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Chapter 1

Introduction

In 1990, Harry Markowitz received the Nobel prize for his pioneering work in Modern

Portfolio Theory. It was back in 1952 Markowitz [64] when he introduced the Mean

Variance Criterion (hereafter; MVC) or as is else called the Mean Variance Optimization

(hereafter; MVO) method. The idea was simple but rather intriguing. Under the appro-

priate assumptions, an investor could diversify his portfolio based only on the first two

moments of his portfolio’s returns. This perspective was so groundbreaking that led to

some sort of skepticism, with the first reaction coming directly from Markowitz’s doctoral

supervisor, Nobel laureate Professor Milton Friedman. Professor Friedman remarked that

although Markowitz’s idea was interesting, it was not economics. The reason Friedman

made such a statement was because at that point of time (and still to this day) the aca-

demic world had adopted the idea that all that an investor wants to do is to maximize his

expected utility. This concept, known as the Representation Theorem, had been proven

by Von Neumann and Morgenstern (hereafter; VN-M). Thus, any new idea had to be

analyzed under this framework. In 1959, Markowitz [65] addressed this criticism by an-

alyzing his idea under the notion of utility. More specifically, Markowitz made the case

that for any investor with an approximately quadratic utility function, the MVO method

is the optimal decision making rule. To this day, any academic textbook or research

paper is referring to the MVO method under only two conditions. Namely, either (i) the

investor has quadratic preferences, or (ii) the portfolio returns are Gaussian. Markowitz

1



2

(2010, 2014) [63], [66] insists that he never made the case that the utility functions have

to be quadratic or that the portfolio returns have to be Gaussian. Chapters 2 and 3

of this thesis examine the MVO method with respect to its practicality as well as its

connection to the well-known Stochastic Dominance Rules (hereafter; SDRs).

Another major notion is the degree of risk aversion of investors. Arrow and Pratt

introduced this degree of risk aversion in absolute and relative terms. Namely, the Abso-

lute and Relative Risk Aversion (hereafter; ARA and RRA). The meaning of this notion

can be deduced directly by its name. It measures how much the investors “fear” risk.

According to Arrow and Pratt, ARA considers the investor’s level of risk-aversion with

respect to a lottery for different levels of wealth, while RRA considers the investor’s level

of risk-aversion with respect to a lottery that is a function of the investor’s wealth. The

literature has put a great deal of effort to determine what is the slope of each coefficient

as the level of wealth increases. In total, the majority of the empirical evidence show-

cases that investors exhibit decreasing ARA (hereafter; DARA). In terms of the RRA

the literature has found mixed evidence showing decreasing, constant or increasing RRA

(hereafter; DRRA, CRRA and IRRA). Most of the works approached this subject by do-

ing cross-sectional analysis on a set of different portfolio allocations of investors. Another

part has used panel data while others used options. In the fourth chapter, we will revisit

this subject by introducing a new approach to extract information with respect to the

investors’ level of ARA and RRA.

Chapter 2, offers our own view on the practicality of the MVO method. A plethora of

research works has declared the method to be extremely sensitive to the input parameters

even under normality. In fact, Michaud (1989) [67] characterizes the MVO method as “an

estimation-error-maximizer”. To offer our view on that, we use Monte Carlo (hereafter;

MC) Simulations. Specifically, following the rationale of DeMiguel et al. (2009) [24],

we compare the MVO method to the so-called “naive” strategy (or equivalently, 1/N)

under multiple generations Gaussian returns. Contrary to DeMiguel et al., we conclude

that the MVO method outperforms 1/N as soon as we control the differences between

the “true” Sharpe ratios produced by each strategy and the distance between the “true”

target portfolio return from the Global Minimum Variance (hereafter; GMV). Since the

method works properly under normality, we argue that more effort has to be made in
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order to determine the effect of the Data Generating Process (hereafter; DGP) on the

MVO method. In fact, we introduce a unique idea on this matter. Testing the method

under a DGP with multiple structural breaks in mean. We find empirical evidence that

justifies our idea and we proceed to test the method under multiple breaks in mean, using

once again MC Simulations. Our results indicate that an investor that overlooks a large

number of breaks will receive significantly worse results compared to a DGP with no

breaks. On top of that, the MVO method delivers inferior results to the 1/N strategy.

This is mainly due to the investor using the entire sample to estimate the variance-

covariance matrix, which will lead to an inflated estimation and so to a higher portfolio

risk.

Chapter 3, looks at the MVO method in terms of its theoretical value. In this chapter,

we refer to an investor deciding between just two lotteries. The MVO term is replaced

with the more common term known as the MVC. Our main goal is to clarify under which

assumptions does the MVC coincide with the SDRs. A SDR offers a specific decision

criterion, which constitutes a relation between the distributions of the two lotteries, for

a specific class of investors. This rule leads this specific class of investors to maximize its

expected utility. The reason we are interested into the relation between the SDRs and

the MVC is because the SDRs preceded the MVC, which means that any new approach

needs to be associated with them. To do that, we split our research in two parts. Namely,

(i) we discuss under what type of distributions the MVC coincides with a SDR, and (ii)

we discuss under what type of preferences the MVC coincides with a SDR. In terms of (i),

we deduce that the MVC coincides with the Second-order of Stochastic Dominance Rule

(hereafter; SSDR) under the Elliptical family of distributions for any risk-averse investor.

The idea with respect to the Elliptical family of distributions originates from Chamberlain

(1983) [17]. However, contrary to Schuhmacher et al. (2021) [80] this is not the case for the

Skew-Elliptical family of distributions. Specifically, our MC Simulations showcase that in

the case of a Skew-Normal distribution there are risk-averse investors who will not use the

MVC. In terms of (ii), we find that the assumption of quadratic utility function can only

make the MVC sufficient for the maximization of the expected utility of the investor.

With regards to the premise of Markowitz (1959) [65] concerning the approximately

quadratic utility functions, we apply MC Simulations. The simulations enable us to test
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Markowitz’s premise under several different types of distribution. Our results point that

the premise seems to be valid for Elliptical and Skew-Elliptical distributions but as we

deviate more from normality the MVC fails.

Chapter 4, which is the last part of this thesis deals with a somewhat different subject.

In this chapter, we focus on the risk aversion coefficients defined by Arrow and Pratt,

known as ARA and RRA. Doing a thorough analysis of the literature we deduce that

historically the ARA of investors has been decreasing while the RRA has been decreasing,

constant or increasing for different time periods. We offer a new way to track the level

of ARA and RRA with respect to the investor’s wealth. More specifically, we derive

a closed-form expression for the degree of RRA of a lottery with nonzero mean. This

formula serves as an alternative way to extract information with respect to the level of

ARA and RRA of investors using only the returns and market capitalization of a market

index and the 10-year Treasury bills of the respective market. We argue that the value

of this formula stems from its simplicity and its robustness. In fact, we test it under

recursive and rolling-window estimations. Both ways, confirm the empirical findings of

DARA. In terms of the slope of the RRA we derive different conclusions for different

time periods. Finally, we introduce a simple way to measure the differences in portfolio

diversification among different utility functions.



Chapter 2

The Performance Of The MVO

Method Under Structural Breaks In

Mean

2.1 Introduction

The theory of Von Neumann-Morgenstern advocates that a rational investor’s objective is

to maximize his expected utility. The literature suggests that, if the utility function has

a quadratic form, or equivalently, if the portfolio returns follow a Gaussian distribution,

the investor’s expected utility becomes a function only of the two first moments of the

portfolio returns. This result implies that the investor is only interested in his portfolio’s

expected return and volatility. Based on this idea Markowitz (1952, 1959) [64], [65]

gave birth to the MVO problem. The MVO method is even to this day very intriguing.

In fact, Markowitz in two of his very recent works, [66] and [63] (2010, 2014), clarifies

that a large part of the literature is still confused regarding the necessary and sufficient

conditions for the practical use of mean–variance analysis. Markowitz’s portfolio theory

is also celebrated for being the basis of a price formation theory for financial assets called

the Capital Asset Pricing Model (hereafter; CAPM), developed by Sharpe (1964) [82]

and some other researchers.

5



2.1. INTRODUCTION 6

The high interest on the MVO method stems from its intuitive nature. Namely,

all that the investor really needs to do is to either maximize his expected utility for a

specific level of portfolio risk, or minimize his portfolio risk for a specific level of portfolio

return. This simple optimization problem can be enriched with other constraints, like no

short-selling, a budget constraint, etc.. It comes as no surprise that the MVO method

has become a benchmark among portfolio choice methods mainly due to its simplicity.

However, this came along with multiple researchers seeking to understand how the model

works along with how robust it is.

The earliest part of the literature, focused mainly on understanding how the model

works. Frankfurter et al. (1971) [28] design an experiment which indicates that even

under normally distributed stock returns, the efficient set of three-asset portfolios varies

substantially among different sample sizes. So, they conclude that selecting portfolios

using the MV approach does not ensure better performance than a random choice of

portfolios. Barry (1974) [10] and Bawa and Klein [12] showcased that the expected

portfolio return remains the same whether or not the two input parameters, the mean

of the assets µ and the variance-covariance matrix Σ are unknown. On the other hand,

the expected portfolio risk increases if one of the two parameters is unknown and it gets

even higher if both of them are unknown. Dickinson (1974) [25] argues that in order to

estimate the portfolio risk one needs a very large sample. He also finds evidence that the

MVO strategy is unstable for portfolios of 2 assets. In another work, Lai et al. (2011)

[48] propose a Bayesian approach assuming that µ and Σ are unknown. In particular, the

authors assume a prior distribution for expected returns and covariances and reformulate

the Markowitz problem as a stochastic optimization problem.

The majority of research on the issues observed on the MVO method has to do with

studying the effect of the input parameters on the MVO method. Jobson and Korkie

(1980, 1981) [40], [39] were among the first to study the plug-in estimates of the mean

and variance-covariance matrix of stock returns and point to them as the main sources

of sensitivity in the MVO method’s results. In their work, the two authors conclude

that, under the assumption of a Gaussian distribution for the stock returns, the plug-in

estimates lead to extreme errors in the weights, the portfolio return and the portfolio

variance. Based on this evidence, Michaud (1989) [67] characterized the MVO method
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as an “estimation-error maximizer”. From that point on, a plethora of research papers

have studied the sensitivity of the MVO method. Best and Grauer (1991) [13] developed

analytical expressions describing the sensitivity of the optimal portfolio to changes in the

mean returns of the assets. Chopra and Ziemba (1993) [19] found out that the relative

effect of means accounts significantly more for the error on the investor’s utility com-

pared to the relative error in variances and covariances. In another work from Chopra

et al. (1993) [20], the authors investigate alternative ways for improving historical esti-

mates, including the use of Stein estimators. They decide that using Stein’s estimation

method, the MVO derives higher portfolio returns with less risk than the plug-in estima-

tion method. Broadie (1993) [14] highlights that using a larger sample for the estimation

of the input parameters can lead to them being nonstationary. So, he argues that there

is a tradeoff between estimation error and stationarity. Moreover, Broadie approves the

argument of Chopra and Ziemba. Namely, that the effect of estimated mean returns is

far greater on the MV approach than the estimated variance-covariance matrix. So, in

his words: “One recommendation for practitioners is to use historical data to estimate

standard deviations and correlations but use a model to estimate mean returns”.

A more recent part of the literature has done extensive research on finding more

efficient ways to estimate the variance-covariance matrix. Ledoit and Wolf (2001, 2003)

[51], [50], were among the first ones to publish works on how to improve the variance-

covariance estimator. Their main argument rested on the fact that “when the number of

stocks under consideration is large, especially relative to the number of historical return

observations available (which is the usual case) the sample covariance matrix is estimated

with a lot of error”, because it becomes singular, i.e. non-invertible. To fix this, Ledoit

and Wolf used Stein’s shrinkage method [84] on the sample variance-covariance matrix.

Jagannathan and Ma (2003) [38] show that constraining the portfolio weights to take

only non-negative values has a shrinkage-like effect on the covariance matrix estimate.

More specifically, the large covariances that would otherwise imply negative weights can

be shrunk substantially just by imposing a non-negativity constraint or even an upper-

bound constraint. Kourtis et al. (2012) [46] argue that shrinking the variance-covariance

matrix leads to an underperforming portfolio. So, they propose a new framework in which

they directly estimate the inverse of the covariance matrix.
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Another interesting part of the literature studies Markowitz under the assumption of

non-normality of stock returns. Non-normality for daily stock returns has been generally

accepted since the work of Mandelbrot (1963) [61]. Mandelbrot showed, empirically, that

stock returns are leptokurtic and are part of the so-called Lévy stable (Paretian) family.

Now, Jondeau and Rockinger (2006) [43] find evidence that for moderately non-normal

distribution the MV approach works well, in that it approximates the maximization of

expected utility under the framework of Von Neumann-Morgenstern. However, they also

consider two more datasets which are increasingly non-normal and show that for such

cases one needs higher moments, namely the skewness and kurtosis of stock returns, to

get better approximations of the expected utility. Another interesting work is that of

Xiong and Idzorek (2011) [89] who developed a different asset allocation approach based

on the assumption of a truncated Lévy flight distribution. Once again, the importance

of higher moments became evident though their work. Lastly, Jondeau and Rockinger

(2012) [42] capture non-normality through GARCH-type models. These works with the

exception of [43] deviate from the framework set by Markowitz.

An alternative approach for determining the effectiveness of the MV approach is to

compare it against other portfolio building strategies. DeMiguel et al. (2009) [24] derived

some theoretical results which they verified through MC Simulations, that showcased the

inability of the MVO strategy to outperform 1/N , out-of-sample. Pflug et al. (2012) [75]

argued that one should prefer 1/N over Markowitz when the distribution of asset returns

is ambiguous. The idea of comparing the MVO method directly to the simple “naive”

strategy is very intuitive and for that reason we will follow it to make our conclusions

with respect to the practicality of the MV approach.

Evidently, the literature has made a significant effort to address the effects originating

from the plug-in estimates on Markowitz. However, it seems that we have reached to an

impasse, which means that we need to revisit the building blocks of the MVO method

and give careful answers to the following questions. Namely, (i) Is the MVO method

truly impractical against 1/N under the assumption of normality? In other words, what

is the necessary sample size T we need relative to the number of stocks N for the MVO

method to outperform the naive rule? (ii) We will measure the rate of convergence of

the estimated weights coming from the MVO method relative to T and the number of
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assets N . We expect Markowitz to work well under normality. We will see however that

in order to make the right conclusions it is of paramount importance to compare 1/N

with the MVO method under the same terms. Using MC Simulations, we will see that

under normality Markowitz outperforms 1/N for relatively small samples. The results

will lead naturally to the following question. (iii) If Markowitz’s approach works well

under normality then why does empirical evidence suggest that the method is extremely

sensitive? We believe that the answer to this question lies in the DGP of stock returns.

In other words, if an investor presumes that stock returns are normally distributed while

in reality this is not the case it is more than expected that Markowitz’s method will

underperform.

In the literature, there is strong evidence that stock prices or returns exhibit regime

shifts due to some drastic change in the economic environment, see for example [7],

[31], [78] and [85]. The more significant the economic change the larger the shift in

stock prices or returns. These papers identify only few large regime shifts. We will

argue that daily stock returns are subject to multiple breaks in mean, mainly due to the

fact that they are not i.i.d. in reality. We are going to provide empirical findings that

justify that premise. These breaks happen abruptly at multiple points in time, due to

various economic events or stock market reactions, pushing the DGP’s means up or down.

Moreover, these breaks might not be significantly large, but we will see that there is a

large number of such breaks. In case the investor overlooks these breaks he will end up

with misleading conclusions with regards to the usefulness of the MVO method. In fact,

as the investor ignores more and more of those breaks he is going to estimate an inflated

variance-covariance matrix, which will lead to higher estimated portfolio variances. Our

aim is to study the performance of the MVO method against 1/N under multiple breaks

in mean. Furthermore, we will also focus on how the “no break” case compares to the

multiple break cases in terms of the MVO method’s performance. The idea of testing the

MVO method under a DGP with structural breaks in means has not yet been examined

by the literature. Our results suggest that the presence of multiple breaks in means

affects substantially the performance of Markowitz’s method if they are ignored.

Our main findings split into two parts. (i) The MC Simulations showcase that the

MVO strategy outperforms the 1/N strategy under the assumption of Gaussian DGPs,
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as long as we control the differences between the true MV Sharpe ratio and the true

naive Sharpe ratio. (ii) Under DGPs with structural breaks in mean, the MC Simulations

indicate that an investor that overlooks multiple breaks and proceeds with the assumption

that the data is Gaussian, will estimate inflated covariances which will lead to the MVO

method underperforming the 1/N case.

2.2 Theoretical Framework

Before anything it is crucial to analyze the statistical properties of the MVO method.

We believe that both 1/N and MVO should be tested under the same terms, in order to

draw safe conclusions. This can be achieved by setting the portfolio returns from each

strategy to be equal. We will elaborate on that in the following sections. Now, the MVO

problem is defined as shown below

min
w

w′Σw

subject to: w′1 = 1

w′µ = µr

(2.1)

where µr represents the true portfolio return and

µ =



µ1

µ1
...

µN


, Σ =



σ2
1 σ12 . . . σ1N

σ21 σ2
2 . . . σ2N

... ... . . . ...

σN1 σN2 . . . σ2
N


.

represent the mean and variance-covariance matrix of N different stocks, respectively.

Each stock i = 1, . . . , N has a sample size of T stock returns. The solution of (2.1) is

derived using Lagrange multipliers. So, the true weights wr are expressed by

wr =
[

Γµr − A
∆

]
Σ−1µ+

[
B − Aµr

∆

]
Σ−1

1 (2.2)

where

A = 1
′Σ−1µ, B = µ′Σ−1µ, Γ = 1

′Σ−1
1,

∆ = BΓ− A2
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We observe that the weights produced are a non-linear function of µ, Σ and µr. These

results are unknown to the investor but we need them to do the appropriate in-sample

tests using MC Simulations in the following sections. So, in reality, he is obliged to

estimate the input parameters µ and Σ in order to derive the estimated weights.

The most common way to estimate µ and Σ is to use the available historical data.

Then, if we have N assets and T observations for each one of them our so called plug-in

estimates µ̂ and Σ̂ are expressed by

µ̂ =



µ̂1 =
T∑
t=1
R1t

µ̂2 =
T∑
t=1
R2t

...

µ̂N =
T∑
t=1
RNt


and

Σ̂ =



σ̂2
1 σ̂12 · · · σ̂1n

σ̂21 σ̂2
2 · · · σ̂2n

... ... . . . ...

σ̂n1 σ̂n2 · · · σ̂2
N


=



1
T−1

T∑
t=1

(R1t − µ̂1)2 1
T−1

T∑
t=1

(R1t − µ̂1) (R2t − µ̂2) · · · 1
T−1

T∑
t=1

(R1t − µ̂1) (RNt − µ̂n)

1
T−1

T∑
t=1

(R1j − µ̂1) (R2t − µ̂2) 1
T−1

T∑
t=1

(R2t − µ̂2)2 · · · 1
T−1

T∑
t=1

(R2t − µ̂2) (RNt − µ̂n)

· · · · · · · · ·
1

T−1

T∑
t=1

(R1t − µ̂1) (RNt − µ̂N ) 1
T−1

T∑
t=1

(R2t − µ̂2) (RNt − µ̂N ) · · · 1
T−1

T∑
t=1

(RNt − µ̂Nt)2


.

Now, if we make the additional assumption that the stock returns Rt follow an i.i.d.

multivariate normal distribution.

Rt =



R1t

R2t
...

RNt


∼ N(µ,Σ),

then, µ̂ and Σ̂ are the best possible estimators of µ and Σ we can have. Meaning that
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they are both unbiased and consistent. So, in that case we have that

E[µ̂] = µ, µ̂
P→ µ

E[Σ̂] = Σ, Σ̂ P→ Σ

We recall from (2.2) that w is a function of µ, Σ and µr. So, the estimator of wr is written

as shown below.

ŵ =
[

Γ̂µr − Â
∆̂

]
Σ̂−1µ̂+

[
B̂ − Âµr

∆̂

]
Σ̂−1

1 (2.3)

The next logical step is to ask ourselves if the properties of µ̂ and Σ̂ apply also to ŵ. For

this we need to make use of Jensen’s inequality.

Proposition 2.1. (Jensen’s inequality) Let X be an integrable random variable. Let

g : R 7→ R be a concave function such that it is also integrable. Then, the following

inequality, called Jensen’s inequality, holds:

E[g(X)] ≤ g(E[X]) (2.4)

In our case, we have that ŵ = g(µ̂, Σ̂, µr), where g represents a non-linear function.

This implies that under Proposition 2.1:

E[ŵ] 6= w

So, although both µ̂ and Σ̂ are unbiased estimators of the true µ and Σ this is not the

case for ŵ. Since this is the case one would wonder how big is the bias E[ŵ]− w, as we

increase the sample size T . To answer this question we have to examine whether or not

ŵ is at least a consistent estimator. The answer comes from the Continuous Mapping

Theorem.

Theorem 2.2. (Continuous Mapping Theorem) Let Xn be a sequence of N-dimensional

random vectors. Let g : RN 7→ RM be a continuous function, where N and M belong to

the natural numbers. Then,

Xn
P→ X ⇒ g(Xn) P→ g(X) (2.5)
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If we make use of Theorem 2.2 we see that

µ̂
P→ µ

Σ̂ P→ Σ

⇒ ŵ
P→ w

What this says is that for small samples T we expect a level of bias, which should decline

as we increase T . The question is how significant will this level of bias be for small

samples? That, we believe stems from (i) the level of bias in µ̂ and Σ̂ and (ii) the level

of non-linearity of g(µ̂, Σ̂, µr). So, in small samples the level of bias in both µ̂ and Σ̂ will

be positive. However, it is of high importance to identify how much does the non-linear

function g enhance this error and thus increases the bias in ŵ. The best way to answer

this question is to make use of the MC Simulations. We are going to evaluate the MVO

method using the Sharpe ratio as a measure of performance. The “true” Sharpe ratio

will be denoted by SRr and it is defined as

SRr = µr
σr
,

where µr and σr represent the “true” target return and portfolio risk, respectively.

But first, we will review the work of DeMiguel et al. [24] in order to discuss some of

their results.

2.2.1 An Overview on DeMiguel et al. 2009

In their seminal paper, DeMiguel et al. [24] showed that, out-of-sample, the Sharpe ratio

of the 1/N strategy is higher than that of the sample-based mean-variance strategy. More

specifically, the Sharpe ratio derived by maximizing the investor’s utility,

max
w

w′µ− γ

2w
′Σw

where γ denotes the investor’s risk-aversion, is higher than that of the 1/N strategy,

out-of-sample, only for very large window sizes. This evidence is highly interesting as

it suggests that the simplest diversification strategy available is better to use. Their

work is separated into the theoretical results and the ones that result from running MC

Simulations.

The main attribute of the theoretical results is that they make use of the methodology

developed from Kan and Zhou [44], which is based on maximizing the expected utility of
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the investor as shown above. Then, we need to define a variable that measures difference

between the estimated Sharpe ratios and the ones that derive from the naive strategy.

Namely, we set

L(w∗, ŵ) = U(w∗)− E[U(ŵ)],

where w∗ represents the optimal weight and ŵ represents the estimated weight.

This measure is then used to derive the smallest window size M the MVO strategy

needs in order to outperform 1/N . The equation for this is shown below

M∗ = inf{M : L(w∗, ŵ) < L(w∗, 1
N
1)}

= inf{M : E[U(ŵ)] > E[U( 1
N
1)]}

= inf{M : E[U(ŵ)] > U( 1
N
1)}

Now, the authors end up with a closed-form solution for determining when the MVO

strategy outperforms the naive diversification1.

kSR2
r − SR2

1/N − h > 0 with,

k = M

M −N − 2

(
2− M(M − 2)

(M −N − 1)(M −N − 4)

)
< 1

h = MN(M − 2)
(M −N − 1)(M −N − 2)(M −N − 4) > 0

This criterion looks for the appropriate size of N and M the Markowitz method needs

in order to outperform 1/N . Using this criterion they form some examples. Two of

them are shown below, taken from their paper. The figures indicate that even for very

large differences between the Sharpe ratios obtained by each strategy we need at least a
1For further details refer to DeMiguel et al. (2009) [24].
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window size of M ' 150 months for N = 10 assets and M ' 1050 months for N = 100

assets. This theoretical evidence indicates that the MVO method looks very weak against

1/N even for very large differences between the Sharpe ratios. Moreover, their empirical

analysis supported their theoretical results, by finding that 1/N outperforms MVO out-

of-sample.

The authors then attempt to further support their theoretical findings by applying MC

Simulations. In fact, they generate stock returns for N = {10, 25, 50} stocks, T = 24, 000

sample size and for window sizes M = {120, 360, 6000}, through

Ri,t = βiR
idx
t + εt,

where βi ∼ U(0.5, 1.5), Ridx
t ∼ N(µp, σp) and εt ∼ N(0, σ2

1N). From this, we notice that

the model that generates the stock returns is designed in a way that benefits the 1/N

strategy. More specifically, the means derived from the generated returns as well as the

variances will be very close to each other for each stock. So, applying these moments

to the maximizing utility formula will lead to that are close to 1/N . Evidently, this

constitutes a very special case where the two strategies will obtain very similar Sharpe

ratios. Numerically, they have SRr = 0.51 and SR1/N = {0.47, 0.50, 0.51}, according to

N = {10, 25, 50}. So, it comes as no surprise that for just N = 10 assets we will need at

least a window size of M = 6000 to outperform 1/N .

