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Η παρούσα Διπλωματική Εργασία εγκρίθηκε ομόφωνα από την Τριμελή Εξεταστική

Επιτροπή που ορίσθηκε από τη ΓΣΕΣ του Τμήματος Στατιστικής και Ασφαλιστικής Επι-

στήμης του Πανεπιστημίου Πειραιώς στην υπ’ αριθμ. . . . . . . . . . . . . . . . . . . . συνεδρίασή του

σύμφωνα με τον Εσωτερικό Κανονισμό Λειτουργίας του Προγράμματος Μεταπτυχιακών

Σπουδών στην Εφαρμοσμένη Στατιστική

Τα μέλη της Επιτροπής ήταν:

Σωτήριος Μπερσίμης, Αναπληρωτής Καθηγητής (Επιβλέπων)

Παντελής Μπάγκος, Καθηγητής

Κωσταντίνος Πολίτης, Αναπληρωτής Καθηγητής

Η έγκριση της Διπλωματική Εργασίας από το Τμήμα Στατιστικής και Ασφαλιστικής

Επιστήμης του Πανεπιστημίου Πειραιώς δεν υποδηλώνει αποδοχή των γνωμών του συγ-

γραφέα.
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'Εχω διαβάσει και κατανοήσει τους κανόνες του ΠΜΣ που περιέχονται στον Οδηγό

Συγγραφής ΔΕ και ιδιαίτερα όσα συνιστούν λογοκλοπή. Δηλώνω ότι η παρούσα δι-

πλωματική εργασία αποτελεί προϊόν αποκλειστικά δικής μου προσπάθειας, υπό την

καθοδήγηση του επιβλέποντος καθηγητή, ενώ για όλες τις πηγές που χρησιμοποιήθη-

καν περιλαμβάνονται οι αντίστοιχες αναφορές.
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Περίληψη

Η εξατομίκευση των θεραπειών είναι καινοτόμα προσέγγιση που προσαρμόζει τη

πρόληψη και τις θεραπείες λαμβάνοντας υπόψη διαφοροποιήσεις βιοδεικτών των

ανθρώπων όπως επίσης και παράγοντες από το περιβάλλον και τον τρόπο ζωής.

Οι βιοδείκτες είναι δείκτες που μπορούν να μετρηθούν, να αξιολογηθούν και να

χρησιμοποιηθούν ώστε να προβλέψουν την εμφάνιση εξέλιξη μίας ασθένειας. Κλινι-

κά επικυρωμένοι βιοδείκτες χρησιμοποιούνται για την εξατομίκευση των θεραπειών

ώστε να διαχωρίσουν ασθενείς ως προς τον κίνδυνο ή την πρόγνωση να νοσήσουν

ή την ανταπόκριση σε μία ασθένεια. Οι μέθοδοι μηχανικής μάθησης χρησιμοποιο-

ύνται ευρέως για την αναζήτηση βιοδεικτών και πολλοί από αυτούς όπως τα Δέντρα

Αποφάσεων, τα Νευρωνικά Δίκτυα, τα Support Vector Machines και άλλα παρουσι-

άζονται παρακάτω. Επίσης, παρουσιάζονται αρκετές έρευνες στις οποίες αλγόριθμοι

μηχανικής μάθησης έχουν εφαρμοστεί ώστε να αναζητήσουν πιθανούς βιοδείκτες για

την εξατομίκευση θεραπειών. Τέλος πραγματοποιήθηκαν τρεις αναλύσεις σε τρία

διαφορετικά σύνολα δεδομένων ώστε να εφαρμοστούν στην πράξη πολλές από τις

μεθόδους που αναφέρονται και κάποιες ακόμα επιπρόσθετες διαδικασίες.
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Abstract

Precision medicine is an innovative approach to tailoring disease prevention and treatment
that takes into account differences in people’s biomarkers such as genes, environments,
and lifestyles. Biomarkers are indices which can be measured, evaluated and used for
predictions about disease occurrence and progression. Clinically validated biomarkers
are used for precision medicine to classify patients based on their disease risk, prognosis
and/or response to treatment. Machine learning methods are popularly used for biomarker
discovery and many of them such as Decision Trees, Support Vector Machines, Neural
Networks and others are presented below. Moreover, presented many studies in which
machine learning algorithms have been applied in order to discover potential biomarkers
for precision medicine. Finally they were analyzed three data sets for building in practice
some of the methods that are referred and others beyond them.

iv



Contents
1 Introduction 1

1.1 Precision Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Biomarkers definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Biomarker types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Biomarker characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Omics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Trancriptomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Proteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.4 Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.5 Multi-omics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Lung Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Lung Cancer Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Diabetes Mellitus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Type 2 Diabetes Mellitus . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Gestational Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Cardiovascular Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Coronary Heart Disease . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Unsupervised Learning 32
3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 PCA Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Dual PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 K-means Numerical Example . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Clustering Performance Evaluation . . . . . . . . . . . . . . . . . . . 48

4 Logistic Regression 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Binary case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Logistic Regression-Numerical Example . . . . . . . . . . . . . . . . 51
4.3 Multinomial Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 One vs rest classification . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Softmax Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Non-parametric methods for regression and classification 56

v



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Iterative Dichotomiser 3 Algorithm . . . . . . . . . . . . . . . . . . . 58
5.2.3 C4.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 C4.5 Algorithm-Numerical Example . . . . . . . . . . . . . . . . . . . 59
5.2.5 CART algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 K-Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 KNN Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Generative Learning Algorithms 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Naı̈ve Bayes’ Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Naive Bayes Numerical Example . . . . . . . . . . . . . . . . . . . . 68

6.3 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.1 Quadratic Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . 71
6.3.2 Computations for LDA and QDA . . . . . . . . . . . . . . . . . . . . 71
6.3.3 LDA Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Support Vector Machines 76
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Hard margin SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.1 SVM Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Soft Margin SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4 Kernel SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Neural Networks 85
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Generalized Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.5 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.5.1 Activation Functions for Hidden Layers . . . . . . . . . . . . . . . . . 88
8.6 Neural Networks for Regression . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.6.1 Multiple-Output Regression . . . . . . . . . . . . . . . . . . . . . . . 89
8.7 Neural Networks for Classification . . . . . . . . . . . . . . . . . . . . . . . . 89
8.8 Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.8.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.8.2 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 90
8.8.3 Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 91
8.8.4 Learning Slowdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.8.5 Cross Entropy Cost Function . . . . . . . . . . . . . . . . . . . . . . . 94
8.8.6 Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.9 Overfitting and Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.9.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.10 Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vi



8.10.1 Learning Rate η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.10.2 Mini-Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.10.3 Training epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.10.4 The Regularization Parameter λ . . . . . . . . . . . . . . . . . . . . . 99
8.10.5 Neural Network Numerical Example . . . . . . . . . . . . . . . . . . . 99

8.11 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.11.1 Local Receptive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.11.2 Shared Weights and Biases . . . . . . . . . . . . . . . . . . . . . . . . 104
8.11.3 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.11.4 Zero -Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.11.5 Shifting Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 Ensemble learning 110
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2.1 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.3 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.3.1 Random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.4 Bagging vs Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10 Hands-on Projects 115
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.2 Methods and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.3 Project 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.4 Project 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.5 Project 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Appendices 137

A Code for Project 1 137

B Code for Project 2 146

C Code for Project 3 156

References 171

vii



1 Introduction

1.1 Precision Medicine

Precision medicine is an innovative approach to tailoring disease prevention and treatment
that takes into account differences in people’s biomarkers such as genes, environments, and
lifestyles. Patients with different biomarkers present with different risks of developing a disease,
different disease prognoses or different responses to treatment. The goal of precision medicine
is to target the right treatments to the right patients at the right time [1]. This approach stands
in contrast to a decades-long effort in critical care to create broad definitions of syndromes.

Precision medicine does not literally mean the creation of drugs or medical devices that
are unique to a patient. It is about the ability of using the available clinical, biological, and
environmental large and complex data about patients to identify subgroups of patients that differ
in their susceptibility to a particular disease, in the biology or prognosis of those diseases they
may develop, or in their response to a specific treatment. Consequently, guide health care
decisions toward the most effective treatment for a given patient, and thus, improve care quality,
while reducing the need for unnecessary diagnostic testing and therapies [2].

The good use of large and complex data requires the development of advanced informatics
tools including data mining, machine learning, and other aspects of artificial intelligence. Those
tools identify and combine multiple predictors-biomarkers for early detection of a disease, pre-
diction of the response to a treatment, estimate the probability of particular clinical outcomes
or events either at the same time (diagnostic model) or in the future (prognostic model). Their
application to health care may aid to the definition of dynamic patterns of health and disease as
well as to create more efficient and sustainable models of care driven by data and technology
[2].

A number of aspects have to be considered for model building, such as variable selection,
modelling of continuous variables and interactions or restrictions by sample size. The best
choice of model depends on the problem. Overall, no method is best, but all have different
strengths and weaknesses. Once a stable and meaningful model has been derived, the result is
an algorithm or a clinical prediction rule that forecasts a clinically relevant outcome such as
disease onset or mortality and that is defined by the predicting variables and their respective
weights in the algorithm. These models are always developed to fit the given data in an optimal
way. Thus, their actual performance will be estimated too optimistically, and they need to be
validated in independent samples.

Technological progress in precision medicine is expected to continue, and spearheaded. This
innovation will likely change the way that healthcare services are organised and delivered: the
creation of new molecular testing infrastructure and the development of ‘learning’ health in-
formation systems that analyse molecular and health record data to inform future prevention,
detection or treatment strategies. Advances in precision medicine have already led to powerful
new discoveries and FDA-approved treatments that are tailored to specific characteristics of in-
dividuals, such as a person’s genetic makeup, or the genetic profile of an individual’s tumor[1].
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1.2 Machine Learning
An early definition of machine learning is: Field of study that gives computers the ability

to learn without being explicitly programmed [3]. Machine learning algorithms build a model
that can “learn” from available inputs, also called training data, to make predictions or deci-
sions without being explicitly programmed to do so. The learning process is just an algorithm
implementation repeatedly, making small adjustments until specific criteria are met [4].

In figure 1, presented 7 steps of machine learning algorithms development process. Data
preparation is a large subject and is crucial for building a successful algorithm. It is the process
of transforming the data to a form that can be applied machine learning algorithms. It includes
data cleaning that is the removal or fixing of missing or incomplete data. Next, depending on
the algorithm the data may be required transformations like standardization [5].

Model selection is also crucial task to avoid wasting time and processing cost. The choice of
the appropriate algorithm is determined by the data, the problem, the complexity, the available
time etc. Each machine learning algorithm has been designed to solve a specific problem. For
example, for predicting continuous variables linear regression is a simple but probably efficient
algorithm. For binary classification problems, Logistic Regression or Support Vector Machines
are a good choice. For Multi-class classification, Random Forest or softmax regression probably
would be a good choice. In general, linear algorithms are simpler and faster to train and they
are a good choice if the linearity is met. Otherwise, a non-linear algorithm probably is more
effective [6].

Also, the choice of model is based on complexity. In the case that high accuracy is required,
then more features and parameters may be included in the model, and hence, longer training
time. In this case a deep learning model probably is efficient option. If the data are insufficient,
poor quality, unprocessed and there is not time for preprocessing before the training process
then, unsupervised machine learning techniques are a better choice [6].

Each algorithm has one or more hyperparameters. Hyperparameters are tuned during the
training process and have a significant impact in the final performance. There are many ways
to tune the hyperparameters either trying by ’hand’ one by one parameters or using automating
methods like Bayesian optimization which is presented below.

The algorithm is evaluated based on a specific accuracy metric. It is important in this step,
to use data that the algorithm has not seen in the training process, typically named as test set.
Otherwise, there is a danger to overestimate its performance. A successful learner should have
the ability to predict accurately unseen data. This is called generalization. The computational
cost of making an algorithm should be low and the cost of using it even lower. This is important
for machine learning, since querying the trained algorithm should be as fast as possible provided
it happens more often and the result is often needed immediately. Machine learning is primarily
of three types: supervised machine learning, unsupervised machine learning and reinforcement
learning [4].

Supervised Machine Learning

In supervised machine learning the algorithm learns using training data that is already tagged
with the correct label and must be able to predict reliably each possible case which is not
given during training process [4]. Some tasks that supervised machine learning algorithms can
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Figure 1: 7 steps of machine learning [7].

perform are the following.

Classification is used when the predicted data is categorical. Suppose that it is given a
labeled data set having data vectors belong to N categories. The algorithm based on learning
the training data set, tries to classify new inputs to one of N classes. The classification methods
presented below vary in the ways that the learning process is done. However, most of them
attempt to find decision boundaries that are used to classify data to one of the different classes.
Many classification algorithms will be presented below [6].

Regression has to do with the case that the predicted data (represented by y) is a contin-
uous variable. It is used to find the correlation between variables and make predictions for a
dependent variable based on one or more independent variables [6].

Unsupervised Machine Learning

In unsupervised machine learning the training data is not labeled. The algorithm tries to
identify hidden patterns or structures in data, so that inputs that are similar are classified in the
same category. After the training process, the algorithm will be able to categorize a new data
sample [4] . Some tasks that unsupervised machine learning algorithms can perform are the
following.

Clustering is an unsupervised problem and is the task of grouping a collection of objects into
groups or clusters such that objects within each cluster are more similar than objects assigned
to different clusters [6].

Dimensionality Reduction is about processing and simplification of the data by reducing the
number of features. The dimensionality reduction model reduces the features that are not crucial
for the problem without significant loss of information and modifying the characteristics. Some
positive outcomes of dimensionality reduction are the reduction of complexity, the training
process and data visualization become faster and easier, less storage space is required, noise and
not useful data are removed. Consequently, dimensionality reduction is a very useful method of
machine learning [6].
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1.3 Biomarkers

1.3.1 Biomarkers definition

Biomarkers are used in clinical practice for more than 130 years. Body temperature and
blood pressure was first described as measures in animals in 1733 and introduced as traditional
indicators of health by physicians [8]. The National Institute of Health Consortium in 2001 de-
fined a biomarker as a “characteristic that is objectively measured and evaluated as an indicator
of normal biological processes, pathogenic processes, or pharmacologic responses to a thera-
peutic intervention”. Biomarkers play an important role in the evaluation of disease as well as
in the development of drug treatments [9].

1.3.2 Biomarker types

Biomarkers fall under two categories of measurement: quantitative or qualitative. Quali-
tative biomarkers determine the markers’ existance or not. While quantitative are involved in
pathogenic process detection with a threshold effect [10]. For example, people with allergy is-
sues tend to have increased T-helper type 2 (TH2) cells, however everyone has TH2 cells. So an
idea of how many are present will help indicate the severity of issues with allergies or asthma
[11].

There are many ways that biomarkers can be classified. More extensively they can be cate-
gorized as [12]:

• Susceptibility/risk biomarker: A biomarker that indicates the potential for developing a
disease or medical condition or sensitivity to an exposure in an individual without clinically
apparent disease or medical condition.

• Diagnostic biomarker: A biomarker used to identify individuals with the disease or condi-
tion of interest or to define a subset of the disease.

• Monitoring biomarker: A biomarker measured serially and used to detect a change in the
degree or extent of disease. Monitoring biomarkers may also be used to indicate toxicity or
assess safety, or to provide evidence of exposure, including exposures to medical products.

• Prognostic biomarker: A biomarker used to identify likelihood of a clinical event, disease
recurrence or progression.

• Predictive biomarker: A biomarker used to identify individuals who are more likely than
other patients, exhibiting similar clinical profiles but lacking the specific biomarker man-
ifestation, to experience a favorable or unfavorable effect from a specific intervention or
exposure.

• Pharmacodynamic/response biomarker: A biomarker used to show that a biological re-
sponse has occurred in an individual who has received an intervention or exposure.

• Safety biomarker: A biomarker used to indicate the presence or extent of toxicity related
to an intervention or exposure.

4



1.3.3 Biomarker characteristics

According to the US Food and Drug Administration (FDA), an ideal biomarker should be
[13]:

• specific for a particular disease and able to differentiate between different physiological
states.

• safe and easy to measure.

• rapid so as to enable faster diagnosis.

• cheap.

• able to give accurate results.

• consistent between different ethnic groups and genders.

A clinically useful biomarker should be able to provide meaningful information about prog-
nosis and/or guide clinical decision-making and not simply duplicate information that is already
available clinically. Derivation and validation to associate a biomarker to a disease process
should also be carried out in different subsets of population. In general, biomarkers predict-
ing disease risk perform much better in the derivation cohort compared to a validation cohort.
Moreover, it is important to establish reference limits with the understanding that reference lim-
its are influenced by the characteristic of an assay in the group analyzed to derive those limits.
For instance, blood troponin assays made by several manufacturers are different and have vary-
ing reference limits for detection of clinically important vascular events [9]. Biomarkers can be
measured in a variety of biological material (for example, blood, organ tissue, stool, saliva and
urine) alone or in a group, often called a biomarker panel, to infer risk, diagnosis, prognosis and
therapeutic response [14].

1.4 Omics

Rapid technical advances and opportunities for more cost-efficient large-scale data gener-
ation in biomedical research have created various new data sources for precision medicine,
commonly referred to as “omics”. A whole range of additional omics technologies has been
developed, with ‘omics’ referring to the comprehensive study of the roles, relationships, and
actions of various types of molecules in cells of an organism. This includes fields such as
genomics, transcriptomics (the study of the expression of all genes in a cell or organism), pro-
teomics (the analysis of all proteins), metabolomics (the comprehensive analysis of all small
molecules) to name a few. It has also yielded a plethora of other ‘omics’ terms, such as epige-
nomics, lipidomics, metagenomics, glycomics, connectomics, cellomics, and even foodomics
[15]. Therefore, the challenge is the development of methods for extracting useful information
from these complex, multidimensional datasets to guide clinical practice.

1.4.1 Genomics

Genomic approaches, technologies, and data were the first widespread omics data available
for application in precision medicine. Genomics is the study of all of a person’s genes (the
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genome), including interactions of those genes with each other and with the person’s environ-
ment. A gene traditionally refers to the unit of DNA that carries the instructions for making
a specific protein or set of proteins [16]. Genome-wide association studies, next generation
whole exome and whole genome sequencing data have provided a large set of DNA sequence
variants that are associated with a plethora of diseases and traits in humans. In genomics, two
approaches are explored: the search for unique genetic variants that are strong predictors of
disease (e.g., single nucleotide variants associated with a Mendelian disorder or with inherited
cancer risk, such as BRCA1 variants), or the composite predictor in the form of a genetic risk
score that combines tens to hundreds of common genetic variants to provide population risk
estimates without the need to identify individual causal sequence changes and their modes of
action. Despite these rapidly expanding datasets, progress in identifying the specific disease
causing sequence variants and the pathophysiological mechanisms by which they affect disease
development or progression has been slow [17].

1.4.2 Trancriptomics

DNA is transcribed into RNA, which is then translated into proteins. The complete set of
RNA transcripts including messenger RNAs (mRNAs), microRNAs (miRNAs), and different
types of long noncoding RNAs (lncRNAs) produced by the genome, under a specific condition
or in a specific cell, is called transcriptome. Transcriptomics is the study of the transcriptome
through which researchers gain insight into gene activities and better understand how cells
normally function or how changes in RNA activities can contribute to disease [18].

Transcriptomics has been characterized by technological innovations that continuously trans-
form the field. Key contemporary transcriptomic technologies include DNA microarrays and
NGS technologies called RNA-seq. Some important directions of transcriptomics studies are:
identify biomarkers differently expressed between the diseased state and healthy state; distin-
guish disease stages or subtypes (e.g. cancer stages); establish the causative relationship be-
tween genetic variants and gene expression patterns to illuminate the etiology of diseases [19].

Normalization of transcriptomic data is an essential preprocessing step aimed at correcting
unwanted biological effects and technical noises prior to any downstream analysis. Normal-
ization methods shall be chosen according to the undertaken technology and can be platform-
specific [20].

1.4.3 Proteomics

Proteomics technology is a promising tool for disease-associated biomarker detection in the
biological fluids including urine, plasma, serum, etc. It is very important that body fluid sam-
plings for proteomics research are less invasive and have low-cost advantages. Proteins are key
players in cellular function and the proteomics technology is a powerful tool for the study of
total expressed proteins in an organism or cell type at a particular time. As protein expression
alters during disease condition in biological pathways, monitoring of these altered proteins in
tissue, blood, urine, or other biological samples can provide indicators for the disease. The pro-
teomics biomarker discovery is advanced in a variety of diseases such as cancer, cardiovascular
diseases, acquired immune deficiency syndrome (AIDS), renal diseases, diabetes [21].
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1.4.4 Metabolomics

Metabolomics, consists the analysis of small molecules present in a cell, tissue, or fluid.
Metabolites are often viewed as the products of cellular processes, mediated by proteins; there-
fore, changes in metabolites are presumed to be reflective of changes in function of the mediat-
ing enzymes and proteins [15]. Metabolomics can be assessed in a targeted or unbiased manner,
and mass spectrophotometry is used to identify chromatogram peaks as specific metabolites
[22].

The vast majority of metabolomics analyses have focused on the analysis of plasma or serum
samples from patients, often as an attempt to identify cancer or tumor-specific biomarkers that
can be used in diagnosis without requiring an invasive tumor biopsy sample [15]. For example,
Tissue, blood, and urinary metabolomics analyses have yielded putative biomarkers that clas-
sify patients into subtypes of lung cancer. However, these findings have yet to be sufficiently
validated in more than one cohort [22].

1.4.5 Multi-omics

The Institute of Medicine’s seminal report envisioned an Information Commons that
contains multiple omics’ approaches such that biomarker panels containing different molecule
types, exposome data and/or demographic data could be developed to classify diseases into
more precise subtypes. Integrating different types of data such as genes, proteins, RNAs and
metabolites leads to more potential biomarker combinations and consequently, to the necessity
for more functional studies and statistical tests. Two conceptual approaches to developing
biomarker panels have been used. The first relies on adding new biomarkers to existing
biomarkers or biomarker panels to improve the sensitivity or specificity of the panel because
of either an interaction or an independent effect of the new biomarker. The second approach
employs de novo analysis and integration of multiple sources of molecular data to identify the
best combination of putative biomarkers [14].
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2 Literature Review

2.1 Introduction

In this section presented many studies in which many machine learning algorithms have been
applied to discover potential biomarkers for precision medicine. The studies are related to lung
cancer, diabetes mellitus and cardiovascular diseases. Those diseases have been chosen due to
their high mortality and prevalence.

2.2 Lung Cancer

Lung cancer (LC) is the leading cause of cancer death in both men and women and accounts
for one in four cancer deaths leading to more than 1,000,000 deaths per year globally. The
overall 5-year survival rate of LC is less than 20% mainly due to late diagnosis whereas patients
with tumors diagnosed at early stages have 5-year survival rates of approximately 60% and
4% at the advanced stage. Despite advances in chemotherapy, radiation therapy and surgical
management of lung cancer, the survival rate did not improve substantially. Therefore, early
detection would be extremely important in decreasing the burden of lung cancer. Unfortunately,
over 70% patients are diagnosed when their tumor are developed to the advanced stages due to
the fact that LC symptoms occur late in the disease and the lack of reliable biomarkers at the
early stage [23]. Therefore, it is important to find out new methods that would be less invasive
and easier to conduct like powerful diagnostic biomarkers of lung cancer, particularly for the
diagnosis of early lung tumor progression.

Lung cancer consists of two major histological types: Non-small-cell lung cancer (NSCLC)
which is the most common type of LC and small-cell lung cancer (SCLC). Non–small cell lung
cancer (NSCLC) which mainly consist of lung adenocarcinoma (LUAD, 44%),lung squamous
cell carcinoma (LUSC, 26%) and large cell carcinoma (LCC) are the most common type of lung
cancer accounting for 85% of all cases [24]. Small cell lung cancer (SCLC) remains one of the
most lethal malignancies and a major health riddle having 5-year survival rate is less than 7%
[25].

2.2.1 Lung Cancer Studies

The first study which is presented took place in China [23]. The researchers attempted to
identify plasma metabolites that could act as promising biomarkers for distinguishing lung tu-
mor patients with healthy individuals, disease stages as well as squamous carcinoma and ade-
nocarcinoma patients with high sensitivity and specificity. Metabolomics and machine learning
methods were combined, to detect early lung cancer diagnostic biomarkers. A total of 110
patients and 43 healthy individuals of the Hubei Taihe Hospital were included in this study.
Patients were classified as stage I (n=54), stage II (n=31), stage III (n=25). Levels of 61 plasma
metabolites were measured from targeted metabolomic study.

The Fast Correlation-Based Filter (FCBF) algorithm was applied to rank metabolites accord-
ing to their ability to discern the classification label of an object [23]. FCBF (Fast Correlation
Based Filter) is a multivariate feature selection method. It starts with full set of features and
using a normalized information theoretic measure, called symmetrical uncertainty, computes
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dependences of variables and finds the best combination applying backward selection tech-
nique sequentially [26]. The top 8 metabolic biomarkers (table 1) that ranked using FCBF were
used to develop the machine learning models. The AUC values changed with the number of
variates are shown in table 2.

Six machine learning techniques of K-nearest neighbor (KNN), Naı̈ve Bayes, AdaBoost,
Support Vector Machine (SVM), Random Forest, and Neural Network with 10-cross fold tech-
nique were applied based on the metabolomic biomarkers features for the early lung tumor
prediction based on the metabolomic biomarkers features. 80% of stage I lung tumor patients
(43) and healthy individuals (35) were selected as the training set. The rest 20% samples were
used for evaluation. As presented in table 3, in test set the specificity of Naı̈ve Bayes, Neural
Network, KNN, AdaBoost, and SVM was 1.000. The sensitivity of Naı̈ve Bayes and Random
Forest was 1.000, SVM and Neural Network was 0.909. Naı̈ve Bayes concluded that was the
best model with the highest level of sensitivity, specificity, and accuracy.

Moreover, through Mann–Whitney U test, 46 metabolic biomarkers showed statistically
significant difference (p − value < 0.05) between lung cancer stage I patients and healthy
individuals. Next these 46 influential metabolic biomarkers were applied to construct ROC
curves. Based on the AUC (area under the ROC curve) value, sensitivity and specificity, top
10 metabolic biomarkers with higher diagnostic value (AUC > 0.800) are presented in table 4.
The AUC of a combination of six variables (metabolites) based on logistic regression analysis
was 0.989 (table 4). The metabolites used included proline, l-kynurenine, spermidine, amino-
hippuric acid, palmitoyl-L-carnitine and taurine with high AUC, sensitivity and specificity as
shown in the table same table.

Additionally, they tried to discover metabolic biomarkers for discrimination of stage I, II,
and III as well as for squamous carcinoma and adenocarcinoma patients. However, in both
cases the biomarkers which found to be significant differentiated showed poor performanc [23].

Table 1: Ranked metabolomic biomarker features by FCBF [23].

Biomarker Score

Taurine 0.655

Palmitoy-L-carnitine 0.482

proline 0.470

2-DG 0.446

PE(36:4) 0.353

Xanthine 0.303

PC(36:5) 0.290

Citric acid 0.280
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Table 2: AUC value of machine learning models changing with the number of variates [23].

1 2 3 4 5 6 7 8

KNN 0.947 0.959 0.964 0.971 1.000 0.988 0.988 1.000

SVM 0.925 0.927 0.961 0.995 1.000 1.000 1.000 1.000

Random Forest 0.945 0.952 0.960 0.968 0.996 1.000 0.998 0.997

Neural Network 0.895 0.917 0.944 0.944 0.999 0.991 0.991 0.998

Naı̈ve Bayes 0.869 0.926 0.964 0.990 0.998 1.000 1.000 1.000

AdaBoost 0.833 0.859 0.859 0.887 0.887 0.899 0.899 0.913

Table 3: Machine learning models used for early lung tumor detection based on the metabolomic
biomarker features [23].

TP FP TN FN Accuracy Sensitivity Specificity AUC Precision

Training set KNN 38 0 35 5 0.936 0.884 1.000 1.000 0.944

SVM 43 2 33 0 0.974 1.000 0.943 1.000 0.975

Random Forest 41 0 35 2 0.974 0.953 1.000 1.000 0.976

Neural Network 43 0 35 0 1.000 1.000 1.000 1.000 1.000

Naı̈ve Bayes 43 0 35 0 1.000 1.000 1.000 1.000 1.000

AdaBoost 38 4 31 5 0.885 0.884 0.886 0.885 0.885

Test set KNN 9 0 8 2 0.895 0.818 1.000 1.000 0.916

SVM 10 0 8 1 0.947 0.909 1.000 1.000 0.953

Random Forest 11 2 6 0 0.895 1.000 0.750 1.000 0.911

Neural Network 10 0 8 1 0.947 0.909 1.000 1.000 0.953

Naı̈ve Bayes 11 0 8 0 1.000 1.000 1.000 1.000 1.000

AdaBoost 4 0 8 7 0.632 0.364 1.000 0.682 0.804

In the next research, a novel computational approach was developed for recognizing impor-
tant circulating miRNAs was that could be applied to early screening, diagnosis, and constant
monitoring of lung cancer progression [27]. Expression profiles of 13 circulating miRNAs (ta-
ble 5) in 48 patients with lung cancer and 984 control samples were downloaded from Gene
Expression Omnibus. All the miRNAs were detected from serum samples from patients and
controls.

Firstly, the minimum redundancy maximum relevance (mRMR) method was performed on
the expression profiles of circulating miRNAs to evaluate their importance for lung cancer and
ranked them as listed in Table 6.

MRMR (Minimum Redundancy Maximum Relevance Feature Selection) is a forward fea-
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Table 4: ROC analysis of metabolomic biomarkers and combined variates [23].

AUC Std. error Asymptotic 95% confidence Optimal Sensitivity Specificity Youden

interval cut off index

Lower bound Upper bound

ROC analysis of metabolomic biomarkers and combined variates in early lung tumor detection.

L-Kynurenine 0.825 0.043 0.740 0.909 0.975 85.2% 72.1% 0.573

Proline 0.923 0.026 0.871 0.975 24.350 79.6% 93.0% 0.727

Spermidine 0.890 0.035 0.821 0.958 7.195 81.5% 90.7% 0.722

Amino-hippuric acid 0.811 0.045 0.722 0.900 4.035 68.5% 93.0% 0.615

Palmitoyl-l-carnitine 0.906 0.032 0.843 0.969 3.655 74.1% 100.0% 0.741

Taurine 0.920 0.032 0.856 0.983 71.300 88.9% 95.3% 0.842

TPhenylalanine 0.848 0.038 0.774 0.922 125.500 79.6% 76.7% 0.564

L-Valine 0.876 0.036 0.806 0.946 167.000 68.5% 95.3% 0.639

o-Tyr 0.822 0.043 0.738 0.906 24.650 83.3% 72.1% 0.554

Carnitine 0.848 0.040 0.769 0.926 4.680 72.2% 93.0% 0.652

Combination of two 0.933 0.028 0.878 0.978 0.337 85.2% 93.0% 0.782

Combination of three 0.968 0.019 0.931 1.000 −0.147 94.4% 97.7% 0.921

Combination of six 0.989 0.011 0.967 1.000 −0.102 98.1% 100.0% 0.981

ROC analysis of metabolomic biomarkers and combined variates of adenocarcinoma and squamous carcinoma patients.

L-Kynurenine 0.423 0.060 0.306 0.540 1.050 77.8% 24.4% 0.022

Proline 0.580 0.057 0.469 0.692 35.150 54.0% 65.9% 0.198

Carnitine 0.536 0.058 0.422 0.650 6.835 38.1% 75.6% 0.137

Hypoxanthine 0.639 0.055 0.531 0.746 0.092 69.8% 56.1% 0.259

Hippuric acid 0.628 0.056 0.519 0.737 2.620 49.2% 77.5% 0.267

Combination of four 0.740 0.049 0.644 0.837 0.556 58.7% 78.0% 0.368

ture selection method which starts with zero variables and discovers the best combination of
variables that is mutually and maximally dissimilar and can represent the target variable effi-
ciently. The algorithm tries to find the set of variables that maximizes VS which is the relevance
of a set S and minimizes WS which is the redundancy of a set S to the response variable. Re-
dundancy and relevance are quantified using the mutual information of variables. VS and WS

are calculated using equations 1 and 2. The mutual information between two variables say X
and Z is calculated using equation 3 [28].

VS =
1
|S |

∑
x∈S

I(x, y) (1)
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WS =
1
|S |2

∑
x,z∈S

I(x, z) (2)

I(X,Z) =
∑

i, j

P(X = xi,Z = z j)log
P(X = xi,Z = z j)
P(X = xi)(Z = z j)

(3)

To evaluate those circulating miRNAs for distinguishing lung cancer samples from healthy
samples, series of feature subsets were constructed from the above ranked feature list by
mRMR: the first-ranked gene was used as the first feature subset; and then each following
feature subset had one more feature; the next most important in the ranking. Then, for each fea-
ture subset, a Random Forest classifier was trained and evaluated the classification efficiency by
10-fold cross-validation. Synthetic Minority Oversampling Technique (SMOTE) was applied
to decrease the influence of unbalanced data. The more features were using, the more the per-
formance of RF classifiers was improving (figure 2). Using only the top 5 miRNAs there was a
satisfactory Matthew Correlation Coefficient (MCC) value of 0.600 and AUC of 0.9865. When
SMOTE was not performed, the performance of RF was lower due to the unbalanced data set.

Support vector machine (SVM) was also applied to be compared to RF doing the same
procedures. The highest MCC was 0.636 when top 13 features were used, which was lower
than that of the best RF classifier. Also, Sensitivity, Specificity, Accuracy, Precision, and F1-
measure were used for evaluation of the model and they were 0.958, 0.943, 0.944, 0.451, and
0.613, respectively, which were all lower than those of the best RF classifier. These results
suggest that RF was more proper than SVM to address the problem and that the top five miRNAs
are potential biomarkers for lung cancer [27].

Figure 2: ROC curves of RF classifiers with different numbers of top features [27].
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Table 5: High-ranked feature list according to mRMR [27].

Rank Feature

1 hsa-mir-92a-000431

2 hsa-mir-140-5p-001187

3 hsa-mir-331-3p-000545

4 hsa-miR-374a-000563

5 hsa-mir-223-002295

6 hsa-mir-148a-000470

7 hsa-mir-484-001821

8 hsa-mir-328-000543

9 hsa-mir-191-002299

10 hsa-mir-30c-000419

11 hsa-mir-29a-002112

12 hsa-let-7d-002283

13 hsa-mir-30b-000602

In this work somatic mutation data and clinical data for 371 lung adenocarcinoma cases were
used from The Cancer Genome Atlas in order to discover genetic markers that could be used
for prognosis prediction and provide guidance for personal medicine [29].

The 3-year survival rate was close to 50%, hence the cases distributed in two different
groups: good(> 3 years) and poor(< 3 years) prognosis. A newly developed genome-wide
rate comparison method, EBT, was adopted to identify differentiated genes between the two
groups. Only two genes, ADAMTS5 and PTPRC were found with significant mutation rate
difference for a = 5%, and 7,28,85 genes were found with significant mutation rate difference
for a = 10%, 15%, 20% respectively.

Then, a Support Vector Machine with different kernels was applied to predict treatment out-
comes taking as inputs the genetic variance features. The classification performance evaluated
through 10−fold cross validation. The AUC of ROC curve of the SVM model with 85 genes
(EBT0.20) was significantly higher than that of 28 genes (EBT0.15) while the latter model also
outperformed the SVM with 7 genes (EBT0.10) significantly (Table 7). The survival curves of
cases within the predicted groups of the corresponding model were always differentiated sig-
nificantly for prognosis, with a strikingly increase of the difference significance for EBT0.10,
EBT0.15 to EBT0.20 (Fig.3). The results together indicated an association between the progno-
sis of LUAD and somatic gene mutations, and the genetic variance could be useful for prognosis
prediction [29].

The aim of this study was to discover the potential association between lung cancer and rou-
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Table 6: Performance of RF for classifying lung cancer samples from healthy samples when using dif-
ferent numbers of features [27].

Top features SN SP ACC MCC Precision F1-measure

13 0.979 0.965 0.966 0.740 0.580 0.729

12 0.979 0.964 0.965 0.735 0.573 0.723

11 0.979 0.963 0.964 0.730 0.566 0.718

10 0.979 0.959 0.960 0.711 0.540 0.696

9 0.979 0.946 0.948 0.659 0.470 0.635

8 0.979 0.935 0.937 0.621 0.423 0.591

6 0.979 0.934 0.936 0.618 0.420 0.588

7 0.958 0.937 0.938 0.616 0.426 0.590

5 0.979 0.928 0.930 0.600 0.398 0.566

4 0.938 0.924 0.924 0.566 0.375 0.536

3 0.958 0.902 0.905 0.526 0.324 0.484

2 0.833 0.850 0.849 0.373 0.213 0.339

1 0.333 0.950 0.921 0.246 0.246 0.283

Table 7: Performance of different genetic models [29].

Model Features ROC AUC Accuracy Specificity Sensitivity

EBT 0.10 7 0.711±0.061 0.736±0.061 0.938±0.064 0.517±0.091

EBT 0.15 28 0.810±0.117 0.760 ± 0.098 0.907 ±0.084 0.600 ±0.160

EBT 0.20 85 0.896± 0.055 0.800± 0.106 0.985± 0.034 0.600 ± 0.216

Figure 3: Survival curves of sub-groups of cases classified with different genetic models [29].

tine blood indices. Routine blood and biochemical test data were used which can be measured
by common chemistry analyzers, with a cost of approximately 10 − 20 for each sample, to
determine their correlation with lung cancer [30].

Data from routine blood tests were collected from the Second Hospital of Lanzhou Univer-
sity. A total of 277 patients with 49 types of routine blood indices were included, 183 of them
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was lung cancer patients (positive patients) and another 94 without lung cancer (negative pa-
tients). Among the 94 negative patients, 51 with tuberculosis were specifically included since
there is a high false positive rate to distinguish lung cancer from tuberculosis. Then, the data
were randomly split into a training set and a test set with a ratio of about 4 to 1. The training
set included 149 lung cancer samples, 37 tuberculosis samples, and 36 other samples, and the
remaining 55 samples were assigned to the test set.

The Random Forest method (RF) was applied at first using the entire set of indices on the
basis of the 10−fold cross-validation. The 19 top-ranking indices, which are presented in table
8, with ntree and mtry values of 1300 and 9, respectively, were selected for the final model
which had a similar prediction performance compared to the entire index space.

In the training set, Matthews correlation coefficient (MCC) of 91.36%, accuracy (ACC)
of 95.7% and area under the curve (AUC) of 99.01% were attained (Fig 4.A). In the test
set the sensitivity, specificity, and accuracy scores were all greater than 85% with values of
85.71%, 90%, 88.24%, respectively. The MCC value and AUC for the test set also got 75.71%
and 90.16%, respectively (Fig 4.B). To validate the efficiency, reliability, and repeatability of
the RBLC model, 34 serial blood samples from 15 additional patients were also included in the
study. Overall, the sensitivity reached 92.31%, the specificity reached 80.95%, and the total
accuracy reached 85.29%. This was the first time that a combination of routine blood biochem-
ical indices was presented for its capability to well distinguish lung cancer, especially from
tuberculosis [30].

