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Abstract 

 Machine learning techniques have become increasingly popular in intrusion 

detection systems (IDS) due to their ability to automatically learn patterns and 

behaviors of normal and anomalous network activities. IDS aims to detect and prevent 

cyberattacks that can potentially cause significant damage to computer systems, 

networks, and sensitive information. Traditional intrusion detection methods rely on 

manually designed signatures and rules to identify known attacks, but they often fail 

to detect novel and sophisticated attacks. Machine learning-based IDS can 

automatically learn from large volumes of network traffic data and detect anomalies 

that may indicate an intrusion attempt. 

 The thesis focuses on the application of machine learning algorithms in 

developing an IoT intrusion detection system. The study explores various types of 

machine learning algorithms, including supervised and unsupervised learning, deep 

learning, and ensemble learning, and discusses how they can be used to detect 

anomalous activities in IoT networks. The study aims to enhance the accuracy and 

effectiveness of intrusion detection systems by exploring the robustness of deep 

learning model to adversarial attacks. The research implements three types of 

adversarial attacks: Jacobian Saliency Map attack (JSMA), Fast Gradient Sign 

Method (FGSM), and DeepFool, to evaluate the robustness of the deep learning-based 

intrusion detection system. The results of the study demonstrate that the deep learning 

model can effectively detect intrusion attacks in IoT networks with high accuracy 

although, it highlights the vulnerability of deep learning models to adversarial attacks 

and the need for developing robust and resilient intrusion detection systems. 

 vii
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1. Introduction 

 In recent years, the Internet of Things (IoT) has become a vital part of our 

daily lives, providing us with numerous benefits, including improved efficiency, 

comfort, and convenience. However, the increased connectivity and reliance on IoT 

devices have also made them more vulnerable to cyberattacks. To address this issue, 

intrusion detection systems (IDS) have been developed to detect and prevent 

cyberattacks. Traditional IDS methods rely on pre-defined signatures and rules, which 

may not be sufficient to detect novel and sophisticated attacks. Thus, machine 

learning-based IDS has emerged as a promising approach to automatically detect 

anomalies that may indicate an intrusion attempt. 

 In this context, this thesis explores the application of machine learning 

algorithms in developing an IoT intrusion detection system. Specifically, this study 

compares the effectiveness of supervised and unsupervised learning techniques in 

detecting anomalous activities in IoT networks. Furthermore, the research examines 

the robustness of deep learning-based IDS against adversarial attacks, which can 

deceive the system and make it classify malicious traffic as benign. The contribution 

of this study is twofold: firstly, it evaluates the performance of different machine 

learning techniques in detecting intrusions in the IoT domain. Secondly, it highlights 

the vulnerability of machine learning models to adversarial attacks and the need for 

developing more robust and resilient intrusion detection systems. 

 Moreover, the code used to perform the experiments is publicly available in 

GitHub Adversarial-Attacks-against-NIDS [34]. The availability of the code ensures 

the reproducibility of the experiments and allows for the validation and extension of 

the study's findings. Overall, this thesis presents an in-depth analysis of the 

application of machine learning techniques in IoT intrusion detection systems, 

highlighting the challenges and opportunities for developing more effective and 

robust security solutions. 
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 This study aims to contribute to a deeper understanding of the effectiveness 

and limitations of machine learning-based IDS in the context of IoT security by 

answering in the following research questions: 

- RQ1: How effective are adversarial attacks against intrusion detection systems in 

the IoT domain, and what impact do they have on the accuracy and effectiveness of 

the IDS? 

- RQ2: Which adversarial attack has the biggest impact on the performance of 

intrusion detection systems in the IoT domain? 

- RQ3: Which machine learning method (supervised or unsupervised learning) is the 

most vulnerable to adversarial attacks in the context of IoT intrusion detection? 
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1.1 Machine Learning 

 A dream researchers had was to teach computers to reason and make decisions 

in the way humans do, by drawing generalizations concepts from complex 

information sets without explicit instructions. Machine learning refers to one aspect of 

this dream, with processes and algorithms that can learn from past data and 

experiences in order to predict future outcomes and results. Is a set of mathematical 

techniques, implemented on computer systems that enables a process of mining 

information, drawing inferences from data, and pattern discovery. 

 The term dates back to 1959 when it was first coined by Arthur Samuel at the 

IBM Artificial Intelligence Labs. In the 1980s, machine learning gained much more 

prominence with the success of ANNs, Artificial neural networks, and glorified in the 

1990s when researchers started using it to solve daily life problems. In the early 

2000s, the internet and digitization made it more and more popular, and over the years 

companies like Google, Amazon, and Facebook started leveraging machine learning 

to improve the interactions between humans and computers. 

1.2 Machine Learning in Cybersecurity 

 In order to detect threats and anomalies, threat detection systems used static 

signatures on a large amount of data logs. By doing this, analysts should be able to 

know how normal data logs look and needed to go through extraction, transformation, 

and load phase. Data that are transformed are analyzed by analysts who create the 

signatures. The signatures are then evaluated by passing more data. If an error 

occurred in the evaluation process they had to rewrite the rules. 
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 Today signature-based systems are being gradually replaced by intelligent 

cybersecurity agents. Machine learning started to be used for malware detection, zero-

day attacks, anomaly detection, and so on. New machine-learning cybersecurity 

products have been proactive in strengthening systems like virtual machines. In 

general, these products are created to predict attacks before they occur. Machine 

learning helps to recognize the attack at its initial stages and prevent it from spreading 

across the entire organization. Many cybersecurity companies are relying on advanced 

analytics, such as user behavior analytics and predictive analytics, to identify 

advanced persistent threats early on in the threat life cycle. Predictive analytics 

predicts threats by comparing current threat logs with historic threat logs. Prescriptive 

analytics deals with situations where an attack is already in play and analyzes data to 

suggest what measure could be best fit for the situation, to have the smallest possible 

impact. 

 Although alerts generated need to be tested by the SOC team, false alerts 

could make humans tired especially if we are talking about a large number of them. 

One way to solve this problem is with the use of SIEM. Signals from SIEM systems 

are compared with those from advanced analytics to reduce duplicate alerts and false 

signals to a minimum. 

1.3 Data in Machine Learning 

 Data is the most important part of all Data Analytics, Machine Learning, and 

Artificial Intelligence. Without data, we can’t train any model. Data helps Machine 

learning in detecting patterns and mining data. This data can be in any form and 

comes in frequency from any source. Big companies are spending lots of money to 

gather data as certain as possible. We can split data into three categories, the training 

data, the validation data, and the testing data. 
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 Training data are those we use to train our model to accurately predict an 

answer or an outcome that we want. This is the data that our model learns from. The 

validation data is the part of data where we evaluate our model and fit it on the 

training dataset in order to give an estimate of model skill while tuning the model’s 

hyperparameters (initially set parameters before the model begins learning). The 

testing data provides an evaluation when our model is completely trained. When we 

feed in the inputs of testing data, our model will predict some values. After prediction, 

we evaluate our model by comparing it with the actual output present in the testing 

data. This is how we evaluate and see how much our model has learned from training 

data. 

1.3.1 Structured and unstructured data 

 Data can either be structured or unstructured data. When structured it can be 

easily mapped to identifiable column headers, are in a standardized format, and can 

easily be accessed by humans and computer programs. Unstructured data can not be 

mapped to any identifiable data model, has no format or rules, and can not be stored 

in any logical way. 

 Structured data is more easily used by machine learning algorithms since is 

easier to understand when compared to unstructured. Also, manipulation and querying 

of data become even easier. 

1.3.2 Labelled and unlabelled data 

 Another categorization for data is labeled and unlabelled data. When data has 

been manually tagged with headers is called labeled and when they are not is called 

unlabelled.  
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 Unlabelled data is when we know nothing of the data, the environment, or the 

way in which is collected. We do not know which sensors collected them or the status 

of the environment in which they were retrieved. So, we do not have any knowledge 

associated with unlabelled data. Regarding the labeled data, a researcher or an 

automatic tagger must use their knowledge to add extra information to the data. Data 

know the way the environment operates. Specifying in the data that, for example, 

network traffic is an attack, is labeled. When we mention what kind of attack this is, 

for example, DDoS, it is also labeled. 

2. Types of Machine Learning algorithms 

 Machine learning systems can be mainly categorized into two types, 

supervised approaches, and unsupervised approaches, based on the types of learning 

they provide, figure 1. The differences between these learning types are attributable to 

the type of result that we intend to achieve. 

 

 
  

Figure 1. Types of Machine Learning  
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2.1 Supervised learning 

 Supervised learning is when we train our model using data that are labeled. 

The training of the algorithm is conducted by using an input dataset where the type of 

output that we want to obtain is already known. What we want from the algorithm is 

to be able to identify the relationship between the variables being trained and make an 

optimization of learning parameters on the basis of the labels. After that, the model is 

provided with a new set of data so the machine learning algorithm analyzes the 

training data and produces a valid result from labeled data. Supervised machine 

learning helps solve various types of real-world problems although classifying the 

data and training process can take a lot of time. 

 An example of a supervised learning algorithm is the classification algorithm 

which can be used for spam classification. A dataset containing many examples of 

emails that have been classified as malicious or spam or genuine is provided, for 

training, in the spam filter. A classification problem is when the result is a category 

such as “DDoS” or “Malicious”. Another example of supervised algorithms is 

regression algorithms. A regression problem is when the result is a real value, like 

“weight”. The following are the main supervised algorithms: 

- Regression (linear and logistic) [1] 

- k-Nearest Neighbors (k-NNs)  

- Support vector machines (SVMs)   

- Decision trees and random forests Neural networks (NNs) 
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2.1.1 Decision Tree 

 Decision trees are supervised learning models that are easy to interpret [2]. As 

its name suggests, decision tree is a binary tree data structure that is used to make a 

decision. Being a very popular choice for machine learning, even outside of these 

fields, decision trees have the ability to predict both categorical and real values such 

as classification and regression trees respectively. They can also take in numerical and 

categorical data without any normalization. 

 The first step in the learning decision construction is to split the dataset based 

on a binary condition into two child subsets. Then, the child subsets are partitioned 

into smaller subsets based on other conditions. We calculate how much accuracy each 

split will cost us and the split with the least cost is chosen. There are some common 

metrics where we can measure the quality of the split since are automatically selected 

at each step depending on the condition that best splits the dataset. 