So, although their empirical analysis found supporting evidence with respect to their

theoretical findings it seems that the MC Simulations are designed in such a way that

the strength of 1/N is overstated. Through the next pages, we will re-evaluate the two

strategies, namely MVO and 1/N , by applying MC Simulations. Our aim is to carry

out our own calibration study so as to compare our findings with those of DeMiguel

et al.. We will initiate our study under the assumption of stock returns following a

multivariate normal distribution. Under this assumption the MVO method is expected

to work properly, in that the only meaningful parameters are the mean and the variance-

covariance matrix. So, if the evidence found in DeMiguel et al. is also confirmed by our

study there is no point in using MVO, as there is a far more simple strategy to apply,

that of spreading your wealth equally among the assets.
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2.3 MVO Method Performance under Gaussian DGPs

2.3.1 Monte Carlo Simulations

The MC Simulations constitute an efficient way to do research on the statistical properties

of the MVO method for various sample sizes. We have already proven that the sample

weights ŵ are biased estimators of their real values, but they satisfy the property of

consistency. Under the use of the MC Simulations we will specify the level of bias for

both the input and output estimators as well as the rate at which it converges to zero as

we increase the sample size. Concurrently, we will see how much the Markowitz portfolio

is affected.

The MC Simulations will generate stock returns under an assumed distribution. Our

assumption is that the stock returns follow a multivariate normal distribution with a

mean vector µ and variance covariance matrix Σ, i.e. N(µ,Σ). From now on, µ and Σ

will be called the “true” parameters. Accordingly, the following results will represent the

“true” MVO results.

w =
[

Γµr − A
∆

]
Σ−1µ+

[
B − Aµr

∆

]
Σ−1

1

µr = w′µ = 1
N
1
′µ

σ2
r = w′Σw

SRr = µr
σr
,

(2.6)

where N represents the number of assets. Observe that we have set the “true” target

return to be exactly equal to the return obtained by the “naive” (or, equivalently 1/N)

strategy. The reason we set the same target return for both strategies is that we want to

compare them on the same terms. The “true” naive results will be

µ1/N = 1
N
1
′µ

σ2
1/N = 1

N21
′Σ1

SR1/N = µ1/N

σ1/N
,

(2.7)

Based on the “true” parameters we generate stock returns for each stock through a

multivariate normal distribution NN(µ,Σ) with a sample size of T . Thus, we obtain
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the sample mean and variance-covariance matrix µ̂ and Σ̂. This procedure needs to

be replicated multiple times so as to derive robust results. We denote the number of

replications by S. So, for each asset i = 1, 2, . . . , N we get

N(µ,Σ) ⇒ {Ri1, Ri2, ..., RiT}1 ⇒ µ̂1, Σ̂1

N(µ,Σ) ⇒ {Ri1, Ri2, ..., RiT}2 ⇒ µ̂2, Σ̂2

· · ·

N(µ,Σ) ⇒ {Ri1, Ri2, ..., RiT}S ⇒ µ̂S, Σ̂S


Now, we turn to the next step, which is solving the MVO problem for each replication s,

by applying the estimated parameters, µ̂s and Σ̂s. So, for each replication we solve the

MVO problem, which derives the “fully estimated” results as shown below.

ŵs =
[

Γ̂µr − Â
∆̂

]
Σ̂−1µ̂+

[
B̂ − Âµr

∆̂

]
Σ̂−1

1

µ̂e,s = ŵ′sµ̂s = µr

σ̂2
e,s = ŵ′sΣ̂sŵs

ŜRe,s = µ̂e,s
σ̂e,s

.

(2.8)

The reader should observe that µ̂e,s = µr. This simply means that we solve MVO by

setting the portfolio return to be always µr. This way we ensure that the estimated

results are comparable to the “true” results. We will refer to (2.8) as the “fully” estimated

solution. The “fully” estimated results will be the ones that are observed by the investor,

since they are functions of his estimates. However, there is one additional interesting case

as shown in Broadie (1993) [14]. There are also the “actual” results which represent the

realized case, i.e. the case where the investor combines the estimated weights with the

“true” parameters. More specifically,

ŵs =
[

Γ̂µr − Â
∆̂

]
Σ̂−1µ̂+

[
B̂ − Âµr

∆̂

]
Σ̂−1

1

µ̂a,s = ŵ′sµ

σ̂2
a,s = ŵ′sΣŵs

ŜRa,s = µ̂a,s
σ̂a,s

.

(2.9)

Evidently, the weights are estimated in the same way so they are denoted again by ŵs.

However, the µ̂a,s, σ̂a,s and ŜRa,s will be different as we now use the “true” mean and
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variance-covariance matrix. Also, we should highlight that now the portfolio return is

not equal to µr. Our focal point will be the “actual” case since it is more intuitive.

Now, the investor has to calculate the average of the “actual” and “fully” estimated

results, over all replications. So, the overall results will be

µ̂e = µr µ̂a = 1
S

S∑
s=1

µ̂a,s

σ̂
2
e = 1

S

S∑
s=1

σ̂2
e,s σ̂

2
a = 1

S

S∑
s=1

σ̂2
a,s

ŜRe = 1
S

S∑
s=1

ŜRe,s ŜRa = 1
S

S∑
s=1

ŜRa,s

Now we get to the final steps. To simplify the notation we will denote the sample

parameters by θ̂s for each replication s = 1, 2, . . . , S. For each replication we are going to

calculate the mean, the variance, the bias and the Mean Squared Error (hereafter; MSE)

of each θ̂s over all replications. So, we have that

E[θ̂] = 1
S

S∑
s=1

θ̂s

V ar[θ̂] = 1
S

S∑
s=1

[
θ̂s − E[θ̂]

]
bias[θ̂] = E[θ̂]− θ

MSE[θ̂] = 1
S

S∑
s=1

[
θ̂s − θ]

]2
where θ̂ = (θ̂1, θ̂2, . . . , θ̂S). These measures will highlight the difference between the

estimated input parameters and the estimated weights.

Now, as we have already said we will evaluate the quality of the MVO estimates

following the rationale of DeMiguel et al. (2009) [24]. More specifically, we compare the

MVO method with the simplest strategy, the so-called 1/N or “naive” strategy. Our aim,

is to determine what size of sample is needed so as for the MVO method to outperform

1/N . To do that, we will test for what sample size the following inequality holds.

SR1/N < ŜRa

If the above inequality holds for any sample size T it basically signals that the MVO

method is more efficient than the “naive”. More importantly, the lower the necessary
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sample size T in order for the inequality to hold, the more useful will be the MVO

method. Now, as T → ∞, the above inequality holds, asymptotically. Namely, due to

our analysis in the first section of this chapter we derive:

SR1/N < ŜRa
CMT, T→∞→ SR1/N < SRr.

2.3.2 Rates of Convergence of ŵ

In this section, we want to focus on the estimated weights derived from the MVO method.

More specifically, we would like to find a way to measure the speed at which the estimated

weights, ŵ, converge to their true values, compared to that of the estimated parameters,

µ̂ and σ̂2. Jensen’s inequality showcased that the sample weights produced by the MVO

strategy are biased but consistent estimators of the true weights. We expect that the

non-linear relationship of the weights with the mean and variance-covariance matrix will

play a major role in the efficacy of Markowitz’s strategy.

In general, an optimization method’s usefulness is characterized by each speed of

convergence to the optimized value. For example, there are well-known methods like

Newton’s method, root-finding algorithms, etc., which try to distinguish the best candi-

date among a set of models. In our case, the idea behind the rate or speed of convergence

is simple. If a method is fast it will need less iterations, or equivalently, smaller sample

sizes to converge.

How should one define the rate or speed of convergence? Our approach to this subject

starts by introducing a simple example. Consider an investor that is given two alternative

strategies to choose from. The aim is to find the one that converges faster to 0. Let’s say

that these strategies are 1/1000n and 1/2n. We know that both of them converge to 0

as n→∞. The investor is not aware of the strategies. All that he knows is the result of

the first iteration n = 1 of each strategy. Namely, the first strategy derives 0.001 while

the second one derives 0.5. Let’s set as a level of precision 10−5. So, the investor could

mistakenly choose the first strategy. The truth however is that 1/1000n needs n = 100 to

satisfy the 10−5 level of precision while 1/2n needs only n = 17. Evidently, 1/2n is much

faster than 1/1000n. This should highlight the importance of the rate of convergence.

So, we need a specific way of identifying the rate of convergence as well as the type
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of convergence of a sequence. For this we are led to the following definition.

Definition 2.3. Assume that a sequence xn converges to x, with x ∈ R. Let also,

lim
n→∞

xn+1 − x
(xn − x)p = r. (2.10)

Here, p defines the order of convergence and r the speed or rate of convergence.

We also need the following proposition to compare orders and rates of convergence.

Definition 2.4.

(i)If p = 1 and r = 1 then the convergence is called sub-linear

(ii)If p = 1 and 0 < r < 1 then the convergence is called linear

(iii)If p = 1 and r = 0 then the convergence is called super-linear

(iv)If p > 2 and r > 0 then the convergence is of pth-order

Therefore, the order of convergence specifies in what way a sequence converges while the

rate determines how quickly the same sequence converges to its limit. With respect to

the initial example, under Definition 2.4, we can easily observe that 1/1000n converges

to 0 sub-linearly while 1/2n converges to 0 linearly, and thus, as shown above, will need

a lower number of iterations to converge.

In our case, instead of focusing directly on the estimated parameters, ŵ, µ̂ and σ̂2,

we focus on their variances over the number of replications. The idea behind this is to

determine how quickly does the variance of each estimator converge to zero. We start

by identifying the rates of convergence of the variance of the sample mean V ar(µ̂i) and

sample variances V ar(σ̂2
i ), for i = 1, . . . , N . Since both estimators are unbiased and

consistent we can derive the closed-form expressions. So, the variance of the sample

mean over all replications will be

V ar(µ̂i) = 1
S

S∑
s=1

V ar(µ̂is) = S

TS
σ2
i = 1

T
σ2
i .

Now, in order to derive the formula for the variance of the sample variance we use the fact

that the variance-covariance matrix Σ̂ follows a Wishart distribution with T − 1 degrees



21 CHAPTER 2. THE PERFORMANCE OF THE MVO METHOD UNDER STRUCTURAL BREAKS IN MEAN

of freedom. So, V ar(Σ̂) = 1
T−1(σij + σ2

i σ
2
j ), for i, j = 1, 2, . . . , N . More specifically, we

deduce that over all replications we get

V ar(σ̂2
i ) = 2σ4

i

(T − 1)

V ar(σ̂ij) = 1
(T − 1)(σij + σ2

i σ
2
j )

So, we can now derive the rates of convergence. Under (2.10) we get

V ar(µ̂iT+100)
V ar(µ̂iT ) =

σ2
i

(T+100)
σ2

i

T

= T

T + 100
T→∞→ 1

V ar(σ̂2
iT+100)

V ar(σ̂2
iT )) = V ar(σ̂ijT+100)

V ar(σ̂ijT )) = T + 99
T

T→∞→ 1

Thus, according to Definition 2.4 the variances of the input sample estimates converge

sub-linearly to zero. The next step is to investigate the rate of convergence of the output

estimates, i.e. the estimated weights. However, in this case we cannot derive a closed-

form expression as we did for the input parameters. Referring to (2.3) we see that

the parameters are dependent with each other. So, we choose to approach this case

numerically. We start by a sample size T = 100 and reach up to T = 5000 with a 100 size

of step. This means that we have a sequence of 200 variances of each estimated weight

and for each replication. Using this method we conclude that

V ar(ŵT+100)
V ar(ŵT )

T→∞→ 1.

This result holds for any number of assets N . This was expected since we know that the

estimated weights are consistent estimators. So, we deduce that the rate of convergence

of the variance of the sample weights over all replications is also sub-linear. Therefore, we

need to find a way of identifying which rate of convergence is the faster among the input

and output sample estimates. We know for example that 1/n and 1/n2 both converge

sub-linearly to zero but with a different rate. As a result, the simplest thing to do is to

plot the variances of the estimated weights against the variances of the estimated means

as well as against two known sequences, 1/T and 1/T 3. In addition to that we can fit the

variances of the estimated weights by polynomials to have a more meaningful comparison.

We will plot assets with the maximum and minimum variance in the weight.
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The data we shall use is 300 daily stocks from S&P 500 spanning from January 2010

to December 2019. Through several tests we have observed that we can simply set some

random values for the Sharpe ratio SRr, the target return µr and the difference between

the target return and the return we get from the GMV, µr/µGMV . Controlling the

distance between µr and µGMV proves to be crucial as it determines the level of impact

the estimated means will have on the estimated weights. Namely, the further away we

get from the GMV, the more impact the estimated means will have on the MVO method.

Our main focus is how the rate of convergence of the variances of the estimated weights

behaves after increasing the number of assets N .

Now, we first start by finding 100 different combinations of N = {10, 25} assets

that have the same µr, SRr and µr/µGMV . For each case we will run S = 10, 000 MC

Simulations and keep track of the variances of the estimated parameters, with respect to

the sample size T . Below, we present the plotted variances of the sample weights against

the variances of the sample means, the 1/T and the polynomials fitted on the variances

of the sample weights.
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(a) N = 10, SRr = 1.2, µr = 15%, µr

µGMV
= 1.5
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(b) N = 25, SRr = 1.2, µr = 15%, µr

µGMV
= 1.5

Looking at the graphs we observe that the variances of the estimated weights for

N = 25 are drastically better compared to the N = 10 case. In fact, we see that

for N = 25 assets, the maximum variance, Vmax(ŵ), moves along with 1/T while the

minimum variance, Vmin(ŵ), becomes almost equal to 1/T 2. Initially, this may look like

a paradox, since we expect that the model will deliver more sensitive results as we increase

the number of assets. However, we should not confuse the sensitivity of the overall result
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of the model with the size of error in the estimated weights. As we increase the number of

assets to N = 25 the mean as well as the variance of the real weights drops significantly

compared to the N = 10 case. Now, as we raise the number of assets we have to deal

with the estimation of more weights which means that from that perspective the problem

of optimization becomes more complicated, hence more sensitive overall.

Overall, we conclude that as we raise the number of assets N the variance of the

estimated weights improves. Also, when we use daily data the variance of the estimated

means is almost fitted by 1/T 3. These findings lead us to the central and more practical

question. What T do we need according to N in order for MVO to outperform 1/N , i.e.

ŜRa > SR1/N .

2.3.3 Calibration Results

Based on the work from DeMiguel et al. [24], we argued that it is crucial for the investor

to know exactly the difference between the Sharpe ratios of the MVO and 1/N strategies

together with the difference between the target return and the return he would get from

the GMV,
SRr

SR1/N
and µr

µGMV

.

So, we need to adjust the values for the above criteria, so as to be able to deduce how

much does each one affect our final decision. This is a rather complex and demanding

computational problem. For that reason we will do the tests for N = {10, 25} assets.

Below, we present the table consisting of the different cases we will examine. The inter-

ested reader can refer to Appendix A 2.6, at the end of this chapter, in which we cover

12 more Criteria for N = {10, 15, 20, 25, 30, 35, 40} assets.

Table 2.1: Criteria values

SRr

SR1/N
= 1.2, µr

µGMV
= 1.5 SRr

SR1/N
= 1.2, µr

µGMV
= 1.75

SRr

SR1/N
= 1.3, µr

µGMV
= 1.5 SRr

SR1/N
= 1.3, µr

µGMV
= 1.75

For each criterion, we collect 2000 different combinations of N = {10, 25} assets that

satisfy it. Then, using S = 10, 000 MC Simulations we determine the minimum sample
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size T for which the “actual” MVO Sharpe ratios outperform the 1/N Sharpe ratios, for

each case of Table 2.1. Below, we can see the tables with the results for each case.

Table 2.2: SRr

SR1/N
= 1.2 and µr

µGMV
= 1.5

Sample size

min max mean std

N = 10 1000 3200 2012 408

N = 25 1500 4400 2405 437

Table 2.3: SRr

SR1/N
= 1.2 and µr

µGMV
= 1.75

Sample size

min max mean std

N = 10 1500 3700 2478 427

N = 25 2100 6600 3435 617

The first two Tables 2.2, 2.3 showcase the importance with regards to the number

of assets together with the difference between the portfolio returns. More specifically,

in Table 2.2 we see an increase of 20% in the average sample size needed to trust MVO

over 1/N . Accordingly, increasing the portfolio returns difference to µr/µGMV = 1.75

translates into a 39% raise in the mean sample size. As a result, we can deduce that

controlling for the portfolio returns difference will surely impact the final decision of the

investor in terms of the model he should use. This result stems from our choice of model,

that accounts for the target return. The next two cases are covered in Tables 2.4, 2.5

shown below.

Evidently, the magnitude of difference between the Sharpe ratios impacts the final

results drastically. Namely, from Table 2.2 to 2.4 we see a drop of 55% and 48% for

N = {10, 25}, respectively. With respect to Tables 2.3 and 2.5 the drop is around 55%
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Table 2.4: SRr

SR1/N
= 1.3 and µr

µGMV
= 1.5

Sample size

min max mean std

N = 10 500 1300 907 143

N = 25 800 1900 1146 173

Table 2.5: SRr

SR1/N
= 1.3 and µr

µGMV
= 1.75

Sample size

min max mean std

N = 10 1000 1900 1338 208

N = 25 1200 3200 1886 312

for both N = {10, 25}. This showcases the importance of controlling for the difference

between the Sharpe ratios. Moreover, our findings contradict the theoretical results of

DeMiguel et al. [24]. In fact, since the mean sample size T needed to outperform 1/N

plummets due to such a small increase in the difference between the Sharpe ratios, we may

infer that in more extreme cases the MVO strategy will outperform 1/N for significantly

smaller samples. So, overall, the results from this section indicate that Markowitz’s

method works well under normality.

2.4 MVO under Structural Breaks in Mean

As the results indicate in the previous section, Markowitz’s method functions well under

the ideal assumption of normally distributed data. In fact, we conclude that the non-

linearity of weights as well as the estimators of the input parameters should not lead

the investor to reject the MVO method. More importantly, contrary to DeMiguel et al.,

we argue that the MVO method outperforms the simple naive diversification strategy for

large sample sizes, even in cases of including a higher number of assets in our portfolio and

the data is not i.i.d.. This however, depends on the investor’s awareness of the differences
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between the Sharpe ratios, the portfolio returns and the number of assets.

Now, consider the following case. Two assets exhibit a number of b structural breaks

in their means at the same point in time and in the same direction.

Rt ∼ N(µ1,Σ) for 1 ≤ t < τ1

Rt ∼ N(µ2,Σ) for τ1 ≤ t < τ2

...

Rt ∼ N(µb+1,Σ) for τb+1 ≤ t ≤ T

with τ1, τ2, . . . , τb+1 representing the points at which the breaks in mean take place. In

our framework, the variance-covariance matrix, Σ, remains the same. Assume also that

the investor ignores the breaks and proceeds with estimating the means and variance-

covariance matrix of the two assets over the entire sample size. Thus, based on his

estimation he believes that

Rt ∼ N(µ̂, Σ̂) for 1 ≤ t ≤ T.

Subsequently, he uses the estimated parameters, µ̂, Σ̂, to build a portfolio by applying

the MVO method. How would the results of the MVO method be affected? Intuitively,

ignoring one or more breakpoints should result in an erroneous positive correlation be-

tween the two assets. Moreover, as the number of breaks gets larger the correlation should

increase accordingly. Some numerical examples will help us see that.

Assume that the starting parameters of the two assets are the following.

µ = (0.05, 0.07), Σ =

0.7 0

0 1

 .
Initially, we generate returns with B = 50 breaks in mean which take place at the same

point in time for both assets and in the same direction. The magnitude of each break

lies somewhere inside [−50%,+50%]. Then, we calculate the correlation between the two

assets and plot the returns in order to see if the positive correlation is apparent. We then

do the same for B = 200 breaks. The choice for the number of breaks is not random. We

will see later that these numbers of breaks are justified through real data. Both cases,

can be found in the following Figures.
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Figure 2.2: N = 2 assets with 50 breaks
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Figure 2.3: N = 2 assets with 200 breaks

Figure 2.2 indicates that B = 50 breaks in mean can result in estimating either a 10% or a

20% positive correlation if ignored. Furthermore, there is no apparent evidence of breaks
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in the two graphs. As Figure 2.3 shows, when the number of breaks increases to 200

we may estimate even higher positive correlations, namely, 30% and 40%, by mistakenly

estimating µ and Σ using the entire sample size. So, as we overlook more and more breaks

in mean our estimations with respect to Σ will get even worse. Obviously, supplying the

MVO method with wrong estimations will lead to wrong decisions.

The previous examples, give as an idea of how important it is to determine whether

or not the Data Generating Process (DGP) under assumption exhibits structural breaks.

There is a large part of the literature on DGPs with structural breaks (equivalently,

regime shifts) in their parameters. Chu et al. (1996) [22] find evidence of six regimes

with significantly different volatility, using a Markov switching model to market returns.

Pesaran and Timmermann (2004) [73] argue that large breaks in means or variances can

lead to biased and inconsistent forecasts. Rapach and Wohar (2006) [78] find strong

evidence of structural breaks in five bivariate predictive regression models of S&P 500

returns. We will argue that stock returns, and especially daily stock returns, exhibit

multiple structural breaks in mean. This happens mainly because daily stock returns are

not i.i.d. in reality. Ignoring those breaks will lead us using the entire sample to do our

estimates. Thus, we will end up misestimating µ and Σ. This way, we might deduce that

the 1/N strategy outperforms the MVO method, which will be a wrong inference. The

current literature has not made yet any effort to study the link between structural breaks

and their effects on the MVO method.

2.4.1 Methods for Identifying Structural Breaks in Mean

In this section, we are going to review the various methods for identifying shifts in means.

Chow (1960) [21], developed the well-known Chow test for determining whether the true

coefficients in two linear regressions on different data sets are equal. Assuming that we

have evidence that a break point in mean takes place at a known period, τ , we can use the

Chow test on two intervals, namely, [1, . . . , τ ] and [τ + 1, . . . , T ]. A similar approach for

detecting a single change-point in the mean of independent identically distributed random

variables was introduced by Sen and Srivastava (1975) [81]. Brown, Durbin and Evans

(1975) [15] developed Cusum and Cusum Squared tests to handle cases in which the time
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of the break is unknown. Later on, Andrews (1993) [3] tested for structural changes in

parametric models with unknown change point, considering Wald, Lagrange multiplier,

and likelihood ratio-like tests. An important part of the literature extended these tests

to allow for multiple breaks. Bai and Perron (1998, 2002) [5] and [6] were among the first

ones who considered cases related to multiple structural changes with unknown dates.

Still, the number of breaks expected to be found has to be predetermined. Lavielle

and Moulines (2000) [49] use penalized least-squares to estimate the number of known

change-points in the presence of long memory in the error process. Pesaran et al. (2006)

[72] introduce a hidden Markov chain approach to model the meta distribution of the

parameters of the stochastic process underlying structural breaks. A similar approach is

found in [74].

In our work, we will use the approach introduced by Killick et al. (2012) [45] which is

similar to Lavielle and Moulines (2000) [49]. The test developed by Killick et al., detects

change points by minimising a cost function over all possible numbers and locations of

change points. The test can identify multiple structural breaks in mean or variance at

unknown periods. The main reasons we use Killick’s et al. approach are: (i) it is the

only method that does not require to predetermine the number of breaks, and (ii) we do

not need to specify the dates at which the breaks happen.

So, we define Ri,1:T = (Ri1, RiT , . . . , RiT ) for i = 1, 2, . . . , N . Also, the number of

changepoints is represented by B and their positions by τ1:B = (τ1, τ2, . . . , τB). We further

assume that the possible breakpoints are between 1 and T − 1 inclusive and are ordered,

meaning that τi < τj if and only if i < j. Consequently, the B different breakpoints split

the data into B + 1 segments, with the ith segment containing Rτi−1+1:τi
.

Now, in order to identify multiple breaks in mean Killick et al. argue that we need to

minimize a function of the following form

B+1∑
b=1

[C(Rτj−1+1:τj
)] + βf(B),

where C represents the cost function of a segment and βf(B) is a penalty term. In our

case, β = 0. This means that we are not looking to identify only the most significant large

shifts in mean that happen due to high-impact events like the pandemic or the financial

crisis of 2008. In reality, we look for multiple breaks in mean that might be small in value
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and happen due to low-impact events. The reason we expect to find multiple breaks in

mean is because stock returns are not i.i.d. in reality. Following that, we expect to find

out that if we ignore a large number of common breaks in mean for a set of N assets we

will end up with large estimates of the correlations between the stocks. This idea will

become more clear as we carry on.

Since we are interested in breaks in mean, the cost function C is actually the sum of

squared residuals (SSR) from the “best” horizontal level for each segment. So, if we ask

for a unique break in mean the method will search for the point τ where the total SSR

is minimized. In mathematical terms, we need to minimize

C =
τ−1∑
t=1

(R1t −
1

τ − 1

τ−1∑
t=1

R1t)2 +
T∑
t=τ

(R1t −
1

T − τ + 1

T∑
t=τ

R1t)2

= (τ − 1)V ar(R1, . . . , Rτ−1) + (T − τ + 1)V ar(R1τ , . . . , RT ),

for each asset and each breakpoint at time τ . This kind of approach for detecting multiple

shifts in mean is very intuitive and easy to replicate.

As we have already highlighted, we are only interested in identifying the common

breaks of a portfolio of N assets with the same direction. So, we first use the method to

identify the breaks in mean for each asset. Then, we keep only the common breaks of a

specific set of assets N with the same direction. Doing that, we want to showcase the fact

that if we ignore the multiple common breaks of the assets, we will end up misestimating

the correlations. More specifically, for sets of N assets with a higher number of common

breaks in mean, we expect to derive higher estimated values of the correlations between

the assets over the entire sample. So, the main idea is that we ignore the multiple common

breaks in mean and we proceed with estimating the correlations between the stocks using

the entire sample as if it was i.i.d.. Thus, we expect to derive a more “inflated” correlation

matrix as we increase the number of common breaks. In the following section, we will

see that this is truly the case.