Figure 4: Classification performance of the RBLC model [30].
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Table 8: Top-ranking blood indices for the identification of lung cancer [30].

Rank Index Reference range

1 Basophil ratio 0.00-0.01

2 Creatine kinase isoenzymes (U/L) 0.0-25.0

3 Platelet large cell ratio (%) 17.0-45.0

4 Albumin (g/L) 30.0-55.0

5 Platelet distribution width (fl) 9.0-17.0

6 Neutrophilic granulocytes (109/L) 2.00-7.00

7 White blood cell count (109/L) 4.00-10.00

8 Albumin/Globulin ratio 1.10-2.50

9 Monocytes (109/L) 0.12-1.20

10 Monocyte ratio 0.03-0.08

11 Lymphocyte ratio 0.20-0.40

12 Neutrophil granulocyte ratio 0.50-0.70

13 Lactate dehydrogenase (U/L) 0.0-240.0

14 Carbamide (mmol/L) 1.80-8.00

15 Eosinophil cells (109/L) 0.02-0.50

16 Mean corpuscular volume (fl) 80.0-100.0

17 Alkaline phosphatase (U/L) 0.0-120.0

18 Mean corpuscular hemoglobin (pg) 27.0-34.0

19 Creatine kinase (U/L) 0-195

In this work the researchers developed a novel approach to find highly sensitive and specific
biomarkers by analyzing the miRNA profile of EVs isolated from the pleural fluids and lavages
of 46 patients, including 25 control and 21 LC patients [31]. The workflow that was followed
in the study is below in figure 5. The quality of the data included the removal of probes that
had a Ct value of 40 in all samples, and the removal of samples in which more than 80% of the
probes had a Ct value above 40. Finally, a total of 272 miRNA were kept for the differential
expression analysis of 20 control and 14 LC patients.

The differential expression analysis between cancer and control cases yielded a list of 14
miRNAs that were significantly dysregulated. In order to evaluate whether differential expres-
sion translated into diagnostic power, a logistic model was performed based on the differentially
expressed miRNAs. The best classifier was miRNA-1-3p, which showed an average accuracy of
0.941 (95%CI : 0.803–0.993), sensitivity of 0.929, specificity of 0.950 and AUC value of 0.914
(Fig.6B). The next best classifiers, miRNA-144-5p and miRNA-150-5p, showed an average
AUC values comparable with that of miRNA-1-30p with, however, significantly lower accu-
racy (0.882 and 0.912, respectively) and sensitivity (0.786 and 0.857) for the same specificity.
Hence it was concluded that the use of EV-associated miRNA of pleural fluids and lavages are
an untapped source of biomarkers, and specifically miRNA-1-3p, miRNA-144-5p and miRNA
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150-5p are potential biomarkers for LC diagnosis. These biomarkers should be validated in an
independent study including a larger cohort of patients and controls [31].

Figure 5: Workfow of the study design [31].

Figure 6: Diagnostic performance of the top diferentially expressed miRNAs. (A) Relative dCT values
of top diferentially expressed miRNAs (miRNA-1-3p, miRNA-150-5p, and miRNA-144-5p) in patients
with lung cancer (n=14) compared to control patients (n=20). **p¡0.05. (B) ROC-curves and AUC-
scores for miRNA-1-3p, miRNA-150-5p, and miRNA-144-5p [31].

17



A predictive model was developed that can use noninvasive, reliable biomarkers for early
lung cancer diagnosis [32]. Current clinically used tumor markers (alpha fetoprotein (AFP),
carbohydrate antigen 19-9 (CA 19-9), carcinoma antigen 125 (CA 125), carcinoma antigen
15-3, (CA 15-3), and carcino-embryonic antigen (CEA)), lack sensitivity and specificity. Pro-
teomic analyses of 231 human urine samples was performed. Among them there were: healthy
individuals (CTL, n = 33), benign pulmonary diseases (with either pneumonia (n = 23) or
COPD (n = 17), lung cancer (n = 33), bladder cancer (n = 17), cervical cancer (n = 25),
colorectal cancer (n = 22), esophageal cancer (n = 14), and gastric cancer (n = 47) patients
collected from multiple medical centers.

The training set that used to build the model consisted of healthy controls (CTL, n = 23)
and lung cancer patients (LC, n = 23). Student’s t-test resulted in 588 differentially expressed
proteins between healthy controls and lung cancer patients at p < 0.05. Low abundant proteins
were removed from the list and 68 candidates were chosen (Fig 7.), which were relatively
abundant and detectable in < 70% of lung cancer urine specimens. Random forest with the 68
proteins was applied and the top 15 proteins ranked by variable importance presented an area
under the ROC curve (AUC) of > 0.75 when they were combined.

Feature selection algorithm was implemented and 5 proteins were selected (FTL,
MAPK1IP1L, FGB, RAB33B, and RAB15). With these 5 proteins, the predictive model could
correctly separate most of lung cancer cases from the controls in the training set as sufficient as
the random forest model using all 68 proteins. In test set, sensitivity and specificity were 90%.
(Table 9)

Also, the predictive model was able to discriminate lung cancers from benign lung diseases
as well as from other cancers with great sensitivity in all test sets (> 93%) and high specificity
in three test sets (table below, CCA vs LC: 72%; EC vs LC: 85.71%; GC vs LC: 80.85%) (Table
9). In summary, the panel found in this study could be applied to clinical diagnostics of NSCLC
for general purpose in the future after a validation trial with expanded sample numbers in a
multi-center setting [32].
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Figure 7: Flow diagram of lung cancer biomarker study [32].

A deep learning-based method for automated and robust detection and quantification of im-
mune cell biomarkers in immunohistochemically stained tissue of human lung adenocarcinoma
was created using as training data labeled images [33]. The training data was separated in two
classes: positive class (T-cells) and negative class (other cells and artifacts).

Acquired data in total comprised 39 tissue slides. The dataset was separated in two parts: 27
slides for training and 12 slides for testing. 9 slides of each stain (CD3, CD8 and CD20) were
used for training and 4 slides for testing the training progression.

The tissue areas, which contained stained immune cells, were manually annotated. From
the positive annotations were extracted 1, 500 × 1, 500 px regions in which all the centers were
manually annotated and from them, RGB patches of (46 × 46px) were extracted centered at
the annotated point. These patches were used as a training data for the positive class (Fig 8.).
They were also manually annotated tissue regions without positively stained cells. From these
regions they directly randomly sampled 46 × 46 pixel RGB patches. These patches were used
as examples for the negative class (Fig 8.).

For training 1,224,000 patches were from the 27 training slides (as an input for the con-
volutional network model) and from 12 testing slides 408,000 patches were used as a static
validation set to monitor training progression. In total each class contained about 800 thousand
patches.

The best performing neural network was comprised of six convolutional, two pooling layers
and two fully connected layers (Fig.9). The network was trained using stochastic gradient
descent with a learning rate of 0.01. The network training was stopped after one pass over all
training patches as subsequent passes did not improve validation set results.

After subsequent training, the model obtained a validation set accuracy of 98.6% on the
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Table 9: Random forest model in predicting lung cancer against controls and other cancers [32].

CTL vs LC Benign vs LC BC vs LC

Predicted Predicted Predicted

Group CTL LC Group Benign LC Group BC LC

Actual CTL 9 1 Benign 28 12 BC 10 7

LC 1 9 LC 1 32 LC 2 31

Error 0.1 Error 0.178 Error 0.18

Sensitivity 90% Sensitivity 96.97% Sensitivity 93.94%

Specificity 90% Specificity 70% Specificity 58.82%

CCA vs LC CRC vs LC EC vs LC

Predicted Predicted Predicted

Group CCA LC Group CRC LC Group EC LC

Actual CCA 18 7 CRC 12 10 EC 12 2

LC 1 32 LC 1 32 LC 1 32

Error 0.138 Error 0.2 Error 0.064

Sensitivity 96.97% Sensitivity 96.97% Sensitivity 96.97%

Specificity 72% Specificity 54.55% Specificity 85.71%

GC vs LC

Predicted

Group GC LC

Actual GC 38 9

LC 1 32

Error 0.125

Sensitivity 96.97%

Specificity 80.85%

augmented patch level. The sensitivity in the discrimination of T-cells on the patch level was
98.8%, whereas specificity 98.7% (Fig 10.).

This was the first time that deep learning technique was applied specifically to immune cell
counting in histological whole slide images [33].

The aim of the study was to find metabolomic biomarkers of sputum in order to distinguish
lung cancer and healthy individuals as well as non-small cell and small-cell lung cancer patients
[34]. Sputum or phlegm is the mucous substance secreted by cells in the lower airways (bronchi
and bronchioles) of the respiratory tract and has been suggested as a potential biofluid source of
biomarkers in lung cancer. Spontaneous sputum was collected and processed from 34 patients
suspected of having LC, and 33 healthy controls. Of the 34 patients, 23 were subsequently
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Figure 8: Example of the positive (A) and negative (B) patches of a training image set [33].

Figure 9: The structure of the deep convolutional neural network, which was applied to image classifica-
tion [33].

Figure 10: Confusion matrix [33].

diagnosed with LC (9LC+) at various stages of disease progression and 11 had symptoms (LC-
). 2,582 m/z signals were identified using Flow Infusion Electrospray Ion Mass spectrometry
(FIE-MS). Welch t-tests were performed and found 445 significantly differentiated m/z values
between LC+ and healthy controls and 90 m/z values between LC+ and LC-.

Two ANN models were applied to discriminate lung cancer from healthy individuals as well
as lung cancer from LC-. The activation function was set to hyperbolic tangent for both hidden
and output layer; and the number of hidden layers was set to two for all problems. Weight
decay regularization technique were used to control the complexity of the model parameters
to avoid overfitting the models to the training data. Leave-one-out cross validation carried
out to evaluate the model efficiency. The models presented high predictive efficiency through

21



sensitivity, specificity and ROC curves of the two models which are presented in table 10.

Also, six m/z values were significantly differentiated between SCLC and NSCLC with p-
values less than 0.05 from Welch t-tests. Thus, one more ANN model was applied to distinguish
non-small cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients taking as in-
puts the six potential biomarkers. Again leave-one-out cross validation carried out. The model
achieved a sensitivity of 80% and a specificity of 100% for predicting SCLC (table 10). The
6 candidate metabolites markers were L-fucose, phenylacetic, caprylic, acetic, propionic acid,
and glycine. Some of them, have already been linked to lung cancer. However, it was the first
time that phenylacetate associated with cancer. Therefore, it is concluded that metabolomics
based on the afore-mentioned methods can aid to discriminate lung cancer patient to healthy
individuals and NSCLC to SCLC patients [34].

Table 10: Results of cross-validation prediction performance of our ANN models [34].

Classification Mean no. of inputs No. of hidden neurons Sensitivity Specificity Positive Predictive Value Negative Predictive Value AUC

LC+ (vs Control) 1730.2 100, 50 96% 94% 92% 97% 0.99

LC+ (vs LC-) 71.9 40, 10 100% 91% 96% 100% 1.00

SCLC (vs NSCLC) 77.8 50, 20 80% 100% 100% 94% 1.00

2.3 Diabetes Mellitus
2.3.1 Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) has been linked to increased risk of cardiovascular and
renal disease, dementia, and cognitive decline. Additionally,it is anticipated to rise to 366
million people by 2030 and its complications are prevalent and costly. T2DM progression
can be reduced by early detection and appropriate treatment. Currently a clinical diagnosis of
diabetes is based on a set of guidelines that specify levels of impaired fasting glucose (IFG)
and impaired glucose tolerance (IGT); however diagnosing T2DM with these factors alone is
problematic. The development of accurate methods for prediction of incident diabetes could
facilitate the identification of individuals at high risk of T2DM and the design of prevention
strategies. Machine learning methods are drawing increasing attention in the area of diabetes
detection and risk assessment. They operate in a different manner than traditional statistical
approaches due to their capabilities to deal successfully with large numbers of variables while
producing powerful predictive models [35].

Studies

The following study created to identify possible biomarkers for predicting diabetes for dia-
betes development [35]. The data set which used belongs to a valuable clinical research database
collected by the Jackson Heart Study, in an African American population known to be more un-
protected to diabetes. It is comprised from 3,363 participants who were at-risk for developing
diabetes and among them 584 developed incident diabetes during the 9-year follow-up period.
In total, 93 features were collected like demographics, anthropometrics, blood biomarkers, med-
ical history, echocardiograms, lifestyle behaviors and socio-economic status.

Five models were applied and compared. A RF (RF93) and a logistic regression (LR93)
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model based on 93 features, and a LR model previously published by the ARIC study (LRARIC).
Moreover, a RF15and LR15 were applied, based on the top 15 features (table 12) which were
ranked from the RF93 using Gini index. Among the top-ranked variables, RF identified five
well-known predictors of T2DM: hemoglobin A1c, fasting plasma glucose levels, waist cir-
cumference, triglycerides concentration, and age and potential biomarkers not involved in the
ARIC model: adiponectin, C-reactive protein, and leptin. Also, both models identified six com-
mon variables: age, hemoglobin A1c, fasting glucose, waist circumference, HDL cholesterol
and triglycerides.

To evaluate the efficiency of the five models, the dataset was separated 100 times into training
and testing datasets to achieve robust performance estimates. For each iteration, the training
dataset contained 500 diabetes patients and 500 healthy individuals. The rest data was used as
testing dataset and the performance was measured using accuracy, sensitivity, specificity, and
area under the curve (AUC).

RF93 produced mean values of 74%, 75%, 74% and 0.82 of classification accuracy, sensitiv-
ity, specificity, and AUC, respectively (Table 11). LRARIC analyses produced mean values of
74%, 74%, 75% and 0.82 of the same 4 metrics while LR93 produced 71%, 70%, 71% and 0.78.
The RF15 and LR15 generated little or no gains in performance.

The logistic regression model used in ARIC had inputs based on feedback from experts.
On the other hand, RF was able to handle a large number of features and detect the most
important for them, replacing the experts input during the model building process. The study
concludes that RF methods have utility in the health care setting, where large datasets with
thousands of well-characterized phenotypes and large numbers of participants are common [35].

Table 11: Prediction performance of the five models when using sample size 1000 (500 participants per
group).

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

RF93 74 (0.02) 75 (0.05) 74 (0.02) 0.82 (0.02)

LRARC 74 (0.01) 74 (0.05) 75 (0.01) 0.82 (0.02)

LR93 71 (0.01) 70 (0.05) 71 (0.01) 0.78 (0.03)

RF15 75 (0.02) 74 (0.05) 75 (0.01) 0.82 (0.02)

LR15 74 (0.01) 74 (0.04) 74 (0.01) 0.82 (0.02)
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Table 12: Top 15 Variables Found in Random Forest Analyses, according to the Gini Index (N = 1000)

Variable Gini Index Diabetesa No Diabetes p-value*

Hemoglobin A1c (%) 57.4 5.9(0.4) 5.4 (0.4) < .0001

Fasting plasma glucose (mg/dL) 39.9 97.1 (10.7) 88.8 (7.8) < .0001

Waist circumference (cm) 19.4 105.0 < (14.1) 97.3 (15.6) < .0001

Adiponectin (ng/mL) 19.0 4091.9 (2750.3) 5566.3 (4032.8) < .0001

Body mass index (kg/m2 ) 17.6 33.56 (7.0) 30.7 (6.9) < .0001

High sensitivity C-reactive protein (mg/dL) 15.4 0.6 (0.9) 0.4(0.7) < .0001

Triglycerides (mg/dL) 14.9 113.88 (59.0) 94.8 (54.7) < .0001

Age (years) 13.5 55.2 (11.1) 53.0 (12.8) 0.0001

Leptin (ng/mL) 13.2 32.1(27.2) 26.0 (21.9) < .0001

Body Surface Area (m2 ) 12.6 2.1 (0.2) 2.0 (0.2) < .0001

eGFR (mL/min/1.73 m2 ) 12.0 85.8(17.8) 87.2 (16.1) 0.02

2D calculated left ventricular mass (grams) 11.6 157.1 (89.3) 141.8 (39.3) < .0001

Fasting HDL Cholesterol Level (mg/dL) 11.5 49.3 (12.9) 52.9 (14.8) < .0001

Fasting LDL Cholesterol Level (mg/dL) 11.2 129.2 (37.9) 127.1 (35.9) 0.15

Aldosterone (ng/mL) 11.0 6.43 (6.48) 5.28 (4.05) < .0001

Figure 11: The dependence of classification accuracy on sample size is presented [35].

2.3.2 Gestational Diabetes

Gestational diabetes mellitus (GDM) is a pregnancy complication with considerable short
and long term risks for both the mother and the offspring and can affect 1–20% of pregnancies
depending on the diagnostic criteria used and on the population. Currently, risk factors
alone are insufficient to accurately predict risk for GDM development. Typically, GDM is
screened and diagnosed in the late second or early third trimester of pregnancy (24–28 weeks
of gestation) due to the fact that there are no reliable tools for earlier detection. However,
according to the recent guidance of the American Congress of Obstetricians and Gynecologists
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(ACOG), early screening in the first trimester is recommended in women with risk factors
(e.g., BMI above 25, hypertension, known impaired glucose metabolism, and family history
of diabetes). Moreover, current studies show that Effective early identification, in the first
trimester, of the development of GDM might reduce disease onset and associated maternal and
perinatal complications. Hence, the discovery of a new method for early detection is necessary
and the identification of early pregnancy biomarkers, may complement existing clinical risk
factors in detecting women at high risk of developing GDM.

Studies

The aim of this study was to find microRNAs that can serve as possible biomarkers for
Gestational diabetes mellitus (GDM) diagnosis in the first three months of pregnancy [36].
miRNAs were profiled from the maternal plasma of pregnant women.

There are many known clinical risk factors for GDM such as increased maternal age, his-
tory of GDM, obesity, family history of type 2 diabetes, a previous adverse pregnancy outcome
and belonging to a high-risk ethnic group. However, they fail to precisely detect risk for GDM
progress. GDM is diagnosed more accurately between sixth and seventh month of pregnancy
with the current tools. GDM management after diagnosis at 24–28 weeks of pregnancy can
cause long-term complications which include a greater likelihood of undergoing a caesarian sec-
tion, the development of preeclampsia, and the post-pregnancy development of type 2 diabetes
and cardiovascular disease in adulthood. These risks can be reduced through effective early
detection in the first trimester. This is a necessity especially for women risk factors (e.g., BMI
above 25, hypertension, known impaired glucose metabolism, and family history of diabetes)
according to the recent guidance of the American Congress of Obstetricians and Gynecologists.

Two diagnostic strategies are the 75g oral glucose tolerance test (OGTT) and the 50g screen-
ing test followed by a 100g OGTT for those with a positive test. These tests are time-consuming,
labor-intensive, and poorly tolerated by pregnant women. Therefore, new methods for easily
tolerated screening and noninvasive diagnosis of pregnancy complications are necessary to be
found. McroRNAs have been associated with several mechanisms related to diabetes patho-
genesis. Also, they are stable and detectible in maternal blood and therefore they can serve as
possible non-invasive biomarkers.

The sample used for the study were gathered in hospitals in Italy and Spain. It was consisted
of 43 pregnant women who had not diabetes in the past: 23 women with GDM and 20 healthy
women without complications during pregnancies. Cases and controls were matched about
country of residence, pre-pregnancy maternal body mass index (BMI), maternal obesity, fetal
gender, gestational age at delivery, and birth weight.

DESeq2 was applied to detect miRNAs for differential expression in GDM and healthy sam-
ples. Two miRNAs, miR-223 and miR-23a had significantly higher values in GDM patients (ta-
ble 13). Three logistic regression models were applied based on these two miRNAs to test their
discriminative efficiency. One model consisted of miR-223, one of miR-23a and the third model
included both. miR-223 (AUC = 0.94 and accuracy = 0.90) was a little more accurate classi-
fier than miR-223+miR-23a (AUC = 0.91 and accuracy = 0.90) or miR-23a (AUC = 0.89 and
accuracy = 0.90). (Table 14)

Moreover, Logistic regression, random forest, and AdaBoost were applied combining several
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miRNAs which were not statistical significantly differentiated from DESeq2 test and all models
had accuracy > 0.81 and AUC > 0.74.

Consequently, is recommended that circulating miRNAs in maternal plasma can act as
predictive biomarkers for GDM. Those results should be validated on larger cohorts with
samples from various origins [36].

Table 13: Differentially expressed miRNAs in GDM vs control groups.

Dataset Country MiRNA Mean counts log2 fold change Adj. P value

1 Spain and Italy miR-223-3p 185.22 5.46 1.42× 10−7

miR-23a-3p 111.98 3.04 1.92 × 10−2

2 Italy miR-223-3p 65.52 5.61 2.56×10−4

miR-23a−3p 39.76 4.40 6.61× 10−3

3 Spain miR-223−3p 463.90 4.88 1.42× 10−2

Table 14: Classification results. Classification results obtained via logistic regression (LR), random
forest (RF) and AdaBoost models.

Model AUC Acc Sens Spec F1 Score MCC PLR NLR

RF 0.81** 0.81** 0.94 0.40 0.88** 0.41** 1.56** 0.16**

AdaBoost 0.77*** 0.86*** 0.94* 0.60* 0.91*** 0.58*** 2.34*** 0.10***

LR 0.74** 0.76* 0.88** 0.40 0.85** 0.30 1.46 0.31*

LR: miR-223 0.94*** 0.90*** 0.94* 0.80*** 0.94*** 0.74*** 4.69*** 0.08***

LR: miR-23a 0.89*** 0.90*** 1.00*** 0.60* 0.94*** 0.73*** 2.50*** 0.00***

LR: miR-223+mir-23a 0.91*** 0.90*** 0.94* 0.80*** 0.94*** 0.74*** 4.69*** 0.08***

This is a case-control study of pregnant women presenting to the West China Second Univer-
sity Hospital between December 2016 and December 2018 [37]. The aim of the study was to
create an early detection model of (19 weeks) gestational diabetes mellitus (GDM) combining
various potential predictors utilizing hepatic and renal and coagulation function measure. The
data sample consisted of 215 with GDM and 275 healthy pregnant women. Blood samples were
collected at 10–19 weeks of pregnancy. Forty-four hematologic and biochemical indices from
routine blood tests, hepatic and renal function, and coagulation function examinations were col-
lected. Bivariate tests of unadjusted associations between each predictor and GDM status were
performed with Student’s unpaired t-test or the Mann–Whitney U-test. The test was considered
significant with a p value less than 0.001.
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The parameters which differentiated significantly between the patients and control samples
were further examined via support vector machines (SVMs) and generalized boosted modeling.
The dataset was split 70% into a training set so that to create a predictive model for GDM,
and 30% into a testing set. The optimal predictors were Prothrombin time (PAT-PT) and refer-
ence activated partial thromboplastin time (REF-APTT) having AUC 0.998 in light GBM and
0.997 in SVM. Also, direct bilirubin (DBIL) and fasting plasma glucose (FPG) value of hepatic
and renal function examination had had in light GBM (AUC of 87.81%) and SVM (AUC of
84.79%).

Hence, it was concluded that PAT-PT and REF-APTT can be used risk assessment and
earlier detection of GDM as well as a conjunction with FPG. This was first study to suggest
coagulation function indexes during first 19 weeks of pregnancy as potential biomarkers of
GDM progress.

2.4 Cardiovascular Diseases
2.4.1 Coronary Heart Disease

Coronary heart disease (CHD) is responsible for 13.3% deaths globally, and is also the most
common cause of disability. Atherosclerosis is the most prevalent cause of CHD. Atheroma
narrows the coronary artery and reduces the blood supply to the myocardium. T The gold
standard method for determination of coronary arteries stenosis is coronary angiography (CA).
It provides a detailed view of coronary anatomy, but is expensive and is associated with a
significant morbidity and mortality. Hence the use of novel biomarkers with high sensitivity
and specificity and their application to new algorithms to predict CHD remains an important
approach to risk stratification.

This study took place in Iran in 2016 to create a model for coronary heart disease predic-
tion using a decision tree algorithm [38]. The study was based on a case-control study design of
patients referred to Ghaem Hospital, Mashhad–Iran for coronary angiography, between Septem-
ber 2011 and May 2013. In 20 months of data collection, 1187 patients were enrolled. Using
angiography, these individuals were divided into two groups: those (782) with significant an-
giographically defined CHD [Angiography (+)] (the case group) who had ≥ 50% occlusion
in at least one coronary artery and those (405 individuals) with a normal angiogram (< 50%
obstruction in coronary arteries) [Angiography (–)]. Also, 1159 healthy controls were selected
among people who made routine medical examinations.

The variables which were the well differentiated variables between the 3 groups of posi-
tive, negative angiography and healthy participants were low-density lipoprotein (LDL), high-
density lipoprotein (HDL), systolic blood pressure (SBP), diastolic blood pressure (DBP) , total
cholesterol (TC), Triglyceride (TG), Fasting blood glucose (FBG), high-sensitivity C-reactive
protein (hs-CRP) age, sex. A decision tree was applied with 10 input variables and one output
variable. The algorithm used the Gini index for selecting the variables and CART algorithm was
used for pruning leaf nodes. As training set was used 70% (1640 cases) of the data and as test-
ing dataset, 30% (706 cases). A confusion matrix was used to assess the efficiency of the model
(table 15). Also, to compare the results the accuracy, sensitivity, specificity, and the receiver
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operating characteristics (ROC) curve were calculated and were equal to 95.3%, 97.8%, 92.9%,
respectively. The area under the ROC curve was 0.95.

The variables remained in the final decision tree (Fig.12) were hs-CRP, FBG, age, TC,
SBP,HDL and sex which had size 25, 14 leaves and 9 layers. An important result was that
hs-CRP was at the top of the tree which divided the population with the highest information.

To validate the key role of hs-CRP in their model they ran the algorithm without hs-CRP.
The results were a sensitivity, specificity, accuracy as 83.7%, 88.7%80.9%, respectively.

This was one of the most accurate decision trees model until that moment and can be used
in clinical practice to distinguish healthy and CHD patients. They signify that hs-CRP as a new
biomarker is strongly related with CHD even more than common biomarkers such as FBG and
LDL [38].

Figure 12: Decision tree with training dataset [38].
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Table 15: Confusion matrix of testing dataset.

Actual outcome Predicted outcome

Healthy Angio− Angio+

Healthy 328 4 3

Angiography− 11 56 64

Angiography+ 15 32 193

2.4.2 Stroke

Stroke is a leading cause of permanent disability all over the world and it has become the
main cause of death in China. About 80%–85% of strokes are ischemic with a short window
period of 4.5 hours and thus the rapid and accurate diagnosis of strokes is of great importance
for effective treatment. Traditional brain imaging technologies (e.g., the computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and functional
magnetic resonance imaging (FMRI)) are only suitable for detecting abnormal brain tissues with
relatively large areas after a long onset time, and they are unable to discriminate different kinds
of strokes. Alternatively, molecular biomarkers can serve as sensitive indicators for predicting
stroke risk, and, consequently, the identification of novel stroke biomarkers may greatly facili-
tate the study of pathophysiological mechanisms of stroke and early diagnosis and symptomatic
treatment of stroke even before an injury occurs.

The aim of the study was to establish a model to distinguish ischemic stroke patients from
healthy persons [39]. It was the first time that fatty acid metabolites were used as biomarkers
for stroke diagnosis. The whole data set was separated into two parts, a training and validation
set, where 92 healthy persons and 149 patients included in the training and 30 healthy persons,
and 48 patients included in the validation set.

158 fatty acids and their metabolites were tested in the training set and the measures among
17 of them between healthy and stroke patients were significantly differentiated (Figure 13.A).
In addition to fatty acid metabolites, the measures of four clinical biochemical parameters were
differentiated (Figure 13.B) including total cholesterol (TC), triglyceride (TG), high-density
lipoprotein (HDL) and blood glucose were noticed.

Then, three models were applied using the above candidate biomarkers to distinguish is-
chemic stroke patients from the healthy group using stepwise logistic regression. The first one
contained six fatty acid metabolites, AA, DHA, 13-HODE, 14,15- DHET and iso-PG (8-iso-
15-keto-PGF2a and 8-iso-PGF3a). The second (model B) contained three clinical biochem-
ical parameters, blood glucose, HDL and TG. The third model (C) included both fatty acid
metabolites and clinical biochemical parameters, AA, DHA, 13-HODE, 8-iso-15-keto-PGF2a,
and HDL. The training set was used in the training process of each algorithm. The algorithms
aimed to distinguish ischemic stroke patients from the healthy group in the training set.

A random forest algorithm was applied for each model. The results are presented in figure
14. Model C had an AUC value of 0.9899, which was much greater than the AUC values
of model A (0.9857) and model B (0.8527). Moreover, model C was superior to models A
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and B in accuracy (0.9577 vs. 0.9155 and 0.8169), sensitivity (100 vs. 96.30 and 77.78), and
specificity (93.18 vs. 88.64 and 84.09). Therefore, model C is the most effective classifier to
discriminate ischemic stroke patients from the healthy persons and using a combination of fatty
acid metabolite and clinical biochemical parameters biomarkers can be more effective than the
conventional approach of using a single biomarker as the clinical index with a risk of wrong
diagnosis [39].

Figure 13: Comparison of fatty acid metabolite levels (A) and clinical biochemical parameters (B) be-
tween healthy volunteers (Health) and ischemic stroke patients (IS) in a training set [39].
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Figure 14: Comparison of the performance of different models using the receiver operating characteristic
curves [39].
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3 Unsupervised Learning

3.1 Principal Component Analysis
Principal Component Analysis, or PCA, is an unsupervised learning algorithm and is a

primary tool for dimensionality reduction/feature extraction by transforming a large set of
variables into a smaller one that still preserves most of the information in the original data
[40]. The new variables are called principal components, their number is equal to the original
variables and they are created as linear combinations of them. Principal components are
constructed in a way that they are ordered by their importance which means that the maximum
possible information is in the first component, the second maximum in the second component
and so on. Some of the last principal components will be less importance and hence they can
be ignored without losing significant information [40]. Moreover, principal components are
uncorrelated which is a plus because there are models like the linear regression model that is
required from the predictive variables to meet this assumption [41].

Suppose that are given n data points such that xi ∈ Rp, i = 1, ..., n i.e. xi = [xi1, xi2, . . . , xip] then
can be created a p × n matrix:

X =


x11 · · · x1p

... · · ·
...

xn1 · · · xnp


The matrix of means M can be defined like

M = [x,..., x] where x = 1
n ×

∑n
i=1 xi

Then x can be centralized subtracting it from the matrix of means M like:

B = X − M (4)

In practice, the idea is to create particular sets of coordinate axes and thus, to find some of
the dimensions that can be ignored without losing significant information. A relative example
illustrated in figure 15, which shows two versions of the same data. In the left diagram the
data is presented having the original axes, while in the second new coordinate axes have been
found. The y′ dimension does not show much variability and so it can be probably ignored
using only the x′ axis values and still maintain most of the information of the original data. It
is noteworthy that by doing this process, the results can be improved since some of the noise in
the data is often removed [42].

The difficult task is to find those axes. The new coordinate axes are called principal com-
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Figure 15: Two different sets of coordinate axes. The second consists of a rotation and translation of the
first and was found using Principal Components Analysis [42].

ponents and can be specified by p orthogonal vectors u1, u2, ..., up. The principal components
are orthogonal, linear transformations of the original data points. A principal component is
considered as a direction in which the projection of the data has the maximum variation. [43].
The algorithm process begins by centering the data subtracting off the mean. Then the direc-
tion with the highest variation is chosen placing an axis in that direction which is called first
principal component and corresponds to vector u1. Subsequently, the direction which is orthog-
onal to the first and has the second highest variation is called second principal component and
corresponds to vector u2. The process is repeated until there are no others possible directions.
Some of the last axes have very little variation, and so they can be ignored without significant
variability loss [42].

To project data points to the direction of the first principal component, centralized matrix B
should be multiplied by uT

1 . Vector uT
1 is 1 × p ,B is p × n matrix so after multiplying them the

result will be 1 × n. As mentioned above, the first principal component is the direction with the
highest variation meaning that u1 should be a vector that maximizes the var(uT

1 B) [44].

max
u1

var(uT
1 B) (5)

The sample covariance matrix of matrix B is n × n matrix and can be denoted using S .
Since matrix B is multiplied by a linear transformation uT

1 then:

var(uT
1 B) = uT

1 var(B) u1 = uT
1 S u1

So, the maximization problem (5) is modified to:

max
u1

(uT
1 S u1) (6)

The amount in equation 6 cannot be maximized because it is quadrative and there is no
upper bound. Therefore, to address this issue the constrain uT

1 u1 = c is added to make it well
defined. Typically, is chosen c = 1 which will be used to solve the problem but can be any other
value. This makes sense because what needs to be calculated is the direction of the projection
which is independent of the size of u. Thus, the maximization problem is modified to [44]

33



max
u1

(uT
1 S u1) (7)

subject to
uT

1 u1 = 1

The problem (7) is a constrained optimization problem. The gradient vector for the uT
1 S u1

which needs to be maximized is parallel to the gradient vector of constrain which in this case is
uT

1 u1 − 1. Moreover, an unknown constant multiplier λ is necessary because the two gradients
may have not equal magnitudes λ is just a multiplier then this means that [45]

▽ (uT
1 S u1) = λ ▽ (uT

1 u1 − 1) ⇐⇒
∂(uT

1 S u1)
∂(u1)

= λ
∂(uT

1 u1 − 1)
∂(u1)

⇐⇒ S u1 = λu1(8)

Since S is matrix and λ is scaler from the (8) arises that u1 and λ are eigenvector and
eigenvalue of S respectively. S is a p× p matrix so it can have p eigenvalues and p eigenvectors
at most.

Replacing (8) in the uT
1 S u1 arises that:

uT
1 S u1 = uT

1λu1 = λuT
1 u1 = λ

because of the constrained uT
1 u1 = 1

So, (7) will be equal to:

max
u1
λ (9)

Hence, the value of var(uT
1 B) will be the corresponding eigen value of eigen vector u1 of

covariance matrix S . Consequently, the eigen vector corresponding to maximum eigen value
maximizes the equation (5). Thus, if the ordered eigen values are λ1 > λ2 > . . . > λp and the
corresponding eigen vectors of S are u1, u2, . . . , up , the u1 eigen vector of covariance matrix
S corresponding to the largest eigen value λ1 and will be the first principal component. Since
the second principal component is the direction of the second larger variation of the data after
projection, the eigen vector corresponding to the second largest eigen value will be the second
principal component and so on for the rest components [44].

Eigendecomposition problem of covariance matrix can be more easily solved using Singular
Value Decomposition (SVD). The centralized B matrix is p × n and can be decomposed as
following:

B = UΣVT (10)

34



Where U contains the eigenvectors of BBT , V the eigen vectors of BT B and Σ is a diagonal
matrix such that diagonal values are eigen values of BBT or BT B [46]. At the same time, BBT

is the covariance matrix of B, so U contains the eigenvectors of covariance matrix which has
already been shown that are principal components. Thus, columns of U will be the principal
components and it will be a p × p matrix since u1 is p × 1, u2 is p × 1 and so on [47]. The
principal components in U are ordered automatically because in singular value decomposition
the eigenvalues of BBT which are the values of matrix Σ are ordered, so its first elements is λ1,
the second is λ2 and so on. Thus, the first column of U will be the first principal component,
the second column will be the second principal component etc [48].

Project data points to principal components

To project a point x, in ith principal component must be computed uT
i b, where b is the

centralized value of x. To project a data point x to all the principal components must be
computed UT b. So, y = UT b will be a p × 1 encoding of x. To project all the data points in
principal components must be computed UT B. So, Y = UT B will be a p × 1 matrix, containing
the encodings of all data points xi , i = 1, . . . , n. Moreover, to project all the data points to the
first p principal components is computed Y = UT

p B where Y is p × n and obviously, Up is the
matrix having as columns the first p principal components which are the first p columns of
matrix U [44].

Project test data point

Moreover, an out of sample data point x can be projected to principal components by
computing y = UT

b which will be a p × 1 encoding of test data point x. In this case the data
point x is also centered subtracting the average of all data points like was done before and this
data point is also included to the average [44].

Reconstructing the data

After encoding the data and going to a lower dimensional space they also can be recon-
structed meaning that they can get back to the original centered data. Columns of U are
orthogonal to each other so UT = U−1. Therefore, reconstructing is done multiplying the
projected data with the inverse of U transformation [44].

X̂ = UY = UUT B (11)

And now X̂ has dimensions p × n which is the same with the original matrix B of cen-
tered data. With the same way is reconstructed also a test data x:

x̂ = UUT b

Previously, was shown that the variance of data points which are projected in the ith principal
component is equal to the eigen value λi which has been shown that is the eigen value corre-
sponding to eigen vector ui. Thus, after chosen the first p principal components the percentage
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of the original variation that has been captured can be calculated using the following amount.∑d
i=1 λi∑p
i=1 λi

Obviously,
∑d

i=1 λi is the variation that has been captured using the first d principal compo-
nents and

∑p
i=1 λi is the whole variance of the original data [40].

Standardization

It is critical to perform standardization prior to PCA, is that the latter is quite sensitive
regarding the variances of the initial variables. That is, if there are large differences between
the ranges of initial variables, those variables with larger ranges will dominate over those with
small ranges.Mathematically, this can be done by subtracting the mean and dividing by the
standard deviation for each value of each variable.

3.1.1 PCA Numerical Example

Assuming that is given a matrix data 
1 0

0 1

−1 −1


where the row represents the data samples, and the columns represent the features and the
two features are named as C1 = [1, 0,−1], C2 = [0, 1,−1]. Then, the covariance matrix
must be constructed, where the diagonal entries are the variance, and off-diagonal entries are
covariance.

VarC1 = 1

VarC2 = 1

CovC1,C2 = CovC2,C1 =
(−1)(−1)

3 − 1
= 0.5

Therefore the covariance matrix will be:  1 0.5

0.5 1
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Eigenvectors and eigenvalues can be calculated, simply by plugging λ1, λ2 into the fol-
lowing equation:1 − λ 0.5

0.5 1 − λ

 · v⃗ = 0⃗ ⇐⇒ det

1 − λ 0.5

0.5 1 − λ

 = 0 ⇐⇒ (1 − λ)2 − 0.52 = 0

and they will be

λ1 = 1.5, v⃗1 = [0.707, 0.707]

λ2 = 0.5, v⃗2 = [−0.707, 0.707]

To project the data points to the principal components, as shown above, the data matrix must
be multiplied with the eigenvectors of the covariance matrix

1 0

0 1

−1 −1


0.707 −0.707

0.707 0.707

 =


0.707 −0.707

0.707 0.707

−1.414 0


The final matrix contains the transformed data. As shown above, the variance of data points

that are projected in the ith principal component is equal to the eigen value i. As a result,

Varpc1 = 1.5 = λ1

Varpc2 = 0.5 = λ2

For this dataset, λ1 explains 75% of the variance since 1.5
1.5+0.5 = 0.75; Likewise, λ2 explains

25% of the variance since 0.5
1.5+0.5 = 0.25 [49].

