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Abstract 
 

 

The ever-increasing production of spatiotemporal data, the increasingly velocity of their 

production as well as the development of real-time streaming data analysis systems, have 

raised new challenges in the field of data analysis. The analysis of trajectory data of 

moving objects is crucial for companies and organizations, which possess, and therefore 

need to effectively manage, fleets of vehicles. Efficient fleet management is based on 

quick and effective decision making. Thus, real-time and effective analysis of GPS 

emitted data is of vital importance.  

In this Diploma Thesis, we propose a system that processes the GPS emitted data in 

real-time and creates a concise and explanatory report of each vehicle’s trips. One of the 

major challenges that real-time streaming data analysis systems are facing, is the effective 

processing of the delayed, out-of-order data. Our proposed implementation addresses this 

issue since it effectively detects and processes data that reaches the system in wrong 

chronological order. 

The implementation of the proposed system is based on the use of scalable 

technologies. Apache Kafka was adopted as storage layer for the GPS emitted data. 

Processing of stored data is undertaken by Apache Flink, which is capable of distributed 

processing bounded and unbounded data streams, with high throughput, low latency and 

in a fault-tolerant way. The processed data are then stored into Elasticsearch, which 

allows fast search and retrieval of the required statistics. The last step of the proposed 

implementation is the visualization of the stored statistics. Kibana is used to create all the 

necessary dashboards, providing the end user with a high overview of the results. 

This thesis is structured as follows: First, the theoretical foundations of big data 

analysis for both streaming and bounded data are presented. Then, the most popular real-

time stream processing frameworks are presented and compared. Moreover, we explain in 

detail the proposed architecture, how our application is processing data that reach the 

system in chronological order and how it handles the delayed data. Finally, we present 

the performance of the implemented system. 

 

 

Keywords: Spatiotemporal Data, Big Data, Real-Time Data Analytics, Stream 

Processing Frameworks 
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Περίληψη 
 

 

Η συνεχώς αυξανόμενη παραγωγή χωροχρονικών δεδομένων, η ταχύτητα της παραγωγής 

τους καθώς και η ανάπτυξη των συστημάτων ανάλυσης ροών δεδομένων, έχουν 

οδηγήσει στη δημιουργία νέων προκλήσεων στον τομέα της ανάλυσης δεδομένων. Η 

ανάλυση δεδομένων τροχιάς είναι νευραλγικής σημασίας για εταιρείες και οργανισμούς 

που διαθέτουν στόλο οχημάτων, τον οποίο οφείλουν να διαχειρίζονται αποτελεσματικά. 

H σωστή διαχείριση του στόλου στηρίζεται στη γρήγορη λήψη αποφάσεων. Είναι 

επομένως σημαντικό, η ανάλυση δεδομένων που εκπέμπονται από συσκευές 

εγκατεστημένες στα οχήματα, να γίνεται αποτελεσματικά και σε πραγματικό χρόνο. 

Στη συγκεκριμένη διπλωματική εργασία, προτείνουμε ένα σύστημα το οποίο 

επεξεργάζεται τα δεδομένα που εκπέμπονται από τα οχήματα, σε πραγματικό χρόνο και 

δημιουργεί μία συνοπτική και επεξηγηματική αναφορά για τα ταξίδια που 

πραγματοποίησε το κάθε όχημα. Μία από τις σημαντικότερες δυσκολίες που 

αντιμετωπίζουν τα συστήματα ανάλυσης ροών δεδομένων σε πραγματικό χρόνο είναι η 

σωστή διαχείριση εκείνων των δεδομένων που καταφθάνουν αργοπορημένα στο 

σύστημα. Η υλοποίηση μας αντιμετωπίζει αυτό το πρόβλημα, καθώς εντοπίζει και 

επεξεργάζεται αποτελεσματικά τα δεδομένα που φτάνουν στο σύστημα σε λανθασμένη 

χρονολογική σειρά. 