 One metric is the information gain which measures the purity of the subsets 

that we have after a split. We can calculate this by subtracting the weighted sum of 

each decision tree child node’s entropy from the parent node’s entropy. In this case, 

the split is better when the entropy of the children is smaller thus the information gain 

is greater. Variance reduction is another metric that defines the total reduction in 

variance as we split into two subsets. We will have the best split in a decision tree 

when it results in the greatest variance. 

 We do not care only about the splitting method but also to understand when to 

stop. If each node contains samples that belong to the same class or when the 

maximum depth of the node is reached the splitting is stopped. Also, there is a case 

where child nodes will contain samples that are fewer than the minimum number and 

the node will not be split, figure 2. 
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Figure 2. Decision Tree 1  

 We can easily explain the classification or regression results of decision tree, 

since every prediction can be expressed in a series of boolean conditions that starts 

from the root node of the tree to a leaf node. The root node is from where the decision 

tree starts and leaf nodes are the final output node and the tree can not be segregated 

further after getting a leaf node. 

 They have great performances in large datasets since they are very efficient for 

training and making predictions. Although, decision trees have also their limitations. 

They often suffer from the problem of overfitting as decision-tree learners can create 

over-complex trees that do not generalize well beyond the training set. Also, decision 

trees are less accurate and robust compared to other supervised learning techniques as 

small changes to the training dataset can result in large changes to the tree which 

change the model’s predictions. This is called variance, which needs to be lowered by 

methods like bagging and boosting. This makes decision trees unsuitable for online 

learning. 

______________________ 

1 . Decision Tree figure from https://devopedia.org/decision-trees-for-machine-

learning 
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2.1.2 Support Vector Machines 

 Support vector machines, known as SVM [3], is a linear classifier which 

means that it produces a hyperplane in a vector space that tries to separate the two 

classes in the dataset. The best decision that can segregate n-dimensional space into 

classes so that we can easily put the new data point in the correct category is called a 

hyperplane. The same goes for the Logistic regression. It uses a hinge loss, which 

penalizes only the points that are found on the wrong side of the hyperplane or very 

near to the correct side. In contrast, the Logistic regression which uses a log-

likelihood function that penalizes all the points in proportion to the error in the 

probability estimate. SVM is one of the most popular supervised learning algorithms 

which is used for classification but also for regression problems, but mostly 

classification. 

 SVM classifier has as a goal to find the maximum distance from the separating 

plane to the closest data points on each side which separates the two classes. These 

cases are called support vectors. When we have data that is not linearly separable, the 

points within the margin are penalized proportionately to their distance from the 

margin. We can understand how the SVM classifier works by an example. In the 

following figure 3 shows two classes that are represented by white and black points. 

Figure 3. SVM separates two classes 2 

_____________ 

2. Figure from “Active learning to improve the detection of unknown computer worms 

activity” - Robert Moskovitch 
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 The straight line is the dividing line, hyperplane, and the dotted lines are the 

margins. Since there can be many lines that can separate the classes, SVM can help to 

find the best line. Thus, the algorithm initially finds the closest points of the two 

classes on the line, which we call support vectors, and their distance from the line is 

called the margin. The hyperplane with the maximum margin is the optimal 

hyperplane. 

 In this example, we are referring to linearly separable data. When the data is 

non-linear, the SVM solves this problem by creating a new variable using a kernel. 

The SVM kernel is a function that takes a low dimensional input space and transforms 

it into a higher dimensional space, i.e. it transforms a non-separable problem into a 

separable one. It finds the process, after it has done some complex data 

transformations, and separates the data according to their labels or outputs defined. 

 SVMs have a very good performance in practice, especially in high-

dimensional spaces. Also, since they can be described in terms of support vectors, a 

subset of training points in the decision function, this results in us having memory-

efficient implementations for scoring new data points. However, when we train a 

kernelized SVM the complexity grows quadratically with the number of training 

samples. So, with large training set sizes kernels are rarely used and the decision 

boundary is linear. Another disadvantage is that the scores output by SVM is not 

interpretable as probabilities and converting them to probabilities requires additional 

computation and cross-validation. 

2.2 Unsupervised learning 

 In unsupervised learning, we do not have the classification provided by the 

analyst and the algorithm must try to classify the data on one’s own and unassisted. In 

cybersecurity unsupervised learning algorithms are very important for identifying new 
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malware attacks or email spamming. The machine has to group unsorted information, 

unlabeled data, from patterns and differences without any prior training data and the 

help of experience. These are more complex processes since the system learns by 

itself without any intervention. In contrast to supervised learning where we use 

labeled data, unsupervised learning, also known as self-organization allows for the 

modeling of probability densities over inputs. Also, unsupervised learning can work 

with real-time data to identify patterns. Some disadvantages are that it is not always 

certain that the obtained results will be useful as there is no label and often have lesser 

accuracy. It is also costlier since it might require human intervention to understand the 

patterns and correlate them. 

 Clustering is a category of unsupervised learning. Clustering is the process of 

grouping data that has not been labeled, classified, or categorized and putting similar 

data into the same group [4]. The clustering techniques are most popular in pattern 

recognition and information retrieval. These techniques use data parameters and go 

through many stages before they can group the data. Cluster analysis identifies 

commonalities in the data and reacts based on the presence or absence of such 

commonalities. 

 There are four clustering algorithms which are exclusive clustering, 

overlapping clustering, hierarchical clustering, and probabilistic clustering. The 

exclusive clustering data are grouped in an exclusive way where if a data point 

belongs to a definite cluster then it could not be included in another cluster. In case of 

overlapping, it uses unclear sets to cluster data so that each point can belong to more 

than one cluster with different characteristics. In this situation, the data will be 

associated with an appropriate subscription price. A hierarchical clustering algorithm 

is based on connecting the two nearest clusters. We start by setting every data point as 

a cluster and after a few iterations it reaches the final clusters that we want. For the 

probabilistic, the cluster includes data objects that have a higher probability to be in it. 
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2.2.1 K-means 

 One of the most used clustering algorithms is K-means [5]. The goal of this 

unsupervised learning algorithm is to assign each data point to a cluster such that the 

sum of distances from each point to its cluster centroid, cluster centers, is minimized. 

When we know how many clusters we expect, we define this number of clusters to k. 

Now, when we talk about the distance we are referring to Euclidean distance in a 

vector space. The k-means computes a cluster assignment that minimizes the loss 

function: 

L ( X ) = ∑
i 

d ( x i , c f ( x i ) 
)

where X = {x1,…, xn } is our dataset, the c f ( x i ) 
is the centroid in f ( x i ) and the d is 

the distance between two points. The value L(X) is called inertia. The way in which 

the kmeans clusters are computed is by first selecting the k centroid, assigning each 

data point to the closest centroid, and again computing the c centroids by taking the 

average of all the data points that were assigned to the cluster. Finally, we repeat this 

process until the difference of L(X) in successful iterations is below a predetermined 

threshold. That way each cluster has a data point with some commonalities and is 

away from other clusters. So, we can just say that the algorithm takes the unlabeled 

dataset as input, and divides the dataset into k clusters until it can not process better 

clusters, figure 4. 
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Figure 4. K-means 3 

 Kmeans has multiple applications such as document clustering, image 

segmentation, image compression, etc. Before implementing it, we should bear in 

mind that it is proposed to normalize our data since such algorithms do the distance-

based measurement and that due to the initialization of centroids of kmeans there is a 

possibility that it will get stuck in a local optimum and fail to converge to the global 

optimum and so we should employ distinct centroids initializations. 

 K-means is a simple and very effective clustering algorithm although we 

should keep some things in mind. We should normalize our data before using k-means 

as if we had a two-dimensional dataset where the first coordinate has a range from 0 

to 1 and a second one that has a range from 0 to 100, surely the second one will have 

a much greater impact on the loss function. Also, when using binary features results 

can be unpredictable as they can become the dominant feature determining the cluster 

or we could lose all the information. K-means takes for granted that the clusters are 

spherical so it does not work well on non-spherical distributions. 

___________________ 

3. Figure from “K Means Clustering Simplified in Python” - https://

www.analyticsvidhya.com/blog/2021/04/k-means-clustering-simplified-in-python/  
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 As mentioned previously, the choice of the optimal number of clusters is a 

serious task. As the performance of the K-means clustering algorithm depends 

significantly on the efficient clusters it forms, there is a way we can find the ideal 

number of clusters or the value of k. One of the most well-known methods is the 

elbow method. This method uses the logic of Within Cluster Sum of Squares (WCSS) 

which defines the total variations in a cluster. The way it works is that it first performs 

K-means clustering on a dataset that we give with different K values, from 1 to 10, 

then for each k the WCSS value is calculated and we make a plot, a curve, between 

the calculated WCSS values and the number of k. At the point of the curve where a 

corner is created, in figure 5, if we liken the curve to a hand then at the point of the 

elbow, then that point is considered the ideal value for k [6]. 

Figure 5. Elbow method for optimal number of k 4 

_____________________ 

4. Figure from https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-

learning  
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2.3 Deep learning 

 Deep learning is another popular term that is commonly conflated with 

machine learning. Deep learning is a strict subset of machine learning referring to a 

specific class of multilayered models that use layers of simpler statistical components 

to learn representations of data. “Neural network” is a more general term for this type 

of layered statistical learning architecture that may have or not have many layers, that 

why it is deep [7]. 

 Deep learning is a class of machine learning which in turn is a core building 

block for Artificial intelligence (AI), figure 6. AI is a popular but loosely defined term 

that indicates algorithmic solutions to complex problems typically solved by humans. 

It's like enabling computers to mimic human behavior. Below we can see the 

correlation of AI with machine learning and deep learning. 

