

University of Piraeus

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

Adversarial machine learning attacks against network intrusion detection

systems

Supervisor Professor: Christos Xenakis

Vasileios Pantelakis

Piraeus

21/03/2023 

Table of Contents

1. Introduction	
..1

1.1 Machine Learning	
..3

1.2 Machine Learning in Cybersecurity	
...3

1.3 Data in Machine Learning	
...4

1.3.1 Structured and unstructured data	
..5

1.3.2 Labelled and unlabelled data	
..5

2. Types of Machine Learning algorithms	
...6

2.1 Supervised learning	
..7

2.1.1 Decision Tree	
..8

2.1.2 Support Vector Machines	
..10

2.2 Unsupervised learning	
..11

2.2.1 K-means	
..13

2.3 Deep learning	
...16

2.4 Ensembling	
..19

3. Intrusion Detection System	
..21

4. IoT Intrusion Dataset	
...23

4.1 Internet of Things (IoT)	
...23

4.2 IoTID20 dataset	
...24

5. Adversarial Attacks	
..27

5.1 Jacobian Saliency Map Attack	
...28

5.2 Fast Gradient Sign Method (FGSM)	
..30

5.3 DeepFool	
..32

6. Set up Environment	
..35

6.1 Tensorflow	
...35

i

6.2 Numpy	
..36

6.3 Pandas	
..37

6.4 Sklearn	
...37

6.5 Cleverhans	
..38

6.6 Adversarial Robustness Toolbox	
..38

7. Implementations	
...39

7.1 Data preparation	
...39

7.1 Model Evaluation	
...42

7.1.1 Common Evaluation Metrics	
..42

7.1.2 V-measure	
...44

7.1.3 Attack Success Rate	
..45

7.2 Supervised Machine learning models	
..46

7.2.1 Results - Decision Tree Classifier	
...46

7.2.2 Results - K-Nearest classifier	
..47

7.2.3 Results - Support Vector Classifier	
...47

7.3 Unsupervised Machine learning model	
...48

7.3.1 Results - K-means	
...48

7.5 Deep Neural Network	
..51

7.6 Results - Jacobian Silency Map Attack	
..54

7.7 Results - Fast Gradient Sign Method	
...57

7.8 Results - DeepFool	
...61

8. Adversarial Attacks - Overall Results	
..64

9. Results Discussion	
...69

10. Conclusion	
...71

References	..73

ii

Table of Figures

Figure 1. Types of Machine Learning	
..6

Figure 2. Decision Tree 1	
...9

Figure 3. SVM separates two classes 2	
..10

Figure 4. K-means 3	
...14

Figure 5. Elbow method for optimal number of k 4	
..15

Figure 6. AI related to Machine learning and Deep Learning 5	
..................................16

Figure 7. Artificial Neural Network 6	
..18

Figure 8. DeepFool for Binary Classifier 7	
...33

Figure 9. DeepFool for Multi-Class Classifier 8	
...34

Figure 10. Training data attacks category distributions	
...39

Figure 11. Training data attacks Sub_category distributions	
.......................................40

Figure 12. Test data attacks category distributions	
..40

Figure 13. Test data attacks Sub_category distributions	
..40

Figure 14. Training set features distribution	
..41

Figure 15. Training set features distribution after Standardization	
..............................42

Figure 16. Decision Tree Confusion Matrix	
..46

Figure 17. K-Nearest Confusion Matrix	
..47

Figure 18. Support Vector Confusion Matrix	
..47

Figure 19. Elbow method finding k.	
..48

Figure 20. Clustering results	
..49

Figure 21. The plot of training data with the predicted class of k-means	
....................50

Figure 22. The 3D plot of training data with the predicted class of k-means	
.............50

Figure 22. Deep learning model setup	
...52

iii

Figure 23. First 5 epochs completion time and test accuracy	
......................................53

Figure 24. JSMA execution	
..54

Figure 25. ROC curve Decision Tree	
...55

Figure 26. ROC curve SVM	
..56

Figure 27. ROC curve K-Nearest	
...57

Figure 28. ROC Curve Decision Tree FGSM e0.4	
..58

Figure 29. ROC Curve Decision Tree-FGSM e0.6	
..58

Figure 30. ROC Curve Decision Tree - FGSM - e 0.6	
..58

Figure 31. ROC Curve SVM - FGSM - e 0.4	
..59

Figure 32. ROC Curve SVM - FGSM - e 0.6	
..59

Figure 33. ROC Curve SVM - FGSM - e 0.8	
..59

Figure 34. ROC Curve K-Nearest-FGSM-e 0.4	
..60

Figure 35. ROC Curve K-Nearest-FGSM-e0.6	
...60

Figure 36. ROC Curve K-Nearest-FGSM-e 0.8	
..60

Figure 37. ROC Curve Decision Tree DeepFool	
...62

Figure 38. ROC Curve SVM DeepFool	
...62

Figure 45. ROC Curve K-Nearest DeepFool	...63

iv

Table of Tables

Table 1. Binary label distribution	
...25

Table 2. Category label distribution	
...25

Table 3. Subcategory label distribution	
...26

Table 4. IoT dataset features	
..26

Table 5. Training/Test dataset split.	
...39

Table 6. Decision Tree Metrics	
..46

Table 7. K-Nearest Metrics	
..47

Table 8. SVM Metrics	
..47

Table 9. KMeans Metrics	
...49

Table 10. JSMA test accuracy on adversarial examples	
..54

Table 11. JSMA Decision Tree Classifier metrics	
...55

Table 12. JSMA SVM Classifier metrics	
...55

Table 13. JSMA K-Nearest Classifier metrics	
...56

Table 14. JSMA K- means accuracy	
..57

Table 15. FGSM test accuracy on adversarial examples	
...57

Table 16. FGSM Decision Tree classifier metrics	
...58

Table 17. FGSM SVM Classifier metrics	
..59

Table 18. FGSM K-Nearest Classifier metrics	
..60

Table 19. FGSM K-Means accuracy on adversarial examples	
....................................61

Table 20. DeepFool test accuracy on adversarial examples	
..61

Table 21. DeepFool Decision Tree Classifier metrics	
...61

Table 22. DeepFool SVM Classifier metrics	
...62

Table 23. DeepFool K-Nearest Classifier metrics	
...63

Table 24. DeepFool K-Means accuracy on adversarial examples	
...............................63

v

Table 25. Test Accuracy of model - Overall results	
...64

Table 26. Decision Tree Classifier - Accuracy overall results	
.....................................64

Table 27. Decision Tree Classifier - F1 Score overall results	
......................................65

Table 28. Decision Tree Classifier - AUC Score overall results	
..................................65

Table 29. SVM Classifier - Accuracy overall results	
...66

Table 30. SVM Classifier - F1 Score overall results	
...66

Table 31. SVM Classifier - AUC Score overall results	
...66

Table 32. K-Nearest Classifier - Accuracy overall results	
...67

Table 33. K-Nearest Classifier - F1 Score overall results	
..67

Table 34. K-Nearest Classifier - AUC Score overall results	
..67

Table 35. KMeans — Accuracy overall results	
...68

Table 36. Attack Success Rate overall results	..68

vi

Abstract

	 Machine learning techniques have become increasingly popular in intrusion

detection systems (IDS) due to their ability to automatically learn patterns and

behaviors of normal and anomalous network activities. IDS aims to detect and prevent

cyberattacks that can potentially cause significant damage to computer systems,

networks, and sensitive information. Traditional intrusion detection methods rely on

manually designed signatures and rules to identify known attacks, but they often fail

to detect novel and sophisticated attacks. Machine learning-based IDS can

automatically learn from large volumes of network traffic data and detect anomalies

that may indicate an intrusion attempt.

	 The thesis focuses on the application of machine learning algorithms in

developing an IoT intrusion detection system. The study explores various types of

machine learning algorithms, including supervised and unsupervised learning, deep

learning, and ensemble learning, and discusses how they can be used to detect

anomalous activities in IoT networks. The study aims to enhance the accuracy and

effectiveness of intrusion detection systems by exploring the robustness of deep

learning model to adversarial attacks. The research implements three types of

adversarial attacks: Jacobian Saliency Map attack (JSMA), Fast Gradient Sign

Method (FGSM), and DeepFool, to evaluate the robustness of the deep learning-based

intrusion detection system. The results of the study demonstrate that the deep learning

model can effectively detect intrusion attacks in IoT networks with high accuracy

although, it highlights the vulnerability of deep learning models to adversarial attacks

and the need for developing robust and resilient intrusion detection systems.

vii

viii

1. Introduction

	 In recent years, the Internet of Things (IoT) has become a vital part of our

daily lives, providing us with numerous benefits, including improved efficiency,

comfort, and convenience. However, the increased connectivity and reliance on IoT

devices have also made them more vulnerable to cyberattacks. To address this issue,

intrusion detection systems (IDS) have been developed to detect and prevent

cyberattacks. Traditional IDS methods rely on pre-defined signatures and rules, which

may not be sufficient to detect novel and sophisticated attacks. Thus, machine

learning-based IDS has emerged as a promising approach to automatically detect

anomalies that may indicate an intrusion attempt.

	 In this context, this thesis explores the application of machine learning

algorithms in developing an IoT intrusion detection system. Specifically, this study

compares the effectiveness of supervised and unsupervised learning techniques in

detecting anomalous activities in IoT networks. Furthermore, the research examines

the robustness of deep learning-based IDS against adversarial attacks, which can

deceive the system and make it classify malicious traffic as benign. The contribution

of this study is twofold: firstly, it evaluates the performance of different machine

learning techniques in detecting intrusions in the IoT domain. Secondly, it highlights

the vulnerability of machine learning models to adversarial attacks and the need for

developing more robust and resilient intrusion detection systems.

	 Moreover, the code used to perform the experiments is publicly available in

GitHub Adversarial-Attacks-against-NIDS [34]. The availability of the code ensures

the reproducibility of the experiments and allows for the validation and extension of

the study's findings. Overall, this thesis presents an in-depth analysis of the

application of machine learning techniques in IoT intrusion detection systems,

highlighting the challenges and opportunities for developing more effective and

robust security solutions.

1

	 This study aims to contribute to a deeper understanding of the effectiveness

and limitations of machine learning-based IDS in the context of IoT security by

answering in the following research questions:

- RQ1: How effective are adversarial attacks against intrusion detection systems in

the IoT domain, and what impact do they have on the accuracy and effectiveness of

the IDS?

- RQ2: Which adversarial attack has the biggest impact on the performance of

intrusion detection systems in the IoT domain?

- RQ3: Which machine learning method (supervised or unsupervised learning) is the

most vulnerable to adversarial attacks in the context of IoT intrusion detection?

2

1.1 Machine Learning

	 A dream researchers had was to teach computers to reason and make decisions

in the way humans do, by drawing generalizations concepts from complex

information sets without explicit instructions. Machine learning refers to one aspect of

this dream, with processes and algorithms that can learn from past data and

experiences in order to predict future outcomes and results. Is a set of mathematical

techniques, implemented on computer systems that enables a process of mining

information, drawing inferences from data, and pattern discovery.

	 The term dates back to 1959 when it was first coined by Arthur Samuel at the

IBM Artificial Intelligence Labs. In the 1980s, machine learning gained much more

prominence with the success of ANNs, Artificial neural networks, and glorified in the

1990s when researchers started using it to solve daily life problems. In the early

2000s, the internet and digitization made it more and more popular, and over the years

companies like Google, Amazon, and Facebook started leveraging machine learning

to improve the interactions between humans and computers.

1.2 Machine Learning in Cybersecurity

	 In order to detect threats and anomalies, threat detection systems used static

signatures on a large amount of data logs. By doing this, analysts should be able to

know how normal data logs look and needed to go through extraction, transformation,

and load phase. Data that are transformed are analyzed by analysts who create the

signatures. The signatures are then evaluated by passing more data. If an error

occurred in the evaluation process they had to rewrite the rules.

