage of incidents related to containers or Kubernetes [62] 
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Analyzing all the possible misconfiguration scenarios in the Kubernetes system 

is challenging, mainly due to the large number of objects and the varying degrees of 

customization each object supports. For that reason, in the following sections the most 

common misconfiguration scenarios and attack surfaces in Kubernetes clusters will be 

analyzed. The attack surfaces and misconfigurations discovered are based on academic 

publications and publicly accessible articles on the internet, as well as my personal 

experience with Kubernetes. 

 

4.1. Improper Filtering of Ingress and Egress 

In many occasions Kubernetes clusters forward network traffic to external 

locations to complete certain workflows. The ExternalName service type that resembles 

a proxy server in functionality is a typical example of this behavior. The obvious way 

to protect the data that leave the cluster, is to use cryptography to establish secure 

communications with the remote services, but most administrators omit to properly 

secure the cluster’s endpoints as well. A common issue in Kubernetes, is that in many 

cases the cluster’s ingress and egress interfaces that are associated with external 

services are not properly secured with network access policies. To establish a strict and 

secure network policy, both incoming and outgoing traffic should be filtered. In 

addition, the ingress controller should be combined with either an external load balancer 

or a WAF (Web Application Firewall) appliance that can apply application layer 

security policies against the inbound network traffic [63]. 

 

4.2. Exposed Insecure Ports on Cluster Nodes 

The security and integrity of the physical or virtual servers that host the 

Kubernetes components is vital for the cluster to operate congruously, yet in many cases 

the security of the hosts is overlooked. A compromised cluster node could enable an 

attacker to perform a variety of operations such as lateral movement between the cluster 

nodes and privilege escalation. Both the master and worker nodes should be isolated as 

much as possible at both the system level by utilizing process isolating technologies 

such as SELinux or AppArmor and the network level with the use of iptables. Proper 

usage of permissions is also important for an adequately hardened server. In large 

deployment scenarios where firewalls might intervene to the communication between 

the cluster nodes, a positive security model should be preferred that only allows specific 
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communications on certain destination ports that are necessary for the cluster and its 

hosted services to operate. The following tables provide a list of all the network 

communications that might occur in a typical Kubernetes deployment [64]. 

 

Figure 4.2: Control plane communications 

 

Figure 4.3: Data plane communications 

 

4.3. Neglecting Logging and Monitoring 

Logging is an essential service of every modern IT infrastructure. Logs provide 

useful information about many aspects of a system’s operation, such as its overall health 

and its security posture. When it comes to logging Kubernetes tends to be quite verbal 

since it provides logging not only for its core components and services, but also for the 

containers on each pod and the applications that the containers host. The increased log 

verbosity can benefit Kubernetes management by providing more insight about the 

cluster events. A bad practice that has been adopted by many administrators is to 

monitor the system logs only for troubleshooting purposes and only in cases the 

cluster’s functionality is affected. As a result, administrators often fail to act in time in 

the event of a security incident and allow bad actors to attack and in many cases even 

infiltrate the affected system before they take actions to mitigate the threat. To 

efficiently mitigate potential security attacks, logging and monitoring should be an 
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essential part of a cluster’s maintenance. Logs and metrics should be inspected on a 

regular basis. Log analytics and SIEM systems can also be utilized to streamline and 

automate the log inspection and analysis procedure. To further increase security and 

awareness of the involved administrators, alerts and custom actions should be 

configured to allow for improved security incident response times and provide quick 

mitigation actions [65]. 

 

4.4. Running multiple applications in the same namespace 

Another frequent mistake that many Kubernetes clusters are susceptible to, is 

the use of the default namespace. The main purpose of Kubernetes namespaces is to 

logically separate application objects that operate on the same cluster. In a way, 

namespaces create virtual clusters that run on top of the physical cluster by abstracting 

the underlying cluster resources. The utilization of separate namespaces is often 

overlooked because they are considered optional. By default, every new object that is 

created is always assigned to the default namespace, unless another namespace was 

defined to the object’s manifest file or passed as a parameter to the kubectl utility during 

the object’s creation. This could lead to serious security repercussions in case a bad 

actor manages to compromise an application that is not separated from the other hosted 

applications. Another issue that this configuration irregularity might induce, is the 

accidental deletion of shared objects. This scenario is common when multiple teams 

manage applications on the same cluster without logically separating the environment 

in which their applications reside. Lastly, Kubernetes provides the ability to set up 

resource quotas that limit the amount of compute (e.g., CPU, memory), storage and 

objects a namespace (and its associated objects) can use. This feature is another 

advantage that the separation of applications with namespaces offer if configured 

correctly. By using quotas administrators can ensure that in the event of Distributed 

Denial of Service (DDOS) attacks, the cluster will not experience cluster-wide 

unavailability and the attack surface will be limited to a specific set of resources [65] 

[66] [67]. 

 

4.5. Unauthenticated Access to etcd 

The state of a Kubernetes cluster is stored inside a distributed key-value 

datastore that is called etcd and since Kubernetes cannot manage its state by itself, its 
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functionality is highly dependent on this datastore. The cluster’s state contains every 

possible object and resource has been configured up to that point, which includes 

objects, services, and of course secrets. If bad actors bypass the security mechanisms 

of the cluster and obtain access to etcd, they can perform a variety of actions such as 

disrupting the functionality of the cluster, stealing the cluster’s stored secrets and 

escalate their privileges without any restriction since all policies in Kubernetes are 

enforced by the API server. To properly secure etcd and its stored data from being 

exposed to malicious users, the following security measures should always be enforced 

[68] [69] [70]: 

• Run etcd on dedicated servers and use firewalls to filter communications: 

To eliminate the possibility of malicious users acquiring access to etcd in case 

a master node’s security is compromised, a good practice is to install and run 

etcd on separate servers. In addition, the communication between etcd and the 

Kubernetes API server should be intercepted by firewalls that allow 

communications only between specific source and destination IP addresses and 

ports. 

• Encrypt secrets: The Kubernetes API server can encrypt a defined set of secrets 

by including them in an Encryption Configuration object. This security measure 

is frequently overlooked, mainly because it is disabled by default. As a best 

practice, the cluster’s secrets should always be secured with either built-in or 

other well-known encryption methods. 

• Use TLS certificates to authenticate requests: To further secure 

communications between the Kubernetes API and etcd servers, TLS certificates 

should be used to enable mutual authentication between the two servers. etcd 

natively supports authentication for both client-to-server and server-to-server 

(peer) communications. 

 

4.6. Improperly Secured Access to API server 

The Kubernetes API server is the core component of Kubernetes and the main 

link between all the other Kubernetes components. It is also the main point of 

interaction between the cluster components and resources with users. It is crucial that 

access to the Kubernetes API is achieved only by legitimate users and components and 

always over secure communications. To properly secure the API, a robust 
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authentication method should be implemented such as TLS certificate based 

authentication. A drawback of certificates is that the private key should be adequately 

secured as well. For large environments generating multiple user certificates and 

securely storing large numbers of private keys might be challenging, but authentication 

with the use of TLS certificates is a good way to secure communications between 

Kubernetes components (TLS bootstrapping can be used automate the generation of 

certificates when a new worker node joins the cluster). A good alternative for managing 

user access is to perform authentication and authorization via third party providers by 

utilizing well known industry standards like the OAuth 2.0 and OpenID Connect 

protocols. These protocols can also support integration with existing user directories 

and the implementation of MFA (Multi-Factor Authentication) as an additional security 

measure to establish a more robust authentication scheme. Finally, to limit the amount 

of incoming authentication requests that the API server processes, rate limiting should 

be applied by the ingress controller [70]. 

 

4.7. Privileged Containers 

A common practice when specific services or plugins require access to certain 

host capabilities, is to allow containers inside pods to run in privileged mode instead of 

creating an account that has only the required level of permissions. This mode grants 

containers the CAP_SYS_ADMIN permission level, which allows it to run with almost 

the same privileges as the host’s local processes do. To make it even worse, developers 

often prefer to use the root account to solve all the application level errors that might 

occur by insufficient permissions while their application attempts to access certain 

resources. This means that privileged containers are no longer limited by the operating 

system’s security and isolation features (e.g., Linux cgroups) and can further escalate 

their permissions. Supposing that malicious users manage to acquire access to a 

privileged container, they become capable of exploiting the host and performing a 

variety of actions such as packet sniffing and lateral movement between the cluster’s 

nodes. Privileged mode is controlled by the «privileged» or 

«windowsOptions.hostProcess» flags for Linux or Windows operating systems 

respectively and can be found inside the security context of a pod’s spec. Both flags are 

disabled by default and their value needs to be explicitly set to «true» to enable 
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privileged mode. This feature is marked as deprecated as of version 1.21 and it will be 

completely removed from Kubernetes in version 1.25 [71] [63] [67]. 

 

4.8. Use of the Tiller Server without Authentication 

The Tiller server is a core component of the Helm package manager. As 

mentioned, the main benefit of Helm is its ability to bundle together sets of files that 

describe related Kubernetes resources. These bundles are called charts and can describe 

any existing Kubernetes resource. To create the requested resources, Helm 

communicates with Tiller over the gRPC RPC (Remote Procedure Call) framework and 

instructs it to create the resources. There are two major concerns in a typical Helm 

installation. The first one is the fact that Tiller resides inside the kube-system 

namespace as a Deployment while being able to create, delete, and modify any type of 

Kubernetes resource. The second and most important concern is that Tiller does not 

require any form of authentication by default. In case malicious users manage to access 

the Tiller server’s exposed gRPC port, they can create, delete, or modify any cluster 

resource without any restriction. To resolve this security issue, the Tiller server was 

completely removed in Helm version 3.0.0 and as a result newer versions of Helm 

consist of a single binary. Kubernetes administrators who still use older versions of 

Helm should mitigate this security issue by enabling a secure authentication method 

such as TLS certificate-based authentication on Tiller’s exposed port [72]. An overview 

of the functionality of Helm up to version 2 can be observed in Figure 4.4. 

 

Figure 4.4: Helm architecture up to version 2 [73] 
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4.9. Lack or Improper use of Access Control Policies 

Yet another habitual mistake that often exists in Kubernetes clusters, is the lack 

or misconfiguration of access control policies. The main purpose of access control is to 

ensure that users and cluster objects can communicate with only a limited set of 

resources, which are necessary to operate as expected. Furthermore, the practice of 

filtering non-essential communications can significantly reduce the attack surface in 

case malicious users manage to exploit a set of cluster resources or user accounts [63]. 

Kubernetes provides two ways of restricting access to resources. The first is by 

using network policies that apply directly to applications. By default, pods can reach 

all the resources inside the namespace they belong to. With the use of network policies, 

the connectivity between pods and other cluster resources can be limited to the 

minimum number of resources a pod needs to operate properly. The second way of 

controlling access to resources is by using RBAC (Role Based Access Control) 

authorization. RBAC applies to users and dictates which cluster resources users have 

permissions to interact with and what types of actions they can perform to these 

resources. Applying access control in many cases may seem like a trivial task and 

perhaps this is the main reason it is regularly overlooked. In fact, the creation of a robust 

access control policy requires a lot of planning to ensure that both security and usability 

are satisfied [74] [75]. 

 

4.10. Improper Management of Secrets 

Managing encryption is one of the most challenging tasks in the modern IT and 

software development world. To help developers manage the confidential data of 

applications such as passwords and tokens, Kubernetes provides a way to centrally store 

and manage these data with the use of secret objects. Even though secrets are more 

secure than storing confidential information in the application’s code, they still do not 

provide sufficient security. By default, Kubernetes does not encrypt the secrets. A build 

in feature of the Kubernetes API server is the ability to encrypt secrets that are stored 

in etcd with the use of the EncryptionConfiguration object. EncryptionConfiguration is 

a struct that accepts as input a secret encoded in base64 format and stores its encrypted 

value in etcd. The keys that are used to encrypt the secrets are generated locally and 

then stored in the EncryptionConfiguration object’s YAML file. This security 

mechanism is weak since malicious users can easily fetch the content of these YAML 
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files, retrieve the keys and decrypt the secrets. If they manage to acquire access to the 

Kubernetes cluster and other security mechanisms, the enforced access controls are not 

utilized. To deal with this issue, external solutions that provide better security such as 

HashiCorp Vault or Azure Key Vault (as depicted in Figure 4.5) should be utilized. 