Figure 6. AI related to Machine learning and Deep Learning 5 

__________________ 

5. Figure from https://subscription.packtpub.com/book/big-data-and-business-

intelligence/9781789802993/1/ch01lvl1sec02/the-relationship-between-ai-machine-

learning-and-deep-learning  
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 Humans arrive at some conclusions by analyzing some data with some logical 

structure, so can deep learning also achieves this with neural networks, i.e. using a 

multi-layered structure of algorithms. as we mentioned, neural networks try to mimic 

the human brain, so their design structure is based on the human brain. With neural 

networks, we can perform many tasks. To group or sort unlabelled data, to train a 

network on a labeled dataset to classify the data into different categories, but also 

clustering. These capabilities of neural networks can make Deep learning able to 

solve problems that a machine learning model cannot. 

 Today, deep learning is used in many applications such as Google’s voice and 

image recognition, Netflix, Amazon or Youtube recommendation engines, Apple’s 

Siri, Alexa, automatic email and text replies, and chatbots. Without deep learning, we 

would not have self-driving cars, fraud detection, health care, adding sound to silent 

movies, automatic machine translation, text-to-image translation, image-to-image 

synthesis, image colorization, earthquake prediction, market rate forecasting, news 

aggregation, and fraud news detection. All recent advances in artificial intelligence 

are due to Deep learning. 

 The increase of high-performance computing has a lot to do with the 

increasing popularity of Deep learning. When dealing with unstructured data Deep 

learning achieves higher power due to its ability to process a large number of features. 

Deep learning algorithm passes the data from several layers where each one extracts 

features which in turn were passed to the next layer. Another reason they are so 

popular is that feature extraction is not needed. When we use algorithms such as 

Decision tree or SVM they cannot be applied directly to raw data and one more 

preprocessing step is needed, the feature extraction. After that, the given raw data can 

be used. In the case of Deep learning, this extra step is not needed.  The layers are 

able to learn on their own an implicit representation of the raw data. Through the 

several layers, an abstract and compressed representation of raw data is produced 

which in the end produces the result. During the training process, this step is also 

optimized by the neural network in order to have the best possible abstract 
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representation of the data. So, in a Deep learning model, it is not required any effort to 

perform and optimize the feature extraction. We can say that it is already part of the 

process that takes place in a neural network. 

 As we said the term “deep” usually refers to the number of layers in the neural 

network. The typical neural network architecture consists of several layers, figure 7. 

The first layer is the input layer which receives the data that the neural network learns 

from. The last layer is called the output layer which outputs a vector representing the 

result that the neural network came up with. For example, if we have classification the 

number of neurons in the last layer would be the number of classes. The prediction 

vector is obtained by a number of mathematical operations that are performed in the 

layer between the input and the output layers, called hidden layers. Traditional neural 

networks only contain 2-3 hidden layers, while deep networks can have as many as 

150. 

  

  

Figure 7. Artificial Neural Network 6 

 A neural network can be described as a set of connected nodes which are 

called neurons. Connections between the neurons are made with so-called weights. 

When a neural network learns the weights, numeric values, between the neurons are 

changing and with that, it also changes the strength of the connection.  

______________________ 

6 . Figure obtain from ESTIMATION WITH ARTIFICIAL NEURAL NETWORK ON ELECTRONIC 
WORD OF MOUTH - Ibrahim Topal 
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 For every action taken, we need a certain set of weights that will allow the 

neural network to perform, for example, a classification. The set of weights is 

different for every task and every dataset. During the training process, we obtain these 

weights and it is impossible to predict them in advance. 

2.4 Ensembling 

 Rather than using individual classifiers, in presence of non-stationary data, it 

may be useful to apply an ensemble of classifiers in order to improve overall 

prediction accuracy. For that reason, ensembling learning aims to combine different 

classifiers to get a final classifier that will have better predictions than what we would 

get from an individual classifier. Let's think that we have a number of binary 

classifiers, all of the same type, they could make a correct prediction in 75% of the 

cases and not so accurate in the remaining 25% of the cases. By using an ensemble 

classifier the probability of getting correct results is improved and accordingly the 

probability of error is reduced. 

 Ensemble learning combines the mapping functions learned by different 

classifiers to generate an aggregated mapping function. There are several methods that 

we can use to combine classifiers, the most popular that commonly used are Bagging, 

Boosting, Stacking, and Majority Voting. 

 The bagging ensemble technique [8], also known as bootstrap aggregating, is 

one of the earliest ensemble methods proposed. It is a method that has the property of 

parallel processing. Using replacements, random subsets of a dataset are created and 

we call them bootstrap sampling. Now, these subsets are treated as independent 

datasets where several Machine learning models will be fit. The predictions from all 

models are collected and using an aggregation mechanism we will compute the final 

prediction. What we want to achieve with the bagging method is to reduce variance in 

the ensemble predictions. So, the chosen ensemble classifier usually has high variance 
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and low bias. Random forest [12] is an example of bagging with additional features in 

the learning process. 

 Unlike bagging which is a parallel ensemble method Boosting method [10] are 

sequential ensemble algorithm. At first, our first classifier is fed with the entire dataset 

and makes the predictions. After that, where the first classifier failed to produce 

correct predictions is fed to the second classifier. In this way, the second classifier will 

learn an appropriate decision boundary focusing only on the problematic ones. We 

continue in the same way until we finally compute the ensemble of all classifiers and 

make the final prediction. The chosen ensemble classifier in this case usually has low 

variance and high bias. An algorithm based on this approach is the Gradient Boosting 

Machines [13]. 

 In the Stacking [11] ensemble method, as in the case of the bagging 

mechanism, we have the creation of bootstrapped data subsets. The difference here, 

however, is that the outputs of all the models are used as input to another classifier 

called a meta-classifier, which in turn makes the final prediction. The reason this 

stacking of the two classifiers is done is to determine if the training data have been 

appropriately learned. If the first classifier has issues recognizing some classes, the 

meta-classifier can then correct this behavior before making the final prediction. We 

can also add more layers of classifiers in the stacking ensemble method, although this 

will result in a very expensive computation without having any significant 

performance boost. 

 The Majority Voting method [9] refers to the fact that from predictions made 

by individual classifiers, we select the one that shows the highest frequency. It is one 

of the earliest ensemble schemes. An odd number of classifiers are chosen and 

predictions of each one are computed. Then, the class that has achieved the highest 

frequency is considered the predicted class of the ensemble. If we have, for example, 

a binary classification problem where we will have only two candidates for whom the 

classifier can vote, then Major voting is quite effective. However, when we have 

several classes, quite a problem arises since it is very difficult for one class to receive 

the total number of votes. 
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3. Intrusion Detection System 

 As people are using more and more intelligent systems in their daily lives the 

risks around cyberattacks have increased significantly. We are in a current state where 

traditional security measures have started losing their effectiveness since connections 

between different devices, such as the Internet of Things (IoT), have reached a very 

high level of complexity. Thus, the need for something new for detecting network 

anomalies was created[19]. To ensure safe communication Intrusion Detection 

Systems (IDS) were developed using machine learning algorithms that have the 

ability to detect attacks against network security. IDS is the continuous monitoring of 

the traffic for unusual events and critical characteristics and raises an alarm that alerts 

the defenders when it determines any intrusion, a threat, in the network. It is also 

useful as an alternative to traditional firewalls. Intrusion detection systems have a 

long history in the defense of networks, although machine learning came to assist and 

improved the accuracy, performance, and the discovery of existing or new 

attacks[18]. 

 A network-based IDS monitors and detect threats that find through the 

communication that travels into and out of the network. A host-based IDS makes its 

scans in a particular server. In the area of network intrusion detection, we can find two 

different types of IDS Signature-based IDS and Anomaly-based IDS. The signature-

based IDS analyzes network traffic for already known malicious signatures from 

attacks that were previously detected [20]. Although, having a strategy with common 

antivirus software its disadvantage is that requires a constant update of these known 

signatures in order to work efficiently and to be able to detect new types of attacks. 

The Anomaly-based IDS learns from existing data and compares the network traffic 

against a user’s known patterns to raise an alert [21]. So, it identifies a network traffic 

behavior as normal and detects differences in behavior as anomalous. With this 
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approach, it is possible to detect new types of attacks as it is analyzing the traffic that 

deviates from the pattern. Some common patterns that can be taken into consideration 

are the number of connections from a specific IP, unusual communication ports, 

communication bandwidth from particular hosts, etc. All these events may be 

considered as suspicious if we compare them with normal traffic ones. This approach 

is more widely used in the design of intrusion detection applications. Machine 

learning is used to develop the anomaly-based IDS since it works on the principle of 

training the model with known data points and testing it with benign samples. In our 

implementation, we will create a Network Intrusion detection system using neural 

networks. 
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4. IoT Intrusion Dataset 

 The dataset we used to train the machine learning models is the IoTID20. It is 

a dataset that generated by Hyunjae et. al [22] which refers to anomalous activity in 

IoT. We will develop our intrusion detection system in IoT networks. 

4.1 Internet of Things (IoT) 

 The Internet of things, or IoT, [22] is a system of connected devices, provided 

with unique identifiers, that communicate with the internet and do most of the work 

without requiring human intervention. Although people can interact with the devices 

by setting them up, giving them instructions, or accessing the data. Everyday devices 

like cars, vacuums, and lights are collecting and sending data that acquire from their 

environment with their sensors, communication hardware, or processors and respond 

to users in a smart way. IoT becomes an important technology to develop smart 

infrastructure since organizations operate in a more efficient way, improve decision-

making and achieve consistent and effective operations, reducing operational costs 

significantly. Home automation can use IoT to monitor mechanical and electrical 

devices in a building. Smart cities can tackle problems regarding infrastructure, 

health, and the environment. Reducing energy with smart lights, detecting 

maintenance needs in streets or bridges, or reducing driver indolence with efficient 

parking management. 

 Although all these implementations provide a large attack surface for intruders 

to attack and exhaust the IoT network with malicious activity.  The difference with a 

traditional network is that IoT devices operate without manual supervision. Their 

wider adoption in our lives makes it very critical to address the security threats before 

23



their deployment. IoT attacks can be physical, network, software, or encryption. In 

network attacks, we can have the Man in the Middle attacks where the attacker 

intercepts the communication between two devices and obtain sensitive information 

[23]. Denial of service where the attacker floods the network with large traffic and 

makes the devices unavailable [24]. Since the impact of these attacks is huge we can 

not work with traditional detection systems. As mentioned in the previous section, a 

signature-based IDS will not have a big effect since it would be able to identify new 

attacks and we want them to be stopped before their implementations. An anomaly-

based IDS is well suited to the current environment since it could detect zero-day 

attacks. Data mining and machine learning help develop the capabilities of an 

anomaly-based IDS. In order to have an effective IDS we will need a new 

sophisticated dataset. The IoTID20 dataset will help us in detecting malicious activity 

in the IoT network. 