3

	 Today signature-based systems are being gradually replaced by intelligent

cybersecurity agents. Machine learning started to be used for malware detection, zero-

day attacks, anomaly detection, and so on. New machine-learning cybersecurity

products have been proactive in strengthening systems like virtual machines. In

general, these products are created to predict attacks before they occur. Machine

learning helps to recognize the attack at its initial stages and prevent it from spreading

across the entire organization. Many cybersecurity companies are relying on advanced

analytics, such as user behavior analytics and predictive analytics, to identify

advanced persistent threats early on in the threat life cycle. Predictive analytics

predicts threats by comparing current threat logs with historic threat logs. Prescriptive

analytics deals with situations where an attack is already in play and analyzes data to

suggest what measure could be best fit for the situation, to have the smallest possible

impact.

	 Although alerts generated need to be tested by the SOC team, false alerts

could make humans tired especially if we are talking about a large number of them.

One way to solve this problem is with the use of SIEM. Signals from SIEM systems

are compared with those from advanced analytics to reduce duplicate alerts and false

signals to a minimum.

1.3 Data in Machine Learning

	 Data is the most important part of all Data Analytics, Machine Learning, and

Artificial Intelligence. Without data, we can’t train any model. Data helps Machine

learning in detecting patterns and mining data. This data can be in any form and

comes in frequency from any source. Big companies are spending lots of money to

gather data as certain as possible. We can split data into three categories, the training

data, the validation data, and the testing data.

4

	 Training data are those we use to train our model to accurately predict an

answer or an outcome that we want. This is the data that our model learns from. The

validation data is the part of data where we evaluate our model and fit it on the

training dataset in order to give an estimate of model skill while tuning the model’s

hyperparameters (initially set parameters before the model begins learning). The

testing data provides an evaluation when our model is completely trained. When we

feed in the inputs of testing data, our model will predict some values. After prediction,

we evaluate our model by comparing it with the actual output present in the testing

data. This is how we evaluate and see how much our model has learned from training

data.

1.3.1 Structured and unstructured data

	 Data can either be structured or unstructured data. When structured it can be

easily mapped to identifiable column headers, are in a standardized format, and can

easily be accessed by humans and computer programs. Unstructured data can not be

mapped to any identifiable data model, has no format or rules, and can not be stored

in any logical way.

	 Structured data is more easily used by machine learning algorithms since is

easier to understand when compared to unstructured. Also, manipulation and querying

of data become even easier.

1.3.2 Labelled and unlabelled data

	 Another categorization for data is labeled and unlabelled data. When data has

been manually tagged with headers is called labeled and when they are not is called

unlabelled.

5

	 Unlabelled data is when we know nothing of the data, the environment, or the

way in which is collected. We do not know which sensors collected them or the status

of the environment in which they were retrieved. So, we do not have any knowledge

associated with unlabelled data. Regarding the labeled data, a researcher or an

automatic tagger must use their knowledge to add extra information to the data. Data

know the way the environment operates. Specifying in the data that, for example,

network traffic is an attack, is labeled. When we mention what kind of attack this is,

for example, DDoS, it is also labeled.

2. Types of Machine Learning algorithms

	 Machine learning systems can be mainly categorized into two types,

supervised approaches, and unsupervised approaches, based on the types of learning

they provide, figure 1. The differences between these learning types are attributable to

the type of result that we intend to achieve.

Figure 1. Types of Machine Learning

6

2.1 Supervised learning

	 Supervised learning is when we train our model using data that are labeled.

The training of the algorithm is conducted by using an input dataset where the type of

output that we want to obtain is already known. What we want from the algorithm is

to be able to identify the relationship between the variables being trained and make an

optimization of learning parameters on the basis of the labels. After that, the model is

provided with a new set of data so the machine learning algorithm analyzes the

training data and produces a valid result from labeled data. Supervised machine

learning helps solve various types of real-world problems although classifying the

data and training process can take a lot of time.

	 An example of a supervised learning algorithm is the classification algorithm

which can be used for spam classification. A dataset containing many examples of

emails that have been classified as malicious or spam or genuine is provided, for

training, in the spam filter. A classification problem is when the result is a category

such as “DDoS” or “Malicious”. Another example of supervised algorithms is

regression algorithms. A regression problem is when the result is a real value, like

“weight”. The following are the main supervised algorithms:

- Regression (linear and logistic) [1]

- k-Nearest Neighbors (k-NNs)

- Support vector machines (SVMs)

- Decision trees and random forests Neural networks (NNs)

7

2.1.1 Decision Tree

	 Decision trees are supervised learning models that are easy to interpret [2]. As

its name suggests, decision tree is a binary tree data structure that is used to make a

decision. Being a very popular choice for machine learning, even outside of these

fields, decision trees have the ability to predict both categorical and real values such

as classification and regression trees respectively. They can also take in numerical and

categorical data without any normalization.

	 The first step in the learning decision construction is to split the dataset based

on a binary condition into two child subsets. Then, the child subsets are partitioned

into smaller subsets based on other conditions. We calculate how much accuracy each

split will cost us and the split with the least cost is chosen. There are some common

metrics where we can measure the quality of the split since are automatically selected

at each step depending on the condition that best splits the dataset.

	 One metric is the information gain which measures the purity of the subsets

that we have after a split. We can calculate this by subtracting the weighted sum of

each decision tree child node’s entropy from the parent node’s entropy. In this case,

the split is better when the entropy of the children is smaller thus the information gain

is greater. Variance reduction is another metric that defines the total reduction in

variance as we split into two subsets. We will have the best split in a decision tree

when it results in the greatest variance.

	 We do not care only about the splitting method but also to understand when to

stop. If each node contains samples that belong to the same class or when the

maximum depth of the node is reached the splitting is stopped. Also, there is a case

where child nodes will contain samples that are fewer than the minimum number and

the node will not be split, figure 2.

8

Figure 2. Decision Tree 1

	 We can easily explain the classification or regression results of decision tree,

since every prediction can be expressed in a series of boolean conditions that starts

from the root node of the tree to a leaf node. The root node is from where the decision

tree starts and leaf nodes are the final output node and the tree can not be segregated

further after getting a leaf node.

	 They have great performances in large datasets since they are very efficient for

training and making predictions. Although, decision trees have also their limitations.

They often suffer from the problem of overfitting as decision-tree learners can create

over-complex trees that do not generalize well beyond the training set. Also, decision

trees are less accurate and robust compared to other supervised learning techniques as

small changes to the training dataset can result in large changes to the tree which

change the model’s predictions. This is called variance, which needs to be lowered by

methods like bagging and boosting. This makes decision trees unsuitable for online

learning.

1 . Decision Tree figure from https://devopedia.org/decision-trees-for-machine-

learning

9

https://devopedia.org/decision-trees-for-machine-learning
https://devopedia.org/decision-trees-for-machine-learning

2.1.2 Support Vector Machines

	 Support vector machines, known as SVM [3], is a linear classifier which

means that it produces a hyperplane in a vector space that tries to separate the two

classes in the dataset. The best decision that can segregate n-dimensional space into

classes so that we can easily put the new data point in the correct category is called a

hyperplane. The same goes for the Logistic regression. It uses a hinge loss, which

penalizes only the points that are found on the wrong side of the hyperplane or very

near to the correct side. In contrast, the Logistic regression which uses a log-

likelihood function that penalizes all the points in proportion to the error in the

probability estimate. SVM is one of the most popular supervised learning algorithms

which is used for classification but also for regression problems, but mostly

classification.

	 SVM classifier has as a goal to find the maximum distance from the separating

plane to the closest data points on each side which separates the two classes. These

cases are called support vectors. When we have data that is not linearly separable, the

points within the margin are penalized proportionately to their distance from the

margin. We can understand how the SVM classifier works by an example. In the

following figure 3 shows two classes that are represented by white and black points.

Figure 3. SVM separates two classes 2

2. Figure from “Active learning to improve the detection of unknown computer worms

activity” - Robert Moskovitch

10

	 The straight line is the dividing line, hyperplane, and the dotted lines are the

margins. Since there can be many lines that can separate the classes, SVM can help to

find the best line. Thus, the algorithm initially finds the closest points of the two

classes on the line, which we call support vectors, and their distance from the line is

called the margin. The hyperplane with the maximum margin is the optimal

hyperplane.

	 In this example, we are referring to linearly separable data. When the data is

non-linear, the SVM solves this problem by creating a new variable using a kernel.

The SVM kernel is a function that takes a low dimensional input space and transforms

it into a higher dimensional space, i.e. it transforms a non-separable problem into a

separable one. It finds the process, after it has done some complex data

transformations, and separates the data according to their labels or outputs defined.

	 SVMs have a very good performance in practice, especially in high-

dimensional spaces. Also, since they can be described in terms of support vectors, a

subset of training points in the decision function, this results in us having memory-

efficient implementations for scoring new data points. However, when we train a

kernelized SVM the complexity grows quadratically with the number of training

samples. So, with large training set sizes kernels are rarely used and the decision

boundary is linear. Another disadvantage is that the scores output by SVM is not

interpretable as probabilities and converting them to probabilities requires additional

computation and cross-validation.

2.2 Unsupervised learning

	 In unsupervised learning, we do not have the classification provided by the

analyst and the algorithm must try to classify the data on one’s own and unassisted. In

cybersecurity unsupervised learning algorithms are very important for identifying new

11

malware attacks or email spamming. The machine has to group unsorted information,

unlabeled data, from patterns and differences without any prior training data and the

help of experience. These are more complex processes since the system learns by

itself without any intervention. In contrast to supervised learning where we use

labeled data, unsupervised learning, also known as self-organization allows for the

modeling of probability densities over inputs. Also, unsupervised learning can work

with real-time data to identify patterns. Some disadvantages are that it is not always

certain that the obtained results will be useful as there is no label and often have lesser

accuracy. It is also costlier since it might require human intervention to understand the

patterns and correlate them.

	 Clustering is a category of unsupervised learning. Clustering is the process of

grouping data that has not been labeled, classified, or categorized and putting similar

data into the same group [4]. The clustering techniques are most popular in pattern

recognition and information retrieval. These techniques use data parameters and go

through many stages before they can group the data. Cluster analysis identifies

commonalities in the data and reacts based on the presence or absence of such

commonalities.

	 There are four clustering algorithms which are exclusive clustering,

overlapping clustering, hierarchical clustering, and probabilistic clustering. The

exclusive clustering data are grouped in an exclusive way where if a data point

belongs to a definite cluster then it could not be included in another cluster. In case of

overlapping, it uses unclear sets to cluster data so that each point can belong to more

than one cluster with different characteristics. In this situation, the data will be

associated with an appropriate subscription price. A hierarchical clustering algorithm

is based on connecting the two nearest clusters. We start by setting every data point as

a cluster and after a few iterations it reaches the final clusters that we want. For the

probabilistic, the cluster includes data objects that have a higher probability to be in it.

12

2.2.1 K-means

	 One of the most used clustering algorithms is K-means [5]. The goal of this

unsupervised learning algorithm is to assign each data point to a cluster such that the

sum of distances from each point to its cluster centroid, cluster centers, is minimized.

When we know how many clusters we expect, we define this number of clusters to k.

Now, when we talk about the distance we are referring to Euclidean distance in a

vector space. The k-means computes a cluster assignment that minimizes the loss

function:

L (X) = ∑
i

d (x i , c f (x i)
)

where X = {x1,…, xn } is our dataset, the c f (x i)
is the centroid in f (x i) and the d is

the distance between two points. The value L(X) is called inertia. The way in which

the kmeans clusters are computed is by first selecting the k centroid, assigning each

data point to the closest centroid, and again computing the c centroids by taking the

average of all the data points that were assigned to the cluster. Finally, we repeat this

process until the difference of L(X) in successful iterations is below a predetermined

threshold. That way each cluster has a data point with some commonalities and is

away from other clusters. So, we can just say that the algorithm takes the unlabeled

dataset as input, and divides the dataset into k clusters until it can not process better

clusters, figure 4.

