

Prediction of Human Behaviour using

Imitation Learning

by

Matthaios Zidianakis

MTN2008

Submitted

in partial fulfilment of the requirements for the degree of

Master of Artificial Intelligence

at the

UNIVERSITY OF PIRAEUS

September 2022

University of Piraeus, NCSR “Demokritos”. All rights reserved.

Author .

Matthaios Zidianakis

II-MSc “Artificial Intelligence”

September 15, 2022

Certified by.

George Vouros

Professor,

University of

Piraeus

Thesis Supervisor

Certified by.

Maria Dagioglou

Researcher, NCSR

Demokritos

Member of

Examination

Committee

 Certified by.

George Petasis

Researcher, NCSR

Demokritos

Member of

Examination

Committee

3

Prediction of Human Behaviour using Imitation Learning

By

Matthaios Zidianakis

MTN2008

Submitted to the II-MSc “Artificial Intelligence” on September 15, 2022, in
partial fulfilment of the

requirements for the MSc degree

Summary

This thesis explores the use of the Info-GAIL algorithm, which is based on the generative

adversarial imitation learning framework to model modalities of human behaviour

towards performing tasks. The goal of this thesis is to use behaviour models learnt

through Info-GAIL to predict the modality of executing a specific “object grasping” task.

This is done through learning sub-task policies from unsegmented demonstrations of

tasks. Specifically, this thesis uses a dataset with trajectories regarding human behaviour

towards grasping objects of different sizes in specific. These are pre-processed to correct

imperfections and exploited to extract features of trajectory states that are used during

training. Then, the implemented method is tested and evaluated utilizing the extracted

features. The thesis concludes with a thorough presentation of results and proposals for

further work towards using multi-modal imitation learning to predict human behaviour

in executing tasks.

Αναγνώριση Ανθρώπινης Συμπεριφοράς μέσω Μιμητικής

Μάθησης

Από

Ματθαίος Ζηδιανάκης

MTN2008

Υποβλήθηκε στο ΔΠΜΣ «Τεχνητή Νοημοσύνη» την 15 Σεπτεμβρίου 2022 ως
υποχρέωση για την λήψη Μεταπτυχιακού Διπλώματος Σπουδών

Περίληψη

Στην παρούσα εργασία μελετάται η χρήση ενός αλγορίθμου μιμητικής μάθησης ώστε να

μοντελοποιηθεί η ανθρώπινη συμπεριφορά για την επίτευξη μιας εργασίας με

διαφοροποιημένους στόχους. Στόχος είναι να εξεταστεί η ικανότητα των μοντέλων που

δημιουργούνται, στην αναγνώριση του στόχου μιας επιτελούμενης εργασίας, σε

πραγματικές συνθήκες. Αυτό επιτυγχάνεται μέσω της μάθησης πολιτικών από μη

τμηματοποιημένες επιδείξεις εκτέλεσης εργασιών. Ειδικότερα, η διπλωματική εξετάζει

διάφορες τεχνικές μιμητικής μάθησης , υποστηρίζοντας τη χρήση του αλγορίθμου

InfoGAIL που βασίζεται στον αλγόριθμο GAIL, και που έχει τη δυνατότητα συσχέτισης

τρόπου συμπεριφοράς και επιτέλεσης εργασίας. Ο αλγόριθμος μελετάται στα πλαίσια

αναγνώρισης συμπεριφοράς «αρπαγής» αντικειμένων διαφορετικών μεγεθών.

Παρέχονται δεδομένα που αφορούν ανθρώπινη συμπεριφορά σε συγκεκριμένες

συνθήκες για την αρπαγή αντικειμένων, από τα οποία εξάγονται χαρακτηριστικά και

χρησιμοποιούνται για την εκπαίδευση και αποτίμηση της προτεινόμενης μεθόδου. Η

διπλωματική παρουσιάζει τα αποτελέσματα και ευρήματα, και προτείνει μελλοντικές

δράσεις για την χρήση μεθόδων μιμητικής μάθησης για την αναγνώριση συμπεριφοράς.

 -i-

Acknowledgments

I would like to gratefully thank my supervising Professor George Vouros and

his PhD student Christos Spatharis for their immense help, support and

patience throughout the development of my MSc thesis, both in theoretical and

technical matters. This was an excellent opportunity that I was given by my

Professor who introduced such a cutting-edge research topic to me and shared

his knowledge and guidance that helped me broaden my horizons towards an

amazing field of research and practice on new and thrilling subjects.

I would also like to give my thanks and regards to the rest of the Committee;

the Researchers Maria Dagioglou and George Petasis for all their comments

and questions that helped me try and proceed one great step further at a time.

Additionally, I would like to thank my BSc Professor Panagiotis Stamatopoulos

and the Researcher Stasinos Konstantopoulos who provided recommendation

letters for my entry to the MSc programme.

Last but not least, I would like to thank my family, my friends and, especially,

Olga, who were there supporting me 24/7.

Any opinions, findings, conclusions or recommendations expressed in this

material are those of the author and do not necessarily reflect the views of the

view of University of Piraeus and Inst. of Informatics and Telecom. of NCSR

“Demokritos”.

 -3-

Table of Contents

TABLE OF CONTENTS ..3

LIST OF FIGURES... 5

LIST OF TABLES ... 8

1 INTRODUCTION .. 9

2 PRELIMINARIES .. 13

2.1 REINFORCEMENT LEARNING .. 13

2.1.1 Process Outline ... 13

2.1.2 Markov Decision Process ... 14

2.1.3 Deep Reinforcement Learning ... 15

2.2 IMITATION LEARNING ... 18

2.2.1 Behavioural Cloning .. 18

2.2.2 Inverse Reinforcement Learning .. 19

2.2.3 Imitation Learning: Algorithms and State of the art 20

3 INFO GAIL ... 25

3.1 INFOGAIL OUTLINE .. 25

3.2 DETAILS ON INFOGAIL.. 26

4 PREDICTING HUMAN BEHAVIOUR .. 29

4.1 OVERVIEW .. 29

4.2 HUMAN BEHAVIOUR DATASET ... 29

4.3 PROBLEM FORMULATION: MDP .. 42

4.4 INFOGAIL IMPLEMENTATION ... 43

5 RESULTS .. 47

5.1 OVERVIEW .. 47

5.2 TRAINING RESULTS ... 47

5.3 TESTING RESULTS .. 54

-4-

6 CONCLUSIONS ... 63

7 REFERENCES .. 65

 -5-

 List of Figures

FIGURE 1.1: ML/DL MAIN CATEGORIES AND METHODS ... 9

FIGURE 2.1: THE ITERATIVE INTERACTION BETWEEN THE AGENT AND THE ENVIRONMENT TO FORM A

TRAJECTORY AND SOLVE SEQUENTIAL PROBLEMS. .. 14

FIGURE 2.2: THE DEEP REINFORCEMENT LEARNING POLICY MODEL THAT TRAINS A NETWORK WITH

PARAMETERS Θ IN ORDER TO RECOVER EACH ACTION FROM STATE INPUTS 16

FIGURE 2.3: DEEP LEARNING CHART WITH THE EXTENDED RL FEATURES ... 17

FIGURE 2.4: TEMPLATE ALGORITHM FOR ESTIMATING A REWARD FUNCTION USING IRL (SOURCE: [17])

 .. 19

FIGURE 2.5: IRL OBJECTIVE FUNCTION OPTIMIZATION METHODS .. 20

FIGURE 2.6: GAIL ALGORITHM (SOURCE: [15]) ... 23

FIGURE 3.1: COMPARISON BETWEEN INFOGAIL AND OTHER IL ALGORITHMS FOR THE SYNTHETIC

EXPERIMENT (SOURCE: [1]) ... 25

FIGURE 3.2: RESULTS OF INFOGAIL FOR CERTAIN EPOCHS AND COMPARED TO GAIL, FOR THE VISUAL

DEMONSTRATION EXPERIMENTS (SOURCE: [1]) .. 26

FIGURE 3.3: INFOGAIL ALGORITHM (SOURCE: [1]) ... 28

FIGURE 4.1: (LEFT) OP RIGHT HAND JOINT DATA, (RIGHT) OP FULL BODY JOINT DATA 30

FIGURE 4.2: FRAME DISTRIBUTION FOR EACH MOVEMENT (SOURCE: [2]) .. 31

FIGURE 4.3: CONSECUTIVE TIMESTAMP DIFFERENCES (IN SECONDS) BETWEEN FRAMES FOR ALL THE

TRAJECTORIES .. 32

FIGURE 4.4: EXAMPLE FRAME WITH HAND POINTS AND THE WRIST POINT REACHING FOR A LARGE

OBJECT ... 32

FIGURE 4.5: APERTURE AND Y-WRIST ENDPOINT DISTRIBUTION FOR THE TRAJECTORIES OF DATASET A.

EACH DISTRIBUTION (BOXPLOT) REFERS TO THE RELATIVE OBJECT SIZE (S=SMALL, M=MEDIUM,

L=LARGE). THE ORANGE LINE REPRESENTS THE MEAN VALUE OF EACH DISTRIBUTION, AND THE

WHITE CIRCLES ARE THE OUTLIERS ... 34

FIGURE 4.6: THE SCATTER PLOTS OF ALL THE APERTURE VALUES OF THE DATASET WITH RESPECT TO

FIVE HAND TRAJECTORY INTERVALS (20%, 40%, 60%, 80%, 100%), WHICH REFER TO THE

TRAJECTORY COMPLETION PERCENTAGE FROM THE INITIAL FRAME OF EACH TRAJECTORY, FOR THE

8 PARTICIPANTS AND EACH OBJECT SIZE ... 35

FIGURE 4.7: CONFIDENCE PROBABILITY DISTRIBUTION FOR EACH KEY POINT (WRIST, THUMB AND

INDEX) .. 36

FIGURE 4.8: APERTURE BLANK (NAN) PERCENTAGE IN EACH TRAJECTORY FOR EACH OBJECT SIZE. EACH

BAR PLOT CORRESPONDS TO ONE OF THE THREE OBJECT SIZES. THE X-AXIS REPRESENTS THE

INDEX OF THE TOTAL NUMBER OF TRAJECTORIES FOR THE CORRESPONDING OBJECT SIZE. 37

-6-

FIGURE 4.9: ENDING APERTURE VALUE DISTRIBUTION FOR THE FXD PARTICIPANT FOR EVERY OBJECT

SIZE. THERE IS NO AVAILABLE VALUE FOR THE LARGE OBJECT. .. 39

FIGURE 4.10: DATASET A - INTERPOLATED APERTURE VALUE SCATTERPLOTS FOR THE 8 PARTICIPANTS

AND EACH OBJECT SIZE. THE ‘+’ SYMBOLS REPRESENT THE INTERPOLATED APERTURE VALUES 40

FIGURE 4.11: DATASET B - INTERPOLATED APERTURE VALUE GRAPHS FOR THE 8 PARTICIPANTS,

WITHOUT MEDIUM SIZE OBJECTS ... 41

FIGURE 4.12: PARTIAL SUB-TRAJECTORIES FROM EXPERT TRAJECTORY STATES. 0%, 20%, 40%, 60%,

80% ARE THE INITIAL STATES OF THE EXPERT TRAJECTORIES .. 43

FIGURE 4.13: THE DEEP LEARNING NETWORKS THAT CONSTITUTE THE INFOGAIL MODELS 44

FIGURE 5.1: TRAINING (BLUE LINE) AND VALIDATION (ORANGE LINE) BC MEAN SQUARED ERROR LOSS

(Y-AXIS) FOR 100 EPOCHS (X AXIS) AND FOR ALL OBJECT SIZES. (LEFT) THE LOSS WHEN ALL

FEATURES ARE EXPLOITED, (RIGHT) THE LOSS WHEN ONLY THE APERTURE FEATURE IS EXPLOITED

 .. 48

FIGURE 5.2: TRAINING (BLUE LINE) AND VALIDATION (ORANGE LINE) BC MEAN SQUARED ERROR LOSS

(Y-AXIS) FOR 100 EPOCHS (X AXIS), WITHOUT THE MEDIUM-SIZED CUBE. (LEFT) THE LOSS WHEN

ALL FEATURES ARE EXPLOITED, (RIGHT) THE LOSS WHEN ONLY THE APERTURE FEATURE IS

EXPLOITED .. 48

FIGURE 5.3: DISCRIMINATOR (BLUE), MAIN POSTERIOR (ORANGE) AND TARGET POSTERIOR (GREEN)

NETWORK TRAINING LOSSES (Y-AXIS), FOR 10000 EPISODES (X-AXIS) AND FOR ALL OBJECT SIZES.

