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Abstract 

Modern Artificial Intelligence (AI) systems have been achieving human-level and, in 
some cases, even higher predictive capabilities, solving numerous and various tasks. Two 
primary reasons behind this accomplishment are the rapid technological evolution, and 
the rising volume of available data, both of which allowed the development of 
multimillion parameter models. Inevitably, along with accuracy, complexity has also 
risen. But no matter how high the accuracy may be, some tasks, including any medical-
related task, require explanations about the model’s decision. When dealing with image 
data, the explanations of the model’s decision usually take the form of salient and non-
salient areas over the image that highlight the important and non-important areas 
respectively. Whichever the importance attribution method though, the saliency of an 
area represents the view of the model towards the stimuli that influenced mostly the 
outcome and can be as accurate as the quality of the features the model has learned. 
Thus, a plausible assumption would be that the better predictions the model makes, the 
more accurate explanations it produces. In this work, the efficacy of ensembling models 
as a means of leveraging explanations is examined, under the concept that ensemble 
models are combinatory informed. Apart from ensembling, a novel approach is herein 
presented for the aggregation of the importance attribution maps, in an attempt to 
examine an alternative way of combining the different views that several competent 
models offer. The purpose of aggregating is to lower computation costs, while allowing 
for the combinations of maps of various origin. Following a saliency map evaluation 
scheme, four tests are performed over three datasets, two of which are medical image 
datasets, and one is generic. The results indicate that explainability can, indeed, benefit 
from the combination of information, either by ensembling or aggregating. Discussion 
follows, in an attempt to provide insight over the mechanics that led to the provided 
results, as well as to give guidelines for potential future work. 
 
 
 



Thesis Supervisor: Ilias 
Maglogiannis 
Title: Professor 
 
 

 



  -i- 

 

Acknowledgments 

I would like to express my gratitude towards the supervisor of my thesis, 

Professor Ilias Maglogiannis, the members of the examinations Committee, 

Principal Researcher Theodoros Giannakopoulos and Professor Michael 

Philippakis, and the PhD candidate Athanasios Kallipolitis for their support 

towards the completion of my thesis. Special thanks to my family and friends 

also for their support, as well as copying with me due to spending less time 

with them during my studies. 

 

 

 

 

 

 

 

 

 

 

 

 



-ii- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This material is based upon work supported by the «Funding Body» 

Contract No…..  

Any opinions, findings, conclusions or recommendations expressed in this 

material are those of the author(s) and do not necessarily reflect the views of the 

«funding body» or the view of University of Piraeus and Inst. of Informatics 

and Telecom. of NCSR “Demokritos”. 

 

 



  -i- 

 

 





  -1- 

Contents 

CONTENTS ........................................................................................ 1 

LIST OF FIGURES...............................................................................3 

LIST OF TABLES ............................................................................... 4 

1 INTRODUCTION ............................................................................. 5 

2 BACKGROUND ............................................................................. 9 

2.1 INTERPRETABILITY AND EXPLAINABILITY ....................................................... 9 

2.2 INTERPRETABILITY METHODS - ATTRIBUTION MAPS ..................................... 10 

2.2.1 Gradient-based attribution methods ............................................11 

2.3 ATTRIBUTION MAPS EVALUATION ............................................................... 16 

2.4 COMBINING MODELS ................................................................................. 18 

2.5 COMBINING SALIENCY MAPS ..................................................................... 20 

3 METHODS ................................................................................... 22 

3.1 EXPERIMENT PIPELINE .............................................................................. 22 

3.2 USE OF DEEPLIFT IN THIS WORK .............................................................. 23 

3.3 COMBINING SEVERAL MODELS FOR INTERPRETABILITY ................................ 25 

3.3.1 Ensembling.................................................................................. 26 

3.3.2 Aggregation ................................................................................. 27 

4 EXPERIMENTS ............................................................................ 31 

4.1 DATASETS ................................................................................................ 31 

4.2 MODELS ................................................................................................... 34 

4.3 SALIENCY MAP EVALUATION ...................................................................... 37 

4.3.1 MoRF ordered perturbation ........................................................ 37 

4.3.2 AOPC score ................................................................................ 39 

4.4 EXPERIMENTS SETUP ............................................................................... 40 

4.5 RESULTS .................................................................................................. 43 

4.6 QUALITATIVE EVALUATION .........................................................................46 



-2- 

 

5 DISCUSSION .............................................................................. 49 

5.1 CONCLUSIONS .......................................................................................... 49 

5.2 OBSERVATIONS ........................................................................................ 52 

6 FUTURE WORK ........................................................................... 55 

7 REFERENCES ............................................................................. 57 

 

 



  -3- 

List of Figures 

FIGURE 1. THE FLOW OF RELEVANCE INBETWEEN LAYERS USING LRP. ................................................. 13 

FIGURE 2. THE EXPERIMENTATION PIPELINE FOLLOWED TO COMPARE THE QUALITY OF ENSEMBLED AND 

AGGREGATED SALIENCY MAPS RELATIVE TO THEIR BACKBONE MAPS. ........................................... 23 

FIGURE 3. EXAMPLE OF DEEPLIFT ATTRIBUTIONS MAP AND THE FIRST 15 ELEMENTS OF THE 

CORRESPONDING MORF ORDER. .................................................................................................... 25 

FIGURE 4. THE VOTING CLASSIFIER LAYER OF THE ENSEMBLES. FOR N CLASSES, THE N-VECTOR 

OUTPUTS OI, WHERE I∈{1,…,M}, OF THE M BACKBONE MODELS ARE MEAN AVERAGED AND THE 

ENSEMBLE’S OUTPUT RESULTS. ....................................................................................................... 27 

FIGURE 5. THE BEHAVIOR OF THE DIVERGENCE PENALTY IN COMPARISON WITH THE NUMBER OF 

INVOLVED MODELS. .......................................................................................................................... 29 

FIGURE 6. THE 9 CLASSES OF THE ISIC-2019 [52, 53, 54] DATASET. THE IMAGES ARE SAMPLED FROM 

THE CORRESPONDING TEST DATASET. ............................................................................................ 32 

FIGURE 7. THE 9 CLASSES OF THE NCT-CRC-HE [60] DATASET. THE IMAGES ARE SAMPLED FROM THE 

CORRESPONDING TEST DATASET. .................................................................................................... 33 

FIGURE 8. THE 10 CLASSES OF THE IMAGENETTE [61] DATASET. THE IMAGES ARE SAMPLED FROM THE 

CORRESPONDING TEST DATASET. .................................................................................................... 34 

FIGURE 9. FIRST STEPS OF THE PERTURBATION-INFERENCE PROCESS. THE MORF ORDER OF THE 

PERTURBATION IS DEPICTED IN FIGURE 3 AS A HEATMAP. .............................................................. 39 

FIGURE 10. THE DROP CURVES OF THE ISIC-A TEST. ............................................................................. 43 

FIGURE 11. THE DROP CURVES OF THE ISIC-B TEST. ............................................................................. 44 

FIGURE 12. THE DROP CURVES OF THE NCT TEST. ................................................................................. 45 

FIGURE 13. THE DROP CURVES OF THE IMAGENETTE TEST. .................................................................... 46 

FIGURE 14. EXAMPLES OF SALIENCY MAPS FROM THE ISIC-2019 DATASET. ......................................... 48 

FIGURE 15. MODEL'S AVERAGE OUTPUT DROP TO MODEL'S SCORE SCATTERPLOT. ............................... 52 

 



-4- 

 

List of Tables 

TABLE 1. ISIC-2019 TRAINED MODELS ..................................................................................................... 34 

TABLE 2. NCT-CRC-HE TRAINED MODELS. ............................................................................................. 36 

TABLE 3. IMAGENETTE TRAINED MODELS. ................................................................................................. 36 

TABLE 4. TESTS PERFORMED AND INVOLVED MODELS. ............................................................................ 41 

TABLE 5. ISIC-A AOPC SCORES PER TOTAL PERTURBATION PERCENTAGE........................................... 43 

TABLE 6. ISIC-B AOPC SCORES PER TOTAL PERTURBATION PERCENTAGE........................................... 44 

TABLE 7. NCT AOPC SCORES PER TOTAL PERTURBATION PERCENTAGE. ............................................. 45 

TABLE 8. IMAGENETTE AOPC SCORES PER PERTURBATION PERCENTAGE. ........................................... 46 

 



  -5- 

1 Introduction 

Modern Deep Learning systems have been achieving incredible results in 

solving tasks in fields like Computer Vision (CV), Natural Language Processing 

(NLP), Bioinformatics and many more. The complexity of these systems does 

not allow for direct explanation of their decision-making process and, therefore, 

the evaluation of its soundness. Oftentimes, the explainability of a competent 

model is not required nor worth to be concerned of, especially in cases of low-

risk decisions, like, for instance, those of a recommendation system. When, on 

the other hand, the stakes are high, explainability is crucial. Medical AI 

applications fall into this category, since a medical diagnosis and, consequently, 

the health of an individual may be affected by the application’s decision. Apart 

from evaluating the soundness of a decision, explainable models can also be 

used to highlight interesting data patterns and guide either the diagnosis 

procedure, or even medical research. In other words, for a model to be able to 

assist a doctor’s diagnosis, it must be as transparent, interpretable and 

explainable as possible. But explainability is not just practically useful and a 

requirement of the user from the system. Latest conversations extend the 

importance of explainability as a lawful right of each stakeholder, while the 

European Commission (EC) steadily the past few years publishes guidelines, 

such as [1, 2], about the correct development and use of trustworthy AI. Every 

human that is subject to the decisions of an automated decision-making 

program, either directly or indirectly, have the right of explanation. This is an 

evident statement when considering that AI systems have found purpose in 

matters of the highest significance, such as Health [3] and Law [4], that 

outrightly affect the subject’s life. 