	

	

13

	

Figure 4. K-means 3

	 Kmeans has multiple applications such as document clustering, image

segmentation, image compression, etc. Before implementing it, we should bear in

mind that it is proposed to normalize our data since such algorithms do the distance-

based measurement and that due to the initialization of centroids of kmeans there is a

possibility that it will get stuck in a local optimum and fail to converge to the global

optimum and so we should employ distinct centroids initializations.

	 K-means is a simple and very effective clustering algorithm although we

should keep some things in mind. We should normalize our data before using k-means

as if we had a two-dimensional dataset where the first coordinate has a range from 0

to 1 and a second one that has a range from 0 to 100, surely the second one will have

a much greater impact on the loss function. Also, when using binary features results

can be unpredictable as they can become the dominant feature determining the cluster

or we could lose all the information. K-means takes for granted that the clusters are

spherical so it does not work well on non-spherical distributions.

3. Figure from “K Means Clustering Simplified in Python” - https://

www.analyticsvidhya.com/blog/2021/04/k-means-clustering-simplified-in-python/

14

https://www.analyticsvidhya.com/blog/2021/04/k-means-clustering-simplified-in-python/
https://www.analyticsvidhya.com/blog/2021/04/k-means-clustering-simplified-in-python/
https://www.analyticsvidhya.com/blog/2021/04/k-means-clustering-simplified-in-python/

	 As mentioned previously, the choice of the optimal number of clusters is a

serious task. As the performance of the K-means clustering algorithm depends

significantly on the efficient clusters it forms, there is a way we can find the ideal

number of clusters or the value of k. One of the most well-known methods is the

elbow method. This method uses the logic of Within Cluster Sum of Squares (WCSS)

which defines the total variations in a cluster. The way it works is that it first performs

K-means clustering on a dataset that we give with different K values, from 1 to 10,

then for each k the WCSS value is calculated and we make a plot, a curve, between

the calculated WCSS values and the number of k. At the point of the curve where a

corner is created, in figure 5, if we liken the curve to a hand then at the point of the

elbow, then that point is considered the ideal value for k [6].

Figure 5. Elbow method for optimal number of k 4

4. Figure from https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-

learning

15

https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning
https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning

2.3 Deep learning

	 Deep learning is another popular term that is commonly conflated with

machine learning. Deep learning is a strict subset of machine learning referring to a

specific class of multilayered models that use layers of simpler statistical components

to learn representations of data. “Neural network” is a more general term for this type

of layered statistical learning architecture that may have or not have many layers, that

why it is deep [7].

	 Deep learning is a class of machine learning which in turn is a core building

block for Artificial intelligence (AI), figure 6. AI is a popular but loosely defined term

that indicates algorithmic solutions to complex problems typically solved by humans.

It's like enabling computers to mimic human behavior. Below we can see the

correlation of AI with machine learning and deep learning.

Figure 6. AI related to Machine learning and Deep Learning 5

5. Figure from https://subscription.packtpub.com/book/big-data-and-business-

intelligence/9781789802993/1/ch01lvl1sec02/the-relationship-between-ai-machine-

learning-and-deep-learning

16

https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781789802993/1/ch01lvl1sec02/the-relationship-between-ai-machine-learning-and-deep-learning
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781789802993/1/ch01lvl1sec02/the-relationship-between-ai-machine-learning-and-deep-learning
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781789802993/1/ch01lvl1sec02/the-relationship-between-ai-machine-learning-and-deep-learning

	 Humans arrive at some conclusions by analyzing some data with some logical

structure, so can deep learning also achieves this with neural networks, i.e. using a

multi-layered structure of algorithms. as we mentioned, neural networks try to mimic

the human brain, so their design structure is based on the human brain. With neural

networks, we can perform many tasks. To group or sort unlabelled data, to train a

network on a labeled dataset to classify the data into different categories, but also

clustering. These capabilities of neural networks can make Deep learning able to

solve problems that a machine learning model cannot.

	 Today, deep learning is used in many applications such as Google’s voice and

image recognition, Netflix, Amazon or Youtube recommendation engines, Apple’s

Siri, Alexa, automatic email and text replies, and chatbots. Without deep learning, we

would not have self-driving cars, fraud detection, health care, adding sound to silent

movies, automatic machine translation, text-to-image translation, image-to-image

synthesis, image colorization, earthquake prediction, market rate forecasting, news

aggregation, and fraud news detection. All recent advances in artificial intelligence

are due to Deep learning.

	 The increase of high-performance computing has a lot to do with the

increasing popularity of Deep learning. When dealing with unstructured data Deep

learning achieves higher power due to its ability to process a large number of features.

Deep learning algorithm passes the data from several layers where each one extracts

features which in turn were passed to the next layer. Another reason they are so

popular is that feature extraction is not needed. When we use algorithms such as

Decision tree or SVM they cannot be applied directly to raw data and one more

preprocessing step is needed, the feature extraction. After that, the given raw data can

be used. In the case of Deep learning, this extra step is not needed. The layers are

able to learn on their own an implicit representation of the raw data. Through the

several layers, an abstract and compressed representation of raw data is produced

which in the end produces the result. During the training process, this step is also

optimized by the neural network in order to have the best possible abstract

17

representation of the data. So, in a Deep learning model, it is not required any effort to

perform and optimize the feature extraction. We can say that it is already part of the

process that takes place in a neural network.

	 As we said the term “deep” usually refers to the number of layers in the neural

network. The typical neural network architecture consists of several layers, figure 7.

The first layer is the input layer which receives the data that the neural network learns

from. The last layer is called the output layer which outputs a vector representing the

result that the neural network came up with. For example, if we have classification the

number of neurons in the last layer would be the number of classes. The prediction

vector is obtained by a number of mathematical operations that are performed in the

layer between the input and the output layers, called hidden layers. Traditional neural

networks only contain 2-3 hidden layers, while deep networks can have as many as

150.

	

	

Figure 7. Artificial Neural Network 6

	 A neural network can be described as a set of connected nodes which are

called neurons. Connections between the neurons are made with so-called weights.

When a neural network learns the weights, numeric values, between the neurons are

changing and with that, it also changes the strength of the connection.

6 . Figure obtain from ESTIMATION WITH ARTIFICIAL NEURAL NETWORK ON ELECTRONIC
WORD OF MOUTH - Ibrahim Topal

18

	 For every action taken, we need a certain set of weights that will allow the

neural network to perform, for example, a classification. The set of weights is

different for every task and every dataset. During the training process, we obtain these

weights and it is impossible to predict them in advance.

2.4 Ensembling

	 Rather than using individual classifiers, in presence of non-stationary data, it

may be useful to apply an ensemble of classifiers in order to improve overall

prediction accuracy. For that reason, ensembling learning aims to combine different

classifiers to get a final classifier that will have better predictions than what we would

get from an individual classifier. Let's think that we have a number of binary

classifiers, all of the same type, they could make a correct prediction in 75% of the

cases and not so accurate in the remaining 25% of the cases. By using an ensemble

classifier the probability of getting correct results is improved and accordingly the

probability of error is reduced.

	 Ensemble learning combines the mapping functions learned by different

classifiers to generate an aggregated mapping function. There are several methods that

we can use to combine classifiers, the most popular that commonly used are Bagging,

Boosting, Stacking, and Majority Voting.

	 The bagging ensemble technique [8], also known as bootstrap aggregating, is

one of the earliest ensemble methods proposed. It is a method that has the property of

parallel processing. Using replacements, random subsets of a dataset are created and

we call them bootstrap sampling. Now, these subsets are treated as independent

datasets where several Machine learning models will be fit. The predictions from all

models are collected and using an aggregation mechanism we will compute the final

prediction. What we want to achieve with the bagging method is to reduce variance in

the ensemble predictions. So, the chosen ensemble classifier usually has high variance

19

and low bias. Random forest [12] is an example of bagging with additional features in

the learning process.

	 Unlike bagging which is a parallel ensemble method Boosting method [10] are

sequential ensemble algorithm. At first, our first classifier is fed with the entire dataset

and makes the predictions. After that, where the first classifier failed to produce

correct predictions is fed to the second classifier. In this way, the second classifier will

learn an appropriate decision boundary focusing only on the problematic ones. We

continue in the same way until we finally compute the ensemble of all classifiers and

make the final prediction. The chosen ensemble classifier in this case usually has low

variance and high bias. An algorithm based on this approach is the Gradient Boosting

Machines [13].

	 In the Stacking [11] ensemble method, as in the case of the bagging

mechanism, we have the creation of bootstrapped data subsets. The difference here,

however, is that the outputs of all the models are used as input to another classifier

called a meta-classifier, which in turn makes the final prediction. The reason this

stacking of the two classifiers is done is to determine if the training data have been

appropriately learned. If the first classifier has issues recognizing some classes, the

meta-classifier can then correct this behavior before making the final prediction. We

can also add more layers of classifiers in the stacking ensemble method, although this

will result in a very expensive computation without having any significant

performance boost.

	 The Majority Voting method [9] refers to the fact that from predictions made

by individual classifiers, we select the one that shows the highest frequency. It is one

of the earliest ensemble schemes. An odd number of classifiers are chosen and

predictions of each one are computed. Then, the class that has achieved the highest

frequency is considered the predicted class of the ensemble. If we have, for example,

a binary classification problem where we will have only two candidates for whom the

classifier can vote, then Major voting is quite effective. However, when we have

several classes, quite a problem arises since it is very difficult for one class to receive

the total number of votes.

20

3. Intrusion Detection System

	 As people are using more and more intelligent systems in their daily lives the

risks around cyberattacks have increased significantly. We are in a current state where

traditional security measures have started losing their effectiveness since connections

between different devices, such as the Internet of Things (IoT), have reached a very

high level of complexity. Thus, the need for something new for detecting network

anomalies was created[19]. To ensure safe communication Intrusion Detection

Systems (IDS) were developed using machine learning algorithms that have the

ability to detect attacks against network security. IDS is the continuous monitoring of

the traffic for unusual events and critical characteristics and raises an alarm that alerts

the defenders when it determines any intrusion, a threat, in the network. It is also

useful as an alternative to traditional firewalls. Intrusion detection systems have a

long history in the defense of networks, although machine learning came to assist and

improved the accuracy, performance, and the discovery of existing or new

attacks[18].

	 A network-based IDS monitors and detect threats that find through the

communication that travels into and out of the network. A host-based IDS makes its

scans in a particular server. In the area of network intrusion detection, we can find two

different types of IDS Signature-based IDS and Anomaly-based IDS. The signature-

based IDS analyzes network traffic for already known malicious signatures from

attacks that were previously detected [20]. Although, having a strategy with common

antivirus software its disadvantage is that requires a constant update of these known

signatures in order to work efficiently and to be able to detect new types of attacks.

The Anomaly-based IDS learns from existing data and compares the network traffic

against a user’s known patterns to raise an alert [21]. So, it identifies a network traffic

behavior as normal and detects differences in behavior as anomalous. With this

21

approach, it is possible to detect new types of attacks as it is analyzing the traffic that

deviates from the pattern. Some common patterns that can be taken into consideration

are the number of connections from a specific IP, unusual communication ports,

communication bandwidth from particular hosts, etc. All these events may be

considered as suspicious if we compare them with normal traffic ones. This approach

is more widely used in the design of intrusion detection applications. Machine

learning is used to develop the anomaly-based IDS since it works on the principle of

training the model with known data points and testing it with benign samples. In our

implementation, we will create a Network Intrusion detection system using neural

networks.

22

4. IoT Intrusion Dataset

	 The dataset we used to train the machine learning models is the IoTID20. It is

a dataset that generated by Hyunjae et. al [22] which refers to anomalous activity in

IoT. We will develop our intrusion detection system in IoT networks.

