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Summary 

This thesis explores the use of the Info-GAIL algorithm, which is based on the generative 

adversarial imitation learning framework to model modalities of human behaviour 

towards performing tasks. The goal of this thesis is to use behaviour models learnt 

through Info-GAIL to predict the modality of executing a specific “object grasping” task. 

This is done through learning sub-task policies from unsegmented demonstrations of 

tasks. Specifically, this thesis uses a dataset with trajectories regarding human behaviour 

towards grasping objects of different sizes in specific. These are pre-processed to correct 

imperfections and exploited to extract features of trajectory states that are used during 

training. Then, the implemented method is tested and evaluated utilizing the extracted 

features. The thesis concludes with a thorough presentation of results and proposals for 

further work towards using multi-modal imitation learning to predict human behaviour 

in executing tasks. 

 

 

 



 

Αναγνώριση Ανθρώπινης Συμπεριφοράς μέσω Μιμητικής 

Μάθησης 

Από 

Ματθαίος Ζηδιανάκης 

MTN2008 

 

Υποβλήθηκε στο ΔΠΜΣ «Τεχνητή Νοημοσύνη» την 15 Σεπτεμβρίου 2022 ως 
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Περίληψη 

Στην παρούσα εργασία μελετάται η χρήση ενός αλγορίθμου μιμητικής μάθησης ώστε να 

μοντελοποιηθεί η ανθρώπινη συμπεριφορά για την επίτευξη μιας εργασίας με 

διαφοροποιημένους στόχους. Στόχος είναι να εξεταστεί η ικανότητα των μοντέλων που 

δημιουργούνται, στην αναγνώριση του στόχου μιας επιτελούμενης εργασίας, σε 

πραγματικές συνθήκες. Αυτό επιτυγχάνεται μέσω της μάθησης πολιτικών από μη 

τμηματοποιημένες επιδείξεις εκτέλεσης εργασιών. Ειδικότερα, η διπλωματική εξετάζει 

διάφορες τεχνικές μιμητικής μάθησης , υποστηρίζοντας τη χρήση του αλγορίθμου 

InfoGAIL που βασίζεται στον αλγόριθμο GAIL, και που έχει τη δυνατότητα συσχέτισης 

τρόπου συμπεριφοράς και επιτέλεσης εργασίας. Ο αλγόριθμος μελετάται στα πλαίσια 

αναγνώρισης συμπεριφοράς «αρπαγής» αντικειμένων διαφορετικών μεγεθών. 

Παρέχονται δεδομένα που αφορούν ανθρώπινη συμπεριφορά σε συγκεκριμένες 

συνθήκες για την αρπαγή αντικειμένων, από τα οποία εξάγονται χαρακτηριστικά και 

χρησιμοποιούνται για την εκπαίδευση και αποτίμηση της προτεινόμενης μεθόδου. Η 

διπλωματική παρουσιάζει τα αποτελέσματα και ευρήματα, και προτείνει μελλοντικές 

δράσεις για την χρήση μεθόδων μιμητικής μάθησης για την αναγνώριση συμπεριφοράς. 
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1 Introduction 

Machine Learning (ML) and Deep Learning (DL) pave the way towards building 

models that approximate high dimensional variable distributions that are 

difficult to be approximated by other means. Supervised ML methods rely on 

the ability of the model to map the labels of a dataset to the correct examples, 

while unsupervised methods are ideal for unlabelled datasets, and they aim to 

discover patterns inside the data. Figure 1.1 shows the broad groups of ML 

methods. 

 

Figure 1.1: ML/DL main categories and methods 

The ML methods’ categories that are studied in this thesis is Reinforcement 

Learning and Imitation Learning, which are primarily studied in the context of 

human behaviour recognition and prediction. 

Imitation Learning is ideal for mimicking behaviour of a subject that is 

considered an expert to a domain and holds valuable information on the 

sequence of actions that are performed towards achieving a goal / performing a 

task. 

Human behaviour describes the human activities and motions that affect their 

surroundings. One of the most common activities that humans perform in their 

everyday life is grabbing different objects that maintain particular properties. 

Object size is one of the main object properties that affect the course of that 

activity. 

The main topic for this thesis is object size prediction based on imitating human 

hand trajectories towards the object, expressed by noisy human body joint data, 
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by implementing and evaluating the InfoGAIL [1] algorithm. The problem 

belongs to a subgroup of human behaviour prediction problems where human 

hands aim to grasp an object that is placed at a specific distance from the 

subject (human), so the primary viewpoint for the problem is the human 

intention that is hidden in the trajectory of the hand. For example, the shape of 

the hand between reaching a small and a large item may differ. In the settings 

studied in this thesis, there are totally three objects of the same shape but 

different in size in the dataset, which defines the grasping trajectory of the hand. 

The most recent approaches of this task involve prediction with classical ML 

supervised methods using hand kinematic features, such as Random Forest and 

Support Vector Machine [2], in order to recognize the human intention and to 

classify the object size. The InfoGAIL algorithm used in this thesis aims to also 

learn to mimic the hand trajectory given the object size and, at the same time, to 

map trajectories to the object size in order to make predictions about the human 

intention. The core advantage of InfoGAIL is self-learning of the model and self-

recognizing of the trajectories’ intrinsic properties using trial and error besides 

supervised labelling. 

The structure of this thesis begins with Section 2 which contains several 

paradigms and methods that follow the ideas of Reinforcement and Imitation 

Learning. It provides an introduction to the topic of human behaviour and 

specifies the main problem addressed in this thesis and the experimental setup. 

In Section 3 the InfoGAIL algorithm outline is discussed, along with its detailed 

properties. 

Section 4 presents the implementation outline. InfoGAIL is used to 

autonomously model how to imitate trajectories and to recover meaningful 

information of the trajectories, such as the object size. 

Lastly, Section 5 presents the experimental results, aiming to provide answers to 

the following questions: 

1. Can the model identify the object size by observing the hand trajectories? 

2. What is the accuracy of identifying the object size? 

3. Can the model mimic hand trajectories, given the object size 
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These questions are examined by evaluating the model with both the training 

and testing examples to measure the accuracy between the actual and predicted 

object size. 
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2 Preliminaries 

The following sections present the background knowledge for the methods used 

in this thesis, reinforcement learning and imitation learning. 

2.1 Reinforcement Learning 

In the context of Artificial Intelligence, Reinforcement Learning (RL) refers to 

the learning task of an agent that focuses on learning behaviour through trial-

and-error interaction with a dynamic environment [3]. 

2.1.1 Process Outline 

The recurring RL interaction process includes the state of the environment that 

changes every time when the agent chooses and performs a certain action that 

enables a state transition. A state denotes the current snapshot of the agent’s 

environments and depending on whether the environment is fully observable or 

partially observable, the agent perceives the appropriate state information. The 

RL process also includes a reinforcement signal (reward) that is provided by 

the environment and notifies the agent for the goodness of the action it took in 

the specific state applied. Every time step the reward that the agent receives 

through the reinforcement signal is discounted by a constant γ factor in the 

range of (0, 1) that represents the interest of the agent to future rewards. 

The actions that the agent selects to perform state transitions until it reaches a 

specific goal state is called policy and each sequence of states from start to finish 

is called a trajectory. Ultimately, the goal of the agent is to choose a policy that 

maximizes the expected sum of the discounted rewards, i.e., the optimal policy. 

The formula for the optimal policy is described as 

𝜋∗ = 𝑎𝑟𝑔 max
𝜋

𝔼[∑ 𝛾𝑡 𝑟𝑡|𝜋𝑡≥0 ], 

where 𝑟 is the reward and 𝜋 is the policy. 

Furthermore, the environment and policies can be either deterministic or 

stochastic. A deterministic environment ensures that the agent always ends up 
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in the state designated by the action it took, while a stochastic environment is 

random and may place the agent in a different state than the intended one. 

Respectively, a deterministic policy links a specific action to each state. A 

stochastic policy specifies a probability distribution on the available actions at 

each state. Figure 2.1 presents the RL iterative process of agent-environment 

interaction in order to form trajectories and solve sequential problems. 

 

Figure 2.1: The iterative interaction between the agent and the environment to form a 
trajectory and solve sequential problems. 

2.1.2 Markov Decision Process 

The terms describing an RL task are concretely depicted by the Markov 

Decision Process (MDP) which groups all these pieces of information together. 

The MDP configuration consists of the tuple (S, A, P, r, ρ0, γ): S is the state 

space in the environment, A is the action space for the agent, P is the transition 

probability of each state, r is the reward function, ρ0 is the distribution of the 

initial states of the trajectories and γ is the RL discount factor. Moreover, MDP 

is independent of previous state information, as it does not allow landing on a 

transitional state by gathering information of the previous states other than the 

current one. 

