NANENIZTHMIO MEIPAIQZ 'QEH =-_5

< _;, \

DEMOKRITOS

[[] ﬁ

=== UNIVERSITY OF PIRAEUS

Improving Human-Robot
Collaborative Reinforcement
Learning through Probabilistic
Policy Reuse

by
Athanasios C. Tsitos

Submitted
in partial fulfilment of the requirements for the degree of
Master of Artificial Intelligence
at the
UNIVERSITY OF PIRAEUS

Supervisor Dr. Dagioglou
Second Examiner Prof. Vouros
Third Examiner Dr. Giannakopoulos

June 21, 2022

©UNIVERSITY OF PIRAEUS, NCSR “DEMOKRITOS”. All rights reserved.

Abstract

Socially aware robots should be able, among others, to support fluent human-robot
collaboration (HRC) in tasks that require interdependent actions in order to be solved.
Similar to human-human collaboration, during HRC the actions of each agent affect
the actions of its partner. Towards enhancing mutual performance, collaborative robots
(cobots) should be equipped with adaptation and learning capabilities. Overall, mutual
learning can be a time consuming procedure that depends on the computational com-
plexity of the task, the motor and cognitive load demanded, as well as the skills of the
human partner. Nevertheless, cobots should be able to integrate in their actions the
capabilities of their human partner and adapt to their strengths and weaknesses. In the
current thesis, we focused on HRC settings where a human and a Deep Reinforcement
Learning (DRL) agent need to learn in real-time how to solve a shared task through
efficient collaboration. In such scenarios, the performance of the team depends on one
hand on the ability of the DRL agent to learn how to solve the task while adapting to
its human partner and on the other hand on the ability of the human to understand
the strengths and weaknesses of the agent and adapt accordingly. The goal of the thesis
was to observe how the mutual performance could be improved when the agent needs to
collaborate with different humans. The method used was a transfer learning technique
called Probabilistic Policy Reuse, which allows DRL agents to take actions based on
other pre-trained policies. In order to access this method, we developed a human-agent
game where the human and a DRL agent controlled by the Soft Actor-Critic algorithm
needed to jointly control the motion of the end-effector of a robotic manipulator and
bring it to a goal position. For the experiments, we asked 16 different people to partici-
pate. Half of them played the game with a naive agent, meaning that the agent started
to play without having any knowledge about the game, while the other half played the
game with an agent, which had access to the actions of an expert agent that was trained
beforehand by the author. In the second group, the agent took actions based on his
current policy with a probability 1/ and actions based on the expert policy with a prob-
ability 1¢. The performance of the teams was evaluated through the travelled distance
of the end-effector and the results showed that there was a significant difference between
the performance of the teams which played without transfer learning and the teams
that played with. This result indicates that applying transfer learning in HRC scenarios
where the agent needs to collaborate with different humans might improve the mutual
performance of the team.

Acknowledgements

First of all I would like to thank Dr. Maria Dagioglou for guiding me and helping me
during the thesis as well as the RoboSKEL laboratory for giving me the opportunity to
work on a real robot. Furthermore, I would like to thank my family for supporting me
throughout my studies.

Any opinions, findings, conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the University of Piraeus
and Institute of Informatics and Telecommunications of NCSR “Demokritos”.

ii

Contents

Acknowledgements

List of Figures

1

List of Tables

Introduction

1 From Human-Robot Interaction to Collaboration

2 Thesis Organization

Background

1 Machine Learning e

2 Reinforcement Learning oL
2.1 Markov Decision Processes
2.2 Basic Concepts e
2.3 Model-free algorithms oL

3 Deep Reinforcement Learningo
3.1 Deep Q-Network

4 Transfer Learning Lo

Deep Reinforcement Learning in Robotics

1 Brief Overview

2 Limitations of DRL in Robotics

3 Motivation e

Research Method

1 Human-Robot Collaborative Game

2 Reinforcement Learning agent oL

3 Experimental Setup oo
3.1 User Study e
3.2 Experimental Setup

4 Robot Control
4.1 Human and RL control
4.2 Reset e

) Technical Implementation

Results

1 Familiarizationo

iii

23
24
24
27
27
29
31
31
31
31

34

2 Games
6 Discussion
Bibliography

7 Appendix
A ROS implementation
B Letter
C Consent Form

Contents

iv

List of Figures

1.1

2.1

2.2

2.3

24

4.1

4.2

4.3

4.4

Categories of HRI [1] o o o

Artificial neuron. A weighted sum of the input is passed through an
activation function to produce the output of the neuron. The x; are the
outputs of the previous neurons or the initial features and the w; are the
parameters of the neuron.
Artificial Neural Network. Each neuron receives input from all the neurons
of the previous layers and propagates its output to all the neurons of the
next layer. e
Atari game. The image is 200x200 RGB pixels where each channel takes
a value in the interval {0,1,2,...,256}. The dimension of the state space
is (2563)200%200
Architecture of the Soft Actor-Critic algorithm. The Actor decides which
action a to take in each state s, namely it estimates the policy 7(als).
The Critic evaluates the action that the Actor chose, namely it estimates
the function Q(s,a) [2] L

Robotic setup. The robot is placed in the middle of a 1m x 1m table. A
laser is attached to the EE of the robot in order to provide to the human
visual feedback about the position of the EE. The feedback is the red dot
onthe table.
Rectangle inside of which the red dot can move. The initial positions are
in the four corners denoted with the letter ”S” and the goal position is
in the center of the rectangle denoted with the symbol ”X”. The team
wins if the red dot gets inside the circle around the goal position with a
relatively slow speed.o
Visualization of the score of a game. The outcome of the game ("Win”
or "Lose”) is visualized in the top left corner. The score is shown in the
top right corner while the number of the game is shown in the bottom. . .
Pipeline of the experiments. The first 10 test games are played with the
RL agent picking random actions (RA). In the first 10 train games, the
agent selects either random actions if no TL is applied or he uses the
action selection procedure (4.2) with v, = (0.7 — 0.61) depending on
the game. For the rest train games, the agent selects an action based on

26

his current policy (CP). In each training there are a total of 14000 updates. 28

4.5

4.6

5.1
5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

List of Figures

Rectangle for the familiarization games. The “S” symbol denotes the
initial position of the EE while the “X” symbol the goal position. The
EE can move in the line connecting the two symbols.
Simplified ROS graph

Number of wins in the familiarization games
Rewards (a) and normalized travelled distance (b) over the testing episodes.
At the end of each batch (10, 20, ... episodes) we compute the average
over the last 10 games. The transparent regions are the standard error of
the mean over the last 10 games.
Sample runs of a team without TL from the first batch batch. The
green dot is the initial position, the blue the final position, the red the
goal position, the red circle is the goal area and the grey line is the path.
Sample runs of a team without TL from the fourth batch batch. The
green dot is the initial position, the blue the final position, the red the
goal position, the red circle is the goal area and the grey line is the path.
Sample runs of a team without TL from the eighth batch batch. The
green dot is the initial position, the blue the final position, the red the
goal position, the red circle is the goal area and the grey line is the path.
Sample runs of a team with TL from the first batch. The green dot is
the initial position, the blue the final position, the red the goal position,
the red circle is the goal area and the grey line is the path.
Sample runs of a team with TL from the fourth batch. The green dot is
the initial position, the blue the final position, the red the goal position,
the red circle is the goal area and the grey line is the path.
Sample runs of a team with TL from the eighth batch. The green dot is
the initial position, the blue the final position, the red the goal position,
the red circle is the goal area and the grey line is the path.
Heatmaps of the dot position throughout all the test episodes of a team
without TL from the first batch. The numbers indicate the frequency
that the dot was in the respective rectangular region.
Heatmaps of the dot position throughout all the test episodes of a team
without TL from the fourth batch. The numbers indicate the frequency
that the dot was in the respective rectangular region.
Heatmaps of the dot position throughout all the test episodes of a team
without TL from the eighth batch. The numbers indicate the frequency
that the dot was in the respective rectangular region.
Heatmaps of the dot position throughout all the test episodes of a team
with TL from the first batch . The numbers indicate the frequency that
the dot was in the respective rectangular region.
Heatmaps of the dot position throughout all the test episodes of a team
with TL from the fourth batch . The numbers indicate the frequency
that the dot was in the respective rectangular region.

vi

36

37

37

5.14

5.15

6.1

7.1
7.2

List of Figures

Heatmaps of the dot position throughout all the test episodes of a team
with TL from the eighth batch . The numbers indicate the frequency
that the dot was in the respective rectangular region.
Learning curves of participants not included in the analysis

Percentage of wins in the training and testing games for each condition
and each batch o o

ROS graph of the system oL
Consent form

vii

List of Tables

4.1
4.2

4.3
4.4

5.1
5.2
5.3

Parameters of SAC algorithm 25
Gender, experience with Artificial Intelligence and with Robotics of the

participants Lo 27
Parameters of game L Lo Lo 29
Parameters of robot motion o000 oL 29
Normality of the dataset 43
Mixed ANOVA resultso o 43

Number of wins for the teams who played without TL in the second, third
and fourth training batches. The bold data correspond to the participant
who reached high performance but was excluded by the analysis. 45

viii

Chapter 1

Introduction

1 From Human-Robot Interaction to Collaboration

Human-Robot Interaction (HRI) is an important field of robotics and has grown greatly
in the last decades. Robots have the ability to execute fast, accurately and repeatedly
tasks without decreasing performance. However, it is hard for them to reason and infer
appropriate actions that will allow them to solve complex tasks. On the other hand,
humans have increased cognitive skills which help them construct strategies for solving
problems but lack at being consistent when executing repetitive actions mainly due to
physical fatigue. HRI tries to combine the traits of each agent aiming at providing
solutions to problems that are difficult to be solved by humans or robots alone.

There are different ways that an interaction between a human and a robot can be
established. In [1], HRI is characterized as either Instruction, Co-operation or Collabo-
ration. With the term Instruction the authors define HRI scenarios where the decision
making is purely governed by the human. An example is Learning from Demonstration
[3], where the human tries to teach the robot skills by means of kinesthetic teaching
[4, 5], teleoperation [6, 7] or passive observation [8, 9]. In Co-operation on the other
hand, the robot is not directly controlled by the human. Instead, each agent acts inde-
pendently towards a final shared goal. The term “independetly” means that the actions
of each agent do not affect the actions of its partner. A simple scenario of such an inter-
action is preparing a dinner where one might prepare the food while the other cleans the
table. The subtasks are independent of one another and the actions of each agent are
not affected by its partner. Lastly, in Collaboration there is a sequence of interdepen-
dent actions, meaning that each agent can potentially affect the actions of its partner
indirectly through its own actions. In Fig. 1.1 there is a visual representation of this
categorization.

Out of the three categories, the most beneficial is the Human-Robot Collaboration
(HRC) because many tasks require interdependent actions in order to be solved. An
example is tasks where physical collaboration is required. In these scenarios the human
and the robot work in close proximity and the communication is established through
interaction forces. This type of interaction is established in manufacturing [10, 11],
where a shift from traditional robotic systems, which were operating inside protective
cages, to collaborative robots (cobots) capable of operating in close proximity with the
humans has been observed. Applications where cobots have been used in physical HRC
include pick-and-place scenarios [12], wood polishing and heavy object carrying [13],

Chapter 1 Introduction

Interaction

1 l

N

e e N (
Instruction] Cooperation Collaboration
N N J N J
R
Exchange of | .| Exchange of Exchange of
information information information
- @@
—
- —| Shared goal 4‘ Shared goal
N
Independent
subtasks

Figure 1.1: Categories of HRI [1]

assembly [14] and others.

As outlined in [1], HRC requires a pipeline for exchanging information between the
human and the robot. From the robot’s perspective, human information can be exploited
either for establishing safety throughout the collaboration [10, 15] or for accessing the
human actions and therefore making inferences about the human intentions [13]. The
robot’s information is important to the human in order to assess the quality of the
collaboration and to observe whether the robot is executing its task correctly or needs
assistance. This exchange of information can be achieved through different devices.
Generally in HRI, devices such as joysticks [16], haptic devices [17], gloves [18], wearable
inertial measurement units [19], exoskeletons [20] and motion capture systems [21] have
been used. In HRC specifically, in [22] the human is monitored by an RGB camera and is
communicating his intentions through hand gestures while in [23] a leap motion capture
device is used. In the case of physical HRC such as in [12, 13] the robot is equipped with
force/torque sensors, which enables the interaction to be established through forces.

Once the human information has been captured, the robot needs to make inferences
about his intentions. In works where the humans motion is observed, their intentions are
predicted by estimating their future movements. In [24], the authors propose a method
for adaptation of robot trajectories, where humans and robots interact through physical
forces and the robot adapts to the human intention by predicting his motion using the
Fitts’ law. A different approach for predicting the human motion is presented in [25],

Chapter 1 Introduction

where the prediction lies on using a fifth order polynomial to fit on the recorded human
motion. The experiment used to evaluate this method is a pick-and-place scenario,
where the robot needs to predict the human motion and proactively choose which object
to approach in order to complete the task as fast as possible. While predicting the
human motions can lead to increased performance of the human-robot team, it also has
a major drawback, which arises in situations where the human is uncertain about his next
actions. Such uncertainty may yield predictions which are not in line with the human
intentions. To cope with this issue, the authors in [26] take into account the uncertainty
of a human prediction model within the interaction control framework. Specifically, they
consider a Hidden Markov Model for the representation of the human motion behavior
interpret any other human behavior deviating from this model as process noise. In
[13], the authors present a framework for robot adaptation in task-level and apply it in
physical HRI tasks. The human controls the motion of a robotic manipulator through
interaction forces and after a short period of time the robot recognizes the task the
human demonstrated task from a set of available tasks so that it can execute it on its
own. In [12], the aforementioned idea is extended to enable the robot to converge to any
task without having a predefined set. This is achieved by learning the parameters of a
dynamical system which can produce the human demonstrated motion.