Before applying the method of Killick et al., we remove the GARCH effect from our

data. According to Mandelbrot (1963) [61], an important empirical regularity of stock

returns is known as “volatility clustering”, which argues that large changes tend to be

followed by large changes, of either sign, and small changes tend to be followed by small

changes. This might result in periods of extreme levels of volatility which should not be
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considered as breakpoint segments. Thus, we need to adjust the stock returns accordingly.

A common way to capture this empirical regularity, is by assuming that the stock returns

are produced by a GARCH model. In practice, we use a GARCH(1,1) model to estimate

the conditional variances as shown below.

Rt = εt

εt = σtzt, zt ∼ N(0, 1)

σ2
t = ω + ασ2

t−1 + βε2
t−1

Then, we divide the stock returns, Rt, by the estimated conditional variances σt. This

way, we remove the GARCH effect from our data.

Radj
t = Rt

σt
.

So, we apply Killick’s et al. test on the adjusted stock returns. Following that, we search

for the common breaks in mean for a portfolio of N assets which move in the same

direction.

2.4.2 Empirical Motivation

We collect daily stock returns for the constituents of the following indices, FTSE 100,

STOXX 600 and S&P 500. Our data is spanning from 2000 to 2021. The reason we collect

data from different markets is to determine whether or not our conclusions for S&P 500

are consistent for the other markets too. Our main goal, is to examine Markowitz’s MVO

method when the underlying process exhibits structural breaks in mean and the investor

ignores them. So, first, we collect those assets that exhibit breaks in the same direction.

In other words, the assets display either a concurrent negative shift in their means or a

concurrent positive shift at the same point in time. Then, we build portfolios consisting

of N = 10 assets which exhibit B = {50, 100, 150, 200} common breaks.

For each portfolio, we set the annualized target return to be µr = 15% (the conclusions

made are the same when checking for different levels of target return). We then solve the
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classic form of the MVO optimization problem, as shown below.

min
w
w′Σw

s.t. w′e = 1

w′µ = µr

The variables µ and Σ are estimated using the entire sample. This implies that the

investors overlook the multiple breaks that took place through the years. We do this for

approximately 100 different portfolios of N = 10 assets, for each break case. Thus, we

are certain that our findings are robust. Evidently, the only factor that varies among the

different numbers of breaks, is the portfolio risk σr. Below, we present the correlation

matrix of two representative portfolios of N = 10 assets, for 50 and 200 common breaks

in mean, respectively.

Asset 1

Asset 2

Asset 3

Asset 4

Asset 5

Asset 6

Asset 7

Asset 8

Asset 9

Asset 10

A
s
s
e
t 
1

A
s
s
e
t 
2

A
s
s
e
t 
3

A
s
s
e
t 
4

A
s
s
e
t 
5

A
s
s
e
t 
6

A
s
s
e
t 
7

A
s
s
e
t 
8

A
s
s
e
t 
9

A
s
s
e
t 
1
0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) 50 common breaks

Asset 1

Asset 2

Asset 3

Asset 4

Asset 5

Asset 6

Asset 7

Asset 8

Asset 9

Asset 10

A
s
s
e
t 
1

A
s
s
e
t 
2

A
s
s
e
t 
3

A
s
s
e
t 
4

A
s
s
e
t 
5

A
s
s
e
t 
6

A
s
s
e
t 
7

A
s
s
e
t 
8

A
s
s
e
t 
9

A
s
s
e
t 
1
0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) 200 common breaks

Figure 2.4: Correlation matrices of N = 10 assets from S&P 500

The remaining portfolios of N = 10 assets, for each break case, derive very similar results

to those illustrated in Figure 2.4. Apparently, the correlations considering the 50 breaks

case are mostly around 20% or lower, while in the 200 breaks case most of the correlations

are around 40% or higher. This indicates that the higher the number of breaks that

the investor ignores, the higher will be the values of the estimated correlations. Since
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this is the case for each portfolio of N = 10 assets and for each break case, we have

sufficient evidence that there exist multiple breaks in mean in real stock returns and,

more importantly, they affect the correlations between the stocks. We argue that this

will affect both the estimated portfolio risk and the estimated Sharpe ratio from the

MVO method and, by extension, the investor’s decision making. This is showcased in

the following graphs.
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Figure 2.5: Portfolio risks and Sharpe ratios of N = 10 assets from S&P 500

Figure 2.5 illustrates the impact of structural breaks on the estimated portfolio risk and

by extension on the estimated Sharpe ratios. In fact, we see that the annualized portfolio

risk is approximately 38% higher in the 200 breaks case compared to the 50 breaks case.

Likewise, the annualized Sharpe ratio drops by almost 26%. From that, we deduce that

a DGP exhibiting multiple common breaks in mean can alter our portfolio allocation

decisions by a considerable amount.

What is interesting, is that the same conclusions can be made also for the European

market. Namely, the 200 breaks case for both FTSE 100 and STOXX 600 contains

significantly correlated assets compared to the 50 breaks case for 50 different portfolios

of N = 10 assets. This is shown in the following figures.
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(a) 50 common breaks
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(b) 200 common breaks

Figure 2.6: Correlation matrices of N = 10 assets from FTSE 100
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Figure 2.7: Correlation matrices of N = 10 assets from STOXX 600

Our empirical findings, justify the use of MC Simulations on the MVO method for

DGPs with multiple common breaks in mean. The main difference is that we are going

to replace the assumption of a multivariate normal DGP with that of a DGP exhibiting

multiple common breaks in mean. The simulations will help us make a one-to-one com-

parison between the MVO method and 1/N under the no break case and the multiple
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breaks cases.

2.4.3 MC Simulations

In this framework, we will consider the “no break” case, i.e. B = 0, in which the DGP

is a multivariate NIID, as well as the “break” cases with B = {50, 100, 150, 200}. In the

“no break” case, the investor sill simply need to use the whole sample to estimate the

parameters and solve the MVO problem. As in the Gaussian case the “true” parameters

will be denoted by µ and Σ. The only extra assumption in this case is that we assume

that Σ has also zero covariances. The main idea behind this premise is that the non-zero

covariances we see in a group of assets are mainly due to the effect of multiple common

breaks in mean. We illustrated some interesting examples showing that in the previous

section. We further assume that the investor sets the same target return for the MVO

strategy to be exactly the same as the return obtained from the 1/N strategy. Thus, the

“true” MVO and 1/N results with no breaks, i.e. B = 0, will be

µ0
1/N = µ0

r = 1
N
1
′µ w(µ,Σ, µ0

r)

σ0
1/N = 1

N

√
1′Σ1 µ0

r = µ0
1/N = w′µ

SR0
1/N =

µ0
1/N

σ0
1/N

σ0
r =
√
w′Σw

SR0
r = µ0

r

σ0
r

We proceed with the estimation of the “actual” results using MC Simulations. The

“actual” results for the “no break” case are estimated replicating the MC methodology

for the Gaussian case. Thus, we derive the same results as in (2.9). Finally, we take their

averages over all replications and divide by the respective “true” 1/N results. Thus, we

end up with

µ̂
0
a

µ0
1/N

σ̂
0
a

σ0
1/N

ŜR
0
a

SR0
1/N

Obviously, as we increase the sample size T the “actual” values of the MVO strategy will

converge to their “true” values. From now on, the “no break” case, namely B = 0, will

act as the benchmark for our analysis in the structural “break” framework.
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Now, let us turn to the focal point of this section, which is the structural breaks in

mean. We consider B = {50, 100, 150, 200} common breaks in mean. All breaks in means

take place at the same point in time for N assets and in the same direction. The most

intuitive way to compare the “no break” case to the multiple “breaks” cases is to simply

test the differences between the MVO “actual” results and the 1/N results under each

“break” case. We expect that as we increase the number of breaks in mean the MVO

“actual” Sharpe ratio will get closer to the 1/N Sharpe ratio, compared to the “no break”

case, which means that the MVO strategy will become weaker. We will explain further

this idea in the following lines.

We assume that in each “break” interval the stock returns follow an multivariate NIID

with a mean vector µb and a variance-covariance matrix Σ, with b = 1, 2, . . . , B+ 1. The

position of each break is denoted by τ1:B = (τ1, τ2, . . . , τB). We also set the distance

between each break to be equal to T
B+1 . Subsequently, we generate data for each interval

[1, τ1], [τ1, τ2], . . . , [τB, T ], through N(µb,Σ), for b = 0, . . . , B. Schematically,



N(µ0,Σ) [1,τ1]⇒ {Ri1, Ri2, ..., Ri T
B+1
}

N(µ1,Σ) [τ1,τ2]⇒ {Ri1, Ri2, ..., Ri T
B+1
}

... ...

N(µB,Σ) [τB ,T ]⇒ {Ri1, Ri2, ..., Ri T
B+1
}


1

⇒ µ̂1, Σ̂1



N(µ0,Σ) [1,τ1]⇒ {Ri1, Ri2, ..., Ri T
B+1
}

N(µ1,Σ) [τ1,τ2]⇒ {Ri1, Ri2, ..., Ri T
B+1
}

... ...

N(µB,Σ) [τB ,T ]⇒ {Ri1, Ri2, ..., Ri T
B+1
}


2

⇒ µ̂2, Σ̂2

... ...

N(µ0,Σ) [1,τ1]⇒ {Ri1, Ri2, ..., Ri T
B+1
}

N(µ1,Σ) [τ1,τ2]⇒ {Ri1, Ri2, ..., Ri T
B+1
}

... ...

N(µB,Σ) [τB ,T ]⇒ {Ri1, Ri2, ..., Ri T
B+1
}


S

⇒ µ̂S, Σ̂S
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where S represents the number of replications.

Now, let us turn to the “true” MVO and 1/N results for the “break” case. The investor

could take the average of all means, namely µ = µ0+...µB

B+1 , together with the “true” Σ to

derive the “true” results for both strategies. This way, the investor will derive the “true”

MVO and 1/N results of each “break” case as follows

µB1/N = µBr = 1
N
1
′µ w(µ,Σ, µBr )

σB1/N = 1
N

√
1′Σ1 µBr = µB1/N = w′µ

SRB
1/N =

µB1/N
σB1/N

σBr =
√
w′Σw

SRB
r = µBr

σBr

Now, we have already argued that the multiple structural breaks will impact the MVO

strategy if the investor ignores those breaks. In fact, as the investor overlooks more and

more breaks in mean he will end up using the entire sample size to estimate the variance-

covariance matrix Σ. This will lead to an inflated estimator Σ̂. We will see that this

inflated Σ̂ impacts the MVO strategy hugely. The MC Simulations will help us measure

this impact accurately.

The “actual” results for the “break” case will follow the same rationale as in the

Gaussian case. The reason being that the investor ignores the breaks in mean and regards

the data as being NIID. Thus, the “actual” results for the “break” case will be

µ̂Ba,s = ŵ′sµ σ̂Ba,s =
√
ŵ′sΣŵs, ŜR

B

a,s =
µ̂Ba,s
σ̂Ba,s

for s = 1, . . . , S. Obviously, as the number of breaks B decreases the “actual” results will

converge to their “true” values.

Taking the average of all the over all replications we derive

µ̂
B
a = 1

S

S∑
s=1

µ̂Ba,s σ̂
B
a = 1

S

S∑
s=1

σ̂Ba,s ŜR
B

a = 1
S

S∑
s=1

ŜR
B

a,s,

B = {50, 100, 150, 200}

Finally, we focus on the differences between the “actual” MVO results and the results

of the “true” 1/N case, for each “break” case. These are shown below.

µ̂
B

a

µB1/N

σ̂
B

a

σB1/N

ŜR
B

a

SRB
1/N



2.4. MVO UNDER STRUCTURAL BREAKS IN MEAN 38

These differences will prove to be very different than the respective ones of the “no

break” case. In the following section we will discuss our empirical findings using the MC

methodology that we analyzed in the current section.

2.4.4 Calibration Results

For this experiment, we get the “no break” parameters µ and Σ for N = {10, 40} assets

of 100 random groups of assets from S&P 500. In terms of the “break” cases we vary the

means between [−2%, 2%]. The choice of [−2%, 2%] is based on the empirical findings

that we derived in the previous section. More specifically, the various means that hover

around [−2%, 2%] will lead to the estimated correlations being approximately equal to

20% for the B = 50 break case and 40% for the B = 200 break case, which is what we

showed to be the case in real data. The sample sizes will be T = {1000, 5000, 10000}

while the number of replications is set to S = 10, 000. Finally, the different cases of

breaks are B = {0, 50, 100, 150, 200}. For each replication, we follow the steps described

in the MC Simulations section.

The following Tables summarize the results for the N = 10 assets case.

Table 2.6: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 10 assets and T = 1, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 0.97 1.20 1.05 0.07 0.82 0.98 0.93 0.04 0.93 1.02 0.97 0.03

B = 50 0.63 0.89 0.74 0.08 0.97 1.26 1.10 0.09 0.78 0.93 0.82 0.04

B = 100 0.48 0.83 0.60 0.10 1.06 1.39 1.19 0.12 0.62 0.90 0.70 0.08

B = 150 0.44 0.82 0.56 0.03 1.08 1.42 1.21 0.12 0.57 0.90 0.67 0.09

B = 200 0.43 0.82 0.55 0.08 1.08 1.41 1.21 0.12 0.55 0.90 0.66 0.10
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Table 2.7: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 10 assets and T = 5, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.02 1.24 1.05 0.06 0.80 0.96 0.91 0.05 0.96 1.01 0.99 0.01

B = 50 0.85 1.08 0.95 0.06 0.86 1.09 0.99 0.06 0.92 0.96 0.93 0.01

B = 100 0.63 0.88 0.74 0.08 0.98 1.28 1.11 0.10 0.79 0.92 0.82 0.04

B = 150 0.52 0.85 0.64 0.09 1.04 1.36 1.17 0.11 0.69 0.91 0.74 0.06

B = 200 0.49 0.84 0.61 0.10 1.05 1.38 1.18 0.11 0.64 0.90 0.71 0.08

Table 2.8: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 10 assets and T = 10, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.04 1.25 1.10 0.06 0.80 0.95 0.91 0.05 0.98 1.00 0.99 0.01

B = 50 0.93 1.16 1.01 0.06 0.83 1.03 0.95 0.06 0.96 0.97 0.96 0.01

B = 100 0.73 0.94 0.83 0.07 0.93 1.20 1.06 0.08 0.87 0.93 0.88 0.02

B = 150 0.60 0.87 0.72 0.08 0.99 1.31 1.13 0.10 0.78 0.92 0.81 0.04

B = 200 0.55 0.86 0.66 0.09 1.02 1.34 1.15 0.11 0.71 0.91 0.76 0.06

Tables 2.6, 2.7 and 2.8, showcase that if an investor overlooks more and more breaks in

mean he will end up with lower portfolio returns and Sharpe ratios and a higher portfolio

risk. More specifically, on Table 2.6 we see that contrary to the “no break” case for which

the “actual” Sharpe ratio is 5% than that of the naive strategy, when the number of

breaks B is 50, the “actual” Sharpe ratio is approximately 26% lower than that of the

1/N strategy. In fact, as the number of breaks increases and gets closer to B = 200, the

“actual” Sharpe ratio becomes 45% worse than the 1/N case. We will find out that the

major reason for this drop comes from the inflated Σ̂. Observe that in the “no break”

case the “actual” portfolio risk is approximately 7% lower than the 1/N portfolio risk,

while for the “break” cases it ends up being 21% higher. While the “actual” portfolio
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risk of the “break” cases increases, the “actual” portfolio returns drop. So, although

the investor will receive a lower “actual” portfolio return he will also get an even worse

portfolio risk, compared to the respective results of the naive strategy. Tables 2.7 and 2.8

illustrate the effect of increasing the sample size. Although there is a slight improvement

in the “actual” “break” results, the MVO is far from dominating the 1/N method.

Tables 2.9, 2.10 and 2.11 summarize the results for the N = 40 assets case. Increasing

the number of assets seems to neutralize the MVO strategy completely. The “actual”

Sharpe ratios of the “break” cases are almost 80% lower than the naive Sharpe ratios.

More importantly, increasing the sample size has a only a very mild positive effect on the

MVO strategy. The only case which benefits the most from increasing the sample size is

the B = 50 case for which the “actual” Sharpe ratio goes from −70% with respect to the

naive Sharpe ratio, to −30%. Still, the 1/N strategy dominates the MVO strategy by a

huge gap.

Table 2.9: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 40 assets and T = 1, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.02 1.14 1.07 0.03 0.91 1.14 1.09 0.01 0.93 1.03 0.99 0.03

B = 50 0.25 0.31 0.27 0.02 1.53 1.94 1.80 0.11 0.46 0.50 0.48 0.02

B = 100 0.16 0.20 0.18 0.01 1.51 1.94 1.79 0.11 0.30 0.36 0.33 0.02

B = 150 0.15 0.18 0.17 0.01 1.49 1.92 1.76 0.11 0.26 0.32 0.29 0.02

B = 200 0.14 0.18 0.17 0.01 1.47 1.89 1.74 0.11 0.25 0.32 0.29 0.02
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Table 2.10: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 40 assets and T = 5, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.07 1.14 1.09 0.02 0.89 1.14 1.09 0.01 0.97 1.01 1.00 0.01

B = 50 0.44 0.55 0.47 0.03 1.37 1.70 1.60 0.10 0.75 0.76 0.75 0.01

B = 100 0.24 0.31 0.27 0.02 1.55 1.98 1.84 0.12 0.47 0.50 0.49 0.01

B = 150 0.19 0.23 0.21 0.02 1.53 1.96 1.81 0.12 0.36 0.40 0.38 0.02

B = 200 0.17 0.21 0.19 0.01 1.49 1.91 1.77 0.11 0.31 0.37 0.34 0.02

Table 2.11: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 40 assets and T = 10, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.07 1.13 1.10 0.02 0.89 0.93 0.91 0.01 0.99 1.00 1.00 0.01

B = 50 0.65 0.77 0.68 0.04 1.15 1.38 1.31 0.07 0.89 0.90 0.89 0.01

B = 100 0.36 0.46 0.39 0.03 1.47 1.87 1.74 0.12 0.67 0.69 0.68 0.01

B = 150 0.26 0.33 0.29 0.02 1.56 1.99 1.85 0.12 0.51 0.54 0.53 0.01

B = 200 0.22 0.28 0.24 0.02 1.54 1.96 1.82 0.12 0.42 0.47 0.45 0.01

Clearly, the above results indicate that Markowitz’s method under structural breaks

in mean is completely outperformed by the naive strategy. The main reason being, that

the naive strategy is not affected at all by the investor’s wrong assumption with respect

to the DGP of the data. Specifically, even if the investor ignores multiple breaks in mean,

assuming that the data is NIID, the naive strategy will deliver the same results. At the

end of this chapter, in Appendix B 2.6, we also include the same Tables with means

taking values inside [−1%, 1%]. As one can see, we have the same conclusions but, as

expected, the impact of the breaks on the “actual” results is more subtle, especially for

the N = 10 assets case. However, even under this milder environment our conclusions

still hold.
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Partially estimated weights

One natural question is how can we be certain that the main impact on the MVO strategy

comes from the inflated Σ̂ and not from µ̂? Let us assume that the investor who overlooks

the multiple breaks in mean observes the “true” variance-covariance matrix, namely Σ.

This would mean that the investor would only use the entire sample to estimate just

µ̂. Thus, the estimated weights would be ŵ(µ̂,Σ, µBr ). Then we should compare the

“partially” estimated “actual” results of both the “no break” and “break” cases with the

respective “true” naive results. The information we need is summarized in the following

Tables.

Table 2.12: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 10 assets and T = 1, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 0.97 1.21 1.05 0.05 0.82 0.97 0.93 0.04 0.93 1.02 0.97 0.03

B = 50 1.00 1.23 1.07 0.07 0.81 0.96 0.92 0.05 0.95 1.02 0.98 0.02

B = 100 0.96 1.19 1.05 0.07 0.82 0.97 0.93 0.04 0.92 1.04 0.97 0.04

B = 150 0.95 1.18 1.04 0.07 0.83 0.98 0.94 0.04 0.92 1.05 0.97 0.04

B = 200 0.95 1.17 1.03 0.07 0.84 0.98 0.94 0.04 0.91 1.06 0.97 0.04

Table 2.13: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 40 assets and T = 1, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.04 1.16 1.09 0.04 0.89 0.93 0.91 0.01 0.93 1.03 0.99 0.03

B = 50 1.06 1.15 1.09 0.03 0.89 0.93 0.91 0.01 0.95 1.02 0.99 0.02

B = 100 1.03 1.17 1.08 0.04 0.89 0.93 0.91 0.01 0.92 1.04 0.99 0.03

B = 150 1.02 1.18 1.08 0.04 0.89 0.94 0.91 0.01 0.91 1.05 0.98 0.04

B = 200 1.02 1.18 1.08 0.05 0.89 0.94 0.91 0.01 0.90 1.05 0.98 0.04

The results clearly indicate that in our framework the main issue the investor faces
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is that if he misses the multiple breaks in mean the problems arising with respect to the

effectiveness of the MVO strategy against 1/N , will only be due to the misestimation of

variance-covariance matrix. This showcases how much impactful are the positive correla-

tions on the MVO strategy. It also gives substance to our rationale that ignoring multiple

structural breaks in mean constitutes a significant reason for the underperformance of

the MVO method with respect to 1/N .

2.5 Conclusions

We started by analyzing a part of the work of DeMiguel et al. [24] which motivated us to

revisit Markowitz’s portfolio theory. Our main objections regarding their work stemmed

from the way they denounce the MVO method for being useless when compared to the

naive diversification method. We argued that the two models should be tested under the

same terms. This is why we chose to set the target return of the MVO model equal to the

return coming from the 1/N strategy. In our view, this constitutes a more appropriate

way to study the statistical properties of the MVO method but also to be able to do a

more meaningful analysis.

Since the weights produced by the Markowitz method are a non-linear function of

the true means, variance-covariance matrix and target return, Jensen’s inequality indi-

cates that the estimated weights are biased estimators. However, under the Continuous

Mapping Theorem they are consistent. One of the most well-known ways to use in order

to evaluate how these findings translate into reality is by applying MC Simulations. We

started by studying the speed at which the variances of the estimated weights converge to

zero. We found out that as we increase either (i) the difference between the MVO Sharpe

ratio and the 1/N Sharpe ratio or (ii) the number of assets N , the convergence rate speeds

up. From there, we continued with the comparison between the MVO method and 1/N

for N = {10, 25} assets. We highlighted the importance of controlling SRr/SR1/N and

µr/µGMV . Our results indicated that as we increase SRr/SR1/N the “actual” results of

the MVO method outperform those of 1/N for relatively small sample sizes. In fact,

we found no evidence of the MVO method being outperformed by 1/N under Gaussian

DGPs, other than cases where SRr/SR1/N was very close to 1. Overall, we concluded
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that under Gaussian DGPs, we can safely argue that the MVO method is preferable to

the naive diversification method.