In general, the agent aims to recover the best policy towards that goal state. The 

total estimated γ-discounted reward from the initial state towards the goal state 

is the maximizing criterion of the agent that defines the optimal policy. The 

basic value function that composes the discounted reward for every state is 

given by the equation 

𝑉𝜋(𝑠) = 𝔼[∑ 𝛾𝑡 ∗ 𝑟𝑡]∞
𝑡=0 , 

which states that, for a specific policy π, the reward value of state s is the total 

expected discounted reward sum following the policy from that state and 
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afterwards. There are two major elements for calculating the optimal criterion 

based on 𝑉𝜋, the optimal state-value function and the optimal action-value (or 

q-value) function, given by their respective formulas 

𝑉∗(𝑠) = max
𝑎

𝑄∗(𝑠, 𝑎), 

𝑄∗(𝑠, 𝑎) = ∑ 𝑃(𝑠, 𝑎, 𝑠′) [𝑟(𝑠) + 𝛾 𝑉∗(𝑠′)]𝑠∈𝒮 , ∀ 𝑠 ∈ 𝒮. 

The latter computes the expected reward for every state s of the state space S, 

given an action a for that state and then following the policy optimally for each 

transition probability P to state 𝑠′. The optimality is succeeded by using the 

value function which calculates the maximum expected reward from the state s 

and afterwards recursively. This recursive solution to the MDP problem is 

achieved by dynamic programming principles with the Bellman value iteration 

process [4]. 

The RL solutions for MDPs are based on either model-based or model-free 

learning [5, 6]. Model-based learning occurs when an algorithm requires the 

transition and/or reward functions of the environment, so the agent needs to 

discover the function outputs through exploration and interaction with the 

environment. Model-free learning does not explicitly demand a model of the 

environment, thus the solutions for this case require only samples of transition 

and reward function outputs obtained through episodes of exploration. The 

samples from each episode can be used for computing a running average of the 

value and/or the q-value function (such as the Q-Learning algorithm). 

2.1.3 Deep Reinforcement Learning 

There are cases where the state and action space of a task is very large to 

effectively execute the costly iterative RL process. Furthermore, the 

environment may not be fully observable to be able to explore all the possible 

paths towards a goal state. For example, in the self-driving car domain the 

information available to the agent about the environment comes down only to 

observations relative to the agent’s perception proximity (hence the partially 

observable environment). As a result, the agent is not aware of the complete 

state space. In such cases, neural networks can be very helpful since they can 

efficiently approximate the policy function [7]. Neural networks can replace 

every part of plain RL iterative processes, such as the q-value or the state-value 
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function, by training multiple networks simultaneously. Figure 2.2 below 

illustrates an example of a policy function model that recovers a policy for the 

agent to follow. 

 

Figure 2.2: The Deep Reinforcement Learning policy model that trains a network with 
parameters θ in order to recover each action from state inputs 

The network is trained at every iteration by updating its parameters. There can 

be deep network models for the value-based model and/or the policy-based 

model or even for the environment model. 

An example of the policy model is presented in Figure 2.2. Policy-based 

algorithms approach the unknown policy directly by updating the parameters of 

the policy model with gradients ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡) by means of policy-gradient 

algorithms such as REINFORCE [8]. Value-based algorithms such as Deep Q-

Networks (DQN) [9] learn the q-value function of each action using deep neural 

networks and then form the policy that prescribes actions with the maximum q-

value per state. Lastly, the methods that leverage both policy- and value-based 

methods are called actor-critic [10]. The actor approximates the policy function 

and the critic network learns the value function that the actor tries to maximize. 

For that, the critic uses a baseline in order to evaluate the predicted value, such 

as the Q-value, which is parameterised by a deep neural network (Q actor-

critic). The critic output essentially controls the policy gradients of the actor 

network and appraises the actions produced by the actor. Figure 2.3 shows the 

categorization of different methods solving MDPs. 
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Figure 2.3: Deep Learning chart with the extended RL features 

The issue that arises when policies are involved in deep learning is that 

decisions on actions are greatly affected by the changes in the parameter step 

during a network parameter update. For that matter, there are several 

techniques, such as Trust Region Policy Optimization (TRPO) [11] algorithm, 

which ensure a moderate step of the network parameter updates. Briefly, TRPO 

maximizes the loss function 

𝐿(𝜃𝑜𝑙𝑑 , 𝜃) = 𝔼𝜋𝜃𝑜𝑙𝑑
[

𝜋𝜃

𝜋𝜃𝑜𝑙𝑑

 𝐴𝜃𝑜𝑙𝑑
(𝑠, 𝑎)], 

𝑠. 𝑡. �̅�𝐾𝐿(𝜃𝑜𝑙𝑑, 𝜃) = 𝔼𝜋𝜃𝑜𝑙𝑑
[𝐷𝐾𝐿(𝜋𝜃𝑜𝑙𝑑

, 𝜋𝜃)] ≤ 𝛿. 

This loss function basically translates into estimating the expected ratio of the 

policy 𝜋𝜃 after the parameter update over the old policy 𝜋𝜃𝑜𝑙𝑑
, multiplied by the 

advantage function 𝐴𝜃𝑜𝑙𝑑
 of the state-action pairs sampled from the old policy. 

The loss function is calculated subject to �̅�𝐾𝐿 that denotes the average KL 

divergence [12] of the old and new policies, which is bounded by a constant δ. It 

essentially means that the new policy is allowed to deviate from the old policy at 

most δ. 

The advantage function defined by the formula 

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡) = 𝑅𝑡+1 + 𝜆 𝛾 𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡), 

where R is the surrogate reward at time t+1 of the trajectory, which denotes the 

reward obtained at the next state of the transition, γ is the discount factor, 
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𝑄(𝑠𝑡, 𝑎𝑡) is the q-value for the state-action pair at time 𝑡 and V is the value 

function. 𝜆 is a regularizing hyperparameter. 

2.2 Imitation Learning 

Imitation Learning (IL) is the broad category of methods in which the involved 

agents aim at directly mimicking expert demonstrations in a task of interest 

using supervised learning [13, 1]. The expert demonstrations may originate from 

humans or even from other agents that perform actions to complete a specific 

task. Imitation learning is divided into two key groups, behavioural cloning 

(BC) and inverse reinforcement learning (IRL) [1, 14, 15, 16]. 

2.2.1 Behavioural Cloning 

Behavioural Cloning (BC) denotes the simplest and straightforward imitation 

learning method, fusing supervised learning, directly through expert behaviour 

without any access to a reward function. The expert demonstrations mainly 

consist of pairs of states and actions performed in the environment by the 

agents. The core difference from reinforcement learning revolves around the 

absence of the reinforcement signal that supports the agents for the action 

selection and there is no interaction with any part of the environment. This 

offers the advantage of not having to directly compute and develop a complex 

reward function that yields a problem-specific reinforcement signal, which 

usually is computationally intensive, while at times the reward is obscure and 

unknown. Moreover, since IL method and specifically BC method is supervised, 

the agent does not learn a policy using experience earned by trial and error, it 

rather needs data from the expert. In other words, the more data the expert 

provides to the agent, the more accurately it learns the expert state-action 

distribution. 

A significant drawback of BC is the compounding error in the approximated 

policy. This error occurs when small errors in the approximated policy function 

gradually lead the agent to unseen states and does not know how to act on them. 
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2.2.2 Inverse Reinforcement Learning 

IRL designates the approximation of a reward function related to a desired 

problem using apprenticeship learning (AL), an alternative term for learning 

from demonstrations, and then the agent solves a reinforcement learning 

problem using the recovered reward so as to calculate the expert policy. The 

agent tries to infer the hidden preferences of the expert which define the reward 

function [17]. At each step, the parameterized reward network makes a 

prediction that yields a candidate reward which is used to solve the MDP 

pipeline in order to calculate the optimal policy given a reward approximation. 

The network parameters may be updated by minimizing the distance between 

the learned and the expert policy. The algorithm is described briefly in Figure 

2.4. 

 

Figure 2.4: Template algorithm for estimating a reward function using IRL (source: 
[17]) 

There are several IRL optimization methods for the divergence between the 

expert and learned policy, which are displayed in Figure 2.5. 



-20- 

 

 

Figure 2.5: IRL objective function optimization methods 

Like any imitation learning method, IRL assumes that the expert policy is 

optimal. The main challenge that poses an ambiguity to the solution is the fact 

that there can be multiple reward functions that could explain the optimality of 

the expert policy. The optimization step of the IRL algorithm in order to 

alleviate the ambiguity issue uses entropy maximization. This method returns 

the maximum entropy policy that is calculated by AL via IRL. 

2.2.3 Imitation Learning: Algorithms and State of the art 

Imitation Learning is a task that requires interaction samples in order to 

succeed a robust and interpretable result. Many real-world settings prohibit the 

collection of such data efficiently, especially in the field of robotics. This usually 

leads to choosing reasonably plain simulations of actual human behaviour 

problems in order to compensate for the sample complexity [18]. 

Recent work has shown that combining the benefits of the techniques described 

in the previous sections, human behaviour datasets can be integrated into both 

deep RL solutions and BC-AL algorithms that contribute to human movement 

imitation. 