Για την υλοποίηση του παραπάνω συστήματος στόχος ήταν η χρησιμοποίηση 

κλιμακώσιμων τεχνολογιών. Για την αποθήκευση των δεδομένων που εκπέμπονται από 

τις εγκατεστημένες στα οχήματα συσκευές, χρησιμοποιήθηκε το Apache Kafka. Την 

επεξεργασία των αποθηκευμένων δεδομένων την αναλαμβάνει το Apache Flink, το οποίο 

είναι ικανό να επεξεργάζεται συνεχείς αλλά και οριοθετημένες ροές δεδομένων, 

κατανεμημένα, σε υψηλό ρυθμό, με ελάχιστη καθυστέρηση και με ανοχή στα σφάλματα. 

Στη συνέχεια, τα επεξεργασμένα δεδομένα, αποθηκεύονται με τη βοήθεια του 

Elasticsearch, το οποίο επιτρέπει τη γρήγορη αναζήτηση των στατιστικών που επιθυμεί ο 

χρήστης. Τέλος, το Kibana αναλαμβάνει την οπτικοποίηση των αποθηκευμένων 

δεδομένων. 

Η δομή της παρούσας διπλωματικής εργασίας είναι η ακόλουθη: Αρχικά, 

παρουσιάζεται το θεωρητικό υπόβαθρο που αφορά την επεξεργασία μεγάλων δεδομένων, 

τόσο οριοθετημένων όσο και συνεχών ροών. Στη συνέχεια, γίνεται παρουσίαση και 

σύγκριση των διαφόρων συστημάτων επεξεργασίας ροών δεδομένων. Τέλος, εξηγείται 

εκτενώς η προτεινόμενη αρχιτεκτονική, παρουσιάζονται οι επιδόσεις του συστήματος, 

καθώς και ο τρόπος επεξεργασίας τόσο των δεδομένων που φτάνουν στη σωστή 

χρονολογική σειρά, όσο και των δεδομένων που φτάνουν στο σύστημα αργοπορημένα. 

 

 

Λέξεις Κλειδιά: Χωροχρονικά Δεδομένα, Μεγάλα Δεδομένα, Ανάλυση Δεδομένων σε 

Πραγματικό Χρόνο, Συστήματα Επεξεργασίας Συνεχών Ροών Δεδομένων 
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1.  Introduction 
 

In modern era, the rapid growth of GPS (Global Positioning System) enabled devices 

has led to the production of vast amount of trajectory data and has raised new challenges 

for the analysis of big mobility data. The need of efficient analysis of this kind of data 

applies to different domains of industry, such as urban, marine, and air-traffic 

management. There are several applications, where data generated by devices installed on 

vehicles, ships or aircraft needs to be processed with minimal latency. For example, a 

system that detects anomalies in trajectories of moving objects or dangerous driving 

behavior, should process data as soon as they reach the system. With that said, we can 

easily understand why research interest has focused on real-time analysis of data streams 

that are emitted by moving objects. This thesis focuses on real-time trajectory analysis of 

fleets of commercial vehicles, which constitutes an extremely important factor of 

European and global economy. 

In this chapter, we provide the motivation, introduce the problem under consideration 

and present the objective and the challenges of this thesis. Finally, we provide the 

document’s structure. 

 

 

1.1.  Motivation & Problem Statement 
 

According to the European Automobile Manufacturers Association, in 2020, the 

European Union’s passenger car fleet grew by 1,2% compared to 2019, with 

approximately 246 million cars on the road in total, whereas there are more than 6 million 

medium and heavy commercial vehicles on European Union’s roads [14]. Thus, vehicle 

fleet management is of crucial importance for many companies. Installed devices on 

commercial vehicles emit enormous amounts of spatiotemporal and operational data. 

Collection and analysis of these data can provide meaningful insights into different 

aspects of fleet management, such as fleet maintenance, driver behavior, economical 

driving, fuel consumption, planning and managing of the transportation services. Data 

streams that are emitted from moving vehicles must be processed with low latency for 

better fleet monitoring and on time decision-making. 

