

University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

OpenID Connect & SSO in Mobile Networks (5G)

Supervisor Professor: Ch. Xenakis

Name-Surname E-mail Student ID.

Stylianou Ioannis jsm@hotmail.gr mte2126

Piraeus

26/10/2022

i

Περίληψη

This project aims to design and implement a state-of-the-art mechanism for

authentication and authorization in mobile networks and specifically 5G, complying

with the CAPIF standard, as well as allowing single sign-on between CAPIF instances

of different providers. The implementation revolves around the CAPIF framework,

which facilitates communication between applications and network functions [3], and

attempts to do so in a secure manner with additional functionality. The goal is to

implement the authentication and authorization aspects of the CAPIF framework in an

enhanced manner using OpenID Connect on top of OAuth2.0. OpenID Connect adds

an identity layer on top of the OAuth2.0 method of the framework and allows for single

sign-on capabilities between the CAPIF instances of different providers. The identity

aspect that is offered can be used for continuous authentication and log generation.

Abstract

Next-generation communication networks offer faster speeds and lower latency as

well as higher capacity and bandwidth. While previous communication networks were

focused on mobile phones, the future of networking starting from 5G, allows for an

outburst of innovation and technological advancement of most industries, notably

healthcare, manufacturing and automation. In order to fulfill the aforementioned

requirements, technologies such as Software Defined Networking (SDN), Network

Functions Virtualization (NFV), edge computing and virtualization are introduced,

which make the future of networking vastly different from existing 4G networks [1].

Due to the differentiation of 5G technology and architecture, the properties and

security mechanisms of existing networks are hereby insufficient. Moreover, by

adopting many different technologies, 5G networks not only take advantage of the

benefits, but inherit the inherent both existing and future security challenges of those

technologies as well [2].

ii

Table of Content

Relevant Technologies ... 1

OAuth 2.0 ... 1

OpenID Connect .. 1

OpenID vs OAuth 2.0 .. 2

Keycloak .. 2

CAPIF framework .. 2

Network Exposure Function .. 3

Proposed Solution .. 5

Motivation – Aim ... 5

Design .. 5

Use Cases ... 5

States of the NetApp .. 7

Message Flow .. 7

Implementation .. 10

Tools .. 10

Scenarios .. 11

Code ... 12

Initialization ... 12

Wrapper Functions ... 13

Continuous Authentication .. 15

NEF API Consumption .. 15

Configuration ... 18

Testing.. 19

Verification & Validation .. 19

References .. 21

1

Relevant Technologies

OAuth 2.0
OAuth is an abbreviation for “Open Authorization”. This standard allows a

website/app to access resources on behalf of a user. It is important to note that this

protocol solely handles the authorization, and has nothing to do with authentication.

OAuth 2.0 functions using access tokens, identifiers that represent the authorization for

access on behalf of the user. Access tokens are commonly JSON Web Tokens (JWT)

format and have an expiration date.

In the OAuth protocol the following roles are specified:

• Client Application
An application requesting access to resources of the server. (ex. A website

requesting access to a user’s google account)

• Resource Owner
The user (person or application) that owns the data to be shared. (ex. The owner

of said google account)

• Resource Server
The server that provides the resources. (ex. Google)

• Authorization Server

The server that permits the Client Application to access the Owner’s resources.
The resource and authorization server can be the same.

OpenID Connect
OpenID Connect is an identity layer on top of Auth2.0 [4]. OpenID connect allows

clients to use single sign-on to access different parties. This protocol passes on user

information to different parties, allowing the user to provide a single set of credentials

to access multiple applications. For example, a user can own a Google account, and

sign in using said account on any application that supports OpenID connect.

2

OpenID vs OAuth 2.0
OpenID and Auth2.0 are commonly misconceived due to the false notion that

authentication and authorization are synonyms.

• Authentication describes the process of identifying a user.

• Authorization describes the process of giving permission to a user to access a

certain resource or functionality.

OAuth2.0 covers authorization only, whereas OpenID Connect also handles client

identification and authentication.

Keycloak
Docker is an open-source platform that supports developing and running

applications in an isolated environments (user spaces) that are called software

containers.

Keycloak is an open-source Identity and Access Management (IAM) solution that

implements OpenID connect and supports single sign-on. Keycloak can be run inside a

docker container using the command shown in Fig. 1.

Figure 1 - Keycloak Execution in Docker

Keycloak will be playing the role of Authorization Server in OAuth2.0’s protocol.

CAPIF framework
Many different technologies are introduced in 5G networks, which not only take

advantage of their benefits, but also inherit any current or future security risks they may

have [2]. In order to help combat these issues, 3GPP has released the Common API

Framework (CAPIF), which defines a security architecture with distinct features and

mechanisms.

3

The Common API Framework is composed of the following entities, the

architecture and inter-communication of which is shown in Fig. 2.