3.1.2 Dual PCA

As mentioned above, the centralized matrix B can be decomposed using (10). There are
many cases in which the size of dimensionality is higher than the number of data points.
When that happens, it is computationally hard to compute the eigenvectors BBT as before.
In contrast, is easier to compute the eigenvectors of BT B and the problem is set in a way for
doing this. This leads to another algorithm is called Dual principal components analysis [47].
Nothing changes compared to direct PCA, meaning that mapping data to lower dimensional
space, reconstructing and projecting out of samples data point are applied in a similar way. U
is computed in terms of B,Σ,VT , where Σ and V are calculated by decomposing the matrix BT B
V is orthonormal matrix so VT = V−1 and VVT = 1. Therefore, if equation (10) multiplied
with V from right arises that [50]:

BV = UΣ (12)
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Σ is diagonal matrix and contains the eigen values of BBT or BT B which are non-zero
so Σ−1 can be computed [50].

1
λ1

· · · 0
...
. . .

...

0 · · ·
1
λp


Thus (12) can be multiplied from right by Σ−1.

BVΣ−1 = U (13)

Equation 13 is the key to derive dual PCA providing the U value for the steps of the algorithm.
The equation 10 can be multiplied with U from the left and arises the following expression
which is used in dual PCA to project the data points in principal components

Y = UT B = ΣVT (14)

The projection of an out of sample point x is doing using:

Y = UT b = Σ−1VT BT b (15)

The reconstruction of training data is doing using:

X̂ = UY = UUT B = BVΣ−1ΣVT = BVVT (16)

And in a similar way the reconstruction of an out of sample data point [50]

x̂ = Uy = UUT b = BVΣ−1Σ−1VT = BVΣ−2VT BT b (17)

3.1.3 Kernel PCA

So far, the data was supposed to be linear. When this is not true, kernel PCA is applied. So
far, the PCA has been described as a linear algorithm and this will not change [51]. However,
what can change is the data in a way that the linear algorithm will be still efficient [52].
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Kernel methods are not applied just in PCA, but also in many other machine learning algo-
rithms. Going to a higher dimensional space, is usually computationally harder because when
the dimensions increased, the number of parameters need to be learned exponentially grow.
However, kernel functions can provide an effective solution to the issue of non-linearity. This is
the idea behind kernel methods that when a nonlinear case is difficult to be handled, instead of
changing the algorithm, change the data by going to higher dimensional space and then apply
the linear technique there [52].

It is recalled that B is the matrix which contains the centralized original data and b a cen-
tralized data point. A data point b is mapped from the original space into a higher dimensional
space H through a Φ such that Φ : b → H. However, Φ(b) is not computed explicitly [50]. In-
stead, some functions called kernel are applied to map the data in the feature space [53]. Those
functions have the property that if they are applied to x,y are equal to Φ(x)TΦ(y) i.e. [50]

K(x, y) = Φ(x)TΦ(y) (18)

Each kernel function has a corresponding Φ which as mentioned before is not computed
explicitly.On the contrary, the algorithm is modified in a way that it depends only on xT y
instead of a point x itself and whenever there is in the algorithm the amount xT y to be replaced
with the kernel function (5.16). The algorithm for Kernel PCA is similar to the one for Dual
PCA except that in the case of Kernel PCA neither the training data nor the test data can be
reconstructed [50].

Projection-Reconstruction in Kernel PCA

The data are projected to principal components applying:

Y = UTΦ(B) = ΣVT (19)

The V and Σ are computed from the decomposition of Φ(B)TΦ(B) so ΣVT can be com-
puted.

The reconstruction of data points would be using:

X̂ = UY = UΣVT = Φ(B)VΣ−1ΣVT = Φ(B)VVT (20)

VVT can be computed because V is the matrix with eigenvectors of Φ(B)TΦ(B). How-
ever, Φ(B) is unknown. So, reconstruction of an out of sample data point cannot be done.

To project out of sample point in kernel PCA is applied

y = UTΦ(B)T = Σ−1VTΦ(B)TΦ(b) (21)
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This formula can be computed since Σ and V are already known and

Φ(B)TΦ(b) = K(B, b) (22)

The reconstruction of test data point would be

Uy = UUTΦ(b) = Φ(B)VΣ−2VTΦ(B)TΦ(b) (23)

and again the reconstruction cannot be done because Φ(B) is unknown [50].

3.2 Clustering
Clustering is an unsupervised problem and is the task of creating groups or clusters of

objects such that objects that belongs to the same cluster are more similar than the objects
are placed to different clusters [54]. To this end, clustering algorithms use similarity or
dissimilarity (distance) measures and is defined a measure called variability as

variability =
∑
e ∈ c

distance(mean(c), e)2 (24)

where c is a single cluster, mean(c) is the mean of the cluster and e is each point of the
cluster [55]. There are various distances which can be used such as Minkowski which is
defined by dmin = (

∑n
i=1 |xi − yi|

m)
1
m , Manhattan (Minkowski for m = 1), Euclidean (Minkowski

for m = 2), average distance which is defined by dave = (1
n

∑n
i=1 |xi − yi|

2)
1
2 , Mahalanobis

distance which is defined by dmah =
√

(x − y)S −1(x − y)T where S is the covariance matrix of
the data, and others. There is no standard choice of distance, each one can be used depending
on the data [56]. Variability is very close to variance, but it is not the same. Variance is
normalized, this means that the penalty for big cluster with a lot of variances in it is no higher
than a penalty of a tiny little cluster with a lot of variances in it. By not normalizing, the big
highly diverse clusters are penalized more than small highly diverse clusters. Assuming that C
is a group of clusters then can be defined the sum of all variabilities to clusters in C as [55]

dissimilarity(C) =
∑
c ∈C

variability(c) (25)

The optimization problem that must be solved in clustering is just to find a group of
clusters C in which dissimilarity is minimized subject to a constraint for the number of clusters.
The constraint is added to exclude the case in which each cluster consists of just a single data
point. In this case the variability of each cluster would be zero and consequently the same for
dissimilarity would be zero too, but obviously this is not an effective solution [55].
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3.2.1 Hierarchical Clustering

Hierarchical Clustering can be applied either bottom up or top down. The bottom-up case
will be presented below [57].

Let the distance between clusters i and j be represented as di j and ni the number of ob-
jects in cluster is.

-Hierarchical Clustering is a deterministic algorithm and starts by assigning each item to
a cluster, so that if are given N items, N clusters are created, each containing just one item.

-Find the pair of clusters i, j with the smallest di j and merge them into one cluster k, so
that now there is one less cluster.

-Calculate a new set of distances dkm using the following formula

dkm = αidim + α jd jm + βdi j + γ|dim − d jm| (26)

Where m represents any other cluster than k. The new distances replace dim and d jm.

-The process is repeated until all items are clustered into a single cluster of size N.

To calculate the distance between two clusters which are single observations various dis-
tances can be used depending on the application of the clustering. The Euclidian distance is the
most widely used when the variables are continuous.

Linkage metrics are used to find the distance between clusters and combine them when
they are not an individual observation. Each linkage metric corresponds to a choice for αi, α j, β
and γ.

The most common linkage metrics are the following.

Single-linkage. Also known as nearest neighbor clustering. The distance between two
clusters is the shortest distance from any member of one cluster to any member of the other
cluster. The coefficients of the distance equation are

αi = α j = 0.5, β = 0, γ = −0.5

Complete-linkage. Also known as furthest neighbor clustering. The distance between
two clusters is the greatest distance from any member of one cluster to any member of the other
cluster. The coefficients of the distance equation are

αi = α j = 0.5, β = 0, γ = 0.5
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Average-linkage. In this case the distance between two clusters is the average distance
from any member of one cluster to any member of the other cluster. The coefficients of the
distance equation are [57]

αi =
ni

nk
, α j =

n j

nk
, β = 0, γ = 0.5

Figure 16: Linkage metrics [58].

A graphical represantation of the three methods is the figure 16. All linkage metrics are
used in practice depending on the application of the clustering. Choosing different linkage
criteria, the results are different too.

Stopping criteria

-In the case that there is a priori knowledge that the data naturally falls into k classes, the
procedure can stop when k clusters have been created.

-The results of hierarchical clustering are usually presented in a dendrogram. A dendro-
gram example is represented below which shows the hierarchical clustering of 22 observations.
Dendrograms begin with each observation in a separate cluster. The vertical axis represents
the objects and clusters. At each step, the two clusters that are most similar are joined into
a single new cluster. The horizontal axis reflects the distance between clusters [59]. Each
fusion of two clusters is represented on the graph by joining two horizontal lines into one
horizontal line. Once fused, objects are never separated. In the dendrogram in figure 17
the big difference between clusters is between cluster of 7,8,9,10,11,12 versus the cluster
14,15,16,17,18,19,20,21,22 and the cluster 1,2,3,4,5 [57]. Thus, the dendrogram can be used
for choosing the optimal number of clusters.

Limitations
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Figure 17: Dendrogram [57].

Hierarchical Clustering requires high amount of memory used by the algorithm to exe-
tute and produce the result (space complexity). Moreover, is a slow algorithm, and it is
not proposed especially in applications with big data [60]. However, it is used in K means
algorithm which is presented next to find an appropriate number of clusters. The way is used is
analyzed below.

3.2.2 K-means

K−means is a greedy and iterative algorithm and the most commonly used in clustering
[61]. Suppose that are given N data points. The way that K-means works is [62]:

- Decide how many clusters are needed.

- Given that are needed K clusters, K ran-
dom points are picked as initialized cluster
centers.

- The data points are assigned to the clos-
est cluster center

-Compute K new centroids by averaging
examples in each cluster.

- Iterate until the points do not move be-
tween clusters and centroids are stabilized

The complexity of one iteration is k ∗ N ∗ d, where N is number of points and d time
required to compute the distance between a pair of points. Usually, the algorithm converges
quickly, and the number of iterations is small [61].

In K-means algorithm there are two issues. The first one is related to the number of
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clusters. Choosing wrong value for K can lead to strange and not accurate results [62].

Optimal K

One way to choose K is by using a priori knowledge about the application. This is
something that often happens.

Elbow Method

Elbow method is used to find a proper K value. For choosing the appropriate number of
clusters the average Within-Cluster-Sum of Squared Errors (WSS) for different values of k can
be computed. If the total distance is high, it means that the points are far from each other and
might be less similar to each other.The average within-cluster sum of squares measures how
cohesive the clusters are and is defined as

WS S =
1
N

K∑
i=1

∑ni

j=1
(xi j − xi)2 (27)

Where ni is the number of points in cluster k for k = 1, ...,K [63]. Starting from K = 1 and
increasing K each time, the higher the value K will be, the lower the within distance. Obviously
if K = N the total distance will be zero because each cluster will contain only one data point,
but this is not a solution. The aim is to find a value K that the amount of the decrease in within
distance will be no significant any more [64]. For the data illustrated in figure 18, after K = 3,
the reduction in total distance is not important. Therefore, going beyond this K value, will not
contribute much to clustering algorithm and will only make clusters more complicated [63].

Figure 18: Elbow K Means [63].
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Another approach is to run Hierarchical Clustering on a small subset of the data and use
the number of clusters in K-means [55].

Initial centroids

The second problem in K-means is the choice of proper initial centroids. Different ini-
tial centroids can lead to different number of iterations and most important different results
[62].

Random data points

In random data points approach, k random data points are selected from the dataset and
used as the initial centroids. This approach is unstable and probably the selected centroids are
not well positioned throughout the entire data space [65].

Sharding centroid initialization

The sharding centroid initialization algorithm primarily depends on the composite sum-
mation value of all the attributes for a particular instance or row in a dataset. The idea is to
calculate the composite value and then use it to sort the instances of the data. Once the data set
is sorted, it is then divided horizontally into k shards.Finally, all the attributes from each shard
will be summed and their mean will be calculated. The shard attributes mean value collection
will be identified as the set of centroids that can be used for initialization [64].

K-Means++

K-means++ is a smart centroid initialization method for the K-means algorithm. The goal
is to spread out the initial centroid by assigning the first centroid randomly then selecting the
rest of the centroids based on the maximum squared distance. The idea is to push the centroids
as far as possible from one another [64].

Dimensionality Reduction in K-Means

K-Means uses Euclidean distance to calculate the distance between points. In very high
dimensional space, Euclidean distances may not work properly. So, if a large number of
features are given, the use of dimensionality reduction algorithm like PCA before K-means can
solve this problem and speed up the process [66].

Mini Batch K-Means

For large datasets, K-Means can take a lot of time to converge. The Mini Batch K-Means
is a variant of the K-Means algorithm which uses mini-batches to reduce the computation
time, while still attempt to optimise the same objective function. Mini-batches are subsets of
the input data, randomly sampled in each training iteration. These mini-batches manage to
reduce significantly the computations required to converge to a local solution. In contrast to
other algorithms that speed up the computation time of k-means, mini-batch k-means produces
results that are only slightly worse than the standard algorithm [66].
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3.2.3 K-means Numerical Example

An example for building a K-means Algorithm ”by hand” is presented below for the data set
given in the following table. The data contain only 6 samples and two variables named x and y.

Table 16: Training data.

point x y

1 7 3

2 4 5

3 2 4

4 0 1

5 9 7

6 6 8

The initial centroids can randomly be chosen to be for Group 1: point 5 with center (9, 7) and
for Group 2: point 6 with center (6, 8). The distances between the centroids and the data points
can be calculated using Euclidean distance. The distances are presented in table 17. Based on
the distance matrix, each point is assigned to its closest group. The new clusters and the new
centroids are presented in table 18.

√
(xa − xb)2 + (ya − yb)2)

Table 17: Distances

1 2 3 4 5

2 3.61

3 5.10 2.24

4 7.28 5.66 3.61

5 4.47 5.39 7.62 10.82

6 5.10 3.61 5.66 9.22 3.16

The above process is repeated calculating the distance between each point to the center of
each cluster again and again until the points do not move between clusters and centroids are
stabilized. The new centroids were computed by taking the mean of the coordinates x and y of
the points in one cluster. More specific, Group 1 includes the points 5 and 1 with (8, 5) as center

8 = 9+7
2 and 5 = 7+3

2

and Group 2 includes the points 6, 2, 3 and 4 with (3, 4.5) as center
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Table 18

points center

cluster1 5,1 (8,5)

cluster2 6,2,3,4 (3,4.5)

3 = 6+4+2+0
4 and 4.5 = 8+5+4+1

4

The distances between the centroids and the data points were calculated again as before.
Based on the distance matrix, each point is assigned to its closest group. The new clusters and
the new centroids are calculated again and presented in table 20. After one more repetition,
it is concluded from table 21 that all points are correctly placed to its nearest cluster, so the
algorithm stops [67].

Table 19: Distances

points distance to cluster 1 distance to cluster 1

1 2.24 4.27

2 4 1.12

3 6.08 1.12

4 8.94 4.61

5 2.24 6.5

6 3.61 4.61

Table 20: Distances

points center

cluster1 1,5,6 (7.33,6)

cluster2 2,3,4 (2,3.33)

Table 21: Distances

points distance to cluster 1 distance to cluster 1

1 3.02 5.01

2 3.48 2.61

3 5.69 0.67

4 8.87 3.07

5 1.95 7.9

6 2.4 5.08
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3.2.4 Clustering Performance Evaluation

To evaluate the performance of a clustering algorithm are used different metrics just like in
classification algorithms.

Silhouette score

Silhouette score is used to evaluate the quality of clusters created using clustering algorithms
in terms of how well samples are clustered with other samples that are similar to each other
and thus, choosing the optimal number of clusters. Silhouette Score, S i, for each observation i
is calculated using the following formula [68]

S i =
bi − ai

Max(ai, bi)
(28)

where αi also called average intra-cluster distance, is the average distance between the
observation and all other data points in the same cluster.

bi is also called average nearest-cluster distance is the average distance between the ob-
servation and all other data points of the next nearest cluster.

Silhouette Score ranges from -1 to +1. Higher value of Silhouette Score indicates observa-
tions are well clustered. Silhouette Score = 1 indicates that the observation (i) is well matched
in the cluster assignment. A value near 0 represents overlapping clusters with samples very
close to the decision boundary of the neighboring clusters. A negative score represent samples
probably assigned to wrong cluster. [68].

The silhouette plots can be used to select the most optimal value of K (no. of clusters) in
K-means clustering. The aspects to look out for in Silhouette plots are cluster scores below the
average silhouette score, wide fluctuations in the size of the clusters, and the thickness of the
silhouette plot. For example, in figure 19 is represented a Silhouette plot for K-Means clusters
with 2,3,4,5 clusters. The optimal number of clusters is 3 because in this case the silhouette
score for each cluster is above the average silhouette scores, the fluctuation in size is similar
and the thickness is more uniform [69].

Figure 19: Silhouette Analysis for 2, 3, 4, 5 Clusters [69].

48



Dunn index

The Dunn index (DI) is a metric for evaluating clustering algorithms. The aim of this index
is to identify sets of clusters that are compact, with a small variance between members of the
cluster, and well separated, where the means of different clusters are sufficiently far apart, as
compared to the within cluster variance. Dunn index can also be used for choosing the number
of clusters k. The number of clusters that maximizes Dunn index is taken as the optimal one.
The Dunn index for c number of clusters is defined as :

DI = min
1≤i≤c

 min
1≤ j≤c, j,i

 δ(Xi, X j)
max
1≤i≤k
{∆(Xk)}


 (29)

where δ(Xi, X j) is the distance between cluster Xi and cluster X j and ∆(Xk) is the dis-
tance within the cluster Xk. Dunn index is a ratio between 0 and 1 and the higher it is, the better
is the clustering. It also has some drawbacks. As the number of clusters and dimensionality of
the data increase, the computational cost also increases [70].
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4 Logistic Regression

4.1 Introduction
Logistic regression is a classifier pretty popular especially in biostatistics. The idea in logistic

regression is to make an assumption directly for the posterior probabilities of the K classes via
linear functions in x. The model has the form

log
(P (Y = k|X = xi))
(P (Y = K|X = xi))

= wk0 +wk1x1 +wk2x2 + ... +wkpxp = wk0 +wT
k x, k = 1, ...,K − 1 (30)

Where wk are the parameter vectors corresponded to class k and x is the vector containing
the p independent variables. The decision boundary that logistic regression generates is linear,
which can be used for classification purposes [71].

4.2 Binary case
The two class case (K = 2) is called binary case and is widely used in many applications

such that biostatistical applications where binary responses (two classes) occur quite fre-
quently, in quality control to check if a product is effective or not etc. It can be assumed that
yi ∈ [0, 1] which can be affected by one or more fixed covariates x1, x2, ..., xp. Each covariate is
corresponded to a parameter wr, r = 1, ..., p. In binary case, logistic regression models posterior
through sigmoid function [71].

i f y = 1 : p1(x; w) = P(Y = 1|X = x) =
ewT xi

1 + ewT xi
(31)

i f y = 0 : p2(x; w) = P(Y = 0|X = x) = 1 − p1(x; w) =
1

1 + ewT xi
(32)

where w =
[
w0,w1, ...,wp

]
is the parameters vector and xi =

(
xi1, xi2, ..., xip

)
, i = 1, ...,N

is the vector for the covariates for ith observation. The parameter vector w is unknown and
is computed minimizing the loss function. The loss function for N observations which is
used is called cross entropy and is presented in (33). Loss function measures how close is
the prediction of the model to the original value. The minimum of J(W) cannot be calculated
directly, and thus an iterative optimization algorithm like gradient descent can be used.
Gradient descent requires the computation of derivatives with respect to the parameters w
which are given in equations (34),(35). Subsequently, the optimized parameters w for class k
can be computed using the gradient update rule (36) [72]. In this rule, η is called learning rate.
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J(w) = −
1
N

N∑
i=1

y(i)log
ewT xi

1 + ewT xi
+ (1 − y(i))log

ewT xi

1 + ewT xi

 f or k = 1, . . . ,K − 1 (33)

∇J(W) =
[
∂J
∂w1
, ∂J
∂w2
, . . . , ∂J

∂wp

]
(34)

∂J(w)
∂w j

=
1
N

N∑
i=1

(
ewT xi

1 + ewT xi
− y(i))xi j, j = 1, ..., p (35)

w
′

j = w j + η
1
N

N∑
i=1

(
ewT xi

1 + ewT xi
− y(i))xi j, j = 1, ..., p (36)

Logistic regression has a linear decision boundary (a line in 2−dimensional space) which is
given by

log
p1(x; w)
p2(x; w)

= log
(P (Y = 1|X = x))
(P (Y = 0|X = x))

= w0 + wT xi = w0 + w1xi1 + ... + wp−1xi(p−1) = 0 (37)

and corresponds to P(Y = 1|x) = P(Y = 0|x) = 0.5 and separates the predictions of 1′s
from 0′s [73].

A new data point is classified in class 1 if log p1(x;w)
p2(x;w) > 0 ⇐⇒ p1(x; w) > 0.5, other-

wise is classified in class 2 [74].

4.2.1 Logistic Regression-Numerical Example

An example for building a Logistic Regression Algorithm ”by hand” is presented below
for the data set given in the following table. The data contain only 4 samples, 2 independent
variables x1 and x2 and a binary target variable y.

Three parameters can be assumed (2 weights and 1 bias) and the can be initialized as:

w1 = w2 = b = 0

η = 0.1
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Table 22: Training data.

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

The gradient vector in this case has 3 dimensions:

∇J(W) =


∂L(w)
∂w1

∂L(w)
∂w2

∂L(w)
∂b

 =


1
4

∑4
i=1(σ(wxi + b) − yi)xi1

1
4

∑4
i=1(σ(wxi + b) − yi)xi2

1
4

∑4
i=1 σ(wxi + b) − yi

 =


1
4

∑4
i=1(σ(0) − 1)xi1

1
4

∑4
i=1(σ(0) − 1)xi2

1
4

∑4
i=1 σ(0) − 1

 =


−0.5−0.5
4

−0.5−0.5
4

0.5−0.5−0.5−0.5
4

 =
−0.25

−0.25

−0.25


The gradient can be used to compute the new parameter vector as shown in (36) which will

be as follows. The process can be repeated with the same way until the algorithm converges
and the optimized parameters be found. Then, the model can be used for classification of new
data points.

w′ =


w1

w2

b

 − η

−0.25

−0.25

−0.25

 =

−0.025

−0.025

−0.025


4.3 Multinomial Logistic Regression

In the general case in which are given K classes and K > 2, it can be considered that
yi ∈ 1, 2, . . . ,K and an input is classified into one of K classes. Two variants of multinomial
or multi-class logistic regression will be presented, one vs rest classification and softmax
regression.

4.3.1 One vs rest classification

The idea is to train K different binary classifiers. The first classifier will predict whether an
input belongs to class 1 or not, the second will predict whether an input belongs to class 2 or
not, and so on until K classifier. Each one of the models will have its own parameter vector and
they are trained on the same data as has already presented in the binary case but the labels of
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yi = 0 or yi = 1 will be different in these K cases.

So at test time given a new input x the K binary models are used to calculate the posterior
probabilities P(Y = k|X = x), k = 1, . . . ,K and the data point is classified to the class k in which
the probability is maximum.

This approach can be applied not just in logistic regression but also in any binary machine
learning model and convert that into a multi- class classification model [75].

4.3.2 Softmax Regression

In softmax regression the output is a vector of probabilities corresponding to each class
which is structured in such a way that the first element in the vector will be the posterior
probability of being in the first class, the second element will be the probability of being in the
second class and so on up to Kth element in the output which is the probability of being in the
Kth class. The way that softmax regression models the posterior probability is through softmax
function, ensuring that they sum to one and remain in [0, 1] [76].

f (x; W) =



P(y = 1|x; w1)

P(y = 2|x; w2)
...

P(y = K|x; wK)


where

P(Y = k|X = x) = pk(x; wk) =
ewT

k xi∑K
i=1 ewT

l xi
f or k = 1, . . . ,K − 1 (38)

and

P(Y = K|X = x) = 1 −
K−1∑
k=1

P(Y = k|X = x) =
1∑K

i=1 ewT
l xi

(39)

The choice of the last class as the denominator is arbitrary, it could be any other without
affecting the model. In 2−class case there was just a single parameter vector but in SoftMax
regression there is a parameter vector wk corresponding to each class. The parameters vectors
can be stacked in a parameter matrix
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W =



w1

w2
...

wK


=



w10 w11 . . . w1p

w20 w21 . . . w2p

...
...
. . .

...

wK0 wK1 . . . wK p


Then the model output can be written as S o f tMax (Wx) .The parameters wi j are un-
known [77] . The optimized parameters w are calculated minimizing the loss function. The loss
function which is used is called cross entropy. The formula for one data point’s cross entropy is
presented in (40). The total cross entropy, or loss, will be the sum of all the cross entropies and
presented in (41). Just as in binary case, the minimum of J(W) cannot be calculated directly,
and gradient descent is used. Therefore, is required the computation of derivatives with respect
to the parameters w which are given in equations (42),(43). Subsequently, the optimized
parameters w for class k can be computed using the gradient update rule (44). In this rule, η is
called learning rate and I{y(i) = k} will be 1 if xi belongs to class k, and 0 if xi does not belong
to class k [78]. A new data point is classified in the class k in which the posterior probability
pk(x; wk) = P(Y = k|x; wk) is maximum [73].

Entropyxi = −

K∑
k=1

I{y(i) = k}log(
ewT

k xi∑K
j=1 ewT

j xi
) (40)

J(w) = −
N∑

i=1

K∑
k=1

I{y(i) = k}log(
ewT

k xi∑K
j=1 ewT

j xi
) (41)

∇J(W) =



∂J
∂w1

∂J
∂w2
...

∂J
∂wK


=



∂J
∂w10

∂J
∂w11

. . . ∂J
∂w1p

∂J
∂w20

∂J
∂w21

. . . ∂J
∂w2p

...
...
. . .

...

∂J
∂wK0

∂J
∂wK1

. . . ∂J
∂wK p


(42)

where

∂J
∂wk
=

N∑
i=1

(I{y(i) = k} −
ewT

k xi∑K
j=1 ewT

j xi
)xi (43)
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w
′

k = wk + η
1
m

N∑
i=1

(I{y(i) = k} −
ewT

k xi∑K
j=1 ewT

j xi
)xi (44)
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5 Non-parametric methods for regression and classification

5.1 Introduction
In this chapter are presented extensively non-parametric methods for regression and classi-

fication. More specific are presented Decesion trees and K-neighbors since these methods are
used in the field of biomarkers discovery from presicion medicine as mentioned in the literature
review.

5.2 Decision Trees
Decision Trees are a non-parametric supervised learning method, capable of finding com-

plex nonlinear relationships in the data. They can perform both classification and regression
tasks. The computational cost of making a tree is low and the cost of using it is even lower.
Classification using decision trees has grown in popularity over recent years. The idea of a
decision tree is that is divides the input space into a set of choices about each feature in turn,
starting at the root (base) of the tree and progressing down to the leaves or regions, where we
receive the classification decision. The trees can even be turned into a set of if-then rules [79].

characteristics of a tree

In figure 20 is illustrated a classification tree trained on the IRIS dataset (flower species).
Root (brown) and decision (blue) nodes contain questions which split into sub nodes. The root
node is just the topmost decision node. The leaf nodes (green), also called terminal nodes, are
nodes that do not split into more nodes. Classes assigned on the leaf nodes by majority vote i.e.
the majority class of the instances in a leaf node. To use a classification tree, start at the root
node (brown), and traverse the tree until a leaf (terminal) node is reached [80].

Pure node

A node is considered pure when most of the data points are correctly classified. The
data is repeatedly split according to predictor variables so that nodes will be as pure as
possible. Obviously, there is no need to split further on pure node. On the contrary, when the
heterogeneity at a particular node is high, it is considered impure and such a node needs further
splitting [79].

Tree depth and overfitting

Tree depth is a measure of how many splits a tree can make before coming to a prediction.
In the figure 20, the tree depth is 2 and in figure 21 are presented different trees in depth [80].
Classification tree is a greedy algorithm which means that is introduced only one split at a
time, without having the full tree ‘in mind’. This process could be continued further with
more splitting until the tree is as pure as possible. The problem of having many repetitions
with this process is that they can lead to a very deep classification tree with many nodes. This
often leads to overfitting on the training dataset. Decision trees are the most susceptible out of
all the machine learning algorithms to overfitting. A large tree risks to overfit in the training
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data resulting in poor generalization ability to new samples. A small tree might not capture
important structural information about the sample space. There are several ways to handle
overfitting and select the appropriate size of the tree. Some of them will be analyzed below [79].

Figure 20: Classification tree to classification one of three flower species (IRIS Dataset) [80].

Figure 21: Classification trees of different depths fit on the IRIS dataset [80].
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5.2.1 Entropy

The base of entropy comes from physics, where it is defined as the measurement of disorder,
randomness, unpredictability, or impurity in the system. Similarly, in Machine Learning
entropy (45) is the metric that measures the randomness,unpredictability or impurity in the data
set. Every piece of information has a specific value and can be used to draw conclusions from
it. The easier it is to draw useful results from a piece of information, the lower the entropy will
be. An example for better understanding can be: flipping a coin. When a coin is flipped there
can be two outcomes. It is difficult to predict the exact outcome while flipping a coin because
there is a 50% probability of both outcomes. Is a case like this, entropy would be high .Given
a data set having N classes, the mathematical formula of entropy is equation 4 where pi is
probability of randomly selecting an example in class i [81]. Figure 22 represents the change
in entropy as the proportion of the number of instances belonging to a particular class change
[79].

Entropy(p) = −
C∑

i=1

pilog2 pi (45)

Figure 22: Change in entropy according to the proportion of the number of instances belonging to a
particular class [79].

5.2.2 Iterative Dichotomiser 3 Algorithm

The most common algorithm for classification is Quinlan’s Iterative Dichotomiser 3 (ID3).
When building a decision tree using ID3, the best feature to pick is the one that gives the most
information. This is quantified using entropy. The idea is to work out how much the entropy of
the whole training set would be decreased if each feature is chosen for the next classification
step. This is known as the information gain and it is defined as the entropy of the whole set
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minus the entropy when a particular feature is chosen.

Gain(S , F) = Entropy(S ) −
∑

f∈values(F)

|S f |

|S |
Entropy(S f ) (46)

where S is the set of examples, F is a possible feature out of the set of all possible
ones, and |S f | is a count of the number of members of S that have value f for feature F.

The ID3 algorithm computes the information gain for each feature and chooses the one that
yields the highest value. This feature yields maximum reduction in entropy. Splits are not
necessarily binary in this case. At each stage the best feature is selected and then is removed
from the dataset and the algorithm is recursively called on the rest. The recursion stops when
either there is only one class remaining in the data (in which case a leaf is added with that class
as its label), or there are no features left, when the most common label in the remaining data is
used.

The algorithm can deal with noise in the dataset because the labels are assigned to the
most common value of the target attribute. Another benefit of decision trees is that they can
deal with missing data [79].

5.2.3 C4.5 Algorithm

ID3 algorithm uses all the features that are available, even if some of them are not necessary,
increasing the risk of overfitting. Hence, Quinlan constructed also an improved algorithm called
C4.5. In this algorithm the tree is created using ID3 algorithm. However, to avoid overfitting a
method called post-pruning is used [79]. In this process the whole tree is constructed first and
then the non- significant rules are removed [82].

Additionally C4.5 can handle continuous variables by discretizing them [83]. To this end,
the input variables must be split and thus, they are separated. More often, only one split is made
in the continuous variable, but this is not obligatory. Decision trees split on the feature and
corresponding split point that results in the largest information gain (IG) for a given criterion.
Therefore, the algorithm calculates the information gain of many points within each variable.
A good value for a split point does a good job of separating one class from the others [79].

5.2.4 C4.5 Algorithm-Numerical Example

An example for building a decision tree ”by hand” is presented below for the training set
T given in the following table. T has 14 data points, 3 features and a target binary variable.
Attributes x1 and x3 have nominal values, while attribute x2 has numeric values.

Starting at the root level, given this training set T, it must be determined the first of the 3
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Table 23: Top-ranking blood indices for the identification of lung cancer.

Sample x1 x2 x3 Class

1 A 70 true C1

2 A 90 true C2

3 A 85 false C2

4 A 95 false C2

5 A 70 false C1

6 B 90 true C1

7 B 78 false C1

8 B 65 true C1

9 B 75 false C1

10 C 80 true C2

11 C 70 true C2

12 C 80 false C1

13 C 80 false C1

14 C 96 false C1

attributes that will be used to form the node at the root. Since 9 samples belong to class C1 and
the remaining 5 samples to C2, the entropy of the whole set is

in f o(T ) = −
9

14
log2(

9
14

) −
5

14
log2(

5
14

) = 0.94

First, is tested the feature x1 to split T into 3 subsets say T1, T2, and T3, containing samples
with x1 equal to A, B, and C, respectively. T1 has 5 samples, 2 are in C1 and 3 in C2, and so its
entropy is

in f o(T1) = −
2
5

log2(
2
5

) −
3
5

log2(
3
5

) = 0.971

T2 has 4 samples, all are in C1 and none inC2, and so its entropy is

in f o(T2) = −
4
4

log2(
4
4

) −
0
4

log2(
0
4

) = 0

T3 has 5 samples, 3 are in C1 and 2 in C2, and so its entropy is

in f o(T3) = −
3
5

log2(
3
5

) −
2
5

log2(
2
5

) = 0.971

Thus after this potential split, the resulting entropy is
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in f ox1(T ) =
5

14
in f o(T1) +

4
14

in f o(T2) +
5

14
in f o(T3) = 0.694

The information gain (or loss in entropy) if the set is split using attribute x1 is

Gain(x1) = 0.940 − 0.694 = 0.246

With the same way, the information gain (or loss in entropy) if the set is split using attribute
x2 can be calculated and will be Gain(x2) = 0.940 − 0.838 = 0.102 and using attribute x3 will
be Gain(x3) = 0.940 − 0.892 = 0.048.

The highest gain is computed using x1, and therefore this attribute is selected for the first
splitting in the construction of a decision tree.

Next, each of the three subnodes are considered separately. Splitting T1 having 2 C1 samples
and 3 C2 samples the entropy is

in f o(T1) = −
2
5

log2(
2
5

) −
3
5

log2(
3
5

) = 0.971

Choosing the test attribute x1, it turns out the optimal threshold value is z = 70 and this
optimal test can be denoted as x4. This choice of z splits T1 into 2 subsets. The first subset,
consisting of 2 samples with x2 ⩽ 70, has all the 2 samples in C1 and none in C2. The second
subset, consisting of 3 samples with x2 > 70, has all the 3 samples in C2 and none in C1. The
resulting information is

in f ox4(T1) =
2
5

[−
2
2

log2(
2
2

) −
0
2

log2(
0
2

)] +
3
5

[−
0
3

log2(
0
3

) −
3
3

log2(
3
3

)] = 0

The information gained by this test is

Gain(x4) = 0.971 − 0 = 0.971

The 2 branches created by this split will be the final leaf nodes since the subsets of samples
in each of the branches all belong to their separate classes.

Next, T2 must be splitted. However since all 4 samples in T2 belong to C1, thus this node
will be a leaf node, and no additional tests are necessary for this branch.

The last subset T3, whose entropy is

in f o(T3) = −
3
5

log2(
3
5

) −
2
5

log2(
2
5

) = 0.971

Testing the attribute x3, T2 is separated into 2 subsets. The first subset, consisting of 2 samples
with x3 = True, has no sample in C1 and all 2 samples in C2. The second subset, consisting of 3
samples with x3 = False, has all the 3 samples in C1 and none in C2. The resulting information
is
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in f ox3(T3) =
2
5

[−
2
2

log2(
0
2

) −
2
2

log2(
2
2

)] +
3
5

[−
3
3

log2(
3
3

) −
0
3

log2(
0
3

)] = 0

where this test have been denoted as x5. The information gained by x3

Gain(x3) = 0.971 − 0 = 0.971

is the best. This test results in 2 uniform subsets of samples of the 2 separate classes, and there-
fore yields 2 final leaf nodes for this branch. The final decision tree for T is now determined. It
can then be used to classify any new unseen sample [84].

5.2.5 CART algorithm

Trees can also be used for regression. If the target attribute is continuous, the resulting tree
is called a regression tree. In general, data consists of p features and a response variable, for
each of N data samples: that is, (xi, yi) for i = 1, 2, ...,N where xi = (xi1, xi2, ..., xip). A popular
method for tree-based regression and classification is called CART. The decision tree in the left
graph in figure 23 results in the 5 partitions in the right diagram of the same figure. Assuming
that is given a partition into M regions R1,R2, ...,RM, and model the response as a constant ŷm

in each region .Instead of the previous splitting criteria it could be used the mean squared error
minimization which in each one of m regions will be [85]:

Qm(T ) =
1

nm

∑
xi∈Rm

(yi − ŷm)2 (47)

Figure 23: Partitions and Cart [85].

Since the criterion will be the minimization of the sum of square
∑

(yi − ŷm)2 , then the best
prediction ŷm is the average of yi in region Rm:

ŷm = ȳm =
1

nm

∑
xi∈Rm

yi (48)
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Finding the best tree T that minimizes (47) is a combinatorial problem and hence com-
putationally infeasible. Hence, a greedy algorithm is used again. Starting using all data, a
splitting variable j and split point s are considered creating two regions

R1( j, s) = {X|X j ≤ s} and {R2( j, s) = X|X j > s}

Then are seeked the splitting variable j and split point s that solve

min
j,s
{min

c1

∑
xi∈R1( j,s)

(yi − ŷ1)2 +min
c2

∑
xi∈R2( j,s)

(yi − ŷ2)2} (49)

Like before, ŷ1 is the average of responses yi in region R1 and ŷ2 is the average of re-
sponses yi in region R2: [85]

ŷ1 =
1
n1

∑
xi∈R1( j,s)

yi, ŷ2 =
1
n2

∑
xi∈R2( j,s)

yi (50)

In summary, what the algorithm does is to search for each variable the split point for which
the sum of the sum of squares of the two regions is minimized and not the point for which both
sum of squares are minimized. Among all variables, the one that minimizes the sum of the
sum of squares is chosen to separate the data into to regions. Having found the best split point,
the data is separated into the two resulting regions (binary splitting) and the splitting process is
repeated to each of the two regions. Then this process is repeated to all the resulting regions.

If the target is a classification outcome taking values 1, 2, ...,K, the only changes needed in
the tree algorithm pertain to the criteria for splitting nodes. In a node m, representing a region
Rm with Nm observations can be denoted the proportion of class k observations in node m like
following [85].

p̂mk =
1

Nm

∑
xi∈Rm

(yi = k) (51)

The observations are classified in node m to class k(m) = argmaxk p̂mk which is the majority
class in node m.

Tuning tree size

Tree size is determined during the training process. Firstly, a large tree T0 is created. Next,
T0 is pruned using cost-complexity pruning. A subtree T ⊂ T0 can be any tree created by
pruning T0, that is, deleting some of its internal (non-terminal) nodes. The idea is to find for
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each α, the subtree Tα ⊂ T0 to minimize Cα(T ) which is called cost complexity criterion.

Cα(T ) =
|T |∑

m=1

NmQm(T ) + α|T | (52)

Large values of α result in smaller trees Tα, and conversely for smaller values of α. For
each α there is a unique smallest subtree Tα that minimizes Cα(T ). The Tα̂ that minimizes the
sum of squares using five- or tenfold cross-validation is the final pruned tree.