For a human to understand this amount of information, data aggregation needs to take 

place and transform the emitted GPS data stream into a condensed, meaningful, and clear 

piece of information. In this diploma thesis we assume that the emitted GPS records 

contain the following information:  
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• Id of the vehicle that the GPS device is installed on 

• Timestamp of the emitted GPS record 

• Engine Status of the vehicle 

• Geographic coordinates 

• Speed of the vehicle 

 

Even though various analysis results can be generated, as mentioned above, the basis 

information is the vehicle’s route report [Figure 1]. This report describes the trip that a 

vehicle performed since the engine started, up to the point the driver switched it off, 

offering a high level of easily understandable information by providing the following data 

within a single line: 

 

• Date and time of trip start  

• Coordinates of starting location 

• Duration of the trip 

• Temporary stop duration (speed is equal to 0 but engine is on) 

• Parked duration (time between engine off and engine on states) 

• Average speed 

• Maximum speed 

• Speed violations (based on a predefined threshold) 

• Coordinates of ending location 

• Date and time of trip end 

 

 

Figure 1: Example of route report 

 

In the most common implementation, GPS emitted data are stored into a database and 

when the user requests the route report, data aggregations take place and statistics of each 

trip are calculated for the route report to be generated. This process takes significant 

amount of time to be completed and leads to poor customer experience. In this thesis we 
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try to overcome these drawbacks, by proposing an architecture that will calculate the 

required statistics when data arrive at the system and not when user asks for the route 

report. 

To be more specific, the problem that this diploma thesis aims to address is the 

following: Given that emitted GPS data contain the information that we described above, 

the route report [Figure 1] should be generated. For the route report to be generated, the 

computations of the required values of each trip should be triggered when the emitted 

GPS data arrive at the system, and not when the user requests the report. Thus, no raw 

GPS data will be stored, but only the already calculated values of a given trip. 

A challenging part of this implementation is that for a plethora of reasons, for example 

low signal strength of the installed device, data are sometimes outdated. These data must 

be processed in an effective way in order not to lose any important information. Since the 

required values of the trip are updated every time a new GPS record arrives at the system, 

there is a chance that not all the corresponding data of the trip have been considered in 

the calculations of the trip’s statistics. When the missing, outdated GPS record arrives at 

the application, the already computed values should be corrected. The efficient 

recalculations of the already computed values of a given trip is one of the most 

challenging parts of this thesis. 

 

 

1.2.  Objective of this Thesis 
 

This thesis project aims to implement a highly efficient system that analyzes the 

trajectory data of moving vehicles in real-time. The proposed implementation needs to 

efficiently process the emitted GPS data as soon as they arrive at the system, with low 

latency, and produce the required statistics, for the route report [Figure 1] to be generated.  

Since the calculations of the required values are performed in real-time, on each one of 

the emitted GPS data, another requirement of this thesis is to address and correctly handle 

data that may arrive at the system later than expected. In order to correctly calculate the 

desired statistics of a trip and not produce incorrect results, effective handling of the 

delayed, out-of-order data is of crucial importance for the implemented system. 

The calculated statistics should also be stored in an efficient way so that they can be 

retrieved as quickly as possible when requested by the user. Finally, data should be 

effectively visualized to provide users with a high level of monitoring of each vehicle’s 

trip. 
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Right below we summarize the main goals of this thesis: 

 

Goal 1: Developing an application that will calculate in real-time the values needed to 

generate the route report [Figure 1]. It is of crucial importance that the designed 

application processes the delayed data efficiently, in order to correctly update the already 

computed values and provide correct and meaningful insights. 

 

Goal 2: Storing the required values in an efficient way so that the end user can access 

them quickly. A visualization layer should be added to provide the end user with a high 

overview of the statistics of each trip. 

 

 

1.3.  Thesis Structure 
 

The remaining of this thesis is structured as follows: 

Chapter 2 presents the basic characteristics of big data, the basic concepts of big data 

technologies and big data processing, and the different architectures of stream processing. 

It addresses the main differences between batch and stream processing. Mainly, focus is 

given to the data stream processing, for which key concepts and architectures are 

presented. 