4.1 Internet of Things (IoT)

	 The Internet of things, or IoT, [22] is a system of connected devices, provided

with unique identifiers, that communicate with the internet and do most of the work

without requiring human intervention. Although people can interact with the devices

by setting them up, giving them instructions, or accessing the data. Everyday devices

like cars, vacuums, and lights are collecting and sending data that acquire from their

environment with their sensors, communication hardware, or processors and respond

to users in a smart way. IoT becomes an important technology to develop smart

infrastructure since organizations operate in a more efficient way, improve decision-

making and achieve consistent and effective operations, reducing operational costs

significantly. Home automation can use IoT to monitor mechanical and electrical

devices in a building. Smart cities can tackle problems regarding infrastructure,

health, and the environment. Reducing energy with smart lights, detecting

maintenance needs in streets or bridges, or reducing driver indolence with efficient

parking management.

	 Although all these implementations provide a large attack surface for intruders

to attack and exhaust the IoT network with malicious activity. The difference with a

traditional network is that IoT devices operate without manual supervision. Their

wider adoption in our lives makes it very critical to address the security threats before

23

their deployment. IoT attacks can be physical, network, software, or encryption. In

network attacks, we can have the Man in the Middle attacks where the attacker

intercepts the communication between two devices and obtain sensitive information

[23]. Denial of service where the attacker floods the network with large traffic and

makes the devices unavailable [24]. Since the impact of these attacks is huge we can

not work with traditional detection systems. As mentioned in the previous section, a

signature-based IDS will not have a big effect since it would be able to identify new

attacks and we want them to be stopped before their implementations. An anomaly-

based IDS is well suited to the current environment since it could detect zero-day

attacks. Data mining and machine learning help develop the capabilities of an

anomaly-based IDS. In order to have an effective IDS we will need a new

sophisticated dataset. The IoTID20 dataset will help us in detecting malicious activity

in the IoT network.

4.2 IoTID20 dataset

	 The IoTID20, generated from the dataset [21], has a more comprehensive

network and flow-based features which will provide a reference point to identify

anomalous activity in the IoT network. In order to generate the dataset, a smart home

environment was implemented having two smart devices, a Wi-Fi camera EZVIZ and

a smart home device SKT NGU, and some laptops, tablets, and smartphones. We

consider the two smart devices as the IoT victim devices and all other devices in the

environment are considered the attacker's devices. The dataset contains 8 types of

attacks to evaluate the Intrusion Detection system in IoT Networks. The way in which

the dataset was created, and more specifically the dataset in CSV format, is by starting

with the Pcap files from [1]. Then, the CICflowmeter application was used to extract

the features and generate the CSV file. The IoTID20 dataset consists of 83 network

24

features and three label features. The three label features are the Binary, category, and

sub-category. In binary, we have normal and anomalous traffic. In Category, we have

the five attacks, Normal, Dos, Mirai, MITM, and Scan. And in Subcategory, we have

subcategories of the attacks which are Normal, Syn Flooding, Brute force, HTTP

Flooding, UDP Flooding, ARP Spoofing, Host Port, and OS. The IoTID20 is one of

the few publicly available IoT intrusion detection datasets which replicates the IoT

network communication. In the below tables 1, 2, and 3 we can find the binary,

category, and subcategory instances distributions.

Table 1. Binary label distribution

	

Table 2. Category label distribution

25

Binary label distribution

Type Instances

Normal 40073

Anomaly 585710

Category label distribution

Type Instances

Normal 40073

DoS 59391

Mirai 415677

MITM 35377

Scan 75265

Table 3. Subcategory label distribution

Table 4. IoT dataset features

26

Subcategory distribution

Type Instances

Normal 40073

DoS 59391

Mirai Ack Flooding 55124

Mirai Brute Force 121181

Mirai UDP Flooding 55818

MITM 35377

Scan Host Port 22192

Scan Port OS 53073

Features

Flow_ID Src_IP Src_Port Dst_IP Dst_Port Protocol Timestam
p

Flow_Dur
ation

Tot_Fwd

_Pkts

Tot_Bwd

_Pkts

TotLen_F
wd_Pkts

TotLen_B
wd_Pkts

Fwd_Pkt_
Len_Max

Fwd_Pkt_
Len_Min

Fwd_Pkt_
Len_Mea
n

Fwd_Pkt_
Len_Std

Bwd_Pkt

_Len_M
ax

Bwd_Pkt

_Len_Mi
n

Bwd_Pkt
_Len_Me
an

Bwd_Pkt
_Len_Std

Flow_Byt
s

Flow_Pkt
s

Flow_IAT
_Mean

Flow_IAT
_Std

Flow_IAT

_Max

Flow_IAT

_Min

Fwd_IAT_
Tot

Fwd_IAT_
Mean

Fwd_IAT_
Std

Fwd_IAT_
Max

Fwd_IAT_
Min

Bwd_IAT
_Tot

Bwd_IAT

_Mean

Bwd_IAT

_Std

Bwd_IAT
_Max

Bwd_IAT
_Min

Fwd_PS
H_Flags

Bwd_PS
H_Flags

Fwd_UR
G_Flags

Bwd_UR
G_Flags

Fwd_Hea

der_Len

Bwd_He

ader_Len

Fwd_Pkts
/s

Bwd_Pkts
/s

Pkt_Len_
Min

Pkt_Len_
Max

Pkt_Len_
Mean

Pkt_Len_
Std

Pkt_Len

_Var

FIN_Flag

_Cnt

SYN_Fla
g_Cnt

RST_Fla
g_Cnt

PSH_Fla
g_Cnt

ACK_Fla
g_Cnt

URG_Fla
g_Cnt

CWE_Fla
g_Count

ECE_Fla

g_Cnt

DownUp
_Ratio

Pkt_Size
_Avg

Fwd_Seg
_Size_Av
g

Bwd_Seg
_Size_Av
g

Fwd_Byts
/b_Avg

Fwd_Pkts
/b_Avg

Fwd_Blk_
Rate_Avg

Bwd_Byt

s/b_Avg

Bwd_Pkt

s/b_Avg

Bwd_Blk_
Rate_Avg

Subflow_
Fwd_Pkts

Subflow_
Fwd_Byts

Subflow_
Bwd_Pkts

Subflow_
Bwd_Byts

Init_Fwd_
Win_Byts

Init_Bwd_
Win_Byts

Fwd_Act_
Data_Pkt
s

Fwd_Seg
_Size_Mi
n

Active_M
ean

Active_St
d

Active_M
ax

Active_Mi
n

Idle_Mea
n

Idle_Std Idle_Max Idle_Min Label Cat Sub_Cat

5. Adversarial Attacks

	 Deep learning was able to solve difficult problems that traditional machine

learning techniques could not. With their evolution and the availability of high-

performance hardware to train complex models, its usage increased radically in day-

to-day applications. Having great accuracy, deep learning models had a big impact on

AI-based services on the Internet, including Google and Alibaba. Although these

systems are considered secure, network proliferation makes them vulnerable to many

external threats and their security and integrity pose a great concern. In today’s digital

world, people are adopting AI systems into their daily lives and the cyberattacks on

their user-specific information have grown.

	 More specifically, the security of deep learning systems is vulnerable to

adversarial attacks that craftily manipulate legitimate inputs, by adding careful

perturbation to the data known as adversaries and forcing a trained model to produce

incorrect results. Slightly perturbed input can fool the Deep neural network into

making misclassified outputs with high confidence [14]. These attacks also became

very critical and raised safety concerns when we are talking about DNN models that

apply in applications such as autonomous driving [15] and medical diagnosis [16].

Szedy et al., [17] first discovered that deep neural networks are prone to adversarial

attacks as they map inputs to outputs which could be intermittent based on the data

used. Adversarial samples can reduce the trust of a classifier, force the classifier to

generate results that resemble the targeted output class, and adds noise to output in

order to misclassify it as another class.

	 The attack generation mechanisms can fall into different categories. One of

these categories is what access the attacker has to the model. We have White-Box

attacks and Black-Box attacks. In a White-Box scenario, the attacker has some

information regarding the model or its training data, like, machine learning algorithm,

model parameters, network structure, etc. This information allows him to exploit the

gradient of the loss function to form an adversarial sample. In a black box scenario,

27

the attacker has no knowledge about the model, training data, or parameters. The

adversary although has the ability to probe the model with a series of carefully crafted

inputs to observe the outputs.

	 Another category has to do with which phase of the model the attack will be

implemented. We have attacks in the training phase where the attacker attempts to

learn the model by accessing a summary, partial, or all of the training data. And

attacks in the inference phase where the attacker collects information and evidence

about the model characteristics by observing the inferences made by it. Finally, we

have the Passive and Active attacks. In a Passive attack, the attacker passively

observes the model and its updates, without making any changes to the training

procedure, and performs inference Regarding the Active attack, the attacker changes

the way the model operates having an impact on its results.

	 In our case, the neural networks, that we will use to create our intrusion

detection system, are also prone to adversarial attacks as they map inputs to the

outputs which could be intermittent based on the data used. Several techniques are

developed to craft adversarial samples which can be used to dodge the detection

capabilities of a system. In our implementation, we used two techniques, white-box

methods, the Jacobian Saliency Map Attacks (JSMA), and Fast Gradient Sign

(FGSM) algorithms.

	

5.1 Jacobian Saliency Map Attack

	 Papernot et al. [26] proposed an algorithm to craft adversarial samples using

the Jacobian Matrix the Jacobian Saliency Map Attacks (JSMA). The way the JSMA

algorithm works is that a direct mapping is established from the input vector, A, to the

28

desired output, B, which then generates adversaries. We can have an activation

function F which is A -> B. An adversary, A*, can be generated from the following

mathematical optimization problem:

arg max ∥σa ∥s.t.F(A+σa)=B∗, (1)
 σa

Where we have:

- σa as the perturbation vector,

- ∥ . ∥ the relevant norm for Neural Networks input comparison,

- B* the adversarial output data points,

- A + σa = A ∗ the adversarial sample.

	 Our goal is to generate adversaries that should be almost similar to the original

sample but our Neural Network model misclassifies it. So, if our original dataset is

F(A) = B what we want is F(A*) = B* which is different from B. Since σa is the

perturbation that creates the adversarial sample of output class B* forward derivative

is computed for each feature.

	 To generate an adversarial example from the original input, JSMA first

computes the gradient Z(x) for a saliency map. This is the Jacobian Matrix of a given

function which is learned during the training phase. If we have a one-dimensional

vector space we have the following equation:

∇F(A) = [
δF(A)

,
δF(A)

] 	 	 	 	 	 	 	 	 (2) 	 δd1 δd2  

	 Taking forward derivate reduces the adversarial data search space and

demonstrated the amount of change that happened in the original features. So, it uses

a saliency map that will show the impact each data has on the classification result. It

finds the most salient component that will be changed (saliency map: input

perturbations -> output variations). For example, If we are referring to a picture as

input, it chooses and changes the most likely pixel that makes the largest increase,

which means the largest gradient.

29

 0 if δFt(A) < 0 or Σ δFk(A)
 

 δdi k=/t δdi  

S[A, t][i] =

 δFt(A) · Σ δF(A) otherwise. (3)
 

 δdi k=/t δdi

Where we have the S[A, t][i] being the attacker’s target class, the upper part is the

when feature moves away from the target or towards other labels, and in the lower

part measures how much output moves towards the target. Therefore, we have the

maps

δFt(A)

 and Σ
δFk(A)

 that quantify how much F(A) will increase given an alteration

 δdi k=/t δdi

modification of input A. The iterations continue until it succeeds in output label

changes or when the maximum allowed number of iterations is reached.

5.2 Fast Gradient Sign Method (FGSM)

	 Fast Gradient Sign Method is a very simple and efficient method of generating

adversarial samples. Goodfellow et. Al [27] proposed a fast gradient sign

methodology that calculates the gradient of the cost function with respect to the input

of the neural network. They posited that linear behavior in high-dimensional input

spaces are capable to cause adversarial perturbations and in order to find them we

estimate the dimensions of the input space that are most sensitive to class change.