(LEFT) THE LOSS WHEN ALL FEATURES ARE EXPLOITED, (RIGHT) THE LOSS WHEN ONLY THE

APERTURE FEATURE IS EXPLOITED... 49

FIGURE 5.4: DISCRIMINATOR (BLUE), MAIN POSTERIOR (ORANGE) AND TARGET POSTERIOR (GREEN)

NETWORK TRAINING LOSSES (Y-AXIS), FOR 10000 EPISODES (X-AXIS), WITHOUT THE MEDIUM-

SIZED CUBE. (LEFT) THE LOSS WHEN ALL FEATURES ARE EXPLOITED, (RIGHT) THE LOSS WHEN

ONLY THE APERTURE FEATURE IS EXPLOITED .. 50

FIGURE 5.5: MEAN AGGREGATED TRPO SURROGATE REWARD (Y-AXIS) FOR THE GENERATED

TRAJECTORIES OF EACH EPISODE (X-AXIS) FOR ALL OBJECT SIZES, WHEN ALL FEATURES ARE

EXPLOITED (LEFT) AND WHEN ONLY THE APERTURE FEATURE IS EXPLOITED (RIGHT) 51

FIGURE 5.6: MEAN AGGREGATED TRPO SURROGATE REWARD (Y-AXIS) FOR THE GENERATED

TRAJECTORIES OF EACH EPISODE (X-AXIS) WITHOUT THE MEDIUM-SIZED CUBE, WHEN ALL

FEATURES ARE EXPLOITED (LEFT) AND WHEN ONLY THE APERTURE FEATURE IS EXPLOITED

(RIGHT) ... 52

FIGURE 5.7: TRAINING VALUE NETWORK LOSS VALUES (Y-AXIS) FOR 10000 EPISODES (X-AXIS) AND FOR

ALL OBJECT SIZES, WHEN ALL FEATURES ARE EXPLOITED (LEFT) AND WHEN ONLY THE APERTURE

FEATURE IS EXPLOITED (RIGHT) .. 52

FIGURE 5.8: TRAINING VALUE NETWORK LOSS VALUES (Y-AXIS) FOR 10000 EPISODES (X-AXIS) AND FOR

SMALL AND LARGE OBJECT SIZES ONLY, WHEN ALL FEATURES ARE EXPLOITED (LEFT) AND WHEN

ONLY THE APERTURE FEATURE IS EXPLOITED (RIGHT) .. 53

 -7-

FIGURE 5.9: SURROGATE TRPO LOSS (Y-AXIS) FOR 10000 EPISODES (X-AXIS) AND FOR ALL OBJECT

SIZES, WHEN ALL FEATURES ARE EXPLOITED (LEFT) AND WHEN ONLY THE APERTURE FEATURE IS

EXPLOITED (RIGHT) ... 53

FIGURE 5.10: SURROGATE TRPO LOSS (Y-AXIS) FOR 10000 EPISODES (X-AXIS) WITHOUT THE MEDIUM-

SIZED CUBE, WHEN ALL FEATURES ARE EXPLOITED (LEFT) AND WHEN ONLY THE APERTURE

FEATURE IS EXPLOITED (RIGHT) .. 54

-8-

List of Tables

TABLE 4.1: OP KEY POINT LABELS ... 30

TABLE 4.2: CSV FILE LAYOUT .. 33

TABLE 4.3: EXAMPLE FRAME AFTER THUMB VALUE REMOVAL ... 37

TABLE 4.4: LOSS FUNCTIONS AND LEARNING RATES FOR THE NEURAL NETWORKS USED IN INFOGAIL . 45

TABLE 4.5: TRAINING INFORMATION FOR THE BC METHOD ON THE GENERATOR NETWORK 46

TABLE 4.6: HYPERPARAMETERS OF INFOGAIL .. 46

TABLE 5.1: POSTERIOR ACCURACY OVER THE TRAINING EXPERT ACTION PAIRS, FOR ALL OBJECT SIZES . 54

TABLE 5.2: POSTERIOR ACCURACY OVER THE TRAINING EXPERT ACTION PAIRS, WITHOUT THE MEDIUM-

SIZED CUBE ... 55

TABLE 5.3: 0% OF THE TRAJECTORY, FOR ALL THREE OBJECT SIZES .. 57

TABLE 5.4: 20% OF THE TRAJECTORY, FOR ALL THREE OBJECT SIZES .. 57

TABLE 5.5: 40% OF THE TRAJECTORY, FOR ALL THREE OBJECT SIZES .. 58

TABLE 5.6: 60% OF THE TRAJECTORY, FOR ALL THREE OBJECT SIZES .. 58

TABLE 5.7: 80% OF THE TRAJECTORY, FOR ALL THREE OBJECT SIZES .. 58

TABLE 5.8: 0% OF THE TRAJECTORY, FOR SMALL AND LARGE OBJECT SIZES .. 59

TABLE 5.9: 20% OF THE TRAJECTORY, FOR SMALL AND LARGE OBJECT SIZES ... 59

TABLE 5.10: 40% OF THE TRAJECTORY, FOR SMALL AND LARGE OBJECT SIZES .. 60

TABLE 5.11: 60% OF THE TRAJECTORY, FOR SMALL AND LARGE OBJECT SIZES .. 60

TABLE 5.12: 80% OF THE TRAJECTORY, FOR SMALL AND LARGE OBJECT SIZES .. 60

 -9-

1 Introduction

Machine Learning (ML) and Deep Learning (DL) pave the way towards building

models that approximate high dimensional variable distributions that are

difficult to be approximated by other means. Supervised ML methods rely on

the ability of the model to map the labels of a dataset to the correct examples,

while unsupervised methods are ideal for unlabelled datasets, and they aim to

discover patterns inside the data. Figure 1.1 shows the broad groups of ML

methods.

Figure 1.1: ML/DL main categories and methods

The ML methods’ categories that are studied in this thesis is Reinforcement

Learning and Imitation Learning, which are primarily studied in the context of

human behaviour recognition and prediction.

Imitation Learning is ideal for mimicking behaviour of a subject that is

considered an expert to a domain and holds valuable information on the

sequence of actions that are performed towards achieving a goal / performing a

task.

Human behaviour describes the human activities and motions that affect their

surroundings. One of the most common activities that humans perform in their

everyday life is grabbing different objects that maintain particular properties.

Object size is one of the main object properties that affect the course of that

activity.

The main topic for this thesis is object size prediction based on imitating human

hand trajectories towards the object, expressed by noisy human body joint data,

-10-

by implementing and evaluating the InfoGAIL [1] algorithm. The problem

belongs to a subgroup of human behaviour prediction problems where human

hands aim to grasp an object that is placed at a specific distance from the

subject (human), so the primary viewpoint for the problem is the human

intention that is hidden in the trajectory of the hand. For example, the shape of

the hand between reaching a small and a large item may differ. In the settings

studied in this thesis, there are totally three objects of the same shape but

different in size in the dataset, which defines the grasping trajectory of the hand.

The most recent approaches of this task involve prediction with classical ML

supervised methods using hand kinematic features, such as Random Forest and

Support Vector Machine [2], in order to recognize the human intention and to

classify the object size. The InfoGAIL algorithm used in this thesis aims to also

learn to mimic the hand trajectory given the object size and, at the same time, to

map trajectories to the object size in order to make predictions about the human

intention. The core advantage of InfoGAIL is self-learning of the model and self-

recognizing of the trajectories’ intrinsic properties using trial and error besides

supervised labelling.

The structure of this thesis begins with Section 2 which contains several

paradigms and methods that follow the ideas of Reinforcement and Imitation

Learning. It provides an introduction to the topic of human behaviour and

specifies the main problem addressed in this thesis and the experimental setup.

In Section 3 the InfoGAIL algorithm outline is discussed, along with its detailed

properties.

Section 4 presents the implementation outline. InfoGAIL is used to

autonomously model how to imitate trajectories and to recover meaningful

information of the trajectories, such as the object size.

Lastly, Section 5 presents the experimental results, aiming to provide answers to

the following questions:

1. Can the model identify the object size by observing the hand trajectories?

2. What is the accuracy of identifying the object size?

3. Can the model mimic hand trajectories, given the object size

 -11-

These questions are examined by evaluating the model with both the training

and testing examples to measure the accuracy between the actual and predicted

object size.

-12-

 -13-

2 Preliminaries

The following sections present the background knowledge for the methods used

in this thesis, reinforcement learning and imitation learning.

2.1 Reinforcement Learning

In the context of Artificial Intelligence, Reinforcement Learning (RL) refers to

the learning task of an agent that focuses on learning behaviour through trial-

and-error interaction with a dynamic environment [3].

2.1.1 Process Outline

The recurring RL interaction process includes the state of the environment that

changes every time when the agent chooses and performs a certain action that

enables a state transition. A state denotes the current snapshot of the agent’s

environments and depending on whether the environment is fully observable or

partially observable, the agent perceives the appropriate state information. The

RL process also includes a reinforcement signal (reward) that is provided by

the environment and notifies the agent for the goodness of the action it took in

the specific state applied. Every time step the reward that the agent receives

through the reinforcement signal is discounted by a constant γ factor in the

range of (0, 1) that represents the interest of the agent to future rewards.

The actions that the agent selects to perform state transitions until it reaches a

specific goal state is called policy and each sequence of states from start to finish

is called a trajectory. Ultimately, the goal of the agent is to choose a policy that

maximizes the expected sum of the discounted rewards, i.e., the optimal policy.

The formula for the optimal policy is described as

𝜋∗ = 𝑎𝑟𝑔 max
𝜋

𝔼[∑ 𝛾𝑡 𝑟𝑡|𝜋𝑡≥0],

where 𝑟 is the reward and 𝜋 is the policy.

Furthermore, the environment and policies can be either deterministic or

stochastic. A deterministic environment ensures that the agent always ends up

-14-

in the state designated by the action it took, while a stochastic environment is

random and may place the agent in a different state than the intended one.