In the context of medical image analysis, model explainability has most 

commonly been expressed through the computation of saliency maps; pixelwise 

heatmaps of the original image in process that map the model’s output to the 

significance of the image’s areas. The challenge of assigning a relevance score to 

each pixel led to the development of several attribution algorithms, the ability of 
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which to effectively represent the input feature importance has increasingly 

been examined. The comparison of various proposals of attribution methods 

indicates that there has been plenty of improvement on the field and most 

attempts rely on some common, well-established ideas. Occlusion, [5], [6],and 

gradient back-propagation, [7], [8], [9], [10], [11], based methods are some of 

the most popular relevance attribution techniques. The strong relations among 

these algorithms are cross-examined, demonstrated in [12], showing that, while 

the attribution method itself serves a critical role in the quality of the model’s 

interpretation, the field seems to be moving on the well-examined side of the 

Explainable Artificial Intelligence (XAI). That being said, and till the next big 

breakthrough, XAI research can seek advancements on interpretability of AI 

systems by recruiting alternative methods such as ensembling. 

An instinctive and prevalent hypothesis in the area of machine learning is that 

stronger predictive models have better learnt the underlying important data 

features. A common way to build such models is the ensembling of several 

weaker models trained to solve the same problem. Here lies the question, and 

topic of this thesis as follows: Does an ensemble model hold more useful 

knowledge concerning the effect between stimuli and the corresponding 

predictions than the weaker backbone models? A second question of equal 

importance is the following: Can we rely on the same consensus of ensembling 

for better interpretability as we did for predictive strength? While the models 

that form an ensemble are all trained towards the same goal, the structural 

differences and the training procedure followed by each of them lead to diverse 

models that predict also diversely. This diversity is much wanted when aiming 

for ensembles, since the resulted supplementary effect of combining different 

points of view for a given task is an appealing tactic for getting more accurate 

predictions. If the diversity in predictions originates from the learning of 

different yet informative data patterns, then the ensemble must also hold more 

information about which data features are the most important. 

Apart from using ensembles as a means to combine the interpretability 

information for a given task, an aggregation formula of the saliency maps is also 

proposed. For the popular gradient back-propagation based attribution 

methods to be applied on an ensemble, the ensemble needs to be loaded on the 



  -7- 

computer’s memory at once. This is not feasible on common computers, 

especially for large architectures, such as those of modern Convolutional Neural 

Networks (CNNs), and high image resolutions, such as those captured by 

modern hardware. On the contrary, aggregation of images is, at least for the 

proposed aggregation formula, calculated with minimal computational sources. 

At the same time, aggregation allows for the combinations of saliency maps that 

do not solely originate from the application of an attribution method to a group 

of models, which is what ensembling is, but also of any saliency map that 

constitutes an informative interpretation. Other options to obtain meaningful 

and diverse saliency maps are the use of different attribution methods and of 

different parameters for the same attribution method, such as the choice of 

reference or of the target layer. 

An attempt to answer the above questions is presented herein. By developing 

and applying a saliency map evaluation scheme similar to that used in [13], the 

quality of the saliency maps that a group of base models and their ensemble 

produce, as well as their aggregations are compared. In total, four tests are 

performed using groups of models trained on the ISIC-2019  dataset , for which 

the models are open published, and the NCT-CRC-HE, and Imagenette, 

datasets, for which the models are trained for the needs of this work. The results 

indicate that further examining the use of ensembles for richer feature 

visualizations is beneficial. Aggregating is equally promising too, suggesting that 

the already trained models and their respective saliency maps can directly 

supplement each other without the need for defining computationally 

demanding ensembles. Finally, discussion over the results to draw conclusions 

and make further observations is presented. Interesting future work capabilities 

are also being discussed. 
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2 Background 

In this section, the basic past and current advances in the fields that this work is 

concerned of are briefly reviewed. Starting from the more general and moving 

on to the specifics, definitions, methods, and any aspect that is relevant to my 

thesis are introduced. 

2.1 Interpretability and explainability 

Defining interpretability and explainability, contrary to what one may expect to 

when dealing with Science, Technology, Engineering and Math (STEM)-related 

definitions, is not a straightforward and strict procedure. Authors, across and 

within disciplines, define and use these two aspects of modern AI with diversity. 

Furthermore, some differentiate between the two terms, [14, 15], while others 

use them interchangeably. A widely adopted but instinctive definition for 

interpretability is the one given by Miller in [16], “interpretability is the degree 

to which an observer can understand the cause of a decision”. 

A possible reason for this phenomenon could be the subjectiveness of the 

matter, or what do we expect when asking for an interpretable, explainable and 

transparent system. In [17], Lipton recognizes some of the “desiderata of 

interpretability research”. Trust, meaning confidence for letting the model 

decide without further supervision, and causality, meaning that the decision 

and its cause can be clearly associated, are two of the common requests from an 

interpretable model. For instance, when referring to a healthcare-related 

system, trust is useful, not in the sense of giving control of someone’s health to a 

program, but in that of confidently rule out false negatives while maintaining 

high predictive power. Causality on the other hand could point promising 

directions to medical researchers by unveiling links between probable causes 

and target conditions. Suppose a linear model that through its coefficients 

positively links low carbohydrate diets to lower intensity outbreaks of an 

inflammatory disease. This model is a widely accepted interpretable model, that 

proposes a cause, the low carbohydrate consumption, for a characteristic of 

interest, the intensity of a disease’s symptoms. Note here that causality does not 
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coincide with statistical correlation, not even for this seemingly simple example. 

Models of such low complexity are also often referred as transparent and the 

inner mechanics can be observed. Transparency is yet another term closely 

related to explaining an AI system and the most “notorious” non-transparent 

systems are, of course, neural networks. Since it is not the purpose of this thesis 

to try and define interpretability, the above instinctive definition of 

interpretability suffices and thereby the terms interpretation and explanation 

are used interchangeably, as long as the context allows for clear meanings.  

2.2 Interpretability methods - Attribution maps 

Having clarified what exactly we need from an explanation method, it is time to 

choose the right explanation approach. Due to the rapid and parallel advances 

of XAI and ML, the right choice is not always that obvious. Extended review 

works, such as [18, 19, 20, 21, 15, 22] , tried to create a taxonomy around 

explainability methods and, by rightly approaching interpretability from 

different angles, several taxonomies have been described.  

Based on the characteristics of the system, it is a senseful first step to classify a 

machine learning algorithm as either transparent or black-box. The 

interpretability methods that aim to explain either of these classes of models, 

are differentiated respectively. When developing a system whose interpretability 

is based on algorithm transparency, the available choices are limited and with 

simplicity as a key characteristic. That is, model transparency trades 

competency for interpretability. Even ensembling the much instinctive and 

explainable decision trees can lead to complex enough to be considered black-

box models, a problem recently attempted to be addressed in [23]. On the other 

hand, state-of-the-art performances are achieved by Deep Neural Networks 

(DNNs), while modern image analysis systems are vastly dictated by CNNs. In 

contrast with transparent models, black-box models are developed with 

competency instead of interpretability as the main goal, and the search for 

interpretations becomes a post model training procedure. Thus, the class of 

black-box models rely on the so-called post hoc explanation techniques.  

Local versus global interpretation methods is another duality among 

interpretability methods. Methods of a global scope aim to explain the overall 
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behavior of a model. Which input feature patterns are determinant for the 

model’s decisions and in what way? The previous linear model example offers 

global-scope interpretability, which is often achieved by coefficient analysis and 

for which a guide of correct use is presented by [24]. Local-scoped methods on 

the other hand seek explanations for a single decision datapoint. Into this 

category fall the much popular importance attribution algorithms like [10, 25, 6, 

7], which aim to attribute an importance score for each input feature of a single 

data instance.  

The explanation of a DNN often takes the form of an attribution map. 

Attribution maps or saliency maps refer to the mapping of the input features to 

importance scores. The more important an input feature is for the decision of 

the model, the higher its attributed importance score should be. As a solution to 

this problem, several algorithms have been proposed the past few years and can 

be separated into two major categories. Occlusion-based algorithms, such as [5, 

6], operate by manipulating the input to a model and then observe any changes 

to its output. These types of algorithms, even though they act directly to the 

features and thus are model-agnostic and flexible, suffer from impracticability 

due to computational bottleneck. Each occlusion is followed by a full forward 

pass through the DNN and, considering the high resolution of many modern 

medical image data, the total computation time is significant. What is more, 

they are not completely reliable when capturing the nonlinear effects of multiple 

features occlusion, while occlusion itself is suspect of introducing out-of-

distribution objects to the input. As an alternative to feature occlusion, gradient-

based methods rely on the learned gradients of the model and compute the 

saliency map generally effectively with a single back-propagation. On the 

downsides of this category of algorithms, we have traded off both model-

agnosticism and method’s outcome to model’s output variation relation. 

2.2.1 Gradient-based attribution methods 

Integrated Gradient 

In [11], Sundararajan et al. proposed Integrated Gradients (IG) along with two 

axioms, namely sensitivity and implementation invariance, on which their 

algorithm is based on. Sensitivity is satisfied if for any data feature that leads to 

variations of the outputs of a ML model when everything else is held constant, 
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the attribution method recognizes this feature as important. Implementation 

invariance is satisfied if for any two ML models that generate the same outputs 

for every input, the attributions are identical irrespectively of the specifics of the 

models. To achieve sensitivity, IG uses a, most of the times chosen to be zero, 

baseline reference, relatively to which the attribution of the input is calculated. 

Formally, for a DNN f: I→ ℝ𝑛, an input and baseline x, x0∈ I, and outputs in ℝ𝑛, 

the space of real-valued n-vectors, the IGi(x) along the i-th dimension of the 

input is defined as: 

Equation 1. Intergrated Gradients calculation formula. 