This is where fast gradient methodology takes place. When it comes to training neural

networks, gradients are how we determine the direction in which to push our weights

30

to reduce the loss value. With the intention of maximizing the error of the network,

the input is modified by changing the values of these dimensions in the opposite

direction of the gradient to maximize the loss function. A way to determine the

direction in which to adjust a weight deep in the network is by back-propagating the

gradients from the output layer to the weight. The adversarial examples are generated

using the following equation:

X∗ =X+e∗sign(∇xJ(X,ytrue))

Where we have:

- J as the cost function of the trained model

- ∇x indicates the gradient of the model with respect to the normal sample X

- ytrue the correct label

- e indicates the input variation parameter which controls the perturbation’s

amplitude.

	 Normally, in a neural network in order to nudge the weights to decrease the

loss value we use the following:

New weights = old weights - learning rate * gradients

	 For FGSM we want to maximize the loss so we nudge the weights accordingly

in the following equation:

New weights = old weights + epsilon * gradients

	 A difference between the two above equations is that one has addition and the

other has subtraction. By using the addition in equation two we nudge the wights in

the opposite direction from the direction that minimizes the loss. Regarding the

epsilon, if for example, we have as input an image, the degree of the noise in the

resulting image depends on the epsilon parameter. The larger the value the more

intense the noise.

	 There are also some variations of FGSM, where we have the targeted and

basic methods. The Target Class method maximizes the probability of a target class.

31

Rather than mislabel a class, a sample can be misclassified to a specific label by

calculating the J with reference to the target label. Next, we add the negative of that

result to X.

X∗ =X−ε∗sign(∇xJ(X,ytarдet))

	 The Basic Iterative method is a straightforward extension of the basic FGSM

which in this case generates adversarial examples iteratively using a small step size.

Since in this case, we are applying FGSM in multiple iterations instead of one, in

order to reduce change we use the aT = ε in each iteration. For the new weight to be

within the epsilon (ε) max normal of the original input, we apply clipping[28].

X0 =X; Xn+1 =ClipX,e {Xn +α∗sign(∇x J(Xn,ytrue))}

	 Where, α is the step size and ClipX,e indicates the clipping of X. Most of cases

this method does not rely on any approximation of the model and produces additional

adversarial examples, one with the largest change in cost, when run for more

iterations.

5.3 DeepFool

	 Moosavi-Dezfoll et al. [32] introduced Deepfool an efficient method to

compute the minimal perturbations to cause a classifier to misclassify an input.

DeepFool is an iterative and efficient algorithm for generating adversarial examples in

deep neural networks. It specifically aims to find the smallest perturbation that can

cause a misclassification, making it a "minimal" attack.

	 The basic idea behind DeepFool is to iteratively compute the direction in

which a sample needs to be perturbed in order to misclassify it. At each iteration, the

algorithm computes the linearized decision boundary of the current model at the

current sample. The perturbation is then set to be in the direction of the decision

boundary but with a magnitude that is minimized subject to the constraint that the

32

resulting perturbed sample is misclassified. This is done by solving a linear

optimization problem that finds the minimum distance between the current sample

and the decision boundary, subject to the constraint that the perturbed sample is

misclassified. The DeepFool algorithm repeats this process until a misclassification is

achieved or a maximum number of iterations is reached. The result is a perturbed

sample that is misclassified by the model, with the perturbation being as small as

possible.

	 For binary Classifiers, as we see in figure 8, the algorithm works by

calculating the gradient w of the loss function for the input and then dividing the

output prediction of the network f(xo) by the L2-norm of that gradient. This gives a

scalar value that is used to determine the size of the perturbation. The perturbation is

then multiplied by the unit vector of the gradient w and its sign is inverted so that the

loss of the classifier f is increased. This process is repeated iteratively by adding the

previous perturbation to the next perturbation until the label changes or a maximum

number of iterations is reached. To avoid convergence close to zero, the algorithm

uses a parameter called overshoot n, which increases the size of the perturbation

beyond zero to ensure a label change.

r∗(x0) = _ f(x0) w

 ∥w∥2

	

Figure 8. DeepFool for Binary Classifier 7

7 . From https://arxiv.org/pdf/1511.04599.pdf 	

33

https://arxiv.org/pdf/1511.04599.pdf

	 For a multi-class classifier, the algorithm treats each class as a binary

classifier. The decision boundary for each class is represented as a polyhedron, which

is formed by the intersection of multiple hyperplanes, as shown in figure 9. To find

the minimum perturbation needed to cause misclassification, the algorithm computes

the differences between the classifier outputs and gradients for each class and the

original predicted class. This difference is used to determine which hyperplane is the

closest to the input image. Once the closest hyperplane is identified, the algorithm

computes the minimum perturbation in a similar way to the binary case, using the

absolute value of the model output. The perturbation is then added to the previous

perturbation r∗(x0) and multiplied by the overshoot scalar, and this process is

repeated until the maximum number of iterations is reached or the predicted class

changes.

	

Figure 9. DeepFool for Multi-Class Classifier 8

	

	 One of the strengths of DeepFool is its ability to generate adversarial

examples that are effective across different deep neural networks trained on the same

dataset. This is because the algorithm is based on a generalization of the linear

decision boundary concept, which is independent of the specific architecture of the

neural network being attacked. However, DeepFool is not perfect and has limitations.

For example, it can be less effective against models with strong defenses against

adversarial attacks, and it may not always find the "most malicious" perturbation that

causes the most harmful misclassification.

8 . https://arxiv.org/pdf/1511.04599.pdf

34

https://arxiv.org/pdf/1511.04599.pdf

6. Set up Environment

	 Machine learning model creation and training were done in Ubuntu 20.04.3

operating system with Python version 3.8. Jupiter Notebook is used for the

development of Python code which is a very useful tool for development. We can

have it in a single document with the Python code and the results of its execution,

including images and graphics, making it very helpful since we get immediate

feedback on the development activity in progress. It is a server-client application that

allows editing and running notebooks via a web browser. The Jupiter notebook can be

executed on a local desktop requiring no Internet access or on a remote server

accessed through the internet. We will describe below the main applications used to

carry out our implementations.

6.1 Tensorflow

	 In 2015, Google released its open-source framework for machine learning and

named it Tensorflow [29]. It bundles together with Machine learning, Deep learning

models, and algorithms. It uses Python as a convenient front-end and runs it

efficiently in optimized C++. It is at present the most popular software library with

several real-world applications. From DeepFace, Facebook’s image recognition

system, to Apple’s Siri for voice recognition. It is also used in every Google app to

improve our experience. It supports numerical computation, and large-scale machine

learning on CPUs, GPUs, and clusters of GPUs.

	 Tensorflow makes it faster and easier for developers to implement machine

learning models, as it assists the process of acquiring data, serving predictions at

scale, or refining future results. It allows them to create a graph of computations to

perform, where each node in the graph represent a mathematical operation and each

connection represents data. Each connection between nodes represents

35

multidimensional vectors or matrices, creating what is known as tensors. All the

computations associated with Tensorflow involve the use of tensors. Computations

are made possible through interconnections of tensors. The mathematical operations

are carried out by the node of the tensor and its edge explains the input and output

relationship between nodes. Therefore, Tensorflow takes input in a form of a

multidimensional array or matrix, which goes through a system of several operations

and comes out as output.

6.2 Numpy

	 Numpy is a python library used for working with arrays. It stands for

Numerical Python and was created in 2005 by Travis Oliphant. It provides a

multidimensional array object, masked arrays and matrices, and fast operations on

arrays such as mathematical, logical, shape manipulation, sorting, basic linear algebra

and much more.

	 Some difference between Numpy arrays and the standard python sequences is

that Numpy arrays facilitate advanced mathematical and other types of operations on

a large number of data. It executes more efficiently and with less code such operations

compared to python’s built-in sequences. In addition, Python lists can grow

dynamically when Numpy arrays have a fixed size when they are created. When we

will need to change the size of an array, it will create a new one and delete the old

one. Vectorization is the main reason why Numpy is considered very fast, due to its

absence of any explicit looping or indexing in the code. It is more concise and easier

to read.

36

6.3 Pandas

	 Pandas is an open-source python package that is mainly used for data science

or analysis and machine learning tasks. Developed by Wes Mckinney in 2008. It

provides various data structures and operations for numerical data and time series. It

is built on top of Numpy, which we mentioned earlier. Pandas is fast and efficient for

analyzing data, loading data from different objects, handling data that are missing

represented as NaN in floating and nonfloating points, and providing time-series

functionality. Moreover, it has the ability to merge and join datasets, reshape and

pivoting of data sets, and perform split, apply, and combine data sets. Pandas makes it

also simple to execute tasks such as data normalization, data visualization, and data

inspection.

6.4 Sklearn

	 Sklearn or Scikit-learn is one of the most useful python libraries for machine

learning. It is built upon Numpy, Scipy and Matplotlib. It features various algorithms

and a lot of efficient tools for machine learning. Scikit-learn aims on modeling the

data, we can find some of the most popular categories of models:

- Supervised algorithms, where we can have all the popular supervised learning

algorithms such as Decision Tree, Support Vector Machines, Linear Regression, etc.

- Unsupervised algorithms, where we can have a large spread of unsupervised

machine learning algorithms in the context of clustering, factor analysis, and

principal component analysis to unsupervised neural networks.

- Cross-validation, where we can check the accuracy of supervised models on test

data.

- Feature extraction, where it is used to extract features from data(images and text).

37

6.5 Cleverhans

	 Cleverhans is an open-source software library that provides techniques for

generating adversarial examples and adversarial training. It is mostly used for two

reasons. First, for developers to build robust models by using adversarial training,

which requires the construction of adversarial examples during the training phase.

Second, having a standard reference implementation helps the researchers who report

the accuracy of their models in the adversarial settings to be more comparable with

other benchmarks, and will be no cases of mistakes or weaker attacks. Two of the

most important modules of cleverhans are the attacks and model.

	 The attacks module contains the Attack class where we can find all

implementations of adversarial example crafting algorithms, such as the Fast Gradient

Sign Method (FGSM) and Jacobian Saliency Map Attacks (JSMA). The model

module contains the Model class where we can have examples of model

implementations for Tensorflow models that are not implemented using a modeling

framework library or model implementations for Keras Sequential models.

6.6 Adversarial Robustness Toolbox

	 The Adversarial Robustness Toolbox (ART) is an open-source software library

designed to help researchers and developers better understand, evaluate, and improve

the security and robustness of machine learning models. ART provides a suite of tools

and techniques for detecting, generating, and defending against adversarial attacks.

	 ART includes various attack techniques, such as FGSM, PGD, DeepFool, and

Carlini-Wagner, for generating adversarial examples, as well as various defense

techniques, such as adversarial training, input transformation, and feature squeezing,

for improving model robustness against such attacks. ART supports a wide range of

deep learning frameworks, including TensorFlow, PyTorch, Keras, and scikit-learn.

38

7. Implementations

	 In this section, we will refer to the implementations that took place and their

results. The IoTID20 dataset was used to build the IoT network intrusion detection

system. The IoTID20 dataset was split into a training dataset and a test dataset in CSV

format to build my machine learning models. The training and test dataset split can be

seen in table 6. The CSV file of the dataset can be read using pandas.

Table 5. Training/Test dataset split.

7.1 Data preparation

	 In figures 10 and 11 we can see the training data class distributions.

Figure 10. Training data attacks category distributions

39

Training Dataset Test Dataset

Mirai 5699 3490

Scan 1023 627

DoS 788 491

Normal 517 350

MIMT ARP Spoofing 468 304

Total 10495 6262

Figure 11. Training data attacks Sub_category distributions

And now we can see the test data class distribution in below figures 12 and 13.

Figure 12. Test data attacks category distributions

Figure 13. Test data attacks Sub_category distributions

40

	 Next step we are going to investigate our training and test set features. Below

we find some of our training set features. All dataset features can be seen in Table 4.

Figure 14. Training set features distribution

	

	

	 Looking at the distributions of our training set features we can understand that

each feature varies widely. This will have an impact on our results if we use any

distance-based methods for classification. For example, the std of Src_Port is

significantly larger than the std of Tot_Fwd_Pkts. In that point, if we do not perform

feature value standardization, the Src_Port feature would dominate, having as a result

our model could possibly miss out on potentially important information from

Tot_Fwd_Pkts.