Chapter 3 introduces the technical background for big data stream processing and big 

data storage. Initially we present the most common used technologies for stream 

processing. Apache Storm, Apache Spark Streaming, Apache Flink, Apache Samza and 

Kafka Streams are briefly presented. We also go through comparisons of these tools and 

we discuss their main differences, the advantages, and the disadvantages of each one. 

Finally, we present the different types of NoSQL databases, which are by their nature the 

most suitable storage option for big data. 

Chapter 4 presents the overall architecture of the proposed implementation, the 

technologies and methodologies that have been used. Additionally, in this chapter we 

discuss the logic that we used to compute the required trip statistics, and how we handle 

the calculations on out-of-order data. Finally, we discuss how the processed data are 

stored, and we present the dashboards that visualize the calculated statistics.  

Chapter 5 introduces the dataset that was used throughout this thesis and discusses 

the performance of our proposed solution. 

Chapter 6 summarizes the results of this thesis project and indicates the directions for 

future work. 
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2.  Theoretical Background 
 

In this chapter, we provide an overview of the theoretical concepts related to this 

thesis. Initially we discuss definition and characteristics of big data. Subsequently, we 

present the different big data processing approaches, focusing on stream processing. 

Finally, we consider stream processing architectures and core concepts. 

 

 

2.1.  Big Data 
 

Over the last years, the wide use of Internet, social medias, and the extremely fast 

development of IoT (Internet of Things) have led to exponential growth of produced data. 

Enhanced medical devices, wearables, GPS tracking devices, factory automation sensors 

are only a small number of an endless list of products which contribute to the creation of 

huge amounts of data. According to Statista, it is expected that by 2025, the digital 

information will grow up to 181 zettabytes [Figure 2]. Hence, parallel and distributed 

process is of vital importance for overcoming scale and timeline challenges. 

 

 

Figure 2: Data quantity in zettabytes [15] 
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2.1.1.  Definition and Characteristics 
 

Big data is a term that is used to describe huge and complex data that exceeds the 

capabilities of traditional database systems to process them. Big data has been 

characterized by Douglas Laney using 3 “Vs”, namely Volume, Velocity and Variety 

[16]: 

• Volume: refers to the huge data quantity that is generated by a variety of devices 

as we mentioned above.  

• Velocity: refers to the rapidly increasing speed at which new data are generated, 

and the corresponding need for that data analyzed in near real-time. 

• Variety: refers to the fact that big data can be produced in any type of format. Big 

data could be structured, such as numeric data in a traditional database, semi-

structured, such as emails, or even unstructured, such as texts, videos, and images. 

Later, IBM, in response to the quality issues that their clients began facing using big data 

solutions, introduced an additional “V”, namely Veracity. 

• Veracity: refers to the consistency, uncertainty, and trustworthiness of data. 

In 2013, Yuri Demchenko proposed a 5 “Vs” big data definition. This new characteristic 

was Value. 

• Value: refers to one of the most important aspects of big data, the potential 

insights that big data analysis can lead to. 

 Aiming at maximizing the business value, Microsoft extended the initial characterization 

of big data, added a 6 “V”, Visibility. 

• Visibility: refers to the need of having a full picture of data in order to make a 

meaningful decision. 

The aforementioned characteristics are not the one and only used to explain the nature 

of big data. There is not a unified definition to describe big data, and characteristics that 

are good explanation for big data on one domain may fail to apply to other domains. For 

example, the data domain may be explained sufficiently by using the characteristics: 

volume, velocity, and variety, but for the statistics domain validity, veracity, and 

variability are more suitable explanation of big data. 
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Figure 3: From Laney’s 3Vs definition of Big Data to Microsoft’s 6Vs [16] 

 

 

2.2.  Big Data Processing 
 

As mentioned above, parallel, and distributed processing concepts of big data are of 

preeminent importance. Two different approaches are commonly used when building 

distributing big data processing systems: batch and stream processing. 