4.2 IoTID20 dataset 

 The IoTID20, generated from the dataset [21], has a more comprehensive 

network and flow-based features which will provide a reference point to identify 

anomalous activity in the IoT network. In order to generate the dataset, a smart home 

environment was implemented having two smart devices, a Wi-Fi camera EZVIZ and 

a smart home device SKT NGU, and some laptops, tablets, and smartphones. We 

consider the two smart devices as the IoT victim devices and all other devices in the 

environment are considered the attacker's devices. The dataset contains 8 types of 

attacks to evaluate the Intrusion Detection system in IoT Networks. The way in which 

the dataset was created, and more specifically the dataset in CSV format, is by starting 

with the Pcap files from [1]. Then, the CICflowmeter application was used to extract 

the features and generate the CSV file. The IoTID20 dataset consists of 83 network 
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features and three label features. The three label features are the Binary, category, and 

sub-category. In binary, we have normal and anomalous traffic. In Category, we have 

the five attacks, Normal, Dos, Mirai, MITM, and Scan. And in Subcategory, we have 

subcategories of the attacks which are Normal, Syn Flooding, Brute force, HTTP 

Flooding, UDP Flooding, ARP Spoofing, Host Port, and OS. The IoTID20 is one of 

the few publicly available IoT intrusion detection datasets which replicates the IoT 

network communication. In the below tables 1, 2, and 3 we can find the binary, 

category, and subcategory instances distributions. 

Table 1. Binary label distribution


  

Table 2. Category label distribution
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Binary label distribution 

Type Instances

Normal 40073

Anomaly 585710

Category label distribution 

Type Instances

Normal 40073

DoS 59391

Mirai 415677

MITM 35377

Scan 75265



Table 3. Subcategory label distribution


Table 4. IoT dataset features
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Subcategory distribution 

Type Instances

Normal 40073

DoS 59391

Mirai Ack Flooding 55124

Mirai Brute Force 121181

Mirai UDP Flooding 55818

MITM 35377

Scan Host Port 22192

Scan Port OS 53073
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5. Adversarial Attacks 

 Deep learning was able to solve difficult problems that traditional machine 

learning techniques could not. With their evolution and the availability of high-

performance hardware to train complex models, its usage increased radically in day-

to-day applications. Having great accuracy, deep learning models had a big impact on 

AI-based services on the Internet, including Google and Alibaba. Although these 

systems are considered secure, network proliferation makes them vulnerable to many 

external threats and their security and integrity pose a great concern. In today’s digital 

world, people are adopting AI systems into their daily lives and the cyberattacks on 

their user-specific information have grown.  

 More specifically, the security of deep learning systems is vulnerable to 

adversarial attacks that craftily manipulate legitimate inputs, by adding careful 

perturbation to the data known as adversaries and forcing a trained model to produce 

incorrect results. Slightly perturbed input can fool the Deep neural network into 

making misclassified outputs with high confidence [14]. These attacks also became 

very critical and raised safety concerns when we are talking about DNN models that 

apply in applications such as autonomous driving [15] and medical diagnosis [16]. 

Szedy et al., [17] first discovered that deep neural networks are prone to adversarial 

attacks as they map inputs to outputs which could be intermittent based on the data 

used. Adversarial samples can reduce the trust of a classifier, force the classifier to 

generate results that resemble the targeted output class, and adds noise to output in 

order to misclassify it as another class.  

 The attack generation mechanisms can fall into different categories. One of 

these categories is what access the attacker has to the model. We have White-Box 

attacks and Black-Box attacks. In a White-Box scenario, the attacker has some 

information regarding the model or its training data, like, machine learning algorithm, 

model parameters, network structure, etc. This information allows him to exploit the 

gradient of the loss function to form an adversarial sample. In a black box scenario, 
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the attacker has no knowledge about the model, training data, or parameters. The 

adversary although has the ability to probe the model with a series of carefully crafted 

inputs to observe the outputs. 

 Another category has to do with which phase of the model the attack will be 

implemented. We have attacks in the training phase where the attacker attempts to 

learn the model by accessing a summary, partial, or all of the training data. And 

attacks in the inference phase where the attacker collects information and evidence 

about the model characteristics by observing the inferences made by it. Finally, we 

have the Passive and Active attacks. In a Passive attack, the attacker passively 

observes the model and its updates, without making any changes to the training 

procedure, and performs inference Regarding the Active attack, the attacker changes 

the way the model operates having an impact on its results. 

 In our case, the neural networks, that we will use to create our intrusion 

detection system, are also prone to adversarial attacks as they map inputs to the 

outputs which could be intermittent based on the data used. Several techniques are 

developed to craft adversarial samples which can be used to dodge the detection 

capabilities of a system. In our implementation, we used two techniques, white-box 

methods, the Jacobian Saliency Map Attacks (JSMA), and Fast Gradient Sign 

(FGSM) algorithms. 

  

5.1 Jacobian Saliency Map Attack 

 Papernot et al. [26] proposed an algorithm to craft adversarial samples using 

the Jacobian Matrix the Jacobian Saliency Map Attacks (JSMA). The way the JSMA 

algorithm works is that a direct mapping is established from the input vector, A, to the 
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desired output, B, which then generates adversaries. We can have an activation 

function F which is A -> B. An adversary, A*, can be generated from the following 

mathematical optimization problem: 

arg max ∥σa ∥s.t.F(A+σa)=B∗,  (1)
        σa 

Where we have: 

- σa as the perturbation vector, 

- ∥ . ∥ the relevant norm for Neural Networks input comparison, 

- B* the adversarial output data points, 

-  A + σa = A ∗ the adversarial sample. 

 Our goal is to generate adversaries that should be almost similar to the original 

sample but our Neural Network model misclassifies it. So, if our original dataset is 

F(A) = B what we want is F(A*) = B* which is different from B. Since σa is the 

perturbation that creates the adversarial sample of output class B* forward derivative 

is computed for each feature. 

 To generate an adversarial example from the original input, JSMA first 

computes the gradient Z(x) for a saliency map. This is the Jacobian Matrix of a given 

function which is learned during the training phase. If we have a one-dimensional 

vector space we have the following equation: 

∇F(A) = [ 
δF(A)

, 
δF(A)

]         (2)          δd1     δd2  

 Taking forward derivate reduces the adversarial data search space and 

demonstrated the amount of change that happened in the original features. So, it uses 

a saliency map that will show the impact each data has on the classification result. It 

finds the most salient component that will be changed (saliency map: input 

perturbations -> output variations). For example, If we are referring to a picture as 

input, it chooses and changes the most likely pixel that makes the largest increase, 

which means the largest gradient.  
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                0 if  δFt(A) < 0 or Σ  δFk(A)
 

          δdi                    k=/t     δdi  

S[A, t][i] =    

       δFt(A)    ·    Σ  δF(A)        otherwise. (3)
 

         δdi                     k=/t     δdi     

Where we have the S[A, t][i] being the attacker’s target class, the upper part is the 

when feature moves away from the target or towards other labels, and in the lower 

part measures how much output moves towards the target. Therefore, we have the 

maps 

  
δFt(A)

 and Σ  
δFk(A)

 that quantify how much F(A) will increase given an alteration 
   δdi            k=/t   δdi

modification of input A. The iterations continue until it succeeds in output label 

changes or when the maximum allowed number of iterations is reached. 

5.2 Fast Gradient Sign Method (FGSM) 

 Fast Gradient Sign Method is a very simple and efficient method of generating 

adversarial samples. Goodfellow et. Al [27] proposed a fast gradient sign 

methodology that calculates the gradient of the cost function with respect to the input 

of the neural network. They posited that linear behavior in high-dimensional input 

spaces are capable to cause adversarial perturbations and in order to find them we 

estimate the dimensions of the input space that are most sensitive to class change. 

This is where fast gradient methodology takes place. When it comes to training neural 

networks, gradients are how we determine the direction in which to push our weights 
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to reduce the loss value. With the intention of maximizing the error of the network, 

the input is modified by changing the values of these dimensions in the opposite 

direction of the gradient to maximize the loss function. A way to determine the 

direction in which to adjust a weight deep in the network is by back-propagating the 

gradients from the output layer to the weight. The adversarial examples are generated 

using the following equation: 

X∗ =X+e∗sign(∇xJ(X,ytrue)) 

Where we have: 

- J as the cost function of the trained model 

- ∇x indicates the gradient of the model with respect to the normal sample X 

- ytrue the correct label 

- e indicates the input variation parameter which controls the perturbation’s 

amplitude. 

 Normally, in a neural network in order to nudge the weights to decrease the 

loss value we use the following: 

New weights = old weights - learning rate * gradients 

 For FGSM we want to maximize the loss so we nudge the weights accordingly 

in the following equation: 

New weights = old weights + epsilon * gradients 

 A difference between the two above equations is that one has addition and the 

other has subtraction. By using the addition in equation two we nudge the wights in 

the opposite direction from the direction that minimizes the loss. Regarding the 

epsilon, if for example, we have as input an image, the degree of the noise in the 

resulting image depends on the epsilon parameter. The larger the value the more 

intense the noise. 

 There are also some variations of FGSM, where we have the targeted and 

basic methods. The Target Class method maximizes the probability of a target class.  
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Rather than mislabel a class, a sample can be misclassified to a specific label by 

calculating the J with reference to the target label. Next, we add the negative of that 

result to X. 

X∗ =X−ε∗sign(∇xJ(X,ytarдet))

 The Basic Iterative method is a straightforward extension of the basic FGSM 

which in this case generates adversarial examples iteratively using a small step size. 

Since in this case, we are applying FGSM in multiple iterations instead of one, in 

order to reduce change we use the aT = ε in each iteration. For the new weight to be 

within the epsilon (ε) max normal of the original input, we apply clipping[28]. 