Respectively, a deterministic policy links a specific action to each state. A

stochastic policy specifies a probability distribution on the available actions at

each state. Figure 2.1 presents the RL iterative process of agent-environment

interaction in order to form trajectories and solve sequential problems.

Figure 2.1: The iterative interaction between the agent and the environment to form a
trajectory and solve sequential problems.

2.1.2 Markov Decision Process

The terms describing an RL task are concretely depicted by the Markov

Decision Process (MDP) which groups all these pieces of information together.

The MDP configuration consists of the tuple (S, A, P, r, ρ0, γ): S is the state

space in the environment, A is the action space for the agent, P is the transition

probability of each state, r is the reward function, ρ0 is the distribution of the

initial states of the trajectories and γ is the RL discount factor. Moreover, MDP

is independent of previous state information, as it does not allow landing on a

transitional state by gathering information of the previous states other than the

current one.

In general, the agent aims to recover the best policy towards that goal state. The

total estimated γ-discounted reward from the initial state towards the goal state

is the maximizing criterion of the agent that defines the optimal policy. The

basic value function that composes the discounted reward for every state is

given by the equation

𝑉𝜋(𝑠) = 𝔼[∑ 𝛾𝑡 ∗ 𝑟𝑡]∞
𝑡=0 ,

which states that, for a specific policy π, the reward value of state s is the total

expected discounted reward sum following the policy from that state and

 -15-

afterwards. There are two major elements for calculating the optimal criterion

based on 𝑉𝜋, the optimal state-value function and the optimal action-value (or

q-value) function, given by their respective formulas

𝑉∗(𝑠) = max
𝑎

𝑄∗(𝑠, 𝑎),

𝑄∗(𝑠, 𝑎) = ∑ 𝑃(𝑠, 𝑎, 𝑠′) [𝑟(𝑠) + 𝛾 𝑉∗(𝑠′)]𝑠∈𝒮 , ∀ 𝑠 ∈ 𝒮.

The latter computes the expected reward for every state s of the state space S,

given an action a for that state and then following the policy optimally for each

transition probability P to state 𝑠′. The optimality is succeeded by using the

value function which calculates the maximum expected reward from the state s

and afterwards recursively. This recursive solution to the MDP problem is

achieved by dynamic programming principles with the Bellman value iteration

process [4].

The RL solutions for MDPs are based on either model-based or model-free

learning [5, 6]. Model-based learning occurs when an algorithm requires the

transition and/or reward functions of the environment, so the agent needs to

discover the function outputs through exploration and interaction with the

environment. Model-free learning does not explicitly demand a model of the

environment, thus the solutions for this case require only samples of transition

and reward function outputs obtained through episodes of exploration. The

samples from each episode can be used for computing a running average of the

value and/or the q-value function (such as the Q-Learning algorithm).

2.1.3 Deep Reinforcement Learning

There are cases where the state and action space of a task is very large to

effectively execute the costly iterative RL process. Furthermore, the

environment may not be fully observable to be able to explore all the possible

paths towards a goal state. For example, in the self-driving car domain the

information available to the agent about the environment comes down only to

observations relative to the agent’s perception proximity (hence the partially

observable environment). As a result, the agent is not aware of the complete

state space. In such cases, neural networks can be very helpful since they can

efficiently approximate the policy function [7]. Neural networks can replace

every part of plain RL iterative processes, such as the q-value or the state-value

-16-

function, by training multiple networks simultaneously. Figure 2.2 below

illustrates an example of a policy function model that recovers a policy for the

agent to follow.

Figure 2.2: The Deep Reinforcement Learning policy model that trains a network with
parameters θ in order to recover each action from state inputs

The network is trained at every iteration by updating its parameters. There can

be deep network models for the value-based model and/or the policy-based

model or even for the environment model.

An example of the policy model is presented in Figure 2.2. Policy-based

algorithms approach the unknown policy directly by updating the parameters of

the policy model with gradients ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡) by means of policy-gradient

algorithms such as REINFORCE [8]. Value-based algorithms such as Deep Q-

Networks (DQN) [9] learn the q-value function of each action using deep neural

networks and then form the policy that prescribes actions with the maximum q-

value per state. Lastly, the methods that leverage both policy- and value-based

methods are called actor-critic [10]. The actor approximates the policy function

and the critic network learns the value function that the actor tries to maximize.

For that, the critic uses a baseline in order to evaluate the predicted value, such

as the Q-value, which is parameterised by a deep neural network (Q actor-

critic). The critic output essentially controls the policy gradients of the actor

network and appraises the actions produced by the actor. Figure 2.3 shows the

categorization of different methods solving MDPs.

 -17-

Figure 2.3: Deep Learning chart with the extended RL features

The issue that arises when policies are involved in deep learning is that

decisions on actions are greatly affected by the changes in the parameter step

during a network parameter update. For that matter, there are several

techniques, such as Trust Region Policy Optimization (TRPO) [11] algorithm,

which ensure a moderate step of the network parameter updates. Briefly, TRPO

maximizes the loss function

𝐿(𝜃𝑜𝑙𝑑 , 𝜃) = 𝔼𝜋𝜃𝑜𝑙𝑑
[

𝜋𝜃

𝜋𝜃𝑜𝑙𝑑

 𝐴𝜃𝑜𝑙𝑑
(𝑠, 𝑎)],

𝑠. 𝑡. 𝐷̅𝐾𝐿(𝜃𝑜𝑙𝑑, 𝜃) = 𝔼𝜋𝜃𝑜𝑙𝑑
[𝐷𝐾𝐿(𝜋𝜃𝑜𝑙𝑑

, 𝜋𝜃)] ≤ 𝛿.

This loss function basically translates into estimating the expected ratio of the

policy 𝜋𝜃 after the parameter update over the old policy 𝜋𝜃𝑜𝑙𝑑
, multiplied by the

advantage function 𝐴𝜃𝑜𝑙𝑑
 of the state-action pairs sampled from the old policy.

The loss function is calculated subject to 𝐷̅𝐾𝐿 that denotes the average KL

divergence [12] of the old and new policies, which is bounded by a constant δ. It

essentially means that the new policy is allowed to deviate from the old policy at

most δ.

The advantage function defined by the formula

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡) = 𝑅𝑡+1 + 𝜆 𝛾 𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡),

where R is the surrogate reward at time t+1 of the trajectory, which denotes the

reward obtained at the next state of the transition, γ is the discount factor,

-18-

𝑄(𝑠𝑡, 𝑎𝑡) is the q-value for the state-action pair at time 𝑡 and V is the value

function. 𝜆 is a regularizing hyperparameter.

2.2 Imitation Learning

Imitation Learning (IL) is the broad category of methods in which the involved

agents aim at directly mimicking expert demonstrations in a task of interest

using supervised learning [13, 1]. The expert demonstrations may originate from

humans or even from other agents that perform actions to complete a specific

task. Imitation learning is divided into two key groups, behavioural cloning

(BC) and inverse reinforcement learning (IRL) [1, 14, 15, 16].

2.2.1 Behavioural Cloning

Behavioural Cloning (BC) denotes the simplest and straightforward imitation

learning method, fusing supervised learning, directly through expert behaviour

without any access to a reward function. The expert demonstrations mainly

consist of pairs of states and actions performed in the environment by the

agents. The core difference from reinforcement learning revolves around the

absence of the reinforcement signal that supports the agents for the action

selection and there is no interaction with any part of the environment. This

offers the advantage of not having to directly compute and develop a complex

reward function that yields a problem-specific reinforcement signal, which

usually is computationally intensive, while at times the reward is obscure and

unknown. Moreover, since IL method and specifically BC method is supervised,

the agent does not learn a policy using experience earned by trial and error, it

rather needs data from the expert. In other words, the more data the expert

provides to the agent, the more accurately it learns the expert state-action

distribution.

A significant drawback of BC is the compounding error in the approximated

policy. This error occurs when small errors in the approximated policy function

gradually lead the agent to unseen states and does not know how to act on them.

 -19-

2.2.2 Inverse Reinforcement Learning

IRL designates the approximation of a reward function related to a desired

problem using apprenticeship learning (AL), an alternative term for learning

from demonstrations, and then the agent solves a reinforcement learning

problem using the recovered reward so as to calculate the expert policy. The

agent tries to infer the hidden preferences of the expert which define the reward

function [17]. At each step, the parameterized reward network makes a

prediction that yields a candidate reward which is used to solve the MDP

pipeline in order to calculate the optimal policy given a reward approximation.

The network parameters may be updated by minimizing the distance between

the learned and the expert policy. The algorithm is described briefly in Figure

2.4.

Figure 2.4: Template algorithm for estimating a reward function using IRL (source:
[17])

There are several IRL optimization methods for the divergence between the

expert and learned policy, which are displayed in Figure 2.5.

-20-

Figure 2.5: IRL objective function optimization methods

Like any imitation learning method, IRL assumes that the expert policy is

optimal. The main challenge that poses an ambiguity to the solution is the fact

that there can be multiple reward functions that could explain the optimality of

the expert policy. The optimization step of the IRL algorithm in order to

alleviate the ambiguity issue uses entropy maximization. This method returns

the maximum entropy policy that is calculated by AL via IRL.

2.2.3 Imitation Learning: Algorithms and State of the art

Imitation Learning is a task that requires interaction samples in order to

succeed a robust and interpretable result. Many real-world settings prohibit the

collection of such data efficiently, especially in the field of robotics. This usually

leads to choosing reasonably plain simulations of actual human behaviour

problems in order to compensate for the sample complexity [18].

Recent work has shown that combining the benefits of the techniques described

in the previous sections, human behaviour datasets can be integrated into both

deep RL solutions and BC-AL algorithms that contribute to human movement

imitation.

In [19] classic BC is used to learn state-action pairs towards performing various

tasks such as reaching, grasping and pushing objects by hand, creating optimal

policies using a virtual reality robot that is teleoperated to perform such

 -21-

movements. The created demonstrations are images containing the viewpoint of

the VR robot performing these tasks. Then, the BC model learns the policy by

imitating the collected demonstrations and the evaluation of the model is

performed utilizing an actual robot to perform the tasks by executing the

learned policy.

Dataset Aggregation (DAgger) is an upgraded version of the standard BC

algorithms that is used for expert trajectory imitation by iteratively collecting

data not only from the expert policy but also from the policy network instance

that the agent uses at each iteration [20]. At each step, the agent asks for the

expert feedback in the form of expert policy actions, given the visited states.

Contemporary experiments have been performed on an autonomous driving

task, using both simulated and real-world datasets. These experiments feature

the DAgger algorithm, as well as Human-Gated DAgger (HG-DAgger) which

adds a risk metric that helps the agent remain in a human-defined state space to

avoid deviating from the expert state space. The real and the simulated

automobiles are tested in a constrained environment with other cars as

obstacles [21].

Expert demonstrations are crucial when BC algorithms are used. Policy-based

methods that use policy gradient to recover an optimal policy can be initialized

randomly, which may slow the training process down, since the agent has no

clue of the state and action space. This can be avoided when injecting expert

demonstrations into the policy gradient methods. Demonstration Augmented

Policy Gradient method (DAPG) [22] combines supervised techniques with self-

learning, by pre-training the policy model with BC or splitting the expert

demonstrations in sub-tasks, in cases where smaller sequential tasks are

pipelined to form the original trajectories. The latter choice requires an

augmented surrogate objective function that extends the policy gradient

objective. This auxiliary function aims to grasp the inherent sequential

information of the mentioned sub-tasks, which the BC method fails to capture.

