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Abstract
Nano-technology is a branch of science that engages with engineering and technology
performed on a nano-scale level. Nano-material rough surfaces are characterized by
structural diversity and complexity. Nano-materials exhibit unique properties, such as
friction, contact deformation andwettability, which is correlated to their surface rough-
ness. Investigating the relationship between surface roughness and properties can lead
to better nano-material designs and even to the discovery of new nano-materials with
unique properties.
In this research, we study the domain field of nano-roughness and nano-material sur-
faces as well as machine learning methods, with a focus on deep learning, in order to
generate realistic synthetic nano-surface images, given specific surface roughness pa-
rameters. To this end we examine how prior domain knowledge can empower a model
to provide realistic, synthetic surface images. We build upon previous work which was
implemented by Vasileios Sioros in his research ”Generating Realistic Nanorough Sur-
faces Using an N-Gram-Graph Augmented Deep Convolutional Generative Adversarial
Network”[1]. We contribute to the aforementionedwork by introducing a new loss com-
ponent to the network, reflecting the heights and frequency spectrum of nano-surface
images. Furthermore, we propose a novel network architecture in an effort to reduce
the checkerboard artifact observed in generated nano-surface images. Additionally, we
optimizemulti-component losses so that they equally contribute to the network’s learn-
ing process. We evaluate generated nano-surface images with quantitative measures.
Also, a qualitative evaluation is carried out by a domain expert.
In conclusion, our results are substantially improved compared to previous work’s re-
sults.
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The source code is available at https://github.com/ddelikonstantis/RoughML.
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1 Introduction

Artificial intelligence[2] assists in making processes more efficient across several
industries. Machine Learning methods are used in combination with nanotechnology
in industrial manufacturing, monitoring and computing processes. The combination
of AI and nanotechnology produces successful results in emerging applications. These
applications include analyzing large data sets, designing and discovering new
nano-materials, and developing more efficient hardware to manage computationally
demanding machine learning algorithms.

Nano-technology is a branch of science that engages with engineering and technology
performed on a nano-scale level which is about 1 to 100 nano-meters. Nano-materials
exhibit unique properties, such as friction, contact deformation and wettability, which
is correlated to their surface roughness. Investigating the relationship between
surface roughness and properties can lead to better nano-material designs and even to
the discovery of new nano-materials with unique properties.

In this research, we study the domain field of nano-roughness and nano-material
surfaces[3][4] as well as machine learning methods[5][6], with a focus on deep
learning[7], in order to generate realistic synthetic nano-surface images, given specific
surface roughness parameters. To this end we examine how prior domain knowledge
can empower a model to provide realistic, synthetic surface images. We evaluate
generated nano-surface images with quantitative measures. Also, a qualitative
evaluation is carried out by a domain expert.

We build upon previous work which was implemented by Vasileios Sioros in his
research ”Generating Realistic Nanorough Surfaces Using an N-Gram-Graph
Augmented Deep Convolutional Generative Adversarial Network.”[1] Our
contribution in the aforementioned work is summarized as follows.

• Introduce a new loss component to the network, reflecting the heights and
frequency specturm of nano-surface images.

• Propose a novel architecture in an effort to reduce the checkerboard artifact
observed in generator-produced nano-surface images.

• Optimize multi-components losses for equal contribution to the Generator’s
learning ability.

• Extend the network functionality so that it produces higher surface image
dimensions.
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• Add early stopping criterion when training the network.

• Support incremental training of the network through checkpoints.

The rest of the text is organized as follows. Section 2 introduces the theoretical
concepts that are related with our research as well as particular related work
implemented by other scientists in this field. Section 3 introduces our proposed
method and approach to the application. Section 4 presents our experiments and
achieved results. Finally, section 5 refers to the conclusions and future work.
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2 Background and related work

In this section we cover the theoretical concepts of surface roughness and the
corresponding parameters we utilized for generating nano-rough surfaces. We
continue further with Artificial Intelligence topics with a focus on Deep Learning. We
introduce various aspects of Neural Networks while expressing their relationship to
our research. Finally, we present related work in the field and state what we borrow
from it or do differently.

2.1 Basic terms and concepts

We begin with the field of nano-technology and its relationship to surface roughness.
Furthermore, we describe the roughness parameters we took into consideration when
generating nano-rough surfaces.

2.1.1 Surface nano-roughness

Nano-technology is a branch of science that engages with engineering and technology
performed on a nano-scale level which is about 1 to 100 nano-meters[8]. It involves
the ability to understand and control matter on an atomic scale where unique
phenomena occur. At this scale, materials begin to exhibit unique properties that
affect physical, chemical, and biological behavior. By manipulating atoms and their
properties scientists are able to create novel applications such as materials with higher
strength, lighter weight, increased control of light spectrum, and greater chemical
reactivity as well as new structures and devices with unique properties.
Nano-technology includes various fields of science such as surface science[9], organic
chemistry, molecular biology, semiconductor physics, energy storage, engineering,
micro-fabrication[10] and molecular engineering. The related research and
applications ranges from extensions of conventional device physics to totally new
approaches based upon molecular self-assembly, from developing new materials with
dimensions on the nano-scale level to direct control of matter on the atomic scale.

Nano-metrology[11] quantifies the dimensions of nano-materials and devices. It has a
crucial role in order to produce nano-materials and devices with a high degree of
accuracy and reliability in nano-manufacturing. Nano-materials are characterized by
morphology, composition, structure, physical and chemical properties. The
measurement of length or size, force, mass, electrical and other properties is included
in the field of nano-metrology. When a nano-material is manufactured, its structural
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characterization is needed before it is used. Image analysis is widely used in the area
of metrology for determining if an object is manufactured within specified tolerances.

When processing a material, roughness is produced[12]. It is identified by peaks and
valleys of different size and space between them. It is a result of machine processing
during manufacturing. Deterministic surface textures[13] can be researched by simple
methods and functions. But for most processed surfaces, the textures are random,
either isotropic or anisotropic, and either Gaussian or non-Gaussian. These are called
stochastic surfaces. Isotropic surfaces exhibit the same properties in all directions
whereas anisotropic surfaces exhibit different properties in different directions.
Gaussian surfaces have height values that follow a normal distribution whereas
non-Gaussian surfaces have height values that do not conform to a normal
distribution. Stochastic surfaces can be characterized using statistical parameters
taking into account all samples of the surface profile. On the other hand, deterministic
surfaces have structures or features that must be characterized individually and then
averaged over all features.
Surface interaction[14] is the contact between the material and the morphology of the
surface. The nature of a material and its industrial production process define the
shape of its surface. At a nano-scale level, most surfaces are observed to be rough.
Roughness is characterized by coarseness of different size and spacing. Roughness is a
component of surface texture.
Surface roughness evaluation is crucial when it comes to controlling certain properties
such as friction, heat and electric current conduction. Surface geometry[4] can be
characterized by a vast number of parameters as it is extremely complex. Surface
parameters describe characteristics of the surface profile. Surface profile is the
measurement of the maximum peak-to-valley depth of the surface. Surface
parameters are categorized in the following groups:

• Amplitude parameters

– Root-Mean-Square Roughness (Rq)[4]

Rq =

√√√√ 1

n

n∑
i=1

y2i (2.1)

where;
n is the number of samples along the assessment length (µm) of the surface
profile,
yi is the height of the profile for sample i.
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Rq represents the standard deviation of the distribution of surface heights.
It is a crucial parameter to describe the surface roughness by statistical
methods. The Root-Mean-Square mean line is the line that divides the
profile line so that the sum of squares of the fluctuations of the profile
height is equal to zero.

Figure 1: Root Mean Square Roughness Rq[4]

– Skewness (Rsk)[4]

Rsk =
1

NR3
q

(
N∑
i=1

Y 3
i ) (2.2)

where;
N is the number of samples along the assessment length (µm) of the
surface profile,
Rq is the Root-Mean-Square Roughness parameter,
Yi is the height of the profile for sample i.

Skewness is the profile magnitude probability density function over the
measured length of the surface. It is the third central moment and it
calculates the symmetry of the profile according to the mean line. Skewness
is easily affected by high peaks or deep valleys. An equal number of peaks
and valleys results in a symmetrical height distribution and therefore has
zero skewness. In figure 2, it is clear that profiles with no peaks have
negative skewness whereas profiles with high peaks have positive skewness.
This parameter provides extra information as it can differentiate between
two profiles that have the same Rq but with dissimilar forms.
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Figure 2: Skewness Rsk and the magnitude distribution curve

– Kurtosis (Rku)[4]

Rku =
1

NR4
q

(
N∑
i=1

Y 4
i ) (2.3)

where;
N is the number of samples along the assessment length (µm) of the
surface profile,
Rq is the Root-Mean-Square Roughness parameter,
Yi is the height of the profile for sample i.

Kurtosis coefficient is the fourth central moment of profile magnitude
probability density function over the assessment length. It represents the
harshness of the probability density of the profile. Platykurtoic
distributions have negative kurtosis whereas leptokurtoic distributions
have positive kurtosis. In figure 3, we can clearly see that the platykurtoic
distribution curve has respectively few high peaks and low valleys when
Rku < 3. On the other hand, the leptokurtoic distribution curve has
relatively many high peaks and low valleys when Rku > 3.
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Figure 3: Kurtosis Rku

– Auto-Correlation Function (ACF ) and Correlation lengths (ξx, ξy)[4]

ACF (δx) =
1

N − 1

N∑
i=1

yiyi+1 (2.4)

where;
N is the number of samples along the assessment length (µm) of the
surface profile,
yi is the height of the profile at point number i.

The Auto-Correlation Function (ACF ) provides information about the
distribution of peaks and valleys across the surface. It estimates a degree of
similarity for surface heights. In practice, it is a quantitative measure
between a laterally shifted and an unshifted version of the profile. It gives
crucial information about the association between the wavelength and the
amplitude properties of the surface.
Correlation lengths (ξx, ξy) describe the correlation characteristics of the
ACF and is the length (in X and Y axis) of a nano-rough surface where the
ACF drops to a specific value 10% (ACF = 0.1) of the unshifted version of
the profile. Infinite correlation length values result in a perfectly periodic
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wavelength whereas zero correlation lengths result in a completely random
waveform. Points on the surface profile that are separated by more than a
correlation length are considered as uncorrelated.

• Hybrid parameters

– Roughness exponent (α)

E

[
R(n)

S(n)

]
= CnH as n −→∞ (2.5)

where;
R(n) is the range of the first n cumulative surface sample deviations from
the mean,
S(n) is the surface profile (sum) of the first n standard deviations,
E[x] is the expected surface sample value,
n is the number of samples along the assessment length (µm) of the surface
profile,
C is a constant.

The Roughness exponent (α)[15] measures the long-term memory of the
surface profile. It relates to the self-similarity and local smoothness of the
surface profile. It takes values between 0 and 1. Based on the value of α we
can classify the surface profile into one of the three categories:

* α < 0.5
A mean-reverting surface profile with negative auto-correlation.
Values close to 0 indicate a locally spiked surface profile.

* α = 0.5
Indicates a completely uncorrelated surface profile.

* α > 0.5
A trending surface profile with positive auto-correlation. Values close
to 1 indicate a locally smoothed surface profile.