These solutions provide superior security during the authentication of applications that 

request access to the vault’s secrets, by utilizing concepts such as managed identities 

and service principals. with the use of service accounts. In addition, these datastores do 

not store secrets in persistent locations and usually require more than one operator to 

access the plaintext value of the data, therefore providing more robust security [61] 

[76]. 

 

Figure 4.5: Credential retrieval process from Azure Key Vault [77] 

 

4.11. Kubernetes Vulnerabilities 

Kubernetes, like any other software, occasionally experiences vulnerabilities 

that threaten its components and hosted applications. In general, the Cloud Native 

Computing Foundation and the open source community behind Kubernetes are doing a 

great job at keeping it safe and ensuring that transition between software releases is 

easy and unproblematic. In addition, the constant support that Google and The Linux 

Foundation provide to the project by either contributing code or organizing bug hunting 

campaigns, further increase the project’s security posture. This results in the appearance 

of fewer vulnerabilities that require malicious users to meet several prerequisites to 

exploit them. To ensure that Kubernetes environments are adequately protected from 
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threats, Kubernetes components should always be kept up to date by installing the 

required software updates, following the changelogs and community guidelines 

regarding the Kubernetes system’s maintenance, and applying best practices by 

avoiding insecure features or deprecated functionality. 

 

4.12. Application Vulnerabilities 

Even though Kubernetes offers a lot of customizability options that can increase the 

overall security that its hosted applications provide (e.g., secret management, 

application and resource isolation, access control, etc.), it cannot fully protect 

vulnerable applications. Applications should be treated as a standalone entity when it 

comes to security and be designed to provide adequate protection without relying on 

the underlying infrastructure. The following are some of the best practices that 

application developers must conform to, to increase the overall protection that their 

applications provide [78] [79]: 

• Applications and their dependencies should be kept up to date 

• The use of deprecated or insecure dependencies should be limited as much as 

possible 

• Developers should follow the latest security advisories 

• Adequate security testing should be part of every CI/CD (Continuous 

Integration/Continuous Delivery) pipeline. A list of proposed checks is depicted 

in Figure 4.6. 

 

Figure 4.6: Proposed checks for enhanced CI/CD pipeline security 
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4.13. Vulnerable Container Images 

Publicly available image repositories are utilized daily by thousands of 

developers and infrastructure engineers to build and deploy new code, or even provision 

new infrastructure with the use of containers. Many organizations use their own images 

that reside in private repositories, but even those are often based on public container 

images as well. A major security concern when using public repositories, is that 

everyone has access to upload images that might be deliberately or unintentionally 

vulnerable to security attacks. Building vulnerable containers is quick and simple even 

for inexperienced attackers, since there are numerous open-source tools that can 

generate a variety of scenarios. The compromised images could be vulnerable in many 

ways like containing publicly known vulnerabilities, old and deprecated package 

dependencies and libraries, or even backdoors that download and execute malicious 

payloads after the images are deployed. Bad actors could take advantage of these 

vulnerabilities and attempt to escape the containers and compromise the underlying 

host. 

To detect and avoid insecure images, developers and administrators should 

always scan the images they intend to use before deploying them. Tools like dockerscan 

perform thorough security analysis of the images by providing information about the 

image’s security posture and detecting misconfigurations and bad practices. In addition, 

to ensure that images are safe to use, security teams could deploy the images in isolated 

environments and further inspect their behavior. Lastly, running containers in 

Kubernetes are immutable by default, so in the event of a security incident the 

container’s code and configuration file will not be altered [80] [81]. 

 

4.14. Improper Handling of Man in the Middle Attacks 

To enable network connectivity between the pods that reside in the same worker 

node, Kubernetes uses a network bridge that is called cbr0. This network bridge acts 

like a data link layer (L2) device, which processes the incoming ARP (Address 

Resolution Protocol) ethernet frames and forwards them to the other pods that are 

connected to it, by resolving their MAC (Media Access Control) addresses. By default, 

Kubernetes does not provide any protection against ARP spoofing attacks (e.g., 

dynamic ARP inspection). By launching an ARP spoofing attack inside the cluster, 

malicious users can send fake gratuitous ARP requests to the cbr0 bridge or to other 
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pods and impersonate the next hop device, by advertising its MAC address. This 

practice forces the pods and the cbr0 bridge to forward traffic to the attacker’s pod, 

which acts as a router in between and perform a variety of actions such as packet 

sniffing or traffic disruption. The Calico network add-on provides effective protections 

against L2 attacks by isolating the pods in their own L2 network segment and by 

enabling network layer (L3) communication between them [82]. 

Another security issue that Kubernetes faces, is the default permission level that 

it assigns to its pods. More specifically, the CAP_NET_ADMIN and CAP_NET_RAW 

privilege sets are assigned to the pods, unless configured otherwise. These permission 

levels provide pods with enough privileges to create new network interfaces inside 

containers and craft IP packets that can be used to perform IP spoofing attacks. 

Attackers could use IP spoofing attacks to alter the source IP of the pods’ outgoing 

packets, to either hide their identity or impersonate another host inside the network. 

Calico provides protection against L3 attacks as well, by enabling packet processing by 

the host kernel for all the pods’ outbound traffic. To detect if the source IP address of 

the packets is real, the host’s kernel uses a built-in feature that is called reverse path 

filtering [82]. 

 By combining the above scenarios, bad actors could potentially invoke DNS 

spoofing attacks to the cluster. Kubernetes utilizes one or more pods that are acting as 

the cluster’s DNS servers. All incoming DNS requests will pass through the cbr0 bridge 

and then will be forwarded to the DNS server pod. In case attackers manage to take 

over a pod that runs on the same worker node as the DNS server pod, they could 

potentially perform ARP spoofing attacks to force the cbr0 bridge to forward the 

incoming DNS requests to the compromised pod instead of the real DNS server pod. 

This could lead to a total compromise of the service’s internal DNS services, since the 

malicious users would be able to manipulate the DNS resolution process that the 

cluster’s services rely on. Since Calico protects the cluster from both L2 and L3 attacks, 

application level attack scenarios like DNS spoofing are also mitigated [82]. 

 

4.15. Exposed Kubernetes Dashboards 

The Kubernetes Dashboard is an add-on component that provides a web based 

user interface for the Kubernetes cluster. By default, Dashboard is not included in 

Kubernetes and needs to be deployed separately. It can be utilized in many ways such 
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as creating, deleting or modifying resources, monitoring the cluster and its applications 

status and health, performing log inspection and even managing user accounts and their 

permissions. All the above tasks that are normally done through the cli with the use of 

kubectl, can be visualized and performed by any user, regardless their expertise. A 

common mistake that many Kubernetes administrators make is to expose the 

Dashboard’s IP and port to non-management networks or potentially to the entire 

internet by changing its deployment type from «ClusterIP» to «NodePort». In addition, 

since its service account does not have enough permissions to access and manipulate 

all the Kubernetes cluster’s resources by default, administrators end up granting 

additional permissions to the Dashboard’s service. A well-known cyber-attack that took 

advantage of this misconfiguration is the Tesla’s crypto mining incident. Malicious 

actors managed to compromise one of Tesla’s Kubernetes clusters through a publicly 

exposed Kubernetes Dashboard that was not password protected and exploited the 

cluster’s computing resources for cryptocurrency mining operations. [83] [84]. 

At the time of writing, the Kubernetes Dashboard only supports authentication 

by either using the service account’s associated token, or by passing the kubeconfig file 

for multiple cluster management scenarios. Both ways of authentication require access 

to information that is stored inside the cluster which means that access to the Dashboard 

is sufficiently secured, but in case those credentials leak to malicious users, there are 

no additional authentication mechanisms (e.g., Multi-Factor Authentication) that could 

prevent their advancement. To adequately secure the Dashboard, the following 

measures should be considered: 

• The principle of least privilege should be embraced, which implies that only the 

necessary permissions should be granted to the Dashboard’s service 

• The Dashboard should be exposed only in management networks and access to 

it should be allowed only from specific source IP addresses 

 

4.16. Insufficient Validation of Kubernetes Manifests 

The most common way of deploying new objects in Kubernetes, is by using 

YAML formatted files that are called manifests. Kubernetes manifests are declarative 

and describe the aspects of the new objects or services. The Kubernetes API server 

always validates manifests by inspecting their syntax and the configuration they contain 

before creating new objects. In most cases, the API server is not able to recognize long 
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term issues that might occur by the correlation of certain features or even bad code. An 

example of such configuration is the use of CronJobs. CronJobs are scheduled tasks 

that can be configured to execute programs or scripts. Kubernetes can validate the 

configuration of a CronJob object, but it cannot validate the script’s content. There have 

been numerous reports about such misconfigurations that led to unavailability, memory 

pressure, increased CPU usage and uneven load distribution inside the cluster. It is 

possible that such misconfigurations can be exploited by bad actors, by targeting certain 

public endpoints with specially crafted requests. To limit such events, manifest files 

should always be validated by both humans and automated tests [85]. 
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5. Cluster Setup and Security Evaluation 

This chapter is dedicated to the deployment and configuration of a Kubernetes 

cluster, as well as the subsequent evaluation of its security posture with the use of the 

kube-hunter and Kubescape vulnerability scanning tools. The goal is to evaluate many 

aspects of the cluster’s security by using several scanning techniques such as internal 

and external scanning, YAML file scanning, inspection of the cluster’s components for 

vulnerabilities, and even estimate the security risk by performing risk analysis. To make 

the cluster configuration more realistic, misconfiguration scenarios that have been 

observed in real production environments will be introduced to the cluster and some 

sample applications will be deployed as well. 

 

5.1. Vulnerability Detection Tools 

Since the popularity of containerization and orchestration technologies has 

grown at a rapid pace over the past decade, it stands to reason that a large portion of the 

cyber-attacks occurring today target containerized environments. As mentioned in 

chapter 4, most of the vulnerabilities that lead to security breaches in Kubernetes 

environments hail from misconfigurations. These misconfigurations are not attributed 

only to lack of experience and technical expertise, but also to the complex architecture 

of Kubernetes and the large scaling capabilities it provides. 

Many companies and foundations have created well documented guides and 

lists of best practices to combat this phenomenon, with the most well-known being the 

OWASP (Open Web Application Security Project) foundation’s top ten list. Even 

though these lists often present a good and comprehensive way to secure Kubernetes 

clusters, it is difficult for humans to adequately inspect large configuration files without 

making mistakes or missing important details. For this reason, the use of automated 

vulnerability scanners is often imperative to discover component vulnerabilities and 

common misconfigurations fast and reliably. Some of the most well-known Kubernetes 

vulnerability scanners in the industry are: 

• kubesec: Analysis of security risks for Kubernetes resources 

• kube-bench: Automated security testing against predefined tests included in the 

CIS benchmark 

• kube-hunter: Security vulnerability scanning and configuration auditing 

• Kubiscan: RBAC policy scanning 
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• kubeaudit: Configuration auditing 

• Kubescape: Security vulnerability scanning for the cluster’s components and 

deployed images, configuration auditing, compliance check and risk analysis 

All the above security scanners are free and open-source tools that can be utilized by 

everyone. This enables organizations to perform more frequent and in depth scanning 

of their infrastructure. Open-source software is also more trustworthy because the tool’s 

source code is publicly available and agile since it can be modified according to each 

organization’s needs. In the below sections, the kube-hunter and Kubescape tools will 

be further analyzed. 