In [19] classic BC is used to learn state-action pairs towards performing various 

tasks such as reaching, grasping and pushing objects by hand, creating optimal 

policies using a virtual reality robot that is teleoperated to perform such 
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movements. The created demonstrations are images containing the viewpoint of 

the VR robot performing these tasks. Then, the BC model learns the policy by 

imitating the collected demonstrations and the evaluation of the model is 

performed utilizing an actual robot to perform the tasks by executing the 

learned policy. 

Dataset Aggregation (DAgger) is an upgraded version of the standard BC 

algorithms that is used for expert trajectory imitation by iteratively collecting 

data not only from the expert policy but also from the policy network instance 

that the agent uses at each iteration [20]. At each step, the agent asks for the 

expert feedback in the form of expert policy actions, given the visited states. 

Contemporary experiments have been performed on an autonomous driving 

task, using both simulated and real-world datasets. These experiments feature 

the DAgger algorithm, as well as Human-Gated DAgger (HG-DAgger) which 

adds a risk metric that helps the agent remain in a human-defined state space to 

avoid deviating from the expert state space. The real and the simulated 

automobiles are tested in a constrained environment with other cars as 

obstacles [21]. 

Expert demonstrations are crucial when BC algorithms are used. Policy-based 

methods that use policy gradient to recover an optimal policy can be initialized 

randomly, which may slow the training process down, since the agent has no 

clue of the state and action space. This can be avoided when injecting expert 

demonstrations into the policy gradient methods. Demonstration Augmented 

Policy Gradient method (DAPG) [22] combines supervised techniques with self-

learning, by pre-training the policy model with BC or splitting the expert 

demonstrations in sub-tasks, in cases where smaller sequential tasks are 

pipelined to form the original trajectories. The latter choice requires an 

augmented surrogate objective function that extends the policy gradient 

objective. This auxiliary function aims to grasp the inherent sequential 

information of the mentioned sub-tasks, which the BC method fails to capture. 

The experimental setup of DAPG includes a virtual environment in which a 24-

DoF robotic hand is used to produce expert trajectories for object grasping and 

relocation, object manipulation using the fingers, usage of hammer and door 

opening. The rewards are manually crafted depending on the type of task and 

the experiments are tested on sparse task completion. 
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Generative Adversarial solutions 

While the BC family highlights supervised procedures, there are IL techniques 

that directly learn the policy from expert demonstrations, using Generative 

Adversarial Network (GAN) aspects [23]. 

GAIL algorithm outline 

Generative Adversarial Imitation Learning (GAIL) [15] offers a core example of 

reclaiming the best of both GANs and IL that constitutes a baseline for other 

methods of GAN learning. This algorithm excels in large environments with 

high-dimensional state-action space that hinder the agent from keeping a steady 

trajectory close to that of the expert. The previously mentioned methods mainly 

rely on expert demonstrations without evaluating the improvement of the new 

policy, compared to the previous one, throughout the course of training. This 

does not allow the agent to qualify the parameter update at each step. GAIL 

utilizes a discriminator network that evaluates the actions generated by the 

policy network, with respect to the corresponding reached state after 

performing a specific action. It also has the role of the cost function. The goal is 

to maximize the aggregated expected cost for the learned policy, while trying to 

find the policy that minimizes the loss. 

The study in [15] shows tests of the algorithm on some baseline RL experiments 

such as cartpole, acrobot and mountain car, as well as on more complex 

simulative tasks such as 3D humanoid locomotion. Other experiments that 

specialize in human pose sequence prediction utilize Wasserstein-divergence 

GAIL algorithm (WGAIL-div), a variation of the standard GAIL algorithm that 

effectively approximates trajectories such as photo-shooting and walking [24]. 

GAIL features explained 

GAIL is founded on the IRL principles. However, its purpose is to escape from 

the AL process which solves RL problems by approximating the reward 

function, in order to yield the policy. 

The structure is inspired by the GANs framework, where the cost function is 

formed by the output of a discriminator network. Formally, the discriminator 

aims at learning to discriminate between learner-agent and expert state-action 

pairs: 

𝜓𝐺𝐴
∗ (𝜌𝜋 − 𝜌𝜋𝛦

) = max
𝐷∈(0,1)

𝔼𝜋[log(𝐷(𝑠, 𝑎))] + 𝔼𝜋𝛦
[log(1 − 𝐷(𝑠, 𝑎))], 
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where D is the discriminator and 𝜌𝜋, 𝜌𝜋𝛦
 are the occupancy measure values for 

the imitator policy 𝜋 and the expert policy 𝜋𝛦, respectively. Occupancy measure 

denotes the distribution of the state-action pairs visited by the agent when 

exploring the environment following a policy. 

Substituting the cost function in the optimization problem along with 𝜆 that 

controls the causal entropy 𝐻𝜋, the final objective function for the GAIL 

algorithm is formed: 

min
𝜋

max
𝐷∈(0,1)

(𝔼𝜋[log(𝐷(𝑠, 𝑎))] + 𝔼𝜋𝛦
[log(1 − 𝐷(𝑠, 𝑎))]) − 𝜆𝐻(𝜋), 

with 𝜆 ≥ 0 being the regularizing variable for the causal entropy. The RL step for 

getting the optimal imitator policy is replaced by a generator network that at 

each iteration yields actions based on the input state. The TRPO method is 

proposed to control the policy network parameter update steps. The GAIL 

algorithm is presented in Figure 2.6. 

 

Figure 2.6: GAIL algorithm (source: [15]) 

The final algorithm shows that the cost function approximator is log 𝐷(𝑠, 𝑎), 

which means that the discriminator guides the generator into predicting the 

right policy, without the means of a reinforcement signal or an iterative RL 

process. The generator G and the discriminator D are two distinct networks and 

each one has its own parameters to update. G yields a policy and tries to confuse 

D. This essentially means that if D is not able to distinguish the state-action 

pairs generated by G by assigning a small cost compared to that for the expert 

state-action pairs, it is inferred that the occupancy measures of the expert and 

generated policy are indeed very close, thus the data generated by G is close to 

the expert data. The discriminator is updated with the Adam optimizer [25]. 
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3 Info GAIL 

Having described the GAIL baseline above, the main algorithm derived from 

GAIL is now discussed, which is used for discovering the salient factors of the 

trajectories when following a policy. 

3.1 InfoGAIL Outline 

Information Maximizing Generative Adversarial Imitation Learning (InfoGAIL) 

is another algorithm of the GAIL family that introduces the concept of latent 

codes in the learning process [1]. There are problems which demand 

distinguishing the intrinsic labels of the expert. Latent codes denote these exact 

labels and InfoGAIL, apart from training a discriminator and a generator 

network like standard GAIL, it also takes on maximizing the mutual information 

between the generated trajectory and the latent variable by training a neural 

network that indicates the posterior probability of the latent code, given the 

generated trajectory. Figure 3.1 shows that InfoGAIL recognizes the generated 

trajectory latent factors and matches the expert. 

 

Figure 3.1: Comparison between InfoGAIL and other IL algorithms for the synthetic 
experiment (source: [1]) 

The main experiment in [1] processes visual positions of cars driving in a 

simulated environment in order to distinguish whether the car is driving 

throughout a turn in the environment or is passing another vehicle. In Figure 

3.2 there are 37 epochs of turning left or right during the training process, along 

with the distance travelled for 60 trajectory rollouts. 
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Figure 3.2: Results of InfoGAIL for certain epochs and compared to GAIL, for the visual 
demonstration experiments (source: [1]) 

The images infer the effectiveness of InfoGAIL to recognize the type of turn the 

virtual vehicle took and map the trajectory to the right color and type. The far-

right image depicts the GAIL trajectories of passing vehicles and it is obvious 

that the algorithm cannot distinguish between left and right pass, compared to 

InfoGAIL. 

3.2 Details on InfoGAIL 

The standard GAIL algorithm is effectively able to predict trajectories based on 

expert state-action pairs in high dimensional environments where classic RL 

and IRL concepts fail to succeed in real time intervals. However, trajectories in 

general and specifically in human behaviour context, are determined by several 

latent factors that explain the very behaviour. Furthermore, the same 

demonstrations may originate from different experts whose skill in the task area 

may also differ, thus the imitation learning process in such cases inducts 

variability. 

The motivation behind InfoGAIL is the interpretability of the expert policy by 

discovering the desired latent variables along with the state-action prediction. 

In order to do so, maximization of the mutual information between the expert 

demonstrations and the latent space that contains the latent variables can be 

achieved. This intuitively translates to mapping every generated state-action 

pair to a latent variable. In [26] the mutual information formula is displayed as 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋), 

where 𝐻 is the entropy term for the variables X and Y. This formula defines how 

much information can be extracted from the variable X, given the knowledge 

about Y. So, if the expert policy 𝜋𝛦 consists of the expert policies that are 

matched with their respective known latent variable 𝑐, then each expert 
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trajectory 𝜏𝛦 is defined as the consequent state-action pairs that are generated 

following the policy and each action is sampled from the distribution 𝑝(𝜋|𝑐), 

starting from an initial state 𝑠0. Now, the imitator policy 𝜋(𝑎|𝑠, 𝑐) tries to 

approach the occupancy measure of the expert policy 𝜋𝛦 by generating 

trajectories 𝜏 which are qualified by the discriminative network D, like in the 

standard GAIL setting. 