The experimental setup of DAPG includes a virtual environment in which a 24-

DoF robotic hand is used to produce expert trajectories for object grasping and

relocation, object manipulation using the fingers, usage of hammer and door

opening. The rewards are manually crafted depending on the type of task and

the experiments are tested on sparse task completion.

-22-

Generative Adversarial solutions

While the BC family highlights supervised procedures, there are IL techniques

that directly learn the policy from expert demonstrations, using Generative

Adversarial Network (GAN) aspects [23].

GAIL algorithm outline

Generative Adversarial Imitation Learning (GAIL) [15] offers a core example of

reclaiming the best of both GANs and IL that constitutes a baseline for other

methods of GAN learning. This algorithm excels in large environments with

high-dimensional state-action space that hinder the agent from keeping a steady

trajectory close to that of the expert. The previously mentioned methods mainly

rely on expert demonstrations without evaluating the improvement of the new

policy, compared to the previous one, throughout the course of training. This

does not allow the agent to qualify the parameter update at each step. GAIL

utilizes a discriminator network that evaluates the actions generated by the

policy network, with respect to the corresponding reached state after

performing a specific action. It also has the role of the cost function. The goal is

to maximize the aggregated expected cost for the learned policy, while trying to

find the policy that minimizes the loss.

The study in [15] shows tests of the algorithm on some baseline RL experiments

such as cartpole, acrobot and mountain car, as well as on more complex

simulative tasks such as 3D humanoid locomotion. Other experiments that

specialize in human pose sequence prediction utilize Wasserstein-divergence

GAIL algorithm (WGAIL-div), a variation of the standard GAIL algorithm that

effectively approximates trajectories such as photo-shooting and walking [24].

GAIL features explained

GAIL is founded on the IRL principles. However, its purpose is to escape from

the AL process which solves RL problems by approximating the reward

function, in order to yield the policy.

The structure is inspired by the GANs framework, where the cost function is

formed by the output of a discriminator network. Formally, the discriminator

aims at learning to discriminate between learner-agent and expert state-action

pairs:

𝜓𝐺𝐴
∗ (𝜌𝜋 − 𝜌𝜋𝛦

) = max
𝐷∈(0,1)

𝔼𝜋[log(𝐷(𝑠, 𝑎))] + 𝔼𝜋𝛦
[log(1 − 𝐷(𝑠, 𝑎))],

 -23-

where D is the discriminator and 𝜌𝜋, 𝜌𝜋𝛦
 are the occupancy measure values for

the imitator policy 𝜋 and the expert policy 𝜋𝛦, respectively. Occupancy measure

denotes the distribution of the state-action pairs visited by the agent when

exploring the environment following a policy.

Substituting the cost function in the optimization problem along with 𝜆 that

controls the causal entropy 𝐻𝜋, the final objective function for the GAIL

algorithm is formed:

min
𝜋

max
𝐷∈(0,1)

(𝔼𝜋[log(𝐷(𝑠, 𝑎))] + 𝔼𝜋𝛦
[log(1 − 𝐷(𝑠, 𝑎))]) − 𝜆𝐻(𝜋),

with 𝜆 ≥ 0 being the regularizing variable for the causal entropy. The RL step for

getting the optimal imitator policy is replaced by a generator network that at

each iteration yields actions based on the input state. The TRPO method is

proposed to control the policy network parameter update steps. The GAIL

algorithm is presented in Figure 2.6.

Figure 2.6: GAIL algorithm (source: [15])

The final algorithm shows that the cost function approximator is log 𝐷(𝑠, 𝑎),

which means that the discriminator guides the generator into predicting the

right policy, without the means of a reinforcement signal or an iterative RL

process. The generator G and the discriminator D are two distinct networks and

each one has its own parameters to update. G yields a policy and tries to confuse

D. This essentially means that if D is not able to distinguish the state-action

pairs generated by G by assigning a small cost compared to that for the expert

state-action pairs, it is inferred that the occupancy measures of the expert and

generated policy are indeed very close, thus the data generated by G is close to

the expert data. The discriminator is updated with the Adam optimizer [25].

-24-

 -25-

3 Info GAIL

Having described the GAIL baseline above, the main algorithm derived from

GAIL is now discussed, which is used for discovering the salient factors of the

trajectories when following a policy.

3.1 InfoGAIL Outline

Information Maximizing Generative Adversarial Imitation Learning (InfoGAIL)

is another algorithm of the GAIL family that introduces the concept of latent

codes in the learning process [1]. There are problems which demand

distinguishing the intrinsic labels of the expert. Latent codes denote these exact

labels and InfoGAIL, apart from training a discriminator and a generator

network like standard GAIL, it also takes on maximizing the mutual information

between the generated trajectory and the latent variable by training a neural

network that indicates the posterior probability of the latent code, given the

generated trajectory. Figure 3.1 shows that InfoGAIL recognizes the generated

trajectory latent factors and matches the expert.

Figure 3.1: Comparison between InfoGAIL and other IL algorithms for the synthetic
experiment (source: [1])

The main experiment in [1] processes visual positions of cars driving in a

simulated environment in order to distinguish whether the car is driving

throughout a turn in the environment or is passing another vehicle. In Figure

3.2 there are 37 epochs of turning left or right during the training process, along

with the distance travelled for 60 trajectory rollouts.

-26-

Figure 3.2: Results of InfoGAIL for certain epochs and compared to GAIL, for the visual
demonstration experiments (source: [1])

The images infer the effectiveness of InfoGAIL to recognize the type of turn the

virtual vehicle took and map the trajectory to the right color and type. The far-

right image depicts the GAIL trajectories of passing vehicles and it is obvious

that the algorithm cannot distinguish between left and right pass, compared to

InfoGAIL.

3.2 Details on InfoGAIL

The standard GAIL algorithm is effectively able to predict trajectories based on

expert state-action pairs in high dimensional environments where classic RL

and IRL concepts fail to succeed in real time intervals. However, trajectories in

general and specifically in human behaviour context, are determined by several

latent factors that explain the very behaviour. Furthermore, the same

demonstrations may originate from different experts whose skill in the task area

may also differ, thus the imitation learning process in such cases inducts

variability.

The motivation behind InfoGAIL is the interpretability of the expert policy by

discovering the desired latent variables along with the state-action prediction.

In order to do so, maximization of the mutual information between the expert

demonstrations and the latent space that contains the latent variables can be

achieved. This intuitively translates to mapping every generated state-action

pair to a latent variable. In [26] the mutual information formula is displayed as

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋),

where 𝐻 is the entropy term for the variables X and Y. This formula defines how

much information can be extracted from the variable X, given the knowledge

about Y. So, if the expert policy 𝜋𝛦 consists of the expert policies that are

matched with their respective known latent variable 𝑐, then each expert

 -27-

trajectory 𝜏𝛦 is defined as the consequent state-action pairs that are generated

following the policy and each action is sampled from the distribution 𝑝(𝜋|𝑐),

starting from an initial state 𝑠0. Now, the imitator policy 𝜋(𝑎|𝑠, 𝑐) tries to

approach the occupancy measure of the expert policy 𝜋𝛦 by generating

trajectories 𝜏 which are qualified by the discriminative network D, like in the

standard GAIL setting.

The mutual information formula must contain the latent variable and

trajectories, so the problem is reduced to calculating 𝐼(𝑐; 𝜏). While this seems a

straightforward solution over GAIL, the final objective function needs to contain

the posterior probability 𝑃(𝑐|𝜏), since the entropy term contains this quantity. It

is difficult to directly compute this posterior to maximize the mutual

information in its current form, thus a lower bound can be placed, which

includes an approximation of the posterior and therefore does not contain the

quantities 𝐻(𝑐|𝜏) or 𝐻(𝜏|𝑐). This lower bound is given by

𝐿𝐼(𝜋, 𝑄) = 𝔼𝑐[log 𝑄(𝑐|𝜏)] + 𝐻(𝑐) ≤ 𝐼(𝑐; 𝜏).

Q denotes the approximation of the posterior and 𝐻(𝑐) is the entropy of the

latent variable 𝑐. This bound needs to be included in the GAIL objective in order

to achieve the required semantic features. As a result, the final transformed

objective function that is gradable and constitutes InfoGAIL is

min
𝜋,𝑄

max
𝐷

𝔼𝜋[log 𝐷(𝑠, 𝑎)] + 𝔼𝜋𝛦
[log (1 − 𝐷(𝑠, 𝑎))] − 𝜆1 𝐿𝐼(𝜋, 𝑄) − 𝜆2 𝐻(𝜋),

where 𝜆1 > 0 is the regularizing variable for the lower bound, similar to the

regularizing variable for the policy entropy from GAIL. The posterior

approximation Q is modelled by a neural network as well, with Adam optimizer

for updating its parameters. Overall, there are three main networks for the core

InfoGAIL algorithm, the generator 𝜋𝜃, the discriminator 𝐷𝜔 and the posterior

𝑄𝜓, with θ, ω and ψ being their respective parameters. Figure 3.3 shows the

main InfoGAIL algorithm for computing the gradients and using them to update

networks weights.

-28-

Figure 3.3: InfoGAIL algorithm (source: [1])

Since the expert demonstrations usually come from humans, it is natural that

some expert policies are prone to human error and perform sub-optimally.

Apart from the main course of the algorithm, an additional reward

augmentation is proposed when this scenario is encountered, in order to

counteract the sub-optimal approximated rewards. Essentially, reward

augmentation provides an extra invented constraint 𝜂(𝜋𝜃), specifically crafted

to better inform the agent about a more accurate route towards the states it

should visit. This surrogate reward is inserted into the objective function as

well.

Lastly, an additional optimization step is suggested that solves potential

vanishing gradient and mode collapse issues when there are high dimensional

expert data. In that case, the maximization part of the objective function is

replaced with the Wasserstein GAN (WGAN) technique. The updated objective

with both the reward augmentation and WGAN is described by the following

formula:

min
𝜃,𝜓

max
𝜔

𝔼𝜋𝜃
[𝐷𝜔(𝑠, 𝑎)] − 𝔼𝜋𝛦

[𝐷𝜔(𝑠, 𝑎)] − 𝜆0 𝜂(𝜋𝜃) − 𝜆1 𝐿𝐼(𝜋𝜃, 𝑄𝜓) − 𝜆2 𝐻(𝜋𝜃).

 -29-

4 Predicting Human
Behaviour

This section introduces:

• the dataset used for InfoGAIL

• the formulation of the problem

• the setup and implementation of the InfoGAIL algorithm

4.1 Overview

So far various methods and setups have been presented that depend on

imitation learning principles in order to model expert policies as these are

revealed through task demonstrations. The agent observes the expert state-

actions pairs and imitates them as closely as it gets, or it makes its own path in

the environment to learn from its own mistakes, always keeping the expert

policy as a guide.

As stated in the InfoGAIL section, human behaviour can be noisy in multiple

examples and slight variations of the same policy could explain different

semantic features. In the hand grasping environment, these features must keep

up with the interpretability of the respective trajectories. Hence, the goal of this

analysis is to bring the dataset to a form that best highlights the modes of

behaviour and to remove any excess noise from the features.