The aforementioned section outlined core concepts of nanotechnology and
nano-metrology followed by a detailed reference of the surface nano-roughness
parameters that are utilized in our research. In the following section the field of
Artificial intelligence is analyzed and how it is used in our work.
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2.1.2 Artificial Intelligence

Artificial Intelligence[16] is intelligence manifested by machines. On the other hand,
natural intelligence is displayed by animals and humans. Artificial Intelligence
research has been described as the field of study of intelligent agents, which denotes a
system that becomes aware of its environment and takes actions that maximize its
chance of attaining its objectives.
AI applications comprise of advanced web search engines, recommendation systems,
comprehending human speech, self-driving cars, automated decision-making and
competing at the highest level in strategic games.
Sub-fields of AI research include reasoning, knowledge representation, planning,
machine learning[6][1][5], natural language processing[17], perception and
combinatorial optimization.
For the purpose of our research, we use machine/deep learning which are sub-fields of
Artificial Intelligence.

Machine Learning[18] involves the use of algorithms that learn and methods that
leverage data to improve performance on some set of tasks. Supervised Machine
Learning algorithms build a model based on a labeled set of data, known as training
data, in order to make predictions or decisions without being explicitly programmed
to do so[19]. Unsupervised Machine Learning algorithms are given data with no target
outputs and try to find a relationship or a pattern. Machine Learning is used in a wide
variety of applications, such as in medicine, email filtering, speech recognition, and
computer vision, where it is impractical or unfeasible to develop conventional
algorithms to perform those tasks.
A main objective of a learner algorithm is to generalize from the training data.
Generalization is the ability of a learning machine to perform accurately on new,
unseen examples of the given learning dataset, called training dataset. The training
dataset comes from some generally unknown probability distribution and the learner
algorithm has to build a general model about this data space that enables it to produce
sufficiently accurate predictions in new cases.
Machine learning is divided into three broad categories.

• Supervised learning
The model is trained with example inputs and their desired outputs and the goal
is to learn a general rule or structure that maps inputs to outputs.

• Unsupervised learning
No target outputs are provided to the learning algorithm, leaving it on its own to
find structure in its input. Unsupervised learning can be used for discovering
hidden patterns in data.
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• Reinforcement learning
A model interacts with a dynamic environment in which it must perform a
specific task. As it explores its problem space, the model is given feedback that is
analogous to rewards, which it tries to maximize.[20]

Deep learning[21] is a branch of machine learning and typically describes methods
based on artificial neural networks. Generally, artificial neural networks try to mimic
the behavioural process of the human brain by utilizing a vast quantity of data. The
conception of neural networks started as a model of how neurons work in the brain. In
practice, it is an attempt in model learning that results from a combination of data
inputs, weights and bias. These elements function together to accurately recognize,
classify and describe objects within the data inputs.

Figure 4: An Artificial Neural Network

Deep Neural Networks[22] are composed from multiple layers of interconnected
nodes, building upon the output of previous layers to process and make a prediction
or classification. This process of computations within the network is called forward
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propagation. The input and output layers of a deep neural network are called visible
layers. The input layer is where the deep learning model takes the data for processing,
and the output layer is where the final prediction or classification takes place. There is
another operation called back-propagation that uses algorithms to compute mistakes
in predictions and then reconfigures the weights and biases of the model by going
backwards through the layers in an attempt to train the model.
Together, forward propagation and back-propagation allow a neural network to make
predictions and minimize its errors. Over time, the algorithm converges and steadily
becomes more accurate. In practice, deep learning algorithms are extremely
complicated, and there are many different types of neural networks to address specific
problems. The most common neural network types[22] are:

• Convolutional Neural Networks, used primarily in computer vision and image
classification applications.

• Recurrent Neural Networks are typically used in natural language processing
and speech recognition applications.

• Long Short-Term Memory networks, are mainly used in sentiment analysis,
language modeling, speech recognition, and video analysis.

• Generative Adversarial Networks, is a deep learning framework model that finds
use in image-to-image translation, text-to-image synthesis, realistic image
generation, super resolution, video prediction and 3D object generation.

For our work we focus on a framework that combines Convolutional Neural Networks
and Generative Adversarial Networks. More specifically, we use a model that is called
Deep Convolutional Generative Adversarial Networks.

In Deep Learning, a Convolutional Neural Network represents a class of Artificial
Neural Networks and is widely used in image and video recognition, image
segmentation, image classification, medical image analysis and natural language
processing. CNNs are a type of artificial neural networks that use a mathematical
function called convolution in place of general matrix multiplication in at least one of
their layers. They are specifically configured to handle pixel data. A CNN comprises of
an input layer, hidden layers and an output layer. In feedforward Neural Networks,
middle layers are called hidden because their inputs and outputs are masked by the
activation function and final convolution. In a CNN, the hidden layers incorporate
layers that perform convolutions. Usually, this includes a layer that does a
multiplication of the convolution filter with the layer’s input matrix. As the
convolution filter slides along the input matrix for the layer, the convolution generates
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a feature map, which in turn contributes to the input of the next layer. This is followed
by other layers such as pooling layers, fully connected layers, and normalization layers.
In a CNN, the input is a tensor with shape: (Number of inputs) × (Input height) ×
(Input width) × (input channels). Channel represents the total number of colors
within the image. For Red-Green-Blue images channel takes the value of 3, for
gray-scale images channel takes the value of 1. After going through a convolutional
layer, the image becomes abstracted to a feature map with shape: (Number of inputs)
× (Feature map height) × (Feature map width) × (Feature map channels).
Convolutional layers convolve the input and move its result to the next layer. Each
convolutional neuron processes data only for its specific field. Convolutional Neural
Networks are ideal for image and video data because spatial relations between
separate features are taken into account during convolution. CNNs may include
pooling layers in combination with convolutional layers. Pooling layers reduce the
dimensions of the feature maps by merging the output of neurons at one layer into a
single neuron in the next layer. Thus, it reduces the number of parameters to learn
and the amount of computation performed within the network. There are two popular
types of pooling: max pooling and average pooling. Max pooling uses the maximum
value in the feature map while average pooling takes the average value.
Convolutional Neural Networks make use of hyperparameters. Those are specific
parameter settings that are used to control the learning process.

• Kernel size
The kernel is the number of pixels processed together. It is represented as the
kernel’s dimensionsHeight×Width.

• Padding
Padding is the addition of a number of pixels on the border of an image. This is
done so that the border pixels are not diminished in the output because they
would get involved only in one instance during the convolution. The padding
value is usually one less than the kernel dimension. For a 2× 2 kernel the
padding would be 1 extra pixel on the border of the image.

• Stride
The stride is the number of pixels that the kernel moves on each convolution.
For a 2× 2 stride the kernel moves 2 pixels in height and width for each
corresponding convolution.

• Pooling
Pooling is down-sampling the convolution output and therefore reducing
computational cost at the cost of information loss.
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Back-propagation[23] is an algorithm for supervised learning of artificial neural
networks using gradient descent. Provided an artificial neural network and an error
function, the algorithm calculates the gradient of the error function with respect to the
neural network’s weights. It is a generalization of the delta rule for perceptrons to
multi-layer feed-forward neural networks. The delta rule is a gradient descent
learning rule for updating the weights of the inputs to artificial neurons in a
single-layer neural network.[24]
The ”backwards” part of the name is derived from the fact that calculation of the
gradient proceeds backwards through the network, with the gradient of the final layer
of weights being calculated first and the gradient of the first layer of weights being
calculated last. Partial computations of the gradient from one layer are reused in the
computation of the gradient for the previous layer. This backwards flow of the error
information allows for efficient computation of the gradient at each layer versus the
naive approach of calculating the gradient of each layer separately.
Back-propagation is analogous to calculating the delta rule for a multi-layer
feed-forward network. Thus, like the delta rule, back-propagation requires three
things.

1. A dataset consisting of input-output pairs (−→xi ,
−→yi ), where−→xi is the input and

−→yi is
the desired output of the network for input −→xi . The set of input-output pairs of
size N is denotedX = {(−→xi ,

−→yi ), ...., (−→xN ,
−→yN)}.

2. A feed-forward neural network, whose parameters are collectively denoted θ. In
back-propagation, the parameters of primary interest are wk

ij , the weight
between node j in layer lk and node i in layer lk−1, and bki , the bias for node i in
layer lk. There are no connections between nodes in the same layer and layers
are fully connected.

3. An error function, E(X, θ), which defines the error between the desired output
−→yi and the calculated output −̂→yi of the neural network on input −→xi for a set of
input-output pairs (−→xi ,

−→yi ) ∈ X and a particular value of the parameters θ.

Training a neural network with gradient descent requires the calculation of the
gradient of the error function E(X, θ) with respect to the weights wk

ij and biases b
k
i .

Then, according to the learning rate α, each iteration of gradient descent updates the
weights and biases (collectively denoted θ) according to:

θt+1 = θt − a
∂E(X, θt)

∂θ
(2.6)

where;
θt denotes the parameters of the neural network at iteration t in gradient descent.
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The error function in original back-propagation is the mean squared error.

E(X, θ) =
1

2N

N∑
i=1

(ŷi − yi)
2 (2.7)

where,
yi is the target value for input-output pair (

−→xi , yi) (Artificial Neural Network with one
output yi),
ŷi is the computed output of the network on input

−→xi .
Back-propagation attempts to minimize the error function E(X, θ) with respect to the
neural network’s weights θ.

Neural Networks make use of optimization algorithms. An optimization algorithm
detects the value of the parameters that minimize the error when mapping inputs to
outputs. These optimization algorithms have an effect on the accuracy of the model.
Furthermore, they affect how fast the model trains.
Practically, for every epoch the model trains, the values of the parameters, or the
weights as they are usually called, need to be modified in order for the loss function to
minimize. An epoch is when all the training data is used at once and is defined as the
total number of iterations of all the training data in one cycle for training the model.
The optimization algorithm changes the weights and the learning rate of the neural
network. Learning rate is a parameter that gives the model a scale of how much model
weights should be updated. A high learning rate means more drastic changes in the
weights, whereas a low learning rate means smaller weight changes. An optimizer
decreases the overall loss and increases the accuracy of the model. This is a complex
task since a deep learning model usually consists of millions of parameters. Therefore,
choosing a suitable optimization algorithm for an application might be difficult.
The most well known optimizers are:

• Gradient Descent[25]
The simplest machine learning optimizer is the gradient descent. Gradient
descent optimizes the objective function by descending in a direction given by
the negative gradients of the parameters in the final iteration. Respectively, it
utilizes a constant learning rate value which controls how large or small a stride
to make towards the negative gradient. Gradient descent uses all samples in
each iteration to change a particular parameter. It is described by the following
formula.

θ = θ − η · ▽θJ(θ) (2.8)

where;
θ represents the parameters,
J(θ) is a cost function,

24



η is the learning rate

• Stochastic Gradient Descent[25]
Another way of optimizing is to use one sample at a time in each iteration to
change a parameter. This method is called Stochastic Gradient Descent (SGD).
By iterating every sample in every epoch though can be slow and also create
noisy jumps which may fall far away from the minimum cost. An extension of
the SGD is the Stochastic Gradient Descent with momentum. It performs better
than the SGD in regard to the noisy jumps. Stochastic Gradient descent with
momentum accelerates the descent where gradients steadily point to one
direction and decelerates when gradients show change.

θ = θ − η · ▽θJ(θ; x
(i); y(i)) (2.9)

where;
θ represents the parameters,
J(θ) is a cost function,
η is the learning rate,
x(i), y(i) is a training sample and its label correspondingly

• Mini-Batch Gradient Descent[25]
A more efficient way of optimizing is to use batches of samples from the dataset
that gives a local estimate of the direction that gives the optimal parameter
values. This is called Mini-Batch Stochastic Gradient Descent. Gradient descent
and Stochastic Gradient descent require a default learning rate value. Choosing
a right learning rate can prove difficult since a high value may result to
sub-optimal generalization and a low value may result in slow learning.
There are many alterations of the gradient descent. A noteworthy one is the
Newton’s method which takes second order derivatives of the cost function. It is
useful for quadratic functions but prohibitive to compute in practice.