Different measures Qm(T ) of node impurity include the following [85]

• Misclassification error: 1
Nm

∑
i∈Rm

I(yi , k(m))

• Gini index:
∑

k,k′ p̂mk p̂mk′

• Entropy:−
∑K

k=1 p̂mklog2 p̂mk′

Cross-entropy and the Gini index are more sensitive to changes in the node probabilities than
the misclassification rate. To guide cost-complexity pruning, any of the three measures can be
used, but typically it is the misclassification rate [85].

5.3 K-Nearest Neighbor
K-Nearest Neighbor (KNN) is a very simple non-parametric supervised classification algo-

rithm which can be used for both regression and classification tasks. KNN uses all the available
data classifies an unknown data point based on how its neighbors of a given data set are classi-
fied. To find the nearest neighbors a similarity measure is used. A typical measure is Euclidian
distance. The Euclidian distance of unknown data sample from all the points in the training
set must be calculated to identify the K nearest points to the unknown data. For classification
tasks the test point is classified to the category that gets the most votes. For regression tasks the
output is the mean of the k nearest points [86].

K in KNN is a parameter that refers to the number of nearest neighbors that are included in
the majority voting process. Choosing the right value for K is important for better accuracy. The
K must be an odd parameter to avoid as much as possible ties in the votes between two or more
categories [87]. For the same reason the K must not be a multiple of the number of classes. If it
is still got a tie, it is up to the user to classify randomly into one of the tied categories or decide
not to assign the test point into a category. Low values for K (K = 1,K = 2) can be noisy and
subject to the effects of outliers [88] . Also, the K value should not be very large because data
points that belong to other groups can be considered and misclassification will start occurring
[89].

There is no standard way to determine the optimal value for K. One common is to choose the
value for k as

√
N where N is the total number of data points. One other effective way is K-fold

cross validation. The value K that leads to the best results can be used for the application [86].
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KNN works very well in small data sets. In the case of big data set the main drawback of
KNN is the complexity in searching the nearest neighbors for each sample. This is because
there are lots of elements and the distance between each element of the training set and the new
element that must be computed [89].

5.3.1 KNN Numerical Example

An example for building a K-Nearest Neighbor ”by hand” is presented below for the training
set given in the following table. BMI and Age are the independent variable and the target
variable is Sugar having two possible outcomes (Diabetic or Non Diabetic).

Table 24: Training data.

BMI Age Sugar

33.6 50 1

26.6 31 0

23.3 32 1

28.1 21 0

43.1 33 1

25.6 30 0

31 26 1

35.3 29 0

36.5 53 1

37.6 30 0

The choice for k was k = 3 since are given little data. The in the below table was chosen for
testing.

Table 25: Test data.

BMI Age Sugar

43.3 33 0

34.6 32 1

39.8 41 1

22.2 57 0

What is the prediction for a person having BMI = 43.3 and age = 33? The original answer
is not as it seems in the dataset.
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First the distance between point (43.3,33) and 33.6 and 50 is calculated using the Euclidean
distance. The distance between point(43.3,33) to each point in data-set must be calculated and
for the other points the same process is repeated.

Distance = (43.3–33.6)2 − (33–50)2 = 383.09

In distance formula, square root is unnecessary for this case. The output of all calculated
distances from point (43.3,33) is presented in table 18 and the minimum must be chosen. It is
9.04, 32.49, 65. Their values in the target variable are 2 non-diabetic and 1 is diabetic respec-
tively. So, the new patient is classified as non diabetic. The original output is also Non-diabetic.
Therefore the prediction was correct [90].

Table 26: Table with distances.

BMI Age Sugar Distance

33.6 50 1 383.09

26.6 31 0 279.89

23.3 32 1 404

28.1 21 0 312.04

43.1 33 1 9.04

25.6 30 0 313.29

31 26 1 167.29

35.3 29 0 65

36.5 53 1 575.24

37.6 30 0 32.49
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6 Generative Learning Algorithms

6.1 Introduction

Generative approaches is a way of telling a story about the origin of the data. A model can
be considered as a “profile” of a class. Generative algorithms make a strong assumption on
the data, assuming that the data is distributed as multi-variate Gaussian. Naive Bayes (another
generative algorithm) assumes that each feature is uncorrelated with other features in the data.
On the contrary, discriminative algorithms make weak assumptions on the data [91].

6.2 Bayes’ Rule

The conditional probability of a class C given that a feature X has value x P(C|x) according
to Baye’s rule will be [92]

P(C|x) =
P(x|C)P(C)

P(x)
(53)

Bayes Rule is a way of going from the probability P(x|C), known from the training dataset
and much easier to compute, to find P(C|x) [93]. It is one of the most important equations in
machine learning. The denominator (the term on the bottom of the fraction) acts to normalize
everything, so that all the probabilities sum to 1 [92]. Baye’s rule is a source of inspiration for
many other methods which have wide applications in real world data.

In case that x vector of feature values contains more than one features then according to
Baye’s rule the conditional probability equals:

P(C|x) = P(C|x1, x2, ..., xp) =
P(x1, x2, ..., xp|C)P(C)

P(x1, x2, ..., xp)
(54)

and can be used to assign a new observation to a class Ci for which

P(Ci|x) > P(C j|x), ∀i , j (55)

where x = (x1, . . . , xp) is a vector of p feature values. This is known as the maximum a
posteriori or MAP hypothesis and provides a way to choose a class as the output. [92]
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6.2.1 Naı̈ve Bayes’ Classifier

Naive bayes’ comes from the assumption that the elements of a feature vector x = (x1, . . . , xp)
are conditionally independent of each other. Therefore, the string of feature values
P(x1 = a1, x2 = a2, ..., xp = ap|Ci) is just equal to the product of multiplying together
all of the individual probabilities [92]:

P(x1 = a1, x2 = a2, ..., xp = ap|Ci) = P(x1 = a1|Ci) × P(x2 = a2|Ci) × ... × P(xp = ap|Ci) (56)

This simplification of Bayes Theorem is common and widely used for classification
predictive modeling problems and is generally referred to as Naive Bayes. The classifier rule is
to select the class Ci for which the following computation is the maximum [93]

P(Ci|x1 = a1, x2 = a2, ..., xp = ap) =
P(Ci)

∏
k P(xp = ap|Ci)

Z
(57)

where Z = P(x1) × P(x2) × ... × P(xp)

Probability Z depended only on x1, . . . , xp features and is the same for all classes Ci, thus
this probability can be dropped [94]. Finally, the classifier rule is to select the class Ci for
which it is maximized the: [92]

P(Ci|x1 = a1, x2 = a2, ..., xp = ap) = P(Ci)
∏

p

P(xk = ak|Ci) (58)

Naive Bayes is a probabilistic machine learning algorithm. Although it seems to be a simple
yet is a powerful algorithm. The algorithm can be coded up easily and the predictions are made
quickly [93]. When the simplification is true, so that the features are conditionally independent
of each other, the naı̈ve Bayes’ classifier produces exactly the MAP classification [92].

6.2.2 Naive Bayes Numerical Example

An example for building a Naive Bayes Algorithm ”by hand” is presented below for the
training set given in the following table. Long, Sweet and Yellow are the independent variables
and the target variable is the fruit (Orange, Banana, Other). So the objective of the classifier is
to predict if a given fruit is a ‘Banana’ or ‘Orange’ or ‘Other’ using the 3 features.

The algorithm will be used for the prediction of a fruit that is: Long, Sweet and Yellow. The
training data can be aggregated to a table like following.

To begin with, the ‘Prior’ probabilities for each of the class of fruits must be computed. That
is, the proportion of each fruit class out of all the fruits from the population. Out of 1000 records
in training data, are given 500 Bananas, 300 Oranges and 200 Others. Therefore, priors are 0.5,
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Table 27: Training data.

Fruit Long (x1) Sweet (x2) Yellow (x3)

Orange 0 1 0

Banana 1 0 1

Banana 1 1 1

Other 1 1 0

.. .. .. ..

Table 28: Training data.

Type Long Not Long Sweet Not Sweet Yello Not Yellow Total

Banana 400 100 350 150 450 50 500

Orange 0 300 150 150 300 0 300

Other 100 100 150 50 50 150 200

Total 500 500 650 350 800 200 1000

0.3 and 0.2 respectively. The probability that goes in the denominator are P(x1 = Long) =
500
1000 = 0.50, P(x2 = S weet) = 650

1000 = 0.65, P(x3 = Yellow) = 800
1000 = 0.8. However, their

computation is not necessary since they are the same for all the classes and so will not affect
the probabilities. Subsequently, the conditional probabilities that contained in the numerator of
equation (57) must be computed .

Probability of Likelihood for Banana will be P(x1 = Long|Y = Banana) = 400
500 =

0.80, P(x2 = S weet|Y = Banana) = 350
500 = 0.70, P(x3 = Yellow|Y = Banana) = 450

500 = 0.90.
So, the overall probability of Likelihood for Banana = 0.8 * 0.7 * 0.9 = 0.504. With the same
way, are calculated the probabilities for Orange and Other. Substituting the probabilities into
the Naive Bayes formula, is concluded that the data point is classified as Banana since it gets
the highest probability [95].

P(Banana|Long, S weet and Yellow) = P(Long|Banana)P(S weet|Banana)P(Yellow|Banana)P(Banana)
P(Long)P(S weet)P(Yellow) =

0.8 0.7 0.9 0.5
P(Long)P(S weet)P(Yellow)

P(Orange|Long, S weet and Yellow) = P(Long|Orange)P(S weet|Orange)P(Yellow|Orange)P(Orange)
P(Long)P(S weet)P(Yellow) = 0

because P(Long|Orange) = 0.

P(Other Fruit|Long, S weet and Yellow) = P(Long|Other Fruit)P(S weet|Other Fruit)P(Yellow|Other Fruit)P(Other Fruit)
P(Long)P(S weet)P(Yellow) =

0.01875
P(Long)P(S weet)P(Yellow)

6.3 Linear Discriminant Analysis
Linear discriminant analysis (LDA) is particularly popular classification method and is

based on Bayes’ rule. An equivalent expression of Bayes’ Rule is the following:
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P(y = k|X = x) =
fk(x)πk∑
r fr(x0)πr

(59)

where fk(x0) is the density of X conditioned on k and πk is the prior probability of class
with

∑K
k=1 πk = 1.The denominator is identical for all classes.Then, as described before,

according to the maximum-a-posterior (MAP) a new observation is assigned to class k if

G(x) = argmaxkP(y = k|X = x) = argmaxk fk(x)πk (60)

In Linear discriminant analysis (LDA) it is assumed that the class conditional distribution is
multivariate gaussian and the classes have a common covariance matrix Σk = Σ ∀k.

This means that

fk(x) =
1

(2π)
d
2 |Σ|

1
2

e
−1
2 (xxx−µk)TΣ−1(xxx−µk) (61)

Consequently,the decision rule in LDA will be

G(xxx) = argmaxkδk(xxx) (62)

where

δk(xxx) = xxxTΣ−1µk −
1
2
µT

k Σ
−1µk + logπk

where δk(xxx) are called linear discriminant functions for class k. Therefore, new points are clas-
sified by computing the discriminant function δk(xxx) and returning the class k with the maximum
δk(xxx).

For a random pair of two classes, say k,l, the decision boundary is a set of points such that
probability of being on k class is the same as probability of being on l class. So, decision
boundary based on the two simplification assumptions is a set of points x such that [96]:

D.B = {xxx|P(y = k|X = x) = P(y = l|X = xxx)} ⇐⇒

xxxT (Σ−1µk − Σ
−1µl) +

1
2

(µT
l Σ
−1µl − µ

T
k Σ
−1µk) + log(

πk

πl
) = 0 (63)

Geometrically, in 2-dimensional space decision boundary is a line and in p-dimensional
space is a p-dimensional hyperplane. The parameters are not known, thus they must be
estimated using the training data as following [97]

π̂k =
Nk

N
(64)
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µ̂k =
∑
gi=k

xi

Nk
(65)

Σ̂ =

g∑
k=1

nkΣk

N
(66)

where Σk is the covariance matrix of class k, nk is the number of samples belong to class k
and N the total number of data.

6.3.1 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is a variant of LDA in which an individual covari-
ance matrix is estimated for every class of observations rather than assuming that classes have
common covariance matrix .The assumption that class conditional distribution is multivariate
gaussian does not change.

Thus, is required to estimate Σk for each class k ∈ 1, . . . ,K .The discriminant function
of QDA is quadratic in x:

δk(xxx) = −
1
2

log|Σk| −
1
2

(xxx − µk)TΣ−1
k (xxx − µk) + logπk (67)

Similar to LDA, an observation can be classified based on largest quadratic classification
function score. The decision boundary between each pair of classes k and l is the set of points
for which

{x : δk(x) = δl(x)} ⇐⇒ xT (Σ−1
0 µ0 − Σ

−1
1 µ1) −

1
2

xT (Σ−1
0 + Σ

−1
1 )x =

logπ1 − logπ0 −
1
2

log|Σ1| +
1
2

log|Σ0| −
1
2

(µT
1Σ
−1µ1 − µ

T
0Σ
−1µ0) (68)

This is a quadratic form,thus the decision boundary for QDA is always quadratic [96].

The estimates for QDA are similar to those for LDA, except that separate covariance matrices
must be estimated for each class using the following expression:

Σ̂k =
1

Nk − 1

∑
i:yi=k

(xixixi − µk)(xixixi − µk)T (69)

where nk is the number of class k observations [98].

6.3.2 Computations for LDA and QDA

The computations required for LDA and QDA can be significantly simplified through a lin-
ear transformation. The quantity δk in equation (67) contain the terms 1

2 logπk which can be
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considered as a constant and the terms −1
2 log|Σk| and (x − µk)TΣ−1

k (x − µk) which is also known
as Mahalanobis distance [99].

Suppose that Σk = I for each k. In this case the data are spherical and the term
(x−µk)T I(x−µk) will be the square Euclidian distance between point x and µk. Also, logΣk = 0.
So, in this case a point x is classified to class k simply by compared the distances of x from the
mean of each class and classified to the one which is closer.

Suppose now that for some classes k : Σk , I which means that the data in these classes are not
spherical. The covariance matrix Σk of each class k can be decomposed using singular value
decomposition as

Σk = UkS kVT
k (70)

Since Σk is covariance matrix, is symmetric and orthonormal. Therefore, ΣkΣ
T
k = Σ

T
k Σk

and Σ−1
k = Σ

T
k , so Uk = Vk so Σk can be decomposed as

Σk = UkVkUT
k (71)

and

Σ−1
k = (UkS kUT

k )−1 = (UT
k )−1S −1

k UT
k = UkS −1

k UT
k (72)

Substituting this in term (x − µk)TΣ−1
k (x − µk)T arises that

(x − µk)T UkS −1
k UT

k (x − µk) = (UT
k x − UT

k µ
T
k )S −1

k (UT
k x − UT

k µk) =

(S −1/2
k UT

k x − S −1/2
k UT

k µ
T
k )(S −1/2

k UT
k x − S −1/2

k UT
k µk) (73)

which is a transformed Euclidian distance between transformed point and transformed mean
in class k. Hence, in the case that the data in k class are not spherical (Σk , I) for k=1,..,K
the linear transformation X → S 1/2

k UT
k x can be applied in the data points of class k and make

them spherical. The mean of the transformed data in class k will be linearly changed and their
covariance matrix will be identity, no matter what the shape of the original data in class k is.
However, as discussed earlier in the case that the data are spherical is quite easy to classify
a new data point just by measuring the distance between the transformed data point and the
mean of each class. In this case, to classify a new data point, all the transformations for k
classes are applied one by one to this point and each time is measured the distance between the
transformed data point and the mean of the class that is related to the transformation.The data
point is classified to the class with the minimum of these distances.
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The same process is done in LDA but since the classes have common covariance matrices the
linear transformation that is applied to the entire data is the same. The transformation is X →
S −1/2UT x and make the data spherical.To classify a new data point, the linear transformation is
applied to this point and the distance between the transformed data point and the mean of each
class is measured. The data point is classified to the class with the minimum distance [99].

6.3.3 LDA Numerical Example

An example for building a Linear Discriminant Algorithm ”by hand” is presented below for
the training set given in the following table. The data contain only 7 samples, two independent
variables named x1 and x2 and one binary target variable [100].

Table 29: Training data.

x1 x2 Target

2.95 6.63 Passed

2.53 7.79 Passed

3.57 5.65 Passed

3.16 5.47 Passed

2.58 4.46 Not Passed

2.16 6.22 Not Passed

3.27 3.52 Not Passed

As mentioned in theory, a data point is classified based on linear discriminant functions in
(62). To calculate them, a data matrix X is constructed containing the two independent features

X =



2.95 6.63

2.53 7.79

3.57 5.65

3.16 5.47

2.58 4.46

2.16 6.22

3.27 3.52


where xk represents the data of k row. Also, µi, i = 1, 2 will be the mean of features belong

to class i and easily calculated that

µ1 =

[
3.05 6.38

]
and µ2 =

[
2.67 4.73

]
and the global mean vector will be
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µ =
[
2.88 5.676

]
The centralized matrix is created subtracting from data matrix X the global mean vector

B =



0.06 0.951

−0.357 2.109

0.679 −0.025

0.269 −0.209

−0.305 −1.218

−0.732 0.547

0.386 −2.155


To calculate the pooled covariance matrix, the covariance matrix of each group is required

at first. It is computed using only the data of the group and not the whole data. Therefore, the
centralized data matrix is separated into to matrices, one for each group.

B1 =



0.06 0.951

−0.357 2.109

0.679 −0.025

0.269 −0.209



B2 =


−0.305 −1.218

−0.732 0.547

0.386 −2.155


The covariance matrix for group i will be Σi =

(Bi)T Bi
ni

Σ1 =

 0.166 −0.192

−0.192 1.349


Σ2 =

 0.259 −0.286

−0.286 2.142


The pooled covariance matrix is calculated by Σ̂ =

∑g
k=1

nkΣk
N as shown in equation (66). In

this example will be
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Σ =

 4
70.166 + 3

70.259 4
7 (−0.192) + 3

7 (−0.286)
4
7 (−0.192) + 3

7 (−0.286) 4
71.349 + 3

72.142

 =
 0.206 −0.233

−0.233 1.689


Σ−1 =

5.745 0.791

0.791 0.701


And the priors for each group are calculated as p =

p1

p2

 =
 n1

N

n2
N

 =
4

7

3
7

 =
0.571

0.429


Since all the terms for the discriminant function (62) have been calculated, it can be used to

classify a new data point. Given a new point with x1 = 2.81 and x2 = 5.46 the prediction for the
point is “not passed” since the discriminant function for that class is higher as presented below.

δ1(xxx) = xxxTΣ−1µ1 −
1
2
µT

1Σ
−1µ1 + logπ1 =

[
2.81 5.46

] 5.745 0.791

0.791 0.701


3.05

6.38

 − 1
2

[
3.05 6.38

] 5.745 0.791

0.791 0.701


3.05

6.38

 + logπ1 =

101.0101 −
1
2

112.7608 + log(
4
7

) = 44.05

δ2(xxx) = xxxTΣ−1µ2 −
1
2
µT

2Σ
−1µ2 + logπ2 =

[
2.81 5.46

] 5.745 0.791

0.791 0.701


2.67

4.73

 − 1
2

[
2.67 4.73

] 5.745 0.791

0.791 0.701


2.67

4.73

 + logπ2 =

83.26 −
1
2

76.61 + log(
3
7

) = 44.1
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7 Support Vector Machines

7.1 Introduction
Support Vector Machines (SVM) is one of the most popular algorithms in modern machine

learning. It often provides very impressive classification performance on reasonably sized
datasets. Assuming that is given data having two classes. In figure 24 illustrated such a case and
three different possible classification lines. Each one of them separates correctly all the training
data. But in the first and third classification lines there are data points very close to the line.
This means that using test data there is a high chance for misclassification. On the contrary, it
does not happen in the middle line which has a higher distance from two classes, so it is a better
solution. This is the idea beyond the support vector machines to find a line that has maximum
distance to each of the classes, as it seems in figure 25. The distance between the hyperplane
and the closest point is called margin, labelled M. This region is symmetric about the line,
so that it forms a cylinder about the line in 3D, and a hyper-cylinder in higher dimensions. A
data point inside the margin is declared to be too close to the line to be accurately classified.
Thus, support vector machines look for the decision boundary that has maximum margin. The
datapoints in each class that lie closest to the classification line are called support vectors [101].

Figure 24: Three different classification lines [101].

Figure 25: The margin [101].

7.2 Hard margin SVM
The case in which data are linearly separable is called hard margin SVM. Suppose that are

given n data points x ∈ Rd, having two classes, labeled {−1, 1}. Firstly, it will be computed the
margin and then the hyperplane that has the maximum margin to those classes.
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A hyperplane is defined from the equation βT x+β0 where β and β0 are vectors. The direction
of vector β is perpendicular to hyperplane. Also, for any data point x that lies on the hyperplane
[101]:

βT x + β0 = 0 ⇐⇒ β0 = −β
T x (74)

Moreover, to compute the distance D between a data point xi and the hyperplane, a data
point x0 can be chosen which lies on the hyperplane, compute xi − x0 and then projected to the
direction of β

di =
βT (xi − x0)
||β||

=
βT xi − β

T x0

||β||
=
βT xi − β0

||β||

The distance for point xi would be
D = di − yi (75)

As mentioned above, margin is the distance of the hyperplane to the closest point. So,
margin is computed using the following expression:

The distance for point xi would be

M = min diyi = min
βT xi − β0

||β||
(76)

For any point xi that is not on the hyperplane yi(βT xi + β0) > 0. Thus, it means that for every
such a point there will be a positive constant c such that yi(βT xi + β0) > c. So, it is far from
hyperplane by c. Both sides can be divided by c:

yi(
βT

c
xi +
β0

c
) ≥ 1 ⇐⇒ yi(β∗xi + β

∗
0) ≥ 1 (77)

From (77) is concluded that for any hyperplane, vectors β and β0 can be rescaled in a way
that the distance of all points from hyperplane is at least 1. When the vector β is divided
by a constant c its direction does not change, what does change is only its size which is not
a problem because vector β is computed only to define the decision boundary through its
direction. So, the smallest value of (77) is 1. Combining this with the fact that (76) must be
minimized, the definition of margin can be modified to [101]:

M = min diyi =
1
||β||

(78)

Consequently, the margin depends only on vector β. As already said, margin should be as
large as possible. As a result, the hyperplane which maximizes the margin will be the optimal
decision boundary. Therefore, the optimization problem can be formed such that:
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min
β,β0

||β|| (79)

Subject to
yi(βT xi + β0) ≥ 1

The constrain yi(βT xi + β0) ≥ 1 is used to make sure that among all hyperplanes that satisfy
this constrain, the one that has the minimum ||β|| is the optimal choice. For easier computations
the optimization problem can be modified as following without change anything [101]:

min
β,β0

1
2
||β2
|| (80)

Subject to
yi(βT xi + β0) ≥ 1

Hence, β,β0 will be chosen to maximize the margin. This is a convex optimization problem
(quadratic objective function subject to linear constraints). So, it can be computed the global
minimum which is the unique solution of this problem. The lagrangian of this objective
function will be:

L(β,β0, αi) =
1
2
||β||2 −

n∑
i=1

αi[yi(βT xi + β0) − 1] (81)

where αi ≥ 0 for each i

Instead of solving this primal problem is preferred to solve the dual problem (presented
below) because it would be easier with nice properties [102]. The lagrangian has 3 parameters
β,β0, αi. The derivatives with respect to each one can be calculated and set equal to 0. The
derivative with respect to αi give the constrain back [101].

∂L
∂β
= 0 ⇐⇒ β −

n∑
i=1

αiyixi = 0 ⇐⇒ β =
n∑

i=1

αiyixi (82)

∂L
∂β0
= 0 ⇐⇒

n∑
i=1

αiyi = 0 (83)

Equation 82 shows the relation between the dual variable α and the primal β and pro-
vides a solution for vector β. Substituting (82), (83) to (81) it is obtained the following
equation, known as dual problem, where everything are written in terms of α.
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LD =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jxT
i x j (84)

Subject to αi ≥ 0,
∑n

i αiyi = 0

The solution is obtained by maximizing LD with respect to αi. This is a simpler convex
optimization problem having a global minimum, which can be found using standard software.
This will be the final and unique solution for this problem [102].

In addition, the solution must satisfy the Karush–Kuhn–Tucker conditions, which in-
clude (82), (83) , αi ≥ 0 and

αi[yi(βT xi − β0) − 1] = 0, ∀i = 1, ..., n (85)

If αi > 0 : yi(βT xi − β0) = 1 where yi(βT xi − β0) is the distance of point xi from the
hyperplane. The minimum distance is 1 as happens now. Therefore, this point is on the margin
because its distance from the hyperplane is the minimum. These points are called support
vectors [102]. If yi(βT xi − β0) > 1 then for each i: αi = 0. These points does not affect β which
is defined from (82). It is vector in terms of a linear combination of the support points xi.
Consequently, all the points that are not in the margin have no effect in the optimization. This
is good for the algorithm because it makes model more stable and robust in terms of outliers.

β0 is obtained by solving (85) for any of the support vectors.

β̂0 =
1
Ns

∑
supportvectors j

(y j −

n∑
i=1

αiyixT
i x j) (86)

where Ns is the whole set of support vectors [101]. The optimal separating hyperplane
produces a function f̂ (x) = xT β̂ + β̂0 = for classifying new observations:[102]

Ĝ(x) = sign f̂ (x)

7.2.1 SVM Numerical Example

An example for building a Support Vector Machine Algorithm ”by hand” is presented below
for the data set given in the following table [103]. The data contain only 4 samples and two
variables named x1 and x2 .

The separability constraints from equation (80) are summarized below. The inequality on a
particular row is the separability constraint for the corresponding data point in that row
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Table 30: Training data.

x1 x2 y

0 0 -1

2 2 -1

2 0 1

3 0 1

−b ≥ 1 (i)

−2w1 + 2w2 + b ≥ 1 (ii)

2w1 + b ≥ 1 (iii)

3w1 + b ≥ 1 (iv)

Combining (i) and (iii) gives
w1 ≥ 1

and combining (ii) and (iv) gives
w2 ≤ −1

Therefore the equation
1
2

(w2
1 + w2

2) ≥ 1

is true when w1 = 1 and w2 = −1. Moreover, it is easy verify that

b∗ = −1,w∗1 = 1,w∗2 = −1

satisfies all four constraints, minimizes

1
2

(w2
1 + w2

2) ≥ 1

and therefore gives the optimal hyperplane which will be [103]

g(x) = sing(x1 − x2 − 1)

and the margin will be

1
||w∗||

=
1
√

2
≈ 0.707

80



7.3 Soft Margin SVM
Previously, the space was rescaled such that margin was 1 and the distance of each point

from the decision boundary was always greater than equal one. Nothing was inside the margin.
However, there are cases that it is not possible to have a perfect decision boundary because
there are always points that are on the wrong side. Therefore, the constraint in the optimization
problem (80) is not satisfied. So, a new optimization problem is defined in this case:

min
β,β0

1
2
||β2
|| + γ

∑
i

ξi (87)

Subject to
yi(βT xi + β0) ≥ 1 − ξi

Where ξi ≥ 0. If ξi > 0, the points are on the wrong side or inside the margin. The
constrain in (87) does not mean anything anymore because points are allowed to be less than
one. However, a factor has been added to the objective function penalizing those points that
are violating the original constrain. If ξi = 0, this is a situation as in hard margin SVM that
the points are over the margin, and nothing added in the objective function. Otherwise, when
ξi > 0 the sum of all ξi is multiplied by a coefficient γ and their product is added in the objective
function. Since the objective function needs to be minimized, this must happen as less as
possible [104].

Now, the primal variables are β,β0 and a new primal variable ξi. So, the Lagrangian
will be:

L(β,β0, ξi, αi, λi) = 1
2 ||β||

2 + γ
∑n

i=1 ξi −
∑n

i=1 αi[yi(βT xi + β0) − (1 − ξi)] −
∑n

i=1 λiξi =

1
2
||β||2 + γ

n∑
i=1

ξi −

n∑
i=1

αiyiβ
T xi −

n∑
i=1

αiyiβ0 (88)

where α, λ are dual variables.

The derivatives with respect to the primal variables must be calculated and be set equal to 0.

∂L
∂β
= 0 ⇐⇒ β −

n∑
i=1

αiyixi = 0 ⇐⇒ β =
n∑

i=1

αiyixi (89)

Which is the same as in the hard margin SVM.

∂L
∂β0
= 0 ⇐⇒

n∑
i=1

αiyi = 0 (90)
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∂L
∂ξi
= 0 ⇐⇒

∂L
∂ξi
= γ − αi − λi = 0 (91)

Substituting (89),(90),(91) to (88) it is obtained the following equation, known as dual prob-
lem, where everything are written in terms of dual variables.

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jxT
i x j (92)

Subject to

αi ≥ 0, λi ≥ 0 and
n∑

i=1

αiyi = 0

So, the objective function will be exactly the same as in the hard margin case. There is not
λi in objective function. However, λi has to do with because γ − αi − λi = 0 => γ − αi = λi.
So, if λi ≥ 0 => γ − αi ≥ 0 => γ ≥ αi. Hence, λi ≥ 0 implies that γ ≥ αi [104].

So, the dual problem in this case finally would be

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jxT
i x j (93)

subject to

0 ≤ αi ≤ γ and
n∑

i=1

αiyi = 0

The only difference between hard and soft margin is the constraint. In hard margin always
0 ≤ αi and now has been added the constraint that αi ≥ γ, and γ is the constant of the penalty
function. Value γ chosen by the user. The larger the γ, the larger the penalty. The objective
function is convex quadratic with linear constraints. Again, the optimization problem is
quadratic programming. Thus, as in the hard margin case there is a global minimum, and it can
be solved efficiently using standard software [104].

Additionally, the solution must satisfy the Karush–Kuhn–Tucker conditions, which include
(89),(90),(91) and the constraints

αi[yi(βT xi + β0) − (1 − ξi)] = 0, ∀i = 1, ..., n (94)

λiξi = 0 (95)

yi(βT xi + β0) − (1 − ξi) ≥ 0 (96)
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Also, from (89) arises the solution for β with non-zero coefficients αi. If αi > 0 then
[yi(βT xi + β0) − 1 + ξi] = 0 so, there are two possibilities. Either ξi = 0 or ξi > 0.

When ξi > 0 from (95) λi = 0. If that happens then from (91) implies that αi = γ.

If ξi = 0 Always implies that αi < γ.

λi is not necessary 0 because in this case the condition (95) is satisfied by ξi. If λi > 0
then again from (91) implies that αi < γ.

So, those points that have αi > 0 and lie on the margin (ξi = 0) can be αi < γ or αi = γ.
But as shown above, for the points that violate the margin (ξi > 0) implies always that αi = γ.
Hence, αi = γ cannot be true for both cases. Therefore, in this case always αi < γ.

Therefore, the points that have non-zero coefficients αi are the support vectors. Among them,
some violate the margin and some other are over the margin. All these points make decision on
the decision boundary. All the other points have no role.

Also, using the support vectors, the β0 can be computed from the (94), and typically is
used the average of all solutions as the final vector β0 like in hard margin case. The optimal
separating hyperplane produces a function f̂ (x) = xT β̂+ β̂0 and for classifying new observations
is used the Ĝ(x) = sign f̂ (x) [104].

7.4 Kernel SVM
So far, the data was linearly separable and the algorithm was presented was based on linearly

separable data. In the case that the data are not linearly separable a decision boundary which
is not linear must be computed. Instead of changing the algorithm in SVMs, is preferable to
change the data making them linear and then apply the linear algorithm. By mapping the data
in high dimensional space, they can be linearly separable, and a linear discrimination function
can be found. To do this, kernel method is used as described previously [101]. A data point can
be transformed in a higher dimensional space through x 7→ Φ(x). As was applied in PCA the
model must be written in a way that it does not depend on coordinates itself. So, a data point
x must never appears itself but only the inner product xT x to put the value of K function in its
place. In this way everything mapped to higher dimensional space automatically [104].

There are many kernel functions. Three common kernels in SVMs are [104]:

1)dth-Degree polynomial: K(x, x′) = (1 + ⟨x, x′⟩)d

2) Radial basis: K(x, x′) = e−γ||x−x
′
||2

3)Neural network: K(x, x′) = tanh(k1⟨x, x′⟩ + k2)

The original space is called observed space and feature is the space of Φ which is never
required to be explicitly known.

83



How this concept is used in SVM and take care of non-linearity.

Equation 84 does not depend on the coordinate of the points but only on the inner product
xT

i x j. Suppose that have been used a function Φ which takes points and map them to high
dimensional space and hopefully points that are not linear in the original space becomes linear
in that space. So, using that function the objective function would be:

beginequation
∑n

i=1 αi −
1
2

∑n
i=1

∑n
j=1 αiα jyiy jΦ(xT

i )Φ(x j)

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jK(xT
i , x j) (97)

Subject to α ≥ 0,
∑n

i αiyi = 0

Now the boundary is not linear. In the linear case when solved 84 and found α, the β
vector was found using (82). In this case it should be:

β =
n∑

i=1

αiyiΦ(xi) (98)

But Φ(xi) is unknown. Therefore, β cannot be computed explicitly. However, β is com-
puted only to find the decision boundary. Thus, if decision boundary can be computed in a
different way it is not necessary to compute its value [104].

Decision boundary is given from the equation βT x + β0 . If everything mapped in a higher
dimensional space, then decision boundary is:

βTΦ(x) + β0 (99)

Thus, substituting (98) to (99) the decision boundary in Kernel case is given from the
equation

n∑
i=1

αiyiΦ(xi)TΦ(x) + β0 (100)

The dot product Φ(xi)TΦ(x) can be replaced by the corresponding kernel K(xi, x). Thus,
the decision boundary in Kernel case is given from the equation [104]

n∑
i=1

αiyiK(xi, x) + β0 (101)
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8 Neural Networks

8.1 Introduction

In this chapter presented neural networks. Their name and structure are inspired by the
human brain, since they are based on the way that biological neurons signal to one another.
Among other things, Neural networks provide solutions for classification tasks and also for
image recognition. To this end, presented also Convolutional Neural Networks which are
special kind of feedforward neural networks having better performance with image or speech
recognition.

8.2 Generalized Linear Regression

Multiple linear Regression is used to model the linear relationship between a continuous
target variable y and x1, x2, ..., xp independent variables [105]. The objective of multiple linear
regression is to learn a function so that this function will be a good predictor for the target
variable [106]. This function is called hypothesis function and is given by ŷ = β̂0+β̂1x1+...+β̂pxp

[107]. The model parameters are β̂0 , β̂1 ,..., β̂p where β̂0 is the intercept and β̂k for k = 1, ..., p
is the slope for each predictor xp [106].

To describe nonlinear relationships between x = [1 x1 x2 ... xp]T and z, a nonlinear
scalar function called the activation function σ : R → R needs to be introduced. Thus, the
linear regression model is modified to generalized linear regression model where the linear
combination of the inputs is squashed through the (scalar) activation function [108].

z = σ(b0 + w1x1 + w2x2 + + wpxp) (102)

The generalized linear regression model is very simple and is itself not capable of describing
very complicated relationships between the input x and the output z. Therefore, to increase
the generality of the model two further extensions have been done: Firstly, several generalized
linear regression models are used to build a layer and then these layers are stacked in a
sequential construction which will result in a deep neural network, or simply deep learning
[108].

8.3 Perceptron

The Perceptron is a linear machine learning algorithm for binary classification tasks. It is
the first type of artificial neural networks and also the simplest one. It consists of a single
node or neuron that takes a row of data as input and predicts a class label. This is achieved by
calculating the weighted sum of the inputs and a bias as follows.
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z =
n∑

i=1

wixi + b (103)

Where z is the weighted sum and xi the n inputs for i = 1, ..., n that are given. More-
over, the coefficients of the model wi are referred to as input weights and each weight
corresponds to a feature. They can be defined using random values in the beginning but they are
updated after each training error using the stochastic gradient descent optimization algorithm.
The term b is called bias, is created adding the number 1 in the first position of features vector
and b in the first position of weights vector. Using bias, the boundary is adjusted away from
origin without any dependence on the input value.

Subsequently, a function called activation function takes as input the weights sum and
convert it to a numerical value which is the output. For example, when sigmoid activation
fucntion is used the output will be 0 if z < 0 and will be 1 otherwise. It can also contain other
values like “1” or “-1” depending on which activation function is used. The choice of the most
appropriate activation function is related to the type of value is needed as output. Common
activation functions are Sigmoid function, Sign function, hyperbolic tangent function and Relu
function which are presented in section 8.5 [109].

8.4 Artificial Neural Networks
Deep neural network comprised of an input layer which is the leftmost layer and contains

the inputs x1, ..., xp of the model, are called input neurons. The output layer is the rightmost
layer which contains the outputs of the model, are called output neurons. The middle layers are
called hidden layers since the intermediate outputs αl

j , are so-called hidden units or neurons,
are neither inputs nor outputs of the whole model [110]. The vector of the intermediate outputs
αl

j (activation function) can be denoted by a(l) = [ α(l)
1 , ..., α

(l)
ml]

T , where αl
j denotes the activation

of the jth neuron in the lth layer [108].

Each middle layer consists of ml hidden neurons for l = 1, . . . , L − 1, and their number
varies among layers. Also, by w(l)

jk is denoted the weight connects the kth activation of (l − 1)
layer to the jth activation of (l) layer. Similarly, bl

j is the bias of the jth neuron in the lth layer.
Each layer can be parametrized using a weight matrix W (l) and an offset vector b(l). Layers are
stacked such that the outputs of the first hidden layer a(1) are the inputs to the second layer, the
outputs of the second layer a(2) are the inputs to thxe third layer etc. A deep neural network
can mathematically be described as below [111] and an example for L = 5 layers illustrated in
figure 26 [112] and

α(1) = σ(W (1)T x + b(1)T )

α(2) = σ(W (2)Tα(1) + b(2)T )
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... (104)

α(L−1) = σ(W (L−1)Tα(L−2) + b(L−1)T )

α(L) = σ(W (L)Tα(L−1) + b(L)T )

where x = [x1, . . . , xp]T

and

b(l) = [ b(l)
1 . . . b(l)

ml
],W (l) =


w(1)

11 · · · w(1)
1ml−1

...
. . .

...

w(1)
ml1
· · · w(1)

mlml−1

 (105)

Figure 26: Deep Neural Network architecture [112].

The number of inputs p and the number of outputs K are given by the problem, but the
number of layers and their dimensions m1,m2, ... are user design choices that will determine the
flexibility of the model.

For deep neural networks the parameters are [108]

θ = [vec(W (1))T vec(W (2))T . . . vec(W (L))T b(1) b(2) . . . b(L)]T

The wider and deeper the network is, the more parameters there are. Practical deep neu-
ral network model can easily have in the order of millions of parameters, therefore, they are
extremely flexible.

87



8.5 Activation Functions
Activation function has an extremely significant influence on the ability and efficiency of

the neural network, and in different parts of the model various activation functions can be used.
However, for all nodes in the same layer only the same activation function can be used and most
often the same activation function is used in each hidden layer. In the output layer typically is
used a different activation function and as presented in the next sections, is dependent upon the
type of prediction required by the model . Activation functions are also usually differentiable.
This is required since neural networks are trained using the backpropagation (presented below)
of error algorithm that calculates the derivative of prediction error in order to update the
weights of the model [113].