 

5.2. Kubernetes Cluster Setup 

A main aspect of this project is the creation of an easily replicable Kubernetes 

lab environment that can be easily created and utilized even by novice users. In total, 

there are only two dependencies to setup and run the Kubernetes lab environment, the 

first one is the VirtualBox Type-2 hypervisor and the second one is an infrastructure as 

code tool called Vagrant. The Vagrant tool was used to provision and setup the virtual 

machines, in combination with bash scripts that automate the installation and 

configuration of the Kubernetes components. One of the benefits of infrastructure as 

code, is that it provides a lot of flexibility when it comes to infrastructure provisioning 

and configuration. In other words, the number of Kubernetes nodes and their 

configuration can be easily altered by appropriately modifying the provided 

Vagrantfile. The Vagrant configuration along with the bash scripts it uses can be 

observed in Appendices 1, 2 and 3. The current setup provisions three virtual machines, 

two of which act as worker nodes (worker-1, worker-2) and one as a master node 

(master-1). The following table describes the configured resource allocation for the 

cluster’s master and worker nodes. 

Node Type CPU’s RAM Storage size Interfaces 

Master 2 2.5 GB 40 GB 

 

2 

 

Worker 1 1.5 GB 40 GB 

 

2 

 

Table 5.1: Resource allocation per cluster node type 
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The operating system of choice for all the virtual machines is a minimal image of 

Ubuntu Linux and more specifically the 22.04 long term support version. The selected 

Kubernetes version is 1.24 and its installation and setup are performed with the use of 

the kubeadm tool. On top of that, the selected container runtime is CRI-O, which is an 

implementation of the Kubernetes native CRI (Container Runtime Interface) that 

utilizes the OCI (Open Container Initiative). The following figure represents a high 

level network diagram of the provisioned Kubernetes cluster in VirtualBox. 

 

Figure 5.1: Kubernetes cluster network diagram 

 

5.2.1. Cluster provisioning 

As already mentioned, VirtualBox and Vagrant should be installed to 

successfully use the setup files. To run the setup, navigate to the path that the 

Vagrantfile is stored and run the following command: 

# vagrant up 

Vagrant will go through the installation and configuration procedure of the virtual 

machines and return control to the console window after the execution of the scripts 

complete. After the installation is finished three new virtual machines will have been 

created (master-1, worker-1, worker-2). Vagrant automatically configures access to the 

virtual machines with the use of TLS certificates and generates a private key for each 

system (stored inside the «.vagrant\machines\<vm_name>\virtualbox» directory). To 

connect to the master node, use the following command: 

# vagrant ssh master-1 
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The first step to ensure that the cluster has been setup correctly is to check the nodes 

status with the kubectl utility: 

# kubectl get nodes 

All the nodes should be listed, and their stated status should be «Ready» as shown in 

the figure below. In some cases, some additional time is needed for the TLS 

bootstrapping procedure to complete. 

 

Figure 5.2: Status of cluster nodes 

At this point the setup procedure is complete and the base Kubernetes cluster is 

operating as expected. To finalize the installation, some optional add-on components 

will be installed. The first component is the metrics-server add-on, which aggregates 

the cluster’s resource usage data and makes it available via other add-ons such as the 

Kubernetes Dashboard. The second add-on is the Kubernetes Dashboard, which 

provides easier visibility and management of the cluster’s resources. The third and final 

component is calico, which provides an IPIP (IP in IP tunnelling) overlay and enhances 

the overall security and performance of the cluster’s internal network communications. 

The mentioned add-ons (except for calico which has been pre-installed during the 

cluster’s provisioning) can be installed with the use of the following commands: 

# kubectl apply -f /vagrant/configs/YAML/cluster_addons/metrics-server.yaml 

# kubectl apply -f /vagrant/configs/YAML/cluster_addons/dashboard.yaml 

# kubectl apply -f /vagrant/configs/YAML/cluster_addons/dashboard_account.yaml 

Since the Kubernetes Dashboard supports authentication only via a bearer token, the 

service account admin-user and a cluster role binding were created as well. The access 

token can be generated with the below command:  

# kubectl -n kubernetes-dashboard create token admin-user 

Finally, to check if the rest of the add-ons were installed correctly and their pods are 

running normally, we can fetch the cluster’s pods that reside in the kube-system 

namespace along with their respective services with the following commands: 

# kubectl get pods -n kube-system 

# kubectl get services -n kube-system 
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To be considered healthy, the calico and metrics-server pods’ status should be listed as 

«Running» and the metrics-server add-ons’ service should be enabled as well to expose 

the application. 

 

Figure 5.3: Status of calico and metrics-server pods 

 

Figure 5.4: Status of metrics-server service 

 

5.2.2. Application Deployment and Introduction of Misconfigurations 

Now that the Kubernetes cluster is configured and its functionality has been 

validated, we can proceed with the deployment of applications. The creation of 

deployments is not necessary for this project, but since many security issues in 

Kubernetes clusters stem from bad design choices and insecure deployments, the 

introduction of workloads will allow us to get more realistic results during the security 

scanning of the cluster in the following chapters. In total, we will deploy three 

applications. The first application consists of a simple wordpress website and a MySQL 

database. To enable data persistence, both pods utilize PVC’s that store data locally on 

the worker nodes’ filesystem. The second application is a minimal web page written in 

Golang, that stores data to a Redis cluster. The Redis cluster consists of a master and a 

replica pod. The third and final application is an instance of the Damn Vulnerable Web 

App (DVWA) project. To create the deployments, the below commands can be used: 

# kubectl create -k /vagrant/configs/YAML/apps/wordpress/ 

# kubectl create -k /vagrant/configs/YAML/apps/guestbook/ 

# kubectl create -k /vagrant/configs/YAML/apps/dvwa/ 
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To introduce some vulnerabilities to the cluster, an additional deployment 

(privileged-nginx) was created. This deployment is a plain NGINX web server that runs 

on a privileged container and will act as the first intentionally introduced security 

vulnerability of the cluster. Το create this deployment as well, we can use the following 

command: 

# kubectl create -f /vagrant/configs/YAML/apps/nginx.yaml 

The above commands will deploy all the relevant objects for each application in the 

correct order. To ensure that all the pods and their respective services were created 

successfully, we can use the following commands: 

# kubectl get pods 

# kubectl get services 

 

Figure 5.5: Deployed application pods 

 

Figure 5.6: Deployed application services 

From the above figures, it is apparent that all applications reside in the default 

namespace, which introduces an additional security misconfiguration to the cluster 

since their objects are not properly isolated. On top of that, no resource limits have been 

specified to any of the deployed pods, so in the event of a denial of service attack it is 

probable that cluster-wide unavailability could occur due to resource exhaustion. 

The last deliberate vulnerability that we will introduce to the cluster, is the 

exposure of the Kubernetes Dashboard by changing its service type from ClusterIP to 
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NodePort. To achieve this, we can open the Kubernetes Dashboard’s configuration file 

with the following command and modify it as shown in Figure 5.7. 

# kubectl edit service kubernetes-dashboard -n kubernetes-dashboard 

 

Figure 5.7: Kubernetes Dashboard configuration file 

Finally, there are many aspects of the cluster that have not been properly secured 

yet. This is expected since kubeadm handles only the creation of a Kubernetes cluster 

by setting up its components. The actual configuration of the cluster and the 

management of its workloads are under the responsibility of the cluster’s administrator. 

In chapters 5.3 and 5.4, we will attempt to discover every possible vulnerability that 

might impose risks to the security of the cluster. 

 

5.3. Security Scan with Kubescape 

Kubescape is an open-source vulnerability scanning tool developed by ARMO. 

It is designed to offer a thorough view of a Kubernetes cluster’s security posture in both 

on-premises and multi-cloud environments, by providing features such as image 

security scanning, RBAC visualization for improved management of role assignments, 

risk analysis and compliance inspection against the NSA-CISA, MITRE ATT&CK, 

DevOpsBest and ArmoBest security frameworks [86]. 
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In total, we will perform two types of scanning with Kubescape. The first one 

is YAML file scanning, which is useful for discovering misconfigurations before even 

deploying applications to the Kubernetes cluster. The second type is host scanning, 

which will perform a full scan against every discovered element including YAML files, 

running objects in all namespaces, API server configuration, running images and even 

the security settings of the worker nodes. Both scans will be run internally, meaning we 

will execute the tool directly on the master node of the cluster. 

 

5.3.1. YAML File Scan 

The first scan we will perform with Kubescape concerns the scanning of the 

Kubernetes manifest files which were used to deploy the applications to the cluster. To 

initiate the YAML file scan, we can use the following command: 

# kubescape scan /vagrant/configs/YAML/apps/ 

The results of the YAML files scan can be observed in Figure 5.8. Altogether, 

Kubescape discovered 16 failed controls, 3 of which were labeled as High severity.  

 

Figure 5.8: YAML file scan with Kubescape 

To get a more detailed view of the failed checks for each deployment, we can rerun the 

scan with the --verbose flag. This flag will increase the verbosity level of the output 

and even provide suggestions to mitigate the security risk. The following figure depicts 

the failed controls for the privileged NGINX pod we intentionally introduced into the 

cluster, along with informative links and recommended security changes. 
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Figure 5.9: Verbose scan of the privileged NGINX pod 

 

5.3.2. Host Scan 

The second and final scan we will perform with Kubescape, conducts a full 

security check of the Kubernetes cluster that includes not only the cluster’s 

deployments, but also its system components and their configuration. To initiate the 

host scan, we can use the following command: 

# kubescape scan --enable-host-scan 

The results of the host scan are depicted in Figure 5.10. In total, Kubescape discovered 

40 failed security controls, 1 of which was labeled as Critical severity and 6 were 

labeled as High (3 High severity controls were skipped). By monitoring the results, it 

is apparent that many of the violated controls concern excessive amounts of privileges 

for certain built-in service accounts. Many service accounts are able to modify and 

delete data or even the configuration of other objects. Since certain accounts are 

responsible for performing management operations, these permission levels are usually 

required to ensure the proper functionality of the cluster’s internal procedures. In these 

cases, we will treat the failed control as false positives. A more detailed overview of all 

failed security controls along with security risk mitigation procedures will be provided 

in chapter 7. 
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Figure 5.10: Host scan with Kubescape 

 

Ιt is worth noting that host scanning tends to be time consuming, since the 

number of scanned objects increased from 5 (during the YAML file scan) to 120. In 

large environments with thousands of deployed pods, the expected execution time of 

the scan will be significantly longer. In these occasions, a more targeted scan should be 

performed, by specifying certain frameworks and namespaces. Finally, Kubescape has 

built-in support for reporting in many formats, such as PDF files, JSON, XML and 

prometheus metrics. To generate a report and save the results in a PDF file for example, 

we need to provide the following flags  --format pdf --output results.pdf as input to the 

kubescape utility during the scan initialization. 

 

5.4. Security Scan with kube-hunter 

The second security scanning tool we will use to discover vulnerabilities in the 

Kubernetes cluster is kube-hunter. It is an open-source tool developed by Aqua, with 

the aim of finding security gaps and improving hardening of Kubernetes environments. 

In total, kube-hunter runs 23 passive and 13 active tests. By default, only the passive 

tests are executed against the targeted cluster since the active ones might induce 

changes to the cluster’s state. Currently, there are four ways to install and run kube-

hunter, which allow for either internal or external scanning. The first method is to install 
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it with the use of Python’s pip package installer. The second method is to install the 

latest binary directly from the project’s official GitHub repository. The third one is to 

deploy a pod on the cluster that contains the kube-hunter utilities. The fourth and final 

choice is to use kube-hunter through a Docker container, which is running either on a 

remote computer or on one of the cluster’s nodes. To acquire enough information about 

the cluster’s security posture we will conduct two scans in total, an external scan from 

a remote computer and an internal scan by deploying a kube-hunter pod [87]. 

 

5.4.1. Remote Scan 

We will start using the kube-hunter tool by performing a scan from a remote 

computer. This will allow us to carry out the same level of enumeration as a malicious 

actor and draw similar conclusions about the cluster’s perimeter security. To start using 

kube-hunter, we can run the following command: 

# kube-hunter 

The first option we need to specify is the scanning type we want to use. Since we already 

know the IP addresses of the cluster’s nodes, we can use the «Remote scanning» option. 