• CAPIF Core Function (CCF)
• API Exposing Function (AEF)
• API Invoker

Figure 2. CAPIF Key Functional Entities (credit: 3GPP).

The Common API Framework has the following key features, according to

specification TS 23.222:

• On-boarding/off-boarding invoker
• Register/un-register APIs
• API discovery
• Support 3rd party domains
• Function federation to support distributed deployments
• Event subscriptions and notifications
• Entity authentication/authorization
• Enable secure communication

The CAPIF framework has three methods proposed for authentication and

authorization:

• Pre-Shared Keys (PSK)
• Public Key Infrastructure Certificates (PKI)
• OAuth 2.0 Tokens

Network Exposure Function
The Network Exposure Function (NEF) is one of the 5G network’s capabilities.

The NEF allows applications to subscribe to network changes, allowing for secure,

4

robust and developer-friendly API exposure in a way that encourages openness. The

NEF emulator built under the scope of H2020 EVOLVED-5G is an open emulator of

the NEF that can run inside a virtual machine. This emulator allows the developer to

create different UEs, cells and paths they UEs will follow, showing their movement on

an interactive map, as in Fig. 3. The NEF emulator will be used to emulate the 5G

network that will be accessed securely by the invoker through the NetApp.

Figure 3 - NEF Emulator

5

Proposed Solution

Motivation – Aim
The proposed solution complies with the CAPIF framework, and specifically the

OAuth2.0 method of authentication. Furthermore, OpenID Connect is used on top of

OAuth2.0 as an enhancement [6], adding an identity layer and allowing for SSO

between CAPIF instances, therefore between providers. OpenID Connect can not only

be an enhancement of the authentication and authorization mechanisms of CAPIF [6]

but cellular-based OIDC has been tested to reduce latency for up to 88.3% compared to

existing authentication and authorization mechanisms [5]. This implementation can run

inside a docker container, therefore employing any security monitoring and prevention

mechanisms that serve different systems on mobile networks (ex. container security,

cloud security) [3]. Using the identity layer provided by OAuth2.0, any logs generated

by the system are tied to an identity, meaning that machine learning algorithms can be

adopted for security in order to prevent 0-day attacks, especially when recent algorithms

scale well with the amount of data provided, and telecom networks can produce a great

amount of data [3]. Acting as a CAPIF enhancement, the implementation already

provides many benefits. When considering the possibility of SSO, by simply integrating

with CAPIF instead of 5G networks, the implementation can act as an authentication

proxy, picking the correct IdP the invoker belongs to, and allowing API consumption

of any provider’s CAPIF instance, effectively providing automated SSO between

providers.

Design

Use Cases

The NetApp is an implementation of the Authorization and Authentication aspects

of the CAPIF framework. As such, this system provides functionality for authenticating

user equipment (UEs), de-authenticating user equipment as well as authorizing user

equipment. Processes such as onboarding and offboarding user equipment described in

the CAPIF framework are not included in the scope of the System, and can be handled

directly by the Identity Provider.

User Equipment includes all equipment that needs to connect to 5G networks. The

identity provider instance describes different Keycloak clients within the same realm.

6

NEF describes the Network Exposure Function of different 5G Networks. Part of the

system’s functionality is to route the UE request to the correct Identity provider or

Network Exposure Function that corresponds to the respective UE.

The Authentication process involves communication between UE and the System,

which then contacts the corresponding IdP in order to validate the UE’s credentials and

obtain a session OAuth 2.0 Token through OpenID Connect.

The Logout process involves the UE and corresponding IdP, in order to deactivate

the UE’s active token and clear the session variable. Continuous authentication occurs

without UE interaction and de-authenticates a UE in case of misuse of the NetApp. As

such, it includes functionality from the Logout process. De-authentication of UEs

encapsulates both aforementioned scenarios.

The Authorization process which is invoked when the UE attempts to access a

protected resource involves the UE and both the IdP corresponding to the UE as well

as the NEF corresponding to the Provider of the protected resource. This includes token

introspection from the IdP. In case the UE is attempting to access a protected resource

of another provider, the system will introspect the token against the UE’s corresponding

IdP Keycloak instance and allow access to said protected resource. Fig. 4 represents

this scenario in a wholistic use-case perspective.

Figure 4. Use Case Diagram

7

States of the NetApp

There are 3 distinct actions that invoke the NetApp’s functionality, and 6 total

functionalities/states of the System.

The /login action begins the Login process which contains the request data and

session information variables. After initial checks that there is credential data in valid

form, the credentials are verified and the IdP is contacted to authenticate the UE and

generate an OAuth 2.0 token through OpenID Connect. The token and UE’s

corresponding provider info is stored inside the session variable. If the credentials are

valid the UE is authenticated, otherwise there is a login failure response sent to the UE

and the flow is concluded.