8.5.1 Activation Functions for Hidden Layers

Most of the time, in the hidden layers is used a differentiable nonlinear activation function
instead of linear functions. Using non-linear functions, the model is able to learn more complex
structures in the data. The activations functions that are used in hidden layers are mostly the
following three:

• Rectified Linear Activation (ReLU): σ(x) = max(0, x) . Relu is linear for values greater
than zero and nonlinear function for negative values as always the output for negative
inputs is zero allowing the learning of complex relationships in the data. [114]

• The Logistic (Sigmoid) activation function: σ(x) = 1
1+e−x . The input can be any real

value and the outputs ranges from 0 to 1. As the inputs becomes larger the output tends to
number 1, while in contrast as the input gets small values, the output tends to 0.0. [113]

• Hyperbolic Tangent (Tanh) activation function: σ(x) = ex−e−x

ex+e−x . The input can be any real
value and the outputs ranges from -1 to 1 . As the inputs becomes larger the output tends
to number 1, while in contrast as the input gets small values, the output tends to -1 [113].

Sigmoid and hyperbolic tangent are two commonly used activation functions. However,
both present two drawbacks. Firstly, they are only really sensitive to changes near their mid
-point of their input i.e. 0.5 for sigmoid and 0.0 for tanh. Moreover they saturate, due to
the fact that large values are squeezed to 1 and small values to -1 for tanh or 0 for sigmoid [114].

The vanishing gradient problem

In very deep neural networks, the learning process using these activation functions becomes
a difficult task. As presented below in the backpropagation algorithm, error is back propagated
across the network and used to update the weights. The amount of error is significantly reduced
with each supplementary layer through which it is propagated, given the derivative of the chosen
activation function. This is known as the vanishing gradient problem and averts deep (multi-
layered) networks from learning efficiently.

On the contrary, using Relu activation function a very deep neural network can be developed
without the aforementioned issue. The linearity of Relu for values greater than zero is beneficial
when training a neural network using backpropagation. Relu function has become the standard
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activation function in most types of neural networks and also in Convolutional Neural Networks
which are presented below [114].

8.6 Neural Networks for Regression
One of the drawbacks of the Linear Regression model is the assumption of linear relationship

between the dependent and independent variables and therefore cannot learn complex non-
linear relationships. On the contrary, Artificial Neural Networks have the ability to learn not
only linear but also complex non-linear relationships between the features and target due to the
presence of activation function in each layer [115]. ANN is a flexible model that can without
difficulty be adjusted to the shape of the data. If the results are not satisfying, extra hidden
neuron layers can be added to enhance its accuracy and turn it more complex [116]. When there
is only a single output neuron, the linear or identity activation function is used in the output
layer [113].

8.6.1 Multiple-Output Regression

The output neurons can be more than one and this case is called Multiple-output Regression
or Multi-output Regression. This is the regression task that requires predicting more than one
numeric value for each input sample, and the outputs are computed at the same time. Multi-
output regression tasks can be handled using specialized machine learning algorithms that have
the ability to output multiple variables for each prediction can handle and deep learning neural
network is one of them. When neural networks are used for multi-output regression tasks , each
node in the output layer corresponds to a target variable and in each one is applied the linear
activation function [117].

8.7 Neural Networks for Classification
Neural networks can also be used for classification having qualitative outputs instead of

quantitative. The classification cases that neural networks can be used are: Binary Classifica-
tion, Multi-Class Classification, Multi-label Classification.

Binary Classification

In Binary classification where the result is either 0 or 1, the sigmoid function is usually
used in the output layer. The output layer will have a single neuron and the value for sigmoid
function lies between 0 and 1. The input is classified to category 1 if value is greater than 0.5
and is classified to category 0 otherwise.

Multiple-Class Classification

In multi-class classification is usually used the softmax activation function in the output
layer.The final layer of the neural network will have one neuron corresponding to each of the
classes and the returning value for each node will have a range from 0 to 1. Softmax function
produces positive estimates that sum always to one. Therefore, the output from the softmax
layer can be thought as a probability distribution [118].
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Multiple-Label Classification

There are some classification tasks require predicting more than one class label. This means
that class labels are not mutually exclusive in contrast to normal classification tasks. These tasks
are called multiple label classification, or multi-label classification. In multi-label classification,
the output consists of zero or more labels for each input sample and the outputs are computed
simultaneously.

Multi-label classification tasks can be handled using specialized machine learning algorithms
that have the abilitiy to predict multiple mutually non-exclusive classes or “labels” and deep
learning neural network is one of them. When neural networks are used for Multi-label clas-
sification tasks, each node in the output layer corresponds to a target label. In each node the
sigmoid activation function is used returning values from 0 to 1 and can be considered as a
probability of class membership for the label [119].

8.8 Learning Process
8.8.1 Gradient Descent

Gradient descent algorithm is used for the training process. Gradient descent manages to
find weights and biases so that the output of the network approximates the response value y
which is given from the data, for all training inputs x. To find those parameters an update rule
is applied again and again, making moves towards the minimum of the cost function, until a
global minimum is reached. The update rule will be [110]

w(l)
jk → w(l)′

jk = w(l)
jk − η

∂C

∂w(l)
jk

(106)

b(l)
j → b(l)′

j = b(l)
j − η

∂C

∂b(l)
j

(107)

The rule does not always work - several things can go wrong preventing gradient descent
from finding the global minimum of C. But, in practice gradient descent often works extremely
well and in neural networks is a powerful way of minimizing the cost function, helping the
learning procedure [110].

8.8.2 Stochastic Gradient Descent

There are several challenges in applying the gradient descent rule. The cost function (3.3)
has the form C = 1

n

∑
x Cx. In practice, to compute the gradient ∇C the gradients ∇Cx are

computed separately for each training input, x, and then average them i.e. ∇C = 1
n

∑
x ∇Cx.

Unfortunately, when the number of training inputs is very large this can take a long time and
learning thus occurs slowly.
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An idea called stochastic gradient descent can be used to speed up learning. The idea is to
estimate the gradient ∇C by computing ∇Cx for a small number m of randomly chosen training
inputs X1, X2, . . . , Xm which are called mini batch. Provided the sample size m is large enough,
the average value of the ∇CXi , i = 1, . . . ,m is expected to be roughly equal to the average over
all ∇Cx, that is [110]

∑n
i=1 ∇CXi

m
≈

∑
x ∇Cx

n
= ∇C (108)

The estimate will not be perfect - there will be statistical fluctuations - but it does not need
to be perfect: all is really matters is moving in a general direction that will help decrease C,
and so it does not need an exact computation of the gradient. Then stochastic gradient descent
works by picking out a randomly chosen mini-batch of training inputs, and training with those,

w(l)
jk− → w(l)′

jk = w(l)
jk −
η

m

m∑
i=1

∂CXi

∂w(l)
jk

(109)

b(l)
j → b(l)′

j = b(l)
j −
η

m

m∑
i=1

∂CXi

∂b(l)
j

(110)

where the sums are over all the training examples Xi, i = 1, . . . ,m in the current mini-
batch. Then another randomly chosen mini-batch is picked out and is trained with the same
way. And so on, until the training inputs have been used, which is said to complete an epoch of
training. At that point a new training epoch is started. Each epoch starts by randomly shuffling
the training data, and then partitions it into mini-batches of the appropriate size. Then for each
mini batch a single step is applied of gradient descent. In practice, stochastic gradient descent
is a commonly used and powerful technique for learning in neural networks, and it is the basis
for many of the learning techniques [110].

8.8.3 Backpropagation Algorithm

Backpropagation is the core algorithm behind how neural networks learn. As seen before, to
apply update rule (106) or (109) the calculatation of the gradient vector is required .Backpropa-
gation is a fast algorithm and is used to compute all the components of the gradient vector. The
magnitude of each component ∇C indicates how sensitive the cost function is to each weight
and bias [120].

The partial derivatives ∂C0

∂w(l)
jk
, ∂C0

∂b(l)
j

are the derivatives with respect to w(l)
jk , b

(l)
j only for the

cost of a specific training example. Since the full cost function involves averaging together all
those costs across many training examples, its derivative requires averaging this expression that
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found over all training examples and thus, eventually they arise the final components ∂C
∂w(l)

jk
, ∂C
∂b(l)

j

of the gradient vector ∇C as presented in the following equations.

∂C

∂w(l)
jk

=
1
n

n−1∑
k=0

∂Ck

∂w(l)
jk

(111)

∂C

∂b(l)
j

=
1
n

n−1∑
k=0

∂Ck

∂b(l)
j

(112)

Expression (111) shows how the overall cost of the network will change when the weight l
is wiggled. Assuming that the desired values for the outputs of the model for a given training
example are y = [y1, . . . , ymL]. For example, y j might be zero or one. For simplicity it will be
used the quadratic cost function for the explanation of this method. Nothing changes when
another cost function is used. About the cost function for a given training example are added
up the squares of the differences between these last layer activations and the desired output. So,
the cost function will be:

C0 =
1
2

mL∑
j=1

(a(L)
j − y j)

2
(113)

As has already been said layer l has ml neurons and layer l − 1 has ml−1 neurons. The
weighted input to the activation function for neuron j in layer l will be:

z(l)
j = w(l)

j0a(l−1)
0 +w(l)

j1a(l−1)
1 +w(l)

j2a(l−1)
2 + . . .+w(l)

jml−1
a(l−1)

ml−1
+ b(l)

j , j = 1, 2, . . . ,ml, l = 1, . . . , L (114)

So the activation of the jth neuron in layer l is

a(l)
j = σ(z(l)

j ) (115)

Where σ is an activation function.

Partial derivatives ∂C0

∂w(l)
jk
, ∂C0

∂b(l)
j

cannot be calculated directly since cost function formula (113)

contains neither w(l)
jk nor b(l)

j term. However, as shown in the equation (114) w(l)
jkaffects z(l)

j which
in turn affects a(l)

j which directly affects C0. Consequently, the chain rule can be used in this
case. Using the chain rule the partial derivatives will be:
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∂C0

∂w(l)
jk

=
∂z(l)

j

∂w(l)
jk

∂a(l)
j

∂z(l)
j

∂C0

∂a(l)
j

= a(l−1)
k σ′(z(l)

j )
∂C0

∂a(l)
j

(116)

∂C0

∂b(l)
j

=
∂z(l)

j

∂b(l)
j

∂a(l)
j

∂z(l)
j

∂C0

∂a(l)
j

= σ′(z(l)
j )
∂C0

∂a(l)
j

(117)

Due to the fact that
∂z(l)

j

∂w(l)
jk
= a(l−1)

k ,
∂a(l)

j

∂z(l)
j
= σ′(z(l)

j ),
∂z(l)

j

∂b(l)
j
= 1

When l = L the calculation of the derivative of the cost function with respect to one of
the activations of the final layer is directly calculated:

∂C(L)
0

∂a(L)
j

= (a(L)
j − y j) (118)

The same partial derivative with respect to one of the activations of previous layers l for
l = 1, . . . , L− 1 is a little more complicated. In this case the neuron influences the cost function
through multiple paths. In particular, if layer L has mL neurons and layer L−1 has mL−1 neurons
then a neuron activation α(L−1)

j f or j = 1, . . . ,mL − 1 influences the cost function through mL

paths. That is, it influences α(L)
1 which plays a role in the cost function, but it also has an

influence on α(L)
2 , . . . , α

(L)
mL which also play a role in the cost function, and those up need to be

added. A relative example illustrated in figure 27 in which the number of neurons in layer L is
mL = 2 and seems that α(L−1)

k influences the cost function through α(L)
0 and α(L)

1 . Consequently,
to calculate the partial derivatives ∂C0

∂α(l)
j
, l = 1, . . . , L − 1 the chain rule can be used again using

the following formula [120].

∂C0

∂a(l)
j

=

nl+1∑
j=1

w(l+1)
jk σ

′
(
z(l+1)

j

) ∂C0

∂α(l+1)
j

, f or l = 1, . . . , L − 1

(119)

or
∂C0

∂a(l)
j

= (a(l)
j − y j), f or l = L

Therefore, the final components of the gradient vector will be

∂C

∂w(l)
jk

=
1
n

n−1∑
k=0

∂Ck

∂w(l)
jk

(120)
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∂C

∂b(l)
j

=
1
n

n−1∑
k=0

∂Ck

∂b(l)
j

(121)

Figure 27: The activation in one layer affects all the activations in the next layer [120].

8.8.4 Learning Slowdown

The hope and expectation of neural networks is to learn fast from their errors. Artificial
neuron has a lot of difficulty learning when it is badly wrong - far more difficulty than when it
is just a little wrong. A neuron learns by changing the weight and bias at a rate determined by
the partial derivatives of the cost function, ∂C

∂w and ∂C
∂b . So, saying ”learning is slow” is really the

same as saying that those partial derivatives are small. Both the expressions contain the term
σ′(z(l)

j ) which affects their behavior [121].

When σ is the sigmoid, the more the output of the neuron is close to 1, the curve gets very
flat, and so σ′(z) gets very small. Hence, the amounts ∂C

∂w and ∂C
∂b get very small values. This is

the origin of the learning slowdown [121].

8.8.5 Cross Entropy Cost Function

The cross-entropy cost function is defined as C = −1
n

∑n
x=1

∑mL
j=1[y jlnaL

j + (1 − y)ln(1 − aL
j )]

where n is the total number of items of training data, the sum is over all training inputs x, y j is
the desired value at the jth output neuron and αL

j is the activation of the jth neuron in the last Lth

layer. Two properties are necessary to satisfy a cost function. To be always positive, and tends
toward zero as the neuron gets better at computing the desired output, y, for all training inputs,
x. Indeed, both properties are also satisfied by the quadratic and cost-entropy cost function.
But the cross-entropy cost function has the benefit that, unlike the quadratic cost, it avoids the
problem of learning slowing down [121].
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8.8.6 Weight Initialization

The weights and biases of a neural network must be initialized. Suppose that a neuron with
nin input weights have been created. Then those weights must be initialized as Gaussian random
variables with mean 0 and standard deviation 1

√
nin

input weights. Also, the bias can be initialized
as a Gaussian with mean 0 and standard deviation 1. Provided that the weights have not been
initialized properly, then they may learn very slowly using the gradient descent algorithm.

Improved weight initialization speeds up learning but does not always improve the final
networks performance. If a network has been trained using both the initialization ways maybe
after just a few more epochs of training the accuracies will become almost the same. But also,
in many examples of neural networks the long-run behavior is significantly better with the 1

√
nin

weight initialization. Thus, it is not only the speed of learning is improved, it is sometimes also
the final performance [121].

8.9 Overfitting and Regularization

A model that agrees well with the available data, is not necessarily a good model. It may just
mean that there is enough freedom in the model that it can describe almost any data set of the
given size, without capturing any genuine insights into the underlying phenomenon. When that
happens, the model works well for the existing data, but fails to make predictions in situations
in which has not been exposed to before [121].

A relative example illustrated in figure 28. In the first 200 epochs (not shown) the accuracy
rises to just under 82 percent. The learning then gradually slows down. Finally, at around epoch
280 the classification accuracy pretty much stops improving. Later epochs merely see small
stochastic fluctuations near the value of the accuracy at epoch 280. What the network learns
after epoch 280 is no longer generalized to the test data meaning that it is not useful learning.
Therefore, the network is overfitting or overtraining beyond epoch 280 [121].

Another sign of overfitting can be found in the classification accuracy on the training data
which is illustrated in figure 29 for the same network. The accuracy rises all the way up to 100
percent. At the same time, the test accuracy tops out at just 82.27 percent. So, the network
really is learning about peculiarities of the training set, not just recognizing digits in general.

Overfitting is a major problem in neural networks. This is especially true in modern
networks, which often have very large numbers of weights and biases. To train effectively, it
is required a way of detecting when overfitting is going on, so to avoid it. Also, are required
techniques for reducing the effects of overfitting [121].
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Figure 28: How the classification accuracy on the test data changes over time [121].

Figure 29: How the cost on the test data changes over time [121].

8.9.1 Regularization

In general, one of the best ways of reducing overfitting is to increase the size of the training
data. Unfortunately, the collection of training data can be expensive or difficult process, thus
this is not always the best choice. One possible approach is to reduce the size of the network.
However, large networks have the potential to be more powerful than small networks and so
this is an option that would be adopted only reluctantly.

Regularization techniques can reduce overfitting, keeping the existed training data and
networks. The most commonly used regularization technique is known as weight decay or L2
regularization. The idea of L2 regularization is to add an extra term to the cost function, a term
called the regularization term. In general, a regularized cost function can be written as [121]

C = C0 +
λ

2n

∑
w

w2 (122)
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where C0 is the original, unregularized cost function.

The first term is just the usual expression for the cost function. A second term has been added
containing the sum of the squares of all the weights in the network. This is scaled by a factor λ2n ,
where λ > 0 is known as the regularization parameter, and n is, as usual, the size of the training
set. It is also worth noting that the regularization term does not include the biases. Having
a large bias does not make a neuron sensitive to its inputs in the same way as having large
weights. The effect of regularization is the fact that the network prefers to learn small weights
while nothing more changes. Smaller weights means that the behavior of the network will not
change too much provided that a few random inputs have been changed. That makes it difficult
for a regularized network to learn the effects of local noise in the data. It is an empirical fact
that regularized neural networks usually generalize better than unregularized networks [121].

L2 regularization technique is not the only one. Many other techniques have been developed.
Three significant of them are: L1 regularization, dropout, and artificially increasing the training
set size. Their detailed presentation is beyond the scope of this project [121].

Training a regularized network

The partial derivatives ∂C
∂w and ∂C

∂b for all the weights and biases in a regularized network will
be:

∂C
∂w
=
∂C0

∂w
+
λ

n
w (123)

∂C
∂b
=
∂C0

∂b
(124)

The ∂C0
∂w ,

∂C0
∂b terms can be computed using backpropagation as have been described and then

λ
n w is added to the partial derivative of all the weight terms. Consequently, it is easy to compute
the gradient of the regularized cost function. The gradient descent learning rule for the biases
does not change but the learning rule for the weights will be [121]

w→ w − η
∂C0

∂w
− η
λ

n
w = (1 − η

λ

n
)w − η

∂C0

∂w
(125)

This is exactly the same as the usual gradient descent learning rule, except that the weight w
first is rescaled by a factor 1 − ηλn . This rescaling is sometimes referred to as weight decay,
since it makes the weights smaller.

Regularization does not significantly affect the stochastic gradient descent either. As in
unregularized stochastic gradient descent, the amount ∂C0

∂w can be estimated by averaging over a
mini batch of m training examples. Thus, the regularized learning rule for stochastic gradient
descent will be as follow.
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w→ (1 − η
λ

n
)w −

η

m

∑
x

∂Cx

∂w
(126)

8.10 Hyper-Parameters
When building a neural network is required to choose values for hyper-parameters such

as the learning rate η, the L2 regularization parameter λ, the mini-batch size and others. In
practice, it might be difficult to choose good hyper-parameters. Although it is a crucial step for
model’s performance. Usually, a lot of experimentation is required to get appropriate values
for the parameters [121].

8.10.1 Learning Rate η

In gradient or stochastic gradient descent the update rules contain η parameter which affects
the size of the steps towards the minimum of the cost function. If η is too large then the steps
will be so large that they may overshoot the minimum, causing the algorithm to increase the cost
function. To the other side, choosing η quite small slows down gradient descent which is also
a problem. One initial value can be η = 0.01. If the cost decreases during the first few epochs,
then values η = 0.1, 1.0 should successively be tried until a value for η has been found for which
the cost oscillates or increases during the first few epochs. Alternately, if the cost oscillates or
increases during the first few epochs when η = 0.01, then values η = 0.001, 0.0001, . . . can be
tested until a value for η is found for which the cost decreases during the first few epochs.

It is often beneficial to vary the learning rate. During the learning process the weights can be
badly wrong. And so, it is best to use a bigger learning rate that causes the weights to change
quickly. Later, the learning rate can be reduced as more fine-tuned adjustments are made to the
weights [121].

8.10.2 Mini-Batch Size

The choice of mini-batch size at which the speed is maximized is relatively independent of
the other hyper-parameters, so it is not required to optimize them to find a good mini-batch
size. Some acceptable (but not necessarily optimal) values can be used for the other hyper-
parameters, and then trial several different mini-batch sizes, scaling as above. The mini-batch
size can be determined from a plot of validation accuracy versus time as the size which gives
the most rapid improvement in performance [121].
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8.10.3 Training epochs

One method to determine the number of training epochs is called early stopping. Early
stopping means that at the end of each epoch the classification accuracy should be computed
on the validation data and when that stops improving, terminate. Accuracy can jump around
quite a bit, even when the overall trend is to improve. The preferable rule is to terminate when
the best classification accuracy is not improved for quite some epochs instead of the first time
in which the accuracy decreases ensuring that the procedure does not stop too soon, but also
not to late [121].

8.10.4 The Regularization Parameter λ

It is proposed to start initially with no regularization (λ = 0.0), and determining a value for
η, as above. Then, an initial value can be λ = 1.0 and then increase or decrease by factors of
10, to improve performance on the validation data. Once a good order of magnitude has been
found, the value of λ can be optimized.

Apart from the aforementioned tactics to optimize hyper-parameters by hand, great deal of
work has been done on automating the process. A common technique is grid search, which
systematically searches through a grid in hyper-parameter space [121]. Undoubtedly, it has not
been covered everything about hyper-parameter optimization. That is a huge subject, and it is
not, in any case, a problem that is ever fully solved, nor is there common understanding amongst
practitioners on the right strategies to use. There is always one more idea someone can try to
improve a bit more the effectiveness from his network. It becomes clear that neural networks
require a lot of work when compared with other machine learning techniques [121].

8.10.5 Neural Network Numerical Example

An example for building a Neural Network Algorithm ”by hand” is presented below for a
single training set: given inputs 0.05 and 0.10 the neural network should have output 0.01 and
0.99.

Firstly, the predicition of the network having the initial parameters values is calculated. To
this end, must be calculated the weighted sum for h1:

neth1 = w1 ∗ i1 + w2 ∗ i2 + b1 ∗ 1 = 0.15 ∗ 0.05 + 0.2 ∗ 0.1 + 0.35 ∗ 1 = 0.3775 And putting
this input to the logistic function is computed the output of h1:

outh1 =
1

1+e−neth1 =
1

1+e−0.3775 = 0.593269992

The output for h2 by doing the same process will be:

outh2 = 0.596884378

This process is repeated for the output layer neurons named o1 and o2, using the output from
the hidden layer neurons as inputs.

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1 =⇒

neto1 = 0.4 ∗ 0.593269992 + 0.45 ∗ 0.596884378 + 0.6 ∗ 1 = 1.105905967
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outo1 =
1

1+e−neto1 =
1

1+e−1.105905967 = 0.75136507

And doing the same process for o2 the output will be

outo2 = 0.772928465

Then, it can be calculated the error for each output neuron using the squared error function
and by summing them to get the total error

Etotal =
∑ 1

2 (target − output)2

The target output for o1 is 0.01 but the neural network output 0.75136507, therefore its error
is:

Eo1 =
1
2 (targeto1 − outo1)2 = 1

2 (0.01 − 0.75136507)2 = 0.274811083

And doing the same process for o2 the error will be

Eo2 = 0.023560026

The total error for the neural network is the sum of these errors:

Etotal = Eo1 + Eo2 = 0.274811083 + 0.023560026 = 0.298371109

Backpropagation can be applied to update each of the weights in the network minimizing the
total error as well as the error of each output neuron.

As indicative examples, backpropagation will be applied to w1 from the hidden layer and w5

from the output layer. For w5 parameter, the computation of ∂Etotal
∂w5

is required. To this end, chain
rule must be used since there is no direct w5 term in error function.

∂Etotal

∂w5
=
∂Etotal

∂outo1
∗
∂outo1

∂neto1
∗
∂neto1

∂w5

The terms in the above equation are calculated below. First, the change in total error with
respect to the output.

Etotal =
1
2 (targeto1 − outo1)2 + 1

2 (targeto2 − outo2)2

∂Etotal
∂outo1

= 2 ∗ 1
2 (targeto1 − outo1)2−1 ∗ −1 + 0

∂Etotal
∂outo1

= −(targeto1 − outo1) = −(0.01 − 0.75136507) = 0.74136507

Next, the change output o1 with respect to the total weighted sum is

∂outo1
∂neto1

=
∂( 1

1+e−neto1
)

∂neto1
= outo1(1 − outo1) = 0.75136507(1 − 0.75136507) = 0.186815602

and the change in the weighted sum with respect to w5

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1
∂neto1
∂w5
= 1 ∗ outh1 ∗ w(1−1)

5 + 0 + 0 = outh1 = 0.593269992

Putting it all together:
∂Etotal
∂w5
= ∂Etotal
∂outo1

∗
∂outo1
∂neto1

∗
∂neto1
∂w5
= ∂Etotal

∂w5
= 0.741 ∗ 0.186 ∗ 0.593 = 0.082
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Then, gradient descent can be applied for the w5 parameter using the update rule in equation
(106).

w
′

5 = w5 − η ∗
∂Etotal
∂w5
= 0.4 − 0.5 ∗ 0.082167041 = 0.35891648

Backpropagation process is repeated for the parameters in hidden layer w1, w2, w3, and w4.
For w1 similar to before, the computation of ∂Etotal

∂w1
is required. To this end, chain rule must be

used since there is no direct w1 in error function.

∂Etotal

∂w1
=
∂Etotal

∂outh1
∗
∂outh1

∂neth1
∗
∂neth1

∂w1

As mentioned in backpropagation a hidden neuron affects all the output neurons. In this case,
outh1 affects both outo1 and outo2 and therefore the ∂Etotal

∂outh1
will be

∂Etotal
∂outh1

= ∂Eo1
∂outh1

+ ∂Eo2
∂outh1

The term ∂Eo1
∂outh1

is calculated as

∂Eo1
∂outo1

= ∂Eo1
∂neto1

∗
∂neto1
∂outo1

= 0.74136507 ∗ 0.186815602 = 0.138498562

The term ∂Eo1
∂neto1

will be

∂Eo1
∂neto1

= ∂Eo1
∂outo1

∗
∂outo1
∂neto1

= 0.74136507 ∗ 0.186815602 = 0.138498562

And ∂neto1
∂outh1

is equal to w5:

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1
∂neto1
∂outh1

= w5 = 0.40

Plugging them in:

∂Eo1

∂outh1
=
∂Eo1

∂neto1
∗
∂neto1

∂outh1
= 0.138498562 ∗ 0.40 = 0.055399425

With the same way, ∂Eo2
∂outh1

will be

∂Eo2
∂outh1

= −0.019049119

Therefore:
∂Etotal
∂outh1

= ∂Eo1
∂outh1

+ ∂Eo2
∂outh1

= 0.055399425 + −0.019049119 = 0.036350306

Next, the terms ∂outh1
∂neth1

and then ∂neth1
∂w for each weight must be calculated too.

∂outh1
∂neth1

=
∂( 1

1+e−neth1
)

∂neth1
= outh1(1 − outh1) = 0.59326999(1 − 0.59326999) = 0.241300709

The partial derivative of the total net input to h1 with respect to w1 is

neth1 = w1 ∗ i1 + w3 ∗ i2 + b1 ∗ 1
∂neth1
∂w1
= i1 = 0.05
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Putting it all together:
∂Etotal
∂w1
= ∂Etotal
∂outh1

∗
∂outh1
∂neth1

∗
∂neth1
∂w1

∂Etotal
∂w1
= 0.036350306 ∗ 0.241300709 ∗ 0.05 = 0.000438568

Then, gradient descent can be applied for the w1 parameter using the update rule in equation
(106).

w
′

1 = w1 − η ∗
∂Etotal
∂w1
= 0.15 − 0.5 ∗ 0.000438568 = 0.149780716

Repeating this for w2, w3, and w4

w
′

2 = 0.19956143

w
′

3 = 0.24975114

w
′

4 = 0.29950229

8.11 Convolutional Neural Networks
Convolutional neural networks (CNN) are specialized for applications in images (either

color or grayscale) and video recognition. An image is made of the smallest not visible parts
called pixels and every pixel has a force often known as the pixel intensity. Digital grayscale
images are made of pixels ordered in a matrix. Each pixel can be depicted having limits from 0
(total absence, black) to 1 (total presence, white) and intermediate values to 0 and 1 correspond
to different shades of gray. In figure 30 is presented an image with 6 × 6 pixels. In an image
classification task, this image is the input and the pixels in the image are the input variables
x1,1, x1,2, ..., x6,6. The position of each pixel in the image is determined by the indicators j and
k, as illustrated in figure 30 [108].

Figure 30: Data representation of a grayscale image with 6 × 6 pixels. Each pixel is represented with a
number describing the grayscale color [108].

Colour images usually come with three color channels, i.e. the Red-Green-Blue chan-
nels, popularly known as the “RGB” values (Fig.31).In this case the data are 3-dimensional
and an equivalent expression is that the depth is three [122]. The values of a pixel can be from
0 to 255, where “0” is white and “255” is the base color and these three layers together form a
colored image where pixel can be determined in rgb terms. A combination of these three-color
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channels can produce all possible color pallets [123]. Color images having multiple color
channels require processing of huge volumes of data making the process computationally hard
and thus can be a difficult task [124].

Figure 31: RGB color channels of an image [122].

The role of CNN is to reduce the images into a form that is easier to process, without losing
features critical towards a good prediction. This makes convolutional networks fast to train.
This, in turn, helps to train deep, many-layer networks, which are appropriate in classifying
images. Convolutional neural networks use three basic ideas: local receptive fields, shared
weights, and pooling [125].

8.11.1 Local Receptive Fields

In CNNs input pixels are connected to a layer of hidden neurons. Input pixels are not con-
nected directly to every hidden neuron. Instead, connections are made in small, localized re-
gions of the input image. More specific, each neuron in the first hidden layer will be connected
to a small region of the input neurons, say, for example, a 5×5 region, corresponding to 25 input
pixels. So, for a particular hidden neuron, there are connections that look like as illustrated in
figure 32. That region in the input image is called the local receptive field for the hidden neuron.
It is a little window on the input pixels [125].

Each connection learns a weight and a bias. The local receptive field slides into the entire
input image. Each local receptive field mapped to a different hidden neuron in the first hidden
layer as shown in figure 33, starting with a local receptive field in the top-left corner. Then
the local receptive field is slides into by one pixel to the right (i.e., by one neuron), to connect
to a second hidden neuron (Fig.34). And so on, building up the first hidden layer. In fact,
sometimes a different stride length is used such as 2 pixels to the right (or down), in which case
the stride length of 2 is used [125].
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Figure 32: [125]

Figure 33: Sliding the local receptive field across the entire input image [125].

Figure 34: [125]

8.11.2 Shared Weights and Biases

Suppose that is given an input image containing 28×28 pixels and 5×5 local receptive fields.
Here, each hidden neuron has a bias and 5 × 5 weights connected to its local receptive field and
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each hidden layer consists of one or more feature maps. The weights and bias that are used for
each local receptive field in one feature map are the same. This feature map detects the same
feature just at different locations in the input image rather than looking into every single pixel
value. The weights defining the feature map are called shared weights. And the bias defining
the feature map in this way is called shared bias. The shared weights and bias are often said that
define a kernel or filter. Each filter produces a future map. Subsequently, the number of filters
equals with the number of feature maps.

The neural networks learn those filters using the backpropagation algorithm. The more
filters applied, the more information about the image content is acquired and the more features
can be extracted. To do image recognition more than one feature map is necessary. And so, a
complete convolutional layer consists of several different feature maps. In figure 35 illustrated
an example where each feature map is defined by a set of 5 × 5 shared weights, a single shared
bias and applied 3 filters. In practice convolutional networks may use more (and perhaps many
more) feature maps [125].

Figure 35: Several different feature maps [125].

A big advantage of sharing weights and biases is the significant reduction to the number of
parameters involved in a convolutional network. In the case which there is 28 × 28 input image
and 5×5 local receptive fields for each feature map are needed 25 = 5×5 shared weights, plus a
single shared bias. So, each feature map requires 26 parameters. Suppose that 20 feature maps
are required, that is a total of 20 × 26 = 520 parameters defining the convolutional layer. By
comparison, can be defined a case with a fully connected first layer containing 784 = 28 × 28
input neurons, and a relatively modest 30 hidden neurons. That is a total of 784 × 30 weights,
plus an extra 30 biases, for a total of 23,550 parameters. In other words, the fully connected
layer would have more than 40 times as many parameters as the convolutional layer. It cannot
be really done a direct comparison between the number of parameters, since the two models are
different in essential ways. Intuitively, it seems likely that the use of convolutional layers will
reduce the number of parameters to get the same performance as the fully connected model.
That, in turn, will result in faster training for the convolutional model, and, ultimately, will help
build deep networks using convolutional layers [125].

Inputs images might have more than one channel such as the case in the figure below which
contains RGB image. Here, two filters are applied but as shown each filter has a depth of 3
which is the same depth of the input image. In general, the filter depth should always be equal
to depth of the previous layer [126].
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Figure 36: A Convolution filter [126].

8.11.3 Pooling Layers

Convolutional neural networks also contain pooling layers. Pooling layers are used immedi-
ately after convolutional layers. Pooling is used to reduce the size of the feature map while still
maintain the important features.

In detail, a pooling layer takes each feature map output from the convolutional layer and
prepares a condensed feature map. For instance, each unit in the pooling layer may summarize
a region say of 2 × 2 neurons of the previous layer. The dimension of this region is named
pooling size. In figure 37 the pooling size equals 2. One common procedure for pooling is
known as max-pooling. In max pooling, a pooling unit simply outputs the maximum activation
in the 2 × 2 input region, as illustrated in figure 37. In a similar way, when average pooling is
used, the average of each block is taken. In general, the output size after performing pooling is
the input size divided by the pooling size [125].

Outputsize =
input size

pooling size
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Figure 37: Max pooling [125].

As mentioned above, the convolutional layer usually involves more than a single feature
map. Pooling is applied to each feature map separately. So, if there were three feature maps,
the combined convolutional and pooling layers look like the example of figure 38 [125].

Figure 38: Combined convolutional and max-pooling layers [125].

A great benefit of pooling is that there are many fewer pooled features, and so this helps to
reduce the number of parameters needed in later layers. Max-pooling and average pooling are
not the only techniques used for pooling. Another common approach is known as L2 pooling.
Here, instead of taking the maximum activation of a 2 × 2 region of neurons, is used the square
root of the sum of the squares of the activations in the 2×2 region. While the details are different,
the intuition is like max and average pooling: L2 pooling is a way of condensing information
from the convolutional layer. All techniques which are used for pooling have their advantages
and disadvantages depending on the application or on the layer is used, whether it is the output
layer or that layer is used at the beginning, at the middle or at the end [125].

8.11.4 Zero -Padding

Sometimes is needed to add a frame with zeros around the image (Fig.39). This technique
is called zero padding. After convolution the image get shrinked and after filtered the result is
a very small image. Also, by sliding the filter into the image the pixel in the corner is covered
only one time while the middle pixel get covered more than once. This means that there is more
information on the middle pixels and probably few values are affected by pixels as the edges of
an image. Zero padding is an addition frame of zeros that is added to the border of an image
[127].
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Whether or not use padding is specified in each convolutional layer. Sometimes is needed a
double or triple border of zeros to maintain the original size of the input, depending on the size
of the input and the size of the filters [128].

Figure 39: Zero-padding with one border of zeros [127].

Zero padding allows to use a convolutional layer without necessarily shrinking the height
and width of the volumes. This is important for building deeper networks, since otherwise the
height/width would shrink as you go to deeper layers [129].

When building a convolutional neural network the prior knowledge of how the output size
affected by the filter size and the padding amount that must be used is useful. Input size can be
denoted by n, filter size by f , padding by p and stride by s. When a n× n× c input is convolved
with a f × f × c filter with the stride s and padding p the generated output size will be [130]

(
n + 2p − f

s
+ 1

)
×

(
n + 2p − f

s
+ 1

)
× 1

In some cases n+2p− f
s is not integer thus we will take the floor value.

8.11.5 Shifting Invariance

CNNs are invariant to shifting. For example, having a training image with a cat figure 40,
which is placed on the right side of the image and at testing time this image is encountered,
which is also a cat, but this time is placed on the left side of the image [131]. This shifting does
not affect network’s prediction. So whatever shift there is for a couple of pixels or for the main
object the prediction is not affected. This happens because the filters have learned to extract the
relevant features anywhere in the image [132].

After having create the convolutional layers, the final step is to apply fully connected layers.
The last feature maps that are gotten after pooling are flattened it out. The first fully connected
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Figure 40: [131]

layer connects every neuron from the pooled layer to every one of the hidden neurons. Several
processing layers can be used, just layers, just like in the feed forward. This fully connected
architecture is the same as used in earlier chapters.
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9 Ensemble learning

9.1 Introduction
Ensemble learning can be broken down into two tasks: developing a population of base

learners from the training data that each get slightly different results on a dataset, and then
combining them to form the composite predictor. Any classifier can be used as base learner
in ensemble learning. The learners can be performed in different ways ensuring that they see
different things. Cross validation can be used separating the data in a different way for each
learner or just the data is randomly separated giving different sets to different learner when
many of them are given. Ensemble methods do very well not only when there are many data,
but also in the case that data are few. The results from an ensemble method can be combined
in different ways. An effective one is majority voting which as described before means that the
final output is the one having the majority values [133].

Ensemble methods can mainly be divided into two groups: In parallel ensemble methods
where base learners are generated in parallel. In sequential ensemble methods where base
learners are generated sequentially [134]. Most often a single base learning algorithm is used
so that the weak learners that are trained in different ways are homogeneous. The ensemble
model which obtained is then called “homogeneous”. However, some methods use not a single
of base learning algorithms: some heterogeneous weak learners are then combined into an
“heterogeneous ensembles model”[135].

9.2 Boosting
The most popular ensemble method is boosting. In boosting a random sample of data is

selected, fitted with a base learner and then trained sequentially— that is, a series of learners
are constructed and with each new iteration, the weights of the misclassified data in the previous
learner are increased. This redistribution of weights helps the algorithm identify the parameters
that it needs to focus on to improve its performance [136].

These learners are “weak” classifiers each performing only just better than chance and their
outputs are combined to produce an ensemble learner that can perform arbitrarily well [133].
The principal algorithm of boosting is named AdaBoost.

9.2.1 AdaBoost

The innovation that AdaBoost (which stands for adaptive boosting) uses is to give weights to
each datapoint according to how difficult previous classifiers have found to get it correct. These
weights are given to the classifier as part of the input when it is trained. Thereby, a sequence of
weak classifiers Gm(x),m = 1, 2, ...,M is produced to repeatedly modified versions of data.