	 Standardization is a process that rescales a data series to have a mean of 0 and

a standard deviation of 1. Therefore, it will normalize the features individually so

each of them will have µ = 0 and σ = 1. This will allow us to compare multiple

features together and get more relevant information since all the data will be on the

same scale. To apply standardization we will use the StandardScaler class of Sklearn

library. We can see the results of standardization in Figure 15 below where now the

std of Scr_Port and Tot_Fwd_Pkts do not have that big of a difference.

41

Figure 15. Training set features distribution after Standardization

7.1 Model Evaluation

	 To find the results regarding the algorithms, some metrics of the sklearn

library will be looked into.

7.1.1 Common Evaluation Metrics

	 A Confusion Matrix is a technique for summarizing the performance of a

classification algorithm. Having more than 2 classes or an unequal number of

observations, classification accuracy alone can be misleading. With a confusion

matrix, we can understand better how our classification model performs, summarizing

all the correct and incorrect predictions with count values and broken down by each

class. When creating a 2x2 Confusion matrix we get four different combinations from

the predicted values of a classifier.

42

- True Positive: These are cases in which we predicted a positive value and it is

correct. For example, we predicted that the network traffic is an attack and it was

correct.

- True Negative: These are cases in which we predicted a negative value and it is

actually negative. For example, we predicted that the network traffic is not an attack

and it was indeed normal traffic.

- False positive: We predicted a positive value and it was actually a negative value.

For example, we predicted that the network traffic is an attack and it was eventually

normal traffic.

- False Negative: We predicted a negative value and it was actually a positive value.

For example, we predicted that the network traffic is normal traffic but it was

eventually an attack.

	 Having the Confusion matrix we can not really understand the performance of

our model. Below we can find some rates that can be computed from a confusion

matrix.

- Accuracy: The accuracy is used to find the portion of correctly classified values. It

is an overall rate, where we see how often is the classifier correct. To compute it we

add all the true values and divide by the total values:

 (True Positive + True Negative)/total

- Precision: Precision is used to calculate the model’s ability to classify positive

values correctly. It means that we find how often we predicted that it was an attack

and it was correct. To do so, we divide the true positives by the total number of

predicted positive values.

 True Positive/(True Positive + False Positive)

- Recall: Recall is the ability of the model to predict positive values. To calculate it

we divide the True Positive by the sum of actually positive values.

 True Positive/(True Positive + False Negative)

43

- F1-Score: This is a weighted average of recall and precision. It is useful when we

want to have both Precision and Recall

 2*Precision*Recall/(Precision + Recall)

7.1.2 V-measure

	 For measuring the performance of unsupervised learning we can use the V-

measure to evaluate the models. V measure or so-called Normalised Mutual

Information is an average of the other two measures, homogeneity, and completeness.

	 Homogeneity measures how many data points a cluster has that belong to the

same class label. A cluster, in order to be referred to as homogeneous should contain

only samples belonging to a single class. When all samples in cluster k have the same

label the homogeneity equals 1. The score can be between 0 and 1. A low value

indicates low homogeneity and a high value indicates high homogeneity.

	 Completeness describes the closeness of a cluster where all data points

belonging to the same class are clustered into the same cluster. The completeness

score provides information regarding the assignment of samples belonging to the

same class. A good cluster algorithm should assign all samples to the same cluster.

	 A complete cluster does not mean it is also homogeneous. For example,

regarding homogeneity, we can have data samples with only one feature in a cluster,

but this does not mean that it could not exist also another cluster having again only

the same data samples. On the other side, regarding completeness, we can have points

with the same property classified together, but this does not mean that there may not

be other samples in the same cluster. Now, we understand that we need a metric that

we could measure as homogeneous and complete. V-measure is the harmonic average

between homogeneity and completeness. The score can be between 0 - 1 that we can

44

evaluate our clustering algorithm. If a cluster does not satisfy both homogeneity and

completeness the score will be 0.

7.1.3 Attack Success Rate

	 The attack success rate is a measure of the effectiveness of an adversarial

attack on a machine learning model. It is defined as the proportion of adversarial

examples that are misclassified by the target model.

To compute the attack success rate, we first generate a set of adversarial examples by

applying a perturbation to the input data in order to cause misclassification by the

target model. We then feed these adversarial examples into the target model and

record the number of examples that were misclassified. The attack success rate is then

computed as the ratio of misclassified adversarial examples to the total number of

adversarial examples generated.

	 The attack success rate is an important metric for evaluating the security of

machine learning models and assessing their susceptibility to adversarial attacks. A

high attack success rate indicates that the model is vulnerable to adversarial attacks,

while a low attack success rate indicates that the model is more robust against such

attacks. To compute the attack success rate given the accuracy on normal and

adversarial examples, you can use the following formula:

ASR = 1 - AccAdv

	 AccNorm

Where:

- AccAdv is the accuracy of adversarial examples

- AccNorm is accuracy on normal examples

45

7.2 Supervised Machine learning models

	 The supervised machine learning models, namely the Decision Tree classifier,

the K-Nearest neighbors classifier, and the Linear Support Vector classifier were used

using sklearn.

7.2.1 Results - Decision Tree Classifier

	 The Confusion Matrix of the Decision Tree Classifier can be seen below in

Figure 16. It is a 5x5 confusion matrix, as it is a 5-class classification. The diagonal

values, from the upper left to lower right, are the counts of the correctly classified

samples. All the values in the matrix add up to 4.909 which is the size of the test set.

The rows represent the true class and the columns the predicted class.

	

Figure 16. Decision Tree Confusion Matrix

Table 6. Decision Tree Metrics

46

Accuracy F1 score K-Nearest

Decision Tree 100% 100% 100%

7.2.2 Results - K-Nearest classifier

	 The Confusion Matrix of the K-Nearest classifier can be seen in Figure 17

below.

Figure 17. K-Nearest Confusion Matrix

Table 7. K-Nearest Metrics

7.2.3 Results - Support Vector Classifier

	 The Confusion Matrix of the Support Vector Classifier can be seen in Figure

18 below.

Figure 18. Support Vector Confusion Matrix

Table 8. SVM Metrics

Accuracy F1 score K-Nearest

K-Nearest 99.97% 99.97% 99.97%

47

Accuracy F1 score K-Nearest

SVM 100% 100% 100%

7.3 Unsupervised Machine learning model

	 For unsupervised machine learning, the K-means clustering method was

implemented using sklearn.

7.3.1 Results - K-means

	 As said in the previous chapter, each group of similar points is a cluster and

each cluster represents a category. The k number in k-means represents the number of

clusters. In case we do not have any knowledge regarding the dataset and its classes,

in order to find the optimal k number we would use the elbow method. In our case,

plotting the elbow method for k from 1 to 10 we get the following results in figure 19.

	 Figure 19. Elbow method finding k.

	 From the plot, it is not very clear where the “elbow” is. Since it was known

that the dataset contains 5 categories of samples, k was chosen to be 5. We can see the

clustering results below in figure 20.

48

	 Figure 20. Clustering results

	 Here, as we may see we have a lot of differences from supervised learning.

Here we have 5 clusters labeled with an arbitrary index, whereas in supervised we

would have the attack category. We can see that cluster 1 has 2544 samples, cluster 0

has 2388 samples, cluster 3 has 319 samples, cluster 2 has 9 samples and cluster 4 has

2 samples. We did not pass any labels to the algorithm, thus evaluating the results of

the cluster is not as easy as in supervised since now we can not compare expected and

predicted labels. To evaluate our model we will compute the completeness score,

homogeneity score, and finally the V-measure. Also, for comparison reasons, we will

compute the accuracy score using the accuracy_score of sklearn metrics. The results

are below:

Table 9. KMeans Metrics

	

	 The V-measure score of 38.91% is a really bad result. It seems that the data in

its current state is not suitable for unsupervised learning. Visualization is always

useful when we are talking about clustering. Since we have 6770 features it would be

impossible to plot all dimensions, so dimensionality reduction was performed to

reduce the data to two dimensions, in order to be able to represent them in two-

dimensional Cartesian axes using the PCA function from sklearn. The Principal

Component Analysis (PCA) is a popular technique for reducing the dimensionality of

data. It increases interpretability but at the same time, it minimizes information loss. It

has the ability to make data easy for plotting in 2D and 3D. In figure 21 we can see

the plot of training data with predicted 5 classes of k-means.

Accuracy Completeness Homogeneity V-measure

KMeans 34.21% 32.39% 48.70% 38.91%

49

	

Figure 21. The plot of training data with the predicted class of k-means

	

	 In general, the k-means clustering algorithm assumes that the clusters have

spherical shapes and similar sizes. If the clusters are non-spherical or have different

sizes, then the k-means algorithm may not work well. In Figure 21, it is easy to see

that this dataset is not very suitable for clustering. Samples are scattered unpredictably

and do not form any strong clusters.	 To better understand this, below in Figure 22 we

can see the 3D plot of clusters.

	

Figure 22. The 3D plot of training data with the predicted class of k-means

50

7.5 Deep Neural Network

	 In order to create our Deep learning model we used the Keras library. Models

in Keras are defined as a sequence of layers. Our model is a Sequential model, which

means that from input to output, passing through a series of neural layers one after the

other. We will have a fully-connected network structure with three Dense layers. The

dense layer is the regular deeply connected neural network layer which is the most

commonly used layer. To create a layer we will need to specify the number of its

neurons and its activation function. The activation function is responsible for

transforming the summed weighted input from the node into the activation of the node

or output of that input. In other words, it will decide whether the neuron’s input is

important to the network, using simpler mathematical operations.

	 To create our model, first, we have the input layer where we get as input the

training data. We will have 256 neurons or nodes, and the activation function will be

ReLU. Rectified Linear Unit (ReLU) is a default activation function for many types

of neural networks since models that use it are easier to train and often achieve better

performance. It is a linear function that will output the input directly if it is positive,

or, it will output zero. Our second layer will have also 256 nodes and ReLu as an

activation function. Our third and final layer, the output layer, has 5 nodes and uses

the softmax activation function. The softmax activation function calculates the

relative probabilities. Below we have the equation for Softmax:

softmax(Zi) = exp(Zi)

	 Σj exp (Zj)

	 Z represents the values from the neurons of the output layer that will be

divided by the sum of exponential values in order to normalize and afterward convert

them into probabilities. The softmax activation function is popularly used in multi-

class classification problems.

	 Between the three dense layers, we have two dropout regularizations [31].

Dropout is a technique where randomly selected neurons are ignored during training,

which means that their contribution to the activation of downstream neurons is

51

dropped out on the forward pass as well as any right updates are not applied to the

neuron on the backward pass. Weights of the neurons are tuned for specific features

providing some specialization on which neighboring neurons rely. If taken too far

model could be too specialized for the training data. In order to make our network less

sensitive to the weights of neurons, we could randomly drop out neurons from the

network during training having as a result, other neurons step in and handle the

representation required to make predictions for the missing ones. This brings a

network capable of better generalization having lower probabilities to have overfilling

in our training data. Below in figure 22, we can see how our modes are configured.

Figure 22. Deep learning model setup

	 	

	 After defining our model the next step is to compile it using the efficient

numerical libraries of Tensorflow in order to be able to train and make predictions

with our model. We will have to specify the loss function, the optimizer, and the

metrics. The loss function is used to calculate the quantity the model should aim to

minimize during training. In our model, we will use the Cross entropy loss function

which predicts the probability of whether the data belongs to one class or the other.

More specifically we will use the categorical cross-entropy type which is used for

multiclass models. The output label of the model is converted into a categorical

encoding in form of zeros and ones. For the optimizer parameter, we will use the

52

“Adam” which is a popular version of the gradient descent algorithm and has the

ability to configure itself to give good results in a wide range of problems. Finally, for

the metrics argument, we define accuracy.