4.2 Human Behaviour Dataset

The utilized raw dataset for the current thesis is a collection of OpenPose (OP)

estimations of the right human hand positions in the 2D space as it reaches an

object [2]. Three solid cubes are used that vary among three categories, small

(2.5cm), medium (5.5cm) and large (7.5cm). A single RGB-D sensor was used

by the authors to capture the hand joint data of 8 participants who took 30

movements towards each object. There are totally 715 grasping movements

towards the cubes, after the removal of 5 movements because the recording was

-30-

defective. Every participant initiates the hand movement from the same fixed

point that has a specific distance from the object. OP groups joint data into right

hand data and full body data. It reads the recordings and recognizes the hand

joint and full body data, as depicted in Figure 4.1.

Figure 4.1: (Left) OP right hand joint data, (Right) OP full body joint data

Each joint number corresponds to a label that is used to save the data in CSV

files. Table 4.1 matches the labels with each joint number from both right hand

and full body.

Table 4.1: OP key point labels

Label Number

RWrist Full body - 4

RPalmBase Right hand - 0

RThumb1CMC Right hand - 1

RThumb2Knuckles Right hand - 2

RThumb3IP Right hand - 3

RThumb4FingerTip Right hand - 4

RIndex1Knuckles Right hand - 5

RIndex2PIP Right hand - 6

RIndex3DIP Right hand - 7

RIndex4FingerTip Right hand - 8

RMiddle1Knuckles Right hand - 9

RMiddle2PIP Right hand - 10

 -31-

RMiddle3DIP Right hand - 11

RMiddle4FingerTip Right hand - 12

RRing1Knuckles Right hand - 13

RRing2PIP Right hand - 14

RRing3DIP Right hand - 15

RRing4FingerTip Right hand - 16

RPinky1Knuckles Right hand - 17

RPinky2PIP Right hand - 18

RPinky3DIP Right hand - 19

RPinky4FingerTip Right hand - 20

Each movement consists of several frames with a sampling frequency of 60Hz

that feature the OP key-points, along with the OP confidence probability that

denotes how correctly OP estimated the coordinates of each point, the sequence

number of the frame and the key-point timestamp. The total number of frames

differs in each trajectory. Furthermore, the actual movement begins from the

10𝑡ℎ frame, because the first 9 frames are used to calculate the standard

deviation of the RWrist y-coordinate for manual dataset reproduction. Lastly,

every hand movement ends its course just right before object grasping. Figure

4.2 shows the frame distribution among the hand movements.

Figure 4.2: Frame distribution for each movement (source: [2])

The timestamp is in seconds and the sequence number is an integer that OP

yielded, counting from the first frame until the last frame captured and ranges

in [0, MAX_TRAJECTORY_FRAME]. Figure 4.3 displays the timestamp

-32-

difference between every two consecutive frames of each trajectory, collapsed

into one dimension as seen in the x-axis.

Figure 4.3: Consecutive timestamp differences (in seconds) between frames for all the
trajectories

The sequence numbers of a movement in the dataset do not necessarily start

from zero and they are not definitively consecutive, since some frames have

been filtered out due to noisy values. Figure 4.4 shows an example frame taken

from a hand movement towards a large cube. Each dot corresponds to a hand

(RWrist) joint key point. The recording of that movement capturing the total 22

key points is achieved by exploiting the OpenCV framework [27] to read and

extract the appropriate information from the dataset.

Figure 4.4: Example frame with hand points and the wrist point reaching for a large
object

 -33-

Each movement is contained in its own CSV file and Table 4.2 shows the format

of the CSV containing the values mentioned above.

Table 4.2: CSV file layout

Sequence

No.
Timestamp

Point

probability

Point

x-coordinate

Point

y-coordinate

Rest

Points

first_No. first_stamp (0, 1) float_value float_value

. . .

.

.

.

last_No. last_stamp (0, 1) float_value float_value

The Point headers in the table annotate each label mentioned in Table 4.1. So,

every Point triplet is repeated in the CSV file for all 22 key points.

In order to reduce the data dimensionality and end up with meaningful features,

it is showed in [2] that three of the total features yielded the best outcome: the

2D wrist key-point coordinates (x and y), which matches with the RWrist label,

and the thumb-index finger aperture. The y-RWrist coordinate is quite

important because it is observed that most of the hand motion happens on the

y-axis and its confidence probability is larger than 0.6. The thumb-index finger

aperture denotes the Euclidean distance between the 2D coordinates of the

thumb and index fingertips, which correspond to RThumb4FingerTip and

RIndex4FingerTip labels from Table 4.1, respectively.

Figure 4.5 displays the distributions of Dataset A endpoints for every type of

objects in order to demonstrate the diversity of each object approaching

situation.

-34-

Figure 4.5: Aperture and y-wrist endpoint distribution for the trajectories of Dataset A.
Each distribution (boxplot) refers to the relative object size (S=small, M=medium,

L=large). The orange line represents the mean value of each distribution, and the white
circles are the outliers

Even though most of the movement takes place in the y-axis, the mean values

(orange lines in the boxplots) are not well-distinguished for each object size, as

opposed to the aperture values during the trajectory. So, an upcoming challenge

is to determine whether the combination of the aperture feature (as the most

important one that defines the approached object size) and the spatial wrist x, y

features that define the generic hand position in relation to both the

environment and the object is actually helpful, or the aperture is adequate by

itself in order to produce trajectories that exhibit the association of the aperture

to the object. Thus, two distinct feature sets are explored:

• All three features (x-wrist coordinate, y-wrist coordinate, thumb-index

aperture)

• Only the thumb-index aperture feature

Figure 4.6 shows the scatter plots of all the aperture values of the dataset with

respect to five hand movement intervals (20%, 40%, 60%, 80%, 100%), which

refer to the movement completion percentage from the initial frame of each

movement.

 -35-

Figure 4.6: The scatter plots of all the aperture values of the dataset with respect to five
hand trajectory intervals (20%, 40%, 60%, 80%, 100%), which refer to the trajectory
completion percentage from the initial frame of each trajectory, for the 8 participants

and each object size

Before incorporating the aforementioned effective features in a new dataset,

extra preprocessing steps need to be performed in order to clean and normalize

the dataset.

While the x and y coordinates of the wrist point variables are filtered out to

accommodate a confidence probability close to 0.6 and over, some of the thumb

-36-

and index fingertip values needed to form the aperture feature exhibit

confidence less than 0.6. The boxplot in Figure 4.7 shows the confidence

distribution of the wrist, thumb and index key points of every trajectory in the

dataset.

Figure 4.7: Confidence probability distribution for each key point (wrist, thumb and
index)

The image shows that the mean confidence distribution lies around 0.8 for all

the key points and most of the outliers are indeed in the thumb and index key

points. As a result, all the thumb and index points that exhibit OP confidence

less than 0.6 can be safely removed, and all the remaining points ensure a stable

confidence level. Furthermore, another constraint for the thumb-index points is

that the minimum distance of x and y coordinates between two thumb and

index points needs to be less than or equal to 10 pixels, as proposed in [2].

Filtering out frame values while calculating the apertures does not imply

removal of the whole frame, but it rather labels these specific values in the

corresponding frame as unusable and blank, because there can be valid wrist

points and invalid apertures in the same frame. In Table 4.3 there is an example

where the thumb key point value has been removed due to low confidence level

(the removal is marked with ‘X’), but the frame is still in its position, along with

the wrist key point.

 -37-

Table 4.3: Example frame after thumb value removal

Wrist

probability
Wrist Point

. . .

Thumb

probability

Thumb

Point

0.86 (112.74, 101.73) 0.36 X

Then, the aperture feature is formed using the available thumb and index points

(i.e., the points that have real values, like the Wrist Point in Table 4.3) and every

aperture value corresponding to unavailable thumb and index fingertip points

(i.e., the points that do not have real values, like the removed Thumb Point in

Table 4.3) become unavailable. Now the dataset contains only three features,

the apertures (some of which are unavailable) and the wrist point coordinates

(x and y), along with the respective timestamp. Furthermore, each trajectory

now begins from the tenth frame of the initial raw dataset.

Figure 4.8 shows the percentage of NaN aperture values for every hand

trajectory and object size. NaN stands for not-a-number, and it is the non-

numerical blank value that some apertures have from the previous step.

Figure 4.8: Aperture blank (NaN) percentage in each trajectory for each object size.
Each bar plot corresponds to one of the three object sizes. The x-axis represents the

index of the total number of trajectories for the corresponding object size.

-38-

The image implies that the non-available (NaN) aperture values are less than

50%, with the obvious exception of trajectories that have more than 70% NaN

apertures. In order to ensure that the hand trajectories contain at least one

usable frame, the trajectories with 100% NaN aperture values are removed. By

doing so, the total remaining hand trajectories are 713 (only 2 were removed).

This process may leave unusable starting and ending frames due to the NaN

aperture values, which are important movement-wise since they indicate the

spatial limits of a trajectory. Moreover, the quantity of the dataset examples is

significant for the training efficiency. Consequently, the NaN aperture values at

starting and ending frames, as well as the rest of the NaN aperture values can be

filled with real values in order to maintain the current number of hand

trajectories.

At first, the starting and ending aperture NaN values can be replaced with

samples from the distributions of the respective remaining real aperture values,

after the feature filtering step described above. The sampling depends on the

participant making the hand trajectory and on the respective size of the reached

object. In cases where there is no available example for the corresponding

combination of participant and object size, the chosen aperture value is the

mean aperture value from all the participants, for the desired object size. Figure

4.9 shows an example of the latter occasion for the FXD participant and the

large cube. The image indicates that there is not any available real aperture

value for the particular participant and object size combination (FXD

participant and large object size), in order to complete an ending unavailable

(NaN) aperture value. This occurs since the box plots of small and medium

objects (S and M respectively) are displayed, while there is no box plot for the

large object (L).

 -39-

Figure 4.9: Ending aperture value distribution for the FXD participant for every object
size. There is no available value for the large object.

To complete the dataset, the remaining NaN aperture values are replaced with

real values using linear interpolation. This method replaces NaN aperture

values 𝑎𝑥, where 𝑥 ∈ [2, 𝑛 − 1] and n is the length of a hand trajectory. The

formula for linear interpolation is 𝑎𝑥 = 𝑎𝑖 + (𝑥 − 𝑖)
𝑎𝑗−𝑎𝑖

𝑗−𝑖
, where 𝑖 < 𝑥 < 𝑗 and 𝑎𝑖

and 𝑎𝑗 denote the closest aperture values to 𝑎𝑥 that are not NaN, so that 𝑎𝑖 <

𝑎𝑥 < 𝑎𝑗. Linear interpolation is performed for all the remaining 713 hand

trajectories. This method is significant because each frame (hence, each

aperture value) of a hand trajectory corresponds to a timestamp. As seen on

Figure 4.3, most of the timestamp difference values are around 0.016. If all the

NaN values are removed, along with the entire frame, then the timestamp

difference values are completely unequal. Thus, linear interpolation ensures

stable frame rate. Figure 4.10 below presents the interpolated values which

complement Figure 4.6.