The /logout action contains the corresponding provider from the session variable

and the corresponding Keycloak IdP instance’s connector class. It is confirmed that the

UE is currently authenticated before continuing using the authorize state. In case the

UE is authorized and the flow continues, the UE is logged out and becomes de-

authenticated. In case it is not authorized, there is an appropriate response sent to the

UE and the flow is terminated.

The Access NEF endpoint action begins the access protected resource process. In

case the request is invalid due to missing endpoint or invalid method used, the de-

authenticate state begins. Otherwise, the authorized state begins to confirm that the UE

is authorized. In case the UE is authorized the flow continues and the NEF request state

is invoked. Fig. 5 represents this scenario from the machine's states perspective.

Message Flow

The UE sends an HTTP request to the /login endpoint along with credential data in

JSON form. The credentials are sent to the UE’s corresponding IdP. In case the

credentials are valid the IdP returns an access token which is then forwarded to the UE.

Otherwise, an exception is thrown from the IdP and an “invalid credentials” response

is sent to the UE.

The UE sends a request to access a protected resource. In case the method is not

allowed or the endpoint does not exist, the UE is de-authenticated due to misuse and an

appropriate response is sent. Otherwise, the following occur: The token is sent to the

8

corresponding IdP for introspection and the token status is returned to the NetApp. In

case the token is active a resource request is sent towards the corresponding provider

of said resource. The provider’s response is forwarded back to the UE. In case the token

is inactive a “not authenticated” response is sent to the UE.

The UE sends a request to logout to the NetApp. The token is sent to the IdP for

introspection. In case the token is active, the user is authorized to perform said action,

is logged out, and a “logged out” response is sent back to the UE. In case the toke nis

inactive, a “not authenticated” response is sent to the UE.

Any subscription created using the access protected resource message flow can then

generate async callback notifications from the corresponding NEF that provider of said

resource directly to the UE or any other address specified in the JSON body during the

subscription creation request. Fig. 6 represents this scenario from the message flow

perspective.

Figure 5. Machine State Diagram

9

Figure 6. Activity Diagram

10

Implementation

Tools
The implementation is a Python (flask) API running inside a docker container.

Keycloak open source IAM is running in another container, communicating with the

API. The NetApp provides endpoints for authentication and consumption of the NEF

Emulator APIs. A 3rd party can only consume the NEF Emulator APIs after

authentication and authorization, otherwise access is declined. The python libraries

used can be found in the file “requirements.txt” provided, and they are flask, keycloak-

client, requests, evolved5g, datetime, configparser. The “emulator_utils.py” file is also

imported in order to communicate with the NEF emulator. The Dockerfile provided

ensures the proper setup of the container of the NetApp, as shown in Fig. 7. The NetApp

was originally developed and tested on a Windows 10 Host, while the NEF Emulator

was hosted inside an Ubuntu 20.04 Virtual Machine. The NetApp has been fully

containerized. Docker Toolbox is used to run the NetApp container as well as the

Keycloak container. For communication between the NetApp and Keycloak, the python

library keycloak-client is used, while the Evolved5G SDK is used for communication

between the NetApp and the NEF Emulator.

Figure 7 – Dockerfile

11

Scenarios
An authentication example is shown in Fig. 8, where a 3rd party which is the

invoker uses their credentials to authenticate against their provider’s IdP through the

NetApp. The invoker performs a login request using their credentials in the parameter

body. Then, the NetApp uses the Keycloak connector to request a token for the user’s

credentials. In case the credentials are valid, Keycloak produces a token and returns it

to the NetApp. The NetApp then stores the token in its session. In this example the

token is also returned to the invoker as a response for demonstration purposes.

Figure 8 - Invoker Authentication with OIDC

The example shown in Fig. 9 depicts the process of creating a NEF subscription

and receiving call-backs. The invoker performs the request against the NetApp, where

the parameters are contained in the request body. The NetApp mirrors the request to

the NEF, and obtains a response showing the newly created subscription info. This

information is passed on to the invoker for demonstration. Upon an event of the UE

changing cell, the NEF emulator will generate a call-back notification to the address

specified in the parameters of the initial request body. The call-backs server is a server

set up to simply wait for notifications, listening on the specified call-back address of

the subscription parameters. Note: The call-back server can either be the invoker, the

NetApp or a separate entity.

12

Figure 9 - NEF API Consumption

Code

Initialization

In order to initialize variables, the CONFIG file is parsed, depicted in Fig. 10.

Figure 10 - Parsing Configuration

There are functions to check the availability of components as well as to test

connection to the NEF emulator, as shown in Fig. 11.

13

Figure 11 - Connectivity Tests

After connection to NEF and Keycloak is tested, the provider IdPs stored in the

CONFIG file are imported, and a Keycloak connector for each provider is created, as

shown in Fig. 12.