X0 =X; Xn+1 =ClipX,e {Xn +α∗sign(∇x J(Xn,ytrue ))}

 Where, α is the step size and ClipX,e indicates the clipping of X. Most of cases 

this method does not rely on any approximation of the model and produces additional 

adversarial examples, one with the largest change in cost, when run for more 

iterations. 

5.3 DeepFool 

 Moosavi-Dezfoll et al. [32] introduced Deepfool an efficient method to 

compute the minimal perturbations to cause a classifier to misclassify an input. 

DeepFool is an iterative and efficient algorithm for generating adversarial examples in 

deep neural networks. It specifically aims to find the smallest perturbation that can 

cause a misclassification, making it a "minimal" attack. 

 The basic idea behind DeepFool is to iteratively compute the direction in 

which a sample needs to be perturbed in order to misclassify it. At each iteration, the 

algorithm computes the linearized decision boundary of the current model at the 

current sample. The perturbation is then set to be in the direction of the decision 

boundary but with a magnitude that is minimized subject to the constraint that the 
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resulting perturbed sample is misclassified. This is done by solving a linear 

optimization problem that finds the minimum distance between the current sample 

and the decision boundary, subject to the constraint that the perturbed sample is 

misclassified. The DeepFool algorithm repeats this process until a misclassification is 

achieved or a maximum number of iterations is reached. The result is a perturbed 

sample that is misclassified by the model, with the perturbation being as small as 

possible. 

 For binary Classifiers, as we see in figure 8, the algorithm works by 

calculating the gradient w of the loss function for the input and then dividing the 

output prediction of the network f(xo) by the L2-norm of that gradient. This gives a 

scalar value that is used to determine the size of the perturbation. The perturbation is 

then multiplied by the unit vector of the gradient w and its sign is inverted so that the 

loss of the classifier f is increased. This process is repeated iteratively by adding the 

previous perturbation to the next perturbation until the label changes or a maximum 

number of iterations is reached. To avoid convergence close to zero, the algorithm 

uses a parameter called overshoot n, which increases the size of the perturbation 

beyond zero to ensure a label change. 

r∗(x0) = _ f(x0) w 
                  ∥w∥2 

  

Figure 8. DeepFool for Binary Classifier 7  

___________ 

7 . From https://arxiv.org/pdf/1511.04599.pdf   
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 For a multi-class classifier, the algorithm treats each class as a binary 

classifier. The decision boundary for each class is represented as a polyhedron, which 

is formed by the intersection of multiple hyperplanes, as shown in figure 9. To find 

the minimum perturbation needed to cause misclassification, the algorithm computes 

the differences between the classifier outputs and gradients for each class and the 

original predicted class. This difference is used to determine which hyperplane is the 

closest to the input image. Once the closest hyperplane is identified, the algorithm 

computes the minimum perturbation in a similar way to the binary case, using the 

absolute value of the model output. The perturbation is then added to the previous 

perturbation r∗(x0) and multiplied by the overshoot scalar, and this process is 

repeated until the maximum number of iterations is reached or the predicted class 

changes. 

  

Figure 9. DeepFool for Multi-Class Classifier 8 
  

 One of the strengths of DeepFool is its ability to generate adversarial 

examples that are effective across different deep neural networks trained on the same 

dataset. This is because the algorithm is based on a generalization of the linear 

decision boundary concept, which is independent of the specific architecture of the 

neural network being attacked. However, DeepFool is not perfect and has limitations. 

For example, it can be less effective against models with strong defenses against 

adversarial attacks, and it may not always find the "most malicious" perturbation that 

causes the most harmful misclassification.  

_____________ 

8 .  https://arxiv.org/pdf/1511.04599.pdf 
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6. Set up Environment 

 Machine learning model creation and training were done in Ubuntu 20.04.3 

operating system with Python version 3.8. Jupiter Notebook is used for the 

development of Python code which is a very useful tool for development. We can 

have it in a single document with the Python code and the results of its execution, 

including images and graphics, making it very helpful since we get immediate 

feedback on the development activity in progress. It is a server-client application that 

allows editing and running notebooks via a web browser. The Jupiter notebook can be 

executed on a local desktop requiring no Internet access or on a remote server 

accessed through the internet. We will describe below the main applications used to 

carry out our implementations. 

6.1 Tensorflow 

 In 2015, Google released its open-source framework for machine learning and 

named it Tensorflow [29]. It bundles together with Machine learning, Deep learning 

models, and algorithms. It uses Python as a convenient front-end and runs it 

efficiently in optimized C++. It is at present the most popular software library with 

several real-world applications. From DeepFace, Facebook’s image recognition 

system, to Apple’s Siri for voice recognition. It is also used in every Google app to 

improve our experience. It supports numerical computation, and large-scale machine 

learning on CPUs, GPUs, and clusters of GPUs.  

 Tensorflow makes it faster and easier for developers to implement machine 

learning models, as it assists the process of acquiring data, serving predictions at 

scale, or refining future results. It allows them to create a graph of computations to 

perform, where each node in the graph represent a mathematical operation and each 

connection represents data. Each connection between nodes represents 
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multidimensional vectors or matrices, creating what is known as tensors. All the 

computations associated with Tensorflow involve the use of tensors. Computations 

are made possible through interconnections of tensors. The mathematical operations 

are carried out by the node of the tensor and its edge explains the input and output 

relationship between nodes. Therefore, Tensorflow takes input in a form of a 

multidimensional array or matrix, which goes through a system of several operations 

and comes out as output. 

6.2 Numpy 

 Numpy is a python library used for working with arrays. It stands for 

Numerical Python and was created in 2005 by Travis Oliphant. It provides a 

multidimensional array object, masked arrays and matrices, and fast operations on 

arrays such as mathematical, logical, shape manipulation, sorting, basic linear algebra 

and much more. 

 Some difference between Numpy arrays and the standard python sequences is 

that Numpy arrays facilitate advanced mathematical and other types of operations on 

a large number of data. It executes more efficiently and with less code such operations 

compared to python’s built-in sequences. In addition, Python lists can grow 

dynamically when Numpy arrays have a fixed size when they are created. When we 

will need to change the size of an array, it will create a new one and delete the old 

one. Vectorization is the main reason why Numpy is considered very fast, due to its 

absence of any explicit looping or indexing in the code. It is more concise and easier 

to read. 
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6.3 Pandas 

 Pandas is an open-source python package that is mainly used for data science 

or analysis and machine learning tasks. Developed by Wes Mckinney in 2008. It 

provides various data structures and operations for numerical data and time series. It 

is built on top of Numpy, which we mentioned earlier. Pandas is fast and efficient for 

analyzing data, loading data from different objects, handling data that are missing 

represented as NaN in floating and nonfloating points, and providing time-series 

functionality. Moreover, it has the ability to merge and join datasets, reshape and 

pivoting of data sets, and perform split, apply, and combine data sets. Pandas makes it 

also simple to execute tasks such as data normalization, data visualization, and data 

inspection. 

6.4 Sklearn 

 Sklearn or Scikit-learn is one of the most useful python libraries for machine 

learning. It is built upon Numpy, Scipy and Matplotlib. It features various algorithms 

and a lot of efficient tools for machine learning. Scikit-learn aims on modeling the 

data, we can find some of the most popular categories of models: 

- Supervised algorithms, where we can have all the popular supervised learning 

algorithms such as Decision Tree, Support Vector Machines, Linear Regression, etc. 

- Unsupervised algorithms, where we can have a large spread of unsupervised 

machine learning algorithms in the context of clustering, factor analysis, and 

principal component analysis to unsupervised neural networks. 

- Cross-validation, where we can check the accuracy of supervised models on test 

data. 

- Feature extraction, where it is used to extract features from data( images and text). 
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6.5 Cleverhans 

 Cleverhans is an open-source software library that provides techniques for 

generating adversarial examples and adversarial training. It is mostly used for two 

reasons. First, for developers to build robust models by using adversarial training, 

which requires the construction of adversarial examples during the training phase. 

Second, having a standard reference implementation helps the researchers who report 

the accuracy of their models in the adversarial settings to be more comparable with 

other benchmarks, and will be no cases of mistakes or weaker attacks. Two of the 

most important modules of cleverhans are the attacks and model. 

 The attacks module contains the Attack class where we can find all 

implementations of adversarial example crafting algorithms, such as the Fast Gradient 

Sign Method (FGSM) and Jacobian Saliency Map Attacks (JSMA). The model 

module contains the Model class where we can have examples of model 

implementations for Tensorflow models that are not implemented using a modeling 

framework library or model implementations for Keras Sequential models. 

6.6 Adversarial Robustness Toolbox 

 The Adversarial Robustness Toolbox (ART) is an open-source software library 

designed to help researchers and developers better understand, evaluate, and improve 

the security and robustness of machine learning models. ART provides a suite of tools 

and techniques for detecting, generating, and defending against adversarial attacks. 

 ART includes various attack techniques, such as FGSM, PGD, DeepFool, and 

Carlini-Wagner, for generating adversarial examples, as well as various defense 

techniques, such as adversarial training, input transformation, and feature squeezing, 

for improving model robustness against such attacks. ART supports a wide range of 

deep learning frameworks, including TensorFlow, PyTorch, Keras, and scikit-learn. 
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7. Implementations 

 In this section, we will refer to the implementations that took place and their 

results. The IoTID20 dataset was used to build the IoT network intrusion detection 

system. The IoTID20 dataset was split into a training dataset and a test dataset in CSV 

format to build my machine learning models. The training and test dataset split can be 

seen in table 6. The CSV file of the dataset can be read using pandas. 

Table 5. Training/Test dataset split.


7.1 Data preparation 

 In figures 10 and 11 we can see the training data class distributions. 

Figure 10. Training data attacks category distributions 

39

Training Dataset Test Dataset

Mirai 5699 3490

Scan 1023 627

DoS 788 491

Normal 517 350

MIMT ARP Spoofing 468 304

Total 10495 6262



Figure 11. Training data attacks Sub_category distributions 

And now we can see the test data class distribution in below figures 12 and 13. 

Figure 12. Test data attacks category distributions 

Figure 13. Test data attacks Sub_category distributions 
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 Next step we are going to investigate our training and test set features. Below 

we find some of our training set features. All dataset features can be seen in Table 4. 