The aforementioned papers consist of state-of-the-art works in the field of HRC. How-
ever, they focus primarily on the robot learning and do not address the interaction from
the human perspective. When agents collaborate it is important to observe the change in
the behaviour and the actions of all partners [27], since in collaboration settings both the
human and the robot need to adapt to each other’s skills in order to cooperate efficiently.
This mutual learning in HRC settings is referred to as Human-Robot Co-Learning
in the literature [27, 28]. An introduction can be found in [27] where the definition
of co-learning is established and the differences between co-learning, co-adaptation and
co-evolution are presented. Furthermore, the authors define the requirements for study-
ing how bi-lateral adaptation emerges from interactions between humans and robots
and present the theoretical framework and methodological approach through an exper-
imental study using a virtual robot for rescuing people trapped in debris. Another
important study of co-learning can be found in [28], where the authors set the principles
and challenges for successful human-Al co-learning in order to acquire the strengths of
human-human teams while exploiting the benefits of intelligent technology. One aspect
that the authors underline is the importance of focusing on the personal skills, strengths
and weaknesses of the human partners. A relevant field in which research focuses on the
personal capabilities of each participant in HRI is the personalized tutoring [29, 30]. This
field studies if and how the learning procedure of humans can be improved by interacting
with a robot-tutor. The main results indicate that assisting humans by focusing on their
strengths and weaknesses, instead of not providing any aid at all or providing general
aid, leads to increased learning performance of the humans. Therefore, it is important
to observe if HRC can be improved by assisting the humans.

Many works around Human-Robot Co-learning research focus on how the performance
of a human-robot team can be improved by mutual adaptation. In [31] the authors
present an algorithm which allows robots to recognise human adaptive behaviours and

Chapter 1 Introduction

guide them properly in order to achieve shared goals. The framework is evaluated
through experiments where the team needs to collaborate for transferring objects. A
similar work is presented in [32], where a framework which enables the robot to either
adapt to the human intentions or guide the human to efficient actions is presented. The
results show that enabling mutual adaptation leads to increased team performance.

While these works present impressive and important results in the content of Human-
Robot Co-learning, they do not address the issue of real-time robot learning. A recent
work which focuses on this aspect of the learning process is presented in [33]. The
authors present a HRC setup between a robotic manipulator and a human user and
develop a collaborative game which enables them to study real-time mutual learning in
HRC settings. The results show that their method leads to successful training of the
team. At the same time, it is observed that there exist significant differences in the overall
human-robot team performance among different participants. This observation, along
with the results from works regarding personalized tutoring, indicate the importance of
focusing on the personal skills of each human in order to improve the performance of the
team. However, in the context of Human-Robot Co-learning, focusing on the personal
skills of each human has not been addressed in the literature yet.

2 Thesis Organization

In Chapter 2 we provide an overview of Machine Learning, Artificial Neural Networks,
Reinforcement Learning and Deep Reinforcement Learning and discuss how Transfer
Learning can be applied to Reinforcement Learning. In Chapter 3 we present works
that have used Deep Reinforcement Learning in Robotics, discuss about the limitations
of the current algorithms when applied specifically in robotic applications and present
the motivation of the thesis. In Chapter 4 we present the methods used for evaluating
the use of PPR in a HRC scenario and describe the experimental setup. The results are
presented in Chapter 5. Lastly in Chapter 6 we summarize the findings of the thesis and
discuss about the limitations and potential future work.

Chapter 2
Background

In this chapter we present the theoretical background for Deep Reinforcement Learn-
ing (DRL) and Transfer Learning (TL) in DRL. We first provide an overview of Ma-
chine Learning (ML) and discuss about the limitations which led to the development
of Deep Learning. We then present a category of ML called Reinforcement Learning
(RL), which in conjunction with Artificial Neural Networks (ANN), are the foundation
blocks for DRL. Afterwards we present the DRL framework and focus on the Soft Actor-
Critic algorithm (SAC). Finally, we discuss about the concept of Transfer Leaning (TL)
and the techniques used for applying TL to DRL, while focusing on a technique called
Probabilistic Policy Reuse (PPR).

1 Machine Learning

Machine learning is a branch of artificial intelligence (AI) and computer science which
focuses on enabling systems to solve problems without being explicitly programmed. ML
can be divided into three main parts [34]:

e “A decision process”: A set of calculations based on input data that returns a
“guess” or an action depending on the algorithm used.

e “An error function”: A method of measuring how good the output of the decision
process was.

e “An updating or optimization process”: A procedure for ensuring that future
guesses or actions will be better than the previous ones.

There are four main categories of ML algorithms, which depend on the type of the
problem and the availability of the data:

e Supervised learning: Algorithms which aim at prediction or classification based
on labeled data. Examples include the prediction of the human motion from 2D
visual data [35].

o Unsupervised learning: Algorithms which aim at prediction or classification based
on unlabeled data. An example is the exploration of a goal space for robots [36].

Chapter 2 Background

o Semi-supervised learning: It uses both labeled and unlabeled data and is mainly
utilized in situations where the acquisition of a sufficient amount of labeled data
is not possible. Semi-supervised learning has been used for modelling the human
behaviour in HRC scenarios [37].

e Reinforcement learning: It is used in situations where an agents operates in an
environment and needs to take actions. An example is real-time mutual learning
between a human and a robotic manipulator [33].

The selection of the ML algorithm depends on many factors, the most important
of which is the type of problem we are trying to solve. However, choosing the right
algorithm does not guarantee a successful outcome on its own. An equally important
aspect is the mathematical representation of the problem. For example, predicting
the future motion of a mobile vehicle could be done based on its current velocity and
acceleration. Other factors that affect the performance of the ML algorithms include
the size of the dataset and the dimensionality of the representation, often called feature
space.

Traditional ML showed promising results in problems where it was possible to extract
useful features and the size of the feature space was relatively small. In problems however
where the feature extraction is impossible or the dimensionality of the features is large,
ML is unable to provide solutions.

Deep Learning (DL) and artificial neural networks (ANNs) are an extension of Machine
Learning approaches which overcome the aforementioned limitations of the traditional
ML. ANNs are designed to work similarly to the biological brain. The human brain
consists of billions of neurons used to process input from the environment, such as
vision, hearing, smelling e.t.c.. Every neuron processes the information it receives and
propagates it to many other neurons which process the information they get.

output

Figure 2.1: Artificial neuron. A weighted sum of the input is passed through an activa-
tion function to produce the output of the neuron. The x; are the outputs
of the previous neurons or the initial features and the w; are the parameters
of the neuron.

The artificial neuron, which consists of the building block of ANNS, is roughly simu-

Chapter 2 Background

lating the biological neuron. Mathematically speaking, each neuron receives input from
several neurons. This input is processed using a weighted sum and adding a bias term.
This outcome then passes through an activation function. The output of the activation
function is also the output of the neuron and is propagated to other neurons. A visual
representation of a neuron is shown in Fig. 2.1. The output of a neuron can be written
as f(wo + XN, w; - ;). An ANN is a collection of neurons as shown in Fig. 2.2. The
neurons are structured in teams called layers. The first layers is called input layer, the
last output layer while the rest are called hidden layers.

—7 N
\‘l//[o}\‘\'l,/{Q}\}{/ C

AVAN

T "%
N" Y/ .<A‘/'Q‘
AL D0 2%\

‘ N "

AR EL
O S ZS
“V.V[’“\V“"&‘
A~

Input layer Hidden layer Hidden layer Output layer

Figure 2.2: Artificial Neural Network. Each neuron receives input from all the neurons
of the previous layers and propagates its output to all the neurons of the
next layer.

Learning Procedure

The goal of the learning procedure is to learn the parameters w; for each neuron. This is
achieved by defining an objective function parameterized by w; and trying to minimize
it. The main steps of the learning procedure of a ANN are as follows:

e Input: The input of the ANN is a feature vector.

e Feed-forward: The feed-forward procedure produces the output of the ANN.
Each neuron computes its output as explained in the previous section and propa-
gates this output to the following neurons. The final result is the prediction Y of
the ANN for the current input ¥ = f(z, w).

Chapter 2 Background

o Loss: The loss L(w) is computed by comparing the predicted value Y with the
groundtruth one Y'. The type of the loss function differs from task to task.
However, a very common one is the Mean Square Error (MSE) and is defined as
follows: N oy

MSE(y. §) - Zalti= 1)
N
where N is the total number of samples.

o Backpropagation: The next step is to update the parameters of the network in
order to minimize the loss. The backpropagation algorithm uses the chain rule to
update the parameters starting from the end towards the start of the network. The
idea is to update the parameters towards the direction of the gradient of the loss
[38]. A common way to update the parameters is to use the Stochastic Gradient
Decent algorithm:

Wiyl = wW; + - VwiL(wi)

where « is the learning rate and determines how much the algorithm alters the
parameters.

Another important component of the ANNs are the activation functions. The activa-
tion functions are used to add a non-linear attribute to the neural network. Without the
activation function, the output of each neuron (and therefore the output of the entire
ANN) is just a linear regression of the input, which in most problems does not lead to
a solution. The three most commonly used activation functions are the Sigmoid, Tanh
and ReLU.

The sigmoid function is defined as follows:

1

f(z) = Fp— (2.1)
A neuron with a sigmoid activation function is basically a logistic regression model.
Small and gradual changes in the input x produce small and gradual changes in the
neuron’s activation f(x), but very small or very large values of x are mapped to 0 or 1,
meaning that no significant change in the output is observed.

The tanh function is similar to the sigmoid with the difference that the output range

in [—1,1] and is defined as follows:

el —e™ %

fe) = 7—= (2.2)

et 4+ e %

Unlike the sigmoid function, tanh avoids the saturation issue is usually adopted in hidden
nodes.
The third common activation function is the ReLU and is defined as follows:

f(z) = max(0,x) (2.3)

Note that the groundtruth value is not always known. In these cases (such as in DRLO an estimated
groundtruth value is used

Chapter 2 Background

ReLU functions only have positive firing mode and in practice it has been observed that
they help ANNs learn faster than sigmoid or tanh.

Universal Approximation Theorem The Universal Approximation Theorem states
that an ANN with a single hidden layer and with finite number of neurons can approxi-
mate any function. The practical use of the Universal Approximation Theorem is that
it guarantees that any complex function can be estimated by a neural network.

2 Reinforcement Learning

2 .1 Markov Decision Processes

Reinforcement Learning is an area of Machine Learning where an agent learns how to
interact with an environment in order to achieve specific goals [39]. It is widely used in
problems which can be modelled as a Markov Decision Process (MDP). MDP is a
discrete-time stochastic control process and is applied to situations where outcomes are
partly random and is defined as a tuple (S, A4, T, R)?, where:

o §S: set of states which correspond to a representation of the environment.
o A= A(s): set of actions the agent can take at any given state.
o T =T(s,a,s): probability that an action « at a state s will yield the state s'.

e R = R(s,a,s'): immediate reward for transitioning to state s’ from state s by
taking action a.

At each timestep t = 0,1, 2, ... the agent receives a state s; € S and then selects an
action ay € A which changes the state of the environment to s;,; € S. Furthermore, it
receives a reward r.11 € R for taking the action oy in the state s; and transitioning to
the state sy+1. The goal of RL is to find a solution to problems which can be defined
as a MDP. The solutions are mappings from states to probabilities of selecting possible
actions, are called policies and are denoted as m(«s). At this point, let us note that
the policy can be either deterministic, meaning that for each state s, m(als) € {0, 1}, or
stochastic, meaning that m(a|s) is a probability distribution.

The first step towards solving RL problems is to define them as a MDP, namely define
the state space S, the action space A, the reward function R and the transition function
T. The second step is to define a way for the agent to construct a policy m(a|s) which
will enable him to solve the problem. The general idea is that actions which bring the
agent closer to solving the task are considered to be good actions. From a mathematical
perspective, finding such actions is achieved by trying to maximize the future expected
reward. This maximization guarantees that the agent will converge to a policy and
specifically to an optimal policy 7/ («|s), meaning that the agent will solve the problem
in the most efficient way. The future expected cumulative reward is defined as

Ge=> 7" Riypn (2.4)

1=t

2The notation used for the rest of the section is the one used in [39].

Chapter 2 Background

where Ry g1 = reyg+1 is the reward that the agent received at the timestep t+k-+1 and
0 < v < 1is a discounting factor. The discounting factor is mandatory because otherwise
the optimization might not be possible. This is because in the case where no discounting
factor is used, the cumulative reward function would be Gy = > 5° Riyx+1 and in many
settings this might tend to infinity (G — o0), resulting in trying to optimize using an
unbounded function. The discount factor solves this issue since Gy = > 52, At Rijgv1 >
G =327 Rz = Rmaz - Y527 = Riaz/(1 — 7). Furthermore, the discount factor
implements the idea of focusing more on immediate rewards than future ones.

2 .2 Basic Concepts

Based on the knowledge of the agent about the environment, RL problems can be divided
into two main categories. The first one is called model-based and it pertains to problems
where the agent has a model of the environment. Based on this model, the agent can
predict the outcome of his actions at any given state. In other words, in model-based RL
the agent can construct the transition function 7. The action selection depends on the
accuracy of the model and the more accurate the model is, the better the agent actions
are. The second one is call model-free RL. In model-free RL the agent can not predict
the effect of its actions to the environment and therefore can not construct a transition
function 7. Instead, it follows a try-and-error procedure, meaning that it takes actions
and observes how they alter the environment. By repeating this procedure, the agent
distinguishes good from bad actions depending on whether they enable it to solve the
task.

In order for this repetitive try-and-error process to be successful, the agent needs at
first to collect enough information about the environment. This is typically achieved
through a strategy named Ezploration-FExploitation. During the learning process, the
agent can follow two approaches for choosing which action to take at each state:

o Exploration: The agent chooses randomly an action.
o Exploitation: The agent chooses an action based on its current policy.

At the beginning of learning, the agent is encouraged to take random actions in order
to collect information about the environment. As it gathers information and learns
more, the agent decides to start taking actions based on its knowledge, namely based
on its current policy. This procedure is also referred to as the e-greedy algorithm. The
exploration-exploitation trade-off is rendered by a parameter € which is initialized to 1
(meaning that the agent will explore the environment) and slowly decays (meaning that
the agent gradually starts to exploit his knowledge).

In the present thesis, we focus on the model-free RL. The algorithms used for solving
model-free RL problems can be divided into three main categories: Value-Function based
algorithms and Policy based algorithms and Actor-Critic algorithms.