Subsequently, we examined the functionality of the MVO method under the assump-

tion that the DGP of stock returns presents multiple breaks in mean. This part of our

research has been overlooked by the literature. Collecting daily stock returns spanning

from 2000 to 2021 from the constituents of S&P 500, FTSE 100 and STOXX 600, we

showcased that there are groups of N = 10 assets that exhibit B = {50, 100, 150, 200}

common breaks in mean. For these groups the estimated correlations considering the

B = 50 breaks case hover around 20%, while in the B = 200 breaks case most of the

estimated correlations are approximately 40%. In order to evaluate these findings, we

reapplied MC Simulations, to find out how impactful multiple breaks are with respect to

the MVO method. Specifically, we focused on the comparison between the MVO method

and the naive strategy, as in the Gaussian case. Both strategies were tested in terms of

their “actual” results under B = {50, 100, 150, 200} breaks as well as under a “no break”

case. In our framework, we considered that the investor ignores the multiple breaks that

take place and proceeds with estimating the DGP’s parameters using the entire sam-

ple size. Our results indicated that overlooking more and more breaks in mean leads

to increasingly worse “actual” Sharpe ratios derived by the MVO strategy compared to

the Sharpe ratios of 1/N . More importantly, as we increase the number of assets the

MVO method collapses. We argued that the main reason for that is the estimation

of the variance-covariance matrix using the entire sample size. Specifically, the higher

the number of breaks the more inflated Σ̂ will be. Overall, our results clearly indicate

that Markowitz’s performance is highly dependent on the nature of the DGP. Putting

Markowitz’s method under a DGP with multiple breaks proves to be an interesting area

for further research.
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2.6 Appendix

Appendix A: MVO vs 1/N under Gaussian DGPs

Table 2.14: SRr

SR1/N
= 1.1 and µr

µGMV
= 1.25

Sample size

min max mean std

N = 10 1800 3900 3140 380

N = 15 2000 4750 3475 429

N = 20 2500 5500 3777 437

N = 25 2700 6000 4284 432

N = 30 2800 6300 4700 441

N = 35 3100 6700 5228 476

N = 40 3300 7400 5568 478

10 15 20 25 30 35 40

1000

2000

3000

4000

5000

6000

7000

8000

max

Mean

min
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Table 2.15: SRr

SR1/N
= 1.1 and µr

µGMV
= 1.5

Sample size

min max mean std

N = 10 2700 7100 4563 621

N = 15 3400 7300 4903 568

N = 20 3700 7500 5175 564

N = 25 4100 7800 5354 543

N = 30 4200 8100 5752 526

N = 35 4300 8200 6087 521

N = 40 4500 8700 6554 536

10 15 20 25 30 35 40

2000

3000

4000

5000

6000

7000

8000

9000

max

Mean

min
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Table 2.16: SRr

SR1/N
= 1.1 and µr

µGMV
= 1.75

Sample size

min max mean std

N = 10 3400 7300 5084 572

N = 15 4000 7500 5513 554

N = 20 4300 7800 5980 548

N = 25 4300 8000 6363 556

N = 30 4500 8200 6795 554

N = 35 4900 8500 7194 532

N = 40 5100 8900 7726 549

10 15 20 25 30 35 40

3000

4000

5000

6000

7000

8000

9000

max

Mean

min
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Table 2.17: SRr

SR1/N
= 1.1 and µr

µGMV
= 2

Sample size

min max mean std

N = 10 4200 7400 5467 642

N = 15 4800 9000 6172 693

N = 20 5100 9300 6571 708

N = 25 5400 9400 7083 719

N = 30 5300 9700 7312 734

N = 35 5500 10000 8017 765

N = 40 5700 10200 8750 784

10 15 20 25 30 35 40

4000

5000

6000

7000

8000

9000

10000

11000

max

Mean

min
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Table 2.18: SRr

SR1/N
= 1.2 and µr

µGMV
= 1.25

Sample size

min max mean std

N = 10 600 1000 790 114

N = 15 700 900 760 66

N = 20 600 1000 803 98

N = 25 600 1000 820 91

N = 30 700 1000 837 75

N = 35 750 1060 868 72

N = 40 770 1120 883 81

10 15 20 25 30 35 40

600

700

800

900

1000

1100

1200

max

Mean

min
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Table 2.19: SRr

SR1/N
= 1.2 and µr

µGMV
= 1.5

Sample size

min max mean std

N = 10 1000 3200 2012 408

N = 15 1400 3100 2013 364

N = 20 1300 3400 2296 439

N = 25 1500 4400 2405 437

N = 30 2000 4500 2438 420

N = 35 2250 4300 2583 391

N = 40 2750 4700 3013 367

10 15 20 25 30 35 40

1000

1500

2000

2500

3000

3500

4000

4500

5000

max

Mean

min
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Table 2.20: SRr

SR1/N
= 1.2 and µr

µGMV
= 1.75

Sample size

min max mean std

N = 10 1500 3700 2478 427

N = 15 1800 4000 2642 571

N = 20 2300 5200 3030 574

N = 25 2100 6600 3435 617

N = 30 2400 6400 3893 601

N = 35 2600 6900 3970 611

N = 40 3100 7600 4685 621

10 15 20 25 30 35 40

1000

2000

3000

4000

5000

6000

7000

8000

max

Mean

min



2.6. APPENDIX 52

Table 2.21: SRr

SR1/N
= 1.2 and µr

µGMV
= 2

Sample size

min max mean std

N = 10 2000 4500 2878 402

N = 15 2200 6100 3223 601

N = 20 2300 6000 3449 571

N = 25 2500 6400 3773 592

N = 30 3000 7300 4268 607

N = 35 3200 8000 4666 625

N = 40 3600 8500 5173 612

10 15 20 25 30 35 40

2000

3000

4000

5000

6000

7000

8000

9000

max

Mean

min
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Table 2.22: SRr

SR1/N
= 1.3 and µr

µGMV
= 1.25

Sample size

min max mean std

N = 10 100 150 140 20

N = 15 120 170 149 11

N = 20 160 190 178 7

N = 25 190 230 206 16

N = 30 250 300 255 15

N = 35 270 290 283 9

N = 40 300 340 316 13

10 15 20 25 30 35 40

100

150

200

250

300

350

max

Mean

min
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Table 2.23: SRr

SR1/N
= 1.3 and µr

µGMV
= 1.5

Sample size

min max mean std

N = 10 500 800 699 61

N = 15 650 950 817 73

N = 20 700 1100 886 84

N = 25 800 1200 1020 118

N = 30 900 1400 1160 143

N = 35 900 1600 1197 147

N = 40 1000 1500 1277 150

10 15 20 25 30 35 40

400

600

800

1000

1200

1400

1600

max

Mean

min
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Table 2.24: SRr

SR1/N
= 1.3 and µr

µGMV
= 1.75

Sample size

min max mean std

N = 10 1000 1900 1338 208

N = 15 1000 2200 1440 213

N = 20 1100 2700 1654 254

N = 25 1200 3200 1873 306

N = 30 1400 3500 2046 311

N = 35 1600 3700 2233 336

N = 40 1800 4000 2403 327

10 15 20 25 30 35 40

1000

1500

2000

2500

3000

3500

4000

max

Mean

min
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Table 2.25: SRr

SR1/N
= 1.3 and µr

µGMV
= 2

Sample size

min max mean std

N = 10 1200 2300 1689 214

N = 15 1400 2600 1874 236

N = 20 1400 2800 1982 255

N = 25 1750 3500 2453 283

N = 30 1750 3800 2564 314

N = 35 1900 4200 2674 325

N = 40 2000 4800 2849 359

10 15 20 25 30 35 40

1000

1500

2000

2500

3000

3500

4000

4500

max

Mean

min
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Table 2.26: SRr

SR1/N
= 1.4 and µr

µGMV
= 1.25

Sample size

min max mean std

N = 10 50 60 53 2

N = 15 60 70 69 3

N = 20 80 90 89 2

N = 25 100 110 109 3

N = 30 140 160 145 5

N = 35 150 190 168 11

N = 40 180 220 180 14

10 15 20 25 30 35 40

40

60

80

100

120

140

160

180

200

220

max

Mean

min
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Table 2.27: SRr

SR1/N
= 1.4 and µr

µGMV
= 1.5

Sample size

min max mean std

N = 10 240 310 274 18

N = 15 290 360 335 25

N = 20 320 400 364 22

N = 25 400 450 437 22

N = 30 450 550 505 30

N = 35 460 580 538 34

N = 40 500 640 579 36

10 15 20 25 30 35 40

200

250

300

350

400

450

500

550

600

650

max

Mean

min
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Table 2.28: SRr

SR1/N
= 1.4 and µr

µGMV
= 1.75

Sample size

min max mean std

N = 10 580 710 657 54

N = 15 600 750 678 67

N = 20 610 790 694 71

N = 25 660 880 739 73

N = 30 660 1100 830 132

N = 35 690 1000 845 126

N = 40 720 1400 909 159

10 15 20 25 30 35 40

500

600

700

800

900

1000

1100

1200

1300

1400

max

Mean

min
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Table 2.29: SRr

SR1/N
= 1.4 and µr

µGMV
= 2

Sample size

min max mean std

N = 10 870 1300 1064 103

N = 15 900 1600 1118 121

N = 20 920 1800 1206 138

N = 25 960 2100 1357 133

N = 30 970 2200 1372 128

N = 35 1090 2500 1488 123

N = 40 1150 2900 1630 137

10 15 20 25 30 35 40

500

1000

1500

2000

2500

3000

max

Mean

min
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Appendix B: MVO vs 1/N under DGPs with structural breaks

in mean, with means around [−1%, 1%]

Table 2.30: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 10 assets and T = 1, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 0.97 1.20 1.05 0.07 0.82 0.97 0.93 0.05 0.93 1.03 0.97 0.03

B = 50 0.90 1.10 0.98 0.06 0.83 1.01 0.95 0.05 0.90 0.99 0.93 0.02

B = 100 0.81 1.02 0.91 0.06 0.86 1.03 0.97 0.05 0.83 0.98 0.88 0.04

B = 150 0.79 1.02 0.90 0.06 0.87 1.03 0.98 0.05 0.82 0.99 0.87 0.05

B = 200 0.78 1.02 0.88 0.07 0.88 1.04 0.98 0.05 0.81 0.99 0.86 0.05

Table 2.31: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 10 assets and T = 5, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.02 1.24 1.09 0.06 0.80 0.96 0.91 0.05 0.96 1.01 0.99 0.01

B = 50 1.00 1.22 1.07 0.06 0.80 0.97 0.92 0.05 0.96 0.99 0.98 0.01

B = 100 0.92 1.12 0.99 0.06 0.83 1.00 0.94 0.05 0.91 0.99 0.93 0.02

B = 150 0.87 1.06 0.95 0.06 0.84 1.01 0.95 0.05 0.87 0.99 0.91 0.03

B = 200 0.83 1.03 0.92 0.06 0.85 1.02 0.96 0.05 0.85 0.99 0.89 0.04
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Table 2.32: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 10 assets and T = 10, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.03 1.25 1.09 0.06 0.80 0.96 0.91 0.05 0.97 1.01 0.99 0.01

B = 50 1.02 1.24 1.09 0.06 0.80 0.96 0.91 0.05 0.98 1.00 0.99 0.01

B = 100 0.97 1.18 1.04 0.06 0.81 0.97 0.92 0.05 0.94 0.99 0.96 0.02

B = 150 0.92 1.13 1.00 0.06 0.82 0.99 0.94 0.05 0.91 0.99 0.94 0.03

B = 200 0.89 1.09 0.97 0.06 0.83 1.00 0.95 0.05 0.88 0.99 0.92 0.03
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Table 2.33: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 40 assets and T = 1, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.02 1.14 1.07 0.03 0.91 0.95 0.93 0.01 0.93 1.04 0.99 0.03

B = 50 0.61 0.70 0.64 0.03 1.09 1.23 1.19 0.04 0.73 0.78 0.76 0.01

B = 100 0.48 0.56 0.52 0.03 1.13 1.29 1.23 0.04 0.61 0.68 0.65 0.02

B = 150 0.47 0.55 0.52 0.03 1.13 1.27 1.22 0.04 0.59 0.67 0.63 0.03

B = 200 0.44 0.52 0.50 0.03 1.14 1.30 1.23 0.04 0.56 0.65 0.61 0.03

Table 2.34: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 40 assets and T = 5, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.07 1.14 1.09 0.02 0.89 0.93 0.91 0.01 0.97 1.01 1.00 0.01

B = 50 0.86 0.95 0.88 0.03 0.97 1.05 1.03 0.03 0.90 0.92 0.91 0.01

B = 100 0.65 0.75 0.69 0.03 1.05 1.18 1.14 0.04 0.76 0.80 0.78 0.01

B = 150 0.58 0.66 0.62 0.03 1.07 1.21 1.16 0.04 0.68 0.74 0.71 0.02

B = 200 0.51 0.60 0.56 0.03 1.10 1.24 1.19 0.04 0.63 0.70 0.66 0.02

Table 2.35: ŜR
B

a

SRB
1/N

, σ̂
B
a

σB
1/N

and µ̂
B
a

µB
1/N

for portfolios of N = 40 assets and T = 10, 000

ŜR
B

a

SRB
1/N

σ̂
B
a

σB
1/N

µ̂
B
a

µB
1/N

min max mean std min max mean std min max mean std

B = 0 1.07 1.13 1.10 0.02 0.89 0.93 0.91 0.01 0.98 1.01 1.00 0.01

B = 50 0.96 1.02 0.97 0.02 0.93 0.99 0.98 0.02 0.94 0.95 0.95 0.01

B = 100 0.76 0.85 0.79 0.03 1.00 1.11 1.08 0.03 0.83 0.86 0.85 0.01

B = 150 0.66 0.75 0.75 0.03 1.04 1.16 1.12 0.04 0.75 0.80 0.78 0.01

B = 200 0.58 0.67 0.62 0.03 1.07 1.21 1.16 0.04 0.69 0.74 0.72 0.02
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Chapter 3

On The Equivalence Of The

Mean-Variance Criterion And

Stochastic Dominance Criteria

3.1 Introduction

Back in the 18th century Daniel Bernoulli proposed a solution for the St. Petersburg

paradox. The solution was simply based on the assumption that an investor aims at

maximizing his expected utility rather than his wealth. The utility function had to be

logarithmic, meaning that it only covered the case where investors are risk averse. His

most important assumption was that utility is both normative and descriptive. This

simply means that “An investor not only is obliged to choose between different goods to

maximize his expected utility but also does so in reality”. This premise did not however

explain why people choose to gamble. So, the main issue with Bernoulli’s approach was

it lacked generality.

Despite the fact that this finding was so important from a theoretical point of view

it was not until 1944 that VN-M reinstated the theory around expected utility [87]. In

fact, they laid down a set of sufficient and necessary axioms that the preferences of a

decision maker need to satisfy in order to conclude that he makes his decisions based on

65
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the maximization of his expected utility. The utility theory is now well-established and

covers all different types of risk attitude. Until this day, the MEUC is considered the new

canon of economic theory.

However, in reality, we cannot apply direct utility maximization of an investor. The

reason is that it is almost impossible to be aware of his exact utility function. Thus, all

that we could hope for would be to know only some of the characteristics of the utility

function of the investor, such that the utility function is increasing and concave (risk-

averse investor). That is why highly prestigious works like that of Markowitz on Modern

Portfolio Theory (1952) [64] as well as that of Arrow (1965) [4] and Pratt (1964) [76] focus

on the first and second derivatives of the utility function of an investor. This is where

the SDRs come to place. These rules constitute well-defined theorems determining the

necessary and sufficient conditions under which an investor with specific risk preferences

maximizes his expected utility. These conditions have to do with specific properties of

the distribution of lotteries.

What we are going to focus more on is a different rule called the MVC developed by

Markowitz [64], [65] (1952, 1959). This rule is a decision making criterion based only on

the first two moments of the distributions of two lotteries. We shall discuss its value as

well as the root causes for its criticism, like in Gandhi (1981) [30]. The main source of

interest is: “How this criterion differs from SDRs and when should an investor use it”.

We will see that there are some widespread misunderstandings concerning the necessary

and sufficient conditions under which MVC coincides with MEUC. For example, there is

a general agreement in the literature that the MVC is meaningful under two scenarios:

(i) either lotteries are normally distributed, or (i) the investor has quadratic utility. As

Baron (1977) [9] states, these assumptions are sufficient to justify the use of mean variance

analysis in a manner consistent with the Von Neumann-Morgenstern axioms. Delving

into the theory and the vast existing literature, we will see that there are misconceptions

regarding both of these assumptions which need to be discussed. In particular, as we shall

see there are also more interesting assumptions that make the MVC coincide with the

MEUC that we will thoroughly analyze. Then, we are going to focus on the main subject

of this work which has to do with the following idea from Levy and Markowitz (1979) [57]

“Assuming we have an approximately quadratic utility function, MV choices will almost
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maximize our expected utility function”. We will revisit this premise and will try to give

our view based on MC Simulations and a thorough analysis of the idea. Although this

subject is relatively old, the academic interest is still vivid. To name but a few of the

most recent works, Markowitz (2010,2014) [63], [66], Malavasi et al. (2020) [60]1 and

Schuhmacher et al. (2021) [80].

In the following sections, we are going to approach this subject carefully so as to

not leave any unanswered questions. We start by setting the theoretical framework as

constructed by VN-M. Based on it, we will define the MVC as well as the SD rules.

From there on, we will delve into the necessary and sufficient conditions that connect the

MVC with the SD rules and hence with the MEUC. We will study the assumptions of

either normality or quadratic utility independently and discuss whether or not they are

very restrictive. Next, we will discuss the more interesting cases of Elliptical and Skew-

Elliptical families of distribution that seem to elevate the value of the MVC. Finally, we

will examine the premise of Levy and Markowitz using MC Simulations together with a

careful connection to the findings of the existing literature.

Our main findings split into two parts. (i) We show that, contrary to Elliptical

distributions, under Skew-Elliptical distributions the MVC is not optimal for any risk-

averse investor. In fact, our MC Simulations derive cases under which the MVC fails

to deduce the right decision. (ii) The premise of Markowitz with respect to the approx-

imately quadratic utility functions seems to be valid for Elliptical and Skew-Elliptical

distributions. As we deviate more from normality (e.g. Extreme Value and Stable Pareto

distributions) the set of approximately quadratic utility functions shrinks.

3.2 Theoretical Framework

An investor is given a number of different lotteries to choose from, each one with its own

distribution. In order for the investor to make a rational choice his preferences should

satisfy some specific axioms. Let Z = {Z1, . . . , Zn}, where Zi’s are continuous random

variables (lotteries). Let also, P be the set of probability distributions F,G,Q : Z → [0, 1]

1Malavasi et al. (2020) focus on the comparison between the SSD efficient set and the MV efficient

set.



3.2. THEORETICAL FRAMEWORK 68

on Z (where F , G and Q represent the lotteries). We define a binary relation � on P

representing the “preference” of the investor which should satisfy the following axioms
1. Completeness

F � G or G � F

Investor is obliged to choose among F

and G.

2. Transitivity

If F � G and G � Q⇒ F � Q

3. Continuity

If F � G � Q, there exist a, b ∈ (0, 1)

such that

aF + (1− a)Q � G � bF + (1− b)Q

There are no “infinitely good” or “in-

finitely bad” prizes.

4. Independence

Let a ∈ (0, 1). Then,

aF+(1−a)Q � aG+(1−a)Q⇔ F � G

If we toss a coin between a fixed lottery

Q and lotteries F and G our preference

(F � G) should not change. (Coun-

terexample: Allais paradox)

According to VN-M, an investor’s preferences will satisfy the above axioms if and only

if his overall scope is to maximize his expected utility. In short, the investor will choose

among different lotteries using the MEUC or equivalently the VN-M Representation The-

orem.

Theorem 3.1 (MEUC). A relation � satisfies axioms 1-4 if and only if there exists a

utility function U : Z → R, such that for every F,G ∈ P

F � G⇔ E[U(Z)] ≥ E[U(Z)].

Moreover, U is unique up to a positive linear transformation, i.e. for some a > 0 and
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b ∈ R

Ũ = aU + b.

So, the MEUC implies that “an investor with utility function U will prefer lottery F

than lottery G if and only if his expected utility for F is larger than that of G”. The

idea that the MEUC is the optimal investment criterion constitutes the cornerstone of

financial economic theory. Based on it, we would like to go a step further and examine

the preferences of a class of investors with respect to two lotteries.

For this, we need the notion of SD. More specifically, the SD definition exploits the

MEUC in order to derive a conclusion for a specific set of investors U∗. Following Von

Neumann-Morgenstern (1944) [87], we can define the notion of SD, as shown below.

Definition 3.2 (SD). Let two lotteries Z1 and Z2 with cumulative distribution functions

F and G, respectively. We will say that Z1 dominates Z2 (Z1DZ2) in U∗, or equivalently,

F dominates G, FDG, if and only if

E[U(Z1)] ≥ E[U(Z2)], ∀U ∈ U∗

with a strong inequality for at least one U0 ∈ U∗

The next step is to specify what types of investors could U∗ include. In general, we

can make the widely accepted and non-restrictive assumption that all investors are wealth

maximizers (U ′ ≥ 0), i.e. they belong to U∗ = U1 = {U : U ′ ≥ 0} and U ∈ C12. For this

set of investors, based on Definition 3.2, we can define the First-order of SD (hereafter;

FSD). FSD is denoted by FD1G.

The FSD involves the majority of investors, meaning that it applies SD on the largest

class of investors possible. From that, we can proceed with narrowing the set of investors.

The literature has strong evidence that the majority of investors are also risk-averse

(U ′′ ≤ 0), i.e. they belong to U∗ = U2 = {U : U ′ ≥ 0, U ′′ ≤ 0} and U ∈ C23. So, based

on Definition 3.2, it would be natural to define the Second-order Stochastic Dominance

(hereafter; SSD) on U2. SSD is denoted by FD2G.

Evidently, U2 ⊂ U1 meaning that FSD implies SSD (i.e. FD1G⇒ FD2G). Now, we

can go even further to derive a Third-order of SD. But first, we need to give an intuitive
2C1: any function f for which the first derivative exists and is continuous.
3C2: any function f for which the first and second derivative both exist and are continuous.
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description of the new set of investors. We can now include another empirically relevant

case like those of wealth-maximizing and risk-averse investors. More specifically, as we

shall see in Chapter 4, the empirical evidence has shown that investors exhibit DARA.

Arrow (1965) [4] and Pratt (1964) [76] define ARA below,

r(x) = −U
′′(x)

U ′(x) .

Since we need r(x) to be decreasing we need

r′(x) = −U
′′′(x)U ′(x) + (U ′′(x))2

(U ′(x))2 < 0,

provided that U ∈ C3. Based on that U ′ ≥ 0 and U ′′ ≤ 0, this is only possible if

U ′′′ ≤ 0. Consequently, basd on Definitiion 3.2, the Third-order of Stochastic Dominance

(hereafter; TSD) can be defined on U∗ = U3 = {U : U ′ ≥ 0, U ′′ ≤ 0, U ′′′ ≥ 0} and

U ∈ C34. TSD is denoted by FD3G.

Obviously, U3 ⊂ U2 ⊂ U1 meaning that FSD implies SSD and both imply TSD

(i.e. FD1G ⇒ FD2G ⇒ FD3G). Following the same rationale, we can narrow U∗ even

further but the aforementioned orders of SD are sufficient to discuss how the Markowitz’s

theory is connected to them.

Based on the definition of the SD, we could argue that we should stop right here,

meaning that every time we need to examine whether or not one lottery stochastically

dominates another one we should simply utilize the expected utility of each investor in

U∗ and see if the same inequality holds. However, if U∗ is extremely large (as are the

cases of U1,U2) it is impossible to check for each and every U ∈ U∗. How do we address

this problem? By using the various SDRs as defined by Levy (1998) [54]. The idea is

that any investor inside U∗ can deduce SD between two lotteries, Z1 and Z2, if and only if

he follows a specific decision rule that is defined based on the cumulative distributions of

lotteries Z1 and Z2. This way we overcome the necessity of testing for each investor in U∗

and focus only on the objective characteristics of the two lotteries under consideration.

Now, we are going to define the different types of SDRs. From Quirk and Saposnik

(1962) [77], when U∗ = U1 we can define the First-order SDR (hereafter; FSDR) as

shown below.
4C3: any function f for which the first, second and third derivative exist and are continuous.
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Theorem 3.3 (FSDR). For any two lotteries Z1 and Z2 with cumulative distributions F

and G, FD1G for all wealth maximizers U ∈ U1 (U ′ ≥ 0) if and only if F (x) ≤ G(x) for

all values x, and there is at least some x0 for which a strong inequality holds. Namely,

F (x) ≤ G(x)
∀x, with a strong inequality for at least one x0

⇔ E[U(Z1)] ≥ E[U(Z2)]
∀U∈U1, with a strong inequality for at least one U0∈U1

(3.1)

FSDR says that as soon as the decision maker has an increasing utility function and

needs to choose between two lotteries with cumulative distributions F and G, he will

maximize his expected utility function by choosing the lottery with the smaller cumulative

distribution function, i.e. F . This order of SD encompasses almost every rational investor,

irrespective of his preferences. Two important necessary conditions for FSDR found in

Levy (1998) [54] are shown below.

Condition 3.4. (Necessary) If FD1G, then the expected value of F must be greater than

the expected value of G. µ1 > µ2 is a necessary condition for FSD. Equivalently,

FD1G⇒ µ1 > µ2.

Condition 3.5. (Necessary) If FD1G, then the left tail of G must be “thicker”. Equiva-

lently,

FD1G⇒ min
F

(x) ≥ min
G

(x).

Let us turn now to the SSDR. So, under the additional assumption that investors are

risk-averse Hadar and Russell [33] (1969) derive the SSDR, as shown below.

Theorem 3.6 (SSDR). For any two lotteries Z1 and Z2 with cumulative distributions F

and G, FD2G for all risk-averters U ∈ U2 (U ′ ≥ 0, U ′′ ≤ 0) if and only if
∫ x

a
[G(t)− F (t)]dt ≥ 0, ∀x ∈ [a, b],

with a strict inequality for at least one x0. Equivalently,
∫ x

a
[G(t)− F (t)]dt ≥ 0

∀x, with a strong inequality for at least one x0

⇔ E[U(Z1)] ≥ E[U(Z2)]
∀U∈U2, with a strong inequality for at least one U0∈U2

(3.2)

SSDR says that as soon as the decision maker has an increasing and concave utility

function and needs to choose between two lotteries with cumulative distributions F and
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G, he will maximize his expected utility function by choosing the cumulative distribution

that has a larger area for at least one point x0 ∈ [a, b], i.e. F .

As in the case of FSDR, Levy (1998) [54] derives the the necessary and sufficient

conditions for SSDR.

Condition 3.7. (Necessary) If FD2G, then the expected value of F must be greater

than or equal to the expected value of G. µ1 ≥ µ2 is a necessary condition for FSD.

Equivalently,

FD2G⇒ µ1 ≥ µ2.

Condition 3.8. (Necessary) If FD2G and µ1 = µ2 then the variance of F must be less

than or equal to the variance of G. Equivalently,

FD2G and µ1 = µ2 ⇒ σ1 ≤ σ2.

Condition 3.9. (Necessary) If FD2G, then the left tail of G must be “thicker”. Equiva-

lently,

FD2G⇒ min
F

(x) ≥ min
G

(x).

So, first of all, FSD implies SSD which is logical as the set of investors that satisfy U ′ ≥ 0

is a superset of those investors with the additional constraint of U ′′ ≤ 0. Secondly,

compared to Condition 3.4, Condition 3.7 does not require a strict inequality and we

see from Condition 3.8 that under concave utility functions we derive an extra necessary

condition concerning the variances of lotteries.

Last but not least, we can derive the Third-order SDR (hereafter; TSDR), which was

introduced by Whitmore (1970) [88].

Theorem 3.10 (TSDR). For any two lotteries Z1 and Z2 with cumulative distributions

F and G, FD3G for all risk-averters with DARA U ∈ U3 (U ′ ≥ 0, U ′′ ≤ 0, U ′′ ≥ 0) if

and only if

(i)
∫ x

a

∫ z

a
[G(t)− F (t)]dtdz ≥ 0, ∀x ∈ [a, b]

and

(ii) µ1 ≥ µ2,

with at least one strong inequality.
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Below we get the necessary and sufficient conditions for TSDR as found in Levy (1998)

[54].

Condition 3.11. (Necessary) If FD3G, then the expected value of F must be greater

than or equal to the expected value of G. µ1 ≥ µ2 is a necessary condition for FSD.

Equivalently,

FD3G⇒ µ1 ≥ µ2.

Condition 3.12. (Necessary) If FD3G and µ1 = µ2 then the variance of F must be

less than or equal to the variance of G. σ1 < σ2 is a necessary condition for FSD.