Figure 14. Training set features distribution 
	  

  

 Looking at the distributions of our training set features we can understand that 

each feature varies widely. This will have an impact on our results if we use any 

distance-based methods for classification. For example, the std of Src_Port is 

significantly larger than the std of Tot_Fwd_Pkts. In that point, if we do not perform 

feature value standardization, the Src_Port feature would dominate, having as a result 

our model could possibly miss out on potentially important information from 

Tot_Fwd_Pkts.  

 Standardization is a process that rescales a data series to have a mean of 0 and 

a standard deviation of 1. Therefore, it will normalize the features individually so 

each of them will have µ = 0 and σ = 1. This will allow us to compare multiple 

features together and get more relevant information since all the data will be on the 

same scale. To apply standardization we will use the StandardScaler class of Sklearn 

library. We can see the results of standardization in Figure 15 below where now the 

std of Scr_Port and Tot_Fwd_Pkts do not have that big of a difference. 
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Figure 15. Training set features distribution after Standardization 

7.1 Model Evaluation 

 To find the results regarding the algorithms, some metrics of the sklearn 

library will be looked into. 

7.1.1 Common Evaluation Metrics 

 A Confusion Matrix is a technique for summarizing the performance of a 

classification algorithm. Having more than 2 classes or an unequal number of 

observations, classification accuracy alone can be misleading. With a confusion 

matrix, we can understand better how our classification model performs, summarizing 

all the correct and incorrect predictions with count values and broken down by each 

class. When creating a 2x2 Confusion matrix we get four different combinations from 

the predicted values of a classifier.  
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- True Positive: These are cases in which we predicted a positive value and it is 

correct. For example, we predicted that the network traffic is an attack and it was 

correct. 

- True Negative: These are cases in which we predicted a negative value and it is 

actually negative. For example, we predicted that the network traffic is not an attack 

and it was indeed normal traffic. 

- False positive: We predicted a positive value and it was actually a negative value. 

For example, we predicted that the network traffic is an attack and it was eventually 

normal traffic. 

- False Negative: We predicted a negative value and it was actually a positive value. 

For example, we predicted that the network traffic is normal traffic but it was 

eventually an attack. 

 Having the Confusion matrix we can not really understand the performance of 

our model. Below we can find some rates that can be computed from a confusion 

matrix. 

- Accuracy: The accuracy is used to find the portion of correctly classified values. It 

is an overall rate, where we see how often is the classifier correct. To compute it we 

add all the true values and divide by the total values: 

    (True Positive + True Negative)/total 

- Precision: Precision is used to calculate the model’s ability to classify positive 

values correctly. It means that we find how often we predicted that it was an attack 

and it was correct. To do so, we divide the true positives by the total number of 

predicted positive values. 

    True Positive/(True Positive + False Positive) 

- Recall: Recall is the ability of the model to predict positive values. To calculate it 

we divide the True Positive by the sum of actually positive values. 

   True Positive/(True Positive + False Negative) 
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- F1-Score: This is a weighted average of recall and precision. It is useful when we 

want to have both Precision and Recall 

   2*Precision*Recall/(Precision + Recall) 

7.1.2 V-measure 

 For measuring the performance of unsupervised learning we can use the V-

measure to evaluate the models. V measure or so-called Normalised Mutual 

Information is an average of the other two measures, homogeneity, and completeness. 

 Homogeneity measures how many data points a cluster has that belong to the 

same class label. A cluster, in order to be referred to as homogeneous should contain 

only samples belonging to a single class. When all samples in cluster k have the same 

label the homogeneity equals 1. The score can be between 0 and 1. A low value 

indicates low homogeneity and a high value indicates high homogeneity. 

 Completeness describes the closeness of a cluster where all data points 

belonging to the same class are clustered into the same cluster. The completeness 

score provides information regarding the assignment of samples belonging to the 

same class. A good cluster algorithm should assign all samples to the same cluster. 

 A complete cluster does not mean it is also homogeneous. For example, 

regarding homogeneity, we can have data samples with only one feature in a cluster, 

but this does not mean that it could not exist also another cluster having again only 

the same data samples. On the other side, regarding completeness, we can have points 

with the same property classified together, but this does not mean that there may not 

be other samples in the same cluster. Now, we understand that we need a metric that 

we could measure as homogeneous and complete. V-measure is the harmonic average 

between homogeneity and completeness. The score can be between 0 - 1 that we can 

44



evaluate our clustering algorithm. If a cluster does not satisfy both homogeneity and 

completeness the score will be 0. 

7.1.3 Attack Success Rate 

 The attack success rate is a measure of the effectiveness of an adversarial 

attack on a machine learning model. It is defined as the proportion of adversarial 

examples that are misclassified by the target model. 

To compute the attack success rate, we first generate a set of adversarial examples by 

applying a perturbation to the input data in order to cause misclassification by the 

target model. We then feed these adversarial examples into the target model and 

record the number of examples that were misclassified. The attack success rate is then 

computed as the ratio of misclassified adversarial examples to the total number of 

adversarial examples generated. 

 The attack success rate is an important metric for evaluating the security of 

machine learning models and assessing their susceptibility to adversarial attacks. A 

high attack success rate indicates that the model is vulnerable to adversarial attacks, 

while a low attack success rate indicates that the model is more robust against such 

attacks. To compute the attack success rate given the accuracy on normal and 

adversarial examples, you can use the following formula: 

ASR = 1 - AccAdv 

      AccNorm 

Where: 

- AccAdv is the accuracy of adversarial examples 

- AccNorm is accuracy on normal examples 
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7.2 Supervised Machine learning models 

 The supervised machine learning models, namely the Decision Tree classifier, 

the K-Nearest neighbors classifier, and the Linear Support Vector classifier were used 

using sklearn. 

7.2.1 Results - Decision Tree Classifier  

 The Confusion Matrix of the Decision Tree Classifier can be seen below in 

Figure 16. It is a 5x5 confusion matrix, as it is a 5-class classification. The diagonal 

values, from the upper left to lower right, are the counts of the correctly classified 

samples. All the values in the matrix add up to 4.909 which is the size of the test set. 

The rows represent the true class and the columns the predicted class. 

  

Figure 16. Decision Tree Confusion Matrix 

Table 6. Decision Tree Metrics
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Accuracy F1 score K-Nearest

Decision Tree 100% 100% 100%



7.2.2 Results - K-Nearest classifier 

 The Confusion Matrix of the K-Nearest classifier can be seen in Figure 17 

below. 

Figure 17. K-Nearest Confusion Matrix 

Table 7. K-Nearest Metrics


7.2.3 Results - Support Vector Classifier 

 The Confusion Matrix of the Support Vector Classifier can be seen in Figure 

18 below. 

Figure 18. Support Vector Confusion Matrix 

Table 8. SVM Metrics


Accuracy F1 score K-Nearest

K-Nearest 99.97% 99.97% 99.97%
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Accuracy F1 score K-Nearest

SVM 100% 100% 100%



7.3 Unsupervised Machine learning model 

 For unsupervised machine learning, the K-means clustering method was 

implemented using sklearn.  

7.3.1 Results - K-means 

 As said in the previous chapter, each group of similar points is a cluster and 

each cluster represents a category. The k number in k-means represents the number of 

clusters. In case we do not have any knowledge regarding the dataset and its classes, 

in order to find the optimal k number we would use the elbow method. In our case, 

plotting the elbow method for k from 1 to 10 we get the following results in figure 19. 

	 Figure 19. Elbow method finding k. 

 From the plot, it is not very clear where the “elbow” is. Since it was known 

that the dataset contains 5 categories of samples, k was chosen to be 5. We can see the 

clustering results below in figure 20. 
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	 Figure 20. Clustering results 

 Here, as we may see we have a lot of differences from supervised learning. 

Here we have 5 clusters labeled with an arbitrary index, whereas in supervised we 

would have the attack category. We can see that cluster 1 has 2544 samples, cluster 0 

has 2388 samples, cluster 3 has 319 samples, cluster 2 has 9 samples and cluster 4 has 

2 samples. We did not pass any labels to the algorithm, thus evaluating the results of 

the cluster is not as easy as in supervised since now we can not compare expected and 

predicted labels. To evaluate our model we will compute the completeness score, 

homogeneity score, and finally the V-measure. Also, for comparison reasons, we will 

compute the accuracy score using the accuracy_score of sklearn metrics. The results 

are below: 

Table 9. KMeans Metrics

  

 The V-measure score of 38.91% is a really bad result. It seems that the data in 

its current state is not suitable for unsupervised learning. Visualization is always 

useful when we are talking about clustering. Since we have 6770 features it would be 

impossible to plot all dimensions, so dimensionality reduction was performed to 

reduce the data to two dimensions, in order to be able to represent them in two-

dimensional Cartesian axes using the PCA function from sklearn. The Principal 

Component Analysis (PCA) is a popular technique for reducing the dimensionality of 

data. It increases interpretability but at the same time, it minimizes information loss. It 

has the ability to make data easy for plotting in 2D and 3D. In figure 21 we can see 

the plot of training data with predicted 5 classes of k-means. 

Accuracy Completeness Homogeneity V-measure

KMeans 34.21% 32.39% 48.70% 38.91%
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Figure 21. The plot of training data with the predicted class of k-means 
  

 In general, the k-means clustering algorithm assumes that the clusters have 

spherical shapes and similar sizes. If the clusters are non-spherical or have different 

sizes, then the k-means algorithm may not work well. In Figure 21, it is easy to see 

that this dataset is not very suitable for clustering. Samples are scattered unpredictably 

and do not form any strong clusters. To better understand this, below in Figure 22 we 

can see the 3D plot of clusters. 

  

Figure 22. The  3D plot of training data with the predicted class of k-means 
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7.5 Deep Neural Network  

 In order to create our Deep learning model we used the Keras library. Models 

in Keras are defined as a sequence of layers. Our model is a Sequential model, which 

means that from input to output, passing through a series of neural layers one after the 

other. We will have a fully-connected network structure with three Dense layers. The 

dense layer is the regular deeply connected neural network layer which is the most 

commonly used layer. To create a layer we will need to specify the number of its 

neurons and its activation function. The activation function is responsible for 

transforming the summed weighted input from the node into the activation of the node 

or output of that input. In other words, it will decide whether the neuron’s input is 

important to the network, using simpler mathematical operations. 