θ = θ − η · ▽θJ(θ; x
(i;i+n); y(i;i+n)) (2.10)

where;
θ represents the parameters,
J(θ) is a cost function,
η is the learning rate,
x(i), y(i) is a training sample and its label correspondingly
n is a mini-batch of n training samples

• Adagrad[25]
Adaptive Gradient algorithm also known as AdaGrad shows good results on
large scale learning systems. It uses mostly first order information but also relies
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on some properties of second order information. The formula is described as
follows.

θt+1 = θt −
η√

Gt + ϵ
⊙ gt (2.11)

where;
θt represents the update for every parameter at a time step t,
η is the learning rate,
Gt is a diagonal matrix which contains the sum of the squares of the past
gradients with respect to all parameters θ.
Whereas there is a manual adjust of the global learning rate, each feature has a
dynamic learning rate. Large gradients have smaller learning rates while small
gradients have large learning rates. This reduces the noise created from hugely
different samples when calculating the cost derivative. AdaGrad can be sensitive
to the gradient initial conditions. If the initial gradients are large then the
learning rate will be low. Furthermore, due to the accumulation of the squared
gradients in the denominator, the learning rate will continue to decrease
eventually reaching to zero and stopping the training completely.

• AdaDelta
Initially described by Matthiew Zeiler[26], AdaDelta is an adaptive learning rate
method for gradient descent. It is a stochastic technique that actively changes
over time and is a lot faster than Stochastic Gradient Descent (SGD). There is no
need to neither manually adjust nor set an initial value to the learning rate in this
method. There is indication that it is robust to noisy gradient of sample input
and works well with a large variety of model architectures and applications.
AdaDelta is an extension of the Adagrad optimizer that attempts to solve its
radically diminishing learning rates. In order to do this, AdaDelta computes the
average of the past n (window size) gradients and averages out. It does this by
using exponentially weighted averages.

• Adam
Adaptive Moment Estimation (Adam) is an extension to Stochastic Gradient
Descent and is widely used in computer vision and natural language processing.
It was presented by Diederik Kingma et al[27]. Adam combines the advantages
of two other optimizers: Adagrad and RMSprop.
Instead of adapting the parameter learning rates based on the average first
moment as in RMSprop, Adam also makes use of the average of the second
moments of the gradients which is the variance. In more detail, it calculates an
exponential average of the gradient and the squared gradient, and the β1 and β2

parameters control the decay rates of these averages.
Adam consists of the parameters α which is the learning rate, β1 which is the
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exponential decay for the first moment parameters and β2 which is the
exponential decay for the second moment parameters.

θt+1 = θt −
η√

υ̂t + ϵ
m̂t (2.12)

where;
θt represents the update for every parameter at a time step t,
η is the learning rate,
mt and υt are estimates of the first moment (mean) and the second moment
(variance) of the gradients respectively.

In artificial neural networks, the activation function of a node defines the output of
that node given an input. More specifically, it decides whether a neuron should be
activated or not. The role of the activation function is to derive output from a set of
input values provided to a node or a layer. The purpose of an activation function is to
add non-linearity to the neural network. The activation functions we utilized for our
work are the following.

• Sigmoid

f(x) =
1

1 + e−x
(2.13)

This activation function takes any real value as input and outputs in the range of
0 to 1. The larger the input, the closer the output value will be to 1, whereas the
smaller the input, the closer the output will be to 0. It is commonly used for
models where the output needs to be predicted as a probability.

Figure 5: Sigmoid activation function
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• Hyperbolic Tangent (Tanh)

f(x) =
ex − e−x

ex + e−x
(2.14)

Tanh activation function is very similar to Sigmoid with the difference that the
output range is from −1 to 1. The larger the input, the closer the output value
will be to 1, whereas the smaller the input, the closer the output will be to −1. It
helps in centering the data and makes learning for the next layer much easier.

Figure 6: Hyperbolic Tangent (Tanh) activation function

• Rectified Linear Unit (ReLU)

f(x) = max(0, x) (2.15)

ReLU activation function takes values from 0 to 1. The neurons will only be
deactivated if the output of the linear transformation is less than 0 otherwise
they are activated. It is computationally more efficient than Sigmoid and Tanh.
Also, it accelerates the convergence of gradient descent towards the global
minimum of the loss function due to its linear property.
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Figure 7: Rectified Linear Unit (ReLU) activation function

• LeakyReLU

f(x) = max(0.1x, x) (2.16)

Leaky ReLU is an improved version of ReLU function. It has a small positive
slope in the negative area. The advantage of Leaky ReLU is that it enables
backpropagation, even for negative input values.

Figure 8: LeakyReLU activation function

• Maxout

f(x) = max(wT
1 x+ b1, w

T
2 x+ b2) (2.17)

29



The Maxout unit is a generalization of the ReLU and the Leaky ReLU activation
functions. Both ReLU and Leaky ReLU are special cases of Maxout. The main
drawback of Maxout is that it is computationally expensive as it doubles the
number of parameters for each neuron.

Figure 9: Maxout[28] activation function

A relatively recent breakthrough in generative modelling is the introduction of
Generative Adversarial Networks by Ian Goodfellow et al.[29] Generative Adversarial
Networks present a new technique for approximating a generative model through an
adversarial procedure. This procedure involves two models, a Generative model G and
a Discriminative model D. Those models are trained concurrently for a predefined
number of epochs and the task of each is different. The generative model G tries to
map the training data distribution and the discriminative model D estimates the
probability that the sample derived from the training data or the generative model G.
The training task for G is to maximize the probability of D making a mistake on its
prediction.
This technique represents a mini-max two-player game. A useful outcome of this
game is the state where model G apprehends the training data distribution and model
D cannot determine where the sample came from. That means that model D predicts
randomly on the sample origination. The authors specify, that in the case of deep
learning the training procedure occurs with back-propagation without the need of
Markov chains.
G and D play the following two-player mini-max game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.18)

In practice though, equation 2.18 does not provide enough gradient for G to learn well.
During early training, when G is inadequate, D rejects data quite easily because it is
very obvious that they are different from the training data. In this case,
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log(1−D(G(z))) diminishes. To counter this issue, the authors change the objective
function. Rather than training G to minimize log(1−D(G(z))) they train G to
maximize logD(G(z)). This objective function provides the same fixed point of the
dynamics of G and D but also much more effective gradients for G early in training.

Figure 10: Generative Adversarial Nets[29] training progression. The blue line repre-
sents the discriminative distribution, black line is the real data distribution and green
line is the generative distribution. Diagram (a) shows early stages of training, (b) and
(c) present intermediate and advanced training stages respectively and (d) describes an
optimal solution.

Figure 10 shows the progression of the GAN framework training. GANs are
synchronously trained for an iterative number of epochs. During training the
discriminative distribution (blue line) distinguishes between samples from real data
distribution (black line) from those of the generative distribution (green line). The
line z is the domain from which z is sampled. The line x is the domain of the real data.
Progressively, as training goes on the system converges and as a result the generative
distribution has eventually mapped the real distribution and the discriminative model
is unable to differentiate between the two.
The authors of the paper[29] propose the following algorithm 1 for training a
generative adversarial network. They make use of mini-batch stochastic gradient
descent. A mini-batch is a fixed number of training samples that is less than the actual
dataset. So, in each iteration, the network is trained on a different group of samples
until all samples of the dataset are used in an epoch. In algorithm 1 the number of
training iterations is the number of epochs and k steps is the number of mini-batch
iterations.
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Algorithm 1Minibatch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We
used k = 1, the least expensive option, in our experiments.
1: for number of training iterations do
2: for k steps do
3: Sample minibatch ofm noise samples {z(1), ....z(m)} from noise prior pg(z).
4: Sample minibatch ofm examples {x(1), ....x(m)} from data generating distri-
bution pdata(x).

5: Update the discriminator by ascending its stochastic gradient:

▽θd

1

m

m∑
ι=1

[ logD(x(i)) + log(1−D(G(z(i))))]

6: end for
7: Sample minibatch of m noise samples {z(1), ....z(m)} from noise prior pg(z).
8: Update the generator by descending its stochastic gradient:

▽θg

1

m

m∑
ι=1

log(1−D(G(z(i))))

9: end for

The gradient-based updates can use any standard gradient-based learning rule. The
authors of the paper[29] used momentum for their experiments. Global optimality is
achieved when pg = pdata. The authors trained the framework on a range of datasets
including MNIST, the Toronto Face Database (TFD), and CIFAR-10. The generator
uses both Rectified Linear Unit and Sigmoid activation functions, while the
discriminator uses maxout activation functions.
Finally, the authors note that this framework comes both with advantages and
disadvantages. The main disadvantages are that there is no explicit representation of
pg(x) and that both models need to be trained synchronously to achieve good results.
The advantages are that no Markov chains or inference learning is needed.

In the aforementioned paragraphs we presented a deep learning method which is
based on an adversarial process between two neural networks. For the means of our
work, we implement algorithm 1 for the purpose of training our model.

Deep Convolutional Generative Adversarial Networks are a direct extension of
Generative Adversarial Networks. First introduced by Alec Radford et al.[7], DCGANs
are a powerful competitor for unsupervised learning. The authors of the paper
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propose an architecture that uses explicitly convolutional and
convolutional-transposed layers in the discriminator and generator, respectively.
They also provide a set of architectural guidelines that provide stability during
training. Those guidelines are summarized below.

• Pooling layers should be replaced by strided convolutions for the discriminator
and fractionally-strided transposed-convolutions for the generator.

• Batch-normalization in both the generator and the discriminator except
generator output layer and discriminator input layer.

• Fully connected hidden layers should be removed for deeper architectures.

• Rectified Linear Unit7 activation functions for all layers of the generator except
the output layer which uses Hyperbolic Tangent6.

• LeakyReLU8 activation function for the discriminator for all layers.

Figure 11: DCGAN generator used for LSUN scene modeling. A 100 dimensional uni-
form distribution z is projected to a small spatial extent convolutional representation
withmany featuremaps. A series of four fractionally-strided convolutions then convert
this high level representation into a 64× 64 pixel image. Notably, no fully connected or
pooling layers are used.[7]

The authors of the paper trained DCGANs on three datasets; Large-scale Scene
Understanding (LSUN), Imagenet-1k and a Faces dataset. The training was
implemented with mini-batch Stochastic Gradient Descent with a batch size of 128. All
weights were initialized from a zero-centered normal distribution with standard
deviation of 0.02. Adaptive Moment Estimation was used with suggested
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hyper-parameter values. Learning rate was suggested to α = 0.0002 and momentum
β1 = 0.5. LeakyReLU negative slope is suggested to 0.2.
The results are claimed to be satisfactory and suggest that the DCGAN framework and
specifically the generative model estimates the data distribution remarkably. This
suggestion is amplified by the researched architectural guidelines and the training
stability.

For the means of our research we implement a Deep Convolutional Generative
Adversarial Network in order to generate realistic synthetic nano-rough surface
images. Our DCGAN model implements algorithm 1 and borrows architectural
guidelines suggested by Alec Radford et al.[7]
More specifically, we use strided convolutions for the discriminator and
fractionally-strided transposed-convolutions for the generator as suggested in the
paper. Furthermore, we use Adam with hyper-parameter values α = 0.0002 and
momentum β1 = 0.5 as it helps in stability during training and is suggested by the
authors. Additionally, we use batch-normalization in all layers in both models except
the output layer of the generator and the input layer of the discriminator as suggested.
On the other hand, we differentiate our model architecture compared to the authors
by not using Tanh6 in the generator output layer. Instead, we do not use an activation
function in the output layer.
A more analytical configuration of our proposed DCGAN model is discussed in section
3.