Equivalently,

FD3G and µ1 = µ2 ⇒ σ1 < σ2.

Condition 3.13. (Necessary) If FD3G and µ1 = µ2 and σ1 = σ2 then the skewness of

F , namely s1, must be greater than the skewness of G, namely s2. s1 > s2 is a necessary

condition for FSD. Equivalently,

FD3G and µ1 = mu2 and σ1 = σ2 ⇒ s1 > s2.

Condition 3.14. (Necessary) If FD3G, then the left tail of G must be “thicker”. Equiv-

alently,

FD3G⇒ min
F

(x) ≥ min
G

(x).

Condition 3.12 does not require equality between variances and Condition 3.13 says that

if means and variances remain unchanged then FD3G necessitates that lottery Z1 is more

positively skewed than lottery Z2.

Each of these rules pertains to a specific class of investors. The higher the order of

the SDR the narrower the set of investors. We saw that each of these rules deduces

SD only by focusing on the objective characteristics of the two lotteries and not on the

subjective characteristics of each investor. Moreover, these rules do not specify the types

of distributions the two lotteries follow.

The theory presented in this section can be better interpreted through a concise ex-

ample. In the following example we assume that Z1 and Z2 are discrete random variables.

Let the distribution of lotteries Z1, Z2 be defined as in the following table.
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Table 3.1: Example

Z1 P (Z1 = z1) Z2 P (Z2 = z2)

5 0.4 10 0.4

10 0.6 20 0.6

where z1 and z2 are the outcomes of Z1, Z2, respectively.

So, the means and variances of the two lotteries are, respectively,

µ1 = 8, σ2
1 = 6

µ2 = 16 σ2
2 = 24.

From the above calculations, we observe that µ2 is twice as large as µ1 while at the same

time σ2
2 is quadruple of σ2

1. Can lottery Z1 dominate by any order of SD lottery Z2?

The answer is no. Because, we saw that under any order of SD a necessary condition is

µ1 > µ2 (for FSD) and µ1 ≥ µ2 (for SSD and TSD). So, it is Z2 that might stochastically

dominate Z1. To determine the order of SD we need to derive the probability distributions

of Z1 and Z2. Namely,

Table 3.2: Example

Z1 F (z) Z2 G(z)

5 0.4 5 0

10 1 10 0.4

20 1 20 1

So, we deduce that G(z) ≤ F (z), ∀z, which means that Z2D1Z1. As a result, despite

the fact that the variance of lottery Z2 is four times as large as that of lottery Z1, any

investor inside U3 ⊂ U2 ⊂ U1, regardless of his level of risk-aversion, will prefer Z2.

This last example not only helps in better grasping the concept of SD rules but also

indicates that we could probably derive other decision rules that are based on the moments

of distributions. A moment-based criterion could simplify even more the decision making

of an investor. However, Liu (2004) proved the following theorem.
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Theorem 3.15. There is no specific set of moment relationships between the first n mo-

ments of lotteries Z1, Z2 with cumulative distribution functions F and G that determines,

FD1G, or FD2G, or FD3G.

In other words, according to Theorem 3.15, we should not expect finding any connection

between a moment-based criterion and one of the SDRs, without making any further

assumption with respect to the risk preferences of the investor or the specific type of

the distribution of lotteries Z1, Z2. An interesting case that we are going to analyze,

extensively, is that of the MVC, introduced by Markowitz (1952, 1959) [64] and [65].

3.2.1 Mean-Variance Criterion

The notions we discussed in the previous section are so fundamental that any further

theoretical finding should be consistent with the MEUC to be meaningful. In his doc-

torate thesis in 1952 [64], Markowitz proposed a new criterion (rule) with respect to an

investor’s decision making. This criterion, known as the MVC, suggested that all that

the investor needs to know in order to decide between two different lotteries is their first

two moments. Particularly, the investor needs to either maximize the expected value of

his chosen portfolio (lottery) for a specific level of risk, or equivalently, minimize the risk

of the portfolio for a specific level of return. This is formulated as shown below.

Definition 3.16 (MVC). Let Z1 and Z2 be two lotteries with means µ1, µ2 and stan-

dard deviations σ1, σ2, respectively. Then, Z1 will satisfy the MVC with respect to Z2,

Z1MV Z2, if and only if
1. µ1 ≥ µ2

2. σ1 ≤ σ2

It is important to detect that through the above definition we do not have any in-

formation about the kind of investors that would prefer lottery Z1 instead of lottery Z2.

Before discussing the details around this rule we should first highlight why it is so im-

portant. The main reason is that if we could specify the class of investors for which this

rule is optimal we would only need the first two moments of the two lotteries. So, any

further information with respect to the distributions of the two lotteries would simply be

irrelevant.



3.2. THEORETICAL FRAMEWORK 76

According to Markowitz, during his doctoral defence he received a rather interesting

comment from Milton Friedman, that “his contribution was not economics”. Potentially,

what drove Friedman to make that statement was that Markowitz, at that point, had only

made a suggestion that this criterion is meaningful for investors with an expected utility

depending only on µ and σ, with an increasing and a decreasing relation respectively.

A theoretical result was still needed to be found to justify the connection between the

MVC and the MEUC. In other words, although his idea was intuitive, in the sense that we

would expect that (risk-averse) investors desire higher means and detest higher variances,

the set of investors for which the MVC coincides with the MEUC was still unknown.

Consider the following example. Assume that we have two risk-averse investors one

with U1(x) = ln x and the other one with U2(x) =
√
x. Let also, two probability distribu-

tions F and G of two discrete random variables Z1, Z2 defined as shown in the following

table.

Table 3.3: Example

Z1 F (z1) Z2 G(z2)

5 0.80 7 0.99

30 0.20 150 0.01

From Table 3.3, we get µ1 = 10 > µ2 = 8.4 and σ2
1 = 100 < σ2

2 = 203, and thus MVC

is satisfied. Now, the expected utility functions derive

E[U1(Z1)] = 1.9678 < E[U1(Z2)] = 1.9766

E[U2(Z1)] = 3.0731 > E[U2(Z2)] = 2.9230.

So, we see that the investor who has a logarithmic utility function will not decide based

on the MVC, since if he does so he will select the wrong lottery. On the other hand, the

investor with the square root utility function should decide based on the MVC for that

specific MV-pair. This example, suffices to conclude that the MVC is not optimal for all

risk-averse investors. In the following paragraphs we will discuss which types of investors

did Markowitz have in his mind.

The above concerns, drove Markowitz to formulate the MVC under the VN-M theo-

retical framework in 1959 [65]. He developed his idea by assuming three rational investors
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each with his own utility function. The first one having a logarithmic utility ln (1 +Rp),

the second one the square root utility
√

1 +Rp and the third one the cubic root util-

ity 3
√

1 +Rp, where Rp represents the portfolio return. A common characteristic of these

three utility functions is that they are all increasing and concave, meaning that Markowitz

focused on risk-averse investors. He then applied a Taylor expansion of 2nd-order around

0, which is defined as

U(Rp) ' U(0) + U ′(0)Rp + 1
2U
′′(0)R2

p.

By applying the above Taylor expansion to each one of the three utility functions we

obtain

U1(Rp) = ln (1 +Rp)

' Rp −
1
2R

2
p

U2(Rp) =
√

1 +Rp

' 1 + 1
2Rp −

1
8R

2
p

U3(Rp) = 3
√

1 +Rp

' 1 + 1
3Rp −

1
9R

2
p

So, each utility function is now expressed as a quadratic approximation. Also, if we apply

the expected values on each utility we get

E[U1(Rp)] ' µp −
1
2(µ2

p + σ2
p)

E[U2(Rp)] ' 1 + 1
2µp −

1
8(µ2

p + σ2
p)

E[U3(Rp)] ' 1 + 1
3µp −

1
9(µ2

p + σ2
p)

So, all expected utility functions become a function of only the mean and variance of

portfolio returns. Markowitz (2010) [66] reasoned that under a no short-selling assump-

tion (i.e. restricting portfolio returns from getting below −100%), “for a relatively large

range of returns the quadratic approximations are very similar to the respective utility

functions”. In fact, the following table suggests that.
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Table 3.4: Quadratic Approximations of ln (1 +Rp),
√

1 +Rp, 3
√

1 +Rp

Rp ln (1 +Rp) Approx.
√

1 +Rp Approx. 3
√

1 +Rp Approx.

−60% −.92 −.78 .63 .66 .74 .76

−50% −.69 −.63 .71 .72 .79 .81

−40% −.51 −.48 .77 .78 .84 .85

−30% −.36 −.35 .84 .84 .89 .89

−20% −.22 −.22 .89 .90 .93 .93

−10% −.11 −.11 .95 .95 .97 .97

0% .00 .00 1.00 1.00 1.00 1.00

10% .10 .10 1.05 1.05 1.03 1.03

20% .18 .18 1.10 1.10 1.06 1.06

30% .26 .26 1.14 1.14 1.09 1.09

40% .34 .32 1.18 1.18 1.12 1.12

50% .41 .38 1.22 1.22 1.14 1.14

60% .47 .42 1.26 1.26 1.17 1.16

70% .53 .46 1.30 1.29 1.19 1.18

80% .59 .48 1.34 1.32 1.22 1.20

90% .64 .50 1.38 1.35 1.24 1.21

100% .69 .50 1.41 1.38 1.26 1.22

The blue coloured numbers represent “good” approximations, in that they differ from

the real value of the utility about −.03 to .03

Indeed, the above results indicate the point made by Markowitz. Especially, square and

third root utility functions are very well approximated by a quadratic. The interested

reader can refer to the Appendix 3.5, at the end of this chapter, where we plot multiple

different utility functions together with their 2nd-order Taylor approximation. But why

did Markowitz develop his idea this way? The answer to this question comes in the form

of the next theorem proven by Markowitz.

Theorem 3.17 (Markowitz 1959). Let E[Rp] = µp and E[f(Rp)], where Rp represents

the portfolio returns and f(Rp) a rule which associates a number f to each value of Rp.

An individual maximizes the expected value of a utility function U(Rp) = aRp + bf(Rp),

if and only if

(i) he maximizes the expected value of some utility function, and

(ii) his preferences are based solely on µp and E[f(Rp)].
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The above theorem basically states that an investor with a quadratic utility function

that maximizes his utility function will act on the basis of E[Rp] and E[R2
p]. The con-

verse is also true. An investor that bases his preferences solely on E[Rp] and E[R2
p] and

maximizes his expected utility implies that he has a quadratic utility function. So, the

appropriate set of investors to which Markowitz was referring to, was the set of quadratic

utilities, or as we saw in the previous analysis the set of approximately quadratic utility

functions. In the following sections, we will further analyze this subject.

From this point on, the literature has done an extensive amount of research on

Markowitz’s framework. It is generally argued that the MVC is meaningful under two

alternative hypotheses; (i) the investor’s preferences are characterized by a quadratic

utility function or, (ii) the distribution of returns is normal. Both of these cases have

been shown to be unrealistic and so in general problematic (see Arrow (1965) [4] and

Pratt (1964) [76] for further details). Starting with the assumption of quadratic prefer-

ences we actually defer to increasing ARA, which is contrary to the empirical evidence of

decreasing ARA (see Chapter 4). With respect to the Gaussian nature of returns, many

empirical findings like those in [58], [61] and [62] have shown that returns are far from

normal, displaying fat-tails, meaning that a Stable-Pareto family of distributions would

be more appropriate to assume.

Now that we have properly set the building blocks that lead to Markowitz’s MVC,

we can now delve into the fine points of this decision rule. In the following sections, we

are going to review and comment on the literature which examines the necessary and

sufficient conditions under which the MVC becomes the optimal decision rule. Next, we

will carefully test the idea of Markowitz that the MVC under any quadratic approximation

of a utility function is almost equivalent to the MEUC.

3.2.2 MVC Relation to MEUC: With Known Distribution

Having defined the MVC as well as the different orders of SDRs, the question that arises

naturally is whether or not there is some kind of connection between these SDRs and the

MVC. The importance of this connection stems from the strong theoretical foundation

of the SD rules, because if there is not some kind of connection between them and MVC,
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there is no base in using the MVC.

In 1969, Levy and Hanoch [35] focused on determining when the MVC becomes a

necessary and sufficient condition for MEUC. Before them, there were the works of Tobin

(1958) [86] and later Feldstein (1969) [27], who concentrated on the type of distribution

that makes MVC coincide with MEUC. Tobin, suggested that for any two-parameter

distribution MVC coincides with MEUC. The problem with his assertion was an assump-

tion he made, first noticed in [27], in trying to prove it. That, for any two-parameter

distribution function with µ and σ we can standardize, i.e.

Z = X − µ
σ

.

But this is not generally true, as for this to hold we need a distribution function for which

the location and scale parameters are µ and σ, respectively. Some counterexamples of

two-parameter distributions are the log-normal, Beta and Gamma. Feldstein noticed that

and argued that Tobin’s analysis works just for normal distributions. Levy and Hanoch,

impacted by Tobin, revolved around the case where the MVC under any two-parameter

distribution becomes necessary and sufficient. In fact, they highlighted that the MVC

under any two parameter distribution is only a sufficient condition for MEUC. To see

that, the following example from the paper of Hanoch and Levy will help.

Remark 3.18. Let two random variables X and Y with continuous uniform distributions

F and G (i.e. two-parameter distributions). Let also X have a constant density function

in x1 ≤ x ≤ x2 and Y have a constant density function in y1 ≤ y ≤ y2, with x1 > y1 and

x2 > y2. From this, F (x) ≤ G(x) and so F dominates G by FSD. Moreover,

µ1 = 1
2(x1 + x2) > 1

2(y1 + y2) = µ2.

Thus, µ1 > µ2 is necessary for dominance. However, the relation between the variances

of the two distributions plays no role, meaning that any wealth-maximizer will choose F

even if he is highly risk-averse.

In order for MVC to become necessary and sufficient for MEUC, Hanoch and Levy showed

that we need to have two two-parameter distributions with an intersection point. This is

formalized in the following theorem.
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Theorem 3.19. Let F and G be two distinct distributions with means µ1, and µ2, and

standard deviations σ1, σ2, respectively, such that F (x) = G(y), for all x and y which

satisfy x−µ1
σ1

= y−µ2
σ2

. Let µ1 ≥ µ2, and F (x1) > G(x1) for some x1 (i.e., F (x) and G(x)

intersect). Then, F dominates G for all concave U(x), if and only if σ1 ≤ σ2.

The assumption that “F (x) = G(y), for all x and y which satisfy x−µ1
σ1

= y−µ2
σ2

” is very

restrictive, and at the same time it is hard to interpret. However, without it, it would be

impossible to generalize for all two-parameter distributions.

Levy, knowing that the above theorem is rather complicated decided that he should

restate the theorem under only normal distributions. In fact, in his book [53] (1998) the

new theorem is structured as shown below.

Theorem 3.20. Let two lotteries Z1 and Z2 whose cumulative distributions are F and

G, respectively, with Z1 ∼ N(µ1, σ1) and Z2 ∼ N(µ2, σ2). Then, F dominates G by SSD

if and only if F dominates G by the MVC with at least one strong inequality.

The nice properties of normal distributions as well as the assumption of “at least one

strong inequality” capture the intersection between the two distributions. So, under

normality the MVC coincides with the SSDR. Practically this means that any risk averse

investor (U ′ > 0, U ′′ < 0), assuming that lotteries are normally distributed should make

a decision based either on MVC or SSDR. This explains why the literature insists on the

assumption of normality when referring to the MV framework.

However, in the end of Chapter 6 Levy notes: “actually, the MV coincides with the

elliptic family of distributions where the normal distribution belongs to this family”. This

statement needs to be investigated thoroughly when it comes to what are the necessary

and sufficient conditions for MVC to coincide with MEUC, under any elliptical distribu-

tion.

Feldstein argued that one important mistake that Tobin made was that he assumed

that any linear combination of random variables following a two-parameter distribution

follows the same two-parameter distribution. However, Feldstein pointed that a linear

combination of normally distributed random variables remains normal but if we take for

example a Gamma distribution any linear combination will have a one-parameter distri-

bution with equal mean and variance. So, Feldstein concluded that the only admissible
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candidate is a normal distribution. However, Agnew (1971) [1] wrote a comment on Feld-

stein’s assertion, claiming that Tobin’s Separation Theorem is valid also for non-normal

distributions. In particular, he asks the question “If X1, . . . , Xn, are random variables

with finite second moments and if all non-trivial linear combinations a1X1 + . . .+ anXn,

have the same distribution except for location and scale, then that distribution must be

normal. True or false?”. Agnew basically argues that for normality to be the only can-

didate, the random variables should be stochastically independent. Otherwise, even for

uncorrelated random variables the above assertion is false, i.e. there are non-normally

distributed random variables that their linear combinations follow the same distribution.

A specific example is the standardized bilateral exponential distribution (or else Laplace

distribution with µ = 1 and β = 1), which belongs to the elliptic family of distributions.

Later, Chamberlain in 1983 [17] (also Owen-Rabinovicth [70]) introduced two theo-

rems, regarding the relation between elliptical distributions and the MVC, giving sub-

stance to Agnew’s assertion. But first we need to define the spherical and elliptical

distributions.

Definition 3.21 (Spherical distributions). A random vector X of dimension n is spher-

ically distributed about the origin if its probability density function f satisfies the fol-

lowing

f(X) = f(MX),

where M>M = MM> = In.

Equivalently, a spherical distribution is invariant under orthogonal linear transformations

that leave the origin fixed. Likewise, an elliptical distribution is defined as shown below.

Definition 3.22 (Elliptical distributions). A random vector X(n × 1) is elliptically

distributed if

X = µ+ AY,

where Y (k×1) is a spherically distributed random vector, A is a (n×k) matrix such that

AA> = Σ (with Σ representing the scale matrix), and µ(n× 1) is the location vector.

Remark 3.23.
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• All symmetric elliptical distributions are symmetric around µ. So,

E[(X − µ)i] = 0, for i = 3, 5, 7 . . .

• All symmetric elliptical distributions are determined exactly by their mean and vari-

ance

• Any linear combination of elliptically distributed variables is still elliptical

• Under elliptical distributions, variance measures risk.

• Some elliptical distributions are: Normal, Student’s t, Laplace, Logistic, Exponen-

tial, etc.

Now, the first theorem of Chamberlain, considers the case where portfolio returns are

made up of risky assets and a risk-free asset. Namely,

Theorem 3.24 (MV-utilities under elliptical distributions). The distribution of portfolio

returns Rp = w′R+ (1−w)Rf is determined by its mean µp and variance σ2
p for every w

if and only if there is a non-singular matrix T such that

z = T (R− µ),

is spherically distributed about the origin.

We saw that a linear transformation of a spherical random vector is elliptically distributed,

which means that the asset returns R are elliptically distributed and since any linear

combination of elliptical distribution is also elliptical that also makes Rp being elliptically

distributed. Thus, the above theorem states that if there is a riskless asset in the investor’s

portfolio and the distribution of the risky assets is elliptical, the distribution of the

portfolio’s returns will be determined only by µp and σp. Accordingly, that derives the

following result,

E[U(Rp)] = f(µp, σp),

for some concave f .
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Does that implicate that the MVC coincides with the MEUC? The answer is no. In

order for this to hold, we should prove that under elliptical distributions the following

equivalence holds

Z1MV Z2 ⇔ FD2G.

Fortunately, the “necessity” side has been proven by Chamberlain, namely Z1MV Z2 ⇒

FD2G. In particular, Chamberlain showed that for any concave utility function, i.e.

U ∈ U2, the expected utility is increasing in mean and decreasing in variance. In other

words, the MVC implicates the MEUC. But what about the “sufficiency” side, namely

FD2G ⇒ Z1MV Z2? For this, we will need to make use of Conditions 3.7 and 3.9.

Condition 3.9, known as the left-tail necessary condition for the SSD, entails that σ1 ≤ σ2,

since we are talking about elliptical distribution which are known to be determined by

their mean and variance. Accordingly, Condition 3.7 entails that µ1 ≥ µ2. Thus, we get

also the “sufficiency” side. And so now, we can claim that under elliptical distributions

Z1MV Z2 ⇔ FD2G.

So, for any two lotteries which are elliptically distributed, the optimal rule for a risk-

averse investor is the MVC. In other words, the Theorem 3.20 can be restated as shown

below.

Theorem 3.25 (MVC-SSD under elliptical distributions). Let two lotteries Z1 and Z2

with F and G denoting their cumulative distributions, respectively. Let also Z1, Z2 be

elliptically distributed with means µ1, µ2, respectively, and, standard deviations σ1, σ2,

respectively. Then, F dominates G by SSD if and only if F dominates G by the MVC

with at least one strong inequality.

The above theorem states that, regardless of the distribution being normal, or logistic,

or Laplace, or any other type of elliptical distribution, the investor should use the MVC to

make his decisions. This elevates the value of the MVO method developed by Markowitz.

However, in practice, we can see in the following remark that this family of distributions

is quite limited since in order for the MVC to be meaningful we need skewness to be

equal to zero.

Remark 3.26. Some valid cases of symmetric elliptical distributions are:
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• Student’s-t: If df > 3, then µ = 0 σ2 = df
df−2 , s = 0, κ = 3 + 6

df−4 , if df > 4,

otherwise undefined

• Laplace: µ = µ, σ2 = 2b2, s = 0, κ = 6, b > 0

• Logistic: µ = µ, σ2 = a2π2

3 , s = 0, κ = 21
5 , a > 0

• α-stable: µ = µ, σ2 = 2c2, s = 0, κ = 3, if α = 2 (Gaussian case)

Duchin and Levy (2004) [55] conducted an empirical study to determine how this

new finding from Chamberlain correlates with real data. They used monthly returns

for 5 portfolios spanning from 1926 to 2001. Namely, common stocks, small stocks,

long-term corporate bonds, long-term government bonds and Treasury bills. Then, they

tested which of the following candidate distributions: Normal, Beta, Exponential, Ex-

treme value, Gamma, Logistic, Lognormal, Student-t, Skew-Normal, Stable Paretian and

Weibull, best fits the data. They found strong evidence pointing to the logistic distribu-

tion, which belongs to the symmetric elliptical family of distributions. Based on Theorem

3.25, they argued that this indicates that the MVC is the optimal decision rule for these

portfolios.

Although it is clear that the MVC is optimal under elliptical distributions, many

research papers and academic books still consider the MV-framework only under either

quadratic preferences or normality. Markowitz (2010) [66] has observed that and em-

phatically states: “I never-at any time!-assumed that return distributions are Gaussian”.

True, the literature has often misinterpreted under what conditions the MVC is valid, but

even under elliptical distributions the MVC is still far from being truly useful when deal-

ing with real stock or portfolio returns. More specifically, families of distributions which

contain more non-normal cases are more interesting, since they are known to describe

better empirical data.

One very recent work from Schuhmacher et al (2021) [80] tries to broaden the family

of distributions for which the MVC is relevant. The authors show that, in the presence

of a risk-free asset, the return distribution of every portfolio is determined by its mean

and variance if and only if asset returns follow a specific Skew-Elliptical distribution. A

Skew-Elliptical distribution is defined as shown below.
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Definition 3.27 (Skew-Elliptical GLS distributions). A random vector X of dimension

n is said to have a Skew-Elliptical generalized location-scale (hereafter; GLS) distribution

with constant r ∈ R, if its components Xi (i = 1, . . . , n), can be written as

Xi = r + βiY + γiZi,

where, conditional on Y , the vector Z = (Z1, . . . , Zn)′ is spherically distributed and Y

is a real-valued random variable with E[Y ] 6= 0 and V ar[Y ] = 1. The coefficients βi, γi
are real numbers with βi 6= 0 for at least one i = 1, . . . , n. Also, Z and Y are linearly

independent.

Remark 3.28.

• All Skew-Elliptical distributions are determined exactly by their mean and variance.

More specifically, based on Definition 3.27 we derive

E[Xi] = r + βiE[Y ] + γiE[Zi] = r + βiE[Y ]

V ar(Xi) = β2
i V ar(Y ) + γ2

i V ar(Zi) = β2
i + γ2

i .

Solving for βi and γi we get

βi = E[Xi]− r
E[Y ]

|γi| =

√√√√V ar(Xi)−
(
E[Xi]− r
E[Y ]

)2
.

• Any linear combination of Skew-elliptically GLS distributed variables is still Skew-

Elliptical

• Some Skew-Elliptical distributions are: Skew-Normal, Skew-t, Skew-Cauchy, Skew-

logistic, etc.

Similar to Chamberlain (1983) [17], Schuhmacher et al. (2021) [80] proved the follow-

ing theorem.

Theorem 3.29 (MV-utilities under Skew-Elliptical distributions). Assume there exists

at least one i = 1, . . . , n such that E[Ri] 6= Rf , where Ri is the ith element of the risky
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asset vector R. In the presence of a risk-free asset, Rf , the distribution of portfolio returns

Rp = w′R + (1 − w)Rf is determined by its mean and variance for every w ∈ Rn with

w′1 = 1 if and only if the asset returns R have a Skew-Elliptical GLS distribution.

Theorem 3.29 states that lotteries which follow a Skew-Elliptical distribution have a

MV-utility. So, we derive the following result

E[U(Rp)] = f(µp, σp).

Following the same rationale as in Chamberlain’s work, the fact that the expected utility

is only a function of the mean and the variance of the portfolio returns does not implicate

that the MVC is necessary and sufficient for the MEUC. In other words, one needs to

prove that under skew-elliptical distributions the following holds

Z1MV Z2 ⇔ FD2G.

Contrary to Chamberlain (1983) [17], Schuhmacher et al. (2021) [80] do not show that f

is increasing in mean and decreasing in variance, for any U ∈ U2. So, with regards to the

“sufficiency” side, this might mean that FD2G does not necessarily implicate Z1MV Z2.