𝐼𝐺𝑖(𝑥) = (𝑥 − 𝑥0) ∫
𝜕𝑓(𝑥0 + 𝑎(𝑥 − 𝑥0)

𝜕𝑥𝑖

𝜕𝑎
1

𝑎=0

 

When computing IG, the integral is substituted by a sum. What Eq. 1 describes 

is the average gradients when x varies over x0 along a linear path created by a 

moving on the unit interval. A notable property of IG is that the sum of the total 

attribution equals to the difference of the target output and the baseline output. 

This property, named as completeness by IG’s authors, is considered desirable 

by other algorithms too, and is defined soon after in the context of the 

DeepLIFT algorithm referred as summation-to-delta. 

Layer-wise Relevance Propagation 

Layer-wise Relevance Propagation (LRP) proceeds, as the name suggests, in a 

layer-by-layer manner, and with a backward pass distributes attributions 

through the network. The attribution is redistributed from each to layer to the 

previous and is equal to the activation of the target node t, while the relevance of 

all other target layer’s nodes is set to be zero. The flow of relevance is dictated by 

a recursive rule, several of which are proposed by the author of LRP in [10]. 𝜖-

LRP is based on the rule defined in Eq. 2. 

Equation 2. 𝜖 LRP’s redistribution formula. 

𝑅𝑖
(𝑙)

=  ∑
𝑧𝑖𝑗

∑ (𝑧𝑗𝑘 + 𝑏𝑗) + 𝜖 ∙ 𝑠𝑖𝑔𝑛(∑ (𝑧𝑗𝑘 + 𝑏𝑗))𝑘

𝑟𝑗
(𝑙+1)

𝑗

 

Here 𝑅𝑖
(𝑙)

 is the relevance of the i-th node of layer l, 𝑧𝑖𝑗 =  𝑤𝑗𝑖
(𝑙+1,𝑙)

𝑥𝑖
(𝑙)

 is the 

weighted activation of a neuron xi onto the j-th neuron in the next layer and bj 
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the additive bias of unit j. Figure 1 taken from [26] depicts the flow of relevance 

in between layers along with some common distribution rules. 

 

 

Figure 1. The flow of relevance inbetween layers using LRP. 

DeepLIFT 

Since DeepLIFT is the method used throughout this work, the description that 

follows is more detailed. 

Difference-from-reference and summation-to-delta 

Given an input x, for instance an image, and a DNN f: I→ ℝ𝑛, where I is the 

space of the input data and ℝ𝑛 the space of real-valued n-vectors, DeepLIFT 

aims to assign contribution scores Cxi to each DNN’s intermediate neuron xi ∈ 

{x1, …, xm}, .Neurons {x1, …, xm} are necessary and sufficient to compute the target 

neuron’s output t ∈ f(x). The computed contributions scores are relevant to the 

activation of the same neurons when the input is a reference input x0 resulting 

to the output t0. We are interested in the quantity Δt=t-t0, or difference-from-

reference, while 𝐶𝑥𝑖𝛥𝑡 indicates that the contribution 𝐶𝑥𝑖
 refers to Δt. The 
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difference Δt is also set equal to the total amount of contribution attributed to 

the difference Δx = x-x0, formally the summation-to-delta property:  

Equation 3. Summation-to-delta property. 

∑ 𝐶𝑥𝑖𝛥𝑡

𝑚

𝑖=1

= 𝛥𝑡 

By assigning contributions relative to a baseline, DeepLIFT handles two 

common limitations of many saliency methods, both of whom are caused by the 

nature of the DNN’s gradients. First, zero gradient 𝜕xi/𝜕t for a neuron xi does 

not imply that its contribution for the difference Δt, 𝐶𝑥𝑖𝛥𝑡, will also be zero, as 

opposed to reference absent algorithms. This is an important feature since a 

zero gradient neuron might still signal important information. Second, the 

difference-from-reference eliminates biases from the importance attribution, 

avoiding the creation of artifacts due to gradient discontinuities. The authors of 

the algorithm elaborate and give indicative examples of these two problems. 

Propagating contributions 

Multipliers 
The flow of information from the output neuron back to the input is dictated by 

a layer-by layer step algorithm aspired by the chain-rule. First, authors of 

DeepLIFT define the multipliers 𝑚𝛥𝑥𝑖𝛥𝑡 = 𝐶𝑥𝑖𝛥𝑡/Δt for any input neuron xi. It is 

an analogy of the partial derivative ∂xi/𝜕t, over of course larger differences than 

those the derivative describes. Given the values for multipliers of layer X = {x1, 

…, xk} and its immediate successor layer Y = {y1, …, yl}, the multipliers can be 

propagated using the equation: 

Equation 4. Multiplier's chain rule. 

𝑚𝛥𝑥𝑖𝛥𝑡 = ∑ 𝑚𝛥𝑥𝑖𝛥𝑦𝑗
𝑚𝛥𝑦𝑗𝛥𝑡

𝑗

 

Note how Eq.4 satisfies the summation-to-delta property of Eq 3.  

The Linear rule 

Multipliers are used to transfer contributions from layer to layer, but the actual 

contributions are calculated depending on the function each layer performs. For 

linear functions, such as convolutions and dense layers, the Linear rule applies. 
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An instance of a linear function is the mean averaging of the inputs, just like 

when voting individual model’s outputs. Voting is used throughout this work 

when referring to ensembling, so it is useful to describe the flow of contribution 

when applying DeepLIFT and a mean averaging layer is the final classifier of the 

model. Assuming |M| models, their outputs X = {x1,…, x|M|}, where xi ∈ ℝ𝑛, then 

y = 
1

|𝑀|
∑ 𝑥𝑖

|𝑀|
𝑖=1  is the voting layer. Starting from the target output node t ∈ y, the 

Linear rule states that Δt = Δy = 
1

|𝑀|
∑ 𝛥𝑥𝑖

|𝑀|
𝑖=1  and, consequently, 𝐶𝛥𝑥𝑖

𝛥𝑦
=  

1

|𝑀|
𝛥𝑥𝑖

 

and 𝑚𝛥𝑥𝑖
𝛥𝑦

 = 
1

|𝛭|
. What is interesting at this contribution propagation step, is the 

fact that each model assigns contribution relative to its difference-from-

reference 𝛥𝑥𝑖
, which is actually the difference-from-reference of the jointly 

predicted output node. So, models that classified the input as something 

different from the ensemble’s prediction, will also experience little to zero 

difference-from-reference and, therefore, attribute little to no contribution 

amount when back-propagating. This observation will come at hand when 

discussing the results of this work’s tests on 5.1 paragraph. 

The Rescale and Reveal-Cancel rules 

For nonlinear functions that accept a single input, authors present two 

attribution rules, the Rescale and the Reveal-Cancel rule. The main difference 

among these rules is how they address positive and negative attributions. The 

first does not discriminate between the two, while the latter does. There are pros 

and cons about choosing either of them, which the authors describe. At the time 

of writing, Captum only supports the Rescale rule, and it is how DeepLIFT will 

handle nonlinear layers for this work. Nevertheless, there are no indications 

that the Reveal-Cancel rule would be more appropriate for any of the models 

involved. 

GradCAM 

Ancona et al described in [12] the links between several of the most popular 

gradient-based attribution algorithms, and how some of them coincide under 

certain parameter choices. For instance, ϵ-LRP is equivalent to DeepLIFT [7] 

with a zero reference if no nonlinear function maps zero to zero. Here reference 

is a neutral baseline for the input and its use is one more discriminative feature 

of gradient-based attribution methods. But algorithms whose mechanics vary 
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significantly do exist. GradCAM, proposed in [8], does not rely on redistributing 

fixed sized attributions through back-propagating, the difference-from-

reference concept, nor hard-coded axioms. By hypothesizing that the last 

convolutional layers of a CNN have large perceptive field and having focused on 

semantically important for the classification image features, GradCAM aims to 

detect what these layers have learnt for each class. Most commonly the last 

convolutional layer is chosen. Formally, if L is the last convolutional layer of the 

model f, then the output of L are k feature maps of a common dimensionality Al 

∈ ℝ𝐻𝑥𝑊, where l∈{1, …, k} and ℝ𝐻𝑥𝑊 is the space of HxK matrices. The 

importance of the contents of each feature map is calculated relatively to the 

target class’s node t, but before the use of a SoftMax function. For each map, a 

weight is calculated as in Eq 5. 

Equation 5. GradCAM's weighting function of the feature maps. 

𝑤𝑡
𝑘 =  

1

𝐻𝑥𝑊
∑ ∑

𝜕𝑡

𝜕𝐴𝑖𝑗
𝑘

𝑗𝑖

 

Here the double summation represents a global average pooling operation. The 

averaging of the feature maps using the weights 𝑤𝑡
𝑘 results in an attribution 

representation of dimension HxK, which is finally subjected to an element-wise 

ReLU operation, a function that zeros out all negative attributions. The 

definition of GradCAM, apart from significantly distinguishing the algorithm 

from the previously described algorithms, imposes an applicability constraint. 

The demand for the CNN’s last part to be comprised of a convolutional layer 

followed by a linear classifier limits the available choices of models, especially 

when opting for an ensemble. 

2.3 Attribution maps evaluation 

The evaluation of the predictive strength of a model is straightforward. Given 

the ground truth, the predictions of the model and the purpose for which a 

model is developed, we can define and compute one or more appropriate 

metrics. For instance, for a model developed towards detecting cancerous tissue 

from image data, eliminating false negatives is of greater significance compared 

to false positives. Assuming that the outputs are either positive or negative 
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predictions, for presence or absence of cancer respectively, the model must 

demonstrate high sensitivity. These metrics are universal and objective. 

For image data, mapping every input feature xi to a saliency score S(xi) is the 

same as attributing a value to each image pixel. Thus S(xi) is injective, and the 

output result has the same dimension as the input image allowing the 

explanation to be visualized. This property allows for direct observation and 

qualitative evaluation of the attribution method’s output. Domain experts 

examine and rate the quality of the output attributions maps or set the ground 

truth for relevant datasets, mostly in the context of salient object detection [27]. 