The kube-hunter tool will then run the passive tests against the specified nodes and 

detect their running services and vulnerabilities. 

 

Figure 5.11: Detection of running services with kube-hunter 
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In total, kube-hunter detected one vulnerability that is relevant to information disclosure 

from an unsecured API server endpoint. This vulnerability does not provide a direct 

attack interface to malicious actors but allows them to fetch useful information about 

the cluster, such as the version of Kubernetes components. By searching Aqua’s 

website for the ID that kube-hunter provided, we can get more information about this 

vulnerability along with remediation suggestions. 

 

Figure 5.12: Vulnerability detection with kube-hunter's remote scanning mode 

 

5.4.2. Internal Scan (run inside a pod) 

After examining the cluster’s security from a remote computer, we can proceed 

with testing its internal security posture as well. For the internal scan we have the option 

to run kube-hunter inside a pod, which will allow us to simulate the amount of 

information a malicious container could discover and the actions a bad actor could 

perform by compromising this container. To run the job that will create the kube-hunter 

pod, we can use the following command: 

# kubectl create -f /vagrant/configs/YAML/kube-hunter-job.yaml 

Since the created pod is running as a job object, once the scan procedure is finished, the 

pod will stop running and its status will be listed as «Completed». With the command 

below, we can fetch information about the pods that reside in the default namespace 

and check the kube-hunter pod status. 

# kubectl get pods 

 

Figure 5.13: kube-hunter pod status 
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Finally, to check the results of the scan we need to get the pod’s logs by using the 

kubectl utility (the pod’s name is generated randomly): 

# kubectl logs kube-hunter-rw94w 

This time, kube-hunter discovered three additional vulnerabilities that concern insecure 

access to the API server and unrestricted access to the pod’s secrets and service account. 

Once again, by searching for the provided ID’s on Aqua’s website, we can get more 

information and suggestions on mitigating the identified vulnerabilities. 

 

Figure 5.14: Detected vulnerabilities after internal scan with kube-hunter 
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6. Exploitation of cluster vulnerabilities 

This chapter concerns the exploitation of vulnerabilities we discovered with the 

use of kube-hunter and Kubescape tools. The goal is to present realistic attack and 

misconfiguration scenarios that are encountered in real Kubernetes environments. In 

total, we will perform three attacks against the Kubernetes cluster. During the first 

attack, we will demonstrate the dangers of exposing the Kubernetes Dashboard and 

what actions a malicious user could perform by acquiring access to it. The second 

vulnerability we will exploit is the absence of isolation and resource limits in cluster 

deployments. To expose the dangers that stem from this misconfiguration, we will 

perform a denial of service attack against one of the deployed applications and monitor 

how the other applications and the cluster’s functionality are affected. Finally, during 

the third attack we will simulate how a bad actor can affect the cluster’s operation, by 

attacking the cluster from inside a privileged pod. Finally, during the third scenario, we 

will simulate how a bad actor can affect the operation of a Kubernetes cluster by 

performing attacks and enumeration through a privileged pod. 

 

6.1. Enumeration 

Before proceeding with the attacks, we will perform enumeration from a remote 

host to discover open ports and if possible, the types of applications these ports expose. 

The results of this scan will be used in conjunction with the information we acquired 

with the use of the kube-hunter and Kubescape tools. Since we have not provisioned an 

Ingress Controller, we will perform a direct scan on the master node’s IP address with 

the Nmap tool. By default, Kubernetes reserves ports between 30000 and 32767 for use 

by NodePort services, so to speed up the enumeration procedure, we will only scan this 

port range. To initiate the Nmap scan, the following command was used: 

# sudo nmap 192.168.56.11 -sS -SV -p30000-32767 -e eth2 

 

Figure 6.1: Enumeration with Nmap 
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Overall, we discovered five exposed applications, one of which is the Kubernetes 

Dashboard. All applications are accessible from the VirtualBox host-only network, we 

can easily map each port to its respective application. Α complete mapping between 

open ports and applications is represented in Table 6.1. 

Port Application 

30246 

 

Kubernetes Dashboard 

 

31276 

 

Wordpress 

 

31612 

 

Privileged NGINX Pod 

 

32250 

 

Damn Vulnerable Web App 

 

32619 

 

Go Application 

 

Table 6.1: Mapping of exposed ports to deployed applications 

 

6.2. Exploiting Exposed Dashboards 

The first attack we will perform is a demonstration of the actions malicious users 

can perform once they acquire access to the Kubernetes Dashboard. By default, the 

Kubernetes Dashboard is accessible only by running a proxy service on the master 

node. In our case the Dashboard’s service is constantly exposed, so it is safe to assume 

that its type has been modified from ClusterIP to NodePort. By browsing to the 

Dashboard’s webpage, we notice that we are only able to authenticate by providing 

either a bearer token (valid for 24 hours by default) or the clusters’ kubeconfig file 

(valid for as long as kubeconfig is not altered). 

 

Figure 6.2: Kubernetes Dashboard authentication page 
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Both methods require existing access to the cluster to fetch the requested information, 

but in case the token or the kubeconfig file leak, attackers can access the Dashboard 

without any restriction for a considerable amount of time since security mechanisms 

such as MFA are not supported. There are many techniques that can be used to steal 

these credentials, with the most popular being phishing or a combination of Man In The 

Middle and SSL downgrade attacks with the use of publicly available tools (e.g., 

arpspoof, sslstrip). 

Once attackers acquire access to the Dashboard, their actions are limited only 

by the permission level of its service account. By browsing the Kubernetes Dashboard’s 

options, it is apparent that the service account has administrative permissions, since all 

objects are accessible and can be modified. In addition, the binding between the 

Dashboard and its service account is created with a ClusterRoleBinding object, which 

goes beyond the scope of namespaces (Dashboard’s service account reside inside the 

kubernetes-dashboard namespace) and assigns the defined roles and permissions across 

the cluster. To demonstrate this behavior, we can navigate to the secrets objects under 

the default partition. Since we have cluster-wide administrative permissions, we can 

freely access, modify or even delete the existing secrets, even though they reside in a 

different namespace. Other possible actions are the modification of objects with the 

intention to create downtime, exportation of the cluster’s configuration and secrets, or 

even the creation of malicious pods and deployment that provide backdoor access to 

the Kubernetes cluster.  

 

Figure 6.3: Secret manipulation through the Kubernetes Dashboard 

 



Kubernetes Cybersecurity 

Ioannis Morfonios  60 

6.3. Denial of Service Attack 

The second scenario we will demonstrate is how the current setup behaves 

against Denial of Service attacks. Kubernetes provides the ability to set resource usage 

limits for its deployments, but those limitations are not set by default. To understand 

the effect of this misconfiguration, we will target a specific application and monitor 

how the attack affects the rest of the deployed applications. 

There are many free and open-source DDOS tools available on the Internet that 

are suitable for this attack. Α popular and easy to use choice that was favored for this 

particular attack, is the Slowloris tool. To download Slowloris and commence the 

attack, we can use the following commands:  

# git clone https://github.com/gkbrk/slowloris.git 

# python3 slowloris/slowloris.py 192.168.56.11 -p 32250 -s 1000 -v 

 

Figure 6.4: DDOS attack with the Slowloris tool 

In a short period of time, the application that listens on port 32250 will become 

unavailable from the overwhelming number of requests. Browsing through the other 

hosted applications, their performance appears to have been significantly affected by 

the DDOS attack. Furthermore, problems also appear in the internal operations of the 

cluster, as the operation of the system components is based on the same resources used 

by the cluster’s objects. Since all the cluster nodes run on a single machine, the available 

system resources are very limited compared to a production Kubernetes environment. 

This in turn makes attacks based on resource depletion much more impactful. As long 

as resources are available, Kubernetes should be able to handle DDOS attacks by using 

scaling. Because the available system resources are always finite regardless of the 
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environment, the establishment of resource limitations is in most cases the preferred 

way to deal with this type of attacks.  

 

Figure 6.5: Application unavailability during the DDOS attack 

 

6.4. Compromised Privileged Pod 

In the third and final attack, we will demonstrate what actions a malicious user 

can perform after gaining access to a privileged pod. For this scenario, we will assume 

that the attacker has already acquired access to the pod and is actively searching for 

ways to extract information that could undermine the host system’s security or escape 

the container. To login to the privileged pod, we can use the following command: 

# kubectl exec --stdin --tty privileged-nginx-77c5cdccb8-qsgwf -- /bin/bash 

The first thing we notice is that we logged into the container with the root user account. 

We can start gathering information by checking the available utilities inside the /bin 

directory. Since we are connected to a minimal image, the available tools are limited 

compared to a complete Linux installation. One of the available tools is fdisk, which 

can be used to access and manipulate the disk and its partitions. Normally using fdisk 

requires elevated privileges, but since we are already connected with the root account, 

we should be able to list information about the disk’s partitions with the following 

command: 

# fdisk -l 

In Figure 6.6, we notice that the host’s /dev/sda1 partition is accessible through the 

container. Since we have enough permissions to access the host disk, we can also mount 

the /dev/sda1 partition as a data volume as follows: 

# mkdir /mnt/hostdisk 

# mount /dev/sda1 /mnt/hostdisk/ 
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Figure 6.6: List disk partitions from the privileged container 

By mounting the partition inside the container, we gain access to the host’s data, 

configuration and utilities without any restrictions. For example, we can access the 

kubectl utility to retrieve information about the actions we can perform on the host 

machine as follows:  

# /mnt/hostdisk/bin/kubectl auth can-i --list 

 

Figure 6.7: List authorized actions with kubectl 

In our case, we do not have enough permissions to create, delete or modify any of the 

cluster’s objects through the container, so we can only gather information by 

performing enumeration on specific cluster endpoints. Another possible action is to 

gather information by accessing the host’s data and configuration files. Perhaps the 

most critical data files of every Linux system are the /etc/passwd and /etc/shadow files, 

which contain information about the system’s accounts such as usernames, groups and 

precomputed hashes of the users’ passwords. Another good target are the kubelet’s TLS 

certificate and private key, which could potentially allow us to impersonate the host 
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system’s identity, perform data exfiltration or even decrypt the communication between 

the current worker node and the cluster’s master nodes. To retrieve the content of these 

files, we can use the following commands: 

# cat /mnt/hostdisk/etc/passwd 

 

Figure 6.8: Compromised worker node /etc/passwd file 

# cat /mnt/hostdisk/etc/shadow 

 

Figure 6.9: Compromised worker node /etc/shadow file 
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# cat /mnt/hostdisk/var/lib/kubelet/pki/kubelet.key 

 

Figure 6.10: kubelet private key 

# cat /mnt/hostdisk/var/lib/kubelet/pki/kubelet.crt 

 

Figure 6.11: kubelet TLS certificate 
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Finally, one last thing we can check is whether we have enough permissions to 

create or modify files on the mounted partition. Τhe environment we use allows this 

kind of interaction between the container and the host, therefore we have the ability to 

perform a wide range of actions such as modifying configuration files, download and 

run malicious scripts, establishing backdoors on the host and more. Since the container 

is running in privileged mode, the attacks that can be executed from inside the 

containerized environment are many and unpredictable. The only way of protecting the 

cluster and its workloads against compromised privileged pods, is to monitor and 

immediately remove the affected pods. 
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7. Kubernetes Security Hardening 

This chapter aims to provide guidance on addressing the security vulnerabilities 

of the Kubernetes cluster, which were discovered and exploited in chapters 5 and 6, 

respectively. To effectively strengthen the cluster’s security, we will analyze and 

mitigate any discovered vulnerabilities that are actively exposing the cluster at risk, 

while ignoring any false positive warnings and failed scan tests. To better understand 

the implemented mitigations, all security fixes will be applied on the existing base 

configuration of the cluster, as well as the deployed applications. The suggested 

security recommendations are based on the actual recommendations provided by the 

kube-hunter and Kubescape tools, the Kubernetes documentation that is actively 

maintained by Cloud Native Computing Foundation and my own technical experience. 