Moreover, when it comes to proving the “necessity” side we cannot make use of Condition

3.9, as we did earlier for the elliptical family of distributions, since this condition only

applies to distributions that are not skewed. In fact, later on we will see through MC

Simulations that under Skew-Elliptical distributions there are some cases that violate

the “necessity” side. So, contrary to elliptical distributions, there is no theoretical proof

that under Skew-Elliptical distributions the MVC is the optimal decision rule for any

risk-averse investor. We only know that under Skew-Elliptical distributions the expected

utility of the investor is a function of mean and variance. As a result, there might be

cases in which even though the MVC is satisfied between two lotteries, namely Z1MV Z2,

some type of investor inside U2 might prefer lottery Z2. This will become evident in our

MC Simulations in the Quadratic approximations subsection.

3.2.3 MVC Relation to MEUC: With Known Preferences

An alternative to searching for a good candidate distribution is to make an assumption

on the utility function of the investor. A widely used premise is that of quadratic utility.
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In that case, the expected utility becomes a function of only µ and σ. Moreover, it is

increasing in µ and decreasing in σ. The price we pay for this kind of assumption is

that, (i) quadratic preferences constitute a very restrictive class and, (ii) by assuming

quadratic utility we are led to increasing absolute risk aversion (ARA), which is counter-

intuitive. So, one should be careful when trying to avoid an assumption with respect

to the distribution of returns, as he will be left with a class of utility functions that is

questionable for its realism as well as for its usefulness. However, this is the specific class

of investors that Markowitz pointed to.

Hanoch and Levy (1969) [35], presented an example through which they argued that

the MVC under quadratic preferences is only sufficient for MEUC. This, can be formally

shown through the following proposition from Hanoch and Levy (1970) [34].

Proposition 3.30. Assuming quadratic preferences, the MVC is only a sufficient condi-

tion for the MEUC

Proof. (Sufficiency) Following [34], let the following quadratic utility function

U(x) = 2Kx− x2, with x < K

where K > 0, U ′(x) = 2(K − x) > 0 and U ′′(x) = −2 < 0. Let two lotteries x1 and x2

for which we derive

∆E[U ] = E[U(x1)]− E[U(x2)]

= 2Kµ1 − E[x2
1]− 2Kµ2 − E[x2

2]

= 2Kµ1 − (µ2
1 + σ2

1)− 2Kµ2 − (µ2
2 + σ2

2)

= 2K∆µ− (∆µ2 + ∆σ2)

= 2∆µ(K − µ̄)−∆σ2

where ∆σ2 = σ2
1−σ2

2, µ̄ = µ1+µ2
2 . Assuming that µ1, µ2 < K, we have that µ̄ < K. Then,

∆E[U ] > 0 if we assume that µ1 > µ2 and σ1 < σ2, which is exactly the MVC.

(Necessity) Let ∆E[U ] > 0. Does that imply µ1 > µ2 and σ1 < σ2? The answer is

no. In fact, from ∆E[U ] > 0 we have that

2∆µ(K − µ̄) > ∆σ2,

∆µ > 0
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Thus, even if ∆σ2 < 0 (i.e. σ1 > σ2), since 2∆µ(K − µ̄) > 0, the above inequality

holds.

The above proof led Hanoch and Levy to identify the right rule which is both necessary

and sufficient for MEUC. The rule is called quadratic dominance rule and we can see below

how it coincides with MEUC.

Theorem 3.31. Assuming quadratic preferences, the quadratic dominance rule as defined

below

1. µ1 ≥ µ2

2. 2∆µ
(

max(x1, x2)− µ̄
)
−∆σ2 ≥ 0,

is both necessary and sufficient for MEUC.

The proof of this theorem is evident from the previous proof of the proposition. The

reason the authors chose to replace K with max(x1, x2) is that in this way the rule

constitutes a smaller set than if we had K. This set happens to be the smallest and

thus the optimal set. The new rule under quadratic preferences is both necessary and

sufficient for MEUC, mainly because it also includes cases where σ1 > σ2.

Johnstone et al. (2011) [41] proved that if one wants to avoid constraining the distri-

bution of portfolio returns it is necessary to assume quadratic preferences to apply the

MVC. This is formulated as shown below.

Theorem 3.32. The use of MVC, on the class of all distributions, implies that the

decision maker’s utility function must be quadratic.

This theorem basically says that under the MV-framework we should not look for any

other set of utilities other than the quadratic, assuming that we do not constrain the

family of distributions, which justifies the use of quadratic utilities. Still, the quadratic

family of utilities is very restrictive. But in Markowitz’s words (2010) [66]: “Nor did I

ever assume that the investor’s utility function is quadratic”. So, although the literature

has adopted the quadratic utility as the only appropriate class of investors for which

the MV-framework is relevant, Markowitz claims that we should not be fixated just on

the quadratic utility function. In particular, as we have already discussed, Markowitz
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attempted to upgrade the MVC by discussing its validity even under a wider class of

utility functions that happen to be approximately quadratic. We will discuss this premise

in the following section.

3.3 Methodology and MC Simulations

3.3.1 Approximately Quadratic Utility Functions

As we analyzed earlier, Markowitz (1959) chose three specific utilities in his work in order

to discuss his idea about the quadratic approximations, namely log(1 + Z),
√

1 + Z and
3
√

1 + Z. Those three utilities are not only concave but they also satisfy one additional

property, namely U ′′′ ≥ 0. To see why this extra property is crucial, we have to take a

2nd-order Taylor series on the utility function, as shown below

QZ = U(µ) + U ′(µ)(Z − µ) + U ′′(µ)
2 (Z − µ)2

E[QZ ] = U(µ) + U ′′(µ)
2 σ2

So, E[QZ ] will increase with respect to µ and decrease with respect to σ if the following

holds

∂E[QZ ]
∂σ

= U ′′(µ)σ < 0, if U ′′ < 0

∂E[QZ ]
∂µ

= U ′(µ) + U ′′′(µ)
2 σ2 > 0, if U ′ > 0 and U ′′′ ≥ 0

Therefore, any utility function that is a part of U3 = {U : U ′ > 0, U ′′ < 0, U ′′′ ≥ 0} and at

the same time is almost quadratic, will be increasing in mean and decreasing in variance.

Are log(1 + Z),
√

1 + Z and 3
√

1 + Z almost quadratic? According to Markowitz’s Table

3.4, we see that
√

1 + Z and 3
√

1 + Z are approximately quadratic for any value around

−60% and 100%, but with regards to log(1 + Z) the quadratic approximation is good

only for values around −40% and 50%. As a result, assuming that two lotteries Z1, Z2

take values in [−60%, 100%] (or in [−40%, 50%]) and that Z1MV Z2, we could say that

the investors with utility functions
√

1 + Z and 3
√

1 + Z (or log(1 +Z)) should prefer Z1.

Does the inverse also hold? Based on Proposition 3.30, we deduce that an approximately

quadratic utility function can qualify the MVC to be only a sufficient condition for the
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MEUC. So, according to Markowitz, without any further assumption on the distributions

followed by Z1 and Z2, the MVC will be sufficient for the MEUC if and only if the utility

function of the investor is approximately quadratic for a sufficiently wide range of values.

In the end of this chapter there is an Appendix which includes several plots of different

utility functions together with their quadratic approximation. Markowitz realized that

this reasoning does not suffice to support his assertion. Thus, he resorted to a quite

different approach.

In 1979, Levy and Markowitz [57] revisited this subject by doing an empirical analysis.

Firstly, they restated Markowitz’s premise as follows: “an investor that chooses carefully

from among the mean-variance efficient set, will almost maximize his expected utility,

if and only if his utility function is approximately quadratic”, i.e. it is almost perfectly

approximated by a 2nd-order Taylor expansion. Consequently, they introduced a way

to identify the size of the set containing the approximately quadratic utility functions.

Firstly, the utility functions have to be a part of U3. Such utility functions are the

following, log (1 + Z), (1 + Z)a with a = 0.1, 0.3, 0.5, 0.7, 0.9 and −e−a(1+Z) with a =

0.1, 0.5, 1, 3, 5, 10. Secondly, they collected the annual returns of 149 mutual funds during

the period 1958 through 1967. Following that, they calculated Corr(E[U(Z)], E[QZ ]),

for each of the above utility functions. The idea was simple. If the correlation of the

expected utility and the expected value of the quadratic approximation is close to 1, that

would indicate that E[U(Z)] and E[QZ ] move in the same direction, which is the actual

point of interest. This approach, overcomes the limitations in Markowitz’s initial attempt

to promote his idea of approximately quadratic utilities. Going back to their results, the

authors found evidence of

Corr(E[U(Z)], E[QZ ]) ' 1,

for all the parametrizations of the utility functions, except for b = 5, 10 which represent

the extremely risk-averse investors. Additional empirical evidence came from their joint

work with Kroll in 1984 [47]. Based on these findings, they argued that the above utility

functions are almost quadratic for almost all of their parametrizations. Thus, if the MVC

holds, the above investors should decide based on it.

In the following section we are going to thoroughly analyze our approach on this

subject. Up to this point, the context of our discussion around the connection between
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the MVC and MEUC includes either an assumption with respect to the set of utility

functions or the type of distribution of the lotteries. With that being said, although Levy

and Markowitz did provide some supportive evidence of their premise, we believe that

in order for it to be confirmed we need to clarify whether we need an extra assumption

with respect to the type of distribution. Namely, since we are assuming approximately

quadratic utility functions we are obliged to research on whether or not we need an extra

assumption on the kind of distribution under which the MVC is sufficient for the MEUC.

Otherwise, the premise about quadratic approximations cannot be strongly supported.

For our analysis, we need to define U∗3 = {U : U ′ > 0, U ′′ < 0, U ′′′ ≥ 0 and U(Z) ' QZ}

to be the set that contains all those utility function that are part of U3 and at the same

time are almost quadratic.

3.3.2 Methodology

An important question that needs to be addressed is under what conditions does the

assumption of approximately quadratic utility functions hold. Or, in more general, what

is the range of the MVC? Whether or not a utility function is well-approximated by a

2nd-order Taylor series should depend on the utility function we use (the subjective char-

acteristics of the investors) as well as the type of the assumed distribution (the objective

characteristics of the lotteries). A simple approach like that on Table 3.4 is inadequate.

The reason is that non-normal or skewed distributions might conflict with quadratic ap-

proximations, in terms of the validity of the MVC. In other words, we should specify

for which distributions we have U(Z) ' QZ . In a recent review of his work, Markowitz

(2010) [66], claimed that the idea presented in Levy and Markowitz (1979) [57] was tar-

geting any type of distribution. This last information helps us formulate a mathematical

proposition connecting the MVC to approximately quadratic utility functions. Before

doing that we need to highlight the following. First, we should take into consideration

the fact that the MVC is a decision criterion between two lotteries. So, the premise of

Markowitz should be restated accordingly. Second, based on Proposition 3.30, the MVC

is only a sufficient condition for MEUC, for any quadratic utility function. Third, the set

of investors we refer to is U∗3 = {U : U ∈ U3 and U(Z) ' QZ}. Altogether, we get the
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following corollary.

Corollary 3.33 (MVC under Quadratic Approximation). For any two lotteries Z1 and

Z2, with any cumulative distributions F and G, the following holds

Z1MV Z2 ⇒ E[U(Z1)] ≥ E[U(Z2)], ∀U ∈ U∗3 = {U : U ∈ U3 and U(Z) ' QZ}.

Proof. If Z1MV Z2 then for any U ∈ U∗3 we have

E[U(Z1)]− E[U(Z2)] ' E[QZ1 ]− E[QZ2 ]

= U(µ1) + U ′′(µ1)
2 σ2

1 − U(µ2)− U ′′(µ2)
2 σ2

2 ≥ 0

The above corollary states that for any two lotteries that satisfy the MVC, i.e. Z1MV Z2,

all investors inside U∗3 will maximize their expected utility functions by choosing lottery

Z1. But the success of Corollary 3.33 relies on U∗3 being sufficiently large. This is what

we will try to determine. We already know from Theorem 3.25 that for any elliptical

symmetric distribution the MVC becomes equivalent to the MEUC. So, for these types

of distributions the additional limiting assumption of approximately quadratic utility

functions is unnecessary. In other words, we would like to examine the validity of the

above corollary for asymmetric distributions and even for very non-normal cases which are

considered to characterize daily or even monthly stock returns. Jondeau and Rockinger

(2006) [43], using empirical data, supported that cubic or even quartic approximations

are better approximations of expected utility, under large departure from normality. But

their work does not approach the work of Levy and Markowitz the way we do. As

long as the quadratic approximation consistently results in the same decision making

between two lotteries as the direct MEUC, there is no reason in searching for more

precise approximations of the utility function. One way to research that is by applying

MC Simulations. The simulations enable us to apply different types of distribution with

specific characteristics. This way we can identify more clearly under what conditions the

premise of Markowitz is valid.
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3.3.3 MC Simulations

As we have already analyzed we only consider utility functions that belong to U3. The

main reason being that a 2nd-order Taylor series, of any utility function inside U3 is

only a function of µ and σ, while being increasing in µ and decreasing in σ. Moreover,

any investor inside U3 prefers a utility function with higher positive skewness. Our main

scope, is to calculate the percentage that MVC implies the MEUC, for utility functions

belonging to U3. By doing that, we expect that skewness plays an important role in the

decision making of the investors inside U3. This way, we can detect whether the MVC

is sufficient for the MEUC or if the higher skewness is more desirable by the investors

inside U3, leading to the failure of Corollary 3.33.

The utility functions we are going to use are a combination of the ones used by Levy

and Markowitz (1979) and Ederington (1995). The utilities are presented in the following

table.

Table 3.5: Utility functions inside U3

(1 + Z)a with a = {0.01, 0.1, 0.5, 0.9}

log(a+ Z) with a = {0.9, 1}

−e−a(1+Z) with a = {0.7, 1, 3, 5, 8, 10, 15, 20}

−(1 + Z)−a with a = {0.01, 0.3, 0.5, 1, 3, 5, 8, 10, 15, 20}

Before going into the simulations we have to highlight a few things about the level of

risk-aversion of each utility function. We can measure the level of risk-aversion of each

utility function by the absolute risk aversion. Namely,

ARA(1+Z) = 1− a
1 + Z

ARAlog = 1
a+ Z

ARAexp = a

ARA−(1+Z) = 1 + a

1 + Z

In our case, lotteries Z represent stock returns which means that the range of values

is [−1, 1]. So, in general we can sort the utility functions in terms of their level of
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risk-aversion as follows (1 + Z)a, log(a + Z), −e−a(1+Z) and −(1 + Z)−a, with the last

one describing the more risk risk-averse investor. Parameter-wise the log-utility function

characterizes the more risk-averse investors when a gets closer to 0.9. Accordingly, (1+Z)a

is more risk-averse for a’s closer to 0.01. For −e−a(1+Z) and −(1 + Z)−a the higher a

gets, the more risk-averse the investors are. One would expect that for more risk-averse

investors the skewness of an asymmetric distribution together with the existence of more

extreme jumps will impact their decision making.

Now, as we said, we are going to apply MC Simulations in order to have the absolute

control in terms of the DGP that generates our data. The simulations enable us not only

to choose the type of distribution that generates our data but also enable us to control the

levels of differences between the parameters µ1, µ2 and σ1, σ2. Evidently, the larger the

differences, µ1/µ2 and σ1/σ2 are, the less the effect of a more skewed or even a more non-

normal distribution will be on the MVC’s efficiency. Thus, the MC Simulations will act

as a stress test on the premise of Levy and Markowitz, as we will consider specific cases

under which the premise might fail even for less risk-averse investors. In the following

section, we aim to measure exactly the efficiency rate of the MVC under some specific

cases that we consider.

The methodology we will follow for the MC Simulations is analyzed in the following

steps. First, we choose the distribution from which we will generate data for two lotteries,

Z1 and Z2.

Z1 ∼ D(p1) Z2 ∼ D(p2),

where p1 and p2 represent the parameters of each distribution.

In our analysis, we use five types of distribution, the Gaussian, the Laplace, the Skew-

Normal, the Extreme Value and the Stable Pareto. These are considered good candidates

as they are regularly used to fit multiple frequencies of stock returns. More specifically,

Linden (2001) [59] finds evidence that the Laplace distribution fits well into a sample

of daily and weekly observations of individual stocks. The Skew-Normal distribution is

employed in Harvey et al. (2004) [36] to model multivariate returns. Levy and Duchin

(2004) [56] find evidence that Extreme Value distributions fit best stock returns with

longer horizons. Finally, there is empirical evidence found in Mandelbrot (1963) [61],

Manegna and Stanley (1995) [62] and in Levy (2005) [58], that short-term stock returns
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are better described by a Stable Pareto distribution. The Gaussian as well as Laplace

distributions are expected to derive a 100% success of the MVC inferring the MEUC,

based on Theorem 3.20. The Skew-Normal represents an interesting case as it belongs

to the skew-elliptical family that Schuhmacher et al. [80] were referring to. The other

two distributions are gradually more skewed and in general more non-normal. So, the

last three distributions are considered more interesting. The next step, is to control the

differences between the means, the variances and the skewnesses of the two lotteries Z1,

Z2. We generate data in such a way that we have absolute control on these differences.

This is important as it makes it easier to see the effect of skewness on the investors’

decision making. Moreover, the data we generate will always make sure that Z1MV Z2

and not the other way. We replicate this step multiple times. The data we generate

each time are approximately 100, 000 observations. For each distribution and each case

of differences in the parameters we generate approximately 100 MV-pairs. So, we can be

certain that the findings are robust.

We set the parameters for each type of distribution based on real data. Namely, we

first fit the type of distribution we want on the daily stock returns of 850 different NYSE

stocks. And then, we use these fitted parameters as a basis to generate our own data.

This way we are more confident that the different cases we consider are realistic.

The results produced by the MC Simulations can be found in the following tables.
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Table 3.6: Percentage of MVC⇒MEUC for (1 + Z)a

Distribution Parameters Differences a = 0.01 a = 0.1 a = 0.5 a = 0.9

Normal
µ1
µ2

= 1.05, σ2
σ1

= 1.05 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01 100% 100% 100% 100%

Laplace
µ1
µ2

= 1.05, σ2
σ1

= 1.05 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01 100% 100% 100% 100%

SkewN

µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 1.5 100% 100% 100% 100%
µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 3 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 1.5 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 3 100% 100% 100% 100%

Extreme

µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 1.5 100% 100% 100% 100%
µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 3 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 1.5 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 3 81% 86% 91% 94%

Stable

1.1 < µ1
µ2
≤ 1.15, 1.1 < σ2

σ1
≤ 1.15, 1.5 ≤ s2

s1
≤ 3 96% 98% 100% 100%

1.05 < µ1
µ2
≤ 1.1, 1.05 < σ2

σ1
≤ 1.1, 1.5 ≤ s2

s1
≤ 3 94% 98% 100% 100%

1.01 ≤ µ1
µ2
≤ 1.05, 1.01 ≤ σ2

σ1
≤ 1.05, 1.5 ≤ s2

s1
≤ 3 76% 81% 95% 100%
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Table 3.7: Percentage of MVC⇒MEUC for log(a+ Z)

Distribution Parameters Differences a = 0.9 a = 1

Normal
µ1
µ2

= 1.05, σ2
σ1

= 1.05 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01 100% 100%

Laplace
µ1
µ2

= 1.05, σ2
σ1

= 1.05 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01 100% 100%

SkewN

µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 1.5 100% 100%
µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 3 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 1.5 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 3 100% 100%

Extreme

µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 1.5 100% 100%
µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 3 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 1.5 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 3 81% 85%

Stable

1.1 < µ1
µ2
≤ 1.15, 1.1 < σ2

σ1
≤ 1.15, 1.5 ≤ s2

s1
≤ 3 93% 96%

1.05 < µ1
µ2
≤ 1.1, 1.05 < σ2

σ1
≤ 1.1, 1.5 ≤ s2

s1
≤ 3 90% 94%

1.01 ≤ µ1
µ2
≤ 1.05, 1.01 ≤ σ2

σ1
≤ 1.05, 1.5 ≤ s2

s1
≤ 3 62% 76%

Table 3.8: Percentage of MVC⇒MEUC for −e−a(1+Z)

Distribution Parameters Differences a = 0.7 a = 1 a = 3 a = 5 a = 8 a = 10 a = 15 a = 20

Normal
µ1
µ2

= 1.05, σ2
σ1

= 1.05 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01 100% 100% 100% 100% 100% 100% 100% 100%

Laplace
µ1
µ2

= 1.05, σ2
σ1

= 1.05 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01 100% 100% 100% 100% 100% 100% 100% 100%

SkewN

µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 1.5 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 3 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 1.5 100% 100% 100% 100% 100% 100% 91% 18%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 3 100% 100% 100% 100% 100% 100% 4% 0%

Extreme

µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 1.5 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 3 100% 100% 100% 100% 6% 0% 0% 0%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 1.5 100% 100% 99% 80% 7% 0% 0% 0%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 3 94% 49% 1% 0% 0% 0% 0% 0%

Stable

1.1 < µ1
µ2
≤ 1.15, 1.1 < σ2

σ1
≤ 1.15, 1.5 ≤ s2

s1
≤ 3 100% 98% 93% 88% 81% 74% 56% 52%

1.05 < µ1
µ2
≤ 1.1, 1.05 < σ2

σ1
≤ 1.1, 1.5 ≤ s2

s1
≤ 3 98% 92% 82% 77% 59% 55% 41% 36%

1.01 ≤ µ1
µ2
≤ 1.05, 1.01 ≤ σ2

σ1
≤ 1.05, 1.5 ≤ s2

s1
≤ 3 92% 73% 43% 38% 19% 14% 10% 3%
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Table 3.9: Percentage of MVC⇒MEUC for −(1 + Z)−a

Distribution Parameters Differences a = 0.01 a = 0.3 a = 0.5 a = 1 a = 3 a = 5 a = 8 a = 10 a = 15 a = 20

Normal
µ1
µ2

= 1.05, σ2
σ1

= 1.05 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Laplace
µ1
µ2

= 1.05, σ2
σ1

= 1.05 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

SkewN

µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 1.5 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 1.5 100% 100% 100% 100% 100% 100% 100% 100% 82% 15%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 3 100% 100% 100% 100% 100% 100% 100% 76% 0% 0%

Extreme

µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 1.5 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
µ1
µ2

= 1.05, σ2
σ1

= 1.05, s2
s1

= 3 100% 100% 100% 100% 100% 100% 0% 0% 0% 0%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 1.5 100% 100% 100% 100% 92% 49% 0% 0% 0% 0%
µ1
µ2

= 1.01, σ2
σ1

= 1.01, s2
s1

= 3 72% 68% 55% 37% 0% 0% 0% 0% 0% 0%

Stable

1.1 < µ1
µ2
≤ 1.15, 1.1 < σ2

σ1
≤ 1.15, 1.5 ≤ s2

s1
≤ 3 96% 94% 92% 88% 86% 82% 70% 63% 52% 47%

1.05 < µ1
µ2
≤ 1.1, 1.05 < σ2

σ1
≤ 1.1, 1.5 ≤ s2

s1
≤ 3 94% 91% 88% 80% 78% 64% 54% 50% 38% 33%

1.01 ≤ µ1
µ2
≤ 1.05, 1.01 ≤ σ2

σ1
≤ 1.05, 1.5 ≤ s2

s1
≤ 3 76% 57% 48% 33% 28% 24% 17% 12% 8% 2%

Before getting into the results we need to highlight some important features of our

generated data. Notice that for the Skew-Normal as well as the Extreme Value distribu-

tion the differences between the means and standard deviations we consider are small as

we found out that for larger differences the MVC works fine. On the contrary, under a

Stable Pareto distribution the MVC fails to entail the MEUC even for distances between

means and standard deviations that are as high as 15%. This is due to the extreme

characteristics of the Stable Pareto distribution, which is known to exhibit sudden large

jumps and thus creates higher challenges for the MVC. In terms of the Stable Pareto

distribution, the reason we allow the differences between the parameters to move inside a

specific range is because it is harder to control the data produced, since the distribution

has undefined moments.

Now, the MC Simulations indicate that (1 + Z)a and log(a + Z) utility functions

are only mildly affected by the Skew-Normal and Extreme Value distributions when the

differences between the parameters are very close in value. This shows, that the less risk

averse investors can generally trust the MVC for their decision making, even for mildly

non-normal skewed distributions. But, in the Stable Pareto case when the differences

between the means and the standard deviations hover around 1% and 10% the investors

should take into consideration the skewnesses of the two generated processes in order to

make better decisions. With regards to −e−a(1+Z) and −(1 + Z)−a the issues with the
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sufficiency of the MVC for the MEUC are evident even in the case of the Skew-Normal

distribution. More specifically, the extremely risk-averse investors with a = 15, 20 will

make very wrong decisions when the means and standard deviations differences are very

close in value. The results are even worse for the Extreme Value distribution case. In

particular, we see that the impact on the MVC is evident even for less risk-averse investors

and is far worse as the differences in the parameters get closer. But the more interesting

results come from the Stable Pareto case, which signifies that these types of investors will

need more information on the lotteries’ characteristics, besides the means and variances,

in order to make their decision. This is evident even in cases where the differences between

the parameters get as high as 15%.

As our results indicate, the premise of Levy and Markowitz fails under the Stable

Pareto family of distributions. More specifically, we deduce that even though Z1MV Z2,

the investors under consideration prefer Z2 due to it having a higher positive skewness

than that of Z1. We should also highlight here that we set the parameter α to lie around

1.4 and 1.6. This is due to the fact that approximately 70% of the 850 NYSE stocks have

a fitted parameter α inside this range. The further away we get from α = 2, the more

non-normal the distribution gets. But why do we focus mainly on the findings derived

from the Stable Pareto family of distributions? The answer here relies on the Generalized

Central Limit Theorem (G-CLT). Based on it, a random variable R = ∑n
i=0 ξi will be

α-stable with α < 0 ≤ 2 if and only if ξi’s are iid and an(ξ1 + . . . + ξn) − bn → R,

with an > 0 and bn ∈ R. According to Mandelbrot (1963) the random variables ξi’s

have infinite variance. So, it is common to use the Stable Pareto family of distributions

to describe daily and weekly stock returns. Thus, the fact that under Stable Pareto

distributions the premise of Levy and Markowitz fails is highly relevant.