The mutual information formula must contain the latent variable and 

trajectories, so the problem is reduced to calculating 𝐼(𝑐; 𝜏). While this seems a 

straightforward solution over GAIL, the final objective function needs to contain 

the posterior probability 𝑃(𝑐|𝜏), since the entropy term contains this quantity. It 

is difficult to directly compute this posterior to maximize the mutual 

information in its current form, thus a lower bound can be placed, which 

includes an approximation of the posterior and therefore does not contain the 

quantities 𝐻(𝑐|𝜏) or 𝐻(𝜏|𝑐). This lower bound is given by 

𝐿𝐼(𝜋, 𝑄) = 𝔼𝑐[log 𝑄(𝑐|𝜏)] + 𝐻(𝑐) ≤ 𝐼(𝑐; 𝜏). 

Q denotes the approximation of the posterior and 𝐻(𝑐) is the entropy of the 

latent variable 𝑐. This bound needs to be included in the GAIL objective in order 

to achieve the required semantic features. As a result, the final transformed 

objective function that is gradable and constitutes InfoGAIL is 

min
𝜋,𝑄

max
𝐷

𝔼𝜋[log 𝐷(𝑠, 𝑎)] + 𝔼𝜋𝛦
[log (1 − 𝐷(𝑠, 𝑎))] − 𝜆1 𝐿𝐼(𝜋, 𝑄) − 𝜆2 𝐻(𝜋), 

where 𝜆1 > 0 is the regularizing variable for the lower bound, similar to the 

regularizing variable for the policy entropy from GAIL. The posterior 

approximation Q is modelled by a neural network as well, with Adam optimizer 

for updating its parameters. Overall, there are three main networks for the core 

InfoGAIL algorithm, the generator 𝜋𝜃, the discriminator 𝐷𝜔 and the posterior 

𝑄𝜓, with θ, ω and ψ being their respective parameters. Figure 3.3 shows the 

main InfoGAIL algorithm for computing the gradients and using them to update 

networks weights. 
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Figure 3.3: InfoGAIL algorithm (source: [1]) 

Since the expert demonstrations usually come from humans, it is natural that 

some expert policies are prone to human error and perform sub-optimally. 

Apart from the main course of the algorithm, an additional reward 

augmentation is proposed when this scenario is encountered, in order to 

counteract the sub-optimal approximated rewards. Essentially, reward 

augmentation provides an extra invented constraint 𝜂(𝜋𝜃), specifically crafted 

to better inform the agent about a more accurate route towards the states it 

should visit. This surrogate reward is inserted into the objective function as 

well. 

Lastly, an additional optimization step is suggested that solves potential 

vanishing gradient and mode collapse issues when there are high dimensional 

expert data. In that case, the maximization part of the objective function is 

replaced with the Wasserstein GAN (WGAN) technique. The updated objective 

with both the reward augmentation and WGAN is described by the following 

formula: 

min
𝜃,𝜓

max
𝜔

𝔼𝜋𝜃
[𝐷𝜔(𝑠, 𝑎)] − 𝔼𝜋𝛦

[𝐷𝜔(𝑠, 𝑎)] − 𝜆0 𝜂(𝜋𝜃) − 𝜆1 𝐿𝐼(𝜋𝜃, 𝑄𝜓) − 𝜆2 𝐻(𝜋𝜃). 
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4 Predicting Human 
Behaviour 

This section introduces: 

• the dataset used for InfoGAIL 

• the formulation of the problem 

• the setup and implementation of the InfoGAIL algorithm 

4.1 Overview 

So far various methods and setups have been presented that depend on 

imitation learning principles in order to model expert policies as these are 

revealed through task demonstrations. The agent observes the expert state-

actions pairs and imitates them as closely as it gets, or it makes its own path in 

the environment to learn from its own mistakes, always keeping the expert 

policy as a guide. 

As stated in the InfoGAIL section, human behaviour can be noisy in multiple 

examples and slight variations of the same policy could explain different 

semantic features. In the hand grasping environment, these features must keep 

up with the interpretability of the respective trajectories. Hence, the goal of this 

analysis is to bring the dataset to a form that best highlights the modes of 

behaviour and to remove any excess noise from the features. 

4.2 Human Behaviour Dataset 

The utilized raw dataset for the current thesis is a collection of OpenPose (OP) 

estimations of the right human hand positions in the 2D space as it reaches an 

object [2]. Three solid cubes are used that vary among three categories, small 

(2.5cm), medium (5.5cm) and large (7.5cm). A single RGB-D sensor was used 

by the authors to capture the hand joint data of 8 participants who took 30 

movements towards each object. There are totally 715 grasping movements 

towards the cubes, after the removal of 5 movements because the recording was 
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defective. Every participant initiates the hand movement from the same fixed 

point that has a specific distance from the object. OP groups joint data into right 

hand data and full body data. It reads the recordings and recognizes the hand 

joint and full body data, as depicted in Figure 4.1. 

 

Figure 4.1: (Left) OP right hand joint data, (Right) OP full body joint data 

Each joint number corresponds to a label that is used to save the data in CSV 

files. Table 4.1 matches the labels with each joint number from both right hand 

and full body. 

Table 4.1: OP key point labels 

Label Number 

RWrist Full body - 4 

RPalmBase Right hand - 0 

RThumb1CMC Right hand - 1 

RThumb2Knuckles Right hand - 2 

RThumb3IP Right hand - 3 

RThumb4FingerTip Right hand - 4 

RIndex1Knuckles Right hand - 5 

RIndex2PIP Right hand - 6 

RIndex3DIP Right hand - 7 

RIndex4FingerTip Right hand - 8 

RMiddle1Knuckles Right hand - 9 

RMiddle2PIP Right hand - 10 
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RMiddle3DIP Right hand - 11 

RMiddle4FingerTip Right hand - 12 

RRing1Knuckles Right hand - 13 

RRing2PIP Right hand - 14 

RRing3DIP Right hand - 15 

RRing4FingerTip Right hand - 16 

RPinky1Knuckles Right hand - 17 

RPinky2PIP Right hand - 18 

RPinky3DIP Right hand - 19 

RPinky4FingerTip Right hand - 20 

 

Each movement consists of several frames with a sampling frequency of 60Hz 

that feature the OP key-points, along with the OP confidence probability that 

denotes how correctly OP estimated the coordinates of each point, the sequence 

number of the frame and the key-point timestamp. The total number of frames 

differs in each trajectory. Furthermore, the actual movement begins from the 

10𝑡ℎ frame, because the first 9 frames are used to calculate the standard 

deviation of the RWrist y-coordinate for manual dataset reproduction. Lastly, 

every hand movement ends its course just right before object grasping. Figure 

4.2 shows the frame distribution among the hand movements. 

 

Figure 4.2: Frame distribution for each movement (source: [2]) 

The timestamp is in seconds and the sequence number is an integer that OP 

yielded, counting from the first frame until the last frame captured and ranges 

in [0, MAX_TRAJECTORY_FRAME]. Figure 4.3 displays the timestamp 
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difference between every two consecutive frames of each trajectory, collapsed 

into one dimension as seen in the x-axis. 

 

Figure 4.3: Consecutive timestamp differences (in seconds) between frames for all the 
trajectories 

The sequence numbers of a movement in the dataset do not necessarily start 

from zero and they are not definitively consecutive, since some frames have 

been filtered out due to noisy values. Figure 4.4 shows an example frame taken 

from a hand movement towards a large cube. Each dot corresponds to a hand 

(RWrist) joint key point. The recording of that movement capturing the total 22 

key points is achieved by exploiting the OpenCV framework [27] to read and 

extract the appropriate information from the dataset. 

 

Figure 4.4: Example frame with hand points and the wrist point reaching for a large 
object 
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Each movement is contained in its own CSV file and Table 4.2 shows the format 

of the CSV containing the values mentioned above. 

Table 4.2: CSV file layout 

Sequence 

No. 
Timestamp 

Point 

probability 

Point 

x-coordinate 

Point 

y-coordinate 

Rest 

Points 

first_No. first_stamp (0, 1) float_value float_value 

. . . 

. 

. 

. 

last_No. last_stamp (0, 1) float_value float_value 

 

The Point headers in the table annotate each label mentioned in Table 4.1. So, 

every Point triplet is repeated in the CSV file for all 22 key points. 

In order to reduce the data dimensionality and end up with meaningful features, 

it is showed in [2] that three of the total features yielded the best outcome: the 

2D wrist key-point coordinates (x and y), which matches with the RWrist label, 

and the thumb-index finger aperture. The y-RWrist coordinate is quite 

important because it is observed that most of the hand motion happens on the 

y-axis and its confidence probability is larger than 0.6. The thumb-index finger 

aperture denotes the Euclidean distance between the 2D coordinates of the 

thumb and index fingertips, which correspond to RThumb4FingerTip and 

RIndex4FingerTip labels from Table 4.1, respectively. 