Our DCGAN model incorporates a set of similarity metrics during training. In the
following paragraphs we introduce the concept of these similarity metrics and the
reason we incorporated them in our model.

In the field of Natural Language Processing, n-grams are sequences of n items derived
from a text or a corpus. The items can be letters, syllables or words according to the
application. An n-gram of size 1 is referred to as a unigram, size 2 is a bigram, size 3 is
a trigram.
G. Giannakopoulos[17] proposed the n-gram graph model. It is is a graph-based,
statistical method of representing a text or a corpus. The n-gram graph is a graph

G = {V G, EG, L,W} (2.19)

where;
V G is the set of vertices,
EG is the set of edges,
L is a function assigning a label to each vertex and to each edge,
W is a function assigning a weight to every edge.
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The graph has n-grams as its vertices υG ∈ V G and the edges eG ∈ EG connecting the
n-grams indicate the proximity of the corresponding vertex n-grams.
We make use of N-Gram Graphs to assist our algorithm to assimilate the local
co-occurences of surface peaks from the real surface images to the
generator-produced ones.

The Fast Fourier Transformation decomposes an image into sines and cosines of
varying amplitudes and phases, which reveals repeating patterns within the image. In
our work, we use Fast Fourier Transformation to assist our algorithm to assimilate the
frequency spectrum similarity of the real surface images into the generator-produced
ones.

2.2 Related work

This section refers to the related work that has been done by other scientists in this
domain. More specifically, the following paragraphs introduce concepts such as the
effects of surface roughness on wetting behaviour, Single Image Super Resolution with
GANs, nanorough surface generation and nanostructure design with GANs.
The research of Antonis Stellas et al.[6] assesses if there is a link between surface
morphology and wettability on a nanoscale level with the use of artificial intelligence.
The nanorough surfaces are created with an algorithm that uses the inverse Fourier
transform which produces surfaces with Gaussian or non-Gaussian height
distributions, morphologically based on the roughness parameters RMS (Rq),
skewness (Rsk), kurtosis (Rku) and correlation lengths (ξx, ξy). The Wenzel model is
assumed in order to predict the true (active) area of the surface. According to the
Wenzel model, the roughness ratio r parameter is defined as the active surface area
divided by the projected surface area. Different types of areas are produced depending
on the aforementioned surface roughness parameters and are linked to the roughness
ratio r in a database. This database is split into train and test datasets. Then deep
neural networks are trained on the train dataset and predict on the test dataset. The
model is evaluated and inspected on the effect the surface roughness parameters have
on surface wettability.
The morphology and geometry of the nano-surface is crucial and describes its
interaction with matter and elements. A few properties that are related with the
manufacturing of the nano-surface are RMS (Rq), correlation length (ξ) and height
parameters. Assume there is a function that would link roughness ration r and contact
angle (Wenzel model) with roughness parameters (RMS, correlation length and height
parameters) would help the production parameter selection process. The authors of
the paper use AI techniques to connect the geometry and morphology of
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nano-surfaces with their characteristics and usability.
In order to produce nanorough surfaces the authors distinguish the surfaces between
two types: Gaussian and non-Gaussian. Gaussian surfaces are generated with the
RMS of the height distribution and the correlation lengths (ξx, ξy). Non-Gaussian
surfaces are generated as follows:

1. A random two-dimensional non-Gaussian noise via the Johnson transformation
system giving as input parameters: mean, RMS (Rq), skewness (Rsk), kurtosis
(Rku).

2. If the distribution parameters don’t converge, then the Pearson transformation
system is used.

3. After that, the skewness and kurtosis values are determined so that they satisfy
accurately the setup. If not the surface generation is repeated.

4. At last, the surface begins to correlate by reforming the height sequence in the X
and Y directions imitating a known Gaussian surface with correlation lengths ξx
and ξy.

Three different machine learning models are used to predict any correlation between
the input and output properties:

1. Linear regression

2. Random forests

3. Neural networks

The training data consists of 3000 nano-surfaces. The evaluation metric RMSRE (Root
Mean Square Relative Error) is used to assess how well the models behave. Random
forests and neural networks performed better than linear regression with
RMSRE = 4% and RMSRE = 2% respectively.
The neural network model indicates that RMS (Rq) value of the height distribution has
the highest correlation with wettability. Correlation lengths ξx and ξy present lower
importance in wettability while skewness and kurtosis show the least importance.
In our research we incorporate the algorithm presented by Antonis Stellas et al.[5] for
creating our training dataset of nanorough surfaces.

In their research, Christian Ledig et al.[30] study the domain of Single Image Super
Resolution (SISR). This domain aims to acquire a High Resolution (HR) image from
its Low Resolution (LR) equivalent one. It has been an active area of interest with a lot
of great progress and still is. But there is one problem that persists despite the
progress that has been achieved. That being the realistic visualization of the details of
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the image in high up-scaling resolutions. Recent studies have focused on minimizing
the MSE (Mean Squared Error) which results to high frequency details missing in the
output.
The authors present the SRGAN model which is a generative adversarial network
(GAN) for image super resolution (SR). It is the first framework that is able to reshape
realistic images for 4x up-scaling factors. The loss function of this framework contains
an adversarial cost and a content loss. The adversarial loss consists of a discriminator
which tries to distinguish original images from up-scaled ones. On the other hand, the
content loss focuses on visual perception than pixel space similarity. A deep residual
network reconstructs the details of down-sampled images. A mean-opinion-score
(MOS) indicates that up-scaling with SRGAN is very effective.
Single Image Super Resolution is a critical task and usually the details in reshaped
images is missing. Usually, the MMSE (MinimumMean Squared Error) is used as a
loss function between the original and the rebuilt image. The issue with MMSE is that
it fails to re-scale the visual details of the image in the notion that a human would
perceive them as artificial. This is because MSE minimizes the euclidean distance on
the training data pixel-wise. The authors propose a SRGAN framework where it uses a
ResNet with skip-connection and also uses more optimization techniques than
MMSE. Furthermore, it combines a high-level feature mapping of the VGG
architecture with a discriminator to solve the perceptually visual content that is
missing from the HR methods in previous studies.
Linear predictions were the first to tackle the SISR problem. While those predictions
were fast they would fail to capture the visual details in the output image. More
advanced methods would focus on low and high image resolution pair mapping to
establish a relationship in the training data. More recently, convolutional neural
networks have presented astonishing results. Lately, GANs lay out much more visually
perceptive images to the extent that is comparable to the human eye perception.
The authors propose a deep ResNet architecture by utilizing the idea of GANs to
create a perceptual loss function for photo-realistic SISR:

1. Set up a ResNet for image SR (Super Resolution) with up-scaling factor 4x
optimized for MSE.

2. Propose SRGAN with a new perceptual loss, which is based on feature maps of
the VGG network.

3. Evaluate with a Mean Opinion Score (MOS) test on images from three public
datasets.

During training, the low resolution images are obtained by applying a gaussian filter
on the high resolution images followed by a downsampling procedure with factor r.
After that, the generator is trained to map a high resolution image from its low
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resolution equivalent one. Additionally, the discriminator tries to classify between the
high resolution images from the real images. It is noteworthy that the authors follow
the architectural guidelines summarized by Radford et al[7].
In his research, Vassilis Sioros[1] introduces two models for generating synthetic
nanorough surfaces that inherit the morphological, geometrical and roughness
attributes of the real ones. The real nanorough surfaces are produced by the algorithm
presented by Antonios Stellas[5] and incrorporate the Root Mean Square Roughness
(Rq), Skewness (Rsk), Kurtosis (Rku), Correlation length (ξx, ξy) and Hurst exponent
(α) parameters.
A Single-Layer Perceptron Generative Adversarial Network (SLPGAN) model that
consists of two Single-Layer perceptron networks; one for the generative modeling
and one for the discriminative and a DCGAN model. Binary Cross entropy is used as a
loss function paired with N-gram graphs[17].
The SLPGAN proves to be quite unstable during training therefore the generator
cannot establish the data distribution whereas the DCGAN model presents sufficient
results on various datasets.
As for the model architecture, the author follows the guidelines presented in the work
of Alec Radford et al.[7].

In their work J. Eastwood et al.[31] they present a method of creating realistic,
synthetic surface texture data with a progressively growing generative adversarial
network (PPGAN). The model is trained on two datasets that consist of surface texture
data that have followed a different manufacturing process and measurement method.
A PPGAN model is an extension of the GAN architecture. A PPGAN begins with a
vastly downsampled version of the training data and after a predefined number of
epochs additional transpose-convolution and convolution layers are appended to the
generator and discriminator accordingly, that increase the resolution of the image.
The authors begin with a downsampled dataset of 4× 4 pixels and increase the
resolution to 512× 512 pixels.
Then, they compare statistically the distributions between real and produced surfaces
by considering two parameters; Sq which is the the RMS height deviation from the
mean profile area and Sz which is the maximum height. The distributions produced
by the generator show good agreement with the training data.

In their research Jin-Woong Lee et al.[32] propose various models; a DCGAN, a
Cycle-consistent GAN and a conditional GAN-based image to image translation
(Pix2Pix) model to generate realistic, virtual micrographs; optical microscopy (OM)
and scanning electron microscopy (SEM) images of steel surfaces and wire-shaped
electrodes for use in Li ion batteries.
The authors gathered the labeled datasets from Hyundai steel Co. industry. More
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specifically, they gathered 19216 steel micrographs (9216 OMmicrographs and 10000
SEMmicrographs) with a size of 256× 256 pixels. The training images were magnified
variously from ×1000 to ×5000.
The authors state that the quality of the generated micrographs was so good that they
could not be differentiated from real microstructure images. The similarity between
the real and produced images was measured with KL-divergence which showed below
0.1. The cycle-GAN performed better than DCGAN in terms of image quality. While
successfully producing sufficient results with unlabeled image data to realize synthetic
images, the authors could not obtain labeled micrograph datasets with their
corresponding properties so that they build a property-to-microstructure generation
model.

In their research S. Ringdahl et al.[33] study the correlation between surface
roughness and ice adhesion strength using molecular dynamic simulations and
machine learning. Surface nanoroughness affects the ice composition next to the
substrate and therefore deeply affects the local ice adhesion strength. An algorithm
for creating random rough surfaces was developed for the needs of the research. The
molecular dynamic simulations showed that for rougher surfaces, ice adhesion
strength was remarkably lower than smoother surfaces.
Two separate machine learning SVM (Support Vector Machines) algorithms were
trained with the results of the molecular dynamic simulations; regression and
classification correspondingly. The regression model utilizes the user input data about
the substrate and gives back a quantitative prediction of the ice adhesion strength.
The SVM presented promising prediction results, which can enable further research in
icephobic surface design applications.
In their research O. F. Ogoke et al.[34] study the porosity created in parts produced
with Additive Manufacturing. Porosity negatively influences the produced
components and their properties during manufacturing.
They propose a GAN framework with Mallat Scattering Transform-based
autocorrelation methods to produce synthetic nanorough surfaces. The generated
surfaces are then compared to the real surfaces and their porority distributions are
evaluated. During evaluation, the generated surfaces are compared to the real data
distribution, and are shown to match the univariate distributions of the individual
metrics, as well as the bivariate distributions that describe the correlations between
the individual pore properties.