The weights are initially all set to the same value, 1/N, where N is the number of datapoints
in the training set. At step m, those observations that have been misclassified by the classifier
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Gm−1(x) induced at the previous step have their weights increased, whereas the weights are
decreased for those that were classified correctly. At each iteration m, the error (ϵrrm) is
computed as the sum of the weights of the misclassified points, divided by the weights
of all points and the weights for incorrect examples are updated by being multiplied by
(1−errm)/errm . Thus, as iterations proceed, observations that are difficult to classify correctly
receive ever-increasing influence. Training terminates after a set number of iterations, or when
either all the datapoints are classified correctly, or one point contains more than half of the
available weight. The predictions from all of them are then combined through a weighted
majority vote to produce the final prediction [133]:

G(x) = sign(
M∑

m=1

amGm(x)) (127)

Coefficients α1, α2, ..., αM are computed using the formula

am = log(
1 − errm

errm
) (128)

and weight the contribution of each respective Gm(x). Their effect is to give higher in-
fluence on the more accurate classifiers in the sequence. In summary the steps of Adaboost
algorithm described above [137]:

1. Initialize the observation weights
wi = 1/N, i = 1, 2, ...,N.
2. For m = 1 to M:
(a) Fit a classifier Gm(x) to the training data
using weights wi .

(b)Compute Errm =
∑N

i=1 wiI(yi,Gm(xi))∑N
i=1 wi

(c)Compute am = log1−errm
errm

(d)Set wi = wieamI(yi,Gm(xi))

3. Output G(x) = sign(
∑M

m=1 amGm(x))

9.3 Bagging
One of the most common methods in the Parallel ensemble technique is Bootstrap Aggre-

gating (Bagging). Bagging can be applied both for regression and classification problems. Lots
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Figure 41: Adaboost training process [138].

of learners are generated in paraller by training each one in slightly different bootstrap samples.
Then in classification problem, they are combined by taking the output to be the majority vote
of all the classifiers [139]. In regression problems the bagged estimate is the average prediction
of all the classifiers’ outputs. As a result, bagging algorithm helps to reduce the variance of
the prediction of a model [140]. An example of bagging ensemble method is Random Forests
where m different trees are trained on different random subsets of the data and perform voting
for final prediction. Random forests are presented below precisely.

Bootstrap sample

A bootstrap sample is a sample taken from the original dataset with replacement, so that
some data may be obtained several times and others not at all. The bootstrap sample is the
same size as the original, and lots and lots of these samples are taken, at least 50, and could
even be in the thousands [139].

9.3.1 Random forests

In bagging, a number of decision trees are created where each one is created from a different
bootstrap sample of the training dataset and in turn, has a slightly different performance. Trees
used in the ensemble are unpruned, making them slightly overfitted to the training dataset. This
is not a problem, as it makes the trees dissimilar and resulting in less correlated predictions or
prediction errors. The final prediction is the average of all trees and thus, a better performance
is achieved compare to any single tree in the model [141].

Random forests is a substantial modification of bagging that builds a large collection of de-
correlated trees, and then averages them [142]. To create a forest, different trees are created
by training them on slightly different data, so bootstrap samples are taken from the dataset as
inputs to each tree. Unlike bagging, random forest limits the choices that the decision tree can
make. This means that at each node, a random subset of the features is given to the tree, and it
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can only pick from that subset rather than from the whole set [143]. In practice, given that p is
the number of features, a subset size m =

√
p is used for classification problems while m = p

3 is
used for regression problems [142].

By reducing the features to a random subset that may be considered at each split point, each
decision tree in the ensemble becomes more different. The effect is that the predictions, and in
turn, prediction errors, made by each tree in the ensemble are more different or less correlated.
When the predictions from these less correlated trees are averaged to make a prediction, it often
results in better performance than bagged decision trees [141].

Increasing the randomness in the training of each tree also speeds up the training, since
there are fewer features to search over at each stage and reduces the variance without effecting
the bias. Another benefit of this is that there is no need to prune the trees. However, there is no
way to choose the number of trees to put into the forest it, instead trees are built until the error
stops decreasing. When they are used for classification, a random forest obtains a class vote
from each tree, and then classifies using majority vote. When they are used for regression the
predictions from each tree at a target point x are simply averaged [143].

The steps of the algorithm in summary [143].

• For each of N trees:

– create a new bootstrap sample of the
training set

– use this bootstrap sample to train a de-
cision tree

– at each node of the decision tree, ran-
domly select m features, and compute the
information gain (or Gini impurity) only on
that set of features, selecting the optimal one

– repeat until the tree is complete

9.4 Bagging vs Boosting

As already presented one main difference between bagging and boosting methods is the
fact that in bagging the algorithms are generated in paraller while in boosting are generated
sequentially. The following figure illustrates the different processes [134] .

Another difference between bagging and boosting is the way they are used. Bagging methods
are usually used on weak learners that show signs of high variance and low bias, while on the
contrary boosting methods are applied when low variance and high bias exists. While bagging
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Figure 42: Bagging vs Boosting [134].

can be used to avoid overfitting, boosting methods can be more prone to this although it really
depends on the dataset. However, parameter tuning can help avoid the issue. As a result, bag-
ging and boosting have different real-world applications as well. Bagging has been leveraged
for loan approval processes and statistical genomics while boosting has been used more within
image recognition apps and search engines [136].
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10 Hands-on Projects

10.1 Introduction
Three data sets were used for building in practice some of the aforementioned methods and

others beyond them. Python programming language was used for algorithms’ development.
All the methods and steps that applied in the building process are described in (10.2) section.

10.2 Methods and Techniques
In the beginning of each process were calculated some descriptive statistics and graphs like

barplots and histograms for understanding the distribution of the data according to the target
variable.

Splitting the data

The data were divided into training and test set. Each algorithm was built exclusively using
the training data. The test set was used to evaluate the final model’s performance on completely
unseen data.

Imputing

The first pre-processing step was to search for missing values. Missing values for a
categorical variable can be replaced by the majority value of the feature. Missing values for a
numerical value can be replaced by the median or mean value of each variable. Columns and
rows containing more than 80% and 70% missing values respectively were deleted.

Onehotencoding

Subsequently, categorical variables having more than two categories were represented by
dummy variables and the numerical variables were standardized. However, these steps are
not necessary for all algorithms. Tree-based algorithms like Random Forests, XGBoost etc
require neither dummies nor standardized values. On the contrary , algorithms like Logistic
Regression, Support Vector Machines, and K nearest Neighbors which were also developed
require both one-hot encode and standardization. Hence, different pre-processing strategies
were used depending on the algorithm. For a large number of features one-hot-encoding can
lead to a dramatically dimensionality and complexity increase. One way to deal this issue is to
select the first k most frequent categories and represent them with dummies.

Recursive feature elimination

Next, feature selection was applied using Recursive feature elimination which is a backward
selection method and is an efficient approach for eliminating features from a training dataset
for feature selection. It works by searching for a subset of features by starting with all features
in the training dataset and successfully removing features until the desired number remains.
The features are ranked by importance according to an algorithm called estimator, the least
important features are dropped, and the estimator is re-fitted until the specified number of
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features remains.

Rfe hyperparameters

The number of features and the estimator are tuning parameters. They were selected based
on a specific strategy. The algorithm with the best results in the model selection process was
applied in combination with RFE for different numbers of features to select. The number of fea-
tures that produced the best result was not the final option but was used to select the estimator for
ranking features by importance among many candidates like Decision Tree, Perceptron, Ran-
dom Forests, Gradient Boosting, Logistic Regression etc. The estimator was chosen comparing
the performance of the best model in model selection process in combination with feature se-
lection for different candidates. The candidate that produce the best results was the final choice.
However, if the estimator was a ‘slow’ algorithm and there was no significant different with a
faster candidate then the second would be selected to speed-up the training process.

The final number of features was determined next using Bayesian optimization. The model
with the optimal hyperparameters is a different algorithm and thus, the number of features
must be explored again and determined at the same time with the hyperparametes of the model.
Similarly, the estimator for ranking features could be explored using Bayesian optimization.
However, it was noticed that the same algorithm produced the best results irrespective of
the hyperparameters of the classifier. Hence, there was no reason to put extra candidates
hyperparameters when doing Bayesian optimization making the process more computationally
expensive than it was already.

Imbalanced data

Two of three data sets were imbalanced meaning that the one class called majority had
a significantly higher number of observations compared to the other called minority. When
that happens, prediction of the minority is harder since few data points are given and the
algorithm ends up over-biasing the majority class. However, when working with an imbalanced
classification problem, the minority class is typical of the most interest. To deal this issue,
different preprocessing strategy was applied including resampling techniques, stratified kfold
was used instead of kfold for model selection and hyperparameter tuning based on different
evaluation metric. These methods are presented below extensively.

Evaluation metrics

Accuracy is not an appropriate evaluation metric for imbalanced data and can lead to mis-
leading results. On the contrary, the F1 score is a more robust evaluation metric in imbalanced
data and combines the precision and recall metrics into a single metric. As a consequence,
a high F1 score ensures that both classes are taken into account by the algorithm. There are
four types of results in binary classification: True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). Accuracy and F1 metrics are defined as

Accuracy =
T P + T N

T P + FP + T N + FN
(129)
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F1 = 2 ×
Precision × Recall
Precision + Recall

(130)

where

Precision =
T P

T P + FP
(131)

and
Recall =

T P
T P + FN

(132)

K-fold/Stratified k-fold

K fold cross validation was used for model selection and hyperparameter tuning. In K fold
cross validation,the data is separated in k parts and in each iteration k − 1 parts are used as a
training set and the remaining as a test set. This process is repeated until all parts used as a train
and test set. The mean of k estimates is considered as the final result. In the case of imbalanced
data is dangerous to use k fold cross validation because the distribution of the data is not taken
into account. Consequently, the amount of the minority class to some of k parts can be even
lower than the original. To this end, stratified k-fold was used which is a more appropriate
method, operates in the same way as k-fold, but ensures that the ratio of each of the k parts will
be equal to the original ratio.

Resampling

Undersampling is a useful technique to balance the imbalanced data. It was performed
during the training process using Random Undersampling. Random undersampling simply
deletes data randomly until it gets the desired ratio. This ratio is a hyperparameter and
was tuned during the training process.Although is a very simple method, is also very fast
and in the cases that are presented below produced equal results to others undersampling
methods like Onesidedselection, Tomek or oversampling methods like Smote which are more
time-consuming.

Data leakage

Resampling techniques like undersampling or oversampling must be performed exclusively
in the training data. Otherwise, the distribution of test data will change dramatically leading to
completely inaccurate results. Similarly, standardscaler or feature selection algorithm must be
fitted only in the training data. This serious mistake is called data leakage and it means that the
test data have been exposed and have been used accidentally during the training process. When
cross-validation is not used is easy to avoid data leakage. The data are just split into train and
test set, the pre-processing steps and the model are fitted on the training data, then the test data
are transformed using the necessary steps like standardization and the model is applied to the
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test data. However, in the case that k− fold cross-validation or some of its variations is used the
training process is more complex. To avoid data leakage is required to ensure that in each of k
iterations the pre-processing steps will be fitted on the k − 1 parts which is the training set and
not to the remaining k part. Data leakage was prevented using pipelines.

Pipelines help to avoid data leakage ensuring that during cross-validation the test data are not
exposed and do not learn anything from training data. They have been used for the development
of all three algorithms. They are objects that hold all the steps of data preparation and modeling
and execute them sequentially. Pipelines also ensure that the sequence of the steps are executed
once and make the training process easier since there is no need to execute manually each step
[144].

Anomaly Detection

Isolation forest was applied to search for anomaly data points in training sets, but did not im-
prove the results. The performance not only was not improved but decreased probably because
the values considered anomalies and deleted provided valuable information to the algorithms.

Isolation Forest uses an ensemble of Isolation Trees to detect anomaly data points. The
Isolation Forest algorithm is based on the idea that anomalies observations are fewer and
different, therefore they can be recognized faster and easily. The isolation tree is built dividing
the training data at random value from a randomly selected feature in an iterative manner, to
isolate data points from each other. An anomalous point is considered the one which have
been isolated much faster than the other points. This is quantified through an outlier score
corresponding to each point which is calculated by the algorithm, based on the number of splits
are needed to its isolation. If the score is less than zero the points is considered as anomally.
Otherwise, a threshold can be defined instead of zero [145].

Model selection

In each of the three data sets, various algorithms were performed and evaluated. In this
process, all had their default hyperparameters and they were trained using k-fold or stratified
k-fold cross validation. Two algorithms with the best results were selected for further optimiza-
tion.

Bayesian Optimization

Bayesian Optimization was used for hyperparameter tuning. This method can importantly
speed-up the optimization process compared to common optimization techniques like Grid
Search and brings better generalization performance on the test set. This is achieved by
taking into account information by previous hyperparameter combinations when choosing the
hyperparameter set to evaluate next. Two popular libraries for Bayesian Optimization include
Scikit-Optimize and HyperOpt. In the following three applications Scikit-Optimize was used
with BayesSearchCV class.
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10.3 Project 1
The first data set comes from a database called Cleveland [146] and consists of 13 features

and a target variable collected by 303 patients. The aim was to create a classifier for predicting
patients with more chance to heart attack. The target variable is binary having classes 0 =
no/less chance of heart attack and 1 =more chance of heart attack. The whole data is represented
in figure 43.

Some descriptive statistics about the numerical variables are presented in table 31. The
distribution of the target variable is presented in the first graph in figure 44 and it seems that the
data are not imbalanced. In the next graphs from the same figure are presented the distributions
of the categorical variables according to the target variable. It seems that many of them have
different distributions between the 2 levels of the target variable. Moreover, in figure 45 are
presented the means of each numerical variable according to the target variable. The next
graphs from the same figure are histograms for the numerical variables according to the target
variable. Again, there are variables that appear to be differently distributed between the 2 levels
of the target variable.

The target variable was separated from the dataset to a variable named y and the remaining
to a data frame named X. The pre-processing strategy was not the same for each model. One
hot encoding was applied for categorical features having equal or more than 3 classes. Stan-
dardization was applied before Support Vector Machine and Logistic Regression. Then, feature
selection using RFE was applied. For model selection and hyperparameter tuning 10-Fold cross
validation was used based on accuracy metric. All the pre-processing steps and classifiers were
included in pipeline in the order mentioned above to avoid data leakage.

Random Forest, XGBoost, Adaboost using base classifier Decision Tree, Support Vector
Machine and Logistic Regression, Gaussian Naı̈ve Bayes and a Voting classifier combining
Logistic Regression, Decision Tree and KNeighborsClassifier, were performed and evaluated
having their default hyperparameters. In this process, all the pre-processing steps were applied
except for feature selection. Support Vector Machine and Logistic Regression had the best
results, and they were chosen for the next steps.

The next step was to select the estimator for ranking the features using Recursive feature
elimination. Logistic Regression was chosen among Perceptron, Decision Tree, XGBoost and
Random Forest. Next, hyperparameter tuning using Bayesian optimization for Logistic Regres-
sion and SVM was applied.The models with the default and the optimized parameters were
fitted on the training set and then applied to the test set. Having deafault hyperparameters, ac-
curacy score for Logistic Regression and SVM was 0.803 and 0.819 respectively. The results
of the two models are presented in table 33.

The optimized parameters for the SVM model using all the features was C = 10 and
gamma = 0.001 and achieved accuracy equal to 0.836. Using feature selection, 6 features
were selected to be the most important. The best parameters for the SVM model using those
6 features was the same as the full model and achieved accuracy equal to 0.852. Also, for the
same model the ROC curve is presented in figure 45 and the AUC was 0.91.

The optimized parameters for the Logistic Regression model using all the features was C =
0.01, solver =′ liblinear′ and achieved accuracy equal to 0.836. Using feature selection, 6
features were selected to be the most important. The best parameters for the Logistic Regression
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model using those 6 features was C = 0.1, solver =′ lb f gs′ and achieved accuracy equal to
0.836. Also, for the same model the ROC curve is presented in figure 46 and the AUC was
0.912.

The features which selected from the two models was the same and are presented in table 34.
’Slope’ was the slope of the peak exercise ST segment and had 3 categories, ’thal’ was Thalium
Stress Test result with 3 categories (0 = normal; 1 = fixed defect; 2 = reversable defect), ’cp’
was chest pain type such that 0 = Typical Angina, 1 =Atypical Angina, 2 =Non-anginal Pain, 3
= Asymptomati,’ca’ was number of major vessels, ’oldpeak’ was the Previous peak and ’exang’
was Exercise induced angina such that 1 = Yes, 0 = No.

Figure 43: Dataset project 1.

age trestbps chol thalach oldpeak

count 303.000000 303.000000 303.000000 303.000000 303.000000

mean 54.366337 131.623762 246.264026 149.646865 1.039604

std 9.082101 17.538143 51.830751 22.905161 1.161075

min 29.000000 94.000000 126.000000 71.000000 0.000000

25% 47.500000 120.000000 211.000000 133.500000 0.000000

50% 55.000000 130.000000 240.000000 153.000000 0.800000

75% 61.000000 140.000000 274.500000 166.000000 1.600000

max 77.000000 200.000000 564.000000 202.000000 6.200000

skew -0.201 0.710 1.138 -0.535 1.263

kurtosis -0.553 0.894 4.412 -0.081 1.530

Table 31: Descriptive statistics.
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Figure 44: Plots for categorical variables.

Figure 45: Plots for numerical variables.
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Model Accuracy

Random Forest 0.825

Decision Tree 0.761

Xgboost 0.802

SVM 0.835

Logistic Regression 0.843

Adaboost 0.786

Voting 0.81

Table 32: Models comparison.

Model Default Parameters Full optimized model Using feature selection

Accuracy Accuracy Accuracy Sens Spec

SVM 0.819 0.836 0.852 97% 71.42%

Logistic Regression 0.803 0.803 0.836 97% 67.85%

Table 33: Evaluation process.

SVM/Logistic Regression

Slope

thal

cp

exang

oldpeak

ca

Table 34: Selected Features.
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Figure 46: ROC Curves for the 2 optimal models.
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10.4 Project 2

The second dataset comes from The Behavioral Risk Factor Surveillance System (BRFSS)
which is a health-related telephone survey that is collected annually by the CDC. Each year,
the survey collects responses from over 400,000 Americans on health-related risk behaviors,
chronic health conditions, and are used for preventative services. For this project, it was chosen
the data set for the year 2015 containing 21 feature variables and a target variable to be used
for the binary classification of heart disease. The target variable is binary having classes 0 =do
not have/have not had heart disease and 1 = had heart disease. The features are either binary or
ordinal and there are no missing values. The whole data is represented in figure 47.

Some descriptive statistics are presented in table 36. The distribution of the target variable
is presented in the first graph in figure 48 and it seems that the data are highly imbalanced.
Actually, there is a strong class imbalance since 229,787 participants do not have/have not had
heart disease while 23,893 have had heart disease. In the next graphs from the same figure
are presented the distributions of some categorical variables according to the target variable.
Moreover, in figure 49 are presented histograms for some variables according to the target
variable.

The target variable was separated from the dataset to a variable named y and the remaining
to a data frame named X. The data was separated into train 80% and test data 20% and using
the command strati f y = y the train and test set had a ratio equal to the target variable. Stan-
dardization was applied before Logistic Regression,Adaboost using base classifier Linear SVM
and Adaboost using base classifier Logistic Regression. After standardization, feature selection
using RFE was performed. The next and final preprocessing step before fitting the algorithm
was to undersample the data using RandomUnderSampler in python creating a ratio in 1 : 2 in
training set. For model evaluation and hyperparameter tuning Stratified 5-fold cross validation
was used based on f 1-measure metric. All the preprocessing steps and classifiers were included
in the pipeline in the order mentioned above to avoid data leakage.

Balanced Bagging Classifier,Logistic Regression, Decision Tree, Random Forest, XGBoost,
Adaboost using base classifier Decision Tree, Adaboost using base classifier Linear SVM and
Adaboost using base classifier Logistic Regression were performed and evaluated having their
default hyperparameters. In this process, all the preprocessing steps were applied except for
feature selection. Adaboost using base classifier Logistic Regression and XGboost had the best
results and they were selected for further optimization.

The next step was to select the best estimator for ranking the features using Recursive fea-
ture elimination.Logistic Regression was chosen between Perceptron and Decision Tree. Next,
hyperparameter tuning using Bayesian optimization for Adaboost and XGBoost was applied.
The models were fitted on the training set and then applied to the test set. Having default hy-
perparamaters, F1 score for Adaboost and Xgboost without undersampling was just 0.09 and
0.19 respectively. After undersampling there was a significant improvement to 0.377 and 0.405
respectively as illustrated in figure 66. The results of the two models are presented in table 38.

The optimized parameters for the Adaboost model using all the features was
C=100,learning rate=0.6, n estimators=400 and achieved F1 equal to 0.418 and accuracy
0.85. Using feature selection, 9 features (table 39) were selected to be the most important.
The best parameters for the Logistic Regression model using those 9 features was C=1000,

124



max iter=400, learning rate=0.6, n estimators=200 and achieved F1 equal to 0.417 and accu-
racy was 0.84. Also, for the same model the ROC curve is presented in figure 50 and the AUC
was 0.748.

The optimized parameters for the XGBoost model using all the features was col-
sample bylevel=0.01, colsample bytree=0.7, gamma=0.2, learning rate=0.05, max depth=3,
min child weight=1, n estimators=300, subsample=1 and achieved F1 equal to 0.41 and accu-
racy 0.83. Using feature selection, 11 features (table 38) were selected to be the most important.
The best parameters for the XGBoost model using those 11 features was colsample bylevel=1,
colsample bytree=0.7, gamma=0.4, learning rate=0.05, max depth=3, min child weight=7,
n estimators=200, subsample=1 and achieved F1 equal to 0.42 and accuracy was 0.83. Also,
for the same model the ROC curve is presented in figure 50 and the AUC was 0.85.

The features which selected from both models are presented in table 39. Using Adaboost
were selected the followin ’HighBP’ was the blood pressure (high) , ’HighChol’ was choles-
terol (high), ’Smoker’ was smoking, ’HvyAlcoholConsump’ was alcohol consumption and
’GenHlth’ was general health,’stroke’ was (Ever told) someone had a stroke , ’sex’ was In-
dicate sex of respondent,’ DIFFWALK’ was the difficulty walking or climbing , ’CholCheck’
was Cholesterol check within past five years. The same features were selected from Xgboost
was the above mentioned without the ’CholCheck’ and additionally: ’Diabetes’ was (Ever told)
the presence of diabetes,’age’ and ’NoDocbcCost’ was there a time in the past 12 months when
the participant needed to see a doctor but could not because of cost.

Figure 47: Dataset project 2.
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Income HighBP HighChol

CholCheck BMI Smoker

Stroke Diabetes PhysActivity

Fruits Veggies HvyAlcoholConsump

AnyHealthcare NoDocbcCost GenHlth

MentHlth PhysHlth DiffWalk

Sex Age Education

Table 35: Dataset features.

BMI GenHlth MentHlth PhysHlth Age Education Income

count 253680 253680 253680 253680 253680 253680 253680

mean 28.382364 2.511392 3.184772 4.242081 8.032119 5.050434 6.053875

std 6.608694 1.068477 7.412847 8.717951 3.054220 0.985774 2.071148

min 12 1 0 0 1 1 1

25% 24 2 0 0 6 4 5

50% 27 2 0 0 8 5 7

75% 31 3 2 3 10 6 8

max 98 5 30 30 13 6 8

Table 36: Descriptive statistics.

Model F1

Balanced Bagging 0.29

Xgboost 0.414

Random Forest 0.393

Adaboost (SVM) 0.4

Logistic Regression 0.41

Adaboost(DT) 0.413

Adaboost(LR) 0.415

Table 37: Models comparison.
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Figure 48: Plots for categorical variables.

Model No Resampling Default Parameters Full optimized model Using feature selection

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Sens Spec

Adaboost 0.9 0.09 0.8 0.377 0.85 0.418 0.84 0.417 59.82% 86.83%

Xgboost 0.91 0.19 0.83 0.405 0.83 0.41 0.83 0.42 62.77% 87.84%

Table 38: Evaluation process.
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Figure 49: Plots for numerical variables.

Adaboost Xgboost

HighBP HighBP

HighChol HighChol

CholCheck Smoker

Smoker Stroke

Stroke Diabetes

HvyAlcoholConsump HvyAlcoholConsump

GenHlth NoDocbcCost

DiffWalk GenHlth

Sex DiffWalk

Sex

Age

Table 39: Selected Features.
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Figure 50: ROC Curves for the 2 optimal models.
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10.5 Project 3
The dataset used for the third project is from the published research [147] and contains 48

variables collected by 4313 patients. The whole data is represented in figure 51. The goal was
to create an algorithm for mortality prediction of patients with COVID-19.

Some descriptive statistics are presented in table 41. The target variable was binary named
‘death’ with classes 0 = no and 1 = yes . The distribution of the target variable is presented
in the first graph in figure 52 and it seems that the data are imbalanced. The two classes had a
ratio frequency 1:3 so the data was considered slightly imbalanced. In the next graphs from the
same figure are presented the distributions of some categorical variables according to the target
variable. Moreover, in figure 53 are presented histograms for some variables according to the
target variable.

Many columns and rows had missing values. The variables and the rows which had more than
70% and 80% missing values were deleted. As a consequence, 253 data points and 9 features
were eliminated. The target variable was separated from the dataset to a variable named y and
the remaining to a data frame named X. Then, they were separated into train 80% and test
20% data and using the command stratify=y the train and test set had a ratio equal to the target
variable.

Missing values contained only the numerical features and they were replaced by the median
of each variable using SimpleImputer. One hot encoding and Standardization were applied only
before Support Vector Machine and Logistic Regression. Then, feature selection using RFE was
applied. The next and final pre-processing step before fitting the algorithm was to undersample
the data using RandomUnderSampler in python. For model evaluation and hyperparameter tun-
ing Stratified 5-fold cross validation was used based on f1-measure. All the pre-processing steps
and classifiers were included in pipeline in the order mentioned above to avoid data leakage.

In the model selection process Random Forest, XGBoost, Adaboost with base classifier De-
cision Tree, Support Vector Machine and Logistic Regression were performed and evaluated
having their default hyperparameters. In this process, all the pre-processing steps were applied
except for feature selection. Random Forest and XGboost had the best results and they were
selected for further optimization.

The next step was to select the best estimator for ranking the features using Recursive feature
elimination. Decision Tree was chosen between Perceptron, Logistic Regression and Random
Forest. Random Forest produced a slightly better result, but was rejected since it is more time
consuming, and the benefit compared to Decision Tree was not important. Machine learning
is a trade-off process between time and more accurate results and sometimes is preferable to
sacrifice a little efficiency to speed up the process.

Next, hyperparameter tuning using Bayesian optimization for Random Forest and XGBoost
was applied. The models were fitted on the training set and then applied to the test set. Having
default hyperparamaters F1 score for Random Forest and Xgboost was 0.75 and 0.727 respec-
tively. The results of the two models are presented in table 43.

The optimized parameters for the Random Forest model using all the features was
bootstrap=True, max depth=12, max features=’auto’, n estimators=150,min samples leaf=1,
min samples split=2, random state=42 C=100, learning rate=0.6, n estimators=400 and
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achieved F1 equal to 0.75 and accuracy 0.86. Using feature selection, 15 features (table 44)
were selected to be the most important. The best parameters for the Random Forest model using
those 15 features was bootstrap=True, max depth=10, max features=’sqrt’,n estimators=450,
min samples leaf=3, min samples split=2, n estimators=200 and achieved F1 equal to 0.757
and accuracy was 0.87. Also, for the same model the ROC curve is presented in figure 54 and
the AUC was 0.916.

The optimized parameters for the XGBoost model using all the features was
use label encoder=False,n jobs = 1,objective = ’binary:logistic’,eval metric = ’auc’, col-
sample bylevel=1, colsample bytree=0.7, gamma=0.0, learning rate=0.05, max depth=6,
min child weight=1, n estimators=300,subsample=1, silent=1, tree method=’approx’ and
achieved F1 equal to 0.74 and accuracy 0.87. Using feature selection, 15 features (ta-
ble 44) were selected to be the most important. The best parameters for the XG-
Boost model using those 15 features was use label encoder=False, n jobs = 1,objec-
tive = ’binary:logistic’, eval metric = ’auc’, colsample bylevel=0.01, colsample bytree=0.7,
gamma=0.4, learning rate=0.05, max depth=3, min child weight=1, n estimators=100, sub-
sample=0.7173804504207143, silent=1, tree method=’approx’ and achieved F1 equal to 0.73
and accuracy was 0.85. Also, for the same model the ROC curve is presented in figure 54 and
the AUC was 0.917.

The features which selected from both models are presented in table 44. Using Random
Forest were selected the following: ’Age’,’race’, ’ventilator’, ’diastolicBP’ was the diastolic
blood pressure, ’systolicBP’ was systolic blood pressure and ’cr’ was creatinine,’ Pulse0x’ was
pulse oximetry level, ’NLratio’ , was neutrophil-lymphocyte ratio , ’Temperature’,’Bun’ was
blood urea nitrogen,’Troponin’ was troponin level,’Ptt’ was partial thromboplastin time,’Bmi’
was body mass index, ’Creatine kinase’ was creatine phosphokinase and ’potassium’ . The
same features were selected from both models was ’ventilator’, ’diastolicBP’, ’systolicBP’, ’cr’,
’ Pulse0x’, ’NLratio’, ’Troponin’, ’Bmi’, ’Creatine kinase’ and additionally using XGBoost :
’Hgb’ was haemoglobin, ’lymphocyte’, ’Monocyte’ ,’protein’ and ’pulse’.

Figure 51: Dataset project 3.
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age gender death glucose

race ct value potassium pro bnp

ventilator egfr COVID to death (days) indirect bili

albumin diastolicBP cr direct bili

systolicBP charlson score ddimer bmi

eosinophil ferritin hgb rdw

inr lymphocyte NLratio troponin

neutrophil fibrinogen platelet wbc

pulse pulseOx protein monocyte

rr temperature alt total bili

ast bun chloride ptt

crp interleukin6 calcium tnf

ldh mcv mpv procalcitonin

creatine kinase

Table 40: Dataset features.

age diastolicBP systolicBP cr NLratio pulseOx temperature bun troponin ptt bmi creatine kinase potassium

count 4060 4060 4060 4014 4060 4059 4058 4014 3549 3252 3834 3299 3984

mean 64.386 67.506 120.091 2.041 7.967 92.503 99.217 32.930 0.058 35.4194 30.448 621.985 4.427

std 16.317 16.718 24.840 2.585 8.892 8.478 1.694 32.782 0.264 14.719 49.796 2804.497 0.741

min 18 0 0 0.19 0 11 85.3 4.999 0.0099 19 9.9 19.999 1.9999

25% 55 59 107 0.81 3.461 90 98.2 13 0.01 29.6 24.622 86 4

50% 66 69 122 1.13 5.777 95 98.9 20.5 0.01 32.8 28.42 168 4.4

75% 77 79 136 1.96 9.603846 98 100 40 0.03 37 33.19 416 4.8

max 91 120 215 31.66 208.5 100 122 301 9.56 200 3069.26 80000 9.0001

Table 41: Descriptive statistics.

Figure 52: Plots for categorical variables.
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Figure 53: Plots for numerical variables.
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Model F1

Random Forest 0.723

Decision Tree 0.694

Xgboost 0.716

SVM 0.634

Adaboost 0.699

Voting 0.642

Table 42: Models comparison.

Model Default Parameters Full optimized Model Using feature selection

Accuracy F1 Accuracy F1 Accuracy F1 Sens Spec

Random Forest 0.87 0.75 0.86 0.75 0.87 0.757 77.72% 90.34%

Xgboost 0.86 0.727 0.87 0.74 0.85 0.73 77.77% 87.52%

Table 43: Evaluation process.

Random Forest Xgboost

Age Age

race ventilator

ventilator diastolicBP

diastolicBP systolicBP

systolicBP cr

cr Hgb

NLratio lymphocyte

Pulse0x NLratio

Temperature Protein

Bun Pulse

Troponin Pulse0x

Ptt Monocyte

Bmi Troponin

Creatine kinase Bmi

potassium Creatine kinase

Table 44: Selected features.
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Figure 54: ROC Curves for the 2 optimal models.
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10.6 Summary
After the above analyzes is concluded that even a powerful machine learning algorithm its

self does not ensure good results. Data preprocessing, feature selection or hyperparameters
optimization are crucial steps in training process and can improve importantly the predictive
ability of the model. However, the choice of the most suitable algorithm undoubtedly can play
a vital role in the model’s efficiency. The results in the above three applications are considered
satisfying based on the evaluation metrics. They indicate the potentials of machine learning
algorithms to discover new biomarkers for various diseases utilizing real world data.
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A Code for Project 1
i m p o r t pandas as pd
from s k l e a r n . f e a t u r e s e l e c t i o n i m p o r t RFE
from s k l e a r n . svm i m p o r t SVC
from s k l e a r n . t r e e i m p o r t D e c i s i o n T r e e C l a s s i f i e r
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
from s k l e a r n . p r e p r o c e s s i n g i m p o r t OneHotEncoder
from s k l e a r n . l i n e a r m o d e l i m p o r t L o g i s t i c R e g r e s s i o n
from s k l e a r n . m e t r i c s i m p o r t a c c u r a c y s c o r e
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t c r o s s v a l s c o r e , KFold
from s k l e a r n . n a i v e b a y e s i m p o r t GaussianNB
i m p o r t numpy as np
from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r
from s k l e a r n . m e t r i c s i m p o r t a c c u r a c y s c o r e , p r e c i s i o n s c o r e , r e c a l l s c o r e , f 1 s c o r e
from s k l e a r n . ensemble i m p o r t R a n d o m F o r e s t C l a s s i f i e r
from i m b l e a r n . p i p e l i n e i m p o r t P i p e l i n e
from s k o p t i m p o r t BayesSearchCV
from s k l e a r n . compose i m p o r t m a k e c o l u m n t r a n s f o r m e r
from numpy i m p o r t mean
from s k l e a r n . m e t r i c s i m p o r t c o n f u s i o n m a t r i x
from s k l e a r n . m e t r i c s i m p o r t c l a s s i f i c a t i o n r e p o r t
from numpy i m p o r t s t d
from s k l e a r n . compose i m p o r t ColumnTransformer
i m p o r t x g b o o s t a s xgb
from s k l e a r n . ensemble i m p o r t A d a B o o s t C l a s s i f i e r
from s k l e a r n . n e i g h b o r s i m p o r t K N e i g h b o r s C l a s s i f i e r
from s k l e a r n . ensemble i m p o r t V o t i n g C l a s s i f i e r
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t s e a b o r n as s n s
from s c i p y . s t a t s i m p o r t skew , k u r t o s i s
d f = pd . r e a d c s v ( ’ h e a r t . csv ’ )
d f
d f . rename ( columns = { ’ t a r g e t ’ : ’ h e a r t a t t a c k ’ } , i n p l a c e=True )
X = df . d rop ( columns = [ ’ h e a r t a t t a c k ’ ] )
y = df [ ’ h e a r t a t t a c k ’ ]
X. d e s c r i b e ( )
skew ( d f . age )
c o l s =[ ’ cho l ’ , ’ age ’ , ’ t r e s t b p s ’ , ’ t h a l a c h ’ , ’ o ldpeak ’ ]
f o r c o l i n d f [ c o l s ] :

p r i n t ( ” Skew : %s %.3 f ” % ( co l , skew ( d f [ c o l ] ) ) )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )
p r i n t ( skew ( c o l ) )

f o r c o l i n d f . columns :

p r i n t ( ” k u r t o s i s : %s %.3 f ” % ( co l , k u r t o s i s ( d f [ c o l ] ) ) )
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s n s . c o u n t p l o t ( x= ’ h e a r t a t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ t h a l ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ cp ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ exang ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ r e s t e c g ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ sex ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ ca ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ fbs ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ s l o p e ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )

myhear t = df [ ’ h e a r t a t t a c k ’ ]
mychol = df [ ’ cho l ’ ]

h e a r t 0 = myhear t == 0
h e a r t 1 = myhear t == 1

p l t . h i s t ( mychol [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 2 6 , 5 6 4 , 4 4 ) , l a b e l = ’0 ’ )

p l t . h i s t ( mychol [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 2 6 , 5 6 4 , 4 4 ) , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ cho l ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myage = df [ ’ age ’ ]

p l t . h i s t ( myage [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 2 5 , 8 0 , 6 ) , l a b e l = ’0 ’ )

p l t . h i s t ( myage [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 2 5 , 8 0 , 6 ) , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ age ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

c o l s =[ ’ cho l ’ , ’ age ’ , ’ t r e s t b p s ’ , ’ t h a l a c h ’ , ’ o ldpeak ’ ]

m y t r e s t b p s = df [ ’ t r e s t b p s ’ ]

p l t . h i s t ( m y t r e s t b p s [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 9 0 , 2 0 0 , 1 1 ) , l a b e l = ’0 ’ )

p l t . h i s t ( m y t r e s t b p s [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 9 0 , 2 0 0 , 1 1 ) , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )

138



p l t . x l a b e l ( ’ t r e s t b p s ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

my tha l ach = df [ ’ t h a l a c h ’ ]

p l t . h i s t ( my tha l ach [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 7 1 , 2 0 5 , 1 4 ) , l a b e l = ’0 ’ )

p l t . h i s t ( my tha l ach [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 7 1 , 2 0 5 , 1 4 ) , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ t h a l a c h ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myoldpeak = df [ ’ o ldpeak ’ ]

p l t . h i s t ( myoldpeak [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 0 , 0 . 6 , 1 . 2 , 1 . 8 , 2 . 4 , 3 , 3 . 6 , 4 . 2 , 4 . 8 , 5 . 4 , 6 ] , l a b e l = ’0 ’ )

p l t . h i s t ( myoldpeak [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 0 , 0 . 6 , 1 . 2 , 1 . 8 , 2 . 4 , 3 , 3 . 6 , 4 . 2 , 4 . 8 , 5 . 4 , 6 ] , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ o ldpeak ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )
d a t a s e t=df . groupby ( ’ h e a r t a t t a c k ’ ) [ c o l s ] . mean ( )

# d a t a s e t=df1 . groupby ( ’ t a r g e t ’ ) . mean ( )

# D i f f e r e n t i a t e D i s c r e t e and C o n t i n u o u s f e a t u r e s
# P r i n t D i s c r e t e F e a t u r e Data
d i s c r e t e f e a t u r e =[ f e a t u r e f o r f e a t u r e i n f e a t u r e l i s t i f

l e n ( d f [ f e a t u r e ] . un iq ue ( ) ) <2 5 ]
p r i n t ( ” D i s c r e t e V a r i a b l e s Count : { } ” . f o r m a t ( l e n ( d i s c r e t e f e a t u r e ) ) )
p r i n t ( ” D i s c r e t e f e a t u r e s a r e ” , d i s c r e t e f e a t u r e )
# P r i n t C o n t i n u o u s F e a t u r e Data
c o n t f e a t u r e =[ f e a t u r e f o r f e a t u r e i n f e a t u r e l i s t i f

l e n ( d f [ f e a t u r e ] . un iq ue ( ) ) >2 5 ]
p r i n t ( ” C o n t i n u o u s V a r i a b l e s Count : { } ” . f o r m a t ( l e n ( c o n t f e a t u r e ) ) )
p r i n t ( ” C o n t i n u o u s f e a t u r e s a r e ” , c o n t f e a t u r e )

i ndx=np . a r a n g e ( l e n ( c o l s ) )
s c o r e l a b e l=np . a r a n g e ( 0 , 2 7 0 , 2 0 )
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c o l 1= l i s t ( d a t a s e t . T [ 1 ] )
c o l 2= l i s t ( d a t a s e t . T [ 0 ] )
b a r w i d t h =0.35

f i g , ax= p l t . s u b p l o t s ( )
b a r 1=ax . b a r ( indx−b a r w i d t h / 2 , co l1 , b a r w i d t h ,

l a b e l = ’ l e s s chance o f h e a r t a t t a c k ’ )
b a r 2=ax . b a r ( i ndx+b a r w i d t h / 2 , co l2 , b a r w i d t h ,

l a b e l = ’ more chance o f h e a r t a t t a c k ’ )