 

 

2.2.1.  Batch Processing 
 

In batch processing approach, the system reads a large amount of data input, which is 

usually stored in a distributed file system, processes it in batches and produces output 

data. This processing method is used when we first store data and analytics are performed 

at a later stage. Batch jobs are usually scheduled to run periodically and automated 

without user’s interaction with the system. Depending on the scheduling intervals, the 

size of data and computational capabilities of the system, it may take from hours to days 

until data processing is completed. MapReduce [4] is a fairly low-level batch processing 

programming model. For a MapReduce job to be created two functions needs to be 

developed: 

Map function, which is called once for every input record and creates a set of 

intermediate key-value pair for each one. MapReduce framework groups together all the 

pairs with the same intermediate key and then passes them to the reducer. 



30 

 

Reduce function, which takes as input the key-value pairs iterates over this collection 

of values and produces output records. 

 

 
Figure 4: MapReduce word count process [43] 

 

Hadoop was developed on top of the MapReduce paradigm and was designed as a 

distributed batch processing system. Data are stored in a distributed filesystem, called 

Hadoop Distributed File System (HDFS), divided into smaller chunks, to support 

MapReduce processing. Although Hadoop has facilitated distributed programming, has 

achieved good scalability and fault tolerance, it is unsuitable for real-time stream 

processing, since all data must be transformed by map function before the reduce function 

starts executing. Except from its lack of real-time processing there are several other 

weaknesses that comes along with MapReduce [5]. 

 

 

2.2.2.  Stream Processing 
 

As discussed in the previous paragraph, the batch processing model requires all the 

input to be stored before computation is triggered. In contrast to the batch processing 

model, a variety of modern applications receive data gradually over time, namely data 

streams, and require continuous, real-time processing. Data streams differ from stored 

data in several ways: data elements in the stream arrive online, the system has not control 

over the order of the data, data streams are potentially unbounded in size and processed 

data are discarded from the stream or archived [17]. Since these data could be 

unbounded, potentially infinite, and need to be processed in real-time with low latency 

and high throughput, the batch model lacks the capability to handle them efficiently, thus 

a different processing model should be adapted. 

In stream processing, data are processed as soon as they arrive (on-the-fly), without 

need to be stored and retrieved in the future, so the output is produced in real-time. 
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2.3.  Stream Processing Architectures 
 

Developing a real-time stream processing application is inherently very challenging. 

Several design patterns have been proposed as a template for building real-time 

applications. Two of the most common architectures are lambda and kappa architecture. 

The Lambda architecture [Figure 5], which was first proposed by Nathan Marz, is a 

generic, scalable and fault tolerant real-time data processing architecture [18]. To fulfill 

both batch and real-time processing, it comprises of three layers, named batch, serving 

and speed layer. 

The Batch layer is responsible for storing the master copy of the dataset and 

precomputing the batch views on this dataset. This master dataset is immutable and ever 

growing, thus the batch layer should be able to store this kind of dataset and produce 

arbitrary views from it. When new input data arrive, the recomputing of batch views take 

place on the next batch iteration. 

The Serving layer is a specialized distributed database in which the batch views are 

loaded and can be queried. The serving layer supports batch updates, so when new batch 

views are available, it automatically swaps the old ones out. Since the serving layer 

updates as soon as the batch layer finishes precomputing a batch view, data that arrived 

on the system while the precomputation was running are not available. 

The Speed layer is responsible for ensuring that the more recent data will be available 

as quickly as needed by the application. Like the batch layer, the speed layer does also 

produce views, but with a key difference. It looks only at recent data, whereas batch layer 

looks at all data at once. Another difference is that, aiming at low latency, the speed layer 

does incremental computation instead of computation from scratch like batch layer. Thus, 

the implementation of the speed layer is the answer to the inability of batch and serving 

layers to present the latest data. 

 

 

 
Figure 5: Lambda Architecture [41] 
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Even though the lambda architecture is fault-tolerant, scalable, reliable and a good 

choice for many use cases, such as large-scale machine learning models [19] still there 

are drawbacks. One major weakness is the code maintenance of two complex, distributed 

and heterogeneous systems. Hence, development related processes like debugging, 

implementation and synchronization of the different layers are exceedingly difficult to be 

handled. 