Figure 12 - Providers Initialization

Wrapper Functions

Wrappers or decorators are functions that take other functions as an argument,

therefore allowing the execution of code right before endpoint consumption in an

elegant way. By defining the wrapper functions shown in Fig. 13, any endpoint can be

wrapped using a wrapper function with the @ notation. The wrapper function’s code

will execute right before the wrapped function.

14

Figure 13 - Wrapper Functions

An example is the logout endpoint. In order for an invoker to consume this

endpoint, they need to be authenticated, which means having a valid OAuth2.0 token

in their session. By using @require_oauth right before the logout function, the decorator

function will ensure the user is authenticated. This implementation is shown in Fig. 14.

15

Figure 14 - Usage of a Wrapper Function

Continuous Authentication

In order to increase the robustness and security of the NetApp, two mechanisms

have been implemented to restrict access of invokers by de-authenticating them

forcefully. Invokers will be de-authenticated forcefully in case there is an attempt to

access a non-existing endpoint, or an attempt to access an existing endpoint using a

method that is not allowed as shown in Fig. 15.

Figure 15 - Continuous Authentication

NEF API Consumption

Depending on the combination of endpoint and method, the correct function is

invoked in order to consume NEF APIs, depicted in Fig. 16.

16

Figure 16 - Function Selection for NEF Communication

The functions invoked shown in Fig. 16 are 5 distinct functions shown throughout

Fig. 17-21 that prepare and perform each request using the evolved5g NEF SDK.

Figure 17 - Retrieve All Subscriptions

17

Figure 18 - Create a Subscription

Figure 19 - Retrieve Subscription Info

Figure 20 - Delete a Subscription

18

Figure 21 - Update a Subscription

Configuration
The NetApp uses a CONFIG file in order to import basic settings such as URL

locations of the Keycloak container, NEF etc. as depicted in Fig. 22. In order to test the

NetApp, the tester needs to specify each field as well as create a Keycloak realm that

matches the configuration. An test-ready configuration file “config.json” has been

provided, as well as a Keycloak realm “realm-export.json” in .json format that can be

imported.

Figure 22 - CONFIG File

19

Testing
The system under test is the local deployment of the NEF Emulator, NetApp, Keycloak

SaaS, a 3rd party (Postman) and a test server to receive callbacks.

The requests made through Postman shown in Fig. 23 have been saved in a collection and

exported in .json format. The file NetApp.postman_collection,json that accompanies this report
can be imported in Postman in order to test the NetApp functionality.

Figure 23 - Postman Requests Collection

Verification & Validation
Several unit tests have been implemented to check the NetApp’s functionality, as

shown in Fig. 24. These tests ensure that the system behaves properly, allowing

invokers to authenticate and be authorized to consume NEF APIs only if they should.

Unauthorized access should be blocked and incorrect / malicious usage of the endpoints

should result in the de-authentication of a user.

20

Figure 24 - Unit Tests Implementation

The results of the tests execution are shown in Fig. 25. The unit tests can be

executed using the command:

pythom -m unittest <filename>

Figure 25 - Unit Tests Execution

21

References

[1] X. Ji et al., “Overview of 5G security technology,” Science China Information

Sciences, vol. 61, no. 8, pp. 1–25, 2018.

[2] I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, and A. Gurtov,

“Overview of 5G security challenges and solutions,” IEEE Communications Standards

Magazine, vol. 2, no. 1, pp. 36–43, 2018.

[3] Q. Tang, O. Ermis, C. D. Nguyen, A. De Oliveira, and A. Hirtzig, “A Systematic

Analysis of 5G Networks With a Focus on 5G Core Security,” IEEE Access, vol. 10,

pp. 18298–18319, 2022.

[4] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore, “Openid

connect core 1.0,” The OpenID Foundation, p. S3, 2014.

[5] C.-Y. Li et al., “Transparent AAA security design for low-latency MEC-integrated

cellular networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp.

3231–3243, 2020.

[6] A. M. Sanchez, A.-S. Charismiadis, D. Tsolkas, D. A. Guillen, and J. G. Rodrigo,

“Offering the 3GPP Common API Framework as Microservice to Vertical Industries,”

in 2022 Joint European Conference on Networks and Communications & 6G Summit

(EuCNC/6G Summit), 2022, pp. 363–368.

	Relevant Technologies
	OAuth 2.0
	OpenID Connect
	OpenID vs OAuth 2.0
	Keycloak
	CAPIF framework
	Network Exposure Function

	Proposed Solution
	Motivation – Aim
	Design
	Use Cases
	States of the NetApp
	Message Flow

	Implementation
	Tools
	Scenarios
	Code
	Initialization
	Wrapper Functions
	Continuous Authentication
	NEF API Consumption

	Configuration
	Testing
	Verification & Validation

	References