10

Chapter 2 Background

2 .3 Model-free algorithms

Value-Function based algorithms estimate how good it is for an agent to be in any
state s or how good it is to perform a given action a in a state s. The term “how good”
is defined in terms of future expected rewards. Using the Bellman equations, the value
of a state s under a policy 7 is defined as follows:

V7™ (s) = E[Gy]s]
= 3" n(als) 3 T(s'|s,a)[R(s,a,8') + V7 (s))] (2:5)
a€A s'esS

Similarly, the value of taking an action a at a given state s is defined as follows:

Qﬂ(sv CL) = E[Gt|5’ a]
= 3. TS|, a) [R(s,a,8) + 7 S w(d]s)Q(s,)] (2.6)

s'eS a’€eA

Most value-function based algorithms try to maximize the function Q(s,a), namely
to find the policy 7* which provides the best action a at any given state s in terms of
maximizing the future expected reward. The most important issue of the maximization
process is that Q(s, a) is not differentiable and its optimal value is unknown. There exist
different techniques which solve this type of optimization problems [40], like Dynamic
Programming-based methods, Monte-Carlo methods and Temporal Difference Learning.

Policy based algorithms take a more direct approach than the ones based on the
value-functions. Instead of trying to estimate a value in each state or a value of each
state-action pair and then derive a policy, they try to directly construct a policy m¢(als;)
based on some parameters . The idea is for the algorithm to learn these parameters by
maximizing the expected reward. One important difference between the Value and the
Policy based algorithms is the amount of memory they require. Value functions need
to store the value of each state and the value of each state-action pair. Policy based
algorithms, on the other hand, need to store only the values of the parameters 6, which
in general requires less memory. For this reason, they are preferred over Value-based
algorithms in cases where the state or the actions space have high dimensionality.

As mentioned earlier, Value-based algorithms fall short in cases where the state space
is large or the action space is continuous. This is because exploring all possible actions
using an e-greedy strategy might require a prohibitive amount of time and the algorithm
might converge to a local maximum instead of the optimal policy. The second issue arises
in cases where the action space is a continuous space e.g. when training a self-driving
car where the action is the angle that the agent needs to turn the wheel. The third
and final issue is that the exploration strategy might not be sufficient. Suppose that
in an environment the agent can take 10 different actions using an e-greedy policy with
€ = 0.1. Assuming that the action 1 a; has the highest Q-value means that the agent
has a chance of 91% to choose this action (90% using the e-greedy policy and 1% to
choose it randomly), while the rest actions have 1% chance of being selected. Therefore,

11

Chapter 2 Background

in cases where Q(s,a1) = 3.01,Q(s,a2) = 3,Q(s,a10) = 0.01, the probability of selecting
the action a; is much larger than the probability of selecting action as even though the
respective Q-values are similar. Furthermore, the action as has the same probability of
being selected as the action ajg even though Q(s, az) >> Q(s, aio).

One way to solve overcome the aforementioned problems is by using Policy-based
algorithms. These algorithms skip the part of evaluating all the state-action pairs and
instead learn directly a policy m;(a|s), thus avoiding all three problems described in the
previous paragraph. The most important issue is the selection of the objective function
that will be used in the training and which will estimate the policy w. A common choice
is the total cumulative reward over an entire episode:

J =Y [Q(s0,0) - 7(a)] (2.7)

which is actually the value function V' (sg) at the initial state sg.

Even though this approach solves indeed the issues of the Value-based algorithms, it
introduces another problem which is related to the objective function. Consider the case
where each step yields a reward of +10 and the 36" step yields a reward of -100. The
issue is that the agent has access only to the overall reward has no knowledge that the
step 36 yield such a negative reward, meaning that the agent might not change its action
at step 36 in future episodes.

A way to overcome this issue while maintaining the advantages of the policy-based
algorithms is by combining the ideas of direct policy learning and evaluating the state-
action pairs. Specifically, a network is used to predict the best action for each state
(namely learn the policy) named Actor and a second network to evaluate this action
selection (namely learn the Q-function) named Critic. The algorithms which fit this
architecture are called Actor-Critic algorithms. The optimization techniques used
for the Actor-Critic algorithms are the same as the ones listed in the presentation of
the value functions. Out of these, the most common one is the Temporal Difference
Learning (TDL).

TDL is an iterative procedure which updates the value of a state-action pair by taking
a weighted average of the old value and the new information:

Q" (st,at) < Q(sg,at) + - [re + v - maxg - Q(st41,a) — Q(st, ar)] (2.8)

The “new information” is the immediate reward for taking the action a in the state
s and the discounted future reward assuming that for any future state the agent acts
optimally, namely he takes the best action. The parameter « is the learning rate and it
determines how much we will take into account the new information. It has also been
proven that this procedure converges to the optimal Q*(s,a) function even though the
agent acts suboptimal in the meantime.

A widely used algorithm which belongs to TDL is the Q-learning algorithm. The main
steps are summarized in Algorithm 1 [41]. In Q-learning, we first initialize the learning
rate a, the discount factor v and set the exploration ration € to 1. Furthermore, we set
the values of each state-action pair to 0 and define a decay factor E used for altering

12

Chapter 2 Background

the exploration ratio (line 1). At the beginning of each episode, we set the current
state to the initial state of the environment (line 3). Then, as long as the game has
not ended (line 4), the agent first selects an action a at the state s either by exploring
the environment (random action) or by exploiting his knowledge (the action is derived
by the current policy) (lines 5-10). Then, he observes the new state s’ and receives the
reward r for taking the action a in the state s and transitioning to the new state s’ (line
11). The next step is to update its current estimate of the state-action s, a pair based on
the TDL update mechanism 2.8 (lines 12-13). The new state s’ is then set as the current
state (line 14). When the episode ends, the exploration ratio is decreased by the factor
E which encourages the agent to depend on his own policy for the action selection as he
moves to further episodes.

Algorithm 1 Q-learning

1: Initialize:
«a — learning rate, vy — discount factor,e — exploration ratio
Q(s,a) + 0Vs e S,ae A

0<E<<l1
for episode = 1 to max_episodes do

2:
3 S < S

4 while s # Siermina do

5 random_action = rand([0, 1])
6: if random_action > € then

7 a < choose_random_action
8

9

else

: a < m(s)
10: end if
11: Take action a, receive reward r and next state s’
12: a”™ <+ maxz(Q(s,a))
13: Q(s,a) + Q(s,a)+a- (r+v-Q(s,a™) —Q(s,a))
14: s s
15: end while
16: e+ ec—F
17: end for

3 Deep Reinforcement Learning

Reinforcement Learning is used in problems where the state space S or the state-action
space S x A is relatively small, e.g. a game where an agents moves in a finite grid and his
actions are up, down, left, right. In this case, the Q(s, a) function is stored in a tabular
data structure, where each cell stores the value of a state-action pair. For problems,
however, where the state-action space is large, it is impossible to store all the values
Q(s,a) in the memory. Suppose for example that we want to train an agent to learn
how to play atari games as shown in Fig. 2.3. In the case where the input to the agent

13

Chapter 2 Background

is the image of the game and the size of the image is 200 x 200 pixels, the dimension of
the state space is (256%)290%200 which is an insanely large number. It is therefore clear
that storing information about so many states in a computer memory is impossible.

Figure 2.3: Atari game. The image is 200x200 RGB pixels where each channel takes

a value in the interval {0,1,2,...,256}. The dimension of the state space is
(2563)200X200.

The solution to this problem was first introduced in [42]. The main idea is that
instead of computing and storing in memory the values Q(s,a), we try to learn an
estimate Q(s, a) of Q(s,a). As the agent explores the environment, his estimation Q(s, a)
improves. Furthermore, the only thing that is stored in memory are the parameters of
the state-action function and not the values for every state-action pair. The estimation

Q(s,a) is modeled as an artificial neural network. Furthermore, it is guaranteed by the
Universal Approximation Theorem that an ANN is able to estimate the Q(s, a) function.

3 .1 Deep Q-Network

The first Deep Reinforcement Learning algorithm was presented by a group of researchers
at DeepMind in [43]. Its name is Deep Q-Network (DQN) and it is the first algorithm
to combine Q-learning with neural networks. DQN was tested in Atari games and the
results showed that the agent managed to learn how to win these games while having as
input the raw 2D image and no other hand-crafted features. A neural network was used
for estimating the Q(s,a) function. Furthermore, the algorithm uses an e-greedy policy
for selecting the agent’s action, like in the traditional RL. Lastly, the authors presented
two novel ideas for improving the stability of their algorithm: ezxperience replay and
frozen target metwork.

Experience Replay The idea of experience replay is to store the agent’s experience,
namely the states s; that it visited, the actions a; that it took, the rewards r; that it

14

Chapter 2 Background

received and the states s;41 that it transitioned in a buffer. During the training, a mini-
batch of the experience is randomly sampled from the buffer and fed to the network.
The main advantage of the experience replay is that the the training does not take place
between consecutive inputs (i.e. in the atari games consecutive frames might be highly
correlated) and therefore the network can learn without overfitting. Another advantage
is that old experiences might be reused, which makes the learning smoother and more
efficient.

Frozen Target Network The algorithm uses two networks with an identical architec-
ture, but different parameter values: 6 for the Q-network and 8~ for the target network.
While the Q-network is updated every updated cycle, the target network stays frozen
and is updated every C cycles by copying the parameters of the Q-network: = = 6.
This method induces a smoothing of oscillating policies and leads to more stabilized
learning.

Soft Actor-Critic

Even though DQN led to success in cases where traditional RL could not provide solu-
tions, it still presents the limitations of poor exploration of the Value-based algorithms.
As described in 2 .3, the Actor-Critic algorithms overcome the limitations of Value-based
and Policy-based methods. Therefore, the idea was to develop an Actor-Critic algorithm
designed for the DRL framework. This lead to the creation of the Soft Actor-Critic
algorithm. The architecture of the SAC is shown in Fig. 2.4. SAC is an algorithm that
uses the ideas of experience replay and frozen target network introduced in DQN and
trying to estimate not only the policy m;(als) directly but also the Q-function. As far
as the optimization procedure is concerned, SAC seeks to maximize the entropy of the
policy instead of just the future expected reward. The term“entropy” can be interpreted
as how unpredictable a variable is; the higher its entropy, the more unpredictable it is.
We want the SAC model to have high entropy in order to encourage exploration and to
encourage the policy to assign equal probabilities to actions that have same or nearly
equal Q-values.

The SAC uses three networks: a state value function V', a state-action function @
(Critic) and a policy function 7 (Actor).

e Value Network: The value network is trained by minimizing the following error:

T () = Bup |5 (Vi(s0) = Bagms, [Qulst,a0) ~ logmo(anlsn)]) | (29)

The idea is that across all the states that we sample from the experience replay
buffer, we want to minimize the squared difference between the prediction of our
value network and the expected prediction of the Q function plus the entropy of
the policy function 7.

o Critic (Q Network): The Critic is trying to estimate the state-action function

15

Chapter 2 Background

Policy improvement . .
Policy gradient update ng Policy eyaluatmn
Estimated discounted Critic Q-function update
reward >
Action a State s
Value
iteration
. New State s’ Reward
Environment .
Function

()

State transition

Figure 2.4: Architecture of the Soft Actor-Critic algorithm. The Actor decides which

action a to take in each state s, namely it estimates the policy 7(a|s). The
Critic evaluates the action that the Actor chose, namely it estimates the
function Q(s,a) [2]

Q(s,a) and is trained by minimizing the following error:

JQ(0) = E(s, 0,)~D B (Qe(St, at) — Q(st, at))} (2.10)

where

A

Qstsar) = 7(st,0t) +7 - By Vg (5041)|

The first equation states that for all state-action pairs sampled from the experience
replay buffer, we want to minimize the squared difference between the prediction of
the the Q-function (Qy) and the “actual” Q-function which is the immediate reward
granted for the state-action pair s, a; plus the discounted expected value of the
next state. Note that the value function Vi differs from the function approximated
by the value network. By comparing the equations 2.9 and 2.10 we observe that
the training of the value network depends on the Q-function and vice versa. This
inner-dependency makes the training very unstable. The solution to this problem
is the use of a frozen target network as in the DQN; We construct a second value
function which parameters are the same as the original value function, but with

16

Chapter 2 Background

a time delay. It has been shown that this approach overcomes the issue of the
stability in the training.

o Actor (Policy Network): The Actor is responsible for selecting which action the
agent will take at any given state. In other words, the actor estimates the policy
m(als)Vs € S. The policy network is trained by minimizing the error:

eQolst,)

Jr(¢) = Egp [DKL <7r¢(s 7o))] (2.11)
The Dgy function is called the Kullback-Leibler Divergence and it shows how
different two distributions are. In order to minimize the error of two distributions,
the authors in [44] propose a reparameterization trick to make sure that sampling
from the policy is a differentiable process. The parameterization procedure of the
action a; is a; = f¢(et; st), where the € is a noise factor. Basically, we model the
action probability distibution to be a Gaussian distribution with a mean pg(s)
and standard deviation og(s) and we try to learn these parameters. Using the
reparameterization technique, the objective function is expressed as follows:

Jr(¢) = Es,nD eiN [50977¢(f¢(6t; se)|se) — Qo(se, fo (e St))}

4 Transfer Learning

Transfer Learning is an area in Machine Learning where knowledge regarding one prob-
lem (referred to as source problem) is utilized in order to solve a similar problem (referred
to as target problem) [45]. For example, if we have trained a DRL agent to control the
motion of a vehicle in the 2D space, then this model may be exploited to train another
agent for navigating a vehicle in the 3D space [46].

When applying TL in Deep ANNSs, the learning procedure is the same as the one
discussed in Section 1 . The difference is that instead of starting from a model with
random parameters, we use a pretrained model hoping that its parameters will be closer
to the optimal parameters for the target problem. In this way, we accelerate the training
procedure. In DRL, however, applying TL is not so straightforward because similar
problems may differ in fundamental aspects such as the dimension of the state or action
space. An example is the case where we have trained a 6-DoF robotic manipulator to
solve a task and the goal is to teach a 7-DoF manipulator to solve the same task. Even
though the task is the same, the difference in the robot embodiments (6-DoF to 7-DoF')
alters the state space and therefore the trained model can not be utilized directly.