	 To perform the training of the model we have to define three parameters, the

epochs number, the batch size, and the learning rate. The epochs are the number of

times that the learning algorithm will go through the entire training dataset. One

epoch means that each sample in the training dataset had the opportunity to update the

internal model parameters. The batch size defines the number of samples to work

through before updating the internal model parameters. In most cases, the number of

epochs is large allowing the learning algorithm to run until the error in the model is

minimized. Our epoch number is 20 and the batch size is 128. The learning rate will

be 0.1, which is a common value, where the network will be updated 0.1 (or 10%) of

the estimated weight error, each time the weights are updated. Starting the training we

will see the output of every epoch performed accompanied by the time it took to

complete and the test accuracy. The test accuracy gives us an idea of how well we

have modeled the dataset. Is an important metric as it helps evaluate the

generalization performance of the model. A model with a high test accuracy indicates

that it can effectively generalize to new, unseen data and is likely to perform well in

real-world applications. It's important to note that the test accuracy should only be

calculated and reported after the model has been fully trained. Below in figure 23, we

can see the output of the first 5 epochs. Our Deep learning model test accuracy is

99.97%.

	 Figure 23. First 5 epochs completion time and test accuracy

53

7.6 Results - Jacobian Silency Map Attack

	 We performed the Jacobian Silency Map attack using the Cleverhans library.

When executing the attack we will see in the output of the program, figure 24, the

creation of the adversarial examples and also some failed attempts to find adversarial

attacks after a number of iterations.

Figure 24. JSMA execution

	 The results of the attack in test accuracy of the model, in classification

algorithms, and in clustering algorithm are described below followed by the ROC

curve. ROC (Receiver Operating Characteristic) curve is a graph that plots the True

Positive Rate and False Positive Rate that shows the performance of the model. The

ROC curve provides a visual representation of the trade-off between the true positive

rate and the false positive rate for a given classifier. The area under the ROC Curve,

known as AUC, is used as a measure of the overall performance of a classifier.

Classifiers whose curve is close to the top-left corner indicate better performance. The

closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate

the test is.

Table 10. JSMA test accuracy on adversarial examples

Test Accuracy on Adversarial examples 93.34%

54

Table 11. JSMA Decision Tree Classifier metrics

Figure 25. ROC curve Decision Tree

	 	 Table 12. JSMA SVM Classifier metrics

 Decision Tree Classifier

Accuracy Score in Adversarial examples 92.51%

F1 score in adversarial examples 96.14%

AUC score in adversarial examples 49.56%

 SVM Classifier

Accuracy Score in Adversarial examples 93.06%

F1 score in adversarial examples 96.41%

AUC score in adversarial examples 49.56%

55

Figure 26. ROC curve SVM

Table 13. JSMA K-Nearest Classifier metrics

 K-Nearest Classifier

Accuracy Score in Adversarial examples 93.06%

F1 score in adversarial examples 93%

AUC score in adversarial examples 49.84%

56

Figure 27. ROC curve K-Nearest

Table 14. JSMA K- means accuracy

7.7 Results - Fast Gradient Sign Method

	 We performed the Fast Gradient Sign Method attack using the Cleverhans

library. For the epsilon parameter, we choose three values 0.4, 0.6, and 0.8, as we

have said in the previous chapter the bigger the epsilon the bigger will be the noise.

Below we can see the results of the attack in test accuracy of the model and in the

classifiers followed by their ROC curve.

Table 15. FGSM test accuracy on adversarial examples

Test Accuracy on Adversarial examples)e=0.4(91.36%

Test Accuracy on Adversarial examples)e=0.6(82.72%

Test Accuracy on Adversarial examples)e=0.8(75.08%

57

KMeans
Accuracy Completeness Homogeneity V-measure

JSMA 22.59% 37.90% 66.15% 48.19%

Table 16. FGSM Decision Tree classifier metrics

Figure 28. ROC Curve Decision Tree FGSM e0.4

 Figure 29. ROC Curve Decision Tree-FGSM e0.6

Figure 30. ROC Curve Decision Tree - FGSM - e 0.6

 Decision Tree Classifier

Accuracy Score in Adversarial examples)e=0.4(100%

Accuracy Score in Adversarial examples)e=0.6(80.39%

Accuracy Score in Adversarial examples)e=0.8(69.76%

F1 score in adversarial examples (e=0.4) 100%

F1 score in adversarial examples (e=0.6) 74.27%

F1 score in adversarial examples (e=0.8) 55.29%

AUC score in adversarial examples (e=0.4) 100%

AUC score in adversarial examples (e=0.6) 61.49%

AUC score in adversarial examples (e=0.8) 45.78%

58

Table 17. FGSM SVM Classifier metrics

Figure 31. ROC Curve SVM - FGSM - e
0.4

 Figure 32. ROC Curve SVM - FGSM - e

0.6

Figure 33. ROC Curve SVM - FGSM - e 0.8

 SVM Classifier

Accuracy Score in Adversarial examples)e=0.4(93.68%%

Accuracy Score in Adversarial examples)e=0.6(82.39%

Accuracy Score in Adversarial examples)e=0.8(69.76%

F1 score in adversarial examples (e=0.4) 94.89%

F1 score in adversarial examples (e=0.6) 82.65%

F1 score in adversarial examples (e=0.8) 63.62%

AUC score in adversarial examples (e=0.4) 100%

AUC score in adversarial examples (e=0.6) 61.49%

AUC score in adversarial examples (e=0.8) 45.78%

59

Table 18. FGSM K-Nearest Classifier metrics

Figure 34. ROC Curve K-Nearest-FGSM-e 0.4

 Figure 35. ROC Curve K-Nearest-

FGSM-e0.6

Figure 36. ROC Curve K-Nearest-FGSM-e 0.8

 K-Nearest Classifier

Accuracy Score in Adversarial examples)e=0.4(98.33%

Accuracy Score in Adversarial examples)e=0.6(94.35%

Accuracy Score in Adversarial examples)e=0.8(71.76%

F1 score in adversarial examples (e=0.4) 98.33%

F1 score in adversarial examples (e=0.6) 94.35%

F1 score in adversarial examples (e=0.8) 71.76%

AUC score in adversarial examples (e=0.4) 100%

AUC score in adversarial examples (e=0.6) 72.04%

AUC score in adversarial examples (e=0.8) 61.76%

60

Table 19. FGSM K-Means accuracy on adversarial examples

7.8 Results - DeepFool

	 We performed the DeepFool attack using the Adversarial Robustness Toolbox

(ART). Below we can see the results of the attack in test accuracy of the model and in

the classifiers followed by their ROC curve.

Table 20. DeepFool test accuracy on adversarial examples

Table 21. DeepFool Decision Tree Classifier metrics

KMeans
Accuracy Completeness Homogeneity V-measure

FGSM)e=0.4(27.24% 25.87% 36.37% 30.24%

FGSM)e=0.6(24.85% 37.05% 54.12% 43.99%

FGSM)e=0.8(22.25% 13.41% 17.86% 15.31%

Test Accuracy on Adversarial examples 61.60%

 Decision Tree Classifier

Accuracy Score in Adversarial examples 62.55%

F1 score in adversarial examples 44.26%

AUC score in adversarial examples 86.35%

61

Figure 37. ROC Curve Decision Tree DeepFool

Table 22. DeepFool SVM Classifier metrics

Figure 38. ROC Curve SVM DeepFool

 SVM Classifier

Accuracy Score in Adversarial examples 60.93%

F1 score in adversarial examples 44.87%

AUC score in adversarial examples 86.35%

62

Table 23. DeepFool K-Nearest Classifier metrics

 

Figure 45. ROC Curve K-Nearest DeepFool

Table 24. DeepFool K-Means accuracy on adversarial examples 

 K-Nearest Classifier

Accuracy Score in Adversarial examples 63.77%

F1 score in adversarial examples 63.77%

AUC score in adversarial examples 91.88%

63

KMeans
Accuracy Completeness Homogeneity V-measure

DeepFool 15.21% 20.40% 23.65% 21.91%

8. Adversarial Attacks - Overall Results

Table 25. Test Accuracy of model - Overall results

Table 26. Decision Tree Classifier - Accuracy overall results

Test Accuracy of model
Percentage Difference

Test Accuracy on normal data 99.97%

JSMA 93.34% -6.63%

FGSM)e=0.4(91.36% -8.61%

FGSM)e=0.6(82.72% -17.25%

FGSM)e=0.8(75.08% -24.89%

DeepFool 61.60% -38.37%

Decision Tree Classifier - Accuracy
Percentage Difference

Accuracy Score 100%

JSMA 92.51% -7.49%

FGSM)e=0.4(100% -0.0%

FGSM)e=0.6(80.39% -19.61%

FGSM (e=0.8) 69.76% -30.24%

DeepFool 62.55% -37.45%

64

Table 27. Decision Tree Classifier - F1 Score overall results

Table 28. Decision Tree Classifier - AUC Score overall results

Decision Tree Classifier - F1 Score
Percentage Difference

Accuracy Score 100%

JSMA 96.14% -3,86%

FGSM(e=0.4) 100% -0.0%

FGSM(e=0.6) 74.27% -25.73%

FGSM(e=0.8) 55.29% -44.71%

DeepFool 44.26% -55.74%

Decision Tree Classifier - AUC Score
Percentage Difference

Accuracy Score 100%

JSMA 49.56% -50.44%

FGSM(e=0.4) 100% -0.0%

FGSM(e=0.6) 61.49% -38.51%

FGSM(e=0.8) 45.78% -54,22%

DeepFool 86.35% -13,65%

SVM Classifier - Accuracy
Percentage Difference

Accuracy Score 100%

JSMA 93.06% -6.94%

FGSM(e=0.4) 93.68%% -6,32%

FGSM(e=0.6) 82.39% -17,61%

FGSM(e=0.8) 69.76% -30,24%

65

Table 29. SVM Classifier - Accuracy overall results

Table 30. SVM Classifier - F1 Score overall results

Table 31. SVM Classifier - AUC Score overall results

DeepFool 60.93% -39,07%

SVM Classifier - F1 Score
Percentage Difference

Accuracy Score 100%

JSMA 96.41% -3.59%

FGSM(e=0.4) 94.89% -5.11%

FGSM(e=0.6) 82.65% -17.35%

FGSM(e=0.8) 63.62% -36.38%

DeepFool 44.87% -55.13%

SVM Classifier - AUC Score
Percentage Difference

Accuracy Score 100%

JSMA 49.56% -50.44%

FGSM(e=0.4) 100% 0.0%

FGSM(e=0.6) 61.49% -38.51%

FGSM(e=0.8) 45.78% -54.22%

DeepFool 86.35% -13.65%

K-Nearest Classifier - Accuracy
Percentage Difference

Accuracy Score 99.97%
JSMA 93.06% -6.94%

FGSM(e=0.4) 98.33% -1.67%

66

Table 32. K-Nearest Classifier - Accuracy overall results

Table 33. K-Nearest Classifier - F1 Score overall results

Table 34. K-Nearest Classifier - AUC Score overall results

FGSM(e=0.6) 94.35% -5.65%

FGSM(e=0.8) 71.76% -28.24%

DeepFool 63.77% -36.23%

K-Nearest Classifier - F1 Score
Percentage Difference

Accuracy Score 99.97%
JSMA 93% -7%

FGSM(e=0.4) 98.33% -1.67%

FGSM(e=0.6) 94.35% -5.65%

FGSM(e=0.8) 71.76% -28.24%

DeepFool 63.77% -36.23%

K-Nearest Classifier - AUC Score
Percentage Difference

Accuracy Score 100%

JSMA 49.84% -50.16%

FGSM(e=0.4) 100% 0.0%

FGSM(e=0.6) 72.04% -27.96%

FGSM(e=0.8) 61.76% -38.24%

DeepFool 91.88% -8.12%

67

Table 35. KMeans — Accuracy overall results

Table 36. Attack Success Rate overall results

Attack Success Rate
JSMA FGSM(0.4) FGSM(0.6) FGSM(0.8) DeepFool

Test Accuracy on

model
6.64% 8.62% 17.26% 24.9% 38.39%

Decision Tree 7.49% 0% 19.61% 30.24% 37.45%

SVM 6.94 6.32% 17.61% 30.24% 39.07%

K-Nearest 6.92% 1.67% 5.65% 28.22% 36.23%

K-Means 34% 21% 28% 35% 56%

68

K-Means
Accuracy Completeness Homogeneity V-measure

Normal samples 34.21% 32.39% 48.70% 38.91%

JSMA 22.59% 37.90% 66.15% 48.19%

FGSM(e=0.4) 27.24% 25.87% 36.37% 30.24%

FGSM(e=0.6) 24.85% 37.05% 54.12% 43.99%

FGSM(e=0.8) 22.25% 13.41% 17.86% 15.31%

DeepFool 15.21% 20.40% 23.65% 21.91%

9. Results Discussion

	