Previous work in this domain encountered specific limitations. More specifically, they
lack a quantitative method of evaluating the produced images. Most methods rely on
visual evaluation of the generated images. Furthermore, instability was encountered
when training DCGAN models.
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In our work, we use deep learning to generate realistic synthetic nano-surface images,
to support nanometrology and nanotechnology processes. To this end we plan to
examine how prior domain knowledge can empower a model to provide realistic,
synthetic surface images, possibly at different scales and dimensions.
We introduce a unique DCGAN architecture which learns from a set of novel similarity
metrics such as N-gram graphs, height histogram and fourier transformation.
This research can lead to new nanomaterial and nanostructure designs and find routes
to produce new materials with unique properties.
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3 Proposed method

This section introduces our proposed method for generating synthetic nano-rough
surfaces. The text in this section is organized as follows.
We define our problem with an objective function that we wish to solve. Then, we
propose our network architecture and the limitations we encountered. After that, we
present the similarity content we incorporated into our models. Finally, we present
our algorithmic procedure for training the network. Also, throughout the section we
emphasize our contributions to this research.

3.1 Problem definition

Given a set of real nano-rough surfaces S, we want to be able to learn a generator
function G which can produce synthetic surfaces S ′ that hold properties identical to
the real ones.
Based on the work of Vasileios Sioros in Generating realistic nano-rough surfaces via
a Generative Adversarial Network[1], a nano-rough surface can be characterized as a
2D matrix that contains the height values of each point sample of the surface plane.

S =

s1,1 .... s1,n
.... .... ....
sm,1 .... sm,n

 (3.1)

Each nanorough surface is characterized by a set of properties. Those are, the
Root-Mean-Square Roughness (Rq), Skewness (Rsk), Kurtosis (Rku), Correlation
lengths (ξx, ξy) and Roughness exponent (α). We refer to this set of properties I as the
configuration of the surface.

I = (Rq, Rsk, Rku, ξx, ξy, α) (3.2)

Our purpose is to produce nano-rough surfaces with specific I without previous
knowledge of the I configuration of the dataset, but only from nano-rough surface
samples. We seek to learn an objective function that maps a set of real nano-rough
surfaces with a specific I configuration to a set of generator-produced nano-rough
surfaces.

F = P (S(I))→ P (S ′(I)) (3.3)

where,
P (S(I)) is the powerset of the set of real nano-rough surfaces with configuration I,
P (S ′(I)) is the powerset of the set of generator-produced nano-rough surfaces with
configuration I.
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3.2 Our approach

3.2.1 Network overview

Figure 12: Deep Convolutional Generative Adversarial Network model

Our system is comprised of a Deep Convolutional Generative Adversarial Network.
The generator consists of a transposed-convolutional neural network and the
discriminator of a convolutional neural network, respectively. The network is trained
on a set of nano-rough surfaces that is in accordance with a specific property
configuration I.
Our implementation can be found in the following repository
https://github.com/ddelikonstantis/RoughML.

3.2.2 Network architecture

Our network comprises of a Generative and a Discriminative model respectively. The
Generator as shown in figure 13 consists of 6 transposed-convolutional layers for
up-sampling the data from an input randomized vector z. Up-sampling refers to a
process that increases the spatial resolution as a means to generate an output that is
equal to the image dimension d. The randomized vector z is of size z = 128 and is
drawn randomly from a normal distribution withmean = 0 and variance = 1. The
Discriminator as shown in figure 14 consists of 6 Convolutional layers for
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down-sampling the data. Down-sampling refers to a process that reduces the spatial
resolution of a surface image while keeping the same two-dimensional representation.
All of the Generator’s transposed-convolutional layers are paired with
batch-normalization, except from the output layer. Batch-normalization helps the
model to train faster and decreases the importance of chosen initial weight values. All
layers include Rectified Linear Units, except from the output layer.
All of the Discriminator’s convolutional layers are paired with batch-normalization,
except from the input and output layer. The Discriminator’s convolutional layers are
paired with Leaky Rectified Linear Unit functions, except from the output layer, which
uses Sigmoid.
The training dataset is loaded via a dataloader into our model in minibatches. The
minibatch consists ofminibatch = 64 nano-rough surface samples. Throughout
experimentation we found out that bigger mini-batch sizes result in slower training.
In this research, we focus only on grayscale images therefore we use one image
channel c = 1. The network architecture is configured to process surface images with
dimension d = 128.

The Generator gets as an input a randomized tensor z that has the following shape.

minibatch× c× 1× 1 (3.4)

where,
minibatch is the minibatch size,
c is the image channel

After the up-sampling process the Generator outputs a tensor that has the following
shape.

minibatch× c× d× d (3.5)

where,
minibatch is the minibatch size,
c is the image channel,
d is the dimension of the nano-rough surface image
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Figure 13: Generator architecture

The Discriminator gets as an input a tensor which is either the Generator’s output or
surface images from the real dataset. Both have the following shape.

minibatch× c× d× d (3.6)

where,
minibatch is the minibatch size,
c is the image channel,
d is the dimension of the nano-rough surface image

After the down-sampling process the Discriminator outputs a one-dimensional tensor
that includes the target output probabilities and has the following shape.

[minibatch] (3.7)

where,
minibatch is the minibatch size
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Figure 14: Discriminator architecture

A crucial contribution in this work is that we introduce multiple different network
architectures. There are two reasons for the introduction of different network
architectures. These reasons are summarized below.

1. Checkerboard artifact

2. Higher surface image dimension d

During early stages of our research we observed a characteristic squared grid lined
pattern in our generator-produced surface images across both dimensions. We refer
to this as checkerboard artifact. After study, we found out that this issue is quite
known in related studies[35]. Therefore, we began to investigate methods on how to
reduce it and decided to experiment with the network architecture. We contributed to
this research by introducing two different network architectures, each with a different
combination of kernel, stride, padding sizes within each layer of the network models.
Our proposed network architectures modify only the aforementioned
hyperparameters of the models. We present the different network architectures as
follows.

• First proposed network architecture for the checkerboard artifact
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– Generator model

1. Transposed-convolution layer - kernel size=4, Stride=1, Padding=0,
batch-normalization, ReLU

2. Transposed-convolution layer - kernel size=3, Stride=3, Padding=1,
batch-normalization, ReLU

3. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

4. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

5. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

6. Transposed-convolution layer - kernel size=2, Stride=2, Padding=2

– Discriminator model

1. Transposed-convolution layer - kernel size=2, Stride=2, Padding=2,
LeakyReLU

2. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

3. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

4. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

5. Transposed-convolution layer - kernel size=3, Stride=3, Padding=1,
batch-normalization, LeakyReLU

6. Transposed-convolution layer - kernel size=4, Stride=1, Padding=0,
Sigmoid

• Second proposed network architecture for the checkerboard artifact

– Generator model

1. Transposed-convolution layer - kernel size=4, Stride=1, Padding=0,
batch-normalization, ReLU

2. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

3. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

4. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU
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5. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

6. Transposed-convolution layer - kernel size=4, Stride=4, Padding=4

– Discriminator model

1. Transposed-convolution layer - kernel size=4, Stride=4, Padding=4,
LeakyReLU

2. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

3. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

4. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

5. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

6. Transposed-convolution layer - kernel size=4, Stride=1, Padding=0,
Sigmoid

We decided to proceed with the second proposed network architecture for our
experiments regarding the checkerboard artifact.

Another contribution to this work is that we introduced a third network architecture
to produce higher surface image dimension from d = 128 to d = 256.

• Third proposed network architecture for higher surface image
dimension from d=128 to d=256

– Generator model

1. Transposed-convolution layer - kernel size=4, Stride=1, Padding=0,
batch-normalization, ReLU

2. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

3. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

4. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, ReLU

5. Transposed-convolution layer - kernel size=4, Stride=4, Padding=3,
batch-normalization, ReLU
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6. Transposed-convolution layer - kernel size=4, Stride=4, Padding=4

– Discriminator model

1. Transposed-convolution layer - kernel size=4, Stride=4, Padding=4,
LeakyReLU

2. Transposed-convolution layer - kernel size=4, Stride=4, Padding=3,
batch-normalization, LeakyReLU

3. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

4. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

5. Transposed-convolution layer - kernel size=2, Stride=2, Padding=1,
batch-normalization, LeakyReLU

6. Transposed-convolution layer - kernel size=4, Stride=1, Padding=0,
Sigmoid

It is worthy to note that we encountered computational power limitations regarding
the proposed network architecture for higher surface image dimension due to the vast
number of parameters of the network.

3.2.3 Similarity content

Our network utilizes three different similarity metrics. We reasoned it is important to
make use of diverse similarity content in an effort to describe multiple aspects of the
nano-rough surface. We summarize the similarity content as follows.

• Binary Cross-Entropy / Log
Predicts a probability for a nano-rough surface image to belong to a certain
class. In our case, it classifies between real surface images and
generator-produced ones.

• N-Gram Graphs (ArrayGraph2D variant) [17]
A graph representation of nano-rough surfaces that compares the local
co-occurences of surface peaks between real nano-rough surfaces and
generator-produced ones.

• Height Histogram and Fourier
A Fourier representation of nano-rough surface images for comparing the
frequency content between real surface images and generator-produced ones.
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Binary Cross-Entropy / Log
Binary Cross-Entropy is a loss function that is used in binary classification tasks. It
calculates the loss of a sample by computing the following average.

BinaryCrossEntropy = − 1

output_size

output_size∑
i=1

yi ∗ logŷi + (1− yi) ∗ log(1− ŷi) (3.8)

where ŷi is the ith scalar value in the model output,
yi is the corresponding target value,
output_size is the number of scalar values in the model output.

This is equivalent to the average result of the Categorical Cross-Entropy loss function
applied to many independent classification applications, each problem having only
two possible classes with target probabilities yi and (1−yi). We apply Binary
Cross-Entropy content loss to both models, the Generator and Disriminator
respectively. By minimizing Binary Cross-Entropy similarity content the
Discriminator learns to distinguish between real and generator-produced surfaces
images, whereas the Generator learns to produce surface images similar to the real
ones.

Preprocessing
A nano-rough surface is composed from a 2D matrix that includes floating point
numbers that correspond to its height values. These values may have a non-standard
distribution due to outliers and multi-modal distribution. In an effort to improve the
network performance we transform the surface values to a different standard
distribution.
For the N-Gram Graph content a prepossessing method called Discretization takes
place that bins continuous floating point data into intervals with the quantile grouping
method. Discretization creates 5 bins where each bin contains an equal number of
values.
For the Height Histogram and Fourier content preprocessing occurs with histogram
analysis. We use histogram to transform the surface values to a normal distribution.