 To create our model, first, we have the input layer where we get as input the 

training data. We will have 256 neurons or nodes, and the activation function will be 

ReLU. Rectified Linear Unit (ReLU) is a default activation function for many types 

of neural networks since models that use it are easier to train and often achieve better 

performance. It is a linear function that will output the input directly if it is positive, 

or, it will output zero. Our second layer will have also 256 nodes and ReLu as an 

activation function. Our third and final layer, the output layer, has 5 nodes and uses 

the softmax activation function. The softmax activation function calculates the 

relative probabilities. Below we have the equation for Softmax: 

softmax(Zi) = exp(Zi) 
          Σj exp (Zj) 

 Z represents the values from the neurons of the output layer that will be 

divided by the sum of exponential values in order to normalize and afterward convert 

them into probabilities. The softmax activation function is popularly used in multi-

class classification problems. 

 Between the three dense layers, we have two dropout regularizations [31]. 

Dropout is a technique where randomly selected neurons are ignored during training, 

which means that their contribution to the activation of downstream neurons is 
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dropped out on the forward pass as well as any right updates are not applied to the 

neuron on the backward pass. Weights of the neurons are tuned for specific features 

providing some specialization on which neighboring neurons rely. If taken too far 

model could be too specialized for the training data. In order to make our network less 

sensitive to the weights of neurons, we could randomly drop out neurons from the 

network during training having as a result, other neurons step in and handle the 

representation required to make predictions for the missing ones. This brings a 

network capable of better generalization having lower probabilities to have overfilling 

in our training data. Below in figure 22, we can see how our modes are configured. 

Figure 22. Deep learning model setup 
   

 After defining our model the next step is to compile it using the efficient 

numerical libraries of Tensorflow in order to be able to train and make predictions 

with our model. We will have to specify the loss function, the optimizer, and the 

metrics. The loss function is used to calculate the quantity the model should aim to 

minimize during training. In our model, we will use the Cross entropy loss function 

which predicts the probability of whether the data belongs to one class or the other. 

More specifically we will use the categorical cross-entropy type which is used for 

multiclass models. The output label of the model is converted into a categorical 

encoding in form of zeros and ones. For the optimizer parameter, we will use the 
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“Adam” which is a popular version of the gradient descent algorithm and has the 

ability to configure itself to give good results in a wide range of problems. Finally, for 

the metrics argument, we define accuracy. 

 To perform the training of the model we have to define three parameters, the 

epochs number, the batch size, and the learning rate. The epochs are the number of 

times that the learning algorithm will go through the entire training dataset. One 

epoch means that each sample in the training dataset had the opportunity to update the 

internal model parameters. The batch size defines the number of samples to work 

through before updating the internal model parameters. In most cases, the number of 

epochs is large allowing the learning algorithm to run until the error in the model is 

minimized. Our epoch number is 20 and the batch size is 128. The learning rate will 

be 0.1, which is a common value, where the network will be updated 0.1 (or 10%) of 

the estimated weight error, each time the weights are updated. Starting the training we 

will see the output of every epoch performed accompanied by the time it took to 

complete and the test accuracy. The test accuracy gives us an idea of how well we 

have modeled the dataset. Is an important metric as it helps evaluate the 

generalization performance of the model. A model with a high test accuracy indicates 

that it can effectively generalize to new, unseen data and is likely to perform well in 

real-world applications. It's important to note that the test accuracy should only be 

calculated and reported after the model has been fully trained. Below in figure 23, we 

can see the output of the first 5 epochs. Our Deep learning model test accuracy is 

99.97%. 

	 Figure 23. First 5 epochs completion time and test accuracy 
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7.6 Results - Jacobian Silency Map Attack  

 We performed the Jacobian Silency Map attack using the Cleverhans library. 

When executing the attack we will see in the output of the program, figure 24, the 

creation of the adversarial examples and also some failed attempts to find adversarial 

attacks after a number of iterations. 

Figure 24. JSMA execution 

 The results of the attack in test accuracy of the model, in classification 

algorithms, and in clustering algorithm are described below followed by the ROC 

curve. ROC (Receiver Operating Characteristic) curve is a graph that plots the True 

Positive Rate and False Positive Rate that shows the performance of the model. The 

ROC curve provides a visual representation of the trade-off between the true positive 

rate and the false positive rate for a given classifier. The area under the ROC Curve, 

known as AUC, is used as a measure of the overall performance of a classifier. 

Classifiers whose curve is close to the top-left corner indicate better performance. The 

closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate 

the test is. 

Table 10. JSMA test accuracy on adversarial examples


Test Accuracy on Adversarial examples  93.34%
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Table 11. JSMA Decision Tree Classifier metrics

 

Figure 25. ROC curve Decision Tree 

	 	   Table 12. JSMA SVM Classifier metrics


                                                   Decision Tree Classifier

Accuracy Score in Adversarial examples  92.51%

F1 score in adversarial examples  96.14%

AUC score in adversarial examples  49.56%

                                                              SVM Classifier

Accuracy Score in Adversarial examples  93.06%

F1 score in adversarial examples  96.41%

AUC score in adversarial examples  49.56%
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Figure 26. ROC curve SVM 

Table 13. JSMA K-Nearest Classifier metrics


                                                   K-Nearest Classifier

Accuracy Score in Adversarial examples  93.06%

F1 score in adversarial examples 93%

AUC score in adversarial examples  49.84%
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Figure 27. ROC curve K-Nearest 

Table 14. JSMA K- means accuracy


7.7 Results - Fast Gradient Sign Method  

 We performed the Fast Gradient Sign Method attack using the Cleverhans 

library. For the epsilon parameter, we choose three values 0.4, 0.6, and 0.8, as we 

have said in the previous chapter the bigger the epsilon the bigger will be the noise. 

Below we can see the results of the attack in test accuracy of the model and in the 

classifiers followed by their ROC curve. 

Table 15. FGSM test accuracy on adversarial examples


Test Accuracy on Adversarial examples )e=0.4( 91.36%

Test Accuracy on Adversarial examples )e=0.6(  82.72%

Test Accuracy on Adversarial examples )e=0.8( 75.08%
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KMeans
Accuracy Completeness Homogeneity V-measure

JSMA 22.59% 37.90% 66.15% 48.19%



Table 16. FGSM Decision Tree classifier metrics


Figure 28. ROC Curve Decision Tree FGSM e0.4 
                                                 Figure 29. ROC Curve Decision Tree-FGSM e0.6 

Figure 30. ROC Curve Decision Tree - FGSM - e 0.6 

                                                   Decision Tree Classifier

Accuracy Score in Adversarial examples )e=0.4( 100%

Accuracy Score in Adversarial examples )e=0.6( 80.39%

Accuracy Score in Adversarial examples )e=0.8( 69.76%

F1 score in adversarial examples (e=0.4) 100%

F1 score in adversarial examples (e=0.6) 74.27%

F1 score in adversarial examples (e=0.8) 55.29%

AUC score in adversarial examples (e=0.4) 100%

AUC score in adversarial examples (e=0.6) 61.49%

AUC score in adversarial examples (e=0.8) 45.78%
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Table 17. FGSM SVM Classifier metrics


Figure 31. ROC Curve SVM - FGSM - e 
0.4 
                                                               Figure 32. ROC Curve SVM - FGSM - e 

0.6 

Figure 33. ROC Curve SVM - FGSM - e 0.8 

                                                   SVM Classifier

Accuracy Score in Adversarial examples )e=0.4( 93.68%%

Accuracy Score in Adversarial examples )e=0.6( 82.39%

Accuracy Score in Adversarial examples )e=0.8( 69.76%

F1 score in adversarial examples (e=0.4) 94.89%

F1 score in adversarial examples (e=0.6) 82.65%

F1 score in adversarial examples (e=0.8) 63.62%

AUC score in adversarial examples (e=0.4) 100%

AUC score in adversarial examples (e=0.6) 61.49%

AUC score in adversarial examples (e=0.8) 45.78%
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Table 18. FGSM K-Nearest Classifier metrics


Figure 34. ROC Curve K-Nearest-FGSM-e 0.4 
           Figure 35. ROC Curve K-Nearest-

FGSM-e0.6 

Figure 36. ROC Curve K-Nearest-FGSM-e 0.8 

                                                   K-Nearest Classifier

Accuracy Score in Adversarial examples )e=0.4( 98.33%

Accuracy Score in Adversarial examples )e=0.6( 94.35%

Accuracy Score in Adversarial examples )e=0.8( 71.76%

F1 score in adversarial examples (e=0.4) 98.33%

F1 score in adversarial examples (e=0.6) 94.35%

F1 score in adversarial examples (e=0.8) 71.76%

AUC score in adversarial examples (e=0.4) 100%

AUC score in adversarial examples (e=0.6) 72.04%

AUC score in adversarial examples (e=0.8) 61.76%
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Table 19. FGSM K-Means accuracy on adversarial examples


7.8 Results - DeepFool 

 We performed the DeepFool attack using the Adversarial Robustness Toolbox 

(ART). Below we can see the results of the attack in test accuracy of the model and in 

the classifiers followed by their ROC curve. 