	 Overall, the models perform well on clean data, but their vulnerability to

adversarial attacks varies significantly depending on the attack type and the

classification algorithm used. The Decision Tree classifier outperforms the other

classifiers in terms of accuracy, achieving 100% accuracy on all types of attacks

except for FGSM with e=0.6 and DeepFool. However, its F1 score and AUC score are

relatively lower than the other classifiers, indicating that it may not perform well in

detecting adversarial attacks. The SVM classifier also performs relatively well,

achieving 100% accuracy on normal data and FGSM with e=0.4, but its accuracy

drops significantly under other types of attacks. The K-Nearest Classifier achieves

high accuracy on normal data and FGSM with e=0.4, but its accuracy drops

significantly under other types of attacks, especially under FGSM with e=0.8 and

DeepFool. The K-Means algorithm performs the worst among all the classifiers,

achieving a very low accuracy of 32.77% on normal data and dropping significantly

under adversarial attacks, especially the FGSM attack with epsilon 0.8 and the

DeepFool attack.

	 Regarding the attack success rate of each attack:

- The JSMA attack has the lowest success rate of all models, except for K-Means,

where it has a relatively high success rate of 30.08%.

- The FGSM attack with epsilon 0.4 has a low success rate on all models, except for

SVM, where it has a moderate success rate of 6.32%.

- The FGSM attack with epsilon 0.6 has a moderate success rate on all models, with

the highest success rate being on the Decision Tree and SVM models.

- The FGSM attack with epsilon 0.8 has a high success rate on all models, with the

highest success rate being on the K-Means model.

69

- The DeepFool attack has the highest success rate on all models, with the highest

success rate being on the K-Means model.

	 These results suggest that the K-Means model is the most vulnerable to

adversarial attacks, especially the FGSM attack with epsilon 0.8 and the DeepFool

attack. The Decision Tree and SVM models are relatively less vulnerable, while the

K-Nearest model is in between. The JSMA attack is the least effective among the

attacks considered in this analysis.

70

10. Conclusion

	 In conclusion, machine learning has revolutionized the field of intrusion

detection systems, providing powerful tools to detect and prevent attacks in real time.

There are several types of machine learning techniques, including supervised and

unsupervised learning, deep learning, and ensemble methods, which can be used to

detect anomalies and identify potential threats.

	 In this thesis, we have focused on building an IoT intrusion detection system.

Our experiments showed that deep learning techniques can effectively detect attacks

with high accuracy. We have also implemented adversarial attacks, including Jacobian

Saliency Map attack, Fast Gradient Sign Method, and DeepFool, to evaluate the

robustness of the system. Our results demonstrated that the Machine learning models

were vulnerable to these attacks, highlighting the need for improving the system's

resilience to adversarial attacks. Addressing the research questions made in the

Introduction section:

	 RQ1: The study revealed that the effectiveness of adversarial attacks on

intrusion detection systems in the IoT domain varies significantly depending on the

attack type and the classification algorithm used. While the models perform well on

clean data, their vulnerability to adversarial attacks is a concern, particularly for the

K-Means algorithm, which is the most susceptible to such attacks.

	 RQ2: Among the attacks considered in this analysis, the DeepFool attack had

the biggest impact on the performance of intrusion detection systems in the IoT

domain, achieving the highest success rate on all models.

	 RQ3: The study found that the supervised learning methods (Decision Tree

and SVM) are relatively less vulnerable to adversarial attacks than the unsupervised

learning method (K-Means), while the K-Nearest model is in between. However, the

performance of these models in detecting adversarial attacks varies depending on the

attack type and the classification algorithm used.

71

	 When an adversarial attack is performed on an unsupervised algorithm, it can

cause the model to produce incorrect outputs or completely fail. This is because the

algorithm is highly sensitive to small changes in the input data, and the attack can

exploit this sensitivity to manipulate the model's output. In contrast, supervised

algorithms have been shown to be more robust to adversarial attacks because they are

trained on labeled data, which provides them with more context and information

about what is expected from the input. They can use this contextual information to

detect and resist adversarial attacks. Adversarial attacks on unsupervised algorithms

reveal the importance of carefully considering the robustness of machine learning

models to adversarial attacks, especially in situations where security and reliability

are critical.

	 Future research in this area can focus on developing new techniques to

enhance the security of the IoT intrusion detection system, such as using generative

models, improving the quality of the dataset, and integrating explainable AI to

understand the model's decision-making process. Also, could explore the effectiveness

of other attack types or investigate alternative machine learning algorithms. Overall,

this thesis has shown the potential of using machine learning in the development of

IoT intrusion detection systems, and the importance of addressing security challenges

to ensure the reliability and effectiveness of these systems in real-world scenarios.

72

References

[1] Logistic Regression pp. 223 – 237. Available at: https://www.stat.cmu.edu/

~cshalizi/uADA/12/lectures/ch12 .pdf

[2] Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of

Classification Techniques. Informatica 31 (2007). Pp. 249 – 268.

[3] Vapnik, V. N. (1995). The Nature of Statistical Learning

[4] Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput.

Surv. 1999, 31, 264–323.

[5] Tapas Kanungo, D. M. (2002). A local search approximation algorithm for k-

means clustering. Proceedings of the eighteenth annual symposium on Computational

geometry. Barcelona, Spain: ACM Press.

[6] "A comparison of clustering criteria for document datasets" by A. Jain and R.

Dubes (1988)

[7] "Deep Learning" by Y. LeCun, Y. Bengio, and G. Hinton (2015): This paper

provides an overview of deep learning, including the historical background, basic

concepts, and recent developments.

[8] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123–140.

[9] Ruta, Dymitr, and Bogdan Gabrys. "Classifier selection for majority voting."

Information fusion 6, no. 1 (2005): 63-81.

[10] Freund Y, Schapire R. Experiments with a new boosting algorithm. In:

Proceedings of the Thir- teenth National Conference on Machine Learning; 1996. pp.

148–156.

[11] Wolpert DH. Stacked generalization. Neural Networks. 1992; 5(2):241–259.

[12] Breiman L (2001) Random forests.

73

[13] Friedman, J. (2001). Greedy boosting approximation: a gradient boosting

machine.

[14] Szegedy et al., 2014; Goodfellow et al., 2015

[15] Eykholt et al., 2018

[16] inlayson et al., 2019

[17] Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.;

Fergus, R. Intriguing properties of neural networks.

[18] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and Mounir

Ghogho. Deep learning approach for network intrusion detection in software defined

networking.

[19] Qureshi, A.U.H.; Larijani, H.; Mtetwa, N.; Javed, A.; Ahmad, J. RNN-ABC: A

New Swarm Optimization Based Technique for Anomaly Detection.

[20] S. Kumar, E. Spafford, “A Software architecture to Support Misuse Intrusion

Detection” in The 18th National Information Security Conference, pp. 194-204. 1995.

[21] S. Kumar, “Classification and Detection of Computer Intrusions”, Purdue

University, 1995. 

[22] K. Ashton, “That ‘internet of things’ thing.”, RFID Journal 22, no. 7, 2009,

pp.97-114.

[23] I. Andrea, C. Chrysostomou and G. Hadjichristofi, “Internet of Things: Security

vulnerabilities and challenges,” 2015 IEEE Symposium on Computers and

Communication (ISCC), pp.180-187,Larnaca, 2015.

[24] Wahid, Abdul, P. Kumar, “A Survey on attacks, Challenges and Security

Mechanism In wireless Sensor Network”, JIRST- International Journal for Research

in Science & Technology, Volume 1, Issue 8, pp. 189-196,January 2015.

[25] Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.;

Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199.  

[26] Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The

74

Limitations of Deep Learning in Adversarial Settings.  

[27] Goodfellow, I., J. Shlens, and C. Szegedy. 2014. Explaining and harnessing

adversarial examples. arXiv 1412.6572. December.

[28] Alexey Kurakin, Ian J. Goodfellow, Samy Bengio. 2017. ADVERSARIAL

EXAMPLES IN THE PHYSICAL WORLD

[29] Martin Abadi Paul Barham Jianmin Chen Zhifeng Chen Andy Davis Jeffrey

Dean Matthieu Devin Sanjay Ghemawat Geoffrey Irving Michael Isard Manjunath

Kudlur Josh Levenberg Rajat Monga Sherry Moore Derek G. Murray Benoit Steiner

Paul Tucker Vijay Vasudevan Pete Warden Martin Wicke Yuan Yu Xiaoqiang Zheng -

TensorFlow: A system for large-scale machine learning

[30] BREIMAN, L., 1999, Random forests - Random Features. Technical Report 567,

Statistics Department, University of California, Berkeley,

[31] Srivastava et al. 2014, Dropout: A simple way to prevent neural networks from

overfitting.

[32] DeepFool: a simple and accurate method to fool deep neural networks - Seyed-

Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard E ́colePolytechniqueFe

́de ́raledeLausanne

[33] Performance Evaluation of Adversarial Attacks: Discrepancies and Solutions -

Jing Wu, Mingyi Zhou, Ce Zhu, Yipeng Liu, Mehrtash Harandi, Li Li

[34] VasileiosPant/Adversarial-Attacks-against-NIDS: https://github.com/

VasileiosPant/Adversarial-Attacks-against-NIDS

75

https://github.com/VasileiosPant/Adversarial-Attacks-against-NIDS
https://github.com/VasileiosPant/Adversarial-Attacks-against-NIDS

	1. Introduction
	1.1 Machine Learning
	1.2 Machine Learning in Cybersecurity
	1.3 Data in Machine Learning
	1.3.1 Structured and unstructured data
	1.3.2 Labelled and unlabelled data

	2. Types of Machine Learning algorithms
	2.1 Supervised learning
	2.1.1 Decision Tree
	2.1.2 Support Vector Machines

	2.2 Unsupervised learning
	2.2.1 K-means

	2.3 Deep learning
	2.4 Ensembling

	3. Intrusion Detection System
	4. IoT Intrusion Dataset
	4.1 Internet of Things (IoT)
	4.2 IoTID20 dataset

	5. Adversarial Attacks
	5.1 Jacobian Saliency Map Attack
	5.2 Fast Gradient Sign Method (FGSM)
	5.3 DeepFool

	6. Set up Environment
	6.1 Tensorflow
	6.2 Numpy
	6.3 Pandas
	6.4 Sklearn
	6.5 Cleverhans
	6.6 Adversarial Robustness Toolbox

	7. Implementations
	7.1 Data preparation
	7.1 Model Evaluation
	7.1.1 Common Evaluation Metrics
	7.1.2 V-measure
	7.1.3 Attack Success Rate

	7.2 Supervised Machine learning models
	7.2.1 Results - Decision Tree Classifier
	7.2.2 Results - K-Nearest classifier
	7.2.3 Results - Support Vector Classifier

	7.3 Unsupervised Machine learning model
	7.3.1 Results - K-means

	7.5 Deep Neural Network
	7.6 Results - Jacobian Silency Map Attack
	7.7 Results - Fast Gradient Sign Method
	7.8 Results - DeepFool

	8. Adversarial Attacks - Overall Results
	9. Results Discussion
	10. Conclusion
	References