The following table, contains a complete mapping of the discovered security 

vulnerabilities (Figures 5.10 and 5.11) that each of the proposed countermeasures 

resolves: 

Countermeasures Discovered Vulnerabilities 

Isolation of Deployments and 

Configuration of Resource Limits 

(Kubescape) 

1. Data Destruction 

2. Resources CPU limit and request 

3. Resources memory limit and 

request 

4. Pods in default namespace 

Pod Security Enhancement 

(Kubescape) 

1. Data Destruction 

2. List Kubernetes secrets 

3. Privileged container 

4. Writable hostPath mount 

5. Allow privilege escalation 

6. HostNetwork Access 

7. Non-root containers 

8. Portforwarding privileges 

Configuration of Probes 

(Kubescape) 

1. Configured liveness probe 

2. Configured readiness probe 

Resource Labeling 

(Kubescape) 

1. K8s common labels usage 

2. Label usage for resources 

Cluster Node Security Hardening 

(Kubescape) 

1. Data Destruction 

2. Writable hostPath mount 

3. HostNetwork access 

4. Linux Hardening 

Enforcement of Network Policies (Kubescape) 
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1. Ingress and Egress blocked 

2. Network mapping 

Enforcement of the Least Privilege 

Principle with RBAC 

(Kubescape) 

1. Data Destruction 

2. Cluster-admin binding 

3. List Kubernetes secrets 

4. Writable hostPath mount 

5. Access container service account 

6. Allow privilege escalation 

7. Automatic mapping of service 

account 

8. HostNetwork access 

9. Mount service principal 

10. Namespace without service 

accounts 

11. Non-root containers 

12. Portforwarding privileges 

13. Immutable container filesystem 

 

(kube-hunter) 

1. Access to API using service 

account token (KHV005) 

2. Access to pod’s secrets 

3. Read access to pod’s service 

account token (KHV050) 

Secure Sensitive Interfaces 

(Kubescape) 

1. Exposed sensitive interfaces 

2. Access Kubernetes Dashboard 

Limitation of Information Disclosure 

(Kubescape) 

1. Audit logs enabled 

 

(kube-hunter) 

1. Exposed sensitive interface 

(KHV002) 

Table 7.1: Mapping of discovered vulnerabilities to enforced countermeasures 

 

7.1. Isolation of Deployments and Configuration of Resource Limits 

Two of the simplest and at the same time most overlooked configuration options 

in Kubernetes, is the proper isolation of the deployed objects with the use of 

namespaces and the definition of resource limits. The use of namespaces provides an 

additional barrier between the deployed objects and restricts users from performing 

malicious actions, such as enumeration and lateral movement between the cluster’s 

workloads. Resource limits on the other hand, limit the amount of system resources that 
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are available to each deployed container and provides protection against attacks that 

aim to exhaust cluster resources. 

 To define namespaces for the supported objects (e.g., deployments, services, 

secrets, PVC’s, ConfigMaps), first we need to edit the Kubernetes manifest files and 

specify the desired namespace under the metadata object field. Afterwards, we need to 

create the defined namespaces (either from the command line or via a Kubernetes 

manifest file) and redeploy our apps (a secure version of the manifest files is present 

inside the secured_apps directory): 

# kubectl delete -k /vagrant/configs/YAML/apps/<application name> 

# kubectl create -k /vagrant/configs/YAML/secured_apps/<application name> 

 Afterward, we can proceed with the specification of resource limits for every 

container we need to deploy. The controls we can create concern the usage of CPU, 

memory or the size of the requested pages. An additional experimental control that was 

added in version 1.25, concerns the limitation of available ephemeral storage for each 

container. In addition, for each one of the controls we can specify either soft limits with 

«requests» or hard limits with «limits». The difference between them, is that the limits 

defined in «requests» can possibly exceed the specified limit if the container has enough 

resources available while «limits» define the maximum amount of resources that a 

container is allowed to use. 

 

Figure 7.1: Specification of namespace and resource limits 
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7.2. Pod Security Enhancement 

As we observed in chapter 6, the introduction of privileged pods inside a 

Kubernetes cluster can prove to be very dangerous due to the elevated permissions of 

the root user. These set of permissions allow malicious users not only to manipulate the 

components of a compromised container, but its neighbor components as well. To 

prevent this behavior, Kubernetes provides several options that can be defined inside 

the securityContext object field of a container. A comprehensive list of the 

securityContext object’s most important security options, is depicted in the following 

figure [88]: 

 

Figure 7.2: Options of the securityContext object field 

The «privileged» option accepts a Boolean value and specifies whether the 

container is allowed to have privileged access. As a best practice, this field should 

always remain disabled and only a limited set of required permissions should be 

allowed to the container [88]. 

The «allowPrivilegeEscalation» option indicates that the user that inside the 

container can perform privilege escalation to be able to take advantage of additional 

allowed capabilities that have been provided to the container [88]. 

In case a container is not required to perform additional modifications to its 

filesystem after its creation, we can enable the «readOnlyFilesystem» option. By doing 

so, the internal components of the container or even malicious users will not be able to 

perform write operations to its filesystem, which means that the container becomes 
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more secure and resilient against attacks that threaten its integrity. This option should 

be used with caution and if write access by the container’s internal processes is required, 

it should always be disabled to avoid functionality issues [88]. 

 To control the user that will be used inside the container, we can use the 

«runAsUser» option. Additionally, we can explicitly disallow the use of the root user 

account, by enabling the «runAsNonRoot» option [88]. 

 Finally, Kubernetes provides the ability to specify the available capabilities that 

the created containers will be able to use. The supported list of capabilities is relevant 

only to the Linux operating system. As a matter of fact, all the available options inside 

the capabilities list, are an exact match of the capabilities list that the Linux kernel 

utilizes for permission checking [88] [89]. 

 

7.3. Configuration of Probes 

Probs are minimal requests that are targeted against the exposed port and 

application of a container. Their purpose is to gather information about the container’s 

or application’s health and inform the cluster about changes in their status. By using 

probs, we can create more resilient environments and take advantage of features such 

as high availability and automatic failovers, by routing traffic to available resources. 

 

Figure 7.3: Overview of probe operations [90] 

At the time of writing, Kubernetes supports three types of probes, Liveness, Readiness 

and Startup probes. As their name suggests, each one of them aims at a specific time 

window of the application’s lifecycle. To test the availability of the targeted resource, 

probs can perform a variety of tests such as http requests on certain endpoints, parsing 
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of response attributes (e.g., HTTP headers) and TCP, UDP, gRPC connectivity checks 

on specific network ports. The following figure, depicts the configuration of a 

Readiness and a Liveness probe [91]: 

 

Figure 7.4: Sample configuration of a Liveness and a Readiness Probe 

To monitor if the probs are working correctly, we can check the logs of the container. 

In the following figure, we can observe that the Liveness probe performs HTTP 

requests on a NGINX container every five seconds, as specified in the above 

configuration. 

 

Figure 7.5: Probe requests on a NGINX container 

 

7.4. Resource Labeling 

A configuration option that does not directly affect the security of a Kubernetes 

cluster is resource labeling. The use of labels is necessary in some circumstances for 

creating correlations between objects, such as deployments and services for example. 

Furthermore, labels can also be used to improve the manageability of Kubernetes 

resources, by providing additional identification and querying capabilities to the 

cluster’s administrators. We can specify labels inside the metadata and 
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spec.template.metadate object fields. Additionally, to perform mapping between 

resources, we can use the spec.selector.matchLabels object field. 

 

Figure 7.6: Specification of labels for a deployment object 

 

7.5. Cluster Node Security Hardening 

Another aspect that needs attention security wise, is the level of protection the 

cluster’s nodes provide. Kubernetes offers security enhancement options for both 

Windows and Linux operating systems, so we can apply those options to our deployed 

containers as well. Since we chose to run Ubuntu Linux on the cluster’s nodes, we can 

utilize the AppArmor kernel security module which is preinstalled on our distribution 

and enforces some AppArmor profiles by default. This security mechanism works in a 

static way, which means that it enforces a set of user defined rules that either allow or 

deny certain capabilities. For that reason, it is important to make AppArmor profiles as 

restrictive as possible, to provide adequate protection to the hosted workloads. To 

secure the deployed containers, we need to load one of the available AppArmor profiles 

of the host into the container [92] [93]. 

Before we start securing our resources, we need to select an AppArmor profile 

that fits our needs. There are multiple publicly available profiles on the Internet, 
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optimized for specific combinations of operating systems, applications and services, 

but we can create custom profiles as well. In our case, a new generic profile was created 

that limits the access of applications to system files, directories and services 

significantly. To load this profile on the Linux kernel and check its status, we can use 

the following commands: 

# sudo apparmor_parser -r /vagrant/configs/apparmor_generic 

# sudo apparmor_status 

 

Figure 7.7: List of loaded AppArmor profiles 

Since we cannot predict on which of the available worker nodes a newly created pod 

will be scheduled, it is important to load the AppArmor profile on all worker nodes. 

Afterwards, we can proceed with the modification of the manifest files. At the time of 

writing, this feature is still considered a beta release, so to implement it we need to pass 

the AppArmor profile to the supported resource as an annotation instead of specifying 

it inside the securityContext object field. In Kubernetes, annotations are specified inside 

the metadata object field, as depicted in Figure 7.8. 

 

Figure 7.8: AppArmor profile enforcing on a container 
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7.6. Enforcement of Network Policies 

By default, the deployed workloads in Kubernetes clusters can interact with 

each other without any restriction. Τhis feature is useful for testing environments where 

we simply want to assess the correct operation of software applications, but the lack of 

isolation between the resources is not suitable for use in production. Namespaces 

provide an additional protection layer between irrelevant resources, but they do not 

enforce any restrictions to the communication of resources that reside inside the same 

namespace. This entails that malicious users can interact with an application in 

unintended ways (e.g., access the backend directly), since network traffic is not filtered 

inside the namespace. To address this issue, Kubernetes provides a mechanism called 

Network Policies. The specified policies are similar in function to ACL’s (Access 

Control Lists). By using Network Policies, we can control the traffic flows inside a 

namespace, by creating allow or deny rules. An example of their operation can be 

observed in Figure 7.9, where an external user’s interaction with an application is 

depicted. In this scenario, we need to allow users to access the frontend of the 

application, while blocking any requests made directly to the database servers. In 

addition, we can specify that only the frontend part of the application can connect to 

the backend and vice versa. A graphical representation of this scenario is depicted in 

Figure 7.9. 

 

Figure 7.9: Overview of network security policies function [94] 

 A Network Policy consists of two main elements, the podSelector and the 

policyTypes. The podSelector specifies the pods we want the policy to apply to with 

the use of labels. On the other hand, policyTypes describe the network traffic we want 

to control by using attributes such as traffic direction (e.g., ingress, egress), IP 

addresses, network ports and labels. To reproduce the configuration shown in figure 

7.9, we need to create three policies in total. We will follow the practices outlined in 
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the positive security model, so the first policy we will create rejects all inbound and 

outbound traffic within the namespace and acts as the default option for any traffic that 

does not match any of the other rules. 

 

Figure 7.10: Deny all network traffic policy 

The second policy is an allow rule that matches all incoming requests to the frontend 

pod’s TCP port 80. All other requests to the frontend pod will be blocked. 