-40-

Figure 4.10: Dataset A - Interpolated aperture value scatterplots for the 8 participants
and each object size. The ‘+’ symbols represent the interpolated aperture values

The plots in Figure 4.10 show that the number of outliers in the dataset has

been decreased due to the mentioned preprocessing steps, especially for the

FXD and NXP participants.

It is noticeable that the dataset in Figure 4.6 and Figure 4.10 exhibits small

overlap in the aperture values between small and large sized objects, while there

 -41-

is a significant overlap between the medium sized object and the rest object

sizes. In order to increase the separability of the objects, a second sub-dataset is

also formed by removing the medium sized object. Figure 4.11 depicts the

aperture values of the dataset for each completion interval, without the medium

size objects.

Figure 4.11: Dataset B - Interpolated aperture value graphs for the 8 participants,
without medium size objects

-42-

Each resulting dataset is split into training and test sets, with ratios of 80% and

20% respectively, by randomly selecting trajectories from each type.

Both the training and the test datasets are normalized with Min-Max scaling in

the range of [-1, 1] for the wrist x and y features and with subtracting the

minimum aperture value from the aperture values, in order to end up with zero

as the minimum aperture value. The scaling is selected to ensure that every

wrist value spreads in the same range and the aperture values lie in a range of

greater values’ magnitude than those of the wrist, in order to provide more

importance to this feature.

Totally, the information for the split datasets is the following:

• Dataset with 3 object sizes (small, medium, large): Dataset A

o the training dataset contains 569 trajectories with approximately

18000 frames

o the test dataset 144 trajectories with approximately 4600 frames.

• Dataset with 2 object sizes (small, large): Dataset B

o the training dataset contains 400 trajectories with approximately

12000 frames

o the test dataset 96 trajectories with approximately 3000 frames

4.3 Problem Formulation: MDP

The goal of exploiting the OP dataset is to construct a model that predicts

grasping trajectories towards the cubes depending on their size, starting from

pre-determined positions of the selected hand features. Ultimately the model

must be able to recognize the size of the reached object. This configuration fits

exactly to the concept and the arrangement of the InfoGAIL algorithm described

in the previous section. This algorithm is explored to evaluate its efficiency in

the hand trajectory and object prediction problem.

In order to obtain a concrete and working setup for InfoGAIL, the grasping

trajectory prediction problem needs to be modelled into the format of MDP. The

MDP follows the configuration of Section 2.1.2:

The environment is partially observable by the agent, so each state is an

observation of a sliding window of 5 subsequent trajectory timesteps of the final

dataset. On this account, each state includes 3 features (wrist x, wrist y and

 -43-

aperture) of 5 consequent frames, so the dimensionality of the S space is 15.

Intuitively, the observation at a specific timestamp t of the trajectory holds

information about the mentioned features at frames with timestamps from 𝑡 − 4

to t.

A denotes the outcome of subtracting two consequent frame feature values of a

trajectory (i.e., two consequent (x-wrist, y-wrist, aperture) tuples), so the action

set space has dimensionality 3 (one action for the x-wrist, y-wrist and aperture,

respectively). The actions are continuous.

The reward r for MDP is the sigmoid of the discriminator network output, as

stated in the InfoGAIL specification. The reward 𝑟 ∈ (0, 1) needs to be in this

range in order to express the ability of the generator to produce policies that, in

turn, produce the distribution of state-action pairs demonstrated.

ρ0 is defined to be the set of all the initial trajectory states. It is also important to

investigate the behaviour of the InfoGAIL algorithm in real-time scenarios

where the object size needs to be predicted starting from intermediate states of

the entire expert trajectories. In order to achieve this, 𝜌0 set is enhanced with

expert trajectories’ intermediate states that serve as initial trajectory generation

points, taken from 20%, 40%, 60% and 80% completion of each expert

trajectory, in addition to the very starting state taken from 0% completion. An

illustrative example is shown in Figure 4.12.

Figure 4.12: Partial sub-trajectories from expert trajectory states. 0%, 20%, 40%, 60%,
80% are the initial states of the expert trajectories

4.4 InfoGAIL Implementation

The InfoGAIL implementation for this thesis is based on the InfoGAIL version

that is designed for TORCS environment [28]. The practical algorithm used in

the TORCS experiment expands the details of the InfoGAIL specification in

order to create a viable and optimized implementation, specifically on TRPO.

The TensorFlow [29] framework is utilized for the implementation of the

-44-

generator, discriminator, posterior and value networks, as well as for the

training and validation of the mentioned networks. The value network

essentially approximates the value function V of each generated state-action

pair, used by the advantage function of TRPO.

Figure 4.13 below depicts the implementation of the mentioned networks.

Figure 4.13: The Deep Learning networks that constitute the InfoGAIL models

The discriminator and the posterior networks consume a concatenated vector of

the state-action pairs in the same dense layer. The value network accepts a

concatenated vector of the states and latent codes, while the generator has two

distinct hidden layers that accept states and latent codes respectively. Their

outputs are then concatenated. The latent code property c is denoted by the one-

hot vector of the object size, its values being matched with small, medium, large,

respectively. The output of the posterior network is a vector with the softmax

probabilities assigned to each object size. Every network uses the tanh

activation function which outputs values in the range of [-1, 1]. Table 4.4 groups

the loss functions and learning rates for the generator, discriminator, posterior

and value networks.

 -45-

Table 4.4: Loss functions and learning rates for the neural networks used in InfoGAIL

Neural Network Loss Function Learning Rate

Generator 𝐿(𝜃𝑜𝑙𝑑 , 𝜃) of TRPO -

Discriminator Binary cross-entropy 10−4

Posterior Categorical cross-entropy 10−5

Value Mean squared error 10−4

In order to increase the efficiency of the posterior network predictions, a

validation set is created by isolating some samples from the generated state-

action pairs in order to be exploited by a target posterior network. When the

main posterior network is trained, the target posterior network’s weights are set

based on the formula

𝑡𝑎𝑟𝑔𝑒𝑡𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 0.5 ∗ 𝑚𝑎𝑖𝑛𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 0.5 ∗ 𝑡𝑎𝑟𝑔𝑒𝑡𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑠,

where 𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑠 denotes the weights of the posterior network. The target is

initialized with the same weights as the main posterior network. At each

episode, the created validation set is exploited to calculate the posterior

validation loss and the target network is used for predictions.

The loss function of the value network is the error between the approximated

value function output and the surrogate reward of TRPO, which follows the

formula

𝑅(𝑠, 𝑎) = −log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷(𝑠, 𝑎)) + ∑ log 𝑄(𝑠, 𝑎) ∗ 𝑐𝑗
𝑚
𝑗=1 ,

where 𝐷(𝑠, 𝑎) and 𝑄(𝑠, 𝑎) are the outputs of the discriminator and the posterior

networks respectively, (s, a) are the state-action pair inputs and c denotes the

latent code one-hot vector. Thus, the one-hot vector has length 𝑚 = 3 when

using all the available object sizes.

The generator network is initially trained using the BC method. That step makes

the generator network not to begin with random weights, gaining efficiency.

Table 4.5 provides information for training the BC.

-46-

Table 4.5: Training information for the BC method on the generator network

BC training and validation information

Training episodes 100

Loss function Mean Squared Error

Validation method 10-fold cross-validation [30]

The stochasticity of the generated policy for InfoGAIL is achieved by

introducing Gaussian noise to actions when performing a state transition during

trajectory generation, in the form of Gaussian standard deviation (std).

Table 4.6 groups the hyperparameters of InfoGAIL.

Table 4.6: Hyperparameters of InfoGAIL

InfoGAIL Parameters

Discounting Factor γ 0.997

Gaussian std 0.008

TRPO advantage function λ 0.97

Maximum KL divergence δ 0.01

Latent code sample 400

Training episodes 10000

Training state-action pair sample 2000

 -47-

5 Results

This section presents the training and testing results of InfoGAIL execution.

Several plots are drawn along with the training process that show the losses of

the generator, discriminator, posterior and value networks, which indicate their

successful training, followed by plots and tables that evaluate the outcome.

5.1 Overview

In Section 4.2, two datasets are defined: Dataset A and Dataset B. Dataset A is

the main dataset with all the object sizes and Dataset B is the dataset without

the medium object. Furthermore, two feature sets are also defined: the set with

all three features (x-wrist, y-wrist, aperture) and the set with only the aperture

feature. The training and testing of the InfoGAIL algorithm is repeated four

times, one for each feature set-dataset combination:

• All features – all object sizes

• Only aperture – all object sizes

• All features – small, large objects (without medium)

• Only aperture – small, large objects (without medium)

5.2 Training Results

At first, the training losses of the BC method are demonstrated. The BC training

mean squared error for all object sizes is presented in Figure 5.1.

-48-

Figure 5.1: Training (blue line) and validation (orange line) BC mean squared

error loss (y-axis) for 100 epochs (x axis) and for all object sizes. (Left) The loss

when all features are exploited, (Right) The loss when only the aperture feature

is exploited

The shaded area around the losses is the standard deviation of the training loss

per epoch. The loss drops close to zero which indicates that the network learns

the expert distribution. It is obvious that the standard deviation is larger on the

right plot (aperture only), but the overall range of the aperture values is larger

compared to the wrist coordinate values. This may result in bigger loss

fluctuations. The loss output is quite expected, especially when exploiting all the

features (left plot), due to the accuracy of the cross-validation that yields the

best version of the network loss, which is 0.1175.

Figure 5.2 shows the training BC losses for small and large object sizes (without

the medium-sized cube).

Figure 5.2: Training (blue line) and validation (orange line) BC mean squared error loss
(y-axis) for 100 epochs (x axis), without the medium-sized cube. (Left) The loss when
all features are exploited, (Right) The loss when only the aperture feature is exploited

 -49-

These losses exhibit identical behaviour to the BC training with all three object

sizes. Here, the standard deviation around the losses is smaller, meaning that

the certainty for the model’s prediction is increased.

Then, Figure 5.3 presents the training loss values of the discriminator, main

posterior and target posterior networks for all object sizes.

Figure 5.3: Discriminator (blue), main posterior (orange) and target posterior (green)
network training losses (y-axis), for 10000 episodes (x-axis) and for all object sizes.

(Left) The loss when all features are exploited, (Right) The loss when only the aperture
feature is exploited

In both left and right plots, the discriminator loss starts to stabilize around 0.5

while the posterior loss continues to drop. This indicates that the costs assigned

by the discriminator model on the state-action pairs generated by the generator

(policy) network and on the expert state-action pairs are adequately balanced.

The right plot for the aperture feature only shows better discriminator loss

stabilization than the left plot for all the features. This outcome is better because

the cost that is assigned by the discriminator on the generated state-action pairs

approaches 1 (big cost) and the cost for the expert state-action pairs approaches

0 (small cost). Thus, the discriminator loss function yields a loss value that is

close to the average value (0.5).

Furthermore, the target posterior network validation loss is almost identical to

the main posterior network training loss. This means that the posterior model

learns to generalize and does not overfit. Lastly, the loss values of the posterior

networks (main and target) are both close to zero near the final episodes of

training, meaning that the posterior model learns to distinguish between the

object sizes that match the respective generated state-action pairs and the

modes, which represent the object sizes predicted by the posterior model.

-50-

Next the discriminator and posterior loss values for only the small and the large

object sizes, are presented in Figure 5.4.