# i n s e r t i n g x a x i s l a b e l
ax . s e t x t i c k s ( i ndx )
ax . s e t x t i c k l a b e l s ( c o l s )

ax . l e g e n d ( )

# i n s e r t i n g y a x i s l a b e l
ax . s e t y t i c k s ( s c o r e l a b e l )
ax . s e t y t i c k l a b e l s ( s c o r e l a b e l )

d e f i n s e r t d a t a l a b e l s ( b a r s ) :
f o r b a r i n b a r s :

b a r h e i g h t = b a r . g e t h e i g h t ( )
ax . a n n o t a t e ( ’ { 0 : . 0 f } ’ . f o r m a t ( b a r . g e t h e i g h t ( ) ) ,

xy=( b a r . g e t x ( ) + b a r . g e t w i d t h ( ) / 2 , b a r h e i g h t ) ,
x y t e x t = (0 , 3 ) ,
t e x t c o o r d s = ’ o f f s e t p o i n t s ’ ,
ha= ’ c e n t e r ’ ,
va= ’ bottom ’

)

i n s e r t d a t a l a b e l s ( b a r 1 )
i n s e r t d a t a l a b e l s ( b a r 2 )

p l t . show ( )

d e f e n c o d i n g (X ) :
c o l u m n t r a n s f o r m e r = m a k e c o l u m n t r a n s f o r m e r ( ( OneHotEncoder ( ) ,

[ ” s l o p e ” , ” ca ” , ” t h a l ” , ” cp ” , ” r e s t e c g ” ] ) , r e m a i n d e r = ’ p a s s t h r o u g h ’ )
X = c o l u m n t r a n s f o r m e r . f i t t r a n s f o r m (X)
X = pd . DataFrame ( d a t a=X, columns=

c o l u m n t r a n s f o r m e r . g e t f e a t u r e n a m e s o u t ( ) )
r e t u r n X

X=e n c o d i n g (X)
X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t ( X, y , t e s t s i z e =0.2
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, s t r a t i f y =y , r a n d o m s t a t e =42)

n u m e r i c a l i x =[ ’ r e m a i n d e r t h a l a c h ’ , ’ r e m a i n d e r a g e ’ ,
’ r e m a i n d e r t r e s t b p s ’ , ’ r e m a i n d e r c h o l ’ , ’ r e m a i n d e r o l d p e a k ’ ]

p r e p r o c e s s o r = ColumnTransformer ( t r a n s f o r m e r s =
[ ( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) , n u m e r i c a l i x ) ] , r e m a i n d e r = ’ p a s s t h r o u g h ’ )

d e f g e t m o d e l s ( ) :
models = d i c t ( )
models [ ’ Random f o r e s t ’ ] = R a n d o m F o r e s t C l a s s i f i e r ( )
models [ ’ D e c i s i o n T r e e ’ ] = D e c i s i o n T r e e C l a s s i f i e r ( )
models [ ’ xgboos t ’ ] = xgb . X G B C l a s s i f i e r ( r a n d o m s t a t e =42)
models [ ’ svm ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) ,
( ’m’ ,SVC ( ) ) ] )
models [ ’ l o g r e g ’ ] = P i p e l i n e ( s t e p s=

[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’m’ , L o g i s t i c R e g r e s s i o n ( ) ) ] )
models [ ’ GaussianNB ’ ] = P i p e l i n e ( s t e p s=

[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’m’ , GaussianNB ( ) ) ] )
models [ ’ Adaboost ’ ] = A d a B o o s t C l a s s i f i e r ( r a n d o m s t a t e =42)

l r= L o g i s t i c R e g r e s s i o n ( )
d t c = D e c i s i o n T r e e C l a s s i f i e r ( )
kn=K N e i g h b o r s C l a s s i f i e r ( n n e i g h b o r s =1)
b a s e m e t h o d s = [ ( ’ p i p e l r ’ , l r ) , ( ’ D e c i s i o n T r e e ’ , d t c ) , ( ’ pipe Kn ’ , kn ) ]
v o t e m o d e l=V o t i n g C l a s s i f i e r ( e s t i m a t o r s=base methods , v o t i n g = ’ hard ’ )
models [ ’ Vot ing ’ ] = P i p e l i n e ( s t e p s=

[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’m’ , v o t e m o d e l ) ] )
r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = KFold ( n s p l i t s =10 , s h u f f l e=True , r a n d o m s t a t e =40)
s c o r e s = c r o s s v a l s c o r e ( model , X, y , s c o r i n g = ’ a ccu racy ’ ,

cv=cv , n j o b s =−1, e r r o r s c o r e = ’ r a i s e ’ )
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

d e f g e t m o d e l s ( ) :
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models = d i c t ( )
f o r i i n r a n g e ( 5 , 2 4 ) :

r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( )
, n f e a t u r e s t o s e l e c t= i )

model = L o g i s t i c R e g r e s s i o n ( )
models [ s t r ( i ) ] = P i p e l i n e (

s t e p s = [ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) , ( ’ s ’ , r f e ) , ( ’m’ , model ) ] )
r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = KFold ( n s p l i t s =10 , s h u f f l e=True , r a n d o m s t a t e =40)
s c o r e s = c r o s s v a l s c o r e ( model , X, y , s c o r i n g = ’ a ccu racy ’ ,

cv=cv , n j o b s =−1, e r r o r s c o r e = ’ r a i s e ’ )
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

model=SVC ( )
i m p o r t x g b o o s t a s xgb
from s k l e a r n . l i n e a r m o d e l i m p o r t P e r c e p t r o n

d e f g e t m o d e l s ( ) :
models = d i c t ( )
r f e = RFE( e s t i m a t o r=
L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) , n f e a t u r e s t o s e l e c t =7)
models [ ’ l r ’ ] = P i p e l i n e ( s t e p s=
[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’ r f e ’ , r f e ) , ( ’m’ , model ) ] )

r f e = RFE( e s t i m a t o r=P e r c e p t r o n ( ) , n f e a t u r e s t o s e l e c t =7)
models [ ’ per ’ ] = P i p e l i n e ( s t e p s=
[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’ r f e ’ , r f e ) , ( ’m’ , model ) ] )

r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( ) , n f e a t u r e s t o s e l e c t =7)
models [ ’ d tc ’ ] = P i p e l i n e ( s t e p s=
[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’ r f e ’ , r f e ) , ( ’m’ , model ) ] )

r f e = RFE( e s t i m a t o r=R a n d o m F o r e s t C l a s s i f i e r ( ) , n f e a t u r e s t o s e l e c t =7)
models [ ’ r f ’ ] = P i p e l i n e ( s t e p s=
[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’ r f e ’ , r f e ) , ( ’m’ , model ) ] )
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r f e = RFE( e s t i m a t o r=xgb . X G B C l a s s i f i e r ( ) , n f e a t u r e s t o s e l e c t =7)
models [ ’ xgb ’ ] = P i p e l i n e ( s t e p s=
[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’ r f e ’ , r f e ) , ( ’m’ , model ) ] )

r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = KFold ( n s p l i t s =10 , s h u f f l e=True )
s c o r e s = c r o s s v a l s c o r e ( model , X, y ,

s c o r i n g = ’ a ccu racy ’ , cv=cv , n j o b s =−1)
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

s o l v e r =[ ’ newton−cg ’ , ’ l b f g s ’ , ’ l i b l i n e a r ’ ]

r a n d o m g r i d = {# ’ r f e e s t i m a t o r C ’ : [ 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 1 , 1 0 , 1 0 0 , 1 0 0 0 ] ,
# ’ r f e e s t i m a t o r s o l v e r ’ : s o l v e r , ’ r f e n f e a t u r e s t o s e l e c t ’ : [ 4 , 5 , 6 , 7 , 8 ] ,

’ model C ’ : [ 0 . 0 1 , 0 . 1 , 1 , 10 , 100 , 1 0 0 0 ] ,
’ model gamma ’ : [ 1 , 0 . 1 , 0 . 0 1 , 0 . 0 0 1 , 0 . 0 0 0 1 ] , ’ m o d e l k e r n e l ’ : [ ’ r b f ’ ] }

r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) )
model = SVC ( )

m o d e l p i p e l i n e = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
# ( ’ r f e ’ , r f e ) ,
( ’ model ’ , model ) ] )

cv = KFold ( n s p l i t s =10 , s h u f f l e=True )
o p t = BayesSearchCV ( m o d e l p i p e l i n e , [ ( r andom gr id , 2 0 ) ] , cv=cv , s c o r i n g = ’ a ccu racy ’ )
o p t . f i t ( X t r a i n , y t r a i n )

p r i n t ( o p t . b e s t p a r a m s )
p r i n t ( o p t . b e s t s c o r e )

s o l v e r =[ ’ newton−cg ’ , ’ l b f g s ’ , ’ l i b l i n e a r ’ ]
n e s t i m a t o r s = [ 1 5 0 , 2 0 0 ,2 5 0 , 3 00 , 4 5 0 ]
m a x f e a t u r e s = [ ’ au to ’ , ’ s q r t ’ ]
m i n s a m p l e s s p l i t = [ 2 , 5 , 10]
m i n s a m p l e s l e a f = [ 1 , 2 , 3 , 4 ]
b o o t s t r a p = [ True , F a l s e ]
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r a n d o m g r i d = {# ’ r f e e s t i m a t o r C ’ : [ 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 1 , 1 0 , 1 0 0 , 1 0 0 0 ] ,
# ’ r f e e s t i m a t o r s o l v e r ’ : s o l v e r , ’ r f e n f e a t u r e s t o s e l e c t ’ : [ 5 , 6 , 7 , 8 , 9 ] ,
’ m o d e l s o l v e r ’ : s o l v e r , ’ model C ’ : [ 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 1 , 1 0 , 1 0 0 , 1 0 0 0 ] }

r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) )
model = L o g i s t i c R e g r e s s i o n ( m a x i t e r =400)

m o d e l p i p e l i n e = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
( ’ r f e ’ , r f e ) , ( ’ model ’ , model ) ] )

cv = KFold ( n s p l i t s =10 , s h u f f l e=True )
o p t = BayesSearchCV ( m o d e l p i p e l i n e , [ ( r andom gr id , 3 0 ) ] , cv=cv , s c o r i n g = ’ a ccu racy ’ )
o p t . f i t ( X t r a i n , y t r a i n )

p r i n t ( o p t . b e s t p a r a m s )
p r i n t ( o p t . b e s t s c o r e )

# r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (C=0 .01 ,
# s o l v e r = ’ l i b l i n e a r ’ , m a x i t e r =400) , n f e a t u r e s t o s e l e c t =8) #SVC
r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (C=0 .01 ,
s o l v e r = ’ newton−cg ’ , m a x i t e r =400) , n f e a t u r e s t o s e l e c t =7) #LR

# model = L o g i s t i c R e g r e s s i o n (C=0 .01 , s o l v e r = ’ l i b l i n e a r ’ , m a x i t e r =400)# w i t h o u t r f e
# model = L o g i s t i c R e g r e s s i o n ( ) # w i t h o u t r f e
model = L o g i s t i c R e g r e s s i o n (C=0 .1 , s o l v e r = ’ l b f g s ’ , m a x i t e r =400)# wi th r f e

# model=SVC ( )
# model = SVC(C=10 ,gamma=0 .001)# w i t h o u t r f e
# model= SVC(C=10 ,gamma=0 .001)# wi th r f e

p i p e l i n e m o d e l = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
( ’ r f e ’ , r f e ) , ( ’ model ’ , model ) ] )

p i p e l i n e m o d e l . f i t ( X t r a i n , y t r a i n )

y p r e d t r a i n=p i p e l i n e m o d e l . p r e d i c t ( X t r a i n )

c o n f p r e d t r a i n= c o n f u s i o n m a t r i x ( y t r a i n , y p r e d t r a i n )
p r i n t ( c o n f p r e d t r a i n )

s c o r e t r a i n= a c c u r a c y s c o r e ( y t r a i n , y p r e d t r a i n )
p r i n t ( ” Accuracy on t r a i n i n g s e t a r e { } ” . f o r m a t ( s c o r e t r a i n ) )
y p r e d t e s t = p i p e l i n e m o d e l . p r e d i c t ( X t e s t )

c o n f p r e d t e s t = c o n f u s i o n m a t r i x ( y t e s t , y p r e d t e s t )
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p r i n t ( c o n f p r e d t e s t )

s c o r e= a c c u r a c y s c o r e ( y t e s t , y p r e d t e s t )
p r i n t ( ” Accuracy on t e s t s e t a r e { } ” . f o r m a t ( s c o r e ) )
p r i n t ( c l a s s i f i c a t i o n r e p o r t ( y t e s t , y p r e d t e s t ) )

r e c a l l s e n s i t i v i t y = r e c a l l s c o r e ( y t e s t , y p r e d t e s t , p o s l a b e l =1)

r e c a l l s p e c i f i c i t y = r e c a l l s c o r e ( y t e s t , y p r e d t e s t , p o s l a b e l =0)

r e c a l l s e n s i t i v i t y , r e c a l l s p e c i f i c i t y

r f e s v c = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (
C=0 .01 , s o l v e r = ’ l i b l i n e a r ’ , m a x i t e r =400) , n f e a t u r e s t o s e l e c t =8) #SVC

r f e l r = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (
C=0 .01 , s o l v e r = ’ newton−cg ’ , m a x i t e r =400) , n f e a t u r e s t o s e l e c t =7) #LR

mode l svc= SVC(C=10 ,gamma=0 .001 , p r o b a b i l i t y=True )# wi th r f e
p i p e l i n e m o d e l s v c = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r )

, ( ’ r f e s v c ’ , r f e s v c ) , ( ’ model svc ’ , mode l svc ) ] )

m o d e l l r = L o g i s t i c R e g r e s s i o n (C=0 .1 , s o l v e r = ’ l b f g s ’ , m a x i t e r =400)# wi th r f e
p i p e l i n e m o d e l l r = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r )

, ( ’ r f e l r ’ , r f e l r ) , ( ’ m o d e l l r ’ , m o d e l l r ) ] )

m o d e l l r= p i p e l i n e m o d e l l r . f i t ( X t r a i n , y t r a i n )
p r o b s l r = m o d e l l r . p r e d i c t p r o b a ( X t e s t ) [ : , 1 ]

mode l svc = p i p e l i n e m o d e l s v c . f i t ( X t r a i n , y t r a i n )
p r o b s s v c = mode l svc . p r e d i c t p r o b a ( X t e s t ) [ : , 1 ]

from s k l e a r n . m e t r i c s i m p o r t r o c a u c s c o r e , r o c c u r v e

a u c l r = r o c a u c s c o r e ( y t e s t , p r o b s l r )
f p r l r , t p r l r , t h r e s h o l d s l r = r o c c u r v e ( y t e s t , p r o b s l r )

a u c s v c = r o c a u c s c o r e ( y t e s t , p r o b s s v c )
f p r s v c , t p r s v c , t h r e s h o l d s s v c = r o c c u r v e ( y t e s t , p r o b s s v c )

p l t . f i g u r e ( f i g s i z e = (7 , 4 ) )

p l t . p l o t ( f p r l r , t p r l r , l a b e l=f ’ L o g i s t i c R e g r e s s i o n (AUC = { a u c l r : . 3 f } ) ’ )
p l t . p l o t ( f p r s v c , t p r s v c , l a b e l=
f ’ S u p p o r t Ve c t o r Machine (AUC = { a u c s v c : . 3 f } ) ’ )

p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , c o l o r = ’ b lue ’ , l i n e s t y l e = ’−− ’ , l a b e l = ’ B a s e l i n e ’ )
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p l t . t i t l e ( ’ROC Curve ’ , s i z e =20)
p l t . x l a b e l ( ’ F a l s e P o s i t i v e Rate ’ , s i z e =14)
p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ , s i z e =14)
p l t . l e g e n d ( ) ;

r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (C=0 .01 ,
s o l v e r = ’ l i b l i n e a r ’ , m a x i t e r =400) , n f e a t u r e s t o s e l e c t =8) #SVC

# r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (C=0 .01 ,
# s o l v e r = ’ newton−cg ’ , m a x i t e r =400) , n f e a t u r e s t o s e l e c t =7) #LR

f i t = r f e . f i t ( X t r a i n , y t r a i n )
p r i n t ( ”Num F e a t u r e s : %d ” % f i t . n f e a t u r e s )
p r i n t ( ” S e l e c t e d F e a t u r e s : %s ” % f i t . s u p p o r t )
p r i n t ( ” F e a t u r e Ranking : %s ” % f i t . r a n k i n g )
p r i n t ( X t r a i n . columns [ r f e . s u p p o r t ] )

\ s e c t i o n {Code f o r P r o j e c t 1 } \ \
\ b e g i n { l s t l i s t i n g } [ x l e f t m a r g i n=0em ]

B Code for Project 2
i m p o r t pandas as pd
from s k l e a r n . p r e p r o c e s s i n g i m p o r t OneHotEncoder
from s k l e a r n . l i n e a r m o d e l i m p o r t L o g i s t i c R e g r e s s i o n
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t c r o s s v a l s c o r e , KFold

i m p o r t numpy as np
from numpy i m p o r t s t d
from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r
from s k l e a r n . m e t r i c s i m p o r t a c c u r a c y s c o r e , p r e c i s i o n s c o r e ,
r e c a l l s c o r e , f 1 s c o r e , c l a s s i f i c a t i o n r e p o r t

from s k l e a r n . ensemble i m p o r t R a n d o m F o r e s t C l a s s i f i e r
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
from i m b l e a r n . p i p e l i n e i m p o r t P i p e l i n e
from s k o p t i m p o r t BayesSearchCV
from s k l e a r n . compose i m p o r t m a k e c o l u m n t r a n s f o r m e r

from numpy i m p o r t mean
from s k l e a r n . m e t r i c s i m p o r t c o n f u s i o n m a t r i x
from s k l e a r n . m e t r i c s i m p o r t c l a s s i f i c a t i o n r e p o r t
from s k l e a r n . compose i m p o r t ColumnTransformer
i m p o r t x g b o o s t a s xgb
from s k l e a r n . ensemble i m p o r t A d a B o o s t C l a s s i f i e r
from s k l e a r n . svm i m p o r t LinearSVC
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t S t r a t i f i e d K F o l d
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from i m b l e a r n . u n d e r s a m p l i n g i m p o r t RandomUnderSampler
from s k l e a r n . f e a t u r e s e l e c t i o n i m p o r t RFE
from s k l e a r n . t r e e i m p o r t D e c i s i o n T r e e C l a s s i f i e r
from i m b l e a r n . ensemble i m p o r t B a l a n c e d B a g g i n g C l a s s i f i e r
from i m b l e a r n . ensemble i m p o r t B a l a n c e d R a n d o m F o r e s t C l a s s i f i e r
from s k l e a r n . l i n e a r m o d e l i m p o r t P e r c e p t r o n
from s k o p t i m p o r t BayesSearchCV
from numpy i m p o r t a r a n g e
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t s e a b o r n as s n s
from s c i p y . s t a t s i m p o r t skew , k u r t o s i s

d f = pd . r e a d c s v ( ’ h e a r t 2 . csv ’ )
y = df [ ’ H e a r t D i s e a s e o r A t t a c k ’ ]
X=df . d rop ( columns= ’ H e a r t D i s e a s e o r A t t a c k ’ )

X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t (
X, y , t e s t s i z e =0 .2 , s t r a t i f y =y , r a n d o m s t a t e =42)

X[ c o l s ] . d e s c r i b e ( )
c o l s =[ ’BMI’ , ’ GenHlth ’ , ’ MentHlth ’ , ’ PhysHl th ’ , ’ Age ’ , ’ Educa t ion ’ , ’ Income ’ ]
f o r c o l i n d f [ c o l s ] :

p r i n t ( ” Skew : %s %.3 f ” % ( co l , skew ( d f [ c o l ] ) ) )

f o r c o l i n d f [ c o l s ] :
p r i n t ( ” k u r t o s i s : %s %.3 f ” % ( co l , k u r t o s i s ( d f [ c o l ] ) ) )

s n s . c o u n t p l o t ( x= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ t h a l ’ , hue= ’ h e a r t a t t a c k ’ , d a t a=df )
c o l s 2 =[ ’ HighBP ’ , ’ HighChol ’ , ’ CholCheck ’ , ’ Smoker ’ ,

’ S t roke ’ , ’ D i a b e t e s ’ , ’ P h y s A c t i v i t y ’ , ’ F r u i t s ’ , ’ Veggies ’ ]

s n s . c o u n t p l o t ( x= ’HighBP ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ HighChol ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ CholCheck ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’Smoker ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ S t roke ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ D i a b e t e s ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ P h y s A c t i v i t y ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ F r u i t s ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )
s n s . c o u n t p l o t ( x= ’ Veggies ’ , hue= ’ H e a r t D i s e a s e o r A t t a c k ’ , d a t a=df )

c o l s =[ ’BMI’ , ’ GenHlth ’ , ’ MentHlth ’ , ’ PhysHl th ’ , ’ Age ’ , ’ Educa t ion ’ , ’ Income ’ ]

myhear t = df [ ’ H e a r t D i s e a s e o r A t t a c k ’ ]
myBMI = df [ ’BMI ’ ]
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h e a r t 0 = myhear t == 0
h e a r t 1 = myhear t == 1

p l t . h i s t (myBMI[ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 0 , 1 0 0 , 4 ) , l a b e l = ’0 ’ )

p l t . h i s t (myBMI[ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 0 , 1 0 0 , 4 ) , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’BMI ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ H e a r t D i s e a s e o r A t t a c k ’ ]
myAge = df [ ’ Age ’ ]

p l t . h i s t ( myAge [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 ] , l a b e l = ’0 ’ )

p l t . h i s t ( myAge [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 ] , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ Age ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ H e a r t D i s e a s e o r A t t a c k ’ ]
myIncome = df [ ’ Income ’ ]

p l t . h i s t ( myIncome [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ ,
a l p h a =0 .5 , b i n s = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] , l a b e l = ’0 ’ )

p l t . h i s t ( myIncome [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ ,
a l p h a =0 .5 , b i n s = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ Income ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ H e a r t D i s e a s e o r A t t a c k ’ ]
myIncome = df [ ’ Educa t ion ’ ]

p l t . h i s t ( myIncome [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] , l a b e l = ’0 ’ )

p l t . h i s t ( myIncome [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] , l a b e l = ’1 ’ )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ Educa t ion ’ )
p l t . y l a b e l ( ’ Frequency ’ )
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p l t . show ( )

c o l s =[ ’ HighBP ’ , ’ HighChol ’ , ’ Smoker ’ , ’ S t roke ’ , ’ CholCheck ’ ,
’ F r u i t s ’ , ’ Veggies ’ , ’ D i a b e t e s ’ ]

d a t a s e t=df . groupby ( ’ H e a r t D i s e a s e o r A t t a c k ’ ) [ c o l s ] . mean ( )
# d a t a s e t

i ndx=np . a r a n g e ( l e n ( c o l s ) )
s c o r e l a b e l=np . a r a n g e ( 0 , 1 . 2 , 0 . 2 )

c o l 1= l i s t ( d a t a s e t . T [ 1 ] )
c o l 2= l i s t ( d a t a s e t . T [ 0 ] )
b a r w i d t h =0.35

f i g , ax= p l t . s u b p l o t s ( )
b a r 1=ax . b a r ( indx−b a r w i d t h / 2 , co l1 , b a r w i d t h ,

l a b e l = ’ more chance o f h e a r t a t t a c k ’ )
b a r 2=ax . b a r ( i ndx+b a r w i d t h / 2 , co l2 , b a r w i d t h ,

l a b e l = ’ l e s s chance o f h e a r t a t t a c k ’ )

# i n s e r t i n g x a x i s l a b e l
ax . s e t x t i c k s ( i ndx )
ax . s e t x t i c k l a b e l s ( c o l s )

ax . l e g e n d ( )

# i n s e r t i n g y a x i s l a b e l
ax . s e t y t i c k s ( s c o r e l a b e l )
ax . s e t y t i c k l a b e l s ( s c o r e l a b e l )

d e f i n s e r t d a t a l a b e l s ( b a r s ) :
f o r b a r i n b a r s :

b a r h e i g h t = b a r . g e t h e i g h t ( )
ax . a n n o t a t e ( ’ { 0 : . 0 f } ’ . f o r m a t ( b a r . g e t h e i g h t ( ) ) ,

xy=( b a r . g e t x ( ) + b a r . g e t w i d t h ( ) / 2 , b a r h e i g h t ) ,
x y t e x t = (0 , 3 ) ,
t e x t c o o r d s = ’ o f f s e t p o i n t s ’ ,
ha= ’ c e n t e r ’ ,
va= ’ bottom ’

)

i n s e r t d a t a l a b e l s ( b a r 1 )
i n s e r t d a t a l a b e l s ( b a r 2 )

p l t . show ( )
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p r e p r o c e s s o r = ColumnTransformer ( t r a n s f o r m e r s =[
( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) , X t r a i n . columns ) ] , r e m a i n d e r = ’ p a s s t h r o u g h ’ )

unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .5 , r a n d o m s t a t e =40)
d e f g e t m o d e l s ( ) :

models = d i c t ( )
model= B a l a n c e d B a g g i n g C l a s s i f i e r ( )
models [ ’ ba l anced ’ ]= P i p e l i n e ( s t e p s = [ ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model= D e c i s i o n T r e e C l a s s i f i e r ( )
models [ ’ ba l anced ’ ]= P i p e l i n e ( s t e p s = [ ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

models [ ’ xgboos t ’ ] = P i p e l i n e ( s t e p s = [ ( ’ under ’ ,
unde r ) , ( ’m’ , xgb . X G B C l a s s i f i e r ( ) ) ] )

models [ ’ Random f o r e s t ’ ] = P i p e l i n e ( s t e p s = [ ( ’ under ’ , unde r ) ,
( ’m’ , R a n d o m F o r e s t C l a s s i f i e r ( r a n d o m s t a t e = 4 2 ) ) ] )

model=A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r=LinearSVC ( ) , a l g o r i t h m = ’SAMME’ )
models [ ’ Ada SVC ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) ,

( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

models [ ’ l o g r e g ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) ,
( ’ under ’ , unde r ) , ( ’m’ , L o g i s t i c R e g r e s s i o n ( ) ) ] )

model = A d a B o o s t C l a s s i f i e r ( )
models [ ’ Adaboost ’ ] = P i p e l i n e ( s t e p s = [ ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model = A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r = L o g i s t i c R e g r e s s i o n (
m a x i t e r =400) )

models [ ’ Adaboost LR ’ ] = P i p e l i n e ( s t e p s=
[ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True )
s c o r e s = c r o s s v a l s c o r e ( model , X, y , s c o r i n g = ’ f1 ’ , cv=cv , n j o b s =−1)
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )
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unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =1 , r a n d o m s t a t e =40)
p r e p r o c e s s o r = ColumnTransformer ( t r a n s f o r m e r s =[

( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) , X t r a i n . columns ) ] , r e m a i n d e r = ’ p a s s t h r o u g h ’ )

d e f g e t m o d e l s ( ) :
models = d i c t ( )
f o r i i n r a n g e ( 5 , 2 1 ) :

r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) ,
n f e a t u r e s t o s e l e c t= i )

# model = A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r =
# L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) , a l g o r i t h m = ’SAMME’ )

model= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e )
models [ s t r ( i ) ] = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,

( ’ s ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )
r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True , r a n d o m s t a t e =42)
s c o r e s = c r o s s v a l s c o r e ( model , X, y ,

s c o r i n g = ’ f1 ’ , cv=cv , n j o b s =−1, e r r o r s c o r e = ’ r a i s e ’ )
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

p r e p r o c e s s o r = ColumnTransformer ( t r a n s f o r m e r s =[
( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) , X t r a i n . columns ) ] , r e m a i n d e r = ’ p a s s t h r o u g h ’ )

unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .5 , r a n d o m s t a t e =40)
model=A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r=

L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) , a l g o r i t h m = ’SAMME’ )
model= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e )

d e f g e t m o d e l s ( ) :
models = d i c t ( )
r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) ,

n f e a t u r e s t o s e l e c t =9)
models [ ’ l r ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) ,

( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

r f e = RFE( e s t i m a t o r=P e r c e p t r o n ( ) , n f e a t u r e s t o s e l e c t =9)
models [ ’ per ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) ,
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( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( ) , n f e a t u r e s t o s e l e c t =9)
models [ ’ d tc ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r ’ , p r e p r o c e s s o r ) ,

( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )
r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True )
s c o r e s = c r o s s v a l s c o r e ( model , X, y , s c o r i n g = ’ f1 ’ , cv=cv , n j o b s =−1)
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

s o l v e r =[ ’ newton−cg ’ , ’ l b f g s ’ , ’ l i b l i n e a r ’ ]
r a n d o m g r i d = { ’ u n d e r s a m p l i n g s t r a t e g y ’ : [ 0 . 5 , 0 . 8 , 1 ] ,

’ r f e e s t i m a t o r C ’ : [ 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 1 , 1 0 , 1 0 0 , 1 0 0 0 ] ,
’ r f e e s t i m a t o r s o l v e r ’ : s o l v e r , ’ r f e n f e a t u r e s t o s e l e c t ’ :
[ 6 , 7 , 8 , 9 , 1 0 , 1 1 ] ,
” m o d e l l e a r n i n g r a t e ” : [ 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 , 0 . 2 5 , 0 . 3 0 ] ,
” mode l max dep th ” : [ 3 , 4 , 5 , 6 , 8 , 1 0 , 1 2 , 1 5 ] ,

” m o d e l m i n c h i l d w e i g h t ” : [ 1 , 3 , 5 , 7 ] , ” model gamma ” :
[ 0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 ] , ” m o d e l c o l s a m p l e b y t r e e ” : [ 0 . 3 , 0 . 4 , 0 . 5 , 0 . 7 ] ,
’ mode l subsample ’ : ( 0 . 0 1 , 1 . 0 , ’ uni form ’ ) ,
’ m o d e l c o l s a m p l e b y t r e e ’ : [ 0 . 3 , 0 . 4 , 0 . 5 , 0 . 7 ] ,
’ m o d e l c o l s a m p l e b y l e v e l ’ : ( 0 . 0 1 , 1 . 0 , ’ uni form ’ ) ,

’ m o d e l n e s t i m a t o r s ’ : ( 5 0 , 1 0 0 , 2 0 0 , 3 0 0 ) }

r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =600) )
unde r = RandomUnderSampler ( r a n d o m s t a t e =40)
p r e p r o c e s s o r = ColumnTransformer ( t r a n s f o r m e r s =[

( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) , X t r a i n . columns ) ] , r e m a i n d e r = ’ p a s s t h r o u g h ’ )

model= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e , n j o b s = 1 ,
o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ e r r o r ’ , t r e e m e t h o d = ’ approx ’ )

m o d e l p i p e l i n e=P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] )

cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True , r a n d o m s t a t e =42)
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o p t = BayesSearchCV ( m o d e l p i p e l i n e ,
[ ( r andom gr id , 8 0 ) ] , cv=cv , s c o r i n g = ’ f1 ’ )

o p t . f i t ( X t r a i n , y t r a i n )

p r i n t ( o p t . b e s t p a r a m s )
p r i n t ( o p t . b e s t s c o r e )

r a n d o m g r i d = { ’ r f e n f e a t u r e s t o s e l e c t ’ : [ 6 , 7 , 8 , 9 , 1 0 ] ,
’ u n d e r s a m p l i n g s t r a t e g y ’ : [ 0 . 5 , 0 . 8 , 1 ] , ’ m o d e l b a s e e s t i m a t o r C ’ :

[ 0 . 0 0 0 1 , 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 1 , 1 0 , 1 0 0 , 1 0 0 0 ] ,
’ m o d e l b a s e e s t i m a t o r m a x i t e r ’ : [ 5 0 0 , 1 0 0 0 , 5 0 0 0 , 1 0 0 0 0 ] ,
’ m o d e l l e a r n i n g r a t e ’ : a r a n g e ( 0 . 1 , 1 , 0 . 1 ) ,
” m o d e l n e s t i m a t o r s ” : [ 50 , 1 0 0 , 2 00 , 2 5 0 , 4 0 0 ] }

r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) )
unde r = RandomUnderSampler ( r a n d o m s t a t e =40)
p r e p r o c e s s o r = ColumnTransformer ( t r a n s f o r m e r s =[

( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) , X t r a i n . columns ) ] , r e m a i n d e r = ’ p a s s t h r o u g h ’ )

model = A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r = L o g i s t i c R e g r e s s i o n ( ) ,
a l g o r i t h m = ’SAMME’ )

m o d e l p i p e l i n e = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] )

cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True , r a n d o m s t a t e =42)

o p t = BayesSearchCV ( m o d e l p i p e l i n e ,
[ ( r andom gr id , 7 0 ) ] , cv=cv , s c o r i n g = ’ f1 ’ )

o p t . f i t ( X t r a i n , y t r a i n )

p r i n t ( o p t . b e s t p a r a m s )
p r i n t ( o p t . b e s t s c o r e )

unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .5 , r a n d o m s t a t e =10)
# r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (C=0 .001 ,
# s o l v e r = ’ l b f g s ’ , m a x i t e r =400) , n f e a t u r e s t o s e l e c t =11)# xgb
r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) ,

n f e a t u r e s t o s e l e c t =9)# Adaboost w i th r f e

model=A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r=L o g i s t i c R e g r e s s i o n (
C=1000 , m a x i t e r =400) , l e a r n i n g r a t e =0 .6 ,

n e s t i m a t o r s =200 , a l g o r i t h m = ’SAMME’ ) # wi th r f e
# model=A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( ) ,
# a l g o r i t h m = ’SAMME’ ) # Adaboost d e f a u l t
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# model=A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r=L o g i s t i c R e g r e s s i o n (C=100) ,
# l e a r n i n g r a t e =0 .6 , n e s t i m a t o r s =400 , a l g o r i t h m = ’SAMME’ ) # w i t h o u t r f e

# model= xgb . X G B C l a s s i f i e r ( c o l s a m p l e b y l e v e l =1 ,
# c o l s a m p l e b y t r e e =0 .7 , gamma=0 .4 , l e a r n i n g r a t e =0 .05 ,
# max depth =3 , m i n c h i l d w e i g h t =7 , n e s t i m a t o r s =200 , subsample =1 ,
# u s e l a b e l e n c o d e r=F a l s e , n j o b s = 1 , o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ ,
# e v a l m e t r i c = ’ e r r o r ’ , t r e e m e t h o d = ’ approx ’ ) # wi th r f e

# model= xgb . X G B C l a s s i f i e r ( c o l s a m p l e b y l e v e l =0 .01 , c o l s a m p l e b y t r e e =0 .7 ,
#gamma=0 .2 , l e a r n i n g r a t e =0 .05 , max depth =3 , m i n c h i l d w e i g h t =1 ,
# n e s t i m a t o r s =300 , subsample =1 , u s e l a b e l e n c o d e r=F a l s e , n j o b s =1 ,
# o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ e r r o r ’ ,

t r e e m e t h o d = ’ approx ’ ) # w i t h o u t r f e

# model= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e , n j o b s =1 ,
# o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ e r r o r ’ ,

t r e e m e t h o d = ’ approx ’ ) # d e f a u l t

p i p e l i n e m o d e l = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] )

# p i p e l i n e m o d e l = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
# ( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] ) # w i t h o u t r f e

p i p e l i n e m o d e l . f i t ( X t r a i n , y t r a i n )

y p r e d t r a i n=p i p e l i n e m o d e l . p r e d i c t ( X t r a i n )

c o n f p r e d t r a i n= c o n f u s i o n m a t r i x ( y t r a i n , y p r e d t r a i n )
p r i n t ( c o n f p r e d t r a i n )

s c o r e t r a i n= f 1 s c o r e ( y t r a i n , y p r e d t r a i n )
p r i n t ( ” F1 on t r a i n i n g s e t a r e { } ” . f o r m a t ( s c o r e t r a i n ) )
y p r e d t e s t = p i p e l i n e m o d e l . p r e d i c t ( X t e s t )

c o n f p r e d t e s t = c o n f u s i o n m a t r i x ( y t e s t , y p r e d t e s t )
p r i n t ( c o n f p r e d t e s t )
s c o r e= f 1 s c o r e ( y t e s t , y p r e d t e s t )
p r i n t ( ” F1 on t e s t s e t a r e { } ” . f o r m a t ( s c o r e ) )
p r i n t ( c l a s s i f i c a t i o n r e p o r t ( y t e s t , y p r e d t e s t ) )

r e c a l l s e n s i t i v i t y = r e c a l l s c o r e ( y t e s t , y p r e d t e s t , p o s l a b e l =1)

r e c a l l s p e c i f i c i t y = r e c a l l s c o r e ( y t e s t , y p r e d t e s t , p o s l a b e l =0)
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r e c a l l s e n s i t i v i t y , r e c a l l s p e c i f i c i t y

p r e p r o c e s s o r = ColumnTransformer ( t r a n s f o r m e r s =[
( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) , X t r a i n . columns ) ] , r e m a i n d e r = ’ p a s s t h r o u g h ’ )

unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .5 , r a n d o m s t a t e =10)

r f e x g b = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (C=0 .001 , s o l v e r = ’ l b f g s ’
, m a x i t e r =400) , n f e a t u r e s t o s e l e c t =11)# xgb

r f e a d a = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) ,
n f e a t u r e s t o s e l e c t =9)# Adaboost w i th r f e

model xgb= xgb . X G B C l a s s i f i e r ( c o l s a m p l e b y l e v e l =1 , c o l s a m p l e b y t r e e =0 .7 ,
gamma=0 .4 , l e a r n i n g r a t e =0 .05 , max depth =3 , m i n c h i l d w e i g h t =7 ,
n e s t i m a t o r s =200 , subsample =1 , u s e l a b e l e n c o d e r=F a l s e ,
n j o b s = 1 , o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ e r r o r ’ ,

t r e e m e t h o d = ’ approx ’ ) # wi th r f e

mode l ada=A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r=L o g i s t i c R e g r e s s i o n (
C=1000 , m a x i t e r =400) , l e a r n i n g r a t e =0 .6 ,

n e s t i m a t o r s =200 , a l g o r i t h m = ’SAMME’ )

p i p e l i n e m o d e l x g b = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
( ’ r f e x g b ’ , r f e x g b ) , ( ’ under ’ , unde r ) , ( ’ model xgb ’ , model xgb ) ] )

p i p e l i n e m o d e l a d a = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r ” , p r e p r o c e s s o r ) ,
( ’ r f e a d a ’ , r f e a d a ) , ( ’ under ’ , unde r ) , ( ’ model ada ’ , mode l ada ) ] )

mode l ada=p i p e l i n e m o d e l a d a . f i t ( X t r a i n , y t r a i n )

p r o b s a d a = model ada . p r e d i c t p r o b a ( X t e s t ) [ : , 1 ]

model xgb = p i p e l i n e m o d e l x g b . f i t ( X t r a i n , y t r a i n )

p r o b s x g b = model xg . p r e d i c t p r o b a ( X t e s t ) [ : , 1 ]

from s k l e a r n . m e t r i c s i m p o r t r o c a u c s c o r e , r o c c u r v e

a u c a d a = r o c a u c s c o r e ( y t e s t , p r o b s a d a )
f p r a d a , t p r a d a , t h r e s h o l d s r f = r o c c u r v e ( y t e s t , p r o b s a d a )

auc xgb = r o c a u c s c o r e ( y t e s t , p r o b s x g b )
f p r x g b , t p r x g b , t h r e s h o l d s x g b = r o c c u r v e ( y t e s t , p r o b s x g b )

p l t . f i g u r e ( f i g s i z e = (7 , 4 ) )

p l t . p l o t ( f p r a d a , t p r a d a , l a b e l=f ’ Adaboost (AUC = { a u c a d a : . 3 f } ) ’ )
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p l t . p l o t ( f p r x g , t p r x g ,
l a b e l=f ’ eXtreme G r a d i e n t B o o s t i n g (AUC = { auc xgb : . 3 f } ) ’ )

p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , c o l o r = ’ b lue ’ , l i n e s t y l e = ’−− ’ , l a b e l = ’ B a s e l i n e ’ )
p l t . t i t l e ( ’ROC Curve ’ , s i z e =20)
p l t . x l a b e l ( ’ F a l s e P o s i t i v e Rate ’ , s i z e =14)
p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ , s i z e =14)
p l t . l e g e n d ( ) ;

r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n (C=0 .001 , s o l v e r = ’ l b f g s ’ ,
m a x i t e r =400) , n f e a t u r e s t o s e l e c t =11)# xgb