This type of evaluation suffers from important limitations. Firstly, having a 

subjective ground truth and, even more, a subjective metric is problematic. 

Though, by consulting a well sampled set of experts could soothe the problem of 

subjectiveness, the evaluation remains unquantified, and a second problem is 

exaggerated, that of data volume. For domains like medical imaging, which are 

both delicate and in need of high expertise, recruiting sets of experts for labeling 

thousands of datapoints is not feasible. 

Driven by these limitations, a handful of quantitative metrics have been 

proposed. Manipulating the input data to observe the output score variation is 

of the most popular among evaluation schemes and are designed to quantify the 

faithfulness of the method, that is, whether the highlighted by the saliency map 

features are relevant to the model’s reasoning. Chattopadhyay et al [25], apart 

from advising ‘human subjects’, proposed Average Drop (AD) and Increase in 

Confidence (IIC). These two metrics are supposed to act in a complementary 

fashion. AD is the percentage of drop of the model’s prediction score after 

gradually removing the important areas that are designated by the class-

discrimination map. This map is computed by the algorithm multiplied by the 

original image, essentially the important area pointed out by the method. IIC, 

on the contrary, results by removing the unimportant areas of the image. A 

limitation of these two metrics is the granularity upon they are measured. 

Removing the highlighted as important areas all at once, especially when using 

masks to do so, introduces artifacts in the image whose effect on the inference of 

the model is not tracked. Similarly, Petsiuk et al [28] introduced Deletion Area 

Under Curve (DAUC) and Integration Area Under Curve (IAUC). The main 

difference of AD, IIC and DAUC, IAUC is that the latter are computed by 
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progressively masking relevant or unveiling irrelevant areas of the input image 

instead of directly doing so. The order in which the masking/unveiling takes 

place is that of the saliency values. For example, for images, the most important 

pixels will be masked or the least important will be unveiled first. This 

procedure leads to a drop curve and the area below that curve is the respective 

score. Although the progressive feature removal is still suspect of introducing 

artifacts, it offers an evaluation of higher resolution, since DAUC and IAUC 

scores are calculated for various levels of perturbation. The aggressive 

perturbation nature of masking is not tackled in this work though. A more 

general progressive procedure of manipulating the input image is described in 

[13]. Instead of masking, i.e., zeroing out pixels and areas of the image, a 

general perturbation function can be defined, such as blurring or replacing with 

uniformly or normally generated noise. Once again, a drop curve is formulated, 

and the authors choose to quantify the drop as the Area Over the Perturbation 

Curve (AOPC). In contrast with DAUC, for which a lower score is desirable, a 

higher AOPC score is better.  

Just like occlusion-based attribution techniques, any change to the original data 

might introduce out-of-distribution data and, consequently, unreliable 

measurements. Thus, the method of data perturbation plays a key role for the 

reliability of the evaluation procedure and special precautions should be taken 

when considering the perturbation function. Simply masking image areas does 

not allow for such considerations. In this work, the attribution-evaluation 

scheme of [13] is used with special consideration in avoiding these problems. 

AOPC score is also adopted to quantify the evaluation results. More on section 

4.3. 

2.4 Combining models 

Combining a number of models trained to solve a common problem is a popular 

and highly effective ML technique to build a stronger predictive system, also 

known as ensemble. Ensembling can be performed in many different ways, but 

the core condition for the ensemble in order to leverage accuracy, is for its 

backbone models to be also accurate and diverse. Diversity when ensembling is 

of crucial significance, since two classifiers or regressors that have learned the 
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exact same patterns will also jointly perform the same. In other words, the 

models need to make mistakes on different datapoints for  their conjuction to be 

better informed than they are as a unit.  

Diversity can be introduced in many ways, especially for the much complex 

DNNs, and can originate from the data, the models themselves or the training 

procedure. Ways of introducing model diversity have been studied in the 

literature. Lakshminarayanan et al [29] propose training the same model using 

different random initializations, which suffices for the models to converge to 

different solutions. This method of differentiation is temperate considering that 

modern succesful models are being proposed constantly, and whose 

architectural differences can be extensive even when focusing on a particular 

category. For image data, CNNs have rightfully gained popularity the past years. 

Depth, width, activation functions, all affect greatly on which features does the 

CNN focus and are present to every architecture, from AlexNet [30] to the most 

“exotic” ones. Between two identical model, diversity can be introduced through 

the training hyperparameters, such the loss function, which dictates what the 

model values the most during its training and the learning rate, which guides 

every next step of the learning.  

Modern software has made it easy to recruit various model architectures and 

also pretrained on vast datasets, a method known as Transfer Learning (TL). 

TL, for which a comprehensive review is presented in [31], aims to transfer 

knowledge gained while learning about another vision task to the problem of 

interest, ensuring lower training times. With tools like Pytorch [32] and TL, 

training models that are structurally different provides diversity with certainty. 

EfficientNets [33] is a family of CNNs that have monopolized the last ISIC 

challenges, achieving state-of-the-art results. The key contribution behind these 

modern nets is the development of AutoML [34], which allows for automated 

size regulation of the model so as to achieve efficiency along with accuracy. 

EfficientNets, just as every other modern model, have built upon earlier popular 

architectures. ResNets [35] family, which exploited the benefits of higher depths 

for accuracy, is some of them. The increase in depth is achieved by adding 

identity layers in-between layers. The idea behind ResNets was so successful 

that influenced numerous other architectures. ResNexts [36] introduced 

cardinality into the ResNets by adding multiple bottleneck blocks in place of a 
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single block. One step further, ResNests [37] also added squeeze-and-excitation 

(SE) [38] blocks into the previous advancement. SE is a gating mechanism that 

is lightweight enough to be incorporated in large models and results in an 

attention effect when learning. While ResNets aimed for depth, InceptionNet 

[39] focused on wider layers. On the other hand, DenseNets [40] are inspired, 

as the name suggest, by dense connections. Every layer of the model is input for 

every other subsequent layer, not just the next one. Variations of these 

architectures are utilized in this work and in 4.2 the exact configuration are 

presented. 

2.5 Combining saliency maps 

In the context of XAI, ensembling has not been examined extensively, but works 

that indicate that ensembling is a useful methodology for leveraging 

interpretability do exist. Authors in [41] conclude that different model 

architectures, as well as different attribution methods, focus on different 

important data patterns of the image. In [42], the work most closely related to 

the topic of my thesis, Kallipolitis et al by consulting seasoned physicians for 

comparing the explanations the ensemble and its backbone models produce, 

concludes that indeed ensembling offers explainability benefits, just like it does 

for accuracy. Most of the work is oriented towards saliency detection and 

semantic segmentation tasks, [27, 43]. Even though saliency detection is an 

aspect closely related to interpretability, the differences are more than 

significant. Saliency detection models are trained and evaluated using as targets 

masks that separate the image in salient and non-salient pixels and, so, their 

outputs are monochrome, black and white, images and their evaluation is 

straightforward, expressed by metrics such as F1 and MAE scores. For these 

reasons, ensembling saliency detection models is based on leveraging accuracy, 

not interpretability, and is not related with the anti-causal reasoning of the 

classification process on which interpretations aim for. 

What is most interesting about the work done on saliency detection, is the 

efforts of aggregating the output of the models as a means of improving the 

acquired saliency representation. Lots of aggregation methods have been 

proposed and tested. For instance, [44] proposes a standard pixel-level 
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aggregation of the saliency maps, while [45], steps on that standard aggregation 

and tries to capture and formulate into the aggregation the neighboring 

relationships among the pixels. All of these efforts indicate that saliency map 

aggregations can be fruitful. 
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3 Methods 

In this section, any methods and algorithms used throughout this work are 

discussed. Their formal description is complemented by examples and 

justification about their selection. First, a high-level description of the 

experimentation pipeline is given and right after the specifics of each step. 

3.1 Experiment pipeline 

The compared objects of interest are sets of saliency maps. The saliency maps 

produced by a set of models trained on a common dataset comprise the baseline 

saliency maps. The term baseline here arises from the fact that these maps are 

produced by directly applying an established attribution algorithm on the 

models and data at hand. The saliency maps of their ensemble, which are 

referred as the ensembled saliency maps, are obtained by defining the ensemble 

of the original models and then applying the attribution method. The 

ensembling strategy followed is the mean averaging of the outputs of the 

backbone models, also known as voting. A third set of saliency maps is created 

by aggregating the baseline saliency maps using a novel aggregation formula 

described in 3.3.2. Finally, as a baseline aggregation, the mean average of the 

baseline saliency maps comprise the mean averaged aggregated saliency maps 

set. Each and every saliency map is calculated by DeepLIFT, and the parameters 

described in 3.2. 

The assessment of importance for each saliency map is based on the scheme 

used in [13]. The values of the saliency map define an order over the regions of 

the image based on their saliency, from the more to the least important areas. 

Following that order, the image is gradually perturbed by replacing the region 

with gaussian noise. The model that produced the saliency map inferences using 

the perturbed image as input. The more accurately the saliency map highlights 

the important regions for the model, the larger and more abrupt drop for the 
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originally predicted class score is expected. For each saliency map set, the 

evaluation results are mean averaged across models and dataset, resulting in a 

single drop curve for the baseline, ensembled, aggregated and mean average 

aggregated saliency maps. Figure 2 represents a high-level description of the 

experimentation pipeline. The specifics of this pipeline are described in detail in 

the rest of this section, while experiment related details are given in section 4.  

 

 

Figure 2. The experimentation pipeline followed to compare the quality of ensembled 
and aggregated saliency maps relative to their backbone maps. 