Figure 5.4: Discriminator (blue), main posterior (orange) and target posterior (green)
network training losses (y-axis), for 10000 episodes (x-axis), without the medium-sized

cube. (Left) The loss when all features are exploited, (Right) The loss when only the
aperture feature is exploited

The explanation for these plots is similar to the respective loss plots when

exploiting all the object sizes in Figure 5.3. Specifically, the loss plots of Figure

5.4 show that the posterior model learns to predict the object size faster, since

the loss reaches 0 at the end of the training. Furthermore, observing the

discriminator loss values after the 2000th episode, the loss value for only the

aperture feature (right plot) seems to stabilize faster than when using all the

three features.

Figure 5.5 depicts the mean aggregated surrogate reward of TRPO when

exploiting all object sizes. The mean aggregated surrogate reward is calculated

by summing the surrogate rewards of the state-action pairs of each generated

trajectory and finding their mean value.

 -51-

Figure 5.5: Mean aggregated TRPO surrogate reward (y-axis) for the generated
trajectories of each episode (x-axis) for all object sizes, when all features are exploited

(left) and when only the aperture feature is exploited (right)

Since the surrogate reward depends on the outputs of the discriminator and the

posterior, it is expected that the surrogate reward value approaches zero, during

the final training episodes. This value concerns the generated state-action pairs,

so the trained discriminator is supposed to assign rewards close to 1 and the

trained posterior assigns probabilities close to 1 for the object size that is

thought to be the same as of the expert trajectory. As a result, the output of each

logarithm function of the surrogate reward function approaches zero. The

general case for zero surrogate reward value is when

log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷(𝑠, 𝑎)) = ∑ log 𝑄(𝑠, 𝑎) ∗ 𝑐𝑖
𝑚
𝑖=1 ,

which indicates that the reward of the discriminator is equal to the predicted

probability for the corresponding expert object size. Lastly, negative values of

the surrogate reward function imply big discriminator rewards and small

posterior probabilities, while positive values imply small discriminator rewards

and large posterior probabilities. The plots above show that there are potentially

big rewards for small probabilities at the early stages of training and the

surrogate value gradually increases. Thus, if the system learns the expert

distribution, then the zero mean aggregated surrogate reward is explained by

very small value differences between the posterior and discriminator outputs,

which are both close to 1.

Figure 5.6 shows the surrogate reward loss plots when exploiting only the small

and large object sizes.

-52-

Figure 5.6: Mean aggregated TRPO surrogate reward (y-axis) for the generated
trajectories of each episode (x-axis) without the medium-sized cube, when all features

are exploited (left) and when only the aperture feature is exploited (right)

The surrogate reward on the right exhibits a larger value during the end of the

training than the surrogate reward on the left. The plot on the right implies that

the predicted probability of the posterior is larger than the discriminator

reward, which explains the large mean surrogate reward for TRPO. The same

explanation applies to the left mean aggregated surrogate reward, but here the

difference between the output values of the two networks is smaller.

The value network loss for all object sizes is depicted in Figure 5.7. The loss

function is calculated between the surrogate reward and the respective

advantage values of the generated state-action pairs. The plots show

stabilization around zero for both feature sets.

Figure 5.7: Training value network loss values (y-axis) for 10000 episodes (x-axis) and
for all object sizes, when all features are exploited (left) and when only the aperture

feature is exploited (right)

 -53-

Figure 5.8: Training value network loss values (y-axis) for 10000 episodes (x-axis) and
for small and large object sizes only, when all features are exploited (left) and when

only the aperture feature is exploited (right)

Figure 5.8 shows the value network loss for small and large object sizes.

Here, the behaviour seems to be the same as the loss values in Figure 5.7, except

that the variance of the loss values when exploiting only the aperture feature is

smaller.

Finally, the surrogate TRPO loss presented in Figure 5.9 converges close to zero

with almost identical variance for both plots. This fact implies that the

generated policies do not change very much throughout the course of episodes.

Figure 5.9: Surrogate TRPO loss (y-axis) for 10000 episodes (x-axis) and for all object
sizes, when all features are exploited (left) and when only the aperture feature is

exploited (right)

Figure 5.10 displays the respective surrogate loss plots, but without the

medium-sized object. These plots exhibit the same behaviour as those in Figure

5.9.

-54-

Figure 5.10: Surrogate TRPO loss (y-axis) for 10000 episodes (x-axis) without the
medium-sized cube, when all features are exploited (left) and when only the aperture

feature is exploited (right)

5.3 Testing Results

The InfoGAIL testing is adjusted depending on the question to be answered,

defined in Section 1.

Firstly, all the expert state-action pairs are fed to the posterior model in order to

determine whether it can distinguish the expert from the generated distribution.

The actual object size for each expert pair is compared with the predicted size.

Table 5.1 shows the results when exploiting all object sizes. In these tables, All

refers to the InfoGail execution when exploiting all three features and Aper

refers to the execution when exploiting only the aperture feature. Support

denotes the total number of the state-action pairs for each object size

Table 5.1: Posterior accuracy over the training expert action pairs, for all object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.56 0.47 0.50 0.63 0.53 0.54 6271 6263

Medium 0.37 0.35 0.20 0.15 0.26 0.21 6136 6211

Large 0.42 0.42 0.67 0.53 0.52 0.47 5876 5812

Accuracy 0.46 0.43 18283 18286

Macro av. 0.45 0.41 0.46 0.43 0.44 0.41 18283 18286

The accuracy metrics present low scores, especially for the medium-sized object.

 -55-

Table 5.2: Posterior accuracy over the training expert action pairs, without the
medium-sized cube

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.69 0.65 0.69 0.67 0.69 0.66 6234 6227

Large 0.67 0.63 0.68 0.61 0.67 0.62 5879 5812

Accuracy 0.68 0.64 12113 12039

Macro av. 0.68 0.64 0.68 0.64 0.68 0.64 12113 12039

Table 5.2 shows the results when exploiting the small and large object sizes.

This case demonstrates higher accuracy (68%) compared to the InfoGAIL

execution with all the object sizes (46%).

Now, the accuracy of the posterior model for identifying the object size given an

generated trajectory is examined. The approach for this answer is based on

comparing the actual object sizes with the predicted object sizes. An object size

that corresponds to the highest probability in the posterior model’s softmax

output, given a state-action pair, is considered as the predicted object size. The

predicted object size 𝑐̂ corresponding to the whole generated trajectory (and not

only to distinct state-action pairs) follows the formula

𝑐̂ = 𝑎𝑟𝑔 max

[𝑃̅(𝑠𝑚𝑎𝑙𝑙), 𝑃̅(𝑚𝑒𝑑𝑖𝑢𝑚), 𝑃̅(𝑙𝑎𝑟𝑔𝑒)].

𝑃̅ denotes the mean posterior probability of an object size for all the state-action

pairs corresponding to a trajectory. It follows the formula

𝑃̅(𝑐) =
∑ 𝑄(𝑐|𝑠𝑖,𝑎𝑖)𝑛

𝑖=1

𝑛
,

where c is the object size (one-hot vector) and 𝑄(𝑐|𝑠, 𝑎) is the posterior

probability for c, given a state-action pair (s, a). 𝑛 denotes the number of the

generated state-action pairs that constitute the trajectory.

The generated trajectories are produced by selecting initial states from the

initial state set 𝜌0 and, from each one, three trajectories are generated, one per

object size (or two trajectories, depending on whether Dataset A or Dataset B is

exploited). The mean probability 𝑃̅ is calculated for the generated trajectory that

is predicted to be closer to the respective expert trajectory (initiating from the

-56-

same starting point as the generated). The Root Mean Squared Error (RMSE)

between the expert and the generated actions of the respective trajectories is

calculated to determine the distance between the expert and generated

trajectories. The generated trajectory with the smallest RMSE value is the

closest to the expert.

If c denotes the actual object size of the expert trajectory, the comparison occurs

between 𝑐 and 𝑐̂. The metrics for comparing these two quantities are Precision,

Recall, F1-score, for every object size, and Accuracy and Macro Average, which

express accumulated information. Precision and Recall are expressed as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
,

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
.

𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 stand for true positive, false positive and false negative,

respectively. The true/false positive/negative values are defined by the following

expressions:

• 𝑇𝑃𝑖: number of occurrences where 𝑐 = 𝑐̂ = 𝑖

• 𝐹𝑃𝑖: number of occurrences where 𝑐 = 𝑗 and 𝑐̂ = 𝑖, ∀𝑗 ≠ 𝑖

• 𝐹𝑁𝑖: number of occurrences where 𝑐 = 𝑖 and 𝑐̂ = 𝑗, ∀𝑗 ≠ 𝑖,

where 𝑖 denotes the index of the object size list ([𝑆𝑚𝑎𝑙𝑙, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑎𝑟𝑔𝑒]).

F1-score is calculated by

𝐹1𝑖 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖∗𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖
.

Accuracy is expressed as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖𝑖

∑ (𝑇𝑃𝑖+𝐹𝑃𝑖)𝑖
,

while Macro Average is expressed as

𝑀𝑎𝑐𝑟𝑜 𝑎𝑣. =
∑ 𝐹1𝑖

𝑚
𝑖=1

𝑚
,

where m stands for the length of the object size list.

Table 5.3 to Table 5.7 show the results for the trajectories starting from 0%, as

well as for the trajectories from 20% to 80% of expert trajectories, and for all

three object sizes. In these tables, All refers to the InfoGail execution when

exploiting all three features and Aper refers to the execution when exploiting

 -57-

only the aperture feature. Here, Support denotes the number of the trajectories

in the testing dataset.

Table 5.3: 0% of the trajectory, for all three object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.86 0.59 0.40 0.81 0.54 0.68 48 48

Medium 0.33 0.41 0.46 0.35 0.39 0.38 48 48

Large 0.54 0.65 0.62 0.50 0.58 0.56 48 48

Accuracy 0.49 0.56 144 144

Macro av. 0.58 0.55 0.49 0.56 0.50 0.54 144 144

Table 5.4: 20% of the trajectory, for all three object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.74 0.68 0.29 0.75 0.42 0.71 48 48

Medium 0.28 0.41 0.38 0.33 0.32 0.37 48 48

Large 0.54 0.67 0.69 0.73 0.61 0.70 48 48

Accuracy 0.45 0.60 144 144

Macro av. 0.52 0.59 0.45 0.60 0.45 0.59 144 144

-58-

Table 5.5: 40% of the trajectory, for all three object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.77 0.70 0.35 0.83 0.49 0.76 48 48

Medium 0.26 0.47 0.23 0.33 0.24 0.39 48 48

Large 0.52 0.70 0.85 0.77 0.65 0.73 48 48

Accuracy 0.48 0.65 144 144

Macro av. 0.52 0.62 0.48 0.65 0.46 0.63 144 144

Table 5.6: 60% of the trajectory, for all three object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.84 0.68 0.56 0.88 0.68 0.76 48 48

Medium 0.33 0.48 0.25 0.29 0.29 0.36 48 48

Large 0.57 0.72 0.90 0.79 0.69 0.75 48 48

Accuracy 0.57 0.65 144 144

Macro av. 0.58 0.63 0.57 0.65 0.55 0.63 144 144

Table 5.7: 80% of the trajectory, for all three object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.73 0.56 0.69 0.92 0.71 0.70 48 48

Medium 0.41 0.40 0.38 0.25 0.39 0.31 48 48

Large 0.55 0.72 0.62 0.54 0.58 0.62 48 48

Accuracy 0.56 0.57 144 144

Macro av. 0.56 0.56 0.56 0.57 0.56 0.54 144 144

 -59-

Observing the tables above, both columns (All and Aper) demonstrate almost

equal average accuracy that reaches approximately 60%. As mentioned in

Section 4.2, a significant reason for the low accuracy is due to the trajectories for

medium-sized object, since it exhibits the lowest scores. Compared to the

metrics for the expert state-action pairs in Table 5.1, these results demonstrate

similar score values.