In 2014, Jay Kreps, mentioning the existing disadvantages of lambda architecture, 

introduced an alternative approach for real-time processing applications, which is easier 

to implement and maintain, since it does not require implementation of two systems that 

works alongside [20]. This architectural proposal, called Kappa architecture [Figure 6], 

tries to simplify lambda architecture. In contrast to lambda architecture, kappa 

architecture lacks batch layer and consists only of real-time layer and serving layer. The 

basic idea is to handle both real-time data processing and data reprocessing using a single 

streaming system. One of the key challenges of stream processing is data reprocessing. 

Kappa architecture supports data reprocessing on code change. To achieve this behavior 

in an efficient way, when reprocessing needs to be executed, a second instance of stream 

processing job is triggered and starts processing the retained data. The output result of 

this process is stored into a new table. When the second job instance finishes the process, 

application queries the new table and the outdated job and table are deleted. The trade-off 

that comes with simplicity is that the absence of batch layer might result in errors during 

data processing or while updating the database.  

 

 
Figure 6: Kappa Architecture [41] 

 

 

To conclude, the choice between lambda and kappa architecture is not obvious and 

depends on the specific characteristics of the application to be developed. If the main goal 

of the application is the simplicity, then Kappa architecture seems to be the best choice. 

On the other hand, if the reliability of the application is the priority, developers should 

consider the Lambda architecture. 
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2.4.  Stream Processing Concepts 
 

To better understand stream processing, we should dive into some of its key concepts. 

Stream processing execution can be categorized under two different models: 

1. Stream Dataflow Approach, where an application is specified and given to the 

system for execution as a dataflow graph, which consists of tasks and data 

dependencies between them. Tasks encapsulate the logic of predefined operators, 

such as filter, window, aggregate, join, or even user defined operators. A master 

node receives a dataflow graph, which in most cases is a Directed Acyclic Graph 

(DAG), and schedules tasks among cluster. 

  

2. Micro-Batch Approach, which handles a streaming computation as a sequence of 

transformations on bounded sets by discretizing a distributed data stream into 

batches, and then scheduling these batches sequentially in a cluster of worker 

nodes. 

 

Another significant characteristic of stream processing methods is the so-called state 

management. Stream processing could be divided into two major groups: stateful and 

stateless [Figure 7]. A stateless operation creates an output, processing each event 

individually, while stateful operation creates output based on saved states of previous 

events, meaning that multiple events are taken into consideration. For example, if we 

want to develop an application which receives continuously speed data of a vehicle and 

our objective is to compute the average speed, we should consider a stateful 

implementation. Contrariwise, if our objective is to raise an alert every time the speed 

exceeds a predefined speed limit, the stateless implementation is more suitable. 

 

 
Figure 7: Representation of stateless and stateful stream processing [22] 
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Delivery guarantee is also an important factor of stream processing. It is a different 

term of “level of correctness” of the output produced after failure and successful system 

recovery, compared to the produced results, supposing that no failure has occurred. 

Stream processing is distinguished between the following different levels of consistency 

[22]: 

• At most once, which implies that if a message was not successfully processed, no 

attempts will be made to deliver it. This is the least fault-tolerance approach, thus 

the least desirable. 

• At least once, which implies that a message will be delivered at least once, until 

an acknowledgment of delivery is received. With this approach, if a failure 

occurs, messages will be redelivered, ensuring that the processing of the message 

was completed. Even though this approach provides greater fault tolerance, it can 

lead to additional cost for repeated processing. Also, for operations such as 

counting, at-least-once delivery guarantee can cause incorrect results. 

• Exactly once, which guarantees that a message will be processed precisely once. It 

follows the same failure detection mechanism as the at-least-once model, but 

provides more acknowledgements checks to prevent the duplication of the same 

message. This is the most desirable mode. 

 

In stream processing, time plays a crucial role. Generally, time is divided under two 

domains of interests: 

• Event time, which indicates the time that an event actually happens on the real 

world. Usually, each generated event contains a