As mentioned in [45], there are five techniques for transferring knowledge in RL frame-
works:

e Reward Shaping: The idea of reward shaping is to utilize knowledge in order to
alter the reward function of the target task in order to accelerate training. An im-
portant characteristic of reward shaping is that it might change the convergence of

17

Chapter 2 Background

the policy because it alters the reward function. However, in [47], the authors show
how any function can be used to reshape the reward function while maintaining
policy invariance.

o Learning from Demonstrations: The general idea is that provided demonstrations
encourage the agent to explore states which will help him converge to a efficient
policy faster. This can be achieved either “offline”, by learning the value function
[48] or the model transition dynamics [49] or “online” aiming at direct efficient
exploration [50].

e Policy Transfer: Previously learned policies are used to construct the new policy.
One way to achieve this is by policy distillation [51], which means that the agent
will select an action by minimizing the divergence of action distributions between
the “teacher”(source) policies and the “student”(target) policy. Another approach
is direct policy reuse [52], where the agent can select an action based on the pre-
learned policy instead of his own policy.

o Inter-task Mapping: This method is not a standalone technique for transferring
knowledge but rather enables other techniques to be applied when the source and
target domains differ. Specifically, inter-task mapping methods define functions
that map the source state space to the target state space, or the source action
space to the target action space or any other RL component [53]. This way, pre-
learned policies can be exploited for solving to a target problem that might share
conceptual similarities with the source problem but differ in the MDP definition.

e Representation Learning: Representation learning aims at extracting features of
the source problem which exist in the target problem as well. This is achieved
by disentangling the state space, the action space or the reward space into task-
invariant sub-spaces which are shared by both source and target domains.

In this thesis, we will focus on Probabilistic Policy Reuse. The reason why we chose to
use this method is because it is the simplest approach to apply TL in DRL frameworks
and because conceptually it makes sense to use it to our problem. The last point is made
clear in Section 3 , where the motivation of our work and the conducted experiments are
presented.

Probabilistic Policy Reuse: As described in Section 2 .2, a RL agent will prob-
abilisticaly choose to either exploit the knowledge it has learned, or explore a random
action (the exploration-exploitation trade-off). Probabilistic Policy Reuse adds a third
option, which is the exploitation of a previously learned policy, often referred to as ex-
pert policy. Specifically, with probability v, an action is selected according to the old
policy; with probability 1 — ¢, a standard action selection mechanism, such as e-greedy
is used. 1 is decayed over time to allow the learner to emphasize new knowledge more
as it learns more in the new task. This adds a bias to the exploration of the agent,
intended to guide it towards good policies in the new task.

18

Chapter 3
Deep Reinforcement Learning in Robotics

In this chapter we present works that have used Deep Reinforcement Learning in robotics.
We first present some works that have utilised DRL in order to solve robotic tasks. Then
we discuss the limitations of DRL when applied to robotics and possible approaches that
have been developed in order to overcome these issues. Finally, we address the use of

DRL in HRC specifically.

1 Brief Overview

An overview of RL algorithms used in robotics is presented in [40]. However, the authors
focus on RL algorithms because by the time of the writing, DRL was not yet applied to
robotics. This gap is addressed in [54], where a survey of works that have applied DRL
in robotic manipulation tasks is presented.

Deep Reinforcement Learning has been applied to many fields of robotics, such as
mobile platforms [55, 56, 57], robotic arm control [58, 59, 60], robotic grasping [61, 62, 63],
humanoids [64, 65, 66], drones [67, 68, 69] quadruples [70] and others. The reason
behind this extensive use in different robot embodiments is because DRL policies can
produce motions and behaviours that are extremely difficult to be generated by hard-
coded control laws due to their complexity.

As far as mobile platforms are concerned, in [55] the authors use the Asynchronous
Advantage Actor-Critic algorithm to enable a mobile robot to navigate without a map
or a path planner and using data from a 2D laser scan and a RGB-D camera. The goal
is for the robot to get to a predefined goal pose while avoiding static obstacles and is
achieved by training the robot to a simulated environment and then deploying it to the
real world. In [70], the authors present a DRL algorithm based on maximum entropy
RL in order to teach a quadruple how to walk. An additionally interesting result is
that the robot learns without having access to his dynamic model. In [63] the authors
propose a Q-learning based network architecture for improving the grasping capabilities
of a robotic manipulator using visual-based input from a multi-camera setup. For robot
arm motion control, a Deep Q network has been used in [58] to enable a 3 DoF robotic
arm to reach target configurations without prior knowledge of the goal and using only
raw visual pixels as input to the network.

19

Chapter 3 Deep Reinforcement Learning in Robotics

2 Limitations of DRL in Robotics

Even though DRL has gained success in the field of robotics, there are still many chal-
lenges that make its use impractical to some extent. The three main issues are Sample
insufficiency, the Exploration-Ezploitation trade-off and the Generalization.

Sample insufficiency means that DRL algorithms need large datasets in order to con-
verge to a near-optimal policy. A possible solution to this issue is by using multiple
robots simultaneously for the data collection [61]. In this work, the authors used 14
robots to collect data in order to train a grasp prediction model. This approach, how-
ever, is costly and in most cases infeasible due to the lack of hardware. Another way
of solving the sample insufficiency problem is by training robots in simulation, which is
faster and less costly, and transferring the learned policies to the real world. In [71], the
authors present a survey of methods for transferring learned policies from simulated en-
vironments to the real world. The first method is called “Zero-shot Transfer” and refers
to situations where the the simulation is very similar to the real world and the policies
can be transferred directly. The authors in [72] evaluate this procedure through a reach-
ing, a pushing and a sliding task executed by a robotic manipulator. However, in most
cases, policies learned in simulation are not always efficient in real-world application due
to the differences between the two worlds.

One of the first approaches to address the aforementioned issue is called “System
Identification” [73] and aims at deriving a precise mathematical model of real-world
systems and building simulations based on this model. This way, the simulation will
be very similar to the physical system and approaches like “Zero-shot Transfer” might
be applicable. However, in many cases this approach is not realistic due to the com-
plexity of the system or the uncertainties of the real world. A third method used for
sim-to-real transfer, which overcomes the limitations of the “System Identification”, is
called “Domain Randomization”. In this approach, parameters of the simulation are
parameterized randomly in order to cover the distribution of the real-world data. An
example is [74], where an object detector is trained in a simulated environment under
several different conditions like camera positioning or illumination and then tested in
the real world without additional training for pick-and-place applications. Other appli-
cations where domain randomization has been applied include pose estimation [75] and
semantic segmentation [76].

The second issue that DRL algorithms face is the Exploration-Exploitation trade-off.
This concept has been introduced in Section 2 .2. The reason why this poses a challenge
for applying DRL in robotics specifically is because completely random actions might
lead to mechanical damage. A recent work which addresses this issue is [77], where the
authors present methods so that safety principles can be incorporated in reinforcement
learning. Safety has also been taken into account in real-world applications, like [7§],
where a neural network is used to predict the outcome of an action in terms of safety.
This way, only safe actions are executed, leading to safe exploration. Another limitation
of random exploration is that it can be a time consuming procedure due to the high
dimensionality of the action space in robotic applications (e.g. an agent controlling the
rotation of the wheel of a self-driving car). An example work which addresses this issue

20

Chapter 3 Deep Reinforcement Learning in Robotics

is [79], where demonstrated trajectories have been utilised as a bias that governs the
learning procedure in early stages.

The final issue of DRL in robotics is the ability of the robots to generalize knowledge
in order to operate to new, unknown circumstances and environments. Most works
try to solve a RL task by training the robot from scratch. However, this approach is
non-optimal mainly because it is time consuming. One way to overcome this issue is
by transferring knowledge among conceptually similar tasks, just as humans do. The
methods for applying transfer learning in DRL have been presented in Section 4 . In [80],
the authors present an implementation of reward shaping in robotics in order to improve
the training of an RL agent used for mobile navigation by altering its reward function
based on the knowledge about the map provided by the SLAM algorithm. Learning
from demonstration has been applied in [79] where the issue of sparse reward function is
a pick-and-place scenario is addressed. The use of demonstrated trajectories for efficient
exploration enables the agent to solve the task, which might have been infeasible with
random exploration.

Pre-learned policies have also been used for training DRL agents. For example, policy
distillation has been applied in robotics in a continual learning problem [81], where the
goal is for a single RL agent to learn three different policies for three different navigation
tasks and learn which policy to use by identifying in real time the task to be solved.
The second approach is direct policy reuse [52] and the agent can select an action based
on the pre-learned policy instead of his own policy. This idea has been used in [66],
where the authors teach a humanoid robot how to walk fast by exploiting a policy
that allows the robot to walk in a normal speed. Knowledge has also been transferred
between morphologically different robots, like in [82], where the authors train a 3-link
robotic manipulator in three different tasks (target reaching, peg insertion, and block
moving) and exploit the policies in order to train a 4-link one. Finally, in the context of
representation learning, some works such as [83] show how to reuse the extracted features
for transferring knowledge, while other such as [84] focus on the feature extraction. An
application of representation learning in robotics is presented in [85], where the authors
show how extracting important features from the environment can accelerate the learning
procedure of an RL agent in the case of slot car racing and mobile robot navigation.

3 Motivation

Although there have been works which address the problem of collaboration in Human-AlI
teams such as [86, 87, 88], the work around DRL in Human-Robot teams in still sparse.
A recent work which focuses on this aspect of the learning process is presented in [33].
The authors present a HRC setup between a robotic manipulator and a human user and
develop a collaborative game which enables them to study real-time mutual learning in
HRC settings. The results show that their method leads to successful training of the
team. At the same time, it is observed that there exist significant differences in the overall
human-robot team performance among different participants. This observation, along
with the results from works regarding personalized tutoring, indicate the importance of

21

Chapter 3 Deep Reinforcement Learning in Robotics

focusing on the personal skills of each human in order to improve the performance of
the team.

As explained earlier, an important aspect of the learning procedure is the overall train-
ing time. In the context of mutual learning in HRC scenarios, different humans might
need different training times in order to achieve a certain performance or might achieve
different levels of performance in the same training time [33]. In this work we focus
on real-world HRC settings which depend on real-time mutual learning and adaptation
and study how they can be extended in order to improve the learning performance of
the team among different humans. Specifically, we suppose that a human needs to col-
laborate with a robot in order to learn in real-time how to solve a task. The robot is
controlled by a Deep Reinforcement Learning agent, who at the beginning of the col-
laboration does not have any knowledge about the task. The main idea is to observe
whether transferring knowledge by a pre-trained expert agent can improve the overall
performance of the team. In the RL framework, one way to achieve this is by using
Probabilistic Policy Reuse (PPR), which enables the agent to have access to the actions
of an expert agent. The method is evaluated by conducting experiments with different
humans. The experiments are divided into two groups. In the first one, no Transfer
Learning (TL) is applied while in the second one the PPR technique is used. The results
show that the second group managed to outperform the first group in terms of efficient
collaboration and training time. The main contributions are as follows:

e Design of a HRC task between a human and a DRL agent.

o Integration of the PPR method.

Integration of the system into ROS

Study with eighteen human-robot teams.

22

Chapter 4
Research Method

In this chapter we present a human-robot collaborative task that was developed in
order to conduct experiments and try to answer the research questions stated in the
Introduction. First we describe the robotic setup and the formulation of the MDP which
will be tackled by a SAC DRL agent. Then we provide some technical implementation
details. A detailed presentation of the implementation can be found in the Appendix.
The game is integrated into ROS [89], which is an open-source middleware widely used
for the development of robotic applications and the code can be found online'. Finally,
we provide details about the experimental setup and the user study.

Figure 4.1: Robotic setup. The robot is placed in the middle of a Im x 1m table. A
laser is attached to the EE of the robot in order to provide to the human
visual feedback about the position of the EE. The feedback is the red dot on
the table.

"https://github.com/ThanasisTs/human_robot_collaborative_learning

23

https://github.com/ThanasisTs/human_robot_collaborative_learning

Chapter 4 Research Method

1 Human-Robot Collaborative Game

In the HRC game, the team consists of a human and a Universal Robot UR3, which is
a non-redundant 6-DoF robotic arm. The robot is placed in the middle of a 1m x 1m
table and its EE is placed perpendicular to the table and can move parallel to it at a
certain height (Fig. 4.1). Furthermore, a laser is attached to the EE and points towards
the table (red laser dot). The human is responsible for controlling the motion of the
robot in one axis (y-axis), while a DRL agent controls the motion of the robot in the
perpendicular axis (x-axis). By combining the motions of the two partners, the EE can
move in the xy plane (plane of the table’s surface). The motion of the robot in the xy
plane is confined inside a 20cm x 20cm square. The goal of the team is to jointly control
the position of the laser dot inside the square and specifically to bring the the dot to the
goal position, which is in the middle of the square (Fig. 4.2). The team wins the game
if it manages to bring the laser dot inside the circle of the goal position with a relative
low speed within a time window of 30 secs, otherwise the team loses. The coordinates
of the goal position were [—0.264,0.242] with respect to a reference frame at the base of
the robot, while the position and velocity tolerances (maximum distance from the goal
position and maximum speed in order for the team to win) were 0.0lm and 0.05m/s
respectively.

The human-robot team played 150 games in total. At the beginning of each game, the
robot chose randomly an initial position out of the four possible ones and the EE was
automatically placed on top of it. The distance between the starting positions and the
goal position was 0.12m. Once it reached the starting position, a sequence of three short
and one long ”beeps” indicated the start of the game. In both cases, a different sound
was generated which informed the human about the outcome of the game. Furthermore,
the outcome as well as the score of the team was visualized in a computer monitor
(Fig. 4.3).

2 Reinforcement Learning agent

The motion of the robot in the x- axis is controlled by a SAC agent. As explained in
Section 2 .1, RL (and SAC essentially) is modelled as a MDP. In our case, the MDP is
defined as follows:

o S = {ee_pos_z,ee_pos_y,eevel_x,ee_vel_y}: The observation space is the EE po-
sition and velocity.

o A ={-1,0,1}. The actions the agent can take correspond to the acceleration in
the x- axis.

e R: At each timestep, the agent receives a reward of -1 if the EE transitioned to a
non-goal state and 10 if it reached the goal.