There are also more extreme non-normal cases for which we derive even worse results.

Namely, if we let the parameter α of the Stable Pareto distribution to be between 1.2

and 1.4 we end up with the following Tables.
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Table 3.10: Percentage of MVC⇒MEUC for (1 + Z)a

Distribution Parameters Differences a = 0.01 a = 0.1 a = 0.5 a = 0.9

Stable

1.1 < µ1
µ2
≤ 1.15, 1.1 < σ2

σ1
≤ 1.15, 1.5 ≤ s2

s1
≤ 3 93% 95% 100% 100%

1.05 < µ1
µ2
≤ 1.1, 1.05 < σ2

σ1
≤ 1.1, 1.5 ≤ s2

s1
≤ 3 71% 74% 93% 100%

1.01 ≤ µ1
µ2
≤ 1.05, 1.01 ≤ σ2

σ1
≤ 1.05, 1.5 ≤ s2

s1
≤ 3 33% 37% 67% 93%

Table 3.11: Percentage of MVC⇒MEUC for log(a+ Z)

Distribution Parameters Differences a = 0.9 a = 1

Stable

1.1 < µ1
µ2
≤ 1.15, 1.1 < σ2

σ1
≤ 1.15, 1.5 ≤ s2

s1
≤ 3 90% 93%

1.05 < µ1
µ2
≤ 1.1, 1.05 < σ2

σ1
≤ 1.1, 1.5 ≤ s2

s1
≤ 3 67% 71%

1.01 ≤ µ1
µ2
≤ 1.05, 1.01 ≤ σ2

σ1
≤ 1.05, 1.5 ≤ s2

s1
≤ 3 30% 33%

Table 3.12: Percentage of MVC⇒MEUC for −e−a(1+Z)

Distribution Parameters Differences a = 0.7 a = 1 a = 3 a = 5 a = 8 a = 10 a = 15 a = 20

Stable

1.1 < µ1
µ2
≤ 1.15, 1.1 < σ2

σ1
≤ 1.15, 1.5 ≤ s2

s1
≤ 3 99% 96% 77% 45% 41% 35% 30% 26%

1.05 < µ1
µ2
≤ 1.1, 1.05 < σ2

σ1
≤ 1.1, 1.5 ≤ s2

s1
≤ 3 96% 90% 43% 30% 26% 21% 17% 14%

1.01 ≤ µ1
µ2
≤ 1.05, 1.01 ≤ σ2

σ1
≤ 1.05, 1.5 ≤ s2

s1
≤ 3 78% 56% 0% 0% 0% 0% 0% 0%

Table 3.13: Percentage of MVC⇒MEUC for −(1 + Z)−a

Distribution Parameters Differences a = 0.01 a = 0.3 a = 0.5 a = 1 a = 3 a = 5 a = 8 a = 10 a = 15 a = 20

Stable

1.1 < µ1
µ2
≤ 1.15, 1.1 < σ2

σ1
≤ 1.15, 1.5 ≤ s2

s1
≤ 3 95% 91% 87% 82% 65% 41% 37% 31% 27% 22%

1.05 < µ1
µ2
≤ 1.1, 1.05 < σ2

σ1
≤ 1.1, 1.5 ≤ s2

s1
≤ 3 64% 60% 54% 50% 35% 24% 21% 18% 14% 11%

1.01 ≤ µ1
µ2
≤ 1.05, 1.01 ≤ σ2

σ1
≤ 1.05, 1.5 ≤ s2

s1
≤ 3 33% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Evidently, for those more extreme non-normal cases the investors inside U3 will be

led to an even higher degree of wrong decisions, assuming they make their decisions based

solely on the MVC.

To sum up, we conclude that the main issue with the premise of Levy and Markowitz

lies with the more non-normal cases. These cases can better be described by the Extreme

Value and Stable Pareto distributions. However, under the assumption of Gaussian,

Laplace or Skew-Normal distributions the premise of Levy and Markowitz seems valid for

all the utility functions that we put to test. In other words, under those distributions the

above utility functions are almost quadratic. The Extreme Value distribution represents
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the first step in testing the premise under more non-normal cases. The MVC seems

to resist the pressure for less risk-averse investors. The more noteworthy findings are

derived by the Stable Pareto distribution, which, according to Mandelbrot, represents

an appropriate description of the movement of daily stock returns. In this case, letting

the means’ and standard deviations’ differences to hover around 1% and 15% results

in erroneous decisions made by almost all parametrizations of the four investors. So,

as expected, the greater the non-normality of the distribution of lotteries, the more

information the decision makers will need, with respect to the characteristics of the

distribution of each lottery, in order to make the right decision. As a result, we conclude

that the premise of Levy and Markowitz works appropriately for Elliptical or Skew-

Elliptical distributions. However, as we have thoroughly discussed, under the elliptical

family of distributions the MVC is equivalent to the MEUC, for any concave utility

function. So, the additional assumption of approximately quadratic utility functions is

unnecessary. With regards to the Skew-Elliptical family of distributions we find some

extreme cases for which only the very risk-averse investors might need to know the level

of skewness of each lottery. Lastly, when departing from normality the premise of Levy

and Markowitz is problematic for all the utility functions that we put to test. At this point

we may give an answer to our initial question concerning the size of U∗3. In particular, as

we have shown, the Elliptical family of distributions is expected to deliver MVC⇒MEUC

for the four utility functions we put to test, without the need of the utility functions being

approximately quadratic. So, such cases should not be considered to comprise U∗3. On

the other hand, under the more non-normal distributions the four utility functions cannot

be included in U∗3.

3.4 Conclusions

Since its conception in 1952, the MVC has gone through an extensive amount of criticism

when it comes to its realism and usefulness. The main argument has always been that

the underlying assumptions of either (i) quadratic preferences, or (ii) Gaussian distri-

butions, are unrealistic. Markowitz (2010, 2014) [63] and [66] insists that the literature

has misinterpreted his model. This stimulated us to revisit the MVC, so as to examine
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Markowitz’s remark as well as to clarify how it is associated with the SD rules.

We analyzed thoroughly the literature to clarify which are the conditions that make

the MVC coincide with the MEUC. We found that the elliptical family of distributions

can replace the assumption of normality, based on the findings of Chamberlain (1983).

However, the more recent findings of Schuhmacher et al. (2021) with respect to the Skew-

Elliptical family are not consistent with our numerical results. In particular, we show

that under Skew-Normal distributions there are very-risk averse investors that are part of

U3, that may require to know the level of skewness of each lottery. Thus, we concluded

that under Skew-Elliptical distributions we cannot claim that the MVC coincides with

the MEUC.

From there, we went on to identify the class of investors for which the MVC coincides

with the MEUC. We investigated Markowitz’s premise in 1959, arguing that we only need

approximately quadratic utility functions to make the MVC equivalent to the MEUC.

We argued that the evidence from [57] and [65] does not suffice to support that premise.

In fact, we proposed the use of MC Simulations in order to test Markowitz’s premise

under multiple types of distributions, for a specific choice of investors. We found out

that under a Skew-Normal distribution, the MVC is equivalent to the MEUC except for

the very risk-averse investors. But for more non-normal distributions, like the Extreme

Value and Stable Pareto, even less risk-averse investors will make a high percentage of

wrong decisions if they use only the information coming from the MVC. Thus, based

on our findings, we deduced that Markowitz’s premise seems to work for Skew-Elliptical

distributions, but this is not the case for more non-normal distributions.
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3.5 Appendix

Figure 3.1: (1 + Z)a vs its Quadratic approximation around 0, for Z ∈ [−0.9, 1]
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Figure 3.2: log(a+ Z) vs its Quadratic approximation around 0, for Z ∈ [−0.9, 1]

-0.9 -0.5 0 0.5 1

-7

-6

-5

-4

-3

-2

-1

0

1

Direct

Quad

(a) a = 0.90

-0.9 -0.5 0 0.5 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Direct

Quad

(b) a = 1



3.5. APPENDIX 106

Figure 3.3: −e−a(1+Z) vs its Quadratic approximation around 0, for Z ∈ [−0.9, 1]
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Figure 3.4: −(1 + Z)−a vs its Quadratic approximation around 0, for Z ∈ [−0.9, 1]
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Chapter 4

Dynamic Estimates Of The

Arrow-Pratt Absolute And Relative

Risk Aversion Coefficients

4.1 Introduction

The risk attitude of investors is considered to be a crucial factor in Portfolio and Deci-

sion Theory. A rational investor in the Von Neumann-Morgenstern sense [87], will always

choose the lottery that maximizes his/her expected utility function. Based on that de-

cision criterion, Arrow and Pratt (1964, 1965) [4], [76] developed the concepts of ARA

and RRA as ways to indicate the level of risk-aversion of the investor. Determining the

trends of ARA and RRA is crucial for pointing at a specific class of utility functions.

The existing literature has done a pile of work on the recovery of degree of ARA

and RRA of investors. In terms of ARA, the literature universally finds evidence of

decreasing ARA (DARA) as wealth increases. This is in agreement with Arrow (1965)

[4] who claimed that the DARA “seems supported by everyday observation”. On the other

hand, the empirical works on RRA derive mixed conclusions. Some of the earliest studies

that found evidence of DRRA with respect to wealth are [23], [32], [52], [68], [69] and

[71]. While evidence of increasing RRA (IRRA) was found in [8], [11], [26] and [83]. Most

111
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of these works, based their findings on cross-section data, which implicitly assumes that

all investors have the same utility function, a rather unrealistic assumption. Works like

that of [8], [11], [26] and [52] used both experimental and econometric methods to extract

RRA. A totally different approach was used by Jackwerth and Carsten (2000) [37] as well

as Perignon and Villa (2002) [71] who utilized information from Options markets. The

most recent part of the literature, argues that investors reveal constant RRA (CRRA).

Some of the works supporting this evidence are [16], [18] and [79]. The advantage of these

studies is that they all use panel data. So, the implicit assumption of a common utility

function among investors is no longer made.

Our work revolves around the definitions of ARA and RRA and the concept of a

lottery that is not “fair”. Considering the fact that markets are not “fair” lotteries the

value of such an approach becomes evident. We proceed with deriving the formulae of the

absolute and relative risk premium which subsequently lead to ARA and RRA when the

underlying lottery is not “fair”. These formulae can be used to extract the risk attitude

of investors across different markets, specifically, in terms of ARA and RRA.

Using monthly returns and market cap from CAC 40, EURO, S&P 500 and STOXX

600 as well as 10-year Treasury yields, we find evidence of DARA and IRRA for 2012

to 2022, for all markets. Moreover, our results capture the impact of the QE program

announced by Fed in March 2020. We also test our findings using a rolling-window

approach with 5 and 15-year window sizes to assess their robustness. The new results

do not deviate from our prior conclusions. Then, we use data for different time periods,

namely, 1993-1998 and 1999-2005 to determine whether or not the investors’ risk attitude

is consistent through years. Our findings, point at DARA and DRRA for 1993-1998 and

CRRA/IRRA and DARA for 1999-2005. As a result, we conclude that through the years

the markets became more risk-averse with respect to their level of wealth.

The evidence of DARA and IRRA for 2012-2022 is satisfied by a specific class of utility

functions. This leads us to our next question which has to do with measuring the impact

of a wrong assumption with respect to the utility function of an investor. For that, we

consider an asset manager who mistakenly assumes that his client is characterized by a

quadratic utility function while in reality the client’s true utility function is logarithmic.

Assuming that the asset manager diversifies the investor’s wealth between a risky and
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a risk-free asset we propose a way to measure the differences in the asset manager’s

decisions on behalf of the investor for different utility functions. The results predicate

that the asset manager will mislead his client considerably, in case he assumes quadratic

instead of logarithmic utility functions.

Our main findings split into four parts. (i) We derive a closed-form expression for

the degree of RRA for a lottery with nonzero mean. (ii) We apply our formula on four

different markets, namely CAC 40, EURO, S&P 500 and STOXX 600, to deduce that

all of them exhibit DARA and IRRA. (iii) We also find evidence that the slope of the

RRA has changed through different time periods, while the slope of ARA has always

been decreasing. (iv) Finally, we introduce a way to measure the differences in portfolio

diversification among different utility functions.

4.2 Theoretical Framework

4.2.1 Degree of Risk Aversion for a “Fair” Lottery

In this section, we delve into the different notions underlying Decision Theory. Consider

the following case. A decision maker (or investor) with level of wealth w0 is asked whether

or not he wants to participate in a game (or lottery) represented by Z. Assuming that

his binary relation (�) satisfies the axioms posed by VN-M for any lottery, we can safely

say that his decision criterion arises from the Representation Theorem of VN-M. Namely,

he should always choose the lottery that maximizes his expected utility function. Now,

in order to participate in the game the investor demands a risk premium represented by

ρ(w0, Z). The risk premium is based on the notion of Certainty Equivalent (hereafter;

CE). The CE is defined below.

Definition 4.1. The CE of lottery Z is the amount z0 which makes the decision maker

indifferent between lottery Z and this certain amount z0. Alternatively, if the decision

maker owns lottery Z, then z0 represents the minimum amount he is willing to sell the

lottery. Mathematically,

ζz0 ∼ Z
V N−M⇔ U(z0) = E[U(Z)]⇔ z0 = U−1(E[U(Z)]), ∀Z ∈ P

where P = {P : P is a probability function on Z} and Z = {Z : Z is a random variable}.



4.2. THEORETICAL FRAMEWORK 114

From the definition, we see that the CE results from the decision maker’s subjective

characteristics, but is also dependent on the objective (probabilistic) characteristics of

lottery Z. Thus, the level of “fear” the decision maker has with respect to risk will

determine the magnitude of CE for bearing the risk of Z. This leads to the definition of

risk premium.

Definition 4.2. The risk premium is the difference between the expected return of

lottery Z and the CE the decision maker asks for it.

ρ(Z) = E[Z]− z0 = µZ − z0.

The notion of risk premium translates in two ways. (i) If the decision maker owns lottery

Z, ρ(Z) represents the expected units of return he is willing to “sacrifice” in order to

avoid its risk. (ii) Alternatively, if the decision maker considers owning lottery Z, ρ(Z)

represents the expected units of return he “demands” in order to bear the risk of lottery

Z. In our frame, we will focus exclusively in the case of risk-averse investors with an

increasing utility function U ′ > 0. That implies that the following should hold:

• The utility function U is concave, i.e. U ′′ < 0

• The risk premium is positive ρ(Z) > 0, ∀Z

Now, assume that on a later stage of his life the investor has a new higher level of

wealth w+
0 (w+

0 > w0). Assume also that the investor’s utility remains unchanged. What

is the new risk premium ρ(w+
0 , Z) the investor demands assuming that the objective

characteristics of lottery Z remain unchanged? Although, it can be the same we shall

consider the case where

ρ(w+
0 , Z) 6= ρ(w0, Z).

Since the mean and variance of lottery Z remain the same what is the causative factor

for the change in ρ? There should be a function of w0 which we will express by r(w0) that

affects the risk premium. Based on Arrow and Pratt this function is called local degree

of ARA of the investor with respect to his level of wealth. This measure is defined below.

Definition 4.3. The local degree of Absolute Risk Aversion, r(w), at a level of wealth

w is defined as

r(w) = −U
′′(w)

U ′(w)
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Interpretation of ARA:

• For risk-averse investors we have U ′′ < 0. The larger |U ′′|, the more concave the

utility function of the investor will be. In other words, the investor will be more

risk-averse.

• According to VN-M, any positive linear transformation of U should still satisfy the

Representation Theorem and by extension lead to the same r(w). That justifies the

division by U ′.

• ARA overcomes an important limitation of the risk premium. Namely, in order

to compare the degree of risk-aversion of two investors, we would need to compare

their risk premiums for any lottery Z and any level of wealth w. On the contrary,

r(w) needs to be tested just for any level of wealth w.

• This degree of risk aversion is measured in absolute terms. Thus, lottery Z repre-

sents an absolute amount (expressed in dollars).

Now that we specified the factor that generates the differences in the aforementioned

example, we will derive ρ(w0, Z) in terms of r(w0). In fact, we assume that Z is a ”fair”

lottery in the sense that µZ = 0 and σZ is relatively small. Let also, the final level of

wealth of the decision maker expressed by,

W1 = w0 + Z.

Using the definition of CE together with 2nd degree Taylor series we derive,

ρ(W1) = ρ(w0, Z) = ρ(w0 + Z) = 1
2r(w0)σ2

Z . (4.1)

Interpretation of ρ(w0, Z):

• The subjective factor, r(w0), remains unchanged regardless of any changes in the

objective characteristics of lottery Z. However, the risk premium varies for different

lotteries. This is due to the objective factor of the lottery, σ2
Z .

• If r(w0) is decreasing (DARA), increasing (IARA) or constant (CARA) for any

level of wealth w0, then ρ(w0, Z) will also be decreasing, increasing, or constant,

respectively.



4.2. THEORETICAL FRAMEWORK 116

Within the current context, lottery Z is independent of any change in w0. Consider the

following case. A decision maker with w0 = 1000$ is asked to participate in a coin toss

game with the following set of outcomes. If the coin lands “Heads” the decision maker will

earn 100$ while if it lands “Tails” he will have to pay 100$. The decision maker decides

that this lottery is too risky for his risk appetite. Assume that the decision maker’s

degree of risk aversion is DARA. So, at a later stage of his life his wealth is 100, 000$ and

thus he feels comfortable to participate in exactly the same game. Now, assume that the

same decision maker is asked to participate in a different coin toss game Z ′ in which if

the coin lands “Heads” he will earn 10% of his wealth w0 while if it lands “Tails” he will

have to pay 10% of w0. That means that for w0 = 1000$ he will earn/lose 100$ while

for w0 = 100, 000$ earn/lose 10, 000$. Obviously, this concept may alter the decision

made by the decision maker. In particular, the fact that his wealth increased does not

necessarily mean that he will participate in Z ′ since this new game changes with his level

of wealth, i.e. Z ′ = w0R, where R is a lottery expressed in percentages.

To deal with such cases, Arrow and Pratt defined a new measure called the local

degree of RRA.

Definition 4.4. The local degree of Relative Risk Aversion, λ(w), at a level of wealth

w is defined as

λ(w) = −wU
′′(w)

U ′(w) = wr(w).

Interpretation of RRA:

• RRA depends on ARA, since λ(w) = wr(w). If for example r(w) is decreasing at

a faster rate than the rate at which w is increasing, r(w) will also be a decreasing

function of w (DRRA). On the other side, if r(w) is decreasing at a slower rate than

the rate at which w is increasing, r(w) will be an increasing function of w (IRRA).

• This degree of risk aversion is measured in relative terms. Thus, we define a new

lottery R = Z/w0 which represents a relative amount (expressed as a fraction of

100 (percentage)).

As shown above, under this new measure, we define a new “fair” lottery R, such that

Z = Rw0, with µZ = µR = 0 and σZ , σR be relatively small. Then, the “relative” risk
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premium for W1 will be,

ρ(W1) = ρ(w0, Rw0) = 1
2r(w0)σ2

Rw0

ρ(w0, Rw0)
w0

= 1
2
w2

0r(w0)σ2
R

w0

ρ̃w0(R) = 1
2λ(w0)σ2

R.

(4.2)

Based on the above analysis, the literature has done extensive research on the Decision

Making of investors under risk. More specifically, as we will see in the following subsec-

tions the literature focused on identifying the slope of the ARA and the RRA of investors

with respect to their level of wealth. We will see that previous research works have fol-

lowed multiple approaches in trying to arrive at more reliable conclusions. Following our

overview, we will introduce a totally unique approach on this subject.

4.2.2 Decreasing Absolute Risk Aversion Literature

In 1965, Arrow [4] posed the hypothesis that investors reveal DARA and IRRA. In fact,

he claimed that the DARA “seems supported by everyday observation”. However, in terms

of IRRA Arrow said that: “the hypothesis of increasing relative risk aversion is not easily

confrontable with intuitive evidence”. From that point on, an abundance of research works

have attempted to recover the relative risk preferences of the investors, while DARA is

universally accepted. Extracting RRA, has been proven to be particularly challenging.

We will review the research work on RRA in the subsequent sections.

Haim Levy (1994) [52], applying time-series analysis found that “only six subjects out

of 62 significantly contradict the DARA property”. As a matter of fact, Levy concluded

that the evidence is significantly strong and supports Arrow’s assertion. We will analyze

Levy’s approach in the next section where we review his findings on RRA.

Some other studies that find supportive evidence of DARA are [8], [26] and [37].

Going on, the literature considered DARA to be the norm and focused more on RRA.

This universally accepted property of individual risk preferences plays a crucial role in

many applications of the expected utility theory.
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4.2.3 Decreasing Relative Risk Aversion Literature

Let us focus on the bibliography that shows evidence of DRRA. Cohn et al. (1975) [23]

focused on the information from 588 different portfolio allocations provided by customers

of a retail brokerage firm. In particular, each customer provided information with respect

to the share he had in common stocks, corporate bonds, etc., in percentages. The authors

established two alternative classifications for long-term fixed-income securities. In the

first one, they treated Savings Account, Checking Account, Personal Residence, Personal

Property and Other Assets as the “risk-free” assets. While, in the second Classification

they also included Preferred Stock, Corporate Bonds and Government Bonds in this

category. However, there is no compelling reason to treat Corporate Bonds as riskless

assets. The level of wealth was also given two different definitions. With the first one

being the Total Assets and the second one being Total Assets less Personal Residence.

Although, they acknowledged the fact that a preferred proxy of wealth would be the Net

Worth of each customer, which was not possible as the customers did not provide any

data on their Liabilities. Such an approach could conceivably alter their conclusions.

The authors found strong evidence of DRRA even when they controlled for demographic

factors like the age of each customer as well as his/her marital status. In their study, they

split the customers into different wealth groups, in order to determine whether or not

their findings are consistent between different groups. The fact that their target group

pertains to active investors only, means that they do not cover a complete cross-section

of investors at each wealth level. Finally, the aforementioned results depend on cross-

sectional data which means that the authors did not study the portfolio allocation of each

individual in time. This implies that they draw conclusions based on information from

individuals with different utility functions.

Morin and Suarez (1983) [68], used portfolio allocation data of 9,962 different private

households taken from the Survey of Consumer Finances (SCF) in Canada. The authors

argue that the SCF database used is more representative of investors and broad-based

in terms of range of wealth covered. One major improvement in their methodology is

that they use Net worth as a proxy of wealth. This is due to the private households

providing information with respect to their debt obligations. In their framework, the
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“risk-free” assets include Cash, Deposit Account Balances, Canada Savings Bonds, and

Personal Property. As in Cohn et al., the households were split into different wealth

groups. What is interesting is that for poorer individuals they found evidence of IRRA

while for the middle-wealth individuals DRRA was supported and lastly for the wealthiest

group the findings pointed to CRRA. However, these findings are based on interpersonal

comparisons of utility. A similar approach was done by Guiso et al. (1996) [32]. In

fact, Guiso et al. revisited the RRA subject by doing a cross-sectional analysis on a

random sample of 8,274 Italian households who provided information with respect to their

portfolio allocation proportions. Their findings showcased that the households revealed

DRRA.

In 1994, Haim Levy [52] introduced a different approach in determining the slope of

RRA of individuals. Levy conducted an experiment in which 62 of his MBA students

participated. Each student was given an initial investment allotment of 30, 000$ “paper”

money and was offered stocks of 20 pure equity firms as well as a “risk-free” rate of 2%.

The major difference between Levy’s approach and the two aforementioned works is that

he ran time-series regressions for each individual and did not test cross-sectionally. What

this means, is that through his approach the results are not based on interpersonal utility

functions. Now, in terms of RRA, Levy argued that the results indicate a decreasing

trend with respect to wealth. On top of that, Levy also did robustness checks studying

the subjects’ portfolio allocation when the only available assets are one risky and one

risk-free asset. In this frame, the conclusions did not deviate from the previous findings.

Even though this new approach overcomes some previous limitations an important caveat

of this work is the small sample size.

A whole different approach was proposed from Perignon and Villa (2002) [71] in 2002.

More specifically, they attempted to extract information from Put and Call Options on

CAC 40 with regards to the slope of RRA. The two authors, based their methodology

on Ait-Sahalia and Lo (2000) [2] who defined a pure-exchange economy. Namely, in this

economy and in equilibrium, the investor optimally invests all his wealth in the single risky

stock at every instant prior to the terminal date and then consumes the terminal value

of the stock at time T . This implicitly says that the level of wealth of the individual

is exactly equal to the stock price at each time. In other words, the representative
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investor consumes only at the final date and maximizes the expected utility of the terminal

wealth by choosing the amount invested in the stock at each intermediary date. In this

framework, Ait-Sahalia and Lo derive the “implied” RRA formula. Empirically, Perignon

and Villa, obtain an “implied” RRA for the CAC 40 stock index and they conclude that

as the index price (i.e. the wealth) increases the “implied” RRA decreases.

4.2.4 Increasing Relative Risk Aversion Literature

Contrary to the previous works, Siegel and Hoban (1982) [83] find that by restricting the

sample to higher wealth target groups will lead to DRRA or CRRA. But they argue that

“the use of a broader based sample and a more comprehensive measurement of wealth alters

the conclusions and a pattern indicative of increasing relative risk aversion emerges”.