N-Gram Graphs (ArrayGraph2D)
Before training, the N-Gram Graph content of the training dataset is calculated for
every nano-rough surface.
During inference, the N-Gram Graph content is calculated for each
generator-produced surface .
Then, the generator-produced graph is compared to the training dataset’s graph.
We use the ArrayGraph2D (AG2D) variant of the N-Gram Graphs. Algorithm 2
describes how N-Gram Graph content processes a nano-rough surface matrix.
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Algorithm 2 Creating a 2D array graph from a matrixM with dimensions N ×N .
1: G← ∅
2: for y ∈ [0, ...., N ] do
3: for x ∈ [0, ...., N ] do
4: vertexy,x = M [y, x]
5: neighbourhood← ∅
6: neighbourmin

y = ClampN(y − [w
2
])

7: neighbourmax
y = ClampN(y + [w

2
])

8: for neighboury ∈ [neighbourmin
y , ...., neighbourmax

y ]do
9: neighbourmin

x = ClampN(x− [w
2
])

10: neighbourmax
x = ClampN(x+ [w

2
])

11: if neighboury ̸= y or neighbourx ̸= x then
12: vertexneighboury ,neighbourx = M [neighboury, neighbourx]
13: G← G ∪ {(vertexy,x, vertexneighboury ,neighbourx)}

where ClampN contains the floating point range value [0, N ] and is calculated by the
following operation.

clamp(υ) = max(0,min(υ,N − 1) (3.9)

Height Histogram and Fourier
Another crucial contribution in this work is that we introduced the Height Histogram
and Fourier similarity metric to the learning procedure.
Height Histogram and Fourier calculates the 2D Fast Fourier Transform and the
height histogram of a given nano-rough surface.
Before training, the height histogram values as well as the FFT are calculated for
every nano-rough surface contained in the training dataset and are stored.
The number of bins required for the histogram height values is calculated using the
following formula.

bins = max(10, 10(min(log(s
2))−3)) (3.10)

where s is the image dimension.

This dynamic selection of bins ensures a correlative behaviour between the image
dimension and the bin size.
During inference, the Height Histogram and Fourier similarity between each
generator-produced surface and the training dataset’s surfaces is computed.
Lets assume a produced nano-rough surfaceM and the training nano-rough surface
dataset T . The procedure is presented in algorithm 3.
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Algorithm 3 Height Histogram and Fourier similarity content between a generator-
produced nano-rough surfaceM and training dataset surfaces T .
1: HM = Histogram(M)
2: FM = FFT2D(M)
3: diff = 0
4: Hist_diff = 0
5: Fourier_diff = 0
6: forHistogram, Fourier ∈ FHT do

7: Hist_diff+ =
√

(HistogramT −HM)2

8: Fourier_diff+ =
√

(FourierT − FM)2

9: Hist_diff = Normalized(Hist_diff)
10: Fourier_diff = Normalized(Fourier_diff)
11: diff = Weighted(Hist_diff + Fourier_diff)
12: loss = 1− ( 1

1+diff
)

13: return loss

3.2.4 Training

Training is split into two main parts. Part 1 updates the Discriminative and part 2
updates the Generative model respectively.

1. In the first training part, we want to maximize the probability of the
Discriminator so that it correctly classifies a given surface image, as real or
generator-produced.

log(D(x)) + log(1−D(G(z))) (3.11)

where log(D(x)) is the Discriminator output on real surface images,
log(1−D(G(z))) is the Discriminator output on generator-produced surface
images.

Since we implement training in mini-batches, we calculate this in two steps.

In the first step, we construct a mini-batch of real surface images from the
training dataset and do a forward pass through the Discriminator. After that, we
calculate the Binary Cross-Entropy loss log(D(x)) on real surface images with
the real label 1. Then, we normalize the Binary Cross-Entropy loss output. One
of our contributions in this work is that we normalize all losses. In the final
paragraph of this section we will present our reasoning behind this modification.
Additionally, we calculate the gradients in a backward pass.
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In the second step, we construct a mini-batch of generator-produced surface
images and do a forward pass of this mini-batch through the Discriminator.
After that, we calculate the Binary Cross-Entropy loss log(1−D(G(z))) on
generator-produced surface images with the generator-produced label 0. We
normalize the Binary Cross-Entropy loss output as in the first step and then
calculate the gradients with a backward pass. The gradients are accumulated
with previous gradients calculated in the first step.

Finally, we compute the loss of the Discriminator as a weighted sum over the
normalized individual losses from the real and generator-produced
mini-batches. Then, we call a step of the Discriminator’s optimizer to update the
parameters.

2. During the second training part we train the Generator. We want the Generator
to minimize log(1−D(G(z))) in an effort to generate better surface images. But,
this was shown in previous studies[36] to not provide sufficient gradients,
especially early in the learning process. We instead maximize log(D(G(z))) as
suggested by said studies.

As a first step, we classify the Generator output with the Discriminator. Then we
extract each individual similarity content for the generator-produced mini-batch
as shown below.

• The Binary Cross-Entropy difference is computed for the
generator-produced batch by using real labels as generator-produced
labels.

• The N-Gram Graph content is calculated for every surface in the
generator-produced minibatch. Before training the N-Gram Graph content
is calculated for every surface in the training dataset and is stored. During
inference the Normalized Value Similarity between the generator-produced
and the training dataset is computed. The Normalized Value Similarity is
the N-Gram Graph loss for the current minibatch.

• The Height Histogram and Fourier content is calculated for every surface in
generator-produced minibatch. Before training the Height Histogram and
Fourier content is calculated for every surface in the training dataset and is
stored. During inference the difference between each generator-produced
surface content with every training dataset surface content is accumulated.
This happens recursively for every generator-produced surface. The
accumulated difference for all generator-produced surfaces is the Height
Histogram and Fourier loss for the current minibatch.
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A crucial contribution to this work is that we normalize each one of the
independent losses. Additionally, we weight them so that all three contribute
equally to Generator’s learning. We came to this conclusion after noticing that
the loss with the highest value often hindered the rest from performing. Since
our intent for the generator-produced surface images is to assimilate diverse
content equally we implemented this functionality.
Therefore, the overall Generator loss is computed as a sum of the individual
normalized and weighted component losses.

Finally, we compute the Generator’s gradients in a backward pass, and update
the Generator’s parameters.

Algorithm 4 presents the entire training process of our model. All losses are
accumulated within each minibatch and at the end of the batch they are divided by the
total number of minibatch iterations as a means to get average losses for each epoch.
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Algorithm4Deep Convolutional Generative Adversarial Network training algorithm.
In the algorithm, BCE refers to Binary Cross Entropy, NGG refers to N-Gram Graphs
andHHF refers toHeightHistogram and Fourier similarity contents respectively. Fur-
thermore, x refers to the real training minibatch.
1: for epoch in total_epochs
2: for x in dataloader
3: netD.zero_grad()
4: label = 1
5: output = netD(x)
6: errD_real = Normalized(BCE(output, label))
7: errD_real.backward()
8: Real_training = output.mean.item()
9: z = randomized vector
10: Fake_batch = netG(z)
11: label = 0
12: output = netD(Fake_batch)
13: errD_fake = Normalized(BCE(output, label))
14: errD_fake.backward()
15: Fake_training = output.mean.item()
16: errD_total = Weighted(errD_real + errD_fake)
17: optimizerD.step()
18: netG.zero_grad()
19: label = 1
20: output = netD(Fake_batch)
21: errG_BCE = Weighted(Normalized(BCE(output, label)))
22: errG_NGG = Weighted(Normalized(NGG(Fake_batch, Training_dataset)))
23: errG_HHF = Weighted(Normalized(HHF (Fake_batch, Training_dataset)))
24: errG_total = errG_BCE + errG_NGG+ errG_HHF
25: errG_total.backward()
26: Fake_test = output.mean.item()
27: optimizerG.step()
28: lossG + = errG_total
29: lossD + = errD_total
30: lossG_BCE + = errG_BCE
31: lossG_NGG + = errG_NGG
32: lossG_HHF + = errG_HHF
33: Real_training_output + = Real_training
34: Fake_training_output + = Fake_training
35: Fake_test_output + = Fake_test
36: lossG / = len(dataloader)
37: lossD / = len(dataloader)
38: lossG_BCE / = len(dataloader)
39: lossG_NGG / = len(dataloader)
40: lossG_HHF / = len(dataloader)
41: Real_training_output / = len(dataloader)
42: Fake_training_output / = len(dataloader)
43: Fake_test_output / = len(dataloader)
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4 Experimental results

In order to perform accurate experimentation, a plan of action was established in an
effort to present reliable and valid results. This involved a specific set of questions that
was decided to be investigated as a means to obtain substantial information about the
network performance and capabilities. Often a question would result in a new one
throughout the course of the research. The course plan initially comprised of the
following questions.

• Can we improve the network’s learning ability?

• Can we reduce the checkerboard artifacts observed in surface images?

• Can we extend the network for higher image dimension (d)?

• What effect do the N-Gram Graph parameters have on the overall learning
progression of the network as well as the individual progression of the N-Gram
Graph?

• What kind of effect do the chosen initial weights have on our network
performance and results?

4.1 Experimental setup

4.1.1 Dataset

For our experimentation we make use of nano-rough surfaces that are produced from
an algorithm proposed by A. Stellas et al[5]. The nano-rough surface dataset consists
of 2D square matrices with surface height values. The height values define the
nano-rough surface profile. Positive height values describe peaks in the surface and
negative height values represent valleys. Each chosen value of the roughness
parameters affects the morphology of the produced surface. For theoretical concepts
on nano-roughness refer to section 2.1.1. We summarize the dataset parameters as
follows.

• Number of surfaces (s)
Represents the total number of nano-rough surface samples used for our
training dataset.

• Dimension of surfaces (d)
Represents the size of the 2D square matrix that defines the dimension of the
nano-rough surface. Resulting surfaces are square matrices with dimensions
d× d.
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• Root-Mean-Square Roughness (Rq)
Represents the Root-Mean-Square Roughness (Rq) value of the surface.

• Skewness (Rsk)
Represents the skewness (Rsk) value of the surface.

• Kurtosis (Rku)
Represents the kurtosis (Rku) value of the surface.

• Correlation lengths (ξx, ξy)
Represent the correlation lengths (ξx, ξy) value of the surface in 2 dimensions.

• Roughness exponent (α)
Represents the Roughness exponent (α) value of the surface.

Each parameter affects a certain aspect of the morphology of the surface. Therefore,
choosing different parameter values produce a surface with unique morphology.

The algorithm for producing nano-rough surfaces presented by A. Stellas et al.[5]
comprises of the following steps.

1. White noise generation Z(x, y) with N discrete points in a square grid with
length rL. The white noise height distribution hasmean = 0 and variance = Rq.
Rq value is user input.

2. Gaussian filter generation.

• For isotropic surfaces: Fiso(x, y) = exp(−(2x2+2y2

ξ2x
))

• For anisotropic surfaces: Faniso(x, y) = exp(−(2x2

ξ2x
+ 2y2

ξ2y
))

3. In the next step, the surface becomes correlated by calculating either Ziso or
Zaniso (depending on the selected surface type) with correlation lengths ξx and ξy.

• For isotropic surfaces: Ziso =
2√
π

rL
N
√
ξx
· IFFT (FFT (Z) · FFT (Fiso))

• For anisotropic surfaces:
Zaniso =

2√
π

rL

N
√

ξxξy
· IFFT (FFT (ZWG) · FFT (Faniso))

where,
FFT (Z) is the Fast Fourier Transformation of the white noise in step 1,
FFT (Fiso) and FFT (Faniso) is the Fast Fourier Transformation of the Gaussian
filter in step 2,
IFFT is the Inverse Fast Fourier Transformation
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4. Finally, the roughness parameters Rq, ξx, ξy are calculated for the surface.
Parameter Rq is calculated by using the formula in step 3, (Ziso) or (Zaniso) while
correlation lengths ξx, ξy require initially the calculation of the auto-correlation
function ACF .

• ACF (rx) =
1

R2
q(l−rx)

∑l−rx
1 (y(x)− ⟨y⟩)(y(x+ rx)− ⟨y⟩)

From the ACF formula, two points are taken into consideration:
ACF (x, y = 0) = 1

e
and ACF (x = 0, y) = 1

e
.