Figure 4.5 displays the distributions of Dataset A endpoints for every type of 

objects in order to demonstrate the diversity of each object approaching 

situation. 
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Figure 4.5: Aperture and y-wrist endpoint distribution for the trajectories of Dataset A. 
Each distribution (boxplot) refers to the relative object size (S=small, M=medium, 

L=large). The orange line represents the mean value of each distribution, and the white 
circles are the outliers 

Even though most of the movement takes place in the y-axis, the mean values 

(orange lines in the boxplots) are not well-distinguished for each object size, as 

opposed to the aperture values during the trajectory. So, an upcoming challenge 

is to determine whether the combination of the aperture feature (as the most 

important one that defines the approached object size) and the spatial wrist x, y 

features that define the generic hand position in relation to both the 

environment and the object is actually helpful, or the aperture is adequate by 

itself in order to produce trajectories that exhibit the association of the aperture 

to the object. Thus, two distinct feature sets are explored: 

• All three features (x-wrist coordinate, y-wrist coordinate, thumb-index 

aperture) 

• Only the thumb-index aperture feature 

Figure 4.6 shows the scatter plots of all the aperture values of the dataset with 

respect to five hand movement intervals (20%, 40%, 60%, 80%, 100%), which 

refer to the movement completion percentage from the initial frame of each 

movement. 
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Figure 4.6: The scatter plots of all the aperture values of the dataset with respect to five 
hand trajectory intervals (20%, 40%, 60%, 80%, 100%), which refer to the trajectory 
completion percentage from the initial frame of each trajectory, for the 8 participants 

and each object size 

Before incorporating the aforementioned effective features in a new dataset, 

extra preprocessing steps need to be performed in order to clean and normalize 

the dataset. 

While the x and y coordinates of the wrist point variables are filtered out to 

accommodate a confidence probability close to 0.6 and over, some of the thumb 



-36- 

 

and index fingertip values needed to form the aperture feature exhibit 

confidence less than 0.6. The boxplot in Figure 4.7 shows the confidence 

distribution of the wrist, thumb and index key points of every trajectory in the 

dataset. 

 

Figure 4.7: Confidence probability distribution for each key point (wrist, thumb and 
index) 

The image shows that the mean confidence distribution lies around 0.8 for all 

the key points and most of the outliers are indeed in the thumb and index key 

points. As a result, all the thumb and index points that exhibit OP confidence 

less than 0.6 can be safely removed, and all the remaining points ensure a stable 

confidence level. Furthermore, another constraint for the thumb-index points is 

that the minimum distance of x and y coordinates between two thumb and 

index points needs to be less than or equal to 10 pixels, as proposed in [2]. 

Filtering out frame values while calculating the apertures does not imply 

removal of the whole frame, but it rather labels these specific values in the 

corresponding frame as unusable and blank, because there can be valid wrist 

points and invalid apertures in the same frame. In Table 4.3 there is an example 

where the thumb key point value has been removed due to low confidence level 

(the removal is marked with ‘X’), but the frame is still in its position, along with 

the wrist key point. 
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Table 4.3: Example frame after thumb value removal 

Wrist 

probability 
Wrist Point 

. . . 

Thumb 

probability 

Thumb 

Point 

0.86 (112.74, 101.73) 0.36 X 

 

Then, the aperture feature is formed using the available thumb and index points 

(i.e., the points that have real values, like the Wrist Point in Table 4.3) and every 

aperture value corresponding to unavailable thumb and index fingertip points 

(i.e., the points that do not have real values, like the removed Thumb Point in 

Table 4.3) become unavailable. Now the dataset contains only three features, 

the apertures (some of which are unavailable) and the wrist point coordinates 

(x and y), along with the respective timestamp. Furthermore, each trajectory 

now begins from the tenth frame of the initial raw dataset. 

Figure 4.8 shows the percentage of NaN aperture values for every hand 

trajectory and object size. NaN stands for not-a-number, and it is the non-

numerical blank value that some apertures have from the previous step. 

 

Figure 4.8: Aperture blank (NaN) percentage in each trajectory for each object size. 
Each bar plot corresponds to one of the three object sizes. The x-axis represents the 

index of the total number of trajectories for the corresponding object size. 
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The image implies that the non-available (NaN) aperture values are less than 

50%, with the obvious exception of trajectories that have more than 70% NaN 

apertures. In order to ensure that the hand trajectories contain at least one 

usable frame, the trajectories with 100% NaN aperture values are removed. By 

doing so, the total remaining hand trajectories are 713 (only 2 were removed). 

This process may leave unusable starting and ending frames due to the NaN 

aperture values, which are important movement-wise since they indicate the 

spatial limits of a trajectory. Moreover, the quantity of the dataset examples is 

significant for the training efficiency. Consequently, the NaN aperture values at 

starting and ending frames, as well as the rest of the NaN aperture values can be 

filled with real values in order to maintain the current number of hand 

trajectories. 

At first, the starting and ending aperture NaN values can be replaced with 

samples from the distributions of the respective remaining real aperture values, 

after the feature filtering step described above. The sampling depends on the 

participant making the hand trajectory and on the respective size of the reached 

object. In cases where there is no available example for the corresponding 

combination of participant and object size, the chosen aperture value is the 

mean aperture value from all the participants, for the desired object size. Figure 

4.9 shows an example of the latter occasion for the FXD participant and the 

large cube. The image indicates that there is not any available real aperture 

value for the particular participant and object size combination (FXD 

participant and large object size), in order to complete an ending unavailable 

(NaN) aperture value. This occurs since the box plots of small and medium 

objects (S and M respectively) are displayed, while there is no box plot for the 

large object (L). 
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Figure 4.9: Ending aperture value distribution for the FXD participant for every object 
size. There is no available value for the large object. 

To complete the dataset, the remaining NaN aperture values are replaced with 

real values using linear interpolation. This method replaces NaN aperture 

values 𝑎𝑥, where 𝑥 ∈ [2, 𝑛 − 1] and n is the length of a hand trajectory. The 

formula for linear interpolation is 𝑎𝑥 = 𝑎𝑖 + (𝑥 − 𝑖)
𝑎𝑗−𝑎𝑖

𝑗−𝑖
, where 𝑖 < 𝑥 < 𝑗 and 𝑎𝑖 

and 𝑎𝑗 denote the closest aperture values to 𝑎𝑥 that are not NaN, so that 𝑎𝑖 <

𝑎𝑥 < 𝑎𝑗. Linear interpolation is performed for all the remaining 713 hand 

trajectories. This method is significant because each frame (hence, each 

aperture value) of a hand trajectory corresponds to a timestamp. As seen on 

Figure 4.3, most of the timestamp difference values are around 0.016. If all the 

NaN values are removed, along with the entire frame, then the timestamp 

difference values are completely unequal. Thus, linear interpolation ensures 

stable frame rate. Figure 4.10 below presents the interpolated values which 

complement Figure 4.6. 
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Figure 4.10: Dataset A - Interpolated aperture value scatterplots for the 8 participants 
and each object size. The ‘+’ symbols represent the interpolated aperture values 

The plots in Figure 4.10 show that the number of outliers in the dataset has 

been decreased due to the mentioned preprocessing steps, especially for the 

FXD and NXP participants. 

It is noticeable that the dataset in Figure 4.6 and Figure 4.10 exhibits small 

overlap in the aperture values between small and large sized objects, while there 
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is a significant overlap between the medium sized object and the rest object 

sizes. In order to increase the separability of the objects, a second sub-dataset is 

also formed by removing the medium sized object. Figure 4.11 depicts the 

aperture values of the dataset for each completion interval, without the medium 

size objects. 

 

Figure 4.11: Dataset B - Interpolated aperture value graphs for the 8 participants, 
without medium size objects 
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Each resulting dataset is split into training and test sets, with ratios of 80% and 

20% respectively, by randomly selecting trajectories from each type. 

Both the training and the test datasets are normalized with Min-Max scaling in 

the range of [-1, 1] for the wrist x and y features and with subtracting the 

minimum aperture value from the aperture values, in order to end up with zero 

as the minimum aperture value. The scaling is selected to ensure that every 

wrist value spreads in the same range and the aperture values lie in a range of 

greater values’ magnitude than those of the wrist, in order to provide more 

importance to this feature. 

Totally, the information for the split datasets is the following: 

• Dataset with 3 object sizes (small, medium, large): Dataset A 

o the training dataset contains 569 trajectories with approximately 

18000 frames 

o the test dataset 144 trajectories with approximately 4600 frames. 

• Dataset with 2 object sizes (small, large): Dataset B 

o the training dataset contains 400 trajectories with approximately 

12000 frames 

o the test dataset 96 trajectories with approximately 3000 frames 

4.3 Problem Formulation: MDP 

The goal of exploiting the OP dataset is to construct a model that predicts 

grasping trajectories towards the cubes depending on their size, starting from 

pre-determined positions of the selected hand features. Ultimately the model 

must be able to recognize the size of the reached object. This configuration fits 

exactly to the concept and the arrangement of the InfoGAIL algorithm described 

in the previous section. This algorithm is explored to evaluate its efficiency in 

the hand trajectory and object prediction problem. 