3.2 Use of DeepLIFT in this work 

Why DeepLIFT 

Practicability and performance are two things to ask from an attribution 

method. DeepLIFT is a backpropagation-based algorithm, meaning that it 
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assigns relevance scores by contributing importance from an output neuron all 

the way back to the input image. The computation of the algorithm’s output 

needs a single backward pass and is efficient enough for the purposes of this 

thesis, since DeepLIFT is called thousands of times. Apart from computation 

efficiency, architectural compatibility is also a strong prerequisite for easiness of 

use, especially when opting for diverse ensembles. Although not a model-

agnostic algorithm, DeepLIFT is well implemented for a variety of CNN models. 

The Captum [46] library is used and for the models described in 4.2 only some 

minor modifications are needed. More specifically, ReLU instances must be 

uniquely used throughout the network. 

As per the performance requirement, evaluating saliency maps and comparing 

attribution methods is not a straightforward procedure as discussed in 2.3. 

Nevertheless, there does exist a reason for preferring DeepLIFT over other 

methods. Adebayo et al [47] proposed a sanity check for attribution methods, 

which is based on the senseful expectation that if the model parameters are 

randomized, the saliency map must also change. In [48], authors expanded 

Adebayo’s sanity experiment and performed sanity check for several attribution 

algorithms. To support our choice, only DeepLIFT passed the check. 

Choice of parameters 

The choice of the reference image and the target layer of the saliency 

visualization are important parameters for the effectiveness of the attribution 

method. For choosing the target layer, in the case of applying DeepLIFT on a 

SoftMax’s preceding layer, DeepLIFT’s proposers suggest using an extra 

normalization step. Furthermore, the effect of regularizing the output scores to 

a mass of one for all models and all instances that SoftMax has, is also useful for 

the aggregation of the saliency maps as discussed in 3.3.2. For every saliency 

map computed in this thesis, the target layer is the post SoftMax output of the 

model. 

The choice of the reference image when computing DeepLIFT is not obvious or 

irrelevant to the problem at hand. The authors of the algorithm point out the 

importance of the reference for DeepLIFT to capture meaningful information. 

Completely black images as references are a baseline approach, which is also the 

default for other reference-based algorithms. Other options are to use either a 
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noisy or a blurred version of the input image. A reason for using a reference in 

the first place, is to simulate the absence of the image’s features. While a totally 

black reference may be suitable for images like those of MNIST, analogy used in 

[7], where the background is actually black and the features white, for real world 

datasets a blurred image is considered to be a safer reference choice. Another 

reason for choosing a generally senseful reference and not trying to achieve 

better results by searching for more special options, is to keep the same 

reference while testing across several datasets. That way, any observed 

replicability is more confidently attributed to the hypothesis under examination 

rather to other parameters. As the reference, a blurred version of the image is 

used. Specifically, the image is convoluted with a large (53, 53) gaussian kernel, 

with a standard deviation of 30 for both axes. This filtering results in a highly 

blurred version of the input image, which must have preserved none of the 

discriminative features originally present. Figure 3 showcases an example of the 

heatmap that DeepLIFT produces. The third image depicts which regions of the 

image the heatmap highlights the most and it is a concept discussed later on in 

detail. 

 

 

Figure 3. Example of DeepLIFT attributions map and the first 15 elements of the 
corresponding MoRF order. 

3.3 Combining several models for 
interpretability 

The main purpose of this thesis is to examine whether an ensemble model that 

is stronger than its backbone models when predicting, has also learnt better the 

important features of the images. Furthermore, an aggregation formula is 
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proposed showing that the saliency maps of the backbone models hold more 

information when combined.  

3.3.1 Ensembling 

Given a set of models M trained on data of the same distribution, an ensemble is 

any decision-making combination of the models of M. A simple and common 

way to ensemble the models is the mean averaging of their decisions. This 

method, due to its simplicity, adds minimal bias to the results of the explanation 

method performed on the ensemble. By bias, I mean any unknown influence the 

ensembling specifics could introduce to the attribution assignment. Optimal 

ways of ensembling as per the performance of the explanation methods could be 

further studied. For all tests performed on this work, ensembling refers to the 

mean averaging of the backbone model’s outputs.  

For obvious efficiency reasons, the inference of an ensemble model is done in 

two steps, the inference of each one of the backbone models and then the 

averaging of those outputs. However, when computing the saliency maps 

produced by the ensemble, a structured network definition is necessary for the 

DeepLIFT algorithm to be performed. In that case, an extra combining layer, as 

the one showcased in Figure 4, is added after each model, whose only purpose is 

to average its inputs. Loading several models on memory and performing a 

back-propagation pass for DeepLIFT’s needs, or any other gradient-based 

explanation method, is the main computational bottleneck of ensembling for 

explainability. In Figure 4, all classifiers output a vector of a common 

dimension, which is equal to number of target classes. The unifying layer 

performs a mean averaging operation that constitutes the ensemble’s decision. 
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Figure 4. The voting classifier layer of the ensembles. For n classes, the n-vector 
outputs Oi, where i∈{1,…,M}, of the M backbone models are mean averaged and the 

ensemble’s output results. 

3.3.2 Aggregation 

The aggregation is performed on the saliency maps obtained by applying 

DeepLIFT on the models of M. The |𝑀| saliency maps are initially filtered by the 

target output node based on which they had been computed, and only the maps 

whose generator model belongs to the majority group when grouped by 

prediction are taken under consideration when aggregating. In other words, the 

saliency map of a model is used in the aggregation if and only if the model 

predicted what most of the other model predicted too. The whole aggregation 

process is an unsupervised procedure since it is not expected for the ground 

truth to be always known. Verified ground truth assumes that the user, for 

instance the doctor, has already made a confident diagnosis. Nevertheless, this 

filtering directs the interpretation procedure to the class most likely to be true, 

but this is not the main motivation behind filtering. The saliency maps of 

different target nodes highlight features with totally different interpretation, 
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that of disparate classes, and aggregating these saliency maps would produce 

controversial explanations.  

For every model f ∈ M*, where M* ⊆ M, the majority of models that agree on 

their prediction, and for every region g(k, l) ∈ x, where x the image of interest 

and g(k, l) the region around the (k, l) pixel of x, a weight w is computed by the 

following formula: 

Equation 6. The proposed weighting of each area and model. 

𝑤(𝑔(𝑘, 𝑙))𝑓 =  ∑ [𝑡(𝑔(𝑘, 𝑙))𝑓  × 𝑓(𝑥) − 
𝐸𝑀𝐷𝑓(𝑥)

∑ 𝐸𝑀𝐷𝑔(𝑥)𝑔 ≠𝑓
]

𝑓

 

Where, t is the uniform ordering of the image’s areas in the unit interval as 

ordered by MoRF, 

Equation 7. The importance of the area for a given saliency map. 

𝑡(𝑔(𝑘, 𝑙))𝑓 = 1 − arg (𝑀𝑜𝑅𝐹(𝑥))𝑓/|𝑀𝑜𝑅𝐹(𝑥)𝑓| 

and EMDf(x) is the mean average of the Wasserstein metric [49] scores between 

the outputs of f and every other model of M*. The valid use of the Wasserstein 

metric assumes a common metric space and mass among the two distributions. 

This is always true if every model’s last layer is a SoftMax layer. Finally, if the 

weight is calculated to be negative for some model and image area, is set equal 

to zero.  

Generally, an informative saliency map should be dense as per its attributions, 

meaning that the highlighted as important areas should explicitly stand out. 

With that in mind, the above aggregation aims to cancel as much noise as 

possible. On an image level, f(x) and 𝐸𝑀𝐷𝑓(x) reward prediction confidence and 

punish output distribution divergence, respectively. Both parameters should 

have noise reduction effects. Assigning higher weights to more confident 

models, straightforwardly reduces the share of the more divided and, therefore, 

more likely to focus on false pixels models. The divergence from distribution 

penalty has little to no effect for a large number of aggregated saliency maps, as 

it quantifies divergence of a model divided by the sum of divergencies of the rest 

of the models. The latter is a large number for every model. This behavior is 

depicted in Figure 5.  
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Figure 5. The behavior of the divergence penalty in comparison with the number of 
involved models. 

For a smaller number of models though, which is what is usually true in most 

cases, the penalty becomes significant for highly divergent distributions. despite 

its symmetricity and its linear position in the sum of the aggregation. Figure 5 

showcases how the divergence penalty behaves with respect to the number of 

involved models. The data for Figure 5 are artificially created. More precisely, 5-

vectors are randomly created in groups of 3 and up to 20 elements, 

corresponding to ensembles with the respective number of backbone models. 

Each vector represents the prediction of a ‘model’ that outputs 5 class 

probabilities. As per the randomness, the only constraint is that the position of 

the maximum element of all vectors is common, as if the hypothetical models 

predict the same hypothetical class but with different probability distribution. 

For each number of models, any outlier datapoint corresponds to the divergence 

penalty of a divergent model. Finally, note that as a divergence metric the 

Kullback-Leibler (KL) divergence [50] has also been considered, but the 

Wasserstein metric was preferred due to its behavior when comparing 

distributions of separate support. For datasets like ImageNet [51], where the 

number of classes is large, it is possible for the outputs of two models to not 
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share a common support. In that case, the KL divergence of these outputs is not 

real valued but infinity, in contrast with the Wasserstein metric. 

On an area level, 𝑡(𝑔(𝑘, 𝑙))
𝑓

 is the leading importance attributor among the 

areas of the image. If someone were to aggregate saliency maps originating from 

the same model but, for instance, computed by different attribution methods, 

then f(x) and 𝐸𝑀𝐷𝑓(x) would serve no purpose when assigning weights for the 

aggregation. In that case,  𝑡(𝑔(𝑘, 𝑙))
𝑓

 would still produce meaningful results, as 

by definition leverages what the saliency maps themselves suggest as 

meaningful. Note how the ordering of the importance values in the unit interval 

allows for saliency maps of different scale to be aggregated also. 
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4 Experiments 

In this section, the data and models used for the performed experiments are 

presented, along with the setup of each experiment. The obtained results follow, 

which are comprised by the drop curves and the corresponding AOPC scores, as 

described in 3.1 and 3.3. 