The tables below (Table 5.8 to Table 5.12) show the accuracy metrics when

exploiting only the small and large object size.

Table 5.8: 0% of the trajectory, for small and large object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.79 0.77 1.00 0.96 0.88 0.85 48 48

Large 1.00 0.94 0.73 0.71 0.84 0.81 48 48

Accuracy 0.86 0.83 96 96

Macro av. 0.89 0.86 0.86 0.83 0.86 0.83 96 96

Table 5.9: 20% of the trajectory, for small and large object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.81 0.83 0.96 0.90 0.88 0.86 48 48

Large 0.95 0.89 0.77 0.81 0.85 0.85 48 48

Accuracy 0.86 0.85 96 96

Macro av. 0.88 0.86 0.86 0.85 0.86 0.85 96 96

-60-

Table 5.10: 40% of the trajectory, for small and large object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.90 0.88 0.92 0. 88 0.91 0. 88 48 48

Large 0.91 0.88 0.90 0. 88 0.91 0. 88 48 48

Accuracy 0.91 0. 88 96 96

Macro av. 0.91 0.88 0.91 0. 88 0.91 0. 88 96 96

Table 5.11: 60% of the trajectory, for small and large object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.86 0.83 0.90 0.94 0.88 0.88 48 48

Large 0.89 0.93 0.85 0.81 0.87 0.87 48 48

Accuracy 0.88 0.88 96 96

Macro av. 0.88 0.88 0.88 0.88 0.87 0.87 96 96

Table 5.12: 80% of the trajectory, for small and large object sizes

 Precision Recall F1-score Support

 All Aper. All Aper. All Aper. All Aper.

Small 0.72 0.67 0.85 0.96 0.78 0.79 48 48

Large 0.82 0.93 0.67 0.52 0.74 0.67 48 48

Accuracy 0.76 0.74 96 96

Macro av. 0.77 0.80 0.76 0.74 0.76 0.73 96 96

By removing the medium sized cube and keeping the rest of the configuration as

is, it can be observed that the evaluation metrics have been significantly

improved. The accuracy lies between 76% and 91%, which means that the

posterior network can confidently predict most of the object sizes of the

 -61-

generated state-action pairs. However, the accuracy is higher compared to the

case when the posterior model is fed with the expert state-action pairs (86%)

and without the medium-sized object, in Table 5.2. This means that the

generated state-action pairs are not quite the same as the expert ones.

-62-

 -63-

6 Conclusions

In this thesis, the foundation of Reinforcement Learning and Imitation

Learning has been discussed, in order to explore the InfoGAIL algorithm in a

real-world human behaviour dataset that describes object size prediction from

hand trajectories towards specific objects.

The implementation of the algorithm is designed to answer the major question

whether the algorithm can effectively predict the right object size from various

stages of the hand trajectory, while the minor question denotes whether the

generated trajectories match these of the expert, i.e., how well the agent imitates

the expert action in each state.

Below we attempt to provide answers to the questions poses in the introductory

section of this thesis.

1. Can the model identify the object size by observing the hand

trajectories?

The results indicated that the aperture feature has the greatest impact on the

performance and there is a common outcome for both when exploiting all

features (wrist-x, wrist-y and aperture) and the aperture only. However, the

separability of expert trajectories is very important, since the results showed

greater accuracy when the medium sized object was removed, which blurred the

line between the trajectories regarding the two other object sizes (small and

large cube). Generally, the outcome showed that the posterior network can

adequately predict the right object mode when provided with the state-action

pairs of the generated trajectories as input.

2. What is the accuracy of identifying the object size?

The best accuracy value reached 91% when the generated trajectory initiates

from the point at 40% completion of the respective expert trajectory, and when

exploiting only the small and large cubes and all features (wrist coordinates and

aperture). Concerning the case when exploiting all the object sizes (small,

medium and large), the best accuracy value reached 65% when the generated

-64-

trajectory starts from the point at 40% and 60% completion of the respective

expert trajectory. This latter accuracy value is lower since the medium-sized

object blurs the separability of the other two classes and the model did not

perform adequately.

3. Can the model mimic hand trajectories, given the object size?

The results demonstrated that the model yielded an accuracy of approximately

70% when fed with the expert state-action pairs. Since the posterior model is

trained with generated state-action pairs, the accuracy for the expert ones

should be close to the accuracy mentioned in the answer to question 2. In that

case, the generated trajectories would be closer to the expert.

In future work, this question can be highlighted in order to further explore and

improve the action generation of the policy network so as the distribution of

states reached by the agent to be closer to the expert distribution. This step may

also aid to the improvement of the accuracy of the posterior network when

giving the training state-action pairs as input. The potential steps that can be

addressed in order to further clarify the issue are the following:

• Execute the InfoGAIL algorithm for the trajectories of each participant

separately in order to observe and compare the result groups regarding

the expert and generated trajectories.

• Experiment with different surrogate reward functions that favour specific

participants in order to examine the relation between the nature of the

generated trajectories and the crafted reward, with respect to the expert

trajectories.

• Execute the InfoGAIL algorithm experimenting with different values of

Gaussian standard deviation on the trajectory generation step, in order to

examine and compare the expert state-action pairs with the generated

state-action pairs.

 -65-

7 References

[1] Y. Li, J. Song and S. Ermon, "InfoGAIL: Interpretable Imitation Learning from

Visual Demonstrations," arXiv preprint arXiv:1703.08840, p. 14, 2017.

[2] M. Dagioglou, N. Soulounias and T. Giannakopoulos, "Object Size Prediction from

Hand Movement Using a Single RGB Sensor," HCI International, 2022.

[3] L. P. Kaelbling, M. L. Littman and A. W. Moore, "Reinforcement Learning: A

Survey," Journal of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

[4] R. Bellman, "A Markovian Decision Process," Indiana University Mathematics

Journal, vol. 6, pp. 679-684, 1957.

[5] T. M. Moerland, J. Broekens, A. Plaat and C. M. Jonker, "Model-based

Reinforcement Learning: A Survey," arXiv, 2020.

[6] J. Chen, B. Yuan and M. Tomizuka, "Model-free Deep Reinforcement Learning for

Urban Autonomous Driving," in 2019 IEEE Intelligent Transportation Systems

Conference (ITSC), 2019, pp. 2765-2771.

[7] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath, "Deep

Reinforcement Learning: A Brief Survey," IEEE Signal Processing Magazine, vol.

34, no. 6, pp. 26-38, 2017.

[8] R. Sutton, D. McAllester, S. Singh and Y. Mansour, "Policy Gradient Methods for

Reinforcement Learning with Function Approximation," in Advances in Neural

Information Processing Systems, 1999, pp. 1057-1063.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and

M. Riedmiller, "Playing Atari with Deep Reinforcement Learning," arXiv, 2013.

[10] I. Grondman, L. Busoniu, G. A. D. Lopes and R. Babuska, "A Survey of Actor-

Critic Reinforcement Learning: Standard and Natural Policy Gradients," IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), vol. 42, no. 6, pp. 1291-1307, 2012.

-66-

[11] J. Schulman, S. Levine, P. Moritz, M. I. Jordan and P. Abbeel, "Trust Region

Policy Optimization," arXiv, 2015.

[12] J. J.M., "Kullback-Leibler Divergence," in Lovric M. (eds) International

Encyclopedia of Statistical Science, Berlin, Heidelberg, Springer, 2011.

[13] A. Hussein, M. M. Gaber, E. Elyan and C. Jayne, "Imitation Learning: A Survey of

Learning Methods," ACM Comput. Surv., vol. 50, no. 2, 2017.

[14] P. Abbeel and A. Y. Ng, "Apprenticeship Learning via Inverse Reinforcement

Learning," in Proceedings of the Twenty-First International Conference on

Machine Learning, New York, Association for Computing Machinery, 2004, p. 1.

[15] J. Ho and S. Ermon, "Generative Adversarial Imitation Learning," arXiv, 2016.

[16] A. Y. Ng and S. J. Russell, "Algorithms for Inverse Reinforcement Learning," in

Proceedings of the Seventeenth International Conference on Machine Learning,

San Francisco, 2000.

[17] S. Arora and P. Doshi, "A survey of inverse reinforcement learning: Challenges,

methods and progress," Artificial Intelligence, vol. 297, no. 103500, 2021.

[18] F. Torabi, G. Warnell and P. Stone, "Recent Advances in Imitation Learning from

Observation," in Proceedings of the Twenty-Eighth International Joint Conference

on Artificial Intelligence (IJCAI-19), Texas, 2019.

[19] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg and P. Abbeel,

"Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality

Teleoperation," arXiv, 2017.

[20] S. Ross, G. Gordon and D. Bagnell, "A Reduction of Imitation Learning and

Structured Prediction to No-Regret Online Learning," in Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics, vol.

15, Florida, PMLR, 2011, pp. 627-635.

[21] M. Kelly, C. Sidrane, K. Driggs-Campbell and M. J. Kochenderfer, "HG-DAgger:

Interactive Imitation Learning with Human Experts," in 2019 International

Conference on Robotics and Automation (ICRA), 2019, pp. 8077-8083.

[22] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov and S.

Levine, "Learning Complex Dexterous Manipulation with Deep Reinforcement

 -67-

Learning and Demonstrations," arXiv, 2017.

[23] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville and Y. Bengio, "Generative Adversarial Networks," arXiv, 2014.

[24] B. Wang, E. Adeli, H.-k. Chiu, D.-A. Huang and J. C. Niebles, "Imitation Learning

for Human Pose Prediction," arXiv, 2019.

[25] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," arXiv,

2014.

[26] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever and P. Abbeel,

"InfoGAN: Interpretable Representation Learning by Information Maximizing

Generative Adversarial Nets," arXiv, 2016.

[27] I. Culjak, D. Abram, T. Pribanic, H. Dzapo and M. Cifrek, "A brief introduction to

OpenCV," in 2012 Proceedings of the 35th International Convention MIPRO,

2012, pp. 1725-1730.

[28] [Online]. Available: https://github.com/YunzhuLi/InfoGAIL.

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.

Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.

G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and

X. Zheng, "TensorFlow: A system for large-scale machine learning," in 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),

2016, pp. 265-283.

[30] P. Refaeilzadeh, L. Tang and H. Liu, "Cross-Validation," L. Liu, M.T. Özsu (eds.),

Encyclopedia of Database Systems, 2016.

[31] S. Wang, D. Jia and X. Weng, "Deep Reinforcement Learning for Autonomous

Driving," arXiv, 2018.

[32] N. Ratliff, J. Bagnell and S. Srinivasa, "Imitation learning for locomotion and

manipulation," pp. 392 - 397, 2008.

-68-