In order to obtain a concrete and working setup for InfoGAIL, the grasping 

trajectory prediction problem needs to be modelled into the format of MDP. The 

MDP follows the configuration of Section 2.1.2: 

The environment is partially observable by the agent, so each state is an 

observation of a sliding window of 5 subsequent trajectory timesteps of the final 

dataset. On this account, each state includes 3 features (wrist x, wrist y and 



  -43- 

aperture) of 5 consequent frames, so the dimensionality of the S space is 15. 

Intuitively, the observation at a specific timestamp t of the trajectory holds 

information about the mentioned features at frames with timestamps from 𝑡 − 4 

to t. 

A denotes the outcome of subtracting two consequent frame feature values of a 

trajectory (i.e., two consequent (x-wrist, y-wrist, aperture) tuples), so the action 

set space has dimensionality 3 (one action for the x-wrist, y-wrist and aperture, 

respectively). The actions are continuous. 

The reward r for MDP is the sigmoid of the discriminator network output, as 

stated in the InfoGAIL specification. The reward 𝑟 ∈ (0, 1) needs to be in this 

range in order to express the ability of the generator to produce policies that, in 

turn, produce the distribution of state-action pairs demonstrated. 

ρ0 is defined to be the set of all the initial trajectory states. It is also important to 

investigate the behaviour of the InfoGAIL algorithm in real-time scenarios 

where the object size needs to be predicted starting from intermediate states of 

the entire expert trajectories. In order to achieve this, 𝜌0 set is enhanced with 

expert trajectories’ intermediate states that serve as initial trajectory generation 

points, taken from 20%, 40%, 60% and 80% completion of each expert 

trajectory, in addition to the very starting state taken from 0% completion. An 

illustrative example is shown in Figure 4.12. 

 

Figure 4.12: Partial sub-trajectories from expert trajectory states. 0%, 20%, 40%, 60%, 
80% are the initial states of the expert trajectories 

4.4 InfoGAIL Implementation 

The InfoGAIL implementation for this thesis is based on the InfoGAIL version 

that is designed for TORCS environment [28]. The practical algorithm used in 

the TORCS experiment expands the details of the InfoGAIL specification in 

order to create a viable and optimized implementation, specifically on TRPO. 

The TensorFlow [29] framework is utilized for the implementation of the 
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generator, discriminator, posterior and value networks, as well as for the 

training and validation of the mentioned networks. The value network 

essentially approximates the value function V of each generated state-action 

pair, used by the advantage function of TRPO. 

Figure 4.13 below depicts the implementation of the mentioned networks. 

 

Figure 4.13: The Deep Learning networks that constitute the InfoGAIL models 

The discriminator and the posterior networks consume a concatenated vector of 

the state-action pairs in the same dense layer. The value network accepts a 

concatenated vector of the states and latent codes, while the generator has two 

distinct hidden layers that accept states and latent codes respectively. Their 

outputs are then concatenated. The latent code property c is denoted by the one-

hot vector of the object size, its values being matched with small, medium, large, 

respectively. The output of the posterior network is a vector with the softmax 

probabilities assigned to each object size. Every network uses the tanh 

activation function which outputs values in the range of [-1, 1]. Table 4.4 groups 

the loss functions and learning rates for the generator, discriminator, posterior 

and value networks. 
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Table 4.4: Loss functions and learning rates for the neural networks used in InfoGAIL 

Neural Network Loss Function Learning Rate 

Generator 𝐿(𝜃𝑜𝑙𝑑 , 𝜃) of TRPO - 

Discriminator Binary cross-entropy 10−4 

Posterior Categorical cross-entropy 10−5 

Value Mean squared error 10−4 

 

In order to increase the efficiency of the posterior network predictions, a 

validation set is created by isolating some samples from the generated state-

action pairs in order to be exploited by a target posterior network. When the 

main posterior network is trained, the target posterior network’s weights are set 

based on the formula 

𝑡𝑎𝑟𝑔𝑒𝑡𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 0.5 ∗ 𝑚𝑎𝑖𝑛𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 0.5 ∗ 𝑡𝑎𝑟𝑔𝑒𝑡𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 

where 𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑠 denotes the weights of the posterior network. The target is 

initialized with the same weights as the main posterior network. At each 

episode, the created validation set is exploited to calculate the posterior 

validation loss and the target network is used for predictions. 

The loss function of the value network is the error between the approximated 

value function output and the surrogate reward of TRPO, which follows the 

formula 

𝑅(𝑠, 𝑎) = −log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷(𝑠, 𝑎)) + ∑ log 𝑄(𝑠, 𝑎) ∗ 𝑐𝑗
𝑚
𝑗=1 , 

where 𝐷(𝑠, 𝑎) and 𝑄(𝑠, 𝑎) are the outputs of the discriminator and the posterior 

networks respectively, (s, a) are the state-action pair inputs and c denotes the 

latent code one-hot vector. Thus, the one-hot vector has length 𝑚 = 3 when 

using all the available object sizes. 

The generator network is initially trained using the BC method. That step makes 

the generator network not to begin with random weights, gaining efficiency. 

Table 4.5 provides information for training the BC. 
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Table 4.5: Training information for the BC method on the generator network 

BC training and validation information 

Training episodes 100 

Loss function Mean Squared Error 

Validation method 10-fold cross-validation [30] 

 

The stochasticity of the generated policy for InfoGAIL is achieved by 

introducing Gaussian noise to actions when performing a state transition during 

trajectory generation, in the form of Gaussian standard deviation (std). 

Table 4.6 groups the hyperparameters of InfoGAIL. 

Table 4.6: Hyperparameters of InfoGAIL 

InfoGAIL Parameters 

Discounting Factor γ 0.997 

Gaussian std 0.008 

TRPO advantage function λ 0.97 

Maximum KL divergence δ 0.01 

Latent code sample 400 

Training episodes 10000 

Training state-action pair sample 2000 
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5 Results 

This section presents the training and testing results of InfoGAIL execution. 

Several plots are drawn along with the training process that show the losses of 

the generator, discriminator, posterior and value networks, which indicate their 

successful training, followed by plots and tables that evaluate the outcome. 

5.1 Overview 

In Section 4.2, two datasets are defined: Dataset A and Dataset B. Dataset A is 

the main dataset with all the object sizes and Dataset B is the dataset without 

the medium object. Furthermore, two feature sets are also defined: the set with 

all three features (x-wrist, y-wrist, aperture) and the set with only the aperture 

feature. The training and testing of the InfoGAIL algorithm is repeated four 

times, one for each feature set-dataset combination: 

• All features – all object sizes 

• Only aperture – all object sizes 

• All features – small, large objects (without medium) 

• Only aperture – small, large objects (without medium) 

5.2 Training Results 

At first, the training losses of the BC method are demonstrated. The BC training 

mean squared error for all object sizes is presented in Figure 5.1. 
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Figure 5.1: Training (blue line) and validation (orange line) BC mean squared 

error loss (y-axis) for 100 epochs (x axis) and for all object sizes. (Left) The loss 

when all features are exploited, (Right) The loss when only the aperture feature 

is exploited 

The shaded area around the losses is the standard deviation of the training loss 

per epoch. The loss drops close to zero which indicates that the network learns 

the expert distribution. It is obvious that the standard deviation is larger on the 

right plot (aperture only), but the overall range of the aperture values is larger 

compared to the wrist coordinate values. This may result in bigger loss 

fluctuations. The loss output is quite expected, especially when exploiting all the 

features (left plot), due to the accuracy of the cross-validation that yields the 

best version of the network loss, which is 0.1175. 

Figure 5.2 shows the training BC losses for small and large object sizes (without 

the medium-sized cube). 

 

Figure 5.2: Training (blue line) and validation (orange line) BC mean squared error loss 
(y-axis) for 100 epochs (x axis), without the medium-sized cube. (Left) The loss when 
all features are exploited, (Right) The loss when only the aperture feature is exploited 
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These losses exhibit identical behaviour to the BC training with all three object 

sizes. Here, the standard deviation around the losses is smaller, meaning that 

the certainty for the model’s prediction is increased. 

Then, Figure 5.3 presents the training loss values of the discriminator, main 

posterior and target posterior networks for all object sizes. 

 

Figure 5.3: Discriminator (blue), main posterior (orange) and target posterior (green) 
network training losses (y-axis), for 10000 episodes (x-axis) and for all object sizes. 

(Left) The loss when all features are exploited, (Right) The loss when only the aperture 
feature is exploited 

In both left and right plots, the discriminator loss starts to stabilize around 0.5 

while the posterior loss continues to drop. This indicates that the costs assigned 

by the discriminator model on the state-action pairs generated by the generator 

(policy) network and on the expert state-action pairs are adequately balanced. 

The right plot for the aperture feature only shows better discriminator loss 

stabilization than the left plot for all the features. This outcome is better because 

the cost that is assigned by the discriminator on the generated state-action pairs 

approaches 1 (big cost) and the cost for the expert state-action pairs approaches 

0 (small cost). Thus, the discriminator loss function yields a loss value that is 

close to the average value (0.5). 