Siegel and Hoban used data from the US National Longitudinal Surveys (NLS). More

specifically, they acquired a sample of 2,881 different sets of asset holdings of individual

households. The proxy for level of wealth was Net Worth. As for the “riskless” assets they

used Cash, Deposit Account Balances, and U.S. Savings Bonds. Splitting into different

groups of level of wealth they concluded that for any group of individuals there is evidence

of IRRA rather than DRRA. We should keep in mind that this paper constitutes a cross-

sectional analysis as in Cohn et al. (1975) [23] and Morin and Suarez (1983) [68].

In 2003, Eisenhauer and Ventura [26] found evidence of both DARA and IRRA. The

authors asked different households in Italy the following question: “You are offered the

opportunity of acquiring a security permitting you, with the same probabilities, either to

gain 10 million lire or to lose all the capital invested. What is the most you are prepared

to pay for this security?”. The answer to this question is denoted by z and we can

interpret it as the CE of the respective household. The lower z is the more risk-averse

the household. The proxy of level wealth, denoted by w, was the average income of each

household from 1993 to 1995. Now, the authors observed that 1,624 of the households

interpreted the 10 million lire as a gross gain meaning that in the favourable case they

get w − z + 10 while in the other case their wealth becomes w − z. A number of 1,730

households interpreted the 10 million lire as a net gain meaning that in the favourable

case they get w + 10 while in the other case their wealth remains to be equal to w. In
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any case, they found that investors exhibit DARA and IRRA. Again, the most obvious

limitations are that the results are based on a hypothetical survey question as well as on

a cross-sectional analysis.

Two additional works finding evidence of IRRA are those of Bar and Shira (1997) [8]

and Barsky et al. (1997) [11]. The first one was based on a set of gamble questions that

had to do with the retirement decisions. The second one extracts the risk attitude of

Israeli farmers.

4.2.5 Constant Relative Risk Aversion Literature

The research works finding evidence of CRRA are more recent and better substantiated.

The first work finding evidence of CRRA was that of Friend and Blume (1975) [29]. Using

cross-section regressions based on household-level data on asset holdings the authors

conclude that CRRA characterizes household behaviour. The main drawbacks of this

study are that it is based on cross-sectional data and the data is only focused on high-

wealth households.

We will now discuss about the work of Sahm (2012) [79] which is the latest work of

our review but it had started since 2006. Sahm initialized the use of panel data instead

of cross-section data with regards to determining the slope of RRA in terms of wealth.

In particular, he used gamble responses across the 1992 to 2002 waves of the Health and

Retirement Study (HRS). The gamble under study is the following: “Suppose that you

are the only income earner in the family. Your doctor recommends that you move because

of allergies, and you have to choose between two possible jobs. The first would guarantee

your current total family income for life. The second is possibly better paying, but the

income is also less certain. There is a 50-50 chance the second job would double your

total lifetime income and a 50-50 chance that it would cut it by a third. Which job would

you take - the first job or the second job? Individuals who accept the first risky job then

consider a job with a larger downside risk of one-half, while those who reject the first

risky job are asked about a job with a smaller downside risk of one-fifth. If they reject

the first two risky jobs, individuals consider a third risky job that could cut their lifetime

income by one-tenth. Likewise, if they accept both risky jobs, individuals consider a third
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risky job that could cut their lifetime income by three-quarters.” Sahm finds no effect of

wealth changes on relative risk aversion and thus concludes CRRA.

The next work we are going to discuss is that of Brunnermeier and Nagel (2008) [16].

The authors use household-level panel data from the Panel Study of Income Dynamics

(PSID), covering a period of 20 years between 1984 and 2003. The data includes Asset

holdings, Income and households characteristics. To identify how wealth changes are

related to market participation they use probit regressions. In particular, the authors first

split the data in two subperiods, 1984 to 1999 and 1999 to 2003. The reason is that for

1984–1999 the time-span between successive waves of the PSID with wealth information

is k = 5 years, and for the 1999–2003 sample the time-span between successive waves

of the PSID with wealth information is k = 2 years. In practice, the probit regressions

derive the probability of the households who did not participate in the stock market at

time t − k to enter until time t. They also estimate the probability that a household

that is participating at t − k to exit the stock market until t. The authors find that for

both subperiods, namely 1984-1999 and 1999-2003, there is a 1% probability to enter

the market when there is a 10% increase in the wealth. Accordingly, the probability of

exiting the stock market when there is an increase in the wealth is extremely low. Thus,

they conclude that the households’ relative risk aversion remains constant with respect

to a change in wealth (CRRA). A major improvement of this work is that it uses panel

data. This way you avoid the implicit assumptions made in the cross-sectional analysis.

Namely, assuming that the distributions of wealth and preferences are independent.

Another important work is that of Chiappori and Paiella (2011) [18]. Similar to

[16] and [79], they use panel data to showcase evidence of CRRA. In fact, they prove

that previous studies that supported their findings on cross-sectional analysis are led to

erroneous conclusions. Citing the authors: “without a priori restrictions on the joint

distribution of wealth and preferences, the form of individual preferences simply cannot

be recovered from cross-sectional data. In fact, any form of individual preferences is

compatible with any observed, joint distribution of wealth and risky asset shares provided

that one can freely choose the joint distribution of wealth and preferences.”. In other words,

estimating the joint distribution of wealth and risky asset shares using cross-section data

derives the joint distribution of wealth and preferences only and only if you pre-assume
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that preferences are the same for each investor. This however is an over-simplification of

reality, which substantiates the use of panel data instead of cross-section data. The data

used is from the Survey of Household Income and Wealth (SHIW), which is a large-scale

household survey run every two years by the Bank of Italy from which they get asset

allocations for 1,332 households. Also, they exclude all the households with a change in

wealth less than 25%. As in [16] and [79], they find evidence of CRRA.

4.3 Degree of Risk Aversion for a Lottery with Non-

Zero Mean

In the previous section, we derived the “absolute” and “relative” risk premium for a “fair”

lottery. In reality however, stock prices are not a fair lottery meaning that E[Z] = µZ 6= 0.

Equivalently, stock returns are not a “fair” lottery and so E[R] = µR 6= 0. Deriving ARA

under µZ 6= 0 leads to RRA through λ(w0) = w0r(w0). So, for a non-fair lottery with

µZ 6= 0 we have

ρ(W1) = ρ(w0 + Z) = E[w0 + Z]− z0 = w0 + µZ − z0,

where z0 represents the CE of lottery Z with w0 level of wealth (or equivalently the CE

of lottery w0 + Z). Thus, the CE will be

z0 = w0 + µZ − ρ(w0 + Z).

According to Definition 3.1, the following equation must be satisfied

E[U(Z)] = U(z0).

In our case,

E[U(w0 + Z)] = U(w0 + µZ − ρ(w0 + Z)).

At this point, we use Taylor expansions of 2nd-order around w0 for both sides of the

equation. For the left side of the equation we derive

E[U(w0 + Z)] ' U(w0) + U ′(w0)E[w0 + Z − w0] + U ′′(w0)
2 E[(w0 + Z − w0)2]

' U(w0) + U ′(w0)µZ + U ′′(w0)
2 (σ2

Z + µ2
Z).

(4.3)
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Accordingly, for the right side of the equation we get

U(w0 + µZ − ρ(w0 + Z)) ' U(w0) + U ′(w0)(w0 + µZ − ρ(w0 + Z)− w0) + U ′′(w0)
2 (w0 + µZ − ρ(w0 + Z)− w0)2

' U(w0) + U ′(w0)(µZ − ρ(w0 + Z)) + U ′′(w0)
2 (µZ − ρ(w0 + Z))2

drop 3rd term
' U(w0) + U ′(w0)(µZ − ρ(w0 + Z)).

(4.4)

Now, combining (4.3) and (4.4) we get

U(w0) + U ′(w0)µZ + U ′′(w0)
2 (σ2

Z + µ2
Z) ' U(w0) + U ′(w0)(µZ − ρ(w0 + Z))

U ′′(w0)
2 (σ2

Z + µ2
Z) ' −U ′(w0)ρ(w0 + Z)

ρ(w0 + Z) ' − U
′′(w0)

2U ′(w0)(σ2
Z + µ2

Z)

ρ(w0 + Z) ' 1
2r(w0)(σ2

Z + µ2
Z).

So, compared to (4.1) the risk premium will satisfy the following equation

ρ(w0 + Z) ' 1
2r(w0)(µ2

Z + σ2
Z) (4.5)

The main change is that the risk-premium is now positively related also to µ2
Z . In other

words, a higher mean in absolute terms, would increase the required ρ. Now solving for

the ARA term r(w0) we get

w0 + µZ − z0 '
1
2r(w0)µ2

Z + 1
2r(w0)σ2

Z

r(w0) ' 2(w0 + µZ − z0)
µ2
Z + σ2

Z

(4.6)

The above formula represents a closed-form solution for ARA when Z is not a “fair”

lottery. In relative terms, Z can be expressed in the following way

R = Z

w0
⇔ Z = Rw0.

Therefore, we have

ρ(w0 + Z) ' 1
2r(w0)w2

0(σ2
R + µ2

R)

ρ(w0 + Z) ' 1
2r(w0)(σ2

Z + µ2
Z).
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And so, the “relative” risk premium for µR 6= 0 takes the following form

ρ(w0, Rw0)
w0

= ρ̃(w0, R) ' 1
2r(w0)w0(σ2

R + µ2
R)

' 1
2λ(w0)(σ2

R + µ2
R)

ρ̃(w0, R) ' 1
2r(w0)w0(µ2

R + σ2
R) (4.7)

Now, we can derive the RRA term λ(w0).

λ(w0) '
2(1 + µR − z̃Rw0)

µ2
R + σ2

R

(4.8)

Here, z̃Rw0 = z0/w0 defines the “relative” CE expressed as a fraction of 100 (percentage).

The main question at this point is how we interpret the terms in formula 4.8. Our main

purpose is to use 4.8 to extract the level of RRA of the market. Since the degree of

RRA is measured in “relative” terms we know that lottery R = Z/w0 is expressed as

a fraction of 100 (percentage). Thus, we could assume that R represents the market

returns. Accordingly, µR and σR represent the mean and standard deviation of market

returns, respectively. Likewise, since z̃Rw0 is the “relative” CE which is required by the

investor (market), we assume that it represents the risk-free rate. Finally, w0, which is

the level of wealth of the investor (market), is assumed to define the market capitalization

of the market.

4.4 Empirical Results

The previous sections showcased that there is no definitive answer as to if and how much

RRA is affected by a change in the level of wealth of investors. In our view, the largest

part of the literature has focused on determining the slope of RRA using an approach with

multiple perils. Namely, most studies have to deal with demographic and socio-economic

characteristics or over-simplifications. Even controlling for those characteristics may lead

to sub-optimal conclusions. The most recent part of the literature finds evidence of

CRRA using panel data. We believe that these studies are more meaningful and better

substantiated.



4.4. EMPIRICAL RESULTS 126

In our framework, we try to avoid the issues noted in cross-sectional data and at the

same time simplify even further the extraction of RRA from real data. More specifically,

we believe that one should focus on determining the market’s ARA and RRA through the

formulae we derived. These formulae are free of any need of including and subsequently

controlling for any subjective characteristic of the investors such as educational status

or age or even level of wealth. The only subjective characteristic lies in the CE (or

equivalently, risk-free rate) which we will measure using 10-year Treasury yields, since

this is considered a logical proxy of the risk-free rate in the literature. The results that we

will analyze in the following paragraphs have also been verified using 3-month Treasury

bill rates.

We use monthly returns and market cap from four different markets, namely CAC

40, EURO, S&P 500 and STOXX 600, spanning from 1991 to 2021 excluding 2008.

The reason why we exclude 2008 is because this period is known for extreme levels

of volatility which may affect our concluding remarks. We believe that the advantage

of using monthly returns instead of daily returns is that they do not exhibit volatility

clustering. This means that µR and σR can be estimated recursively. Estimations start

from 2012 using all the past data and continue up until 2022. As a proxy of risk-free

rate we use the respective 10-year Treasury yields of each market. The reason we want to

extract RRA for all these indexes is to determine whether or not the results are consistent

across different markets.

The first issue we want to address is how do ARA and RRA of the aforementioned

market indices change with respect to an increase in their market cap. From Figure 4.5,

we deduce that for all market indices ARA is decreasing (DARA). In fact, the linear

correlation between the market capitalization and the degree of ARA is almost perfectly

negative for all markets. What this says, is that in all these indices the investors become

less risk averse in absolute terms. So, as the level of wealth of a market (i.e. the mar-

ket cap) increases investors are willing to take on more risk. This evidence is strongly

supported by the findings of the literature. Figure 4.6, presents the RRA of each market

with respect to each level of wealth. We observe that for the European indices RRA

displays an increasing trend with high positive correlation. When it comes to S&P 500,

we see that the correlation is −36%, but we should not focus entirely on it. Taking a
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closer look, we can see that up until the level of a market cap of approximately 27 trillion

dollars the RRA exhibits an increasing trend. More specifically, the correlation between

the market cap and the degree of RRA up until this point is approximately 90%. In fact,

we argue that the sudden drop at a market cap of approximately 27 trillion dollars is due

to an important economic event that took place during the first quarter of 2020, which

we will discuss, in detail, in the following paragraph. Thus, we maintain that we should

not be distracted by a one-off event.

A closer look at Figure 4.1 justifies the sharp drop observed in the level of relative risk

aversion of the US market. In this figure, we plot RRA and market cap through time. In

February 2020, the Fed Chair Mr. Jerome H. Powell, in an attempt to soothe the market

which was extremely nervous due to the COVID-19 pandemic, hinted a forthcoming rate

cut. In March 2020, Fed announced the new QE program through which it would purchase

$600 billion in bank debt, U.S. Treasury notes, and mortgage-backed securities (MBS)

from member banks.1 At the same time, it cut down the federal funds rate by a total of

1.5 percentage points. To comprehend the impact of such an action by the central bank

of United States we should refer to equation (4.7). The level of RRA is negatively related

to the CE (or equivalently risk-free rate) which is set by the investors. So, assuming that

the objective (probabilistic) characteristics of the lottery remain unchanged, as CE gets

smaller RRA should increase. Equivalently, the investors would become more risk-averse

and so they would require a smaller CE in order to avoid the risky lottery. But this is

not the case in the graph. In fact, RRA plummets. To determine the reason behind

this drop we should break down the graph in two parts. Up until February 2020, it

was the market that had been setting the CE. But in March 2020, Fed set a new lower

level of risk-free rate. This new rate was not the result of a change in the investors’

level of risk-aversion. It actually resulted from the artificial cut in interest rates by the

Federal Reserve Bank. This led to a group of less risk-averse bondholders shifting to the

stock market. So, the drop in RRA gives the impression that all bondholders became

less risk-averse, which is not true. Assuming that Fed had not intervened, in which case

would we have an analogous shift from bonds to stocks by the bondholders? In case the

bondholders became more risk-averse. Thus, we conclude that the QE program forced

1For further details refer to https://www.federalreserve.gov/
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investors to move into risky assets and acted “as-if” the bondholders became more risk-

averse. Furthermore, it seems that this action affected the other markets as well, which

proves that markets are interconnected when it comes to important economic events.
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Figure 4.1: RRA: S&P 500

The discussion made in the previous paragraphs leads to the following conclusion.

The investors reveal DARA and IRRA for 2012-2022. It needs to be highlighted that this

conclusion applies for this time period and should not be treated as a generalization on

the investors’ risk preferences. In other words, we imply that market participants may

have had different risk preferences during different time periods. In fact, we will see later

on that for different time periods the slope of the RRA of the different market indices

varies. These findings indicate that, currently, we could assume that the investors’ class

of utility functions should satisfy both DARA and IRRA. The following utility functions
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are a part of this class.

U(w) = (w + a)c, a > 0, 0 < c < 1, U(w) = −(w + a)−c, a > 0, c > 0,

U(w) = log(w + a), a > 0

Any utility function from this group serves as an appropriate proxy for the true utility

function of the markets. We proceed as follows. First, we will compare our evidence

of DARA and IRRA to a rolling-window approach. This will serve as a robustness test

of our evidence based on recursive estimations. Then, we will extract the investors’ risk

preferences through S&P 500 for different time periods, namely, 1993-1998 and 1999-2005.

4.4.1 Rolling-Window Approach

As previously stated, our estimations with regards to µR and σR were done recursively.

One could argue that such an approach is problematic, reasoning that the estimations

should better be updated using more recent data. For that reason, we also estimate µR
and σR by employing a rolling-window approach. We test three different window sizes,

M = 60 (5-years), M = 120 (10-years) and M = 180 months (15-years). Such window

sizes are regularly applied by the literature for monthly data, as in DeMiguel et al. (2009)

[24].

The graphs in Figures 4.8 and 4.9 showcase that for a window size of M = 60 months,

or equivalently, a 5-year window, there is strong evidence of DARA and IRRA. In fact,

the correlation between the ARA and the market cap is highly negative and smaller than

−30% for all markets. Accordingly, the correlation between the RRA and the market cap

is above 40% for all markets except for S&P 500, for which the magnitude of correlation

is mainly affected by the QE program announced by Fed. When we increase the window

size to M = 120 motnhs, or equivalently, a 10-year window, Figures 4.10 and 4.11, point

to the same direction with the exception of S&P 500, in which case it seems that the

RRA has a decreasing trend. Lastly, in Figures 4.12 and 4.13, it is evident that we have

similar conclusions to those made in the 5-years case. More specifically, for a window size

of M = 180 months, or equivalently, a 15-year window, the evidence of DARA and IRRA

is even stronger, with correlations being higher in absolute terms. Overall, our results for

2012-2022 reveal strong evidence of DARA and IRRA.
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4.4.2 RRA and ARA for S&P 500 in Different Time Periods

Now, we are going to study ARA and RRA of S&P 500 in different time periods. Doing

that will help us determining the risk attitude of US investors across the years. On top of

that, we would like to check whether or not the evidence of DRRA and CRRA in earlier

studies is supported by our model. For this, we will recover ARA and RRA for 1993-1998

and 1999-2005.

Figure 4.2 displays the level of ARA and RRA for 1993-1998. What is worth noticing

is that investors’ risk attitude was rather different than currently is, revealing DRRA

instead of IRRA. This result supports the evidence of DRRA found in [32], [52], [68] and

[71] for earlier time periods. Although some of these works refer to different time periods

or different markets they are indicative of the investors’ risk attitude overall. Now, the

RRA graph on Figure 4.3 is harder to interpret. The graph is indecisive between CRRA

and IRRA. Studies like those of [16], [18] and [79] found evidence of CRRA for this time

period. However, our graph does not offer a clear conclusion. In terms of the ARA, both

Figures reveal DARA which has been validated by most empirical studies, for any time

period.

Overall, our empirical evidence demonstrates the importance of studying the risk

attitude of investors across different periods. It seems that the market’s utility function

varies through years. More specifically, our findings point to a utility function satisfying

DRRA and DARA for years 1993 through 1998 meaning that investors were willing to

take on more risk as they became wealthier. For 1999 to 2005, investors started being

more cautious as they reached higher levels of wealth, revealing CRRA/IRRA and DARA.

Currently, the different markets seem to become continuously more risk-averse as their

market caps grow even further, revealing evidence of IRRA and DARA.
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Following our empirical evidence in the previous sections, a subsequent question would

be: How much does a wrong assumption with respect to the utility function of an investor,

made by an asset manager, will affect the structure of his portfolio? Could we find an easy

and intuitive way to measure the difference between the level of risk that the investor

should incur, based on his “true” utility function, and the level of risk that the asset

manager recommends, based on his perception of the investor’s utility function? We

approach these questions in the following section.

4.4.3 Measuring the Differences in Portfolio Diversification among

Different Utility Functions

Consider the following case. A financial advisor designs a survey to extract the risk

preferences of an investor. The asset manager misinterprets the investor’s answers and

concludes that the investor reveals IARA and IRRA. In reality however, the investor

reveals DARA and IRRA. How much would the decisions made by the asset manager on

behalf of the investor be affected? Assuming IARA and IRRA leads to a very well-known

utility function, the quadratic U(w) = w − bw2 with b > 0. This utility function is

considered by the literature to be a sufficient condition for Markowitz’s Mean-Variance

Optimization method. So, by assuming a quadratic utility the asset manager should use

Markowitz’s method to diversify the investor’s portfolio. In the following paragraph we

are going to illustrate an intuitive way to measure the effect of assuming a quadratic

rather than a DARA and IRRA utility function like one of those shown below.

U(w) = (w + a)c, a > 0, 0 < c < 1, U(w) = −(w + a)−c, a > 0, c > 0,

U(w) = log(w + a), a > 0 U(w) = −e−c(w+a), a > 0, c > 0

Assume that at time t = 0 the investor’s wealth is w0. The asset manager decides to

invest ws in a risky asset with return R and w0−ws in a riskless asset with rate of return

Rf . Both w0 and ws are measured in percentages. So, w0 = 100% while ws can take any

value. The idea is that if ws > w0, the asset manager can borrow money to over-invest

in the risky asset, while if ws < 0 the asset manager will short-sell the risky asset. So, at
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point t = 1 the investor’s wealth will be

W1 = ws(1 +R) + (w0 − ws)(1 +Rf )

= w0(1 +Rf ) + ws(R−Rf ).

Based on VN-M Representation Theorem the asset manager will simply need to maximize

the expected utility function of the investor for W1.

max
W1

E[U(W1)]⇔ E[U ′(W1)] = 0

Solving the above equation derives ws. This percentage will differ among different utility

functions which means that we can measure the differences between them. In our case, we

will find wquads from the quadratic utility function U(w) = w − bw2 with b = 0.2, 0.3, 0.4

and compare it with wlogs from U(w) = logw. Below, we derive the two quantities.

Namely, for U(w) = w − bw2 we have

wquads = µR −Rf − 2b(1 +Rf )(µR −Rf )
2b(µ2

R + σ2
R − 2µRRf +R2

f )

In terms of U(w) = log (w), we are unable to apply the approach we propose directly on

it, since we will end up with a fraction equal to 0 that cannot be solved. We can omit

this hurdle by taking the Taylor expansion of 2nd-order around 0 as follows.

U(ws) ' U(0) + wsU
′(0) + w2

s

2 U ′′(0)

' log (1 +Rf ) + ws
R−Rf

1 +Rf

− w2
s

(R−Rf )2

2(1 +Rf )2

Thus, we obtain

wlogs = (1 +Rf )(µR −Rf )
µ2
R + σ2

R − 2µRRf +R2
f

To measure the difference between the two utility functions we need to use real data. For

that reason, we are going to use monthly returns from S&P 500 and 10-year Treasury

yields spanning from 2012 to 2022. Then, we will plot only the weight invested in the

risky asset, namely ws, for both the quadratic and the logarithmic utility functions, with

respect to time.
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Figure 4.4: Quadratic vs Logarithmic utility’s weight in the risky asset

The graph indicates that in case the asset manager had assumed one of the depicted

parametrizations of the quadratic utility function for the investor, he would advise him

to put significantly different portions of his wealth in S&P 500 each month. Specifically,

if b = 0.2 the asset manager would underestimate the “true” level of risk-aversion of the

investor, by advising him to put 50% more on S&P 500 than what his “true” level of risk

tolerance suggests. While if b = 0.3, 0.4, the asset manager would overestimate the “true”

level of risk-aversion of the investor, by almost 50% to 100%. So, the asset manager’s

misjudgment would lead the investor to incur substantially more or less risk than he could

actually tolerate. We should highlight here that even if we consider the case in which

the “true” utility function of the investor is quadratic with b = 0.3, the weight invested

in the risky asset, namely ws, is substantially higher through all years, compared to the

b = 0.4 case. So, even if the asset manager correctly detects that the investor’s utility is

quadratic, there is still plenty of room to underestimate (or overestimate) his true level
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of risk-aversion.

To conclude, we designed a simple and intuitive method to measure the differences

between alternative utility functions, with relative accuracy.

4.5 Conclusions

In this work, we overviewed the various ways the literature has extracted the ARA and

the RRA of investors through the years. We saw that, the literature universally accepts

DARA but is not conclusive with respect to the RRA of investors. In fact, one part of

previous research works reveals evidence of DRRA, another part finds evidence of IRRA

and the most recent works point to CRRA. We asserted that using cross-section data

as was regularly done in earlier research works, conceals risks. More specifically, cross-

sectional analysis implicitly says that all investors have the same utility function, which

is a rather unrealistic assumption. Studies basing their evidence on either panel data or

Options markets data are better supported.

We proposed a different approach in extracting both ARA and RRA. This approach,

is based on carefully analyzing the Theory of Arrow-Pratt together with the different

notions that underlie the Decision Theory under risk. In particular, we derived closed-

form expressions for the ARA and the RRA of investors, for non-“fair” lotteries. We

proceeded with collecting data from different markets which we then applied on our

formulae. Our findings, pointed out that through 2012-2022, European as well as US

markets revealed evidence of DARA and IRRA. We further showcased that our formula

captures important economic events as in the case of the QE program announced by Fed

in March 2020, which caused a sharp drop in the investors’ level of relative risk-aversion.

Our results were further tested using a rolling-window approach for different window

sizes M = 60, M = 120 and M = 180 months. The rolling-window results supported

our evidence of DARA and IRRA for 2012-2022. Then, we found out that for different

time periods, namely, 1993-1998 and 1999-2005 RRA may vary. More specifically, for

1993-2005 we found strong evidence of DARA and DRRA while for 1999-2005 we found

strong evidence of DARA but in terms of RRA our results were indecisive between CRRA

and IRRA. In the last part of our work, we proposed a simple way to measure the effect
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of a wrong assumption with respect to the utility function of an investor. As it became

clear, an investor with a logarithmic utility function is led to a very different portfolio

structure compared to an investor with a quadratic utility function.
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Figure 4.5: ARA with sorted wealth
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Figure 4.6: RRA with sorted wealth
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Figure 4.7: RRA in time
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Figure 4.8: ARA with M = 60
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Figure 4.9: RRA with M = 60
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Figure 4.10: ARA with M = 120
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Figure 4.11: RRA with M = 120
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