4.1 Datasets 

ISIC-2019 

The International Skin Imaging Collaboration (ISIC) organizes in a yearly base 

open, award-giving challenges, where the contesters are called to solve one or 

more skin lesion-related computer vision tasks. The actual test data on which 

the submitters’ work is evaluated is not published for several years after the 

launch and end of the competition. In the year 2019, one of the two tasks of the 

challenge, [52, 53, 54], was the classification of skin lesion images in one out of 

nine classes. The ninth class corresponded to the class ‘other’ for which no 

training data were available. Figure 6 showcases the target classes of the 

competition. 

Next year’s challenge [55] was a binary classification dataset, with classes being 

benign and malignant. Due to the nature of the task, the train dataset was highly 

unbalanced with 1.76% malignant labeled images. As a solution, the submitters 

of the winning solution for the 2020 challenge, [56], took advantage of the fact 

that the 2020 malignant class was melanoma diagnosed images. They trained 

their models on the nine classes of the 2019 dataset using both years data and 

for the prediction phase binned the predictions of non-melanoma as benign. 

Thankfully, the weights of the trained models are open released on Kaggle [57] 

and the corresponding code on GitHub [58], allowing for experiments without 

the extra cost of training the models. The only drawback of testing on these 

models is their indirect evaluation on the binary rather on the multiclass 

classification task. Of course, achieving high scores on the binary task is 
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encouraging but up to some degree. Since the compared explanation maps are 

calculated for the same output nodes, the sensitivity comparison test is valid 

even for misclassifications. 

 

 

Figure 6. The 9 classes of the ISIC-2019 [52, 53, 54] dataset. The images are sampled 
from the corresponding test dataset. 

NCT-CRC-HE 

The train part of the NCT-CRC-HE dataset [59] is a set of 100.000 histological 

image-patches taken from 86 microscope histopathology images of normal and 

colorectal cancer tissue. The patches are non-overlapping, with a 224×224 

resolution and belong to one out of nine classes, namely, adipose (ADI), 

background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth 

muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR) 

and colorectal adenocarcinoma epithelium (TUM), showcased in Figure 7. The 

validation part of the dataset is comprised of 7180 image-patches from 50 

images taken with the exact same resolution and micron per pixel 

characteristics as the train set. No patient overlap exists among the train and 

validation sets, while both are hematoxylin and eosin (HE) stained. HE staining 

causes the various tissue structures to be highlighted differently, either by color, 

shade or hue. More precisely, hematoxylin is used to illustrate cell nucleus’ 

detail, while eosin is the most commonly used counterstain that distinguishes 

between the cytoplasm and nuclei of cells. It is typically purple, with different 
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shades of purple for different types of connective tissue fibers. The process of 

HE staining can introduce inconsistencies to the coloring of each slide but 

modern procedures highly eliminate such occurrences. In bottom line, this 

technique aids the pattern recognition task significantly. 

 

 

Figure 7. The 9 classes of the NCT-CRC-HE [60] dataset. The images are sampled from 
the corresponding test dataset. 

Imagenette 

Imagenette [61], as the name suggests, is a subset of ImageNet, [51], the popular 

benchmark that most pretrained models are trained on. From the 1000 classes 

of the full dataset, 10 easily distinguishable classes, showcased in Figure 8, have 

been chosen to form a basic benchmark set. The concept behind Imagenette is 

similar to that of CIFAR10, but this time the resolution of the images has been 

kept at their original shape, allowing for modern CNN architectures to show off 

their feature learning capabilities and for saliency methods to produce 

interpretable outputs.  

Testing on a generic and well curated dataset is useful for minimizing the 

possibility of some special data characteristics, i.e., some unknown bias in the 

ISIC or NCT-CRC-HE datasets, interfering with the outcome of the tests. For 

instance, for an output score to drop due to feature perturbations, some other 

classes need to be assigned proportionally higher scores. The class ‘Other’ for 
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the ISIC-2019 dataset introduces a dataset specific bias, where perturbing an 

image that belongs to the class ‘Other’ should result to an image still belonging 

to that same class, and maybe even with a higher probability. The vanilla dataset 

Imagenette aims to provide a saliency map comparison that is no affected by 

such characteristics. Furthermore, the simplicity of Imagenette helps for 

multiple and accurate enough models to be trained quickly so the available 

computational and time resources can be devoted on the evaluation of the 

saliency maps, as well as on experimenting with the aggregation formula 

formulation. 

 

 

Figure 8. The 10 classes of the Imagenette [61] dataset. The images are sampled from 
the corresponding test dataset. 

4.2 Models 

ISIC-2019 

In [56] an ensemble of 18 models was submitted as a solution to the SIIM-ISIC 

2020 challenge. Some of the models are trained by using metadata of the 

patients as well, making them unsuitable for producing comparable saliency 

maps due to the difference in the expected input. Table 1 shows the 

architectures used in the testing along with an id for easiness of reference later. 

The AUC scores refer to the binary 2020 challenge and not the multiclass 2019 

one, so they are only indirectly representative of the models’ strength. Most of 

the models trained belong to the EfficientNet’s family. Two variations of the 

ResNet family are also trained, a ResNext model with squeeze-and-excitations 

blocks and one is a ResNest model. 

 Table 1. ISIC-2019 trained models 
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Model Id Architecture AUC (2020) 

ISIC-M1 EfficientNet-B4 0.9002 

ISIC-M2 EfficientNet-B5 0.9216 

ISIC-M3 EfficientNet-B6 0.9154 

ISIC-M4 EfficientNet-B7 0.9271 

ISIC-M5 SE-ResNext-101 0.9337 

ISIC-M6 ResNest-101 0.9267 

 

 

NCT-CRC-HE and Imagenette 

Except for the ISIC dataset, where trained weights are published by their 

authors, a selection of diverse pretrained models are trained in an automated 

fashion for both the NCT-CRC-HE and Imagenette datasets. For every 

combination of these models, the corresponding ensemble is evaluated, and the 

highest scoring ensemble, as shown in Tables 2 and 3, is chosen for testing. The 

main goal is to obtain architecturally diverse and adequately accurate models in 

a time efficient manner, and this is the reason for choosing an automated 

training process instead of a more targeted one. The models are not tuned in 

perfection and the achieved scores are not the highest possible. Kallipolitis et al 

[42] achieved very high scoring models on the NCT-CRC-HE, while the 

Imagenette can be considered as a toy dataset. Nevertheless, the models do 

serve their purpose for this work, which is to offer predictions confident enough 

to obtain meaningful saliency maps, as well as to compose a higher scoring than 

themselves ensemble. 

Tables 2 and 3, apart from the scores and ids of each model, contains metadata 

about the training procedure also. NCT-E and Imnet-E refer to the ensemble of 

the corresponding dataset’s models. The final layers of the models depicted in 

the classifier column of the tables replace the classifier of the original 

architectures. For dropout layers, the corresponding parameter concerns the 

percentage of zeroed out neurons when inferencing during the training 

procedure, while for linear layers, the corresponding parameters concern the 

input and output dimensions of the layer. The learning rate is the initial 
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learning rate of each training, as on plateaus of more than 10 epochs, the 

learning rate is decreased by a factor of 0.1. Note that all architectures are 

loaded with pretrained weights on the ImageNet dataset. The goal here is to 

exploit the effects of TL so as for the model to converge faster and optimally. 

 

Table 2. NCT-CRC-HE trained models.  

Model Id Architecture Classifier Epochs F1-macro 

NCT-M1 EfficientNet-B5 

Dropout(0.6), 

Linear(2048,9),  

SoftMax() 

100 0.8454 

NCT-M2 Resnext50_32x4d 

Dropout(0.6), 

Linear(2048,512), 

ReLU(), 

Linear(512,9), 

SoftMax() 

200 0.8916 

NCT-M3 Densenet-169 [40] 
Linear(1664, 9), 

SoftMax() 
65 0.9156 

NCT-E    0.9272 

 

 

Table 3. Imagenette trained models. 

Model Id Architecture Classifier Epochs F1-macro 

Imnet-M1 
Inception-v3 

[39] 

Linear(2048, 10), 

SoftMax() 
50 0.9532 
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Imnet-M2 Resnet-101 

Dropout(0.6), 

Linear(2048,512), 

ReLU(), 

Linear(512,10), 

SoftMax() 

25 0.9447 

Imnet-M3 Densenet-169 
Linear(1664,10), 

SoftMax() 
50 0.9520 

Imnet-E    0.9646 

 

4.3 Saliency map evaluation 

To evaluate how precise or not a saliency map is, a quantitative evaluation 

scheme is necessary. A repetitive perturbation-inference procedure, similar to 

that of [13], is implemented and used throughout this work. After describing 

every step of the evaluation pipeline, I also discuss some of their pitfalls. There 

exist two strong arguments why these pitfalls do not hinder the validity of the 

evaluation results. First, the evaluation pipeline, along with its drawbacks, is 

constant along every aspect that is under comparison. For instance, AOPC has 

received some criticism by [62], but if used for two saliency maps under the 

exact same regime, all of image, perturbation process and model inferencing 

being common, it is a sufficient comparison metric. Second, the size of the test 

datasets in each test performed is more than enough to produce reliable 

statistics.  

4.3.1 MoRF ordered perturbation 

Given an image x and its corresponding importance heatmap h(x), the Most 

Relevant First order of x, formally MoRF(x), is the descending order of the 

image’s regions, as these are scored for importance by the heatmap itself. Note 

that DeepLIFT’s score assignments are considered important if they are far from 

zero. That means that negative values do not mean negative importance, but 

rather negative difference from the reference baseline. MoRF(x) orders the pixel 

elements by their absolute value and dictates the order in which the image’s 

areas are perturbed. Perturbing the most important areas, and since those are 
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highlighted by the saliency map that corresponds to the initially predicted class, 

should lead to large drop of that class’s score. The higher and steeper the score 

drop is, the more accurate the importance ordering of the image’s area and, 

consequently, the heatmap representation is.  