Table 20. DeepFool test accuracy on adversarial examples


Table 21. DeepFool Decision Tree Classifier metrics


KMeans
Accuracy Completeness Homogeneity V-measure

FGSM )e=0.4( 27.24% 25.87% 36.37% 30.24%

FGSM )e=0.6( 24.85% 37.05% 54.12% 43.99%

FGSM )e=0.8( 22.25% 13.41% 17.86% 15.31%

Test Accuracy on Adversarial examples  61.60%

                                                   Decision Tree Classifier

Accuracy Score in Adversarial examples  62.55%

F1 score in adversarial examples 44.26%

AUC score in adversarial examples  86.35%
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Figure 37. ROC Curve Decision Tree DeepFool 

Table 22. DeepFool SVM Classifier metrics

 

Figure 38. ROC Curve SVM DeepFool 

                                                              SVM Classifier

Accuracy Score in Adversarial examples 60.93%

F1 score in adversarial examples 44.87%

AUC score in adversarial examples 86.35%
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Table 23. DeepFool K-Nearest Classifier metrics


 

Figure 45. ROC Curve K-Nearest DeepFool 

Table 24. DeepFool K-Means accuracy on adversarial examples 

                                                   K-Nearest Classifier

Accuracy Score in Adversarial examples 63.77%

F1 score in adversarial examples 63.77%

AUC score in adversarial examples 91.88%
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KMeans
Accuracy Completeness Homogeneity V-measure

DeepFool 15.21% 20.40% 23.65% 21.91%



8. Adversarial Attacks - Overall Results 

Table 25. Test Accuracy of model - Overall results


Table 26. Decision Tree Classifier - Accuracy overall results


Test Accuracy of model
Percentage Difference

Test Accuracy on normal data 99.97%

JSMA 93.34% -6.63%

FGSM)e=0.4( 91.36% -8.61%

FGSM )e=0.6(  82.72% -17.25%

FGSM )e=0.8( 75.08% -24.89%

DeepFool 61.60% -38.37%

Decision Tree Classifier - Accuracy
Percentage Difference

Accuracy Score 100%

JSMA  92.51% -7.49%

FGSM )e=0.4( 100% -0.0%

FGSM )e=0.6( 80.39% -19.61%

FGSM (e=0.8) 69.76% -30.24%

DeepFool  62.55% -37.45%
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Table 27. Decision Tree Classifier - F1 Score overall results


Table 28. Decision Tree Classifier - AUC Score overall results


Decision Tree Classifier - F1 Score
Percentage Difference

Accuracy Score 100%

JSMA 96.14% -3,86%

FGSM(e=0.4) 100% -0.0%

FGSM(e=0.6) 74.27% -25.73%

FGSM(e=0.8) 55.29% -44.71%

DeepFool 44.26% -55.74%

Decision Tree Classifier - AUC Score
Percentage Difference

Accuracy Score 100%

JSMA 49.56% -50.44%

FGSM(e=0.4) 100% -0.0%

FGSM(e=0.6) 61.49% -38.51%

FGSM(e=0.8) 45.78% -54,22%

DeepFool 86.35% -13,65%

SVM Classifier - Accuracy
Percentage Difference

Accuracy Score 100%

JSMA 93.06% -6.94%

FGSM(e=0.4) 93.68%% -6,32%

FGSM(e=0.6) 82.39% -17,61%

FGSM(e=0.8) 69.76% -30,24%
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Table 29. SVM Classifier - Accuracy overall results


Table 30. SVM Classifier - F1 Score overall results


Table 31. SVM Classifier - AUC Score overall results


DeepFool 60.93% -39,07%

SVM Classifier - F1 Score
Percentage Difference

Accuracy Score 100%

JSMA 96.41% -3.59%

FGSM(e=0.4) 94.89% -5.11%

FGSM(e=0.6) 82.65% -17.35%

FGSM(e=0.8) 63.62% -36.38%

DeepFool 44.87% -55.13%

SVM Classifier - AUC Score
Percentage Difference

Accuracy Score 100%

JSMA 49.56% -50.44%

FGSM(e=0.4) 100% 0.0%

FGSM(e=0.6) 61.49% -38.51%

FGSM(e=0.8) 45.78% -54.22%

DeepFool 86.35% -13.65%

K-Nearest Classifier - Accuracy
Percentage Difference

Accuracy Score 99.97%
JSMA 93.06% -6.94%

FGSM(e=0.4) 98.33% -1.67%
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Table 32. K-Nearest Classifier - Accuracy overall results


Table 33. K-Nearest Classifier - F1 Score overall results


Table 34. K-Nearest Classifier - AUC Score overall results


FGSM(e=0.6) 94.35% -5.65%

FGSM(e=0.8) 71.76% -28.24%

DeepFool 63.77% -36.23%

K-Nearest Classifier - F1 Score
Percentage Difference

Accuracy Score 99.97%
JSMA 93% -7%

FGSM(e=0.4) 98.33% -1.67%

FGSM(e=0.6) 94.35% -5.65%

FGSM(e=0.8) 71.76% -28.24%

DeepFool 63.77% -36.23%

K-Nearest Classifier - AUC Score
Percentage Difference

Accuracy Score 100%

JSMA 49.84% -50.16%

FGSM(e=0.4) 100% 0.0%

FGSM(e=0.6) 72.04% -27.96%

FGSM(e=0.8) 61.76% -38.24%

DeepFool 91.88% -8.12%
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Table 35. KMeans — Accuracy overall results


Table 36. Attack Success Rate overall results


Attack Success Rate
JSMA FGSM(0.4) FGSM(0.6) FGSM(0.8) DeepFool

Test Accuracy on 

model
6.64% 8.62% 17.26% 24.9% 38.39%

Decision Tree 7.49% 0% 19.61% 30.24% 37.45%

SVM 6.94 6.32% 17.61% 30.24% 39.07%

K-Nearest 6.92% 1.67% 5.65% 28.22% 36.23%

K-Means 34% 21% 28% 35% 56%
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K-Means
Accuracy Completeness Homogeneity V-measure

Normal samples 34.21% 32.39% 48.70% 38.91%

JSMA 22.59% 37.90% 66.15% 48.19%

FGSM(e=0.4) 27.24% 25.87% 36.37% 30.24%

FGSM(e=0.6) 24.85% 37.05% 54.12% 43.99%

FGSM(e=0.8) 22.25% 13.41% 17.86% 15.31%

DeepFool 15.21% 20.40% 23.65% 21.91%



9. Results Discussion 

  

 Overall, the models perform well on clean data, but their vulnerability to 

adversarial attacks varies significantly depending on the attack type and the 

classification algorithm used. The Decision Tree classifier outperforms the other 

classifiers in terms of accuracy, achieving 100% accuracy on all types of attacks 

except for FGSM with e=0.6 and DeepFool. However, its F1 score and AUC score are 

relatively lower than the other classifiers, indicating that it may not perform well in 

detecting adversarial attacks. The SVM classifier also performs relatively well, 

achieving 100% accuracy on normal data and FGSM with e=0.4, but its accuracy 

drops significantly under other types of attacks. The K-Nearest Classifier achieves 

high accuracy on normal data and FGSM with e=0.4, but its accuracy drops 

significantly under other types of attacks, especially under FGSM with e=0.8 and 

DeepFool. The K-Means algorithm performs the worst among all the classifiers, 

achieving a very low accuracy of 32.77% on normal data and dropping significantly 

under adversarial attacks, especially the FGSM attack with epsilon 0.8 and the 

DeepFool attack. 

 Regarding the attack success rate of each attack: 

- The JSMA attack has the lowest success rate of all models, except for K-Means, 

where it has a relatively high success rate of 30.08%. 

- The FGSM attack with epsilon 0.4 has a low success rate on all models, except for 

SVM, where it has a moderate success rate of 6.32%. 

- The FGSM attack with epsilon 0.6 has a moderate success rate on all models, with 

the highest success rate being on the Decision Tree and SVM models. 

- The FGSM attack with epsilon 0.8 has a high success rate on all models, with the 

highest success rate being on the K-Means model. 
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- The DeepFool attack has the highest success rate on all models, with the highest 

success rate being on the K-Means model. 

 These results suggest that the K-Means model is the most vulnerable to 

adversarial attacks, especially the FGSM attack with epsilon 0.8 and the DeepFool 

attack. The Decision Tree and SVM models are relatively less vulnerable, while the 

K-Nearest model is in between. The JSMA attack is the least effective among the 

attacks considered in this analysis. 
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10. Conclusion 

 In conclusion, machine learning has revolutionized the field of intrusion 

detection systems, providing powerful tools to detect and prevent attacks in real time. 

There are several types of machine learning techniques, including supervised and 

unsupervised learning, deep learning, and ensemble methods, which can be used to 

detect anomalies and identify potential threats. 

 In this thesis, we have focused on building an IoT intrusion detection system. 

Our experiments showed that deep learning techniques can effectively detect attacks 

with high accuracy. We have also implemented adversarial attacks, including Jacobian 

Saliency Map attack, Fast Gradient Sign Method, and DeepFool, to evaluate the 

robustness of the system. Our results demonstrated that the Machine learning models 

were vulnerable to these attacks, highlighting the need for improving the system's 

resilience to adversarial attacks. Addressing the research questions made in the 

Introduction section: 

 RQ1: The study revealed that the effectiveness of adversarial attacks on 

intrusion detection systems in the IoT domain varies significantly depending on the 

attack type and the classification algorithm used. While the models perform well on 

clean data, their vulnerability to adversarial attacks is a concern, particularly for the 

K-Means algorithm, which is the most susceptible to such attacks. 

 RQ2: Among the attacks considered in this analysis, the DeepFool attack had 

the biggest impact on the performance of intrusion detection systems in the IoT 

domain, achieving the highest success rate on all models. 

 RQ3: The study found that the supervised learning methods (Decision Tree 

and SVM) are relatively less vulnerable to adversarial attacks than the unsupervised 

learning method (K-Means), while the K-Nearest model is in between. However, the 

performance of these models in detecting adversarial attacks varies depending on the 

attack type and the classification algorithm used. 
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 When an adversarial attack is performed on an unsupervised algorithm, it can 

cause the model to produce incorrect outputs or completely fail. This is because the 

algorithm is highly sensitive to small changes in the input data, and the attack can 

exploit this sensitivity to manipulate the model's output. In contrast, supervised 

algorithms have been shown to be more robust to adversarial attacks because they are 

trained on labeled data, which provides them with more context and information 

about what is expected from the input. They can use this contextual information to 

detect and resist adversarial attacks. Adversarial attacks on unsupervised algorithms 

reveal the importance of carefully considering the robustness of machine learning 

models to adversarial attacks, especially in situations where security and reliability 

are critical. 

  Future research in this area can focus on developing new techniques to 

enhance the security of the IoT intrusion detection system, such as using generative 

models, improving the quality of the dataset, and integrating explainable AI to 

understand the model's decision-making process. Also, could explore the effectiveness 

of other attack types or investigate alternative machine learning algorithms. Overall, 

this thesis has shown the potential of using machine learning in the development of 

IoT intrusion detection systems, and the importance of addressing security challenges 

to ensure the reliability and effectiveness of these systems in real-world scenarios. 
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