The parameters used in the SAC algorithm are presented in Table 4.1 and were based
on [33]. Furthermore, the implementation was based on [90], where the author presents
some which allow SAC to handle discrete action spaces.

24

Chapter 4 Research Method

Figure 4.2: Rectangle inside of which the red dot can move. The initial positions are in
the four corners denoted with the letter ”S” and the goal position is in the
center of the rectangle denoted with the symbol ”X”. The team wins if the
red dot gets inside the circle around the goal position with a relatively slow

speed.
|| SAC Parameters || Values ||
size of 1% hidden layer 32
size of 2"¢ hidden layer 32
¥ 0.99
T 0.005
ol 0.0003
B 0.0003
target_entropy _ratio 0.4
buffer_max_size 1000000
batch_size 256

Table 4.1: Parameters of SAC algorithm

No Transfer Learning

In case the SAC algorithm is used without TL, the selected action can be either a random
action or an action derived by the current policy. The action selection procedure is

25

Chapter 4 Research Method

Figure 4.3: Visualization of the score of a game. The outcome of the game ("Win” or
"Lose”) is visualized in the top left corner. The score is shown in the top
right corner while the number of the game is shown in the bottom.

summarized as follows:

random([—1,0,1]) i< N

. (4.1)
arg max, 7(als) i>N

NoTL a(i,in) = {

where i is the number of the current game, « is the selected action for the it game,

random[—1,0,1] means that a random action out of the possible actions is selected,

arg max, 7(a|s) means that the action derived by the policy is selected and N is the
game where the action selection strategy changes.

Probabilistic Policy Reuse

In the case of TL, a pre-trained “expert” agent is used. According to a probability 1/,
the agent can either select an action based on the “No Transfer Learning” procedure or
select the action derived by the policy of the “expert” agent. This idea is summarized

26

Chapter 4 Research Method

below:

No.TL.a(i,N) ¥ < Yy

(4.2)
arg maxXey Tegpert (|S) Y > Yppr

TL,Oé(i, N7 lb’ wppr) = {
where 1) is a random number in the interval [0, 1], ¢y, the PPR threshold and megpert
the policy of the expert agent.

3 Experimental Setup

3 .1 User Study

In order to validate the use of PPR in the HRC game, we asked 16 different people to
participate in the experiments. Out of the participants, 8 played without TL, while the
rest played with PPR. The expert agent used for applying PPR was trained beforehand
by an expert user who had been trained on the game for almost 10 hours. The percentage
of the participants regarding the gender, the experience with Artificial Intelligence and
with Robotics are shown in Table 4.2 while the average age was 29.2 with standard
deviation 4.8.

H Male Female H Al No AI H Robotics No Robotics H
[438% 56.2% [43.8% 56.2% [25.0% 75.0% |

Table 4.2: Gender, experience with Artificial Intelligence and with Robotics of the par-
ticipants

At the beginning of each experiment, a letter was given to the participants which
informed them about aspects of the experiment, such as the fact that their involvement
was voluntary and that no information about the experiments will be used against their
will. After that, they provided their written consent. The information letter as well as
the consent form are reported in the Appendices B and C . The study protocol was
approved by the Research Ethics Committee (REC) of NSCR “Demokritos”.

Instructions

The instructions for the experiments were given by the author of the thesis, who was
present throughout the entire experiment. The participants were informed about the
nature of the collaboration with the robot, the axis they were controlling (y- axis), the
total number of games (150), the two possible outcomes of each game ("win” or ”lose”
as well as the respective sounds), the visualization module and the fact that the games
were divided into groups of 20. Furthermore, the participants were told that the robot
movements were confined in the rectangle (Fig. 4.2) and that it was safe to operate with
the robot in close proximity not only due to the kinematic constraints imposed by the
design of the experiment but also because of the safety button in the polyscope of the
UR3, which shuts down the robot. The participants were not informed that a DRL

27

Chapter 4 Research Method

n=1 n=2 n=3 n=7
No TL RA CP CP CP
TL ‘l’ppr=0-7'0-61 prr=0-6'0-51 prr=0-5'0-41 prr=0-1'0-01

s | | (00 | | OO0 | | OO0

10 Training o
UL (14K updates) Testing
Games Games

\ /

Figure 4.4: Pipeline of the experiments. The first 10 test games are played with the
RL agent picking random actions (RA). In the first 10 train games, the
agent selects either random actions if no TL is applied or he uses the action
selection procedure (4.2) with v, = (0.7 — 0.61) depending on the game.
For the rest train games, the agent selects an action based on his current
policy (CP). In each training there are a total of 14000 updates.

agent was responsible for the EE motion in the perpendicular axis nor that after each
20-group of games a training was occurred. Regarding the latter, they were told that a
3-minute break existed after 20 games so that they could rest.

As far as the instruction about the robot control are concerned, the participants were
told that they could control the motion of the robot through the keyboard and specifically
using the keys “i”, “k”, “,”. The instruction for each key was given as follows:

W,

e “i”: The participant can move the EE away from him.

W,

e “7: The participant can move the EE towards him.

e “k”: By pressing the “k” button, the participant commands the EE to continue
moving the exact same way as it was moving the moment he pressed the button.

28

Chapter 4 Research Method

3 .2 Experimental Setup

The 150 games were divided into groups of 20 games. At the end of each group, the RL
agent was trained with 14000 gradient updates. Each group was then divided into two
subgroups of 10 games each (Fig. 4.4). The first 10 games were used to test the last
trained model while the second 10 were used to store data for the upcoming training.
Therefore, there were 80 testing and 70 training games in total. In the testing games,
the agent was sampling actions from its current policy whether TL was used or not. In
the training games, however, the action selection procedure depended on whether TL
was applied or not and was formulated based on 4.1 and 4.2. In 4.1, the parameter
N was set equal to 10. This means that for the first 10 training games the agent was
selecting random actions while for the rest 60 he was sampling from his current policy.
The parameter 1, in 4.2 was set initially to 0.7 and after each training game it was
decaying with a ratio of ¥ = 0.01. This training-testing procedure is shown in Fig 4.4,
while the parameters of the game are shown in Tables 4.3-4.4.

H Game Parameters H Values H
training games 70
testing games 80
maximum game duration 30 secs
duration of RL agent action 0.2 secs
start training after N training games 10
train the agent every N training games 10
games with random actions 10
total training cycles 98000
win reward 10
time penalty -1
initial ppr probability 0.7
ppr probability decay ratio 0.01

Table 4.3: Parameters of game

H Robot motion Parameters H Values H
goal position tolerance 0.01 m
goal velocity tolerance 0.05 m/s

maximum velocity in x- axis || 0.2 m/s

maximum velocity in y- axis || 0.2 m/s

Table 4.4: Parameters of robot motion

29

Chapter 4 Research Method

Familiarization

One important feature which might affect the performance of the teams was the difference
in the inherent abilities of the participants to control the motion robot in their axis.
During the collaboration, it is very difficult to conduct this assessment because the
motion of the robot in the agent’s axis might affect the actions of the humans. For
example, playing the game with a naive agent and with an expert one might result
in different human behaviours. To overcome this limitation, a total of 7 games were
played before the 150 games described above. In these 7 games, the EE was able to
move only to the axis controlled by the human. At the beginning of each game, the
EE was automatically placed in the initial position (Fig. 4.5). Once the game started,
the participant had a time window of 10 secs to achieve the goal which was to bring
the red dot to the goal position with a relatively slow speed. This way, we were able to
evaluate the ability of the human to control the robot motion. The goal position and
the positional tolerance were the same as in the HRC game but the velocity tolerance
was set to 0.02m/s.

Figure 4.5: Rectangle for the familiarization games. The “S” symbol denotes the initial
position of the EE while the “X” symbol the goal position. The EE can move
in the line connecting the two symbols.

30

Chapter 4 Research Method

4 Robot Control

4 .1 Human and RL control

Both the human and the RL agent control the motion of the EE in their respective
axis by providing commanded accelerations. The commanded accelerations are then
numerically integrated to commanded velocities. Therefore, the control design consists
of a feedforward term on the acceleration as follows:

Xeom = U (4.3)

Xcom - Xcom + Tc *)“(com (44

where u is the desired acceleration imposed by the human or the RL agent, X0, is the
commanded acceleration, X, is the commanded velocity and T, is the control cycle.
In our case T, = 0.008s because the robot controllers operate at 125Hz.

As shown by the control laws, both partners control the robot through commanded
accelerations. In the HRC game, they can apply three discrete accelerations:

« an acceleration of +a m/s?
« an acceleration of —a m/s?
e an acceleration of 0m/s?

where o > 0 is a positive constant. This kind of control imposes an inherent difficulty to
the game for the human. In this way, we enforce the concept of mutual learning, since
the human needs to learn how to control the motion of the robot while collaborating
and potentially adapting to the DRL agent.

4 .2 Reset

A feedback control law on the position of the EE in used before the start of the game in
order for the EE to get to an initial position. The control law is defined as follows:

Xcom = Kp * (Xdes - Xcurr) (45)

where X4, is the desired position of the EE, Xy its current position, Kp a 2x1 gain
matrix and X.o, is the commanded velocity. In our case, Kp = [1 1]7.

The motion of the robot is regulated by commanded EE velocities. The EE velocities
are then mapped to joint velocities using the Inverse Kinematics algorithm, which are
then passed to the robot controllers for executions.

5 Technical Implementation

The entire system is implemented in ROS and tested on Melodic and Ubuntu 18.04.
ROS is a middleware which provides the necessary functionalities for developing robotic

31

Chapter 4 Research Method

applications and is widely used mainly due to its large community. The main building
block of ROS is the node, which is an entity that provides a certain functionality. The
nodes communicate with each other by exchanging information, which is passed as ROS
messages. The communication was achieved through topics. Topics are named buses.
A node (called Publisher) sends information to a topic and multiple nodes (called Sub-
scribers) have access to this information. Topics are mainly used for exchanging streams
of data. Their main drawback is that they do not deal with the issue of data loss (pub-
lished data that did not reach the subscriber). Note that a node can both publish and
receive data.

human_command_topic

RL command
and game loop

Human

command

human_command_topic

EE velocities

Robot motion
generation

Robot controller

Figure 4.6: Simplified ROS graph

A simplified graph of the ROS system which shows the nodes and the communication
pipeline of the HRC game is presented in Fig. 4.6. The entire ROS graph (called rqt
graph) as well as a detailed presentation of the ROS implementation is presented in the
Appendix A . The components of the graph are presented as follows. Note that all the
nodes except for the Robot controller node were developed during the thesis.

e Human command: The human controls the motion of the EE in the y- axis through
a keyboard. A node listens to keyboard input and publishes ROS messages which
correspond to the human desired acceleration. Specifically the human can press
the buttons “i”, “k” or “,”. The “i” button applies an acceleration of +0.4 m/s?,
the “,” button an acceleration of —0.4m/s? and the “k” button applies zero accel-
eration. These values were chosen experimentally. In Fig. 4.6, this functionality is
encapsulated in the node named “Human command”.

e RL command and game loop: The node “RL command and game loop” provides
the action of the agent and the loop of the game. The agent action is sampled from

32

Chapter 4 Research Method

the policy provided by the SAC algorithm. The implementation of the algorithm
for discrete action settings was found online? and was integrated into ROS.

e Robot motion generation: The node “Robot motion generation” accepts the human
and the agent commanded accelerations and implements the feedback control law
described in Section 4 . Furthermore, it provides the functionality for resetting
the robot described in Section 4 .2. Its output are the EE commanded velocities,
which are sent to the “Robot controller” node. The EE velocities are mapped to
joint velocities through Inverse Kinematics, which are then executed by the robot.

e Robot controller: The robot controller is the node which implements the ROS
interface for controlling the URS3.

“https://github.com/Roboskel-Manipulation/maze3d_collaborative

33

https://github.com/Roboskel-Manipulation/maze3d_collaborative

Chapter 5
Results

In this chapter we present the results of the familiarization and the game experiments
described in Chapter. 4.

1 Familiarization

In Fig. 5.1 we present the number of wins in the familiarization games. We observe that
all of the participants manages to win at least 2 times while most of them managed to
win at least 4.

Number of participants

2 3 4 5 6 7
Wins

Figure 5.1: Number of wins in the familiarization games
2 Games

In Fig. 5.2a we present the learning curves of the participants and the expert over the
80 test games, while in Fig. 5.2b we present the normalized travelled distance, which is

34

Chapter 5 Results

® expert
® noTL (8 samples)
® TL(8 samples)

140

120

100

80

Rewards

60 1

40 A

201

T
0 10 20 30 40 50 60 70

Episodes

(a)

® expert

® noTL (8 samples)
® PPR (8 samples)

w
w

w
o

™
n

Normalized Travelled Distance [m]
= 28]
(%] o

Episodes

(b)

Figure 5.2: Rewards (a) and normalized travelled distance (b) over the testing episodes.
At the end of each batch (10, 20, ... episodes) we compute the average over
the last 10 games. The transparent regions are the standard error of the
mean over the last 10 games.

35

Chapter 5 Results

the travelled distance multiplied by the percentage of the total time spent in a game.
Both figures show the same qualitative result. In the games where TL was applied, the
performance of the human-robot teams was higher than the performance of the teams
in the case where no TL was used. Furthermore, the teams which played without TL
needed on average 73 minutes (stdev=2) to complete the experiment while for the teams
in the TL group needed on average 34 minutes (stdev=9).

In Figs. 5.3-5.5 and 5.6-5.8 we present the paths during three episodes of a team with-
out TL and a team with PPR from the first, fourth and eighth test batch respectively.
These figures provide a spatial representation of the performance of the teams and indi-
cate that using PPR enables the team to win while travelling less distance compared to
not using TL at all.