For such small values the ACF is considered to advance exponentially.
Therefore ξx and ξy parameters result from:

• ACF (x, y = 0) = 1
e
⇐⇒ x = ξx

• ACF (x = 0, y) = 1
e
⇐⇒ y = ξy

Due to the computationally demanding nature of neural networks experimentation
was performed in two separate hardware setups. One served for development and
another for experiments. The setup for development consisted of an Intel(R)
Core(TM) i7-8750H CPU@ 2.20GHz, 16.0 GB of RAM, an NVIDIA GeForce GTX
1060 GPU with max-Q Design. This setup served as a means to develop the software
and test small-scale experiments. As for the experimentation setup, it consisted of an
AMD Ryzen Threadripper Pro 3955WX CPU@ 3.9GHz, 128 GB of RAM and an
NVIDIA RTX A6000 GPU. Software was developed with Python version 3.7.1 on
Visual Studio Code.

The PyTorch framework was used for software development of the Deep
Convolutional Generative Adversarial Network. PyTorch is an open source machine
learning framework based on the Torch library. Furthermore, we made use of libraries
such as NumPy, SciPy, math, scikit-learn, pandas, OpenCV, Matplotlib, Pillow,
itertools and PyINSECT.

In general, deep learning training processes are stochastic in nature. This randomness
is often acceptable and indeed desirable. However, in order to have clear answers and
be confident in our results we incorporated repeatable randomness in our
experiments. We configured PyTorch to incorporate repeated randomness through
random number generator seeding, so that multiple calls, given the same inputs, will
produce the same result.

We used the Adaptive moment estimation algorithm for optimizing our network with
learning rate lr = 0.0002, β1 = 0.5, β2 = 0.999. We set the parameter bias = False for
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each convolutional and transposed-convolutional layer of the network. Furthermore,
we set the LeakyReLU negative_slope = 0.2 where applied in the convolutional layers
of the Discriminator. Additionally, we set ReLU and LeakyReLU inplace operation
inplace = True.

Experimental results are evaluated by the following measures.

• Qualitative evaluation by domain experts.

• Quantitative measures evaluation through graph plots. Throughout section 4 we
evaluate quantitative results based upon three graph plots.

1. Generator and Discriminator losses per epoch
Presents the average and normalized Generator loss per epoch as a
weighted sum of the individually average and normalized Binary
Cross-Entropy, N-Gram Graph, Height Histogram and Fourier losses.
Also, the average and normalized Discriminator loss per epoch as a
weighted sum of the individually normalized Binary Cross-Entropy loss
over the real training minibatch and the generator-produced tranining
minibatch.

2. Binary Cross-Entropy, N-Gram Graph, Height Histogram and Fourier
losses per epoch
Presents the average and normalized Binary Cross-Entropy, N-Gram
Graph, Height Histogram and Fourier losses per epoch.

3. Discriminator output per epoch
Presents the average Discriminator output per epoch on real training
minibatch, generator-produced training minibatch and
generator-produced test minibatch.

4.1.2 Experimental results on network initial weights

Weight initialization is an important aspect of a neural network model. The nodes in
the neural network are composed of parameters (weights) used to calculate a weighted
sum of the inputs. The optimization algorithm requires a starting point in the space of
possible weight values from which to begin the optimization process. Weight
initialization refers to the process of setting the weights of the neural network to small
random values that define the starting point for the optimization of the model.
According to Alec Radford et al.[7], the initial weights of the DCGAN network should
be randomly initialized from a normal distribution with mean=0, stdev=0.02.
We wondered what kind of effect, if any, the chosen initial weight values would have
on our network performance and results. Therefore, we conducted a preliminary
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experiment on the same dataset with different initial weights applied on both models,
one with valuesmean = 0, stdev = 0.02, and another with
mean = 0, stdev = 0.2. We gave the optimization algorithm a much larger initial
space of possible weight values to begin with. This way, if any difference in results or
performance, would become apparent. We trained our network with s = 300
nano-rough surface samples for 50 epochs in both cases.

1. Random initial weight values from a normal distribution with
mean = 0, stdev = 0.02.

Figure 15: Generator-produced nano-rough surface images for initial weight values
withmean = 0, stdev = 0.02.
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Figure 16: Real dataset nano-rough surface images for initial weight valueswithmean =
0, stdev = 0.02.

Figure 17: Graph plots for initial weight values withmean = 0, stdev = 0.02.

2. Random initial weight values from a normal distribution with
mean = 0, stdev = 0.2.
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Figure 18: Generator-produced nano-rough surface images for initial weight values
withmean = 0, stdev = 0.2.

Figure 19: Real dataset nano-rough surface images for initial weight valueswithmean =
0, stdev = 0.2.
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Figure 20: Graph plots for initial weight values withmean = 0, stdev = 0.2.

Early findings show that, initial weights appear to have an insignificant effect on
learning. Furthermore, we observe that during training loss plots and Discriminator
output behave almost the same, especially in early stages.
However, the experiment was implemented with insufficient number of surface
samples s = 300 for a limited number of epochs epochs = 50.
We can’t make any conclusive statements regarding the initial weights effect on
learning and we consider that this subject requires an extended experiment with more
surface samples for a prolonged number of epochs.
For the means of our research we decided for the initial weight values to be randomly
initialized from a normal distribution withmean = 0, stdev = 0.02.

4.1.3 Experimental results on N-Gram Graph parameters

As a next step, we wondered what effect do the N-Gram Graph parameters have on the
overall learning progression of the network. N-gram graphs content has three main
parameters that affect similarity.

• N
Represents the N-gram size. For example, N = 1 refers to unigrams, N = 2
refers to bigrams and so on. In our case N-grams refer to the discretization
transformed bins within the surface matrices.

• Window_size
Represents the number of non-symmetrical neighbouring N-grams that are
taken into account for calculating the weights of the edges of the graph.

• Stride
Is the step s from previous to the next N-gram.
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We tested with s = 300 training samples for 50 epochs. To get an extended idea, we
decided to experiment with two different sets of N-Gram Graph parameters
N = 3, window_size = 3, stride = 1 and N = 8, window_size = 8, stride = 1 on two
datasets with different Roughness exponent α = 0.5 and α = 1.0. We summarize the
experiment cases below.

1. N = 3,window_size = 3, stride = 1

• s = 300, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4,α = 0.5

• s = 300, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4,α = 1.0

2. N = 8,window_size = 8, stride = 1

• s = 300, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4,α = 0.5

• s = 300, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4,α = 1.0

The reason for different Roughness exponent (α) cases is because we want to observe
the N-Gram Graph parameters for surface profiles with different self-similarity and
local-smoothness.

1. N = 3,window_size = 3, stride = 1

• s = 300, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4,α = 0.5

Figure 21: Generator-produced nano-rough surface images for N = 3, window_size =
3, stride = 1 and α = 0.5.
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Figure 22: Real dataset nano-rough surface images for N = 3, window_size =
3, stride = 1 and α = 0.5.

Figure 23: Graph plots for N = 3, window_size = 3, stride = 1 and α = 0.5.

• s = 300, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4,α = 1.0

64



Figure 24: Generator-produced nano-rough surface images for N = 3, window_size =
3, stride = 1 and α = 1.00.

Figure 25: Real dataset nano-rough surface images for N = 3, window_size =
3, stride = 1 and α = 1.00.
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Figure 26: Graph plots for N = 3, window_size = 3, stride = 1 and α = 1.00.

2. N = 8,window_size = 8, stride = 1

• s = 300, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4,α = 0.5

Figure 27: Generator-produced nano-rough surface images for N = 8, window_size =
8, stride = 1 and α = 0.5.
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Figure 28: Real dataset nano-rough surface images for N = 8, window_size =
8, stride = 1 and α = 0.5.

Figure 29: Graph plots for N = 8, window_size = 8, stride = 1 and α = 0.5.

• s = 300, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4,α = 1.0
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Figure 30: Generator-produced nano-rough surface images for N = 8, window_size =
8, stride = 1 and α = 1.00.

Figure 31: Real dataset nano-rough surface images for N = 8, window_size =
8, stride = 1 and α = 1.00.
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Figure 32: Graph plots for N = 8, window_size = 8, stride = 1 and α = 1.00.

After observing the plots, we notice a slightly better performance of the N-gram graph
and Height Histogram and Fourier similarity metrics on both cases for α = 1.0. As for
theN,window_size parameters there is inconclusive evidence that suggest that one
performs better than the other. Experimentation with more surface samples and for
more epochs might yield more conclusive evidence.

4.1.4 Experimental results on higher surface image dimension

As previously mentioned in section 3.2.2 a crucial contribution of our work is that we
extended the network architecture to process surface images with dimension d = 256.
As a next step we tested our model with nano-rough surface images with size d = 256.
However, due to limitations in computational and memory power required for the
vast number of parameters we were able to train our network only with s = 50 surface
samples for 10 epochs. Therefore, we note that this test serves only as a preliminary
experiment.
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Figure 33: Generator-produced nano-rough surface images for dimension d = 256.

Figure 34: Real dataset nano-rough surface images for dimension d = 256.
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Figure 35: Graph plots for dimension d = 256.

Early findings, show that there is potential in processing surface images with
dimension d = 256. However, we encountered computational limitations due to the
vast number of parameters of the network. We were able to train our network only
with s = 50 surface samples for 10 epochs.
Therefore, we can’t make conclusive statements as the obtained results are
insufficient. We emphasize that this experiment requires further experimentation.
It would be interesting to repeat the experiment on a high-performance computing
system with s = 1000 samples for 100 epochs and examine the obtained results.

4.2 Results and discussion

Throughout this section we present our achieved results on 6 different nano-rough
surface datasets. Each dataset has a different combination of roughness parameters.
We summarize the cases as follows.

1. Dataset with s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 2, ξy = 2, α = 0.5

2. Dataset with s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 2, ξy = 2, α = 1.0

3. Dataset with s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4, α = 0.5

4. Dataset with s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4, α = 1.0

5. Dataset with s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 8, ξy = 8, α = 0.5

6. Dataset with s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 8, ξy = 8, α = 1.0
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4.2.1 Results for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 2, ξy = 2, α = 0.5

Figure 36: Generator-produced nano-rough surface images for dataset with properties
s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 2, ξy = 2, α = 0.5.

Figure 37: Real training nano-rough surface images for dataset with properties s =
1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 2, ξy = 2, α = 0.5.
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Figure 38: Graph plots for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 2, ξy = 2, α = 0.5.

After training our network with s = 1000 surface samples for 200 epochs the
generator-produced surface images in figure 36 present substantial similarity to the
real ones in figure 37. According to the domain expert, the frequency content as well
as the local co-occurences of surface peaks of the real surface images is assimilated in
the generator-produced ones. This occurs also in the next cases we review in following
sections.
Taking a closer look at the Generator and Discriminator loss plot in figure 38 we
observe that the discriminative model is trained better than the generative. This is
also observable in the Discriminator output plot where it gradually trains better on
both classes after epoch 50. In practice, this is something we noticed happening quite
often throughout the course of our experimentation.
Height Histogram and Fourier similarity under-performs compared to the other
similarity metrics. It reaches its rather optimal solution around epoch 30 and doesn’t
seem to offer much as the epochs progress. On the other hand, Binary Cross-Entropy
and N-Gram Graph similarities present substantial progression after epochs 25 and 50
respectively.
Furthermore, it is noteworthy, that the checkerboard artifact is mildly observable in
the generator-produced images. In their study, Andrew Aitken et al.[35] state that one
of the reasons for the checkerboard artifact seems be the result of the transposed
convolution overlap during the up-sampling process. Transposed-convolution overlap
is when the kernel size is not fractionally-divided by the stride size. But even a
fractionally-divided kernel by the stride can still lead to checkerboard artifacts
according to the study. In our network architecture we incorporated a kernel that is
fractionally-divided by the stride in every layer of the network for both models. We
introduced this specific network architecture in section 3.2.2 as a means to reduce the
checkerboard artifact.
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4.2.2 Results for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 2, ξy = 2, α = 1.0

Figure 39: Generator-produced nano-rough surface images for dataset with properties
s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 2, ξy = 2, α = 1.0.