 

Figure 7.11: Allow ingress traffic to frontend’s TCP port 80 

The third and final policy, allows all traffic initiated from the frontend pod to reach the 

database pod’s TCP port 3306. Once again, every other request that does not match this 

criterion, will be blocked by the default deny policy. 
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Figure 7.12: Allow frontend originated traffic to database’s TCP port 3306 

Finally, to ensure that all referenced Network Policies have been successfully applied 

to the desired namespace and that their selectors map to the correct resources, we can 

list the policies by using the following command: 

# kubectl get networkpolicies.v1.networking.k8s.io -n wordpress 

 

Figure 7.13: Network security policies of the wordpress namespace 

 

7.7. Enforcement of the Least Privilege Principle with RBAC 

By monitoring the results of the cluster’s security scan, it is easy to see that most 

of the warnings are relevant to improper assignment of permissions. To enforce cluster-

wide authorization and restrict access to the cluster’s resources, Kubernetes utilizes 

Role-Based Access Control by using the rbac.authorization.k8s.io API group. There are 

two role types in Kubernetes, Roles and ClusterRoles. The only difference between 

them, is that Roles are a namespaced permission set while ClusterRoles can be used in 

all namespaces. In addition, there are two available binding types, RoleBindings and 

ClusterRoleBindings. RoleBindings, just like Roles, can be used only inside the 

namespace in which they were created, while ClusterRoleBindings provide cluster-
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wide access. Finally, Kubernetes supports two account types, user accounts and service 

accounts. As their names suggest, user accounts are meant to be used by humans, while 

service accounts are utilized by applications to authenticate against the API server [75].  

Since we have not created any user accounts, the main issue we need to address 

is the excessive privileges the default service accounts assign to their associated pods. 

To override the default service accounts, we need to create new service accounts for 

every namespace of the cluster. Something that we need to be aware of, is that 

Kubernetes mounts the service account token to its associated pods by default. To 

prevent malicious users from accessing API credentials in case a pod is compromised, 

a good practice is to disable this feature completely. 

 

Figure 7.14: Service account specification 

Afterwards, we need to create a custom role and bind it to the service account. In our 

case, we will create a custom Role that only allows read access to pods. To bind the 

Role only to the namespace’s service account, we will use a RoleBinding. 

 

Figure 7.15: Specification of a Role and a RoleBinding 

To assign the service account to a pod, we need to provide its name as a value to the 

«serviceAccountName» flag, inside the pod’s spec object field. To validate that the 
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Role and the RoleBinding have been created successfully, we can list them by using 

the following commands: 

# kubectl get roles -n nginx 

# kubectl get rolebindings -n nginx 

 

Figure 7.16: Roles and RoleBindings of the nginx namespace 

It is worth noting that Kubernetes RBAC authorization is very flexible and 

provides a lot of verbs that can dictate access to a large set of resources for fine-grained 

access control. As a best practice, specific combinations of resources and verbs should 

be avoided (e.g., [pods/exec create], [events delete], etc.), especially when assigned to 

pods. The default service accounts that are assigned to pods if no custom service 

accounts are specified, are not restrictive enough to prevent malicious actions in case a 

pod is compromised. To enhance the security posture of Kubernetes clusters and their 

workloads, the use of RBAC is mandatory. 

 

7.8. Secure Sensitive Interfaces 

An obvious yet very common security misconfiguration is the exposure of 

graphical user interfaces over unsecured networks, such as unrestricted local area 

networks or even the Internet. Some of these interfaces are Kubeflow, Weave Scope 

and of course the Kubernetes Dashboard. Many sensitive interfaces do not provide 

adequate authentication since they were not designed to be exposed outside the 

management network, which creates additional security risk for the cluster. 

 To secure the Kubernetes Dashboard, we need to modify its service type from 

NodePort to ClusterIP. This configuration change will make the Dashboard accessible 

only by running an on demand proxy server with the use of the kubectl utility, thus 

making connectivity to the Dashboard more controlled and predictable. As an additive 

protection measure, we can limit the permissions of the Dashboard’s service account, 

to allow only specific operations. A common configuration option is to allow read-only 

access to a limited set of cluster resources, as depicted in the following figure: 
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Figure 7.17: View-only Role for the Kubernetes Dashboard 

 

7.9. Limitation of Information Disclosure 

A good security practice that applies not only to Kubernetes but to every kind 

of technology used in modern IT infrastructures, is to protect the identity of the systems 

from being exposed publicly. By default, the kubelet service allows the API server to 

fetch information such as the cluster’s running version or node metrics. This 

information can easily be accessed through the exposed «/metrics» and «/version» 

endpoints. Generally, Kubernetes provides adequate security, but like every other 

software, from time to time new vulnerabilities come to light. By allowing access to 

cluster related information, bad actors could potentially discover vulnerabilities that 

might affect the specific version the cluster’s nodes are running and take advantage of 

them. 

 To prevent malicious users from accessing this type of information, we can 

disable the debugging and log collection features of the kubelet service, by setting the 

«enable-debugging-handlers» flag to false. By default, this flag will not be present 

inside the kubelet’s configuration file, so we need to add it as follows: 
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Figure 7.18: kubelet configuration file after disabling log collection 

After modifying the configuration file, we need to restart the kubelet service to load the 

new configuration. To perform the restart operation and then monitor the service’s 

status, we can use the following commands: 

# sudo systemctl restart kubelet 

# sudo systemctl status kubelet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Kubernetes Cybersecurity 

Ioannis Morfonios  81 

8. Security Hardening Evaluation 

In the previous chapter, we applied security optimizations to many aspects of 

Kubernetes, such as the cluster’s components, the deployed applications, the user and 

service accounts and even to the underlying Linux hosts. To determine if the applied 

security measures are enough, in this chapter we will re-evaluate the cluster’s security 

and calculate the total security risk once again by performing three new vulnerability 

scans with Kubescape and kube-hunter. 

 The first security scan we will perform is a YAML file scan that will help us 

determine if the applications we created provide an adequate level of security. To 

initiate the scan, we can use the following command: 

# kubescape scan /vagrant/configs/YAML/secured_apps/ --verbose 

 

Figure 8.1: Re-evaluation of YAML file security with Kubescape (Initial scan depicted in 

Figure 5.8, Page 52) 
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By comparing the results with those of the previous vulnerability scan, we notice that 

we managed to resolve all the vulnerabilities we discovered before securing the 

resources and reduced the total security risk from 43.03% to 0%. 

 The second scan we will run makes use of the Kubescape tool once again and 

aims to discover the underlying host’s security vulnerabilities. To commence the 

security scan, the following command can be used: 

# kubescape scan --enable-host-scan 

 

Figure 8.2: Re-evaluation of host security with Kubescape (Initial scan depicted in Figure 

5.10, Page 54) 

By monitoring the results, it is apparent that many of the security vulnerabilities persist. 

The reason behind this is that even though we restricted access throughout the cluster 

and enforced the least privilege principle as much as possible, many of the system’s 

resources (kube-system namespace) require elevated access to perform administrative 

actions such as traffic manipulation and resource management. Limiting the access 

scope and privileges of these resources is not possible without breaking the cluster’s 

functionality, so we will treat the suggestions that are related to kube-system resources 

as acceptable risk. In total, even though we could not eliminate the security risk 

completely, we managed to reduce it from 27.28% to 18.81%. 
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For the third and final security scan, we will perform an internal scan by running 

the kube-hunter tool from a deployed pod. To start the scan and fetch the logging output 

of the pod, the following commands can be used (the pod’s name is generated 

randomly): 

# kubectl create -f /vagrant/configs/YAML/kube-hunter-job.yaml 

# kubectl logs kube-hunter-ftkbx 

The discovered security issues from the first scan were related to information disclosure 

since the «/version» endpoint of the API server was exposed and access to host 

credentials, pod secrets and service account tokens was possible from neighboring 

pods. All these issues were resolved in chapter 7, by disabling the debugging headers 

in the kubelet’s configuration and by introducing separate service accounts for each 

deployed resource. In addition, all related resources are now deployed in separate 

namespaces and the automatic mounting of service account tokens to pods has been 

disabled for all cluster resources. 

 A complete overview of all the security controls that have been executed against 

the Kubernetes cluster (by both the kube-hunter and Kubescape tools), their 

contribution to the final risk score after the introduction of security measures and their 

mitigation status, can be observed in Tables 8.2 and 8.3. 

Control Name Severity 
Risk Score 

(Before) 

Risk Score 

(After) 
Comments 

Control Plane 

Hardening 
Critical 0% 0% Not Applicable 

Disable 

anonymous 

access to Kubelet 

service 

Critical 0% 0% Not Applicable 

Enforce Kubelet 

client TLS 

authentication 

Critical 0% 0% Not Applicable 

Data Destruction Critical 25% 0% 

Mitigated by the 

enforcement of the 

security measures 

defined in chapters 

7.1, 7.2, 7.5, 7.6 

Cluster-admin 

binding 
High 3% 3% 

cluster-admin 

binding is required 

by kubeconfig, so 

no action was taken 

Applications 

credentials in 
High 0% 0% Not Applicable 
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configuration 

files 

CVE-2021-

25742-nginx-

ingress-snippet-

annotation-

vulnerability 

High 0% 0% Not Applicable 

CVE-2022-

23468-

containerd-fs-

escape 

High 0% 0% Not Applicable 

Host PIO/IPC 

privileges 
High 0% 0% Not Applicable 

Insecure 

capabilities 
High 0% 0% Not Applicable 

List Kubernetes 

secrets 
High 16% 16% 

kube-system pods 

require access to list 

secrets, so no action 

was taken 

Privileged 

container 
High 14% 12% 

User defined 

privileged 

containers were 

removed. kube-

system pods require 

privileged access  

RBAC enabled High 0% 0% Not Applicable 

Resource limits High 0% 71% 

Works in a reverse 

fashion. Resource 

limits were 

introduced for all 

user defined 

workloads 

Resources CPU 

limit and request 
High 100% 71% 

Resource limits 

were set to all user 

defined workloads 

Resources 

memory limit and 

request 

High 90% 58% 

Resource limits 

were set to all user 

defined workloads 

Workloads with 

Critical 

vulnerabilities 

exposed to 

external traffic 

High 0% 0% Not Applicable 

Workloads with 

RCE 

vulnerabilities 

exposed to 

external traffic 

High 0% 0% Not Applicable 
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Writable hostPath 

mount 
High 19% 23% 

To store database 

data, two folders 

were exposed on 

the worker nodes to 

permit access from 

certain pods 

Access container 

service account 
Medium 100% 98% 

New service 

accounts were 

created for each 

deployed resource 

(excluding kube-

system) that follow 

the principle of 

least privilege 

Allow privilege 

escalation 
Medium 80% 47% 

Privilege escalation 

was forbidden for 

all user defined 

workloads 

Allowed hostPath Medium 19% 23% 

To store database 

data, two folders 

were exposed on 

the worker nodes to 

permit access from 

certain pods 

Automatic 

mapping of 

service account 

Medium 100% 0% 

Mitigated 

Automatic service 

account mapping 

was disabled for all 

workloads 

CVE-2021-25741 

- Using symlink 

for arbitrary host 

file system access 

Medium 0% 0% Not Applicable 

CVE-2022-0185-

linux-kernel-

container-escape 

Medium 0% 0% Not Applicable 

CVE-2022-0492-

cgroups-

container-escape 

Medium 58% 53% 

Vulnerability was 

addressed by 

enforcing an 

AppArmor profile 

on containers and 

by disabling the 

CAP_SYS_ADMIN 

capability. The 

same actions cannot 

be performed on 

kube-system pods 

CVE-2022-

24348-

argocddirtraversal 

Medium 0% 0% Not Applicable 
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Cluster internal 

networking 
Medium 100% 80% 

Network traffic for 

all containers was 

filtered by the 

enforcement of 

network policies 

with Calico. kube-

system resources 

remained 

unchanged 

Configured 

liveness probe 
Medium 47% 0% 

Mitigated 

Configured probs 

for all workloads 

Container 

hostPath 
Medium 0% 0% Not Applicable 

Containers 

mounting Docker 

socket 

Medium 0% 0% Not Applicable 

CoreDNS 

poisoning 
Medium 5% 0% 

Mitigated 

Network traffic for 

all containers was 

filtered by the 

enforcement of 

network policies 

with Calico. kube-

system resources 

remained 

unchanged 

Data Destruction Medium 0% 0% Not Applicable 

Delete 

Kubernetes 

events 

Medium 5% 5% 

Only kube-system 

pods can delete 

system events, so 

no action was taken 

Exec into 

container 
Medium 3% 3% 

Only kube-system 

pods can open a 

shell into other 

containers, so no 

action was taken 

Exposed 

dashboard 
Medium 0% 0% Not Applicable 

Exposed sensitive 

interfaces 
Medium 100% 100% 

Accepted Risk 

The control is 

triggered by the 

exposure of the 

Kubernetes 

Dashboard 

Forbidden 

Container 

Registries 

Medium 19% 6% 

Docker repository 

was added to kube-

hunter’s trusted list. 