As discussed earlier, the perturbation of a feature aims to hide that information 

from the model in order to measure its significance. But, since the model is 

trained to identify instances coming from the same distribution as that of the 

training data, and the perturbed image may not satisfy this condition, the 

resulting evaluation suffers from some unreliability. Apart from the data 

distribution shift problem, perturbation can also introduce objects, especially 

when an aggressive perturbation function, such as masking, is chosen. In this 

work, the perturbation function is a noise replacement rule. Specifically, for 

perturbing the original image x for the i-th time, the i-th element on the 

MoRF(x) order is replaced by gaussian noise and the perturbation xi results. The 

generated gaussian noise and the original image share a common mean and 

standard deviation, in an attempt to avoid as much as possible out-of-

distribution images. 

The regions that each perturbation step concerns could be singular pixels or 

areas of the image constituted by groups of pixels. For the latter, a grid over the 

image can be defined. There are two reasons to prefer larger areas over 

pixelwise segmentation. The first one is efficiency, a 1024×1024 image consists 

of over 106 pixels, but only 4096 16×16 areas. The second reason is that the 

outright perturbation of a 16×16, even though it makes for a coarser evaluation 

step, allows for observable changes on the image. In other words, a single pixel 

can hardly be considered an image feature for most tasks, while visualizing only 

a few of the first MoRF elements can be informative. In 4.4, the size of the tiles 

the image is segmented on is listed as an hyperparameter of the testing.  

For this 1024×1024 example, 4096 is still a large number of areas. For this 

reason, the number of perturbations for an inference to take place, as well as the 

total percentage of perturbed image areas, are two more hyperparameter listed 

in 4.4. Not perturbing the whole image further helps tackle the out-of-

distribution generation problem. 
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Figure 9 is an example of the perturbation-inference procedure for the 15 first 

elements of the MoRF order, which are depicted in Figure 3. The model predicts 

every 3 perturbations and the output score is decreased over 22% for the total 

perturbation of 1.25% of the image. 

 

Figure 9. First steps of the perturbation-inference process. The MoRF order of the 
perturbation is depicted in Figure 3 as a heatmap. 

4.3.2 AOPC score 

The score per perturbation step resulted by the evaluation procedure above can 

be easily visualized, but a quantified metric offers a more direct comparison for 

the evaluation results. A popular metric is the AOPC score, given by: 

Equation 8. AOPC score. 

𝐴𝑂𝑃𝐶 =
1

𝐿 + 1
⟨∑(𝑓(𝑥0) − 𝑓(𝑥𝑘))

𝐿

𝑘=0

⟩

𝑝(𝑥)

 

Here, L is the number of perturbations and p(x) denotes the average over the 

entire dataset. 

It is important to note that AOPC is both dataset and model dependent. Two 

AOPC scores acquired on a dataset by inferencing with two different models, f1 

and f2, are not comparable. Not only because different models may have learnt 

different features, which is also what ensembling tries to take advantage of, but 

also because different model architectures may not be equally robust to noise. 

The dataset dependency comes from the fact that the value of an output node is 

directly dependent on the scores of the rest of the nodes. This means that, in 

order for a class score to drop while testing by perturbing the input, some other 

classes need to become more prominent by the same perturbation. This is not 

obvious, especially for the first number of perturbations, since for the later 

perturbation steps the image is closer to randomness than ever before. For that 
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said, AOPC is mostly useful for comparisons among perturbation curves of the 

same model for attribution maps of the same images. 

4.4 Experiments setup 

As of now, I have described an evaluation and comparison pipeline. Having a 

dataset and a set of models competent enough to recognize some discriminative 

patterns in the data, four sets of saliency maps are computed and later 

compared among each other. The baseline saliency maps (BM) result by 

applying DeepLIFT on each model, the ensemble saliency maps (EM) by 

applying DeepLIFT on the ensemble of the models, the aggregated saliency 

maps (AM) by aggregating the baseline maps as described in 3.3.2, the mean 

average aggregated saliency maps (MAM) by mean aggregating the baseline 

saliency maps.  

The baseline saliency maps are tested as described in 4.3, where the model that 

makes the inferences is the model that is used to produce the maps themselves. 

In this manner, a prediction drop curve is calculated for each available model 

and the results are mean averaged to get the baseline drop curve (BDC) and the 

corresponding AOPC score. Since the rest of the saliency sets come from 

combining information from all the models, they are evaluated once using as 

inference model every involved model, then the results are mean averaged to get 

the ensemble (EDC), the aggregated (ADC) and the mean average aggregated 

(MADC) drop curves along with their respective AOPC scores.  

In total, four tests are being performed. Since the ISIC models are mostly 

EfficientNets, the ISIC-A test aims to examine whether different depths of 

similar architectures learn different features that an ensemble can take 

advantage of. ISIC-B utilizes more architecturally different models to put focus 

on diversity rather than depth. NCT and Imagenette tests’ purpose it to examine 

the replicability and generality of any observed results. Table 4 summarizes the 

performed tests, the participating models and the hyperparameters chosen. 

”Area size perturbed” concerns the size of the area perturbed in each 

perturbation step. “Perturbations per inference“ is the number of perturbation 

steps between every model inference. “Percentage of perturbed image“ is the 

total percentage of perturbed image at the end of the evaluation. 
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All of the size of areas perturbed on each step, the number of perturbation steps 

between two model inferences and the percentage of the image finally 

perturbated, are mostly dictated by the original resolution of the images and the 

size of the datasets. For evaluating a single saliency map of the ISIC-2019 

dataset using the perturbation-inference configuration shown in Table 4, and 

while using an Nvidia RTX3070 GPU, an average of 2.8 seconds is required for 

the models of ISIC-A test. For the whole test dataset and for all saliency maps 

sets, this translates to a total time of 102 hours. Considering that computational 

resources are also needed for the development of the presented work, the 

configurations of Table 4 are chosen with computation time at mind. 

 

Table 4. Tests performed and involved models. 

Test ID 
Models 

involved 

Area size 

perturbed 

Perturbations 

per inference 

Percentage 

of perturbed 

image 

ISIC-A 

ISIC-M1, 

ISIC-M2, 

ISIC-M3, 

ISIC-M4 

(15, 15) 3 15 % 

ISIC-B 

ISIC-M4, 

ISIC-M5, 

ISIC-M6 

(15, 15) 3 15 % 

NCT 

NCT-M1, 

NCT-M2, 

NCT-M3 

(8, 8) 3 50 % 

Imagenette 

Imnet-M1, 

Imnet-M2, 

Imnet-M3 

(8, 8) 3 50 % 
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4.5 Results 

Figures 10 to 13 and Tables 5 to 8 depict the output scores of the models 

throughout the perturbation process and the corresponding AOPC scores.  

ISIC-A 

 

Figure 10. The drop curves of the ISIC-A test. 

 

Table 5. ISIC-A AOPC scores per total perturbation percentage. 

Noise 

level 
BDC ADC EDC MADC 

EDC 

over 

BDC 

ADC 

over 

BDC 

3.75 % 0.2220 0.2490 0.2462 0.2272 10.90 % 12.16 % 

7.5 % 0.2703 0.3064 0.2999 0.2768 10.95 % 13.35 % 

11.25 % 0.2926 0.3372 0.3275 0.3032 11.92 % 15.24 % 

15 % 0.3146 0.3574 0.3456 0.3216 9.85 % 13.46 % 
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ISIC-B 

 

Figure 11. The drop curves of the ISIC-B test. 

 

Table 6. ISIC-B AOPC scores per total perturbation percentage. 

Noise 

level 
BDC ADC EDC MADC 

EDC 

over 

BDC 

ADC 

over 

BDC 

3.75 % 0.2193 0.2628 0.2600 0.2266 18.55 % 20.00 % 

7.5 % 0.2831 0.3330 0.3300 0.2909 16.56 % 17.62 % 

11.25 % 0.3244 0.3732 0.3705 0.3320 14.21 % 15.04 % 

15 % 0.3554 0.4009 0.3986 0.3628 12.15 % 12.80 % 
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NCT 

 

Figure 12. The drop curves of the NCT test. 

 

Table 7. NCT AOPC scores per total perturbation percentage. 

Noise 

level 
BDC ADC EDC MADC 

EDC 

over 

BDC 

ADC 

over 

BDC 

12.5 % 0.1768 0.1592 0.1809 0.1444 2.32 % -10.00 % 

25 % 0.2938 0.2837 0.3092 0.2623 5.24 % -3.43 % 

37.5 % 0.3812 0.3851 0.3999 0.3545 4.90 % 1.02 % 

50 % 0.4379 0.4511 0.4570 0.4138 4.36 % 3.01 % 
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Imagenette 

 

Figure 13. The drop curves of the Imagenette test. 

 

Table 8. Imagenette AOPC scores per perturbation percentage. 

Noise 

level 
BDC ADC EDC MADC 

EDC 

over 

BDC 

ADC 

over 

BDC 

12.5 % 0.1749 0.2219 0.2085 0.1647 19.21 % 26.87 % 

25 % 0.2855 0.3752 0.3532 0.2710 23.71 % 31.41 % 

37.5 % 0.3549 0.4762 0.4445 0.3363 25.24 % 34.17 % 

50 % 0.3963 0.5404 0.4981 0.3758 25.68 % 36.36 % 

4.6 Qualitative evaluation 

The score drops to perturbation level figures do show some differences between 

the sets of saliency maps. Under the used evaluation scheme, the ensemble and 

aggregated saliency maps seem to be more accurate about their highlighted 
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areas. But since the AOPC score is relevant to the problem at hand and not a 

global metric, how much important are these improvements on the attribution 

visualizations and are they noticeable at all? The most accurate qualitative 

evaluation requires the eye of an expert, especially when dealing with medical 

images. Figure 14 showcases a few instances of the ISIC-2019 dataset, where the 

baseline DeepLIFT saliency maps can be visually compared to the 

corresponding ensemble and aggregated saliency maps. The images are 

randomly chosen, except for the fact that the lesion is required to be easily 

separated from healthy skin, in order for a high-level qualitative comparison to 

be performed even by non-experts. 