0.325 - e
0.300 -
02751 L

E 0.250 [/ (1)

=
022514/ .
02001 /\ / oA

0.175 4+ \ - =

T T T T T T T T
—0.350-0.325-0.300-0.275-0.250-0.225-0.200-0.175
*[m]

Figure 5.3: Sample runs of a team without TL from the first batch batch. The green
dot is the initial position, the blue the final position, the red the goal position,
the red circle is the goal area and the grey line is the path.

36

Chapter 5 Results

0.325 1

0.300 4

==='|

X

0.275 4

€ 0.250
= _/

0.225 1

0.200 4

A=

0.175 4

—0.350-0.325-0.300-0.275-0.250—0.225-0.200-0.175
x[m]

Figure 5.4: Sample runs of a team without TL from the fourth batch batch. The
green dot is the initial position, the blue the final position, the red the goal
position, the red circle is the goal area and the grey line is the path.

0.325 - S
0.300 -
0.275 -

E 0.250

E 0250 N

0.225 1

0.200 - <
0.175 | k\

T T T T T T T T
—0.350—0.325-0.300—0.275-0.250—0.225—-0.200—0.175
x[m]

Figure 5.5: Sample runs of a team without TL from the eighth batch batch. The
green dot is the initial position, the blue the final position, the red the goal
position, the red circle is the goal area and the grey line is the path.

37

Chapter 5 Results

0.325 4
0.300 1

0.275 - P~

yim]

0.225 +— e A ! > s
0.200 NS

0175 4= -

0.150 1 ™

—0.350-0.325-0.300-0.275-0.250-0.225-0.200-0.175
x[m]

Figure 5.6: Sample runs of a team with TL from the first batch. The green dot is the
initial position, the blue the final position, the red the goal position, the red
circle is the goal area and the grey line is the path.

0.325 4
0.300 4
0.275 1

0.250 - (D

0.225 1

yim]
2

0.200 4

0.175 4

0.150 1

T T T T T T T T
—0.350-0.325-0.300-0.275-0.250-0.225-0.200-0.175
*[m]

Figure 5.7: Sample runs of a team with TL from the fourth batch. The green dot is
the initial position, the blue the final position, the red the goal position, the
red circle is the goal area and the grey line is the path.

38

Chapter 5 Results

0.325 4

0.300 1 A

0.275 1

yim]

0.225 1

0.200 4

0.175 A

0.150 1

—0.350-0.325-0.300-0.275-0.250-0.225-0.200-0.175
x[m]

Figure 5.8: Sample runs of a team with TL from the eighth batch. The green dot is
the initial position, the blue the final position, the red the goal position, the
red circle is the goal area and the grey line is the path.

The same information extracted from all the test games of one participant is presented
in Figs. 5.9-5.11 and 5.12-5.14 for no TL and PPR respectively. For both conditions,
the situation in the first batch is the same; the motion of the dot was random and no
particular pattern can be observed. In the fourth and eighth test batches, however, we
observe a difference in the position of the dot between the two conditions. Specifically,
in the fourth batch, the motion of the dot in the case of no TL is still random while in
the case of PPR a concentration around the goal position is observed. The same result
for the PPR condition can be observed in the eighth batch as well. For the case of no
TL, however, we observe an incline towards the left side of the space. This means that
the RL agent had learned to lead the dot towards left.

39

Chapter 5 Results

12

10

Figure 5.9: Heatmaps of the dot position throughout all the test episodes of a team
without TL from the first batch. The numbers indicate the frequency that
the dot was in the respective rectangular region.

|| |
] 10
] |
[| |
|| 8
[|
| [| | || |
H B || | 6
H | [||
N [[]| [|
EE FBEEE EENE = 4
HE B ||
HEEE 'H |
EEEsE O E m
] | HER || [|
] HE |
ErEEEENTEE |

Figure 5.10: Heatmaps of the dot position throughout all the test episodes of a team
without TL from the fourth batch. The numbers indicate the frequency
that the dot was in the respective rectangular region.

40

Chapter 5 Results

25

20

15

10

Figure 5.11: Heatmaps of the dot position throughout all the test episodes of a team
without TL from the eighth batch. The numbers indicate the frequency
that the dot was in the respective rectangular region.

16

14

. . 12
. . 10
N HEEEEREE
H BEETNE EEEEm 8
L] HEEE B EEm
BN EEE 6
L] H

Figure 5.12: Heatmaps of the dot position throughout all the test episodes of a team
with TL from the first batch . The numbers indicate the frequency that
the dot was in the respective rectangular region.

41

Chapter 5 Results

17.5

15.0

10.0

-7.5

-5.0
-2.5

- 0.0

Figure 5.13: Heatmaps of the dot position throughout all the test episodes of a team
with TL from the fourth batch . The numbers indicate the frequency that
the dot was in the respective rectangular region.

14

12

|
o 10
|
H
| -6
H
-4
| -2

Figure 5.14: Heatmaps of the dot position throughout all the test episodes of a team
with TL from the eighth batch . The numbers indicate the frequency that
the dot was in the respective rectangular region.

42

Chapter 5 Results

This qualitative representation of the results, however, does not indicate whether the
difference in the learning procedure is significant. In order to answer this question,
we applied a two-way mixed ANOVA, which is a statistical test used to compare the
means of groups cross-classified by two independent categorical variables, including one
between-subjects (condition: No TL or PPR) and one within-subjects (batch: 1, 2,
..., 8). The dependent variable that we applied the ANOVA test on was the average
travelled distance per participant and per batch, multiplied by the time percetage of
the each game distance x (game_timesteps/maz_timesteps). The maximum number of
timesteps was 150.

H batch H condition H statistic H o) H
1 No TL 0.904 0.314
1 PPR 0.911 0.362
2 No TL 0.827 0.056
2 PPR 0.904 0.312
3 No TL 0.924 0.466
3 PPR 0.881 0.190
4 No TL 0.958 0.793
4 PPR 0.945 0.664
5 No TL 0.954 0.755
5 PPR 0.693 0.002
6 No TL 0.932 0.530
6 PPR 0.732 0.005
7 No TL 0.941 0.617
7 PPR 0.669 0.001
8 No TL 0.866 0.139
8 PPR 0.843 0.081

Table 5.1: Normality of the dataset

In Table. 5.1 we observe that three datasets do not present normal distribution. For
this reason, we analyzed the data using the package WRS2 of R [91]. The results of the
ANOVA test are presented in Table. 5.2.

I Effect | F [p [p<o05]
condition 42.516 || 0.0003 v
batch 6.0243 || 0.0175 v

condition:batch || 5.3243 || 0.0241]

Table 5.2: Mixed ANOVA results

Lastly, the pairwise condition/batch/condition:batch comparison confirmed a signifi-
cant main effect in all three situations (p = 0(sppba function), p = 0.02(sppbb function),
p = 0.004(sppbi function)).

43

Chapter 5 Results

Excluded Participant One more participant, who played without TL, took part in
the experiments but was excluded from the analysis. The reason is that in the first 3
training batches she performed much better than the rest of the human-robot teams.
This increased performance might be the result of the inherent abilities of the human
participant or the “luck” of the random agent. Since, however, we can not differentiate
between the two factors, we decided to exclude her from the analysis.

140

120 A

100 -

80 +

Rewards

60

40

204

T
0 10 20 30 40 50 60 70
Episodes

Figure 5.15: Learning curves of participants not included in the analysis

Her learning curve is presented in Fig. 5.15. It is clear that the team managed to
collaborate efficiently and win the game consistently even though they played without
TL. This observation firstly proves that it is possible to win the game without using TL
even without training the human beforehand, like the expert did. Another important
observation about the team is presented in Table. 5.3, where the number of wins in the
second, third and fourth training batch for teams who played without Tl is presented.
The bold data correspond to the team who reached high performance and are much
higher than the numbers of wins of the rest teams. This observation might indicate that
the performance of the teams in the early training games, where the DRL agent has not
converged to a policy yet but still acts a bit randomly, might be crucial for the final
performance.

44

Chapter 5 Results

Nr. of Wins till batch
participant || 2nd || 3rd || 4th

1 2 2 2

2 0 0 0

3 0 0 1

4 0 0 0

5 2 5 5

6 0 2 2

7 2 2 3

8 0 1 1

9 5 7 16

Table 5.3: Number of wins for the teams who played without TL in the second, third
and fourth training batches. The bold data correspond to the participant who
reached high performance but was excluded by the analysis.

45

Chapter 6
Discussion

In this thesis, we focused on how the collaboration between a Deep Reinforcement Learn-
ing agent and different humans can be enhanced in scenarios where they both need to
learn in real-time how solve a shared task while adapting to their partner’s behavior.
The idea was to exploit the knowledge of an expert agent trained by an expert human,
during the collaboration between a naive agent and a different non-expert human. In
order to assess this method, we developed a human-agent game in which a human and
a Soft Actor-Critic agent needed to collaborate in order to jointly control the motion
of the end-effector of a robotic manipulator in the xy-plane. Specifically, the human
was controlling the motion of the end-effector in one axis (y-axis), while the agent was
controlling the motion of the end-effector in the perpendicular axis (x-axis). The goal of
the team was to bring the end-effector to a goal position with a relative low speed. The
requirement of the low speed encouraged the team to have more control over the motion
of the end-effector.

In general, the results showed that the use of PPR can increase the performance of
the human-robot team in a statistically significant way. First of all, the average time
for completing the experiment for the No TL group was 73 minutes (stdev=2) while for
the TL group was 34 minutes (stdev=9). The teams which played with PPR started to
show an improved performance after the fourth batch and their performance increased
in every following batch. On the other hand, in the case where no TL was applied, it
was observed that the teams were not able to develop a policy which allowed them to
win the game systematically and that their performance was not increased significantly.
The main reason of this result is the differences in the performance of the teams in the
training games. In Fig. 6.1 the percentage of the wins in the training and testing games
is shown. The graph shows that even from the second batch the teams which played
with PPR managed to win in over 80% of the games while the teams without TL did
not achieve a percentage of over 20% in any batch. Lastly, the fact that the teams which
played with PPR started to collaborate efficiently after the fourth testing batch while
the teams with no TL did not manage to perform well even after eight batches might
indicate that the use of PPR is able to decrease the learning time more than in half in
simple scenarios such as the one examined in these experiments.

An important parameter that might had an influence on the outcome of the analysis
might have been the experience of the participants with playing video games using a
keyboard. A common characteristic between the developed human-robot collaborative
task and video games is that in both situations the human needs to quickly respond

46

Chapter 6 Discussion

100 4 —— Train No TL
— Test No TL
Train PPR I

go | — TestPPR
£
Q
g 60 1
=
Q
E |
Q
o
£ 40

20+

LI LJ J -J -IJ I-J -IL
1 2 3 4 5 6 7 8

Batches

Figure 6.1: Percentage of wins in the training and testing games for each condition and
each batch

to visual stimulus by taking appropriate actions using a keyboard. Experience that
enhances the human reactions in pressing buttons on a keyboard might help the team
to complete the task more frequently. One way to answer this question is by evaluating
the experience of each participant in gaming. For example, this is possible by asking the
participants to complete a questionnaire, in which relative questions are stated.

A second limitation of our work is that we did not experiment with the parameters
of the SAC algorithm. As mentioned earlier, the values of the parameters were based
on [33]. Different values might have resulted in different behaviors of the human-robot
teams and therefore different results of the analysis. For example, the parameter a of
the entropy, which indicates if the agent will choose a random action or an action based
on his policy (Exploration vs Exploitation) was 0.0003. This small value means that
most of the time the agent will choose to sample an action from its policy. On one hand,
acting mostly based on its current policy eliminates the factor of “chance”, which makes
the results of the analysis more stable. This means that the teams’ performance was not
boosted or hindered by the probability of the agent taking random actions. On the other
hand, not taking random actions might not permit the teams in which the agent had
started to converge to a poor policy, to recover and manage to win the game. We believe
that experimenting with other values of the SAC algorithm is an important future step.

47

Chapter 6 Discussion

A different direction for future work would be to test other techniques like Reward
Shaping, which in certain scenarios has been proven to be more effective than PPR [46],
and observe whether the performance of the team improves even more. Another future
direction would be to consider a real-life collaboration scenario, which will obviously
be more complex, and where the strengths and weaknesses of the human might have a
more significant role on the performance of the team. An example would be situations
where a human and a robot need to jointly carry heavy objects. The collaboration is
this scenario is twofold. First both parties would need to provide the necessary force
so that the object does not fall, while at the same time accounting for the contribution
of their partner. The second point is to efficiently move the object. This would require
mutual adaptation and potentially prediction of the future motion of each partner. It is
obvious that this task is much more complex than the tasks in our work. Furthermore,
both the physical and cognitive capabilities of the human would probably have a much
bigger influence on the performance of the team compared to our human-robot task.

48

Bibliography

1]

2]

Judith Biitepage and Danica Kragic. Human-robot collaboration: From psychology
to social robotics. ArXiv, abs/1705.10146, 2017.

Enrico Anderlini, Salman Husain, Gordon G Parker, Mohammad Abusara, and
Giles Thomas. Towards real-time reinforcement learning control of a wave energy
converter. Journal of Marine Science and Engineering, 8(11):845, 2020.

Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard.
Recent advances in robot learning from demonstration. Annual Review of Control,
Robotics, and Autonomous Systems, 3:297-330, 2020.

Sarah Elliott, Zhe Xu, and Maya Cakmak. Learning generalizable surface cleaning
actions from demonstration. In 2017 26th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), pages 993-999. IEEE, 2017.

S Reza Ahmadzadeh, Roshni Kaushik, and Sonia Chernova. Trajectory learning
from demonstration with canal surfaces: A parameter-free approach. In 2016 IEEFE-
RAS 16th International Conference on Humanoid Robots (Humanoids), pages 544—
549. IEEE, 2016.

Carlos A Garcia, Jose E Naranjo, Luis A Campana, Maritza Castro, Carmen Bel-
tran, and Marcelo V Garcia. Flexible robotic teleoperation architecture under iec
61499 standard for oil & gas process. In 2018 IEEE 23rd International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), volume 1, pages
1269-1272. IEEE, 2018.

Lucia Schiatti, Jacopo Tessadori, Giacinto Barresi, Leonardo S Mattos, and Arash
Ajoudani. Soft brain-machine interfaces for assistive robotics: A novel control ap-
proach. In 2017 International Conference on Rehabilitation Robotics (ICORR),
pages 863-869. IEEE, 2017.