Certain repositories 

(like the aquasec 
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repo that kube-

hunter uses) were 

kept untrusted 

HostNetwork 

access 
Medium 28% 35% 

Access allowed to 

specific containers 

for data storing 

functions 

HostPath mount Medium 24% 29% 

To store database 

data, two folders 

were exposed on 

the worker nodes to 

permit access from 

certain pods 

Images form 

allowed registry 
Medium 42% 29% 

Docker repository 

was added to kube-

hunter’s trusted list. 

Certain repositories 

(like the aquasec 

that kube-hunter 

uses) were kept 

untrusted 

Ingress and 

Egress blocked 
Medium 100% 73% 

Network traffic for 

all containers was 

filtered by the 

enforcement of 

network policies 

with Calico. kube-

system resources 

remained 

unchanged 

Linux hardening Medium 61% 52% 

A generic 

AppArmor profile 

was enforced on all 

user defined 

containers 

Malicious 

admission 

controller 

(mutating) 

Medium 0% 0% Not Applicable 

Mount service 

principal 
Medium 24% 29% 

Additional 

resources were 

introduced to the 

cluster that required 

a service principal 

to be mounted on 

the container. New 

service principals 

were created as 

well, that follow the 
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principle of least 

privilege  

Namespace 

without service 

accounts  

Medium 8% 12% 

New namespaces 

were created and 

not all required a 

service account 

Network 

Mapping 
Medium 100% 80% 

Network traffic for 

all containers was 

filtered by the 

enforcement of 

network policies 

with Calico. kube-

system resources 

remained 

unchanged 

No Impersonation Medium 3% 3% 

Impersonation of 

privileged groups is 

only permitted by 

the cluster-admin 

role which is 

assigned to specific 

kube-system pods, 

so no action was 

taken 

Non-root 

containers 
Medium 91% 88% 

The one and only 

user defined 

privileged container 

was removed. 

Changes to the 

kube-system 

containers cannot 

be made without 

breaking 

functionality  

Portforwarding 

privileges 
Medium 3% 3% 

Certain kube-

system pods require 

port-forwarding 

capabilities, so no 

action was taken 

Sudo in container 

entrypoint 
Medium 0% 0% Not Applicable 

Workloads with 

excessive amount 

of vulnerabilities 

Medium 0% 0% Not Applicable 

Access 

Kubernetes 

dashboard 

Low 1% 1% 

Accepted Risk 

The control is 

triggered by the 

exposure of the 

Kubernetes 

Dashboard 
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Audit logs 

enabled 
Low 100% 100% 

Audit logs are 

useful for 

monitoring and 

reporting, so this 

control was 

intentionally 

ignored 

CVE-2022-3172-

aggregated-API-

server-redirect 

Low 0% 100% 

False Positive 

Vulnerability fixed 

in v1.24.5 

Configured 

readiness probe 
Low 71% 35% 

Readiness probes 

were used for all 

user defined 

workloads. kube-

system pods 

remained 

unchanged 

Image pull policy 

on latest tag 
Low 0% 0% Not Applicable 

Immutable 

container 

filesystem 

Low 75% 0% 

A read-only root 

filesystem was 

enforced for 

specific containers 

K8s common 

labels usage 
Low 100% 94% 

Labels were used 

for all user defined 

workloads. kube-

system pods 

remained 

unchanged 

Kubernetes 

CronJob 
Low 0% 0% Not Applicable 

Label usage for 

resources 
Low 53% 48% 

Labels were used 

for all user defined 

workloads. kube-

system pods 

remained 

unchanged 

Malicious 

admission 

controller 

(validating) 

Low 0% 0% Not Applicable 

Naked PODs Low 0% 0% Not Applicable 

PSP enabled Low 100% 100% 

False Positive 

Pod Security 

Policies are 

deprecated and 

scheduled for 

removal in v1.25. 

Current cluster 

version is v1.24, but 
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PSPs are not 

utilized by any 

resources 

Pods in default 

namespace 
Low 42% 0% 

Mitigated 

All relevant 

resources were 

grouped together 

inside their own 

namespaces 

Resource policies Low 100% 0% 

Mitigated 

Policies were 

defined for all user 

defined workloads 

Secret/ETCD 

encryption 

enabled 

Low 100% 0% 

False Positive 

Encryption of 

secrets was already 

enabled, so no 

action was taken 

SSH server 

running inside 

container 

Low 0% 0% Not Applicable 

Table 8.1: Mitigation status of the Kubescape security findings 

 

Control Name Severity Comments 

KHV005 - Access to 

Kubernetes API 
High 

Mitigated 

New service accounts 

have been created for 

every namespace, which 

follow the principle of 

least privilege. kube-

system resources 

remained unchanged 

Access container service 

account 
Medium 

Mitigated 

New service accounts 

have been created for 

every namespace, which 

follow the principle of 

least privilege. kube-

system resources 

remained unchanged 

KHV050 - Read access to 

Pod service account token 
Medium 

Mitigated 

New service accounts 

have been created for 

every namespace, which 

follow the principle of 

least privilege. kube-

system resources 

remained unchanged 
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KHV002 - Kubernetes 

version disclosure 
Low 

Mitigated 

The enable-debugging-

handlers flag has been 

disabled 
Table 8.2: Mitigation status of the kube-hunter security findings 
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9. Conclusion 

As the popularity and usage of Kubernetes continually increases, it is expected 

that more and more security gaps will be discovered over time. After conducting 

research to discover the most common vulnerabilities that threaten Kubernetes, it is 

apparent that a large percentage of them stem from critical security misconfigurations 

and not from platform specific security weaknesses. The main reasons that further 

burden this situation are the complexity of Kubernetes and the inexperience of many 

administrators. Furthermore, to examine how a real Kubernetes environment copes with 

some of the discovered misconfiguration scenarios, we deployed and configured a 

Kubernetes cluster and subsequently evaluated its security posture with the use of the 

kube-hunter and Kubescape vulnerability scanning tools. The goal was to evaluate 

many aspects of the cluster's security by using several scanning techniques, such as 

internal and external scanning, YAML file scanning, inspection of its components for 

vulnerabilities, and even estimate the overall security risk. To demonstrate how 

impactful some of the intentionally created misconfigurations are, specially crafted 

attacks were launched against the cluster, and as expected, the additional layers of 

abstraction that Kubernetes adds in-between the deployed applications and the 

underlying hardware, exposed even adequately protected applications at risk. Finally, 

to decrease the attack surface of the cluster, a list of countermeasures was enforced to 

protect both the cluster’s computing resources and its workloads. To discover the best 

Kubernetes security practices, a qualitative examination of online resources such as 

blog postings, academic publications, and published documentation was conducted. 

The generated list of security countermeasures includes the enforcement of network 

policies and the principle of least privilege with role-based access control, separation 

of cluster resources, hardening of the underlying hosts, limitation of information 

disclosure, protection of sensitive interfaces, resource labeling and usage limitation of 

the cluster’s computing resources. 
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List of Appendices 

Appendix 1: Vagrant Configuration (Vagrantfile) 

MASTER_NODES = 1 

WORKER_NODES = 2 

 

BASE_IP = "192.168.56." 

MASTER_IP_START = 10 

NODE_IP_START = 20 

LB_IP_START = 30 

 

IFNAME = "enp0s8" 

KUBERNETES_VERSION = "1.24.0-00" 

OS_VERSION = "xUbuntu_22.04" 

CRIO_VERSION = "1.24" 

POD_CIDR = "192.168.0.0/16" 

 

Vagrant.configure("2") do |config| 

  config.vm.box = "ubuntu/jammy64" 

  config.vm.box_check_update = true 

 

  if MASTER_NODES > 1 

    # Provision HAPproxy loadbalancer 

    config.vm.define "loadbalancer" do |node| 

      node.vm.provider "virtualbox" do |vb| 

        vb.name = "loadbalancer" 

        vb.memory = 512 

        vb.cpus = 1 

      end 

      node.vm.hostname = "loadbalancer" 

      node.vm.network :private_network, ip: BASE_IP + "#{LB_IP_START}" 

      node.vm.network "forwarded_port", guest: 22, host: 45030 

 

      node.vm.provision "loadbalancer", :type => "shell", :path => 

"scripts/loadbalancer.sh" do |s| 

        s.args = [IFNAME] 

      end 

    end 

  end 

 

  # Provision Master Nodes 

  (1..MASTER_NODES).each do |i| 

    config.vm.define "master-#{i}" do |node| 

      node.vm.provider "virtualbox" do |vb| 

          vb.name = "master-#{i}" 

          vb.memory = 2560 

          vb.cpus = 2 

      end 
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      node.vm.hostname = "master-#{i}" 

      node.vm.network :private_network, ip: BASE_IP + 

"#{MASTER_IP_START + i}" 

      node.vm.network "forwarded_port", guest: 22, host: "#{45010 + i}" 

      node.vm.provision "master", :type => "shell", :path => 

"scripts/master.sh" do |s| 

    s.args = [IFNAME, KUBERNETES_VERSION, OS_VERSION, CRIO_VERSION, 

POD_CIDR, MASTER_NODES] 

      end 

    end 

  end 

 

  # Provision Worker Nodes 

  (1..WORKER_NODES).each do |i| 

    config.vm.define "worker-#{i}" do |node| 

      node.vm.provider "virtualbox" do |vb| 

        vb.name = "worker-#{i}" 

        vb.memory = 1560 

        vb.cpus = 1 

      end 

      node.vm.hostname = "worker-#{i}" 

      node.vm.network :private_network, ip: BASE_IP + "#{NODE_IP_START 

+ i}" 

      node.vm.network "forwarded_port", guest: 22, host: "#{45020 + i}" 

      node.vm.provision "worker", :type => "shell", :path => 

"scripts/worker.sh" do |s| 

    s.args = [IFNAME, KUBERNETES_VERSION, OS_VERSION, CRIO_VERSION] 

      end 

    end 

  end 

end 

 

Appendix 2: Kubernetes Master Nodes Setup Script (master.sh) 

#!/bin/bash 

 

set -euxo pipefail 

 

IFNAME=$1 

ADDRESS="$(ip -4 addr show $IFNAME | grep "inet" | head -1 |awk '{print 

$2}' | cut -d/ -f1)" 

KUBERNETES_VERSION=$2 

OS_VERSION=$3 

CRIO_VERSION=$4 

HOSTNAME=$(hostname -s) 

POD_CIDR=$5 

MASTER_NODES=$6 
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echo "Update hosts and DNS file entries" 

sed -e "s/^.*${HOSTNAME}.*/${ADDRESS} ${HOSTNAME} ${HOSTNAME}.local/" -

i /etc/hosts 

sed -e '/^.*ubuntu-focal.*/d' -i /etc/hosts 

 

cat >> /etc/hosts <<EOF 

192.168.5.11  master-1 

192.168.5.12  master-2 

192.168.5.13  master-3 

192.168.5.21  worker-1 

192.168.5.22  worker-2 

192.168.5.23  worker-3 

192.168.5.30  loadbalancer 

EOF 

 

sed -i -e 's/#DNS=/DNS=8.8.8.8/' /etc/systemd/resolved.conf 

service systemd-resolved restart 

 

echo "Disable swap" 

sudo swapoff -a 

(crontab -l 2>/dev/null; echo "@reboot /sbin/swapoff -a") | crontab - 

|| true 

sudo apt-get update -y 

 

echo "Load kernel modules and set up required sysctl parameters" 

cat <<EOF | sudo tee /etc/modules-load.d/crio.conf 

overlay 

br_netfilter 

EOF 

sudo modprobe overlay 

sudo modprobe br_netfilter 

 

cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf 

net.bridge.bridge-nf-call-iptables  = 1 

net.ipv4.ip_forward                 = 1 

net.bridge.bridge-nf-call-ip6tables = 1 

EOF 

sudo sysctl --system 

 

echo "Install required packages" 

sudo apt update -y 

sudo apt-get install -y apt-transport-https ca-certificates curl jq 

gnupg2 software-properties-common 

 

echo "Install CRI-O Runtime" 

cat <<EOF | sudo tee 

/etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list 
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deb 