Furthermore, the target posterior network validation loss is almost identical to 

the main posterior network training loss. This means that the posterior model 

learns to generalize and does not overfit. Lastly, the loss values of the posterior 

networks (main and target) are both close to zero near the final episodes of 

training, meaning that the posterior model learns to distinguish between the 

object sizes that match the respective generated state-action pairs and the 

modes, which represent the object sizes predicted by the posterior model. 
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Next the discriminator and posterior loss values for only the small and the large 

object sizes, are presented in Figure 5.4. 

 

Figure 5.4: Discriminator (blue), main posterior (orange) and target posterior (green) 
network training losses (y-axis), for 10000 episodes (x-axis), without the medium-sized 

cube. (Left) The loss when all features are exploited, (Right) The loss when only the 
aperture feature is exploited 

The explanation for these plots is similar to the respective loss plots when 

exploiting all the object sizes in Figure 5.3. Specifically, the loss plots of Figure 

5.4 show that the posterior model learns to predict the object size faster, since 

the loss reaches 0 at the end of the training. Furthermore, observing the 

discriminator loss values after the 2000th episode, the loss value for only the 

aperture feature (right plot) seems to stabilize faster than when using all the 

three features. 

Figure 5.5 depicts the mean aggregated surrogate reward of TRPO when 

exploiting all object sizes. The mean aggregated surrogate reward is calculated 

by summing the surrogate rewards of the state-action pairs of each generated 

trajectory and finding their mean value. 
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Figure 5.5: Mean aggregated TRPO surrogate reward (y-axis) for the generated 
trajectories of each episode (x-axis) for all object sizes, when all features are exploited 

(left) and when only the aperture feature is exploited (right) 

Since the surrogate reward depends on the outputs of the discriminator and the 

posterior, it is expected that the surrogate reward value approaches zero, during 

the final training episodes. This value concerns the generated state-action pairs, 

so the trained discriminator is supposed to assign rewards close to 1 and the 

trained posterior assigns probabilities close to 1 for the object size that is 

thought to be the same as of the expert trajectory. As a result, the output of each 

logarithm function of the surrogate reward function approaches zero. The 

general case for zero surrogate reward value is when 

log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷(𝑠, 𝑎)) = ∑ log 𝑄(𝑠, 𝑎) ∗ 𝑐𝑖
𝑚
𝑖=1 , 

which indicates that the reward of the discriminator is equal to the predicted 

probability for the corresponding expert object size. Lastly, negative values of 

the surrogate reward function imply big discriminator rewards and small 

posterior probabilities, while positive values imply small discriminator rewards 

and large posterior probabilities. The plots above show that there are potentially 

big rewards for small probabilities at the early stages of training and the 

surrogate value gradually increases. Thus, if the system learns the expert 

distribution, then the zero mean aggregated surrogate reward is explained by 

very small value differences between the posterior and discriminator outputs, 

which are both close to 1. 

Figure 5.6 shows the surrogate reward loss plots when exploiting only the small 

and large object sizes. 
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Figure 5.6: Mean aggregated TRPO surrogate reward (y-axis) for the generated 
trajectories of each episode (x-axis) without the medium-sized cube, when all features 

are exploited (left) and when only the aperture feature is exploited (right) 

The surrogate reward on the right exhibits a larger value during the end of the 

training than the surrogate reward on the left. The plot on the right implies that 

the predicted probability of the posterior is larger than the discriminator 

reward, which explains the large mean surrogate reward for TRPO. The same 

explanation applies to the left mean aggregated surrogate reward, but here the 

difference between the output values of the two networks is smaller. 

The value network loss for all object sizes is depicted in Figure 5.7. The loss 

function is calculated between the surrogate reward and the respective 

advantage values of the generated state-action pairs. The plots show 

stabilization around zero for both feature sets. 

 

Figure 5.7: Training value network loss values (y-axis) for 10000 episodes (x-axis) and 
for all object sizes, when all features are exploited (left) and when only the aperture 

feature is exploited (right) 
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Figure 5.8: Training value network loss values (y-axis) for 10000 episodes (x-axis) and 
for small and large object sizes only, when all features are exploited (left) and when 

only the aperture feature is exploited (right) 

Figure 5.8 shows the value network loss for small and large object sizes. 

Here, the behaviour seems to be the same as the loss values in Figure 5.7, except 

that the variance of the loss values when exploiting only the aperture feature is 

smaller. 

Finally, the surrogate TRPO loss presented in Figure 5.9 converges close to zero 

with almost identical variance for both plots. This fact implies that the 

generated policies do not change very much throughout the course of episodes. 

 

Figure 5.9: Surrogate TRPO loss (y-axis) for 10000 episodes (x-axis) and for all object 
sizes, when all features are exploited (left) and when only the aperture feature is 

exploited (right) 

Figure 5.10 displays the respective surrogate loss plots, but without the 

medium-sized object. These plots exhibit the same behaviour as those in Figure 

5.9. 
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Figure 5.10: Surrogate TRPO loss (y-axis) for 10000 episodes (x-axis) without the 
medium-sized cube, when all features are exploited (left) and when only the aperture 

feature is exploited (right) 

5.3 Testing Results 

The InfoGAIL testing is adjusted depending on the question to be answered, 

defined in Section 1. 

Firstly, all the expert state-action pairs are fed to the posterior model in order to 

determine whether it can distinguish the expert from the generated distribution. 

The actual object size for each expert pair is compared with the predicted size. 

Table 5.1 shows the results when exploiting all object sizes. In these tables, All 

refers to the InfoGail execution when exploiting all three features and Aper 

refers to the execution when exploiting only the aperture feature. Support 

denotes the total number of the state-action pairs for each object size 

Table 5.1: Posterior accuracy over the training expert action pairs, for all object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.56 0.47 0.50 0.63 0.53 0.54 6271 6263 

Medium 0.37 0.35 0.20 0.15 0.26 0.21 6136 6211 

Large 0.42 0.42 0.67 0.53 0.52 0.47 5876 5812 

Accuracy     0.46 0.43 18283 18286 

Macro av. 0.45 0.41 0.46 0.43 0.44 0.41 18283 18286 

 

The accuracy metrics present low scores, especially for the medium-sized object.  
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Table 5.2: Posterior accuracy over the training expert action pairs, without the 
medium-sized cube 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.69 0.65 0.69 0.67 0.69 0.66 6234 6227 

Large 0.67 0.63 0.68 0.61 0.67 0.62 5879 5812 

Accuracy     0.68 0.64 12113 12039 

Macro av. 0.68 0.64 0.68 0.64 0.68 0.64 12113 12039 

 

Table 5.2 shows the results when exploiting the small and large object sizes. 

This case demonstrates higher accuracy (68%) compared to the InfoGAIL 

execution with all the object sizes (46%). 

Now, the accuracy of the posterior model for identifying the object size given an 

generated trajectory is examined. The approach for this answer is based on 

comparing the actual object sizes with the predicted object sizes. An object size 

that corresponds to the highest probability in the posterior model’s softmax 

output, given a state-action pair, is considered as the predicted object size. The 

predicted object size �̂� corresponding to the whole generated trajectory (and not 

only to distinct state-action pairs) follows the formula 

�̂� = 𝑎𝑟𝑔 max
 

[�̅�(𝑠𝑚𝑎𝑙𝑙), �̅�(𝑚𝑒𝑑𝑖𝑢𝑚), �̅�(𝑙𝑎𝑟𝑔𝑒)]. 

�̅� denotes the mean posterior probability of an object size for all the state-action 

pairs corresponding to a trajectory. It follows the formula 

�̅�(𝑐) =
∑ 𝑄(𝑐|𝑠𝑖,𝑎𝑖)𝑛

𝑖=1

𝑛
, 

where c is the object size (one-hot vector) and 𝑄(𝑐|𝑠, 𝑎) is the posterior 

probability for c, given a state-action pair (s, a). 𝑛 denotes the number of the 

generated state-action pairs that constitute the trajectory. 

The generated trajectories are produced by selecting initial states from the 

initial state set 𝜌0 and, from each one, three trajectories are generated, one per 

object size (or two trajectories, depending on whether Dataset A or Dataset B is 

exploited). The mean probability �̅� is calculated for the generated trajectory that 

is predicted to be closer to the respective expert trajectory (initiating from the 
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same starting point as the generated). The Root Mean Squared Error (RMSE) 

between the expert and the generated actions of the respective trajectories is 

calculated to determine the distance between the expert and generated 

trajectories. The generated trajectory with the smallest RMSE value is the 

closest to the expert. 

If c denotes the actual object size of the expert trajectory, the comparison occurs 

between 𝑐 and �̂�. The metrics for comparing these two quantities are Precision, 

Recall, F1-score, for every object size, and Accuracy and Macro Average, which 

express accumulated information. Precision and Recall are expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
, 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
. 

𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 stand for true positive, false positive and false negative, 

respectively. The true/false positive/negative values are defined by the following 

expressions: 

• 𝑇𝑃𝑖: number of occurrences where 𝑐 = �̂� = 𝑖 

• 𝐹𝑃𝑖: number of occurrences where 𝑐 = 𝑗 and �̂� = 𝑖, ∀𝑗 ≠ 𝑖 

• 𝐹𝑁𝑖: number of occurrences where 𝑐 = 𝑖 and �̂� = 𝑗, ∀𝑗 ≠ 𝑖, 

where 𝑖 denotes the index of the object size list ( [𝑆𝑚𝑎𝑙𝑙, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑎𝑟𝑔𝑒] ). 

F1-score is calculated by 

𝐹1𝑖 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖∗𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖
. 

Accuracy is expressed as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖𝑖

∑ (𝑇𝑃𝑖+𝐹𝑃𝑖)𝑖
, 

while Macro Average is expressed as 

𝑀𝑎𝑐𝑟𝑜 𝑎𝑣. =
∑ 𝐹1𝑖

𝑚
𝑖=1

𝑚
, 

where m stands for the length of the object size list. 

Table 5.3 to Table 5.7 show the results for the trajectories starting from 0%, as 

well as for the trajectories from 20% to 80% of expert trajectories, and for all 

three object sizes. In these tables, All refers to the InfoGail execution when 

exploiting all three features and Aper refers to the execution when exploiting 
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only the aperture feature. Here, Support denotes the number of the trajectories 

in the testing dataset. 

Table 5.3: 0% of the trajectory, for all three object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.86 0.59 0.40 0.81 0.54 0.68 48 48 

Medium 0.33 0.41 0.46 0.35 0.39 0.38 48 48 

Large 0.54 0.65 0.62 0.50 0.58 0.56 48 48 

Accuracy     0.49 0.56 144 144 

Macro av. 0.58 0.55 0.49 0.56 0.50 0.54 144 144 

 

Table 5.4: 20% of the trajectory, for all three object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.74 0.68 0.29 0.75 0.42 0.71 48 48 

Medium 0.28 0.41 0.38 0.33 0.32 0.37 48 48 

Large 0.54 0.67 0.69 0.73 0.61 0.70 48 48 

Accuracy     0.45 0.60 144 144 

Macro av. 0.52 0.59 0.45 0.60 0.45 0.59 144 144 
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Table 5.5: 40% of the trajectory, for all three object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.77 0.70 0.35 0.83 0.49 0.76 48 48 

Medium 0.26 0.47 0.23 0.33 0.24 0.39 48 48 

Large 0.52 0.70 0.85 0.77 0.65 0.73 48 48 

Accuracy     0.48 0.65 144 144 

Macro av. 0.52 0.62 0.48 0.65 0.46 0.63 144 144 

 

Table 5.6: 60% of the trajectory, for all three object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.84 0.68 0.56 0.88 0.68 0.76 48 48 

Medium 0.33 0.48 0.25 0.29 0.29 0.36 48 48 

Large 0.57 0.72 0.90 0.79 0.69 0.75 48 48 

Accuracy     0.57 0.65 144 144 

Macro av. 0.58 0.63 0.57 0.65 0.55 0.63 144 144 

 

Table 5.7: 80% of the trajectory, for all three object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.73 0.56 0.69 0.92 0.71 0.70 48 48 

Medium 0.41 0.40 0.38 0.25 0.39 0.31 48 48 

Large 0.55 0.72 0.62 0.54 0.58 0.62 48 48 

Accuracy     0.56 0.57 144 144 

Macro av. 0.56 0.56 0.56 0.57 0.56 0.54 144 144 
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Observing the tables above, both columns (All and Aper) demonstrate almost 

equal average accuracy that reaches approximately 60%. As mentioned in 

Section 4.2, a significant reason for the low accuracy is due to the trajectories for 

medium-sized object, since it exhibits the lowest scores. Compared to the 

metrics for the expert state-action pairs in Table 5.1, these results demonstrate 

similar score values. 

The tables below (Table 5.8 to Table 5.12) show the accuracy metrics when 

exploiting only the small and large object size. 

Table 5.8: 0% of the trajectory, for small and large object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.79 0.77 1.00 0.96 0.88 0.85 48 48 

Large 1.00 0.94 0.73 0.71 0.84 0.81 48 48 

Accuracy     0.86 0.83 96 96 

Macro av. 0.89 0.86 0.86 0.83 0.86 0.83 96 96 

 

Table 5.9: 20% of the trajectory, for small and large object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.81 0.83 0.96 0.90 0.88 0.86 48 48 

Large 0.95 0.89 0.77 0.81 0.85 0.85 48 48 

Accuracy     0.86 0.85 96 96 

Macro av. 0.88 0.86 0.86 0.85 0.86 0.85 96 96 
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Table 5.10: 40% of the trajectory, for small and large object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.90 0.88 0.92 0. 88 0.91 0. 88 48 48 

Large 0.91 0.88 0.90 0. 88 0.91 0. 88 48 48 

Accuracy     0.91 0. 88 96 96 

Macro av. 0.91 0.88 0.91 0. 88 0.91 0. 88 96 96 

 

Table 5.11: 60% of the trajectory, for small and large object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.86 0.83 0.90 0.94 0.88 0.88 48 48 

Large 0.89 0.93 0.85 0.81 0.87 0.87 48 48 

Accuracy     0.88 0.88 96 96 

Macro av. 0.88 0.88 0.88 0.88 0.87 0.87 96 96 

 

Table 5.12: 80% of the trajectory, for small and large object sizes 

 Precision Recall F1-score Support 

 All Aper. All Aper. All Aper. All Aper. 

Small 0.72 0.67 0.85 0.96 0.78 0.79 48 48 

Large 0.82 0.93 0.67 0.52 0.74 0.67 48 48 

Accuracy     0.76 0.74 96 96 

Macro av. 0.77 0.80 0.76 0.74 0.76 0.73 96 96 

 

By removing the medium sized cube and keeping the rest of the configuration as 

is, it can be observed that the evaluation metrics have been significantly 

improved. The accuracy lies between 76% and 91%, which means that the 

posterior network can confidently predict most of the object sizes of the 
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generated state-action pairs. However, the accuracy is higher compared to the 

case when the posterior model is fed with the expert state-action pairs (86%) 

and without the medium-sized object, in Table 5.2. This means that the 

generated state-action pairs are not quite the same as the expert ones. 
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6 Conclusions 

In this thesis, the foundation of Reinforcement Learning and Imitation 

Learning has been discussed, in order to explore the InfoGAIL algorithm in a 

real-world human behaviour dataset that describes object size prediction from 

hand trajectories towards specific objects. 

The implementation of the algorithm is designed to answer the major question 

whether the algorithm can effectively predict the right object size from various 

stages of the hand trajectory, while the minor question denotes whether the 

generated trajectories match these of the expert, i.e., how well the agent imitates 

the expert action in each state. 

Below we attempt to provide answers to the questions poses in the introductory 

section of this thesis. 

1. Can the model identify the object size by observing the hand 

trajectories? 

The results indicated that the aperture feature has the greatest impact on the 

performance and there is a common outcome for both when exploiting all 

features (wrist-x, wrist-y and aperture) and the aperture only. However, the 

separability of expert trajectories is very important, since the results showed 

greater accuracy when the medium sized object was removed, which blurred the 

line between the trajectories regarding the two other object sizes (small and 

large cube). Generally, the outcome showed that the posterior network can 

adequately predict the right object mode when provided with the state-action 

pairs of the generated trajectories as input. 

2. What is the accuracy of identifying the object size? 

The best accuracy value reached 91% when the generated trajectory initiates 

from the point at 40% completion of the respective expert trajectory, and when 

exploiting only the small and large cubes and all features (wrist coordinates and 

aperture). Concerning the case when exploiting all the object sizes (small, 

medium and large), the best accuracy value reached 65% when the generated 
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trajectory starts from the point at 40% and 60% completion of the respective 

expert trajectory. This latter accuracy value is lower since the medium-sized 

object blurs the separability of the other two classes and the model did not 

perform adequately. 

3. Can the model mimic hand trajectories, given the object size? 

The results demonstrated that the model yielded an accuracy of approximately 

70% when fed with the expert state-action pairs. Since the posterior model is 

trained with generated state-action pairs, the accuracy for the expert ones 

should be close to the accuracy mentioned in the answer to question 2. In that 

case, the generated trajectories would be closer to the expert. 

In future work, this question can be highlighted in order to further explore and 

improve the action generation of the policy network so as the distribution of 

states reached by the agent to be closer to the expert distribution. This step may 

also aid to the improvement of the accuracy of the posterior network when 

giving the training state-action pairs as input. The potential steps that can be 

addressed in order to further clarify the issue are the following: 

• Execute the InfoGAIL algorithm for the trajectories of each participant 

separately in order to observe and compare the result groups regarding 

the expert and generated trajectories. 

• Experiment with different surrogate reward functions that favour specific 

participants in order to examine the relation between the nature of the 

generated trajectories and the crafted reward, with respect to the expert 

trajectories. 

• Execute the InfoGAIL algorithm experimenting with different values of 

Gaussian standard deviation on the trajectory generation step, in order to 

examine and compare the expert state-action pairs with the generated 

state-action pairs. 
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