Figure 40: Real training nano-rough surface images for dataset with properties s =
1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 2, ξy = 2, α = 1.0.
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Figure 41: Graph plots for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 2, ξy = 2, α = 1.0.

For a higher Roughness exponent (α = 1.0) the checkerboard artifact becomes visible
as squared grid lines in figure 39. According to the domain expert, this is directly
correlated to the higher Roughness exponent (α) value due to the fact that the surface
profile is more locally-smoothed, therefore exposing the checkerboard artifact
irregularity futher. In the previous case 4.2.1 for Roughness exponent (α = 0.5) the
checkerboard artifact was able to rather hide in the more locally-spiked surface profile
according to the domain expert.
As for the similarity content, Binary Cross-Entropy reaches optimality at epoch 40 and
does not contribute much after that. Notably, N-Gram Graph presents a substantial
improvement in performance regarding to the previous case 4.2.1 but tends to
gradually perform worse after epoch 60.
In a similar manner as previous case 4.2.1, Height Histogram and Fourier seems to
under-perform compared to the other similarity metrics.
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4.2.3 Results for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 4, ξy = 4, α = 0.5

Figure 42: Generator-produced nano-rough surface images for dataset with properties
s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4, α = 0.5.

Figure 43: Real training nano-rough surface images for dataset with properties s =
1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4, α = 0.5.
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Figure 44: Graph plots for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 4, ξy = 4, α = 0.5.

In this case, the checkerboard artifact appears to be less acute when compared to
generated results for case 4.2.2 but more acute when compared to generated results
for case 4.2.1. Furthermore, It appears to have slightly larger square magnitude in the
grid when compared to previous cases. According to the domain expert this is
correlated to the bigger ξx = 4, ξy = 4 values.
Additionally, Height Histogram and Fourier similarity presents a tremendously better
performance when compared to cases 4.2.1 and 4.2.2. On the contrary, Binary
Cross-Entropy performs relatively worse when compared to previous cases. Notably,
there is a sudden and abrupt increase in performance occurring in epoch 50. N-Gram
Graph performs in a similar manner when compared to previous cases.
The discriminative model performs worse in this experiment when observing the loss
in figure 44 compared to previous cases in figures 38 and 41 respectively.
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4.2.4 Results for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 4, ξy = 4, α = 1.0

Figure 45: Generator-produced nano-rough surface images for dataset with properties
s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4, α = 1.0.

Figure 46: Real training nano-rough surface images for dataset with properties s =
1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 4, ξy = 4, α = 1.0.
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Figure 47: Graph plots for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 4, ξy = 4, α = 1.0.

For correlation lengths ξx = 4, ξy = 4 and Roughness exponent α = 1.0, the
checkerboard artifact is acutely visible when observing the generated images in figure
45. As previously stated, there is a correlation to the checkerboard artifact harshness
with higher α according to the domain expert.
As for the similarity metrics, the contribution of the N-Gram Graph content to the
Generator in figure 47 is exceptional and outperforms the other similarity metrics.
Also, it the best performance we have observed so far compared to itself in previous
cases. Height Histogram and Fourier reaches optimality in epoch 25 and does not
seem to offer more to learning after that. Binary Cross-Entropy also performs better
in this case when compared to previous cases.
As for the discriminative model, it does perform well on the real training dataset
something we can observe in the discriminator output plot in figure 47.
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4.2.5 Results for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 8, ξy = 8, α = 0.5

Figure 48: Generator-produced nano-rough surface images for dataset with properties
s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 8, ξy = 8, α = 0.5.

Figure 49: Real training nano-rough surface images for dataset with properties s =
1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 8, ξy = 8, α = 0.5.
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Figure 50: Graph plots for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 8, ξy = 8, α = 0.5.

After we observe the generated results in figure 48 we see that the checkerboard
artifact still persists. But, it has milder granularity than cases 4.2.2 and 4.2.4 and
harsher granularity than cases 4.2.1 and 4.2.3 respectively. The magnitude of the
squares in the grid is larger due to the higher correlation lengths ξx = 8, ξy = 8,
according to the domain expert.
In this case, we observe a higher adversarial process in the network when compared to
previous cases. This statement occurs from the the fact that the Discriminator
presents higher uncertainty on the generator-produced test minibatch, which provides
margin for the Generator to perform better. If we observe the Discriminator output
plot in figure 50 we see that there is gradual uncertainty on the generator-produced
minibatch beginning at epoch ≈ 25, ending at epoch ≈ 175 and peaking in epoch 75.
After epoch ≈ 175 the Discriminator progressively classifies better.
As for the similarity metrics, Height Histogram and Fourier presents a very slow and
gradual progress with a characteristic mild relapse in epochs ≈ 55− 95. N-Gram
Graph also presents a gradual progress during training with a characteristic, steep rise
in performance in epochs ≈ 55− 95. In a similar manner, Binary Cross-Entropy
gradually progresses during training, with a characteristic, steep rise in performance
in epochs ≈ 55− 95. This characteristic and sudden increase in the Generator
performance for epochs ≈ 55− 95 is supplemental to the Discriminator’s higher
uncertainty for the generator-produced test minibatch for epochs ≈ 55− 95 in figure
50.
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4.2.6 Results for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 8, ξy = 8, α = 1.0

Figure 51: Generator-produced nano-rough surface images for dataset with properties
s = 1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 8, ξy = 8, α = 1.0.

Figure 52: Real training nano-rough surface images for dataset with properties s =
1000, d = 128, Rq = 3, Rsk = 0, Rku = 3, ξx = 8, ξy = 8, α = 1.0.
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Figure 53: Graph plots for dataset with properties s = 1000, d = 128, Rq = 3, Rsk =
0, Rku = 3, ξx = 8, ξy = 8, α = 1.0.

In this case, we observe a harsh checkerboard artifact for the generated images in
figure 51. It appears to be the harshest of the cases we have reviewed so far. The
magnitude of the squares in the grid is similar to case 4.2.5 for correlation lengths
ξx = 8, ξy = 8.
Again in this case, we observe a higher adversarial process in the network when
compared to previous cases. But it is different than case 4.2.5. In the Discriminator
output plot 53 we observe a gradual convergence of the generator-produced test
minibatch to the desired value of 0.5. In case 4.2.5 the Discriminator output in plot 50
gradually diverges after ≈ 175 from the desired value of 0.5.
As for the similarity metrics, Binary Cross-Entropy outperforms the other ones.
N-Gram Graph peaks at ≈ 20 and after that it gradually contributes less on learning.
Height Histogram and Fourier performs in a gradual and slow manner.

4.3 Discussion

Analysis of the results lead to substantial conclusions.
A preliminary experiment was implemented with different initial network weights.
However, due to the computationally demanding nature of the network, the
experiment was implemented with insufficient number of surface samples s = 300 for
a limited number of epochs epochs = 50. Therefore, we came to the conclusion that we
have insufficient evidence to make a statement regarding initial network weights and
we consider that the task requires extended experimentation.
Furthermore, we examined the effect of different N-gram graph parameters on
learning as well as the overall progression of the N-gram graph loss itself. However,
again we trained the network with insufficient number of surface samples s = 300 for
a limited number of epochs epochs = 50. Further experimentation by training with
sufficient surface samples for more epochs might yield more conclusive evidence
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regarding effect of the N-Gram Graph parameters on the network. Though, we did
notice a pattern that the N-Gram Graph performs better on datasets with Roughness
exponent (α = 1.0). This superior performance might be correlated to the fact that for
Roughness exponent (α = 1.0) we have a locally-smoothed surface profile.
Additionally, we implemented a preliminary test of our network on higher surface
image dimension d = 256. However, we encountered computational power deficiency
due to the vast number of parameters of the network. We were able to test only s = 50
surface samples for 10 epochs. We concluded that it would be of crucial interest to
repeat the experiment on a high-performance computing environment with s = 1000
samples for 100 epochs and analyze the obtained results.
Moreover, we trained our network on datasets with various nano-rough surface
parameter values and evaluated the results. We summarize the collectively obtained
results.
We observed a checkerboard artifact in resulted generator-produced surface images
that relates to the correlation lengths ξx, ξy and Roughness exponent α values. The
higher the correlation lengths ξx, ξy the larger the magnitude of the squares of the
checkerboard artifact in generator-produced surface images. Also, the higher the
Roughness exponent α the harsher the checkerboard artifact irregularity.
According to the domain expert, the frequency content as well as local co-occurences
of surface peaks is successfully assimilated from the real surface images to the
generator-produced ones.
Furthermore, according to the domain expert’s evaluation the generator-produced
surface images in most cases are substantially improved in regard to the previous work
we built upon[1]. Additionally, the checkerboard artifact is reduced in most cases.
This is the collective result of three crucial contributions in this work. We summarize
those as follows.

1. Introduction of Height Histogram and Fourier similarity content to the learning
procedure.

2. Multi-component loss optimization. Normalizing and weighting individual loss
components contributed substantially to the performance of the network.

3. Introduction of a novel network architecture in an effort to reduce the
checkerboard artifact.

Even though the checkerboard artifact is reduced, it still persisted in resulted surface
images. We consider this a limitation in our work and we conclude that further
investigation is required.
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5 Conclusions

In this research, we studied how we can utilize Deep Convolutional Generative
Adversarial Networks as a means to generate synthetic nano-rough surface images.
We showed that we are able to model the structural morphology of nano-rough
surfaces. Our contribution to this work is summarized as follows.

1. We introduced a new loss component to the Generator as a means to reflect the
heights and frequency spectrum of nano-surface images. This substantially
improved the similarity of the generator-produced nano-surface images with the
real nano-surface images.

2. Furthermore, we proposed a novel architecture which resulted in the reduction
of the checkerboard artifact observed in generator-produced nano-surface
images.

3. Additionally, we optimized multi-component losses so that they equally
contribute to the Generator’s learning ability. The optimization considerably
improved the performance of the network.

4. We extended the network functionality so that it produces higher surface image
dimensions.

5. Finally, we contributed to technical implementations. We added an early
stopping criterion and we extended the network to support incremental training
through checkpoints. The technical implementations contribute to lessening the
computational cost needed for training the network.

Throughout the course of the research there were a lot of questions and findings that
came up. We consider it would be advantageous to investigate them in the future. We
summarize these possible next steps as follows.

1. It would be crucial to investigate further the checkerboard artifact irregularity
observed in generator-produced surface images.

2. It would be meaningful to incorporate explainability into the network. Since we
generate synthetic data it is crucial to provide interpretable explanations that
yield deeper insight on the adversarial network process.

3. It would be useful to investigate the use of a genetic algorithm for optimizing the
network and compare the results with other optimization algorithms.
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4. It would be crucial to research the discriminator weight update ratio during
training and examine the impact on the adversarial process. It would be
interesting to analyze the network performance when the discriminator weights
are updated at a slower ratio than the generator’s.

5. Further experimentation with different hyperparameter values might yield
substantial information regarding the network performance.
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