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS_VERSION/ / 

EOF 

cat <<EOF | sudo tee 

/etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-

o:$CRIO_VERSION.list 

deb 

http://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/

stable:/cri-o:/$CRIO_VERSION/$OS_VERSION/ / 

EOF 

 

curl -L 

https://download.opensuse.org/repositories/devel:kubic:libcontainers:st

able:cri-o:$CRIO_VERSION/$OS_VERSION/Release.key | sudo apt-key --

keyring /etc/apt/trusted.gpg.d/libcontainers.gpg add - 

curl -L 

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS_VERSION/Release.key | sudo apt-key --keyring 

/etc/apt/trusted.gpg.d/libcontainers.gpg add - 

 

sudo apt-get update -y 

sudo apt-get install cri-o cri-o-runc -y 

sudo systemctl daemon-reload 

sudo systemctl enable crio --now 

 

echo "Install Kubernetes" 

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg 

https://packages.cloud.google.com/apt/doc/apt-key.gpg 

echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-

keyring.gpg] https://apt.kubernetes.io/ kubernetes-xenial main" | sudo 

tee /etc/apt/sources.list.d/kubernetes.list 

sudo apt-get update -y 

sudo apt-get install -y kubelet="$KUBERNETES_VERSION" 

kubectl="$KUBERNETES_VERSION" kubeadm="$KUBERNETES_VERSION" 

 

cat > /etc/default/kubelet << EOF 

KUBELET_EXTRA_ARGS="--node-ip=$ADDRESS,--enable-debugging-

handlers=false" 

EOF 

 

echo "Pull required images" 

sudo kubeadm config images pull 

 

config_path="/vagrant/configs" 

 

if [ "$HOSTNAME" == "master-1" ]; then 

  echo "Initialize Kubernetes Cluster" 
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  if [ $MASTER_NODES == 1 ]; then 

    sudo kubeadm init --apiserver-advertise-address=$ADDRESS --

apiserver-cert-extra-sans=$ADDRESS --pod-network-cidr=$POD_CIDR --node-

name "$HOSTNAME" --ignore-preflight-errors Swap 

  else 

    sudo kubeadm init --control-plane-endpoint "192.168.56.30:6443" --

upload-certs --apiserver-advertise-address=$ADDRESS --pod-network-

cidr=$POD_CIDR 

  fi 

 

  if [ -d $config_path ]; then 

    rm -f $config_path/config 

    rm -f $config_path/join.sh 

  rm -f $config_path/control-join.sh 

  else 

    mkdir -p $config_path 

  fi 

 

  cp -i /etc/kubernetes/admin.conf /vagrant/configs/config 

 

  touch $config_path/join.sh $config_path/control-join.sh 

  chmod +x $config_path/join.sh $config_path/control-join.sh 

  kubeadm token create --print-join-command > /vagrant/configs/join.sh 

  cert_key=$(sudo kubeadm init phase upload-certs --upload-certs | grep 

-v '^\[upload-certs]') 

  token=$(cat /vagrant/configs/join.sh) 

 

  cat > $config_path/control-join.sh << EOF 

  $token --control-plane --certificate-key $cert_key --apiserver-

advertise-address=\$1 

EOF 

else 

  /bin/bash /vagrant/configs/control-join.sh $ADDRESS -v 

fi 

 

sudo -i -u vagrant bash << EOF 

whoami 

mkdir -p /home/vagrant/.kube 

sudo cp -i /vagrant/configs/config /home/vagrant/.kube/ 

sudo chown 1000:1000 /home/vagrant/.kube/config 

export KUBECONFIG=/home/vagrant/.kube/config 

EOF 

 

if [ "$HOSTNAME" == "master-1" ]; then 

  sudo -i -u vagrant bash << EOF 

  whoami 

  kubectl apply -f /vagrant/configs/YAML/cluster_addons/calico.yaml 

EOF 
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fi 

 

echo "Done!" 

 

Appendix 3: Kubernetes Worker Nodes Setup Script (worker.sh) 

#!/bin/bash 

 

set -euxo pipefail 

 

IFNAME=$1 

ADDRESS="$(ip -4 addr show $IFNAME | grep "inet" | head -1 |awk '{print 

$2}' | cut -d/ -f1)" 

KUBERNETES_VERSION=$2 

OS_VERSION=$3 

CRIO_VERSION=$4 

 

echo "Update hosts and DNS file entries" 

sed -e "s/^.*${HOSTNAME}.*/${ADDRESS} ${HOSTNAME} ${HOSTNAME}.local/" -

i /etc/hosts 

sed -e '/^.*ubuntu-focal.*/d' -i /etc/hosts 

 

cat >> /etc/hosts <<EOF 

192.168.5.11  master-1 

192.168.5.12  master-2 

192.168.5.13  master-3 

192.168.5.21  worker-1 

192.168.5.22  worker-2 

192.168.5.23  worker-3 

192.168.5.30  loadbalancer 

EOF 

 

sed -i -e 's/#DNS=/DNS=8.8.8.8/' /etc/systemd/resolved.conf 

service systemd-resolved restart 

 

echo "Disable swap" 

sudo swapoff -a 

(crontab -l 2>/dev/null; echo "@reboot /sbin/swapoff -a") | crontab - 

|| true 

sudo apt-get update -y 

 

echo "Load kernel modules and set up required sysctl parameters" 

cat <<EOF | sudo tee /etc/modules-load.d/crio.conf 

overlay 

br_netfilter 

EOF 

sudo modprobe overlay 

sudo modprobe br_netfilter 
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cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf 

net.bridge.bridge-nf-call-iptables  = 1 

net.ipv4.ip_forward                 = 1 

net.bridge.bridge-nf-call-ip6tables = 1 

EOF 

sudo sysctl --system 

 

echo "Install required packages" 

sudo apt update -y 

sudo apt-get install -y apt-transport-https ca-certificates curl jq 

gnupg2 software-properties-common 

 

echo "Install CRI-O Runtime" 

cat <<EOF | sudo tee 

/etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list 

deb 

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS_VERSION/ / 

EOF 

cat <<EOF | sudo tee 

/etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-

o:$CRIO_VERSION.list 

deb 

http://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/

stable:/cri-o:/$CRIO_VERSION/$OS_VERSION/ / 

EOF 

 

curl -L 

https://download.opensuse.org/repositories/devel:kubic:libcontainers:st

able:cri-o:$CRIO_VERSION/$OS_VERSION/Release.key | sudo apt-key --

keyring /etc/apt/trusted.gpg.d/libcontainers.gpg add - 

curl -L 

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS_VERSION/Release.key | sudo apt-key --keyring 

/etc/apt/trusted.gpg.d/libcontainers.gpg add - 

 

sudo apt-get update -y 

sudo apt-get install cri-o cri-o-runc -y 

sudo systemctl daemon-reload 

sudo systemctl enable crio --now 

 

echo "Install Kubernetes" 

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg 

https://packages.cloud.google.com/apt/doc/apt-key.gpg 

echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-

keyring.gpg] https://apt.kubernetes.io/ kubernetes-xenial main" | sudo 

tee /etc/apt/sources.list.d/kubernetes.list 
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sudo apt-get update -y 

sudo apt-get install -y kubelet="$KUBERNETES_VERSION" 

kubectl="$KUBERNETES_VERSION" kubeadm="$KUBERNETES_VERSION" 

 

cat > /etc/default/kubelet << EOF 

KUBELET_EXTRA_ARGS="--node-ip=$ADDRESS,--enable-debugging-

handlers=false" 

EOF 

 

echo "Join node to Kubernetes cluster" 

/bin/bash /vagrant/configs/join.sh -v 

 

sudo -i -u vagrant bash << EOF 

whoami 

mkdir -p /home/vagrant/.kube 

sudo cp -i /vagrant/configs/config /home/vagrant/.kube/ 

sudo chown 1000:1000 /home/vagrant/.kube/config 

NODENAME=$(hostname -s) 

kubectl label node $(hostname -s) node-role.kubernetes.io/worker=worker 

EOF 

 

sudo mkdir /mnt/db-data 

sudo mkdir /mnt/www-data 

 

echo "Done!" 

 

Appendix 4: Load balancer Setup Script (loadbalancer.sh) 

#!/bin/bash 

 

set -euxo pipefail 

 

IFNAME=$1 

 

ADDRESS="$(ip -4 addr show $IFNAME | grep "inet" | head -1 |awk '{print 

$2}' | cut -d/ -f1)" 

 

echo "Update hosts and DNS file entries" 

sed -e "s/^.*${HOSTNAME}.*/${ADDRESS} ${HOSTNAME} ${HOSTNAME}.local/" -

i /etc/hosts 

sed -e '/^.*ubuntu-focal.*/d' -i /etc/hosts 

 

cat >> /etc/hosts <<EOF 

192.168.5.11  master-1 

192.168.5.12  master-2 

192.168.5.13  master-3 

192.168.5.21  worker-1 

192.168.5.22  worker-2 
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192.168.5.23  worker-3 

192.168.5.30  loadbalancer 

EOF 

 

sed -i -e 's/#DNS=/DNS=8.8.8.8/' /etc/systemd/resolved.conf 

service systemd-resolved restart 

 

echo "Install and configure haproxy" 

apt-get update 

apt-get install -y haproxy 

 

grep -q -F 'net.ipv4.ip_nonlocal_bind=1' /etc/sysctl.conf || echo 

'net.ipv4.ip_nonlocal_bind=1' >> /etc/sysctl.conf 

sudo sysctl --system 

 

cat >/etc/haproxy/haproxy.cfg <<EOF 

global 

    log /dev/log    local0 

    log /dev/log    local1 notice 

    chroot /var/lib/haproxy 

    stats socket /run/haproxy/admin.sock mode 660 level admin 

    stats timeout 30s 

    user haproxy 

    group haproxy 

    daemon 

    # Default SSL material locations 

    ca-base /etc/ssl/certs 

    crt-base /etc/ssl/private 

    # Default ciphers to use on SSL-enabled listening sockets. 

    ssl-default-bind-ciphers 

ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256:ECDH+AES128:DH+AES:ECDH+3DE

S:DH+3DES:RSA+AESGCM:RSA+AES:RSA+3DES:!aNULL:!MD5:!DSS 

    ssl-default-bind-options no-sslv3 

 

defaults 

    log global 

    mode    tcp 

    option  tcplog 

    option  dontlognull 

        timeout connect 5000 

        timeout client  50000 

        timeout server  50000 

    errorfile 400 /etc/haproxy/errors/400.http 

    errorfile 403 /etc/haproxy/errors/403.http 

    errorfile 408 /etc/haproxy/errors/408.http 

    errorfile 500 /etc/haproxy/errors/500.http 

    errorfile 502 /etc/haproxy/errors/502.http 

    errorfile 503 /etc/haproxy/errors/503.http 



Kubernetes Cybersecurity 

Ioannis Morfonios  102 

    errorfile 504 /etc/haproxy/errors/504.http 

 

frontend k8s 

    bind 192.168.56.30:6443 

    default_backend k8s_backend 

 

backend k8s_backend 

    balance roundrobin 

    mode tcp 

    server master-1 192.168.56.11:6443 check inter 1000 

    server master-2 192.168.56.12:6443 check inter 1000 

    server master-3 192.168.56.13:6443 check inter 1000 

EOF 

 

systemctl restart haproxy 
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