Jacques Kaiser, Svenja Melbaum, J Camilo Vasquez Tieck, Arne Roennau, Martin V
Butz, and Rudiger Dillmann. Learning to reproduce visually similar movements by
minimizing event-based prediction error. In 2018 7th IEEE International Confer-
ence on Biomedical Robotics and Biomechatronics (Biorob), pages 260-267. IEEE,
2018.

Maria Dagioglou, Athanasios C Tsitos, Aristeidis Smarnakis, and Vangelis Karkalet-
sis. Smoothing of human movements recorded by a single rgh-d camera for robot

49

Bibliography

demonstrations. In The 14th PErvasive Technologies Related to Assistive Environ-
ments Conference, pages 496-501, 2021.

Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey on human—
robot collaboration in industrial settings: Safety, intuitive interfaces and applica-
tions. Mechatronics, 55:248-266, 2018.

Eloise Matheson, Riccardo Minto, Emanuele GG Zampieri, Maurizio Faccio, and
Giulio Rosati. Human-robot collaboration in manufacturing applications: a review.
Robotics, 8(4):100, 2019.

Mahdi Khoramshahi, Antoine Laurens, Thomas Triquet, and Aude Billard. From
human physical interaction to online motion adaptation using parameterized dy-
namical systems. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1361-1366. IEEE, 2018.

Mahdi Khoramshahi and Aude Billard. A dynamical system approach to task-
adaptation in physical human-robot interaction. Autonomous Robots, 43(4):927—
946, 2019.

Leonardo Sabatino Scimmi, Matteo Melchiorre, Mario Troise, Stefano Mauro, and
Stefano Pastorelli. A practical and effective layout for a safe human-robot collabo-
rative assembly task. Applied Sciences, 11(4):1763, 2021.

Przemyslaw A Lasota, Terrence Fong, Julie A Shah, et al. A survey of methods for
safe human-robot interaction, volume 104. Now Publishers Delft, The Netherlands,
2017.

Jair Cornejo, Eddy Denegri, Karina Vasquez, and Oscar E Ramos. Real-time joy-
stick teleoperation of the sawyer robot using a numerical approach. In 2018 IEEE
ANDESCON, pages 1-3. IEEE, 2018.

Mario Selvaggio, Fei Chen, Boyang Gao, Gennaro Notomista, Francesco Trapani,
and Darwin Caldwell. Vision based virtual fixture generation for teleoperated
robotic manipulation. In 2016 International Conference on Advanced Robotics and
Mechatronics (ICARM), pages 190-195. IEEE, 2016.

Bin Fang, Di Guo, Fuchun Sun, Huaping Liu, and Yupei Wu. A robotic hand-arm
teleoperation system using human arm/hand with a novel data glove. In 2015 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pages 2483-2488.
IEEE, 2015.

Shuang Li, Jiaxi Jiang, Philipp Ruppel, Hongzhuo Liang, Xiaojian Ma, Norman
Hendrich, Fuchun Sun, and Jianwei Zhang. A mobile robot hand-arm teleopera-
tion system by vision and imu. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 10900-10906. IEEE, 2020.

50

[20]

[21]

22]

[24]

[25]

[28]

[29]

Bibliography

Ioannis Sarakoglou, Anais Brygo, Dario Mazzanti, Nadia Garcia Hernandez, Dar-
win G Caldwell, and Nikos G Tsagarakis. Hexotrac: A highly under-actuated hand
exoskeleton for finger tracking and force feedback. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1033-1040. IEEE,
2016.

D Dajles, F Siles, et al. Teleoperation of a humanoid robot using an optical mo-
tion capture system. In 2018 IEEE International Work Conference on Bioinspired
Intelligence (IWOBI), pages 1-8. IEEE, 2018.

Osama Mazhar, Sofiane Ramdani, Benjamin Navarro, Robin Passama, and An-
drea Cherubini. Towards real-time physical human-robot interaction using skeleton
information and hand gestures. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1-6. IEEE, 2018.

Marek Cortidk, Michal Tolgyessy, and Peter Hubinsky. Innovative collaborative
method for interaction between a human operator and robotic manipulator using
pointing gestures. Applied Sciences, 12(1):258, 2021.

Tadej Petri¢, Jan Babic¢, et al. Cooperative human-robot control based on fitts’
law. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), pages 345-350. IEEE, 2016.

Ozgur S Oguz, Volker Gabler, Gerold Huber, Zhehua Zhou, and Dirk Wollherr.
Hybrid human motion prediction for action selection within human-robot collab-
oration. In International Symposium on Ezxperimental Robotics, pages 289-298.
Springer, 2016.

José Ramén Medina, Dongheui Lee, and Sandra Hirche. Risk-sensitive optimal
feedback control for haptic assistance. In 2012 IEEFE international conference on
robotics and automation, pages 1025-1031. IEEE, 2012.

Emma M Van Zoelen, Karel Van Den Bosch, and Mark Neerincx. Becoming team
members: Identifying interaction patterns of mutual adaptation for human-robot
co-learning. Frontiers in Robotics and Al 8, 2021.

Karel van den Bosch, Tjeerd Schoonderwoerd, Romy Blankendaal, and Mark Neer-
incx. Six challenges for human-ai co-learning. In International Conference on
Human-Computer Interaction, pages 572-589. Springer, 2019.

Paul Baxter, Emily Ashurst, Robin Read, James Kennedy, and Tony Belpaeme.
Robot education peers in a situated primary school study: Personalisation promotes
child learning. PloS one, 12(5):e0178126, 2017.

Thorsten Schodde, Kirsten Bergmann, and Stefan Kopp. Adaptive robot language
tutoring based on bayesian knowledge tracing and predictive decision-making. In
Proceedings of the 2017 ACM/IEEFE International Conference on Human-Robot In-
teraction, pages 128-136, 2017.

o1

[31]

[32]

33]

Bibliography

Stefanos Nikolaidis, David Hsu, and Siddhartha Srinivasa. Human-robot mutual
adaptation in collaborative tasks: Models and experiments. The International Jour-
nal of Robotics Research, 36(5-7):618-634, 2017.

Stefanos Nikolaidis, Yu Xiang Zhu, David Hsu, and Siddhartha Srinivasa. Human-
robot mutual adaptation in shared autonomy. In 2017 12th ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI, pages 294-302. IEEE, 2017.

Ali Shafti, Jonas Tjomsland, William Dudley, and A Aldo Faisal. Real-world
human-robot collaborative reinforcement learning. In 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 11161-11166.
IEEE, 2020.

https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/.

Athanasios C Tsitos, Maria Dagioglou, and Theodoros Giannakopoulos. Real-time
feasibility of a human intention method evaluated through a competitive human-
robot reaching game. In Proceedings of the 2022 ACM/IEEE International Confer-
ence on Human-Robot Interaction, pages 1080-1084, 2022.

Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. Un-
supervised learning of goal spaces for intrinsically motivated goal exploration. arXiv
preprint arXiv:1803.00781, 2018.

Vaibhav V Unhelkar, Shen Li, and Julie A Shah. Semi-supervised learning of
decision-making models for human-robot collaboration. In Conference on Robot
Learning, pages 192-203. PMLR, 2020.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. nature, 323(6088):533-536, 1986.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238-1274, 2013.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):
279-292, 1992.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529-533, 2015.

92

https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/

[44]

[48]

[49]

[50]

[56]

Bibliography

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In International conference on machine learning, pages 1861-1870. PMLR, 2018.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforce-
ment learning: A survey. arXiv preprint arXiv:2009.07888, 2020.

Tim Brys, Anna Harutyunyan, Matthew E Taylor, and Ann Nowé. Policy transfer
using reward shaping. In AAMAS, pages 181-188, 2015.

Anna Harutyunyan, Sam Devlin, Peter Vrancx, and Ann Nowé. FExpressing ar-
bitrary reward functions as potential-based advice. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 29, 2015.

Xiaoqin Zhang and Huimin Ma. Pretraining deep actor-critic reinforcement learning
algorithms with expert demonstrations. arXiv preprint arXiv:1801.10459, 2018.

Stefan Schaal. Learning from demonstration. Advances in neural information pro-
cessing systems, 9, 1996.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep g-
learning from demonstrations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Des-
jardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu,
and Raia Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

Fernando Fernandez and Manuela Veloso. Probabilistic policy reuse in a reinforce-
ment learning agent. In Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pages 720-727, 2006.

Matthew E Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task
mappings for temporal difference learning. Journal of Machine Learning Research,
8(9), 2007.

Hai Nguyen and Hung La. Review of deep reinforcement learning for robot ma-
nipulation. In 2019 Third IEEE International Conference on Robotic Computing
(IRC), pages 590-595. IEEE, 2019.

Hartmut Surmann, Christian Jestel, Robin Marchel, Franziska Musberg, Houssem
Elhadj, and Mahbube Ardani. Deep reinforcement learning for real autonomous
mobile robot navigation in indoor environments. arXiv preprint arXiv:2005.13857,
2020.

Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine.
Self-supervised deep reinforcement learning with generalized computation graphs

93

[57]

[60]

[61]

[62]

[63]

[64]

[65]

Bibliography

for robot navigation. In 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 5129-5136. IEEE, 2018.

Lucia Liu, Daniel Dugas, Gianluca Cesari, Roland Siegwart, and Renaud Dubé.
Robot navigation in crowded environments using deep reinforcement learning.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5671-5677. IEEE, 2020.

Fangyi Zhang, Jiirgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke.
Towards vision-based deep reinforcement learning for robotic motion control. arXiv
preprint arXiv:1511.03791, 2015.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar,
Matthias Loskyll, Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Resid-
ual reinforcement learning for robot control. In 2019 International Conference on
Robotics and Automation (ICRA), pages 6023-6029. IEEE, 2019.

Stephen James and Edward Johns. 3d simulation for robot arm control with deep
g-learning. arXiv preprint arXiv:1609.03759, 2016.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and large-
scale data collection. The International journal of robotics research, 37(4-5):421—
436, 2018.

Marwan Qaid Mohammed, Kwek Lee Chung, and Chua Shing Chyi. Review of
deep reinforcement learning-based object grasping: Techniques, open challenges,
and recommendations. IEEE Access, 8:178450-178481, 2020.

Shirin Joshi, Sulabh Kumra, and Ferat Sahin. Robotic grasping using deep rein-
forcement learning. In 2020 IEEFE 16th International Conference on Automation
Science and Engineering (CASE), pages 1461-1466. IEEE, 2020.

S Phaniteja, Parijat Dewangan, Pooja Guhan, Abhishek Sarkar, and K Madhava
Krishna. A deep reinforcement learning approach for dynamically stable inverse

kinematics of humanoid robots. In 2017 IEEFE International Conference on Robotics
and Biomimetics (ROBIO), pages 1818-1823. IEEE, 2017.

Recen Ozaln, Cagri Kaymak, Ozal Yildirum, Ayscgiil Ucar, Yakup Demir, and
Cluneyt Giizelis. An implementation of vision based deep reinforcement learning for
humanoid robot locomotion. In 2019 IEEE International Symposium on INnova-
tions in Intelligent SysTems and Applications (INISTA), pages 1-5. IEEE, 2019.

Javier Garcia and Diogo Shafie. Teaching a humanoid robot to walk faster through
safe reinforcement learning. Engineering Applications of Artificial Intelligence, 88:
103360, 2020.

o4

[67]

[71]

[72]

Bibliography

Victoria J Hodge, Richard Hawkins, and Rob Alexander. Deep reinforcement learn-

ing for drone navigation using sensor data. Neural Computing and Applications, 33
(6):2015-2033, 2021.

Guillem Munoz, Cristina Barrado, Ender Cetin, and Esther Salami. Deep reinforce-
ment learning for drone delivery. Drones, 3(3):72, 2019.

Chunxue Wu, Bobo Ju, Yan Wu, Xiao Lin, Naixue Xiong, Guangquan Xu, Hongyan
Li, and Xuefeng Liang. Uav autonomous target search based on deep reinforcement
learning in complex disaster scene. IEEE Access, 7:117227-117245, 2019.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey
Levine. Learning to walk via deep reinforcement learning. arXiv preprint
arXiw:1812.11103, 2018.

Wenshuai Zhao, Jorge Pena Queralta, and Tomi Westerlund. Sim-to-real transfer
in deep reinforcement learning for robotics: a survey. In 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 737-744. IEEE, 2020.

Fugene Valassakis, Zihan Ding, and Edward Johns. Crossing the gap: A deep dive
into zero-shot sim-to-real transfer for dynamics. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5372-5379. IEEE,
2020.

Kristinn Kristinsson and Guy Albert Dumont. System identification and control
using genetic algorithms. IEEFE Transactions on Systems, Man, and Cybernetics,
22(5):1033-1046, 1992.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simula-
tion to the real world. In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 23-30. IEEE, 2017.

Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker,
and Rudolph Triebel. Implicit 3d orientation learning for 6d object detection from
rgb images. In Proceedings of the european conference on computer vision (ECCYV),
pages 699-715, 2018.

Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt
Keutzer, and Boqing Gong. Domain randomization and pyramid consistency:
Simulation-to-real generalization without accessing target domain data. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages
2100-2110, 2019.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Sigi Zhou, Jacopo
Panerati, and Angela P Schoellig. Safe learning in robotics: From learning-based
control to safe reinforcement learning. Annual Review of Control, Robotics, and
Autonomous Systems, 5, 2021.

95

[78]

[79]

[80]

[81]

[82]

Bibliography

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer-practical
constrained optimization for deep reinforcement learning in the real world. In 2018
IEEFE International Conference on Robotics and Automation (ICRA), pages 6236—
6243. IEEE, 2018.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Overcoming exploration in reinforcement learning with demonstrations.
In 2018 IEEE international conference on robotics and automation (ICRA), pages
6292-6299. IEEE, 2018.

Nicold Botteghi, Beril Sirmacek, Khaled AA Mustafa, Mannes Poel, and Stefano
Stramigioli. On reward shaping for mobile robot navigation: A reinforcement learn-
ing and slam based approach. arXiv preprint arXiv:2002.04109, 2020.