# r f e = RFE( e s t i m a t o r=L o g i s t i c R e g r e s s i o n ( m a x i t e r =400) ,
# n f e a t u r e s t o s e l e c t =9)# Adaboost

f i t = r f e . f i t ( X t r a i n , y t r a i n )
p r i n t ( ”Num F e a t u r e s : %d ” % f i t . n f e a t u r e s )
p r i n t ( ” S e l e c t e d F e a t u r e s : %s ” % f i t . s u p p o r t )
p r i n t ( ” F e a t u r e Ranking : %s ” % f i t . r a n k i n g )

p r i n t ( X t r a i n . columns [ r f e . s u p p o r t ] )

C Code for Project 3

i m p o r t pandas as pd
i m p o r t numpy as np
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
from s k l e a r n . p r e p r o c e s s i n g i m p o r t OneHotEncoder
from s k l e a r n . compose i m p o r t m a k e c o l u m n t r a n s f o r m e r
from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r
from s k l e a r n . m e t r i c s i m p o r t a c c u r a c y s c o r e ,
p r e c i s i o n s c o r e , r e c a l l s c o r e , f 1 s c o r e

from s k l e a r n . ensemble i m p o r t R a n d o m F o r e s t C l a s s i f i e r
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t S t r a t i f i e d K F o l d
from i m b l e a r n . p i p e l i n e i m p o r t P i p e l i n e
from i m b l e a r n . u n d e r s a m p l i n g i m p o r t RandomUnderSampler
from s k l e a r n . m e t r i c s i m p o r t c o n f u s i o n m a t r i x
from s k l e a r n . n a i v e b a y e s i m p o r t GaussianNB
from numpy i m p o r t mean
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t c r o s s v a l s c o r e
from s k l e a r n . l i n e a r m o d e l i m p o r t P e r c e p t r o n

from numpy i m p o r t s t d
from s k l e a r n . impute i m p o r t S i m p l e I m p u t e r
from s k l e a r n . compose i m p o r t ColumnTransformer
from s k l e a r n . f e a t u r e s e l e c t i o n i m p o r t RFE
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from s k l e a r n . m e t r i c s i m p o r t c l a s s i f i c a t i o n r e p o r t
i m p o r t x g b o o s t a s xgb
from s k l e a r n . svm i m p o r t SVC
from s k l e a r n . l i n e a r m o d e l i m p o r t L o g i s t i c R e g r e s s i o n
from s k l e a r n . ensemble i m p o r t A d a B o o s t C l a s s i f i e r
from s k l e a r n . t r e e i m p o r t D e c i s i o n T r e e C l a s s i f i e r
from s k l e a r n . n e i g h b o r s i m p o r t K N e i g h b o r s C l a s s i f i e r
from s k l e a r n . ensemble i m p o r t V o t i n g C l a s s i f i e r
from i m b l e a r n . ensemble i m p o r t B a l a n c e d B a g g i n g C l a s s i f i e r
from s k o p t i m p o r t BayesSearchCV
from i m b l e a r n . ensemble i m p o r t B a l a n c e d R a n d o m F o r e s t C l a s s i f i e r
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t s e a b o r n as s n s
from s c i p y . s t a t s i m p o r t skew , k u r t o s i s

d f = pd . r e a d c s v ( ’ D e i d e n t i f i e d d a t a ( approved ) . csv ’ )
# n u m e r i c a l i x = df . s e l e c t d t y p e s ( i n c l u d e=
# [ ’ i n t 6 4 ’ , ’ f l o a t 6 4 ’ ] ) . columns

df [ ’ age ’ ]= df [ ’ age ’ ] . r e p l a c e ( ’89+ ’ , 91)
d f . age = df . age . a s t y p e ( i n t )

c l eanup nums = { ” r a c e ” : { ” O t h e r P a c i f i c I s l a n d e r ” : 1 ,
” N a t i v e A m e r i c a n A l a s k a n ” : 2 , ” Asian ” : 3 , ” D e c l i n e d ” : 4 ,
” White ” : 5 , ” Black ” : 6 , ” Othe r ” : 7 } , ” g en de r ” : { ” F ” : 1 , ”M” : 0 } }

df=df . r e p l a c e ( c l eanup nums )
d f=df . d ropna ( how= ’ any ’ , a x i s =0 , t h r e s h=df . shape [ 1 ] * 0 . 7 )
d f=df . d ropna ( how= ’ any ’ , a x i s =1 , t h r e s h=df . shape [ 0 ] * 0 . 8 )

y=df [ ’ dea th ’ ]
X=df . d rop ( columns= ’ dea th ’ )

c o l s =[” age ” , ” d i a s t o l i c B P ” , ” s y s t o l i c B P ” , ” c r ” , ” N L r a t i o ” , ” pulseOx ” , ” bmi ” ,
” t e m p e r a t u r e ” , ” bun ” , ” t r o p o n i n ” , ” p t t ” , ” c r e a t i n e k i n a s e ” , ” p o t a s s i u m ” ]
X[ c o l s ] . d e s c r i b e ( )

f o r c o l i n d f [ c o l s ] :
p r i n t ( ” Skew : %s %.3 f ” % ( co l , skew ( d f [ c o l ] ) ) )

f o r c o l i n d f [ c o l s ] :
p r i n t ( ” k u r t o s i s : %s %.3 f ” % ( co l , k u r t o s i s ( d f [ c o l ] ) ) )

c o l s =[ ’ age ’ , ’ v e n t i l a t o r ’ , ’ d i a s t o l i c B P ’ , ’ s y s t o l i c B P ’ , ’ cr ’ , ’ NLra t io ’ ,
’ pulseOx ’ , ’ t e m p e r a t u r e ’ , ’ bun ’ , ’ t r o p o n i n ’ , ’ p t t ’ ,

’ bmi ’ , ’ c r e a t i n e k i n a s e ’ , ’ po t a s s ium ’ ]
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myhear t = df [ ’ dea th ’ ]
myage = df [ ’ age ’ ]
h e a r t 0 = myhear t == 0
h e a r t 1 = myhear t == 1

s n s . c o u n t p l o t ( x= ’ dea th ’ , d a t a=df )

s n s . c o u n t p l o t ( x= ’ v e n t i l a t o r ’ , hue= ’ dea th ’ , d a t a=df )

p l t . h i s t ( myage [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 5 , 9 5 , 5 ) , l a b e l = ’0 ’ )
p l t . h i s t ( myage [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 5 , 9 5 , 5 ) , l a b e l = ’1 ’ )

p l t . x l a b e l ( ’ age ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
m y d i a s t o l i c B P = df [ ’ d i a s t o l i c B P ’ ]

p l t . h i s t ( m y d i a s t o l i c B P [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 0 , 1 2 0 , 8 ) , l a b e l = ’0 ’ )
p l t . h i s t ( m y d i a s t o l i c B P [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 0 , 1 2 0 , 8 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ d i a s t o l i c B P ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
m y s y s t o l i c B P = df [ ’ s y s t o l i c B P ’ ]

p l t . h i s t ( m y s y s t o l i c B P [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 0 , 2 1 5 , 1 4 ) , l a b e l = ’0 ’ )
p l t . h i s t ( m y s y s t o l i c B P [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 0 , 2 1 5 , 1 4 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ s y s t o l i c B P ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
mycr = df [ ’ cr ’ ]
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p l t . h i s t ( mycr [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 0 , 3 2 , 2 ) , l a b e l = ’0 ’ )
p l t . h i s t ( mycr [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 0 , 3 2 , 2 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ cr ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
myNLratio = df [ ’ NLra t io ’ ]

p l t . h i s t ( myNLratio [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 0 , 3 0 , 2 ) , l a b e l = ’0 ’ )
p l t . h i s t ( myNLratio [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 0 , 3 0 , 2 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ NLra t io ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
mypulseOx = df [ ’ pulseOx ’ ]

p l t . h i s t ( mypulseOx [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 0 , 9 5 , 6 ) , l a b e l = ’0 ’ )
p l t . h i s t ( mypulseOx [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 0 , 9 5 , 6 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ pulseOx ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
my tempe ra tu r e = df [ ’ t e m p e r a t u r e ’ ]

p l t . h i s t ( my tempe ra tu r e [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ ,
a l p h a =0 .5 , b i n s = r a n g e ( 8 5 , 1 2 5 , 2 ) , l a b e l = ’0 ’ )
p l t . h i s t ( my tempe ra tu r e [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ ,
a l p h a =0 .5 , b i n s = r a n g e ( 8 5 , 1 2 5 , 2 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ t e m p e r a t u r e ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )
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myhear t = df [ ’ dea th ’ ]
mybun = df [ ’ bun ’ ]

p l t . h i s t ( mybun [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 5 , 3 0 5 , 2 0 ) , l a b e l = ’0 ’ )
p l t . h i s t ( mybun [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 5 , 3 0 5 , 2 0 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ bun ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

c o l s =[ ’ age ’ , ’ v e n t i l a t o r ’ , ’ d i a s t o l i c B P ’ , ’ s y s t o l i c B P ’ , ’ cr ’ , ’ p t t ’ ,
’ bmi ’ , ’ NLra t io ’ , ’ pulseOx ’ , ’ t e m p e r a t u r e ’ , ’ bun ’ , ’ t r o p o n i n ’ ,

’ c r e a t i n e k i n a s e ’ , ’ po t a s s ium ’ ]

myhear t = df [ ’ dea th ’ ]
myage = df [ ’ age ’ ]

myhear t = df [ ’ dea th ’ ]
myt ropon in = df [ ’ t r o p o n i n ’ ]

p l t . h i s t ( my t ropon in [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 , b i n s =
[ 0 , 0 . 0 1 5 , 0 . 0 3 , 0 . 0 4 5 , 0 . 0 6 , 0 . 0 7 5 , 0 . 0 9 , 0 . 1 0 5 , 0 . 1 2 , 0 . 1 3 5 ,
0 . 1 5 , 0 . 1 6 5 , 0 . 1 7 , 0 . 1 8 5 , 0 . 2 ] , l a b e l = ’0 ’ )
p l t . h i s t ( my t ropon in [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 , b i n s
= [ 0 , 0 . 0 1 5 , 0 . 0 3 , 0 . 0 4 5 , 0 . 0 6 , 0 . 0 7 5 , 0 . 0 9 , 0 . 1 0 5 , 0 . 1 2 , 0 . 1 3 5 , 0 . 1 5 , 0 . 1 6 5 ,
0 . 1 7 , 0 . 1 8 5 , 0 . 2 ] , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ t r o p o n i n ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
mypt t = df [ ’ p t t ’ ]

p l t . h i s t ( mypt t [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 9 , 2 0 0 , 1 5 ) , l a b e l = ’0 ’ )
p l t . h i s t ( mypt t [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 9 , 2 0 0 , 1 5 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ p t t ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
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mybmi = df [ ’ bmi ’ ]
p l t . h i s t ( mybmi [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 9 , 5 5 , 3 ) , l a b e l = ’0 ’ )
p l t . h i s t ( mybmi [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 9 , 5 5 , 3 ) , l a b e l = ’1 ’ )

# p l t . h i s t ( mybmi [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 1 0 , 1 5 , 2 0 , 2 5 , 3 0 , 3 5 , 4 0 , 4 5 , 5 0 , 5 5 , 6 0 , 6 5 , 7 0 , 7 5 ] , l a b e l = ’0 ’ )
# p l t . h i s t ( mybmi [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 1 0 , 1 5 , 2 0 , 2 5 , 3 0 , 3 5 , 4 0 , 4 5 , 5 0 , 5 5 , 6 0 , 6 5 , 7 0 , 7 5 ] , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ bmi ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
m y c r e a t i n e k i n a s e = df [ ’ c r e a t i n e k i n a s e ’ ]

p l t . h i s t ( m y c r e a t i n e k i n a s e [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 9 , 1 0 0 0 , 6 5 ) , l a b e l = ’0 ’ )
p l t . h i s t ( m y c r e a t i n e k i n a s e [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = r a n g e ( 1 9 , 1 0 0 0 , 6 5 ) , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ c r e a t i n e k i n a s e ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

myhear t = df [ ’ dea th ’ ]
mypotass ium = df [ ’ po ta s s ium ’ ]

p l t . h i s t ( mypotass ium [ h e a r t 0 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 2 , 2 . 5 , 3 , 3 . 5 , 4 , 4 . 5 , 5 , 5 . 5 , 6 , 6 . 5 , 7 , 7 . 5 , 8 , 8 . 5 , 9 ] , l a b e l = ’0 ’ )
p l t . h i s t ( mypotass ium [ h e a r t 1 ] , e d g e c o l o r = ’ b lue ’ , a l p h a =0 .5 ,
b i n s = [ 2 , 2 . 5 , 3 , 3 . 5 , 4 , 4 . 5 , 5 , 5 . 5 , 6 , 6 . 5 , 7 , 7 . 5 , 8 , 8 . 5 , 9 ] , l a b e l = ’1 ’ )
p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( ’ po t a s s ium ’ )
p l t . y l a b e l ( ’ Frequency ’ )
p l t . show ( )

X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t ( X, y ,
t e s t s i z e =0 .2 , s t r a t i f y =y , r a n d o m s t a t e =42)

n u m e r i c a l i x= [ ’ v e n t i l a t o r ’ , ’ a lbumin ’ , ’ d i a s t o l i c B P ’ , ’ s y s t o l i c B P ’ ,
’ cr ’ , ’ e g f r ’ , ’ e o s i n o p h i l ’ , ’ hgb ’ , ’ i n r ’ , ’ lymphocyte ’ ,
’ NLra t io ’ , ’ p l a t e l e t ’ , ’ p r o t e i n ’ , ’ p u l s e ’ , ’ pulseOx ’ ,
’ t e m p e r a t u r e ’ , ’wbc ’ , ’ a l t ’ , ’ a s t ’ , ’ bun ’ , ’ ca lc ium ’ ,
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’ i n t e r l e u k i n 6 ’ , ’mcv ’ , ’ monocyte ’ , ’mpv ’ , ’ rdw ’ , ’ t r o p o n i n ’ ,
’ bmi ’ , ’ g l u c o s e ’ , ’ d i r e c t b i l i ’ , ’ t o t a l b i l i ’ ,
’ c r e a t i n e k i n a s e ’ , ’ po t a s s ium ’ , ’ c h a r l s o n s c o r e ’ ,
’ n e u t r o p h i l ’ , ’ r r ’ , ’ c h l o r i d e ’ , ’ crp ’ , ’ p t t ’ , ’ i n d i r e c t b i l i ’ ]

c a t e g o r i c a l f e a t u r e s =[ ’ r ace ’ ]

n u m e r i c t r a n s f o r m e r = P i p e l i n e ( s t e p s = [ ( ” i m p u t e r ” ,
S i m p l e I m p u t e r ( s t r a t e g y =” median ” ) ) , ( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) ) ] )
p r e p r o c e s s o r 1 = ColumnTransformer ( t r a n s f o r m e r s
= [ ( ’ n u m e r i c t r a n s f o r m e r ’ , n u m e r i c t r a n s f o r m e r , n u m e r i c a l i x ) ,

( ’ encode ’ , OneHotEncoder ( ) , c a t e g o r i c a l f e a t u r e s ) ] ,
r e m a i n d e r = ’ p a s s t h r o u g h ’ )

p r e p r o c e s s o r 2 = ColumnTransformer ( t r a n s f o r m e r s = [ ( ” i m p u t e r ” ,
S i m p l e I m p u t e r ( s t r a t e g y =” median ” ) , n u m e r i c a l i x ) ] , r e m a i n d e r = ’ p a s s t h r o u g h ’ )
unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .5 , r a n d o m s t a t e =40)

d e f g e t m o d e l s ( ) :
models = d i c t ( )

model = R a n d o m F o r e s t C l a s s i f i e r ( )
models [ ’ Random f o r e s t ’ ]= P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 2 ’
, p r e p r o c e s s o r 2 ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model = L o g i s t i c R e g r e s s i o n ( )
models [ ’ D e c i s i o n T r e e ’ ]= P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 1 ’ ,
p r e p r o c e s s o r 1 ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model= xgb . X G B C l a s s i f i e r ( )
models [ ’ xgboos t ’ ]= P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 2 ’ ,
p r e p r o c e s s o r 2 ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model = SVC ( )
models [ ’ svm ’ ]= P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 1 ’ , p r e p r o c e s s o r 1 ) ,
( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model = A d a B o o s t C l a s s i f i e r ( r a n d o m s t a t e =42)
models [ ’ Adaboost ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 2 ’ ,

p r e p r o c e s s o r 2 ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

l r= L o g i s t i c R e g r e s s i o n ( )
gnb=GaussianNB ( )
kn=K N e i g h b o r s C l a s s i f i e r ( n n e i g h b o r s =1)
b a s e m e t h o d s = [ ( ’ p i p e l r ’ , l r ) , ( ’ p ipe gnb ’ , gnb ) , ( ’ pipe Kn ’ , kn ) ]
v o t e m o d e l=V o t i n g C l a s s i f i e r ( e s t i m a t o r s=base methods , v o t i n g = ’ hard ’ )
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models [ ’ Vot ing ’ ] =P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 1 ’ ,
p r e p r o c e s s o r 1 ) , ( ’ under ’ , unde r ) , ( ’m’ , v o t e m o d e l ) ] )

r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True )
s c o r e s = c r o s s v a l s c o r e ( model , X, y , s c o r i n g = ’ f1 ’ , cv=cv , n j o b s =−1)
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

d e f g e t m o d e l s ( ) :
models = d i c t ( )
f o r i i n r a n g e ( 5 , 3 0 ) :

r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( ) ,
n f e a t u r e s t o s e l e c t= i )
model = xgb . X G B C l a s s i f i e r ( )
models [ s t r ( i ) ] = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r 2 ” ,
p r e p r o c e s s o r 2 ) , ( ’ s ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True , r a n d o m s t a t e =42)
s c o r e s = c r o s s v a l s c o r e ( model , X, y , s c o r i n g = ’ r e c a l l ’ , cv=cv ,
n j o b s =−1, e r r o r s c o r e = ’ r a i s e ’ )
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

n u m e r i c t r a n s f o r m e r = P i p e l i n e ( s t e p s = [ ( ” i m p u t e r ” ,
S i m p l e I m p u t e r ( s t r a t e g y =” median ” ) ) , ( ’ s c a l e ’ , S t a n d a r d S c a l e r ( ) ) ] )
p r e p r o c e s s o r 1 = ColumnTransformer ( t r a n s f o r m e r s
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= [ ( ’ n u m e r i c t r a n s f o r m e r ’ , n u m e r i c t r a n s f o r m e r , n u m e r i c a l i x ) ,
( ’ encode ’ , OneHotEncoder ( ) , c a t e g o r i c a l f e a t u r e s ) ] ,

r e m a i n d e r = ’ p a s s t h r o u g h ’ )

p r e p r o c e s s o r 2 = ColumnTransformer ( t r a n s f o r m e r s = [ ( ” i m p u t e r ” ,
S i m p l e I m p u t e r ( s t r a t e g y =” median ” ) , n u m e r i c a l i x ) ] ,

r e m a i n d e r = ’ p a s s t h r o u g h ’ )
unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .5 , r a n d o m s t a t e =40)
d e f g e t m o d e l s ( ) :

models = d i c t ( )

model = R a n d o m F o r e s t C l a s s i f i e r ( )
models [ ’ Random f o r e s t ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 2 ’
, p r e p r o c e s s o r 2 ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model = L o g i s t i c R e g r e s s i o n ( )
models [ ’ D e c i s i o n T r e e ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 1 ’ ,
p r e p r o c e s s o r 1 ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model= xgb . X G B C l a s s i f i e r ( )
models [ ’ xgboos t ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 2 ’ ,
p r e p r o c e s s o r 2 ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model = SVC ( )
models [ ’ svm ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 1 ’ , p r e p r o c e s s o r 1 ) ,
( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

model = A d a B o o s t C l a s s i f i e r ( r a n d o m s t a t e =42)
models [ ’ Adaboost ’ ] = P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 2 ’ ,
p r e p r o c e s s o r 2 ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

l r= L o g i s t i c R e g r e s s i o n ( )
gnb=GaussianNB ( )
kn=K N e i g h b o r s C l a s s i f i e r ( n n e i g h b o r s =1)
b a s e m e t h o d s = [ ( ’ p i p e l r ’ , l r ) , ( ’ p ipe gnb ’ , gnb ) , ( ’ pipe Kn ’ , kn ) ]
v o t e m o d e l=V o t i n g C l a s s i f i e r ( e s t i m a t o r s=base methods , v o t i n g = ’ hard ’ )

models [ ’ Vot ing ’ ] =P i p e l i n e ( s t e p s = [ ( ’ p r e p r o c e s s o r 1 ’ ,
p r e p r o c e s s o r 1 ) , ( ’ under ’ , unde r ) , ( ’m’ , v o t e m o d e l ) ] )

r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True )
s c o r e s = c r o s s v a l s c o r e ( model , X, y , s c o r i n g = ’ f1 ’ ,
cv=cv , n j o b s =−1)
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r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

d e f g e t m o d e l s ( ) :
models = d i c t ( )
f o r i i n r a n g e ( 5 , 3 0 ) :

r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( ) ,
n f e a t u r e s t o s e l e c t= i )

model = xgb . X G B C l a s s i f i e r ( )
models [ s t r ( i ) ] = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r 2 ” ,
p r e p r o c e s s o r 2 ) , ( ’ s ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’m’ , model ) ] )

r e t u r n models

d e f e v a l u a t e m o d e l ( model , X, y ) :
cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True , r a n d o m s t a t e =42)
s c o r e s = c r o s s v a l s c o r e ( model , X, y , s c o r i n g = ’ r e c a l l ’ , cv=cv ,
n j o b s =−1, e r r o r s c o r e = ’ r a i s e ’ )
r e t u r n s c o r e s

models = g e t m o d e l s ( )
r e s u l t s , names = l i s t ( ) , l i s t ( )
f o r name , model i n models . i t e m s ( ) :

s c o r e s = e v a l u a t e m o d e l ( model , X t r a i n , y t r a i n )
r e s u l t s . append ( s c o r e s )
names . append ( name )
p r i n t (’>% s %.3 f (%.3 f ) ’ % ( name , mean ( s c o r e s ) , s t d ( s c o r e s ) ) )

n e s t i m a t o r s = [ 1 5 0 , 2 0 0 ,2 5 0 , 3 00 , 4 5 0 ]
m a x f e a t u r e s = [ ’ au to ’ , ’ s q r t ’ ]
max depth = [ 8 , 9 , 1 0 , 1 1 , 1 2 ]
m i n s a m p l e s s p l i t = [ 2 , 5 , 10]
m i n s a m p l e s l e a f = [ 1 , 2 , 3 , 4 ]
b o o t s t r a p = [ True , F a l s e ]
r a n d o m g r i d = { ’ r f e e s t i m a t o r m a x d e p t h ’ : [ 2 , 4 , 6 , 8 , 1 0 , 1 2 , None ] ,
’ r f e n f e a t u r e s t o s e l e c t ’ : [ 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] ,

’ u n d e r s a m p l i n g s t r a t e g y ’ : [ 0 . 5 , 0 . 8 ] , ’ m o d e l n e s t i m a t o r s ’ :
n e s t i m a t o r s , ’ m o d e l m a x f e a t u r e s ’ : m a x f e a t u r e s ,

’ mode l max dep th ’ : max depth , ’ m o d e l m i n s a m p l e s s p l i t ’ :
m i n s a m p l e s s p l i t , ’ m o d e l m i n s a m p l e s l e a f ’ : m i n s a m p l e s l e a f ,
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’ m o d e l b o o t s t r a p ’ : b o o t s t r a p }

r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( ) )
unde r = RandomUnderSampler ( r a n d o m s t a t e =40)
p r e p r o c e s s o r 2=ColumnTransformer ( t r a n s f o r m e r s = [ ( ” i m p u t e r ” ,
S i m p l e I m p u t e r ( s t r a t e g y =” median ” ) , n u m e r i c a l i x ) ] ,

r e m a i n d e r = ’ p a s s t h r o u g h ’ )

model = R a n d o m F o r e s t C l a s s i f i e r ( r a n d o m s t a t e =42)

m o d e l p i p e l i n e = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r 2 ” ,
p r e p r o c e s s o r 2 ) , # ( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] )

cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True , r a n d o m s t a t e =42)

o p t = BayesSearchCV ( m o d e l p i p e l i n e , [ ( r andom gr id , 6 0 ) ] ,
cv=cv , s c o r i n g = ’ f1 ’ )

o p t . f i t ( X t r a i n , y t r a i n )

p r i n t ( o p t . b e s t p a r a m s )
p r i n t ( o p t . b e s t s c o r e )

model= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e , n j o b s = 1 ,
o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ auc ’ ,
s i l e n t =1 , t r e e m e t h o d = ’ approx ’ )

unde r = RandomUnderSampler ( r a n d o m s t a t e =40)
r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( ) )

p r e p r o c e s s o r 2=ColumnTransformer ( t r a n s f o r m e r s = [ ( ” i m p u t e r ” ,
S i m p l e I m p u t e r ( s t r a t e g y =” median ” ) , n u m e r i c a l i x ) ] ,

r e m a i n d e r = ’ p a s s t h r o u g h ’ )

r a n d o m g r i d = { ’ r f e e s t i m a t o r m a x d e p t h ’ : [ 2 , 4 , 6 , 8 , 1 0 , 1 2 , None ] ,
’ r f e n f e a t u r e s t o s e l e c t ’ : [ 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] ,
’ u n d e r s a m p l i n g s t r a t e g y ’ : [ 0 . 5 , 0 . 8 ] , ” m o d e l l e a r n i n g r a t e ” :
[ 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 , 0 . 2 5 , 0 . 3 0 ] ,
” mode l max dep th ” : [ 3 , 4 , 5 , 6 , 8 , 1 0 , 1 2 , 1 5 ] ,
” m o d e l m i n c h i l d w e i g h t ” : [ 1 , 3 , 5 , 7 ] ,
” model gamma ” : [ 0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 ] ,
” m o d e l c o l s a m p l e b y t r e e ” : [ 0 . 3 , 0 . 4 , 0 . 5 , 0 . 7 ] , ’ mode l subsample ’ :
( 0 . 0 1 , 1 . 0 , ’ uni form ’ ) ,
’ m o d e l c o l s a m p l e b y t r e e ’ : [ 0 . 3 , 0 . 4 , 0 . 5 , 0 . 7 ] ,
’ m o d e l c o l s a m p l e b y l e v e l ’ : ( 0 . 0 1 , 1 . 0 , ’ uni form ’ ) ,
’ m o d e l n e s t i m a t o r s ’ : ( 5 0 , 1 0 0 , 2 0 0 , 3 0 0 ) }
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# m o d e l p i p e l i n e = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r 2 ” , p r e p r o c e s s o r 2 ) ,
( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] )
m o d e l p i p e l i n e = P i p e l i n e ( s t e p s = [ ( ” p r e p r o c e s s o r 2 ” , p r e p r o c e s s o r 2 ) ,
( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] )

cv = S t r a t i f i e d K F o l d ( n s p l i t s =5 , s h u f f l e=True )

o p t = BayesSearchCV ( m o d e l p i p e l i n e , [ ( r andom gr id , 1 0 0 ) ] , cv=cv ,
s c o r i n g = ’ f1 ’ , n j o b s = 3 , v e r b o s e = 0 , r e f i t = True , r a n d o m s t a t e = 42)

o p t . f i t ( X t r a i n , y t r a i n )

p r i n t ( o p t . b e s t p a r a m s )
p r i n t ( o p t . b e s t s c o r e )

r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( max depth =8) ,
n f e a t u r e s t o s e l e c t =15)# xgb

# r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( max depth =6) ,
n f e a t u r e s t o s e l e c t =15)# r f

p r e p r o c e s s o r 2=ColumnTransformer ( t r a n s f o r m e r s = [ ( ” i m p u t e r ” ,
S i m p l e I m p u t e r ( s t r a t e g y =” median ” ) , n u m e r i c a l i x ) ] ,

r e m a i n d e r = ’ p a s s t h r o u g h ’ )

# unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .5 ,
r a n d o m s t a t e =40)# xgb d e f a u l t

# unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0.728126631947327 ,
r a n d o m s t a t e =40)# r f w i t h o u t r f e

# unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0.5839989677305552 ,
# r a n d o m s t a t e =40)# r f w i th r f e
unde r = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .8 , r a n d o m s t a t e =40)# xgb

# model = R a n d o m F o r e s t C l a s s i f i e r ( b o o t s t r a p=True , max depth =10 ,
# m a x f e a t u r e s = ’ s q r t ’ , n e s t i m a t o r s =450 , m i n s a m p l e s l e a f =3 ,

# m i n s a m p l e s s p l i t =2 , r a n d o m s t a t e =42) # wi th r f e

# model = R a n d o m F o r e s t C l a s s i f i e r ( b o o t s t r a p=True , max depth =12 ,
# m a x f e a t u r e s = ’ au to ’ , n e s t i m a t o r s =150 , m i n s a m p l e s l e a f =1 ,
# m i n s a m p l e s s p l i t =2 , r a n d o m s t a t e =42) # w i t h o u t r f e

# model = R a n d o m F o r e s t C l a s s i f i e r ( ) # d e f a u l t

# model= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e , n j o b s = 1 ,
o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ auc ’ , s i l e n t =1 ,
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t r e e m e t h o d = ’ approx ’ ) # d e f e a u l t h y p e r p a r a m e t e r s
# model= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e , n j o b s = 1 ,
# o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ auc ’ ,
# c o l s a m p l e b y l e v e l =1 , c o l s a m p l e b y t r e e =0 .7 , gamma=0 .0 ,
l e a r n i n g r a t e =0 .05 , max depth =6 , m i n c h i l d w e i g h t =1 , n e s t i m a t o r s =300 ,
subsample =1 , s i l e n t =1 , t r e e m e t h o d = ’ approx ’ ) # Wi thou t r f e

model= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e , n j o b s = 1 ,
o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ auc ’ ,
c o l s a m p l e b y l e v e l =0 .01 , c o l s a m p l e b y t r e e =0 .7 , gamma=0 .4 ,
l e a r n i n g r a t e =0 .05 , max depth =3 , m i n c h i l d w e i g h t =1 ,
n e s t i m a t o r s =100 , subsample =0.7173804504207143 , s i l e n t =1 ,
t r e e m e t h o d = ’ approx ’ ) # With r f e

p i p e l i n e m o d e l = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r 2 ” ,
p r e p r o c e s s o r 2 ) , ( ’ r f e ’ , r f e ) , ( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] )
# p i p e l i n e m o d e l = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r 2 ” ,
p r e p r o c e s s o r 2 ) , ( ’ under ’ , unde r ) , ( ’ model ’ , model ) ] )

p i p e l i n e m o d e l . f i t ( X t r a i n , y t r a i n )

y p r e d t r a i n=p i p e l i n e m o d e l . p r e d i c t ( X t r a i n )

c o n f p r e d t r a i n= c o n f u s i o n m a t r i x ( y t r a i n , y p r e d t r a i n )
p r i n t ( c o n f p r e d t r a i n )

s c o r e t r a i n= f 1 s c o r e ( y t r a i n , y p r e d t r a i n )
p r i n t ( ” F1 on t r a i n i n g s e t { } ” . f o r m a t ( s c o r e t r a i n ) )
y p r e d t e s t = p i p e l i n e m o d e l . p r e d i c t ( X t e s t )

c o n f p r e d t e s t = c o n f u s i o n m a t r i x ( y t e s t , y p r e d t e s t )
p r i n t ( c o n f p r e d t e s t )
s c o r e= f 1 s c o r e ( y t e s t , y p r e d t e s t )
p r i n t ( ” F1 on t e s t s e t { } ” . f o r m a t ( s c o r e ) )
p r i n t ( c l a s s i f i c a t i o n r e p o r t ( y t e s t , y p r e d t e s t ) )

r e c a l l s e n s i t i v i t y = r e c a l l s c o r e ( y t e s t , y p r e d t e s t , p o s l a b e l =1)

r e c a l l s p e c i f i c i t y = r e c a l l s c o r e ( y t e s t , y p r e d t e s t , p o s l a b e l =0)

r e c a l l s e n s i t i v i t y , r e c a l l s p e c i f i c i t y

p r e p r o c e s s o r 2 = ColumnTransformer ( t r a n s f o r m e r s = [ ( ” i m p u t e r ” ,
S i m p l e I m p u t e r ( s t r a t e g y =” median ” ) , n u m e r i c a l i x ) ] ,

r e m a i n d e r = ’ p a s s t h r o u g h ’ )
u n d e r x g b = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0 .8 , r a n d o m s t a t e =40)
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u n d e r r f = RandomUnderSampler ( s a m p l i n g s t r a t e g y =0.5839989677305552 ,
r a n d o m s t a t e =40)

r f e x g b = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( max depth =8) ,
n f e a t u r e s t o s e l e c t =15)# xgb
r f e r f = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( max depth =6) ,
n f e a t u r e s t o s e l e c t =15)# r f

model xgb= xgb . X G B C l a s s i f i e r ( u s e l a b e l e n c o d e r=F a l s e , n j o b s = 1 ,
o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , e v a l m e t r i c = ’ auc ’ ,
c o l s a m p l e b y l e v e l =0 .01 , c o l s a m p l e b y t r e e =0 .7 , gamma=0 .4 ,
l e a r n i n g r a t e =0 .05 , max depth =3 , m i n c h i l d w e i g h t =1 ,
n e s t i m a t o r s =100 , subsample =0.7173804504207143 , s i l e n t =1 ,

t r e e m e t h o d = ’ approx ’ )

m o d e l r f = R a n d o m F o r e s t C l a s s i f i e r ( b o o t s t r a p=True ,
max depth =10 , m a x f e a t u r e s = ’ s q r t ’ , n e s t i m a t o r s =450 , m i n s a m p l e s l e a f =3 ,

m i n s a m p l e s s p l i t =2 , r a n d o m s t a t e =42) # wi th r f e

p i p e l i n e m o d e l x g b = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r 2 ” ,
p r e p r o c e s s o r 2 ) , ( ’ r f e x g b ’ , r f e x g b ) , ( ’ under xgb ’ , u n d e r x g b ) ,
( ’ model xgb ’ , model xgb ) ] )
p i p e l i n e m o d e l r f = P i p e l i n e ( s t e p s =[ ( ” p r e p r o c e s s o r 2 ” ,
p r e p r o c e s s o r 2 ) , ( ’ r f e r f ’ , r f e r f ) , ( ’ u n d e r r f ’ , u n d e r r f ) ,
( ’ m o d e l r f ’ , m o d e l r f ) ] )

m o d e l r f = p i p e l i n e m o d e l x g b . f i t ( X t r a i n , y t r a i n )

p r o b s r f = m o d e l r f . p r e d i c t p r o b a ( X t e s t ) [ : , 1 ]

model xg = p i p e l i n e m o d e l r f . f i t ( X t r a i n , y t r a i n )

p r o b s x g = model xg . p r e d i c t p r o b a ( X t e s t ) [ : , 1 ]

from s k l e a r n . m e t r i c s i m p o r t r o c a u c s c o r e , r o c c u r v e

a u c r f = r o c a u c s c o r e ( y t e s t , p r o b s r f )
f p r r f , t p r r f , t h r e s h o l d s r f = r o c c u r v e ( y t e s t , p r o b s r f )

auc xg = r o c a u c s c o r e ( y t e s t , p r o b s x g )
f p r x g , t p r x g , t h r e s h o l d s x g = r o c c u r v e ( y t e s t , p r o b s x g )

p l t . f i g u r e ( f i g s i z e = (7 , 4 ) )
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p l t . p l o t ( f p r r f , t p r r f , l a b e l=f ’ Random F o r e s t
(AUC = { a u c r f : . 3 f } ) ’ )
p l t . p l o t ( f p r x g , t p r x g , l a b e l=f ’ eXtreme G r a d i e n t B o o s t i n g (AUC =
{ auc xg : . 3 f } ) ’ )
p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , c o l o r = ’ b lue ’ , l i n e s t y l e = ’−− ’ , l a b e l = ’ B a s e l i n e ’ )
p l t . t i t l e ( ’ROC Curve ’ , s i z e =20)
p l t . x l a b e l ( ’ F a l s e P o s i t i v e Rate ’ , s i z e =14)
p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ , s i z e =14)
p l t . l e g e n d ( ) ;

i m p u t e r = S i m p l e I m p u t e r ( s t r a t e g y =” median ” )
X= i m p u t e r . f i t t r a n s f o r m ( X t r a i n )
X t r a i n = pd . DataFrame (X, columns=X t r a i n . columns )

# r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( max depth =8) ,
n f e a t u r e s t o s e l e c t =15)# xgb
r f e = RFE( e s t i m a t o r=D e c i s i o n T r e e C l a s s i f i e r ( max depth =6) ,
n f e a t u r e s t o s e l e c t =15)# r f

f i t = r f e . f i t ( X t r a i n , y t r a i n )

p r i n t ( ”Num F e a t u r e s : %d ” % f i t . n f e a t u r e s )
p r i n t ( ” S e l e c t e d F e a t u r e s : %s ” % f i t . s u p p o r t )
p r i n t ( ” F e a t u r e Ranking : %s ” % f i t . r a n k i n g )

p r i n t ( X t r a i n . columns [ r f e . s u p p o r t ] )
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