Only a few valid qualitative observations can be made by non-experts. The first 

concerns the coherence of the maps, that is whether the salient areas are those 

that clearly differ from healthy skin, or are they scattered with a noisy manner. 

The most consistent about its coherence set seems to be the AM. The ISIC-M6 

model also displays some focused saliency maps, while being the lowest scoring 

model of the three, in contrast what one may have expected. Interestingly 

enough, EM, although performed well on the quantitative evaluation, seems to 

include noisier maps. A second observation that can be made is the saliency or 

not of clearly irrelevant areas, such as ink marks, hair, or the perimeter of the 

camera lens. The aggregation offers a way of potentially suppressing such 

artifacts. If a subset of the base models has mostly focused on other regions 

apart from the artifact itself, its salience on the aggregated map will appear to be 

lower. Of course, that could be true for relevant regions too. For instance, for the 

example on Figure 14 where the number one is written on the skin, both the ink 

and the second lesion at the bottom of the image, which seems to differ from the 

main lesion at the center though, are suppressed on the AM.  
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Figure 14. Examples of saliency maps from the ISIC-2019 dataset. 
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5 Discussion 

In this paragraph, an attempt to interpret the experimentation results takes 

place. Examples of saliency maps along with a high-level qualitative evaluation 

are also presented. Finally, the hypothesis that stronger models should also 

offer better interpretations is discussed, always based on the obtained results. 

5.1 Conclusions 

A first thing to notice is that the output scores drop more abruptly for the tests 

performed on the ISIC-2019 dataset, as opposed to the more linear drops of the 

other two figures. Two contradicting hypotheses are that either the ISIC models 

have learnt more important features about their target distribution and, thus, 

produce better saliency maps, or the models trained on the NCT-CRC-HE and 

Imagenette datasets are more robust to the perturbations. The fact that the 

originally ImageNet-trained models, when retrained on the Imagenette dataset, 

lose confidence about their predictions linearly to the noise addition too, is in 

favor of the latter hypothesis. The robustness to noise can originate from the 

dataset itself and does not necessarily require better trained models. 

The percentage of total perturbed image along with the quality of the saliency 

maps affect the total drop on the output of the models. For the ISIC-A and ISIC-

B tests, perturbation of 15% of the input image led to 0.4 and 0.49 average drop 

correspondingly. Note that the models used for the ISIC-B test are stronger, 

under the evaluation described in section 4.2. When perturbing half of the 

image, for the NCT test all the saliency map datasets result to the model 

assigning scores close to the baseline output score, or in other words predicting 

randomly. For the Imagenette test, BDC and MADC halt their drop well before 

reaching the 0.1 randomness level, while EDC and ADC achieve much lower 

outputs, being the clearest indication that combining the saliency maps is 

beneficial for interpretability. 
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Across tests and set ups, the replicable results are the more interesting. EDC 

and ADC are steadily below BDC and MADC. The only exception is the NCT test, 

where ADC, even though finally reaches the lowest output scores, for the more 

important first number of perturbations is above BDC. What is interesting about 

that test, is that all curves are tangled and close to each other, indicating that the 

choice of the models, the characteristics of the dataset or both combined do not 

allow for further improving the BM. Nevertheless, either ensembling models as 

a means to create a better informed model, capable of assigning more accurate 

explanations, or directly combining the interpretability information provided by 

the available models, both seem to be useful for the interpretability of the 

system. 

Did the combination of several models provide more information? 

The fact that in all tested scenarios MAM and BM show similar behavior 

indicates that most, if not all, of the models focus on the same image features. If 

this is true, then the successful acquisition of better attribution maps through 

the combinations of several models might actually lie not on the combined 

information being richer, but rather on indirect enhancement of the attribution 

assignment. Theoretically this is a plausible explanation. When comparing AM 

and MAM, it is clear that the noise reduction orientation of the proposed 

formula offers substantial improvement over the simple mean averaging of the 

maps. The proposed aggregation deliberately focuses on features that all models 

highlighted and silences areas of the maps that seem to be noisy, where a noisy 

area is any salient area that is highlighted only by a few models and not the 

majority of them. Of course, in cases where all models pay attention on an 

unimportant feature, for example a hair on an ISIC image is a usual suspect for 

being highlighted on the attribution map due to its sharp edges, the aggregation 

of their maps, either by mean averaging or else, will most likely maintain that 

feature as important. As for the EM, the computation mechanism of the 

DeepLIFT algorithm when applied on the ensemble architecture could benefit 

the importance attribution. First off, starting from the predicted output node, 

the contributions are back-propagated to the corresponding output node of the 

backbone models. This means that whichever the initial backbone model’s 

prediction was, the attribution expresses the class most likely to be true, since it 
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is the one the ensemble decided. Most importantly though, when applying 

DeepLIFT on the ensemble’s backbones, as well as on the ensemble itself, the 

exact same quantity Δx and, due to the summation-to-delta property, the exact 

same difference-from-reference Δt is attributed on the intermediate neurons 

starting from the target output node. When the back-propagation of the 

attribution step reaches the layer that combines the backbones models, the 

back-propagated importance is broken down into proportionate chunks that will 

continue back-propagating but in parallel. As discussed in 2.2.1, the 

contribution assigned from each model is equal to the difference-from-reference 

of the output node that corresponds to the ensemble’s predicted class, and this 

quantity is expected, most of the times, to be close to zero for models that 

disagree with the voting decision.  In other words, as part of an ensemble, each 

backbone model fi assigns only a fraction of the importance amount that 

assigned as a stand-alone model, and what is more, this fraction is 

proportionate to the difference fi(x) – fi(x0), where x and x0 are the input and its 

reference respectively. That being said, while several models may provide richer 

feature learning and, therefore, more interpretability information, either 

through their saliency maps when aggregating or their architectures and 

weights when ensembling, the combined saliency maps can possibly be more 

informative by indirectly enhancing the contribution attribution. A mixture of 

both of these mechanisms is most likely to be responsible for the seen 

improvements. 
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5.2 Observations 

 

Figure 15. Model's average output drop to model's score scatterplot. 

 

A hypothesis, which also supports the idea that an ensemble might produce 

better attribution maps than those of its backbones, is that the strongest, as per 

their predictions, models also produce the best attribution maps. Figure 15 

suggests that this is partially true. While the data points do not monotonically 

ascend, there seems to exist a positive relationship between the score of a model 

and the total average drop of its output during the perturbation-evaluation 

procedure. The main concern about accepting this conclusion is of course the 

size of the sample, since a bigger dataset will add more confidence to the results. 

What is more, for the NCT models, where the variance of the scores is the 

largest, the average drop remains steady for models NCT- M1 and NCT-M2 that 

vary significantly on their accuracy. This contradicts the largest sample of the 

ISIC models, where great variance on the average drop is observed for closely 

performing models. In other words, both the sample size and the fact that the 

data points lie close to each other on the y-axis, could easily create the illusion of 

higher scoring models being prone to higher drops when testing their 
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attribution maps. That being said, with the data at hand, the hypothesis cannot 

be accepted, nor rejected.  
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6 Future work 

Since every result of this work suggests that ensembling is promising for the 

interpretability of image recognition systems, it would be interesting to research 

the different aspects of this idea. What methods of ensembling better combines 

and expresses the learnt image features of the models? Is the architectural or 

the training diversity more important when ensembling for leveraging 

interpretability?  A very interesting approach would be to focus the training on 

the features of the image themselves, rather on the accuracy of the predictions. 

Given appropriate labeling, a loss function that prioritizes the importance of the 

learnt features could place such a focus. Another way to emphasize the 

importance of the distinct features, and since the final goal is to utilize 

ensembling of the models for an ML task, would be to train models on 

recognizing specific features of each class, instead of demanding a generic 

feature learning.  

Apart from ensembling, aggregating provided interesting improvements too, 

and with minimal computational resources compared to applying DeepLIFT, or 

any other attribution method, to an ensemble. The proposed aggregation 

approach allows for the combination of attribution maps of several sources and 

not only from different models. For instance, different attribution methods, 

different parameter set ups for the same attribution method, instances of the 

same model but from different stages of its training procedure, are all possible 

choices for producing a number of meaningful and potentially complementary 

attribution maps, using only a single model. 

The simplicity of the proposed aggregation formula, which mainly targets the 

salient pixels while suppressing noise, leaves plenty of room for improvement. 

For example, the intensity of the attribution is not considered, only the ordering 

of the values. While for the MoRF perturbation order the actual attribution 

value of the pixel is unimportant, in reality it makes a big difference for the 

human interpretation, and it should be taken under consideration.  
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In most cases, the important features appear coherent in the image data. Apart 

from being an edge, the neighboring pixels of an important pixel have no 

obvious reason for not being also important. Aiming for coherence, either as a 

post processing step of the attribution map aggregation or during the weighting 

of the aggregation, could bring improvements in the final visualization.  

The difficulty of evaluating a saliency map has already been discussed. Despite 

the effort of applying an as valid as possible evaluation scheme, the maps are 

only compared as per their faithfulness. Further evaluation of the saliency maps 

would most certainly add to the credibility of the presented results, especially by 

focusing on more aspects of the quality of the maps evaluation. Since the 

interpretations are meant to assist human experts, human-based evaluation is 

the most important ‘metric’, which although costly, is utterly necessary. 
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