René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Na-
talia Diaz-Rodriguez, and David Filliat. Discorl: Continual reinforcement learning
via policy distillation. arXiv preprint arXiv:1907.05855, 2019.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Learning invariant feature spaces to transfer skills with reinforcement learning.
arXiv preprint arXi:1705.02949, 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
neural networks. arXiv preprint arXiv:1606.04671, 2016.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P
van Hasselt, and David Silver. Successor features for transfer in reinforcement
learning. Advances in neural information processing systems, 30, 2017.

Rico Jonschkowski and Oliver Brock. State representation learning in robotics:
Using prior knowledge about physical interaction. In Robotics: Science and systems,
2014.

Lillian Rigoli, Gaurav Patil, Patrick Nalepka, Rachel W Kallen, Simon Hosk-
ing, Christopher Best, and Michael J Richardson. A comparison of dynamical
perceptual-motor primitives and deep reinforcement learning for human-artificial

agent training systems. Journal of Cognitive Engineering and Decision Making,
page 15553434221092930, 2021.

Lillian M Rigoli, Gaurav Patil, Hamish F Stening, Rachel W Kallen, and Michael J
Richardson. Navigational behavior of humans and deep reinforcement learning
agents. Frontiers in psychology, page 4096, 2021.

Patrick Nalepka, Paula L Silva, Rachel W Kallen, Kevin Shockley, Anthony
Chemero, Elliot Saltzman, and Michael J Richardson. Task dynamics define the
contextual emergence of human corralling behaviors. PloS one, 16(11):e0260046,
2021.

o6

Bibliography

[89] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[90] Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint
arXiv:1910.07207, 2019.

[91] Patrick Mair and Rand Wilcox. Robust statistical methods in r using the wrs2
package. Behavior research methods, pages 1-25, 2019.

o7

Chapter 7
Appendix

A ROS implementation

In the Appendix we provide some more technical implementation details about the ROS
integration. The integration was achieved using both the ROS C++ API (roscpp) and
the Python API (rospy).

In Fig. 7.1 we present the complete ROS graph. Each vertice of the graph (ellipse)
represents a node, each edge (arrow) a topic and the direction of the edge means that
the outgoing node publishes to the topic while the incoming subscribes to it. The nodes
Jur_hardware_inter face, /ros_control_controller_spawner, /ros_control_stopped_spa—
wner, [robot_state_publisher and /controller_stopper provide the functionality of the
UR3 ROS driver! and are not be presented in detail as they were not developed during
the thesis.

The /teleop_twist_keyboard node provides the functionality for reading the keyboard
input and publishes a geometry_msgs :: Twist ROS message, which represents the hu-
man action, to the /human_action_topic topic. The /ri_control node initiates the game
and runs the RL loop. It accepts the human action by subscribing to the /human_action_
topic topic, samples the DRL agent action based on the action selection procedure de-
scribed in Section 2 and publishes the action to the /agent_action_topic topic as a
std-msgs :: Float64 message. Furthermore, it checks if the game ended by comparing
the current EE position and velocity to the goal position and velocity. When the game
ends, it publishes its outcome and the score of the team to the /score_topic topic as a
custom ROS message and sends a request to the /reset service (not shown in the ROS
graph) for resetting the game as described in Section 4 .2. The last functionality of
the /rl_control node is that it publishes a std_msgs :: Bool message to the /train_topic
topic. The value of the message is “true” during the training of the DRL agent and the
idea is to prevent the user from controlling the robot during the training procedure.

The computation of the commanded velocities according to equations 4.3 and 4.5 is
implemented in the /robot_-movement_generation node. The node subscribes to the
/human_action_topic and to the /agent_action_topic topics for accessing the human and
agent actions respectively and to the /ur3_cartesian_velocity_controller/ee_state topic
in order to get the current state of the EE and publishes the commanded velocities to
the /ur3d_cartesian_velocity_controller /command_cart_vel topic as a /geometry_-msgs ::

1https ://github.com/UniversalRobots/Universal_Robots_ROS_Driver

o8

https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

Chapter 7 Appendix

Twist message. Furthermore, it implements the /reset service. Lastly, the /score_visual—
ization node is responsible for visualizing the outcome of the game and the score of the
team (Fig 4.3). The visualization is based on the “pygame” python library.

Iros_control_controller_spawner

Iteleop_twist_keyboard

Iros_control_stopped_spawner

/human
_action

. /human_action_
_topic

topic

lur_hardware_interface

lur_hardware_interface
lur_robot_state_helper

lur3_cartesian_velocity_controller
lee_state

/ur_hardware_interface/robot_mode

Iscore_topic

lur_hardware_interface

Iscore_visualization

\/j‘oint_states

Irobot_state_publisher

lur3_cartesian_velocity
controller/’command_cart
vel

lur_hardware_interface/
robot_program_running

Icontroller_stopper

lur3_cartesian_velocity_
controller/ee_state

lagent_action
_topic

Irobot_movement_generation

Figure 7.1: ROS graph of the system

99

nontep 7 Anmevoié

B Letter

Yuvoodeutixy Evnuepwtixy Enictoly
‘Epeuva yia T1 cuvepyacio aviptdTOLV-OUTOT

‘Eyxete exdniooet evoiapépov va GUUUETAOYETE 0T dledaywyn €peuvag mou yivetar oTol
mhaiola exnovnong dimiwuatixhic epyoasiac tou AMIIEY oty Teyvnt Nonuoolvn nou
ouvdlopyovaveton and o Hoavemothuwo Hepmd xo 10 EKEPE “Anuéxpitoc”. H épe-
UVaL EYEL WG OTOYO TNV avamTuET UeVOdWY Ylor epUTUN XL ac@aAT) cuvepyacio avdpwrou
xa pounoTixol PBpoyiova 0 x0WO EPYACLOXO YOPO XL CUYXEXPWEVA OE €QYACIEC OTOU
ATAULTELTOL CUVOLAOUOS HIVACEWY Amd TOUS BVO CUVERYATES.

Ipakrtikés mAnpopopies

H Sie€aywyh e épeuvac yiveton oto yhpo tou epyactneiou Roboskel (xtipio Kevtpinic
Bihodixne, EKE®E Anuéxeitog). H diadixacio cuhhoyhc Bedopévemy OhOXANEMVETOL OE
wto enioxedn nov Ya diapxéoel nepinou 2 weec. H ouvypetoyy| cog yivetan oe edehoviixn
Bdomn xou Sev €xel xavéva GYENOC Yol GOC, OXOVOUXO, 1| OTOLHCONTOTE GAANG PUOTC.

H 6wabikaoia / Mropds va duaxdpw tnv dwudikeoia:

Yo mhodotar g Slelory YRS TOL TERAUATOC XAAEICTE VO CUVERYAOTEITE UE EVOL POUTOTIXO
Beaylova yia vo ehéyEete amd xowvol Tt ¥€om Tou xou va Tov uetagpépete oe pio Véomn-
otoyo. Eoeic ehéyyete tnv xivnorn tou pounotixol Peoaylova xatd évay dZova Yéow evog
manxteoroyiov. To poundt elvan umeduvo va ehéyyer v xivnon tou oe dAlo dova
(xd¥eto oe autév Tou avdpnnou). Tuvokxd Yo exteréoete 140 doxéc. Kdbe doxn
ohoxhnpwveton elte 6tay emitevyvel o otdyog elte av mapéddouv 20 deutepdienTa. XTO
téhog xdde Soxiunc Vo EVNUEPWVESTE Yial TNV ond xowol eNiB0cT cog Ue TO pounoT. Avd
ToXT Yeovixd oo thuota Yo yivovton dlakelppoata wote va anogeuyel onoladinote xOT-
oM.

H ocvppetoxn cag eivaw edelovtixr. Mnogeite va eyxataieidete tn Si-
ABLX AT OTTOLABYTOTE CTLY Y.

T €idoug dedopéva Ja ovAdexovy kar nws Oa ypnoioroinfody:

Yy apyn) e dradiactiog Yo cag Intndel vo GUUTANEMOOETE €V EpOTNUATONGYLO YE XATOLL
onupoypapd otovyela. Katd) Sidpxeia xar oto téhog Tou melpduatog, Yo xAndeite vo
OYOMBACETE DLAPOPES MTUYES TNG OLVERYUOLNS CUC UE TO POUTOT.

Eniong, dhha dedouéva mou Yo culheyYolv elvon yapaxtneto Tixd tng xivnong tou Peayiova
(m.x. Véom, toybTnTa), otoiyeia oyetixd e tov aiyoprdpo Teyvnthc Nonuoolvne mou
yenoueonoteitan xou oL EVEPYEIEC TOU avlp®Tou, dNAad To TARXTEA TOU TUTAEL XAUTA TNV
eCaywyr TV mewpopdtewy. Ta dedouyéva Yo yenoiponomdoldyv yia epeuVNTIX00E GXOTOUC.
H culloyn 6Awv TtV dedopévey Yo YIVEL aVOVUUN UE T1 YPNON XWOX0U OVOUATOS CUU-
petéyovta (t.y. X-1, 2, xTh)

T1 €idovs mAnpogopies Oa elvar dradéoreg dnudoia:

Anuoolo oe mepintwon dnuooteuong Yo yivouv Bladéoiyo Tol ATOTEAEGUATA G TATIO TIXNG
avdhuong Tl TWV CUAAEYVEVTWY BEBOUEVKDY XM XAl UELOVOUEVES ATAVTHACELS O oVOLY-
70U TOTOV EpWTACELS YWplc Vo cuvapUel xapio TANEOPOoEic TOL APOEA KWBLXO
ovopa 7 AAAA dNUoYpeAPLxd oTolyEldl TOL ATOWOL.

2nrn:/ /poc-on.ut.depoxpitoc. yo,/

60

nontep 7 Anmevoié

Ou @opueg ouyxatdeong Yo guiaytoly eumiotevtind and to IIIT. Trdpyouv xivduvol xou
evoyAfoeig xatd 1 didpxelo TG CUANOYNG OEBOUEVLV

H ocuvypetoyn cog oto melpopo dev €yel xavéva xivduvo yia eadg, ovte Vo anodavieite
xdmola evoyhnon xatd tn Sudexeld tou. Erniong dev ypetdleton xopla mpopUialn xotd T
OLdipXELd TOL.

Av éyete xdmoleg mepantépw amopleg YL To TpoavapeRIEVTAL, UN) BIO TUCETE VoL Lo PWTHOETE.
H ocvppetoy” cag sivow ederoviixny. H dpvnorn mapoyrc cuyxatddeong
dev emipepel xapla aevNTIXY) cuvERELa o €0dg. Alatneceite enlong To
Suxaiwupa availpeong Tng cvuyxatddeons cog. TNy neplnTtworn TEToLAg
avolpeEoNS, T CLUYXEVIPWUEVA SedoUeEva cag Ta diaypapolLy JAUECH.
Av éyete dhheg epwtroelc, unopeite va ancuduvieite otoug:

Ap. Moaplo Aoytéoyhou, tnh.: 2106503201, epoud: udayloyAilt.0egoxpltoc.ye.

Me extiunon,

Ap. Bayyéing Kopxarétong
Ivotitolto IIinpogopixric xou Trniemixowvwviov, EKEPE «Anudxeitoc»

61

Chapter 7 Appendix

C Consent Form

[1IXO [TYN |

500 Shondorn Sua Saokoy
5001 31230Uk0y01210 A 1d@X “D1LoVMQIQ Sl M33dQ Uz 13 U adx
LriAno 3202liQ01020 3230Lid®X0LD VA DTI®IOMNMQ 02 313X3 120 31391dWA |

... ”5.10>Q

(3201bgod3niliaz agr0x ouy

[IXO | TVN |

fo10031Q01Q L mA S31dododlryx S13xdous 310g0Y

[TXO | TVN |

500 S130l120d3 9120 S13ol1a010 Szxnrlnoroann 320gVY

| IXO | TVN |

S130lamd3 Szxmnromdinazig 313aq9asun pa vIdNA3 Al 310X19

[IXO [TVN |

‘uyoro13 Usnaazgoaao Linamdsrliaz Al 1309gmg 313X7,

«ondyorily» g g N T Aoaomodnuzyl]
29 Swndododly[T -10a]
Suoazyondoy] Syziing dy

Salinazdyg Soaagqsr x

[10y0dh3 311] orlaamxusantoaQ

udodior x

20T/~ / ‘Lasxondoy by

"S0A03d3
Sooqodor Sur UXoisrrao lio wamdrao 120 ®aoyly

‘wiiio
320xlQoI020 NOOMQNQ L1 ®AI3Y0IOIAZ DA DTIOIONQ
®X3120 ®NdoA | Soxdors 13guilgs AaoXz aorl Sn10031Q01Q
Sy SBomuwnrz Sgapgr 10 1w Soxodo o ‘loqd H

A®12 s ooy | W00z dmodsiliaz niazgoaao Lir 1ox Suozgorodiao
oaylg O azddp :oyyag | Loyl La 13opgme X3 120 wAaqgQ3La ®AOYLY
:n2a0X3231ilao Sorigndy
Shozgprodiao homyhy

n1a0X32311I0T 00D A2AY

: Consent form

Figure 7.2

62

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1 From Human-Robot Interaction to Collaboration
	2 Thesis Organization

	2 Background
	1 Machine Learning
	2 Reinforcement Learning
	2 .1 Markov Decision Processes
	2 .2 Basic Concepts
	2 .3 Model-free algorithms

	3 Deep Reinforcement Learning
	3 .1 Deep Q-Network

	4 Transfer Learning

	3 Deep Reinforcement Learning in Robotics
	1 Brief Overview
	2 Limitations of DRL in Robotics
	3 Motivation

	4 Research Method
	1 Human-Robot Collaborative Game
	2 Reinforcement Learning agent
	3 Experimental Setup
	3 .1 User Study
	3 .2 Experimental Setup

	4 Robot Control
	4 .1 Human and RL control
	4 .2 Reset

	5 Technical Implementation

	5 Results
	1 Familiarization
	2 Games

	6 Discussion
	Bibliography
	7 Appendix
	A ROS implementation
	B Letter
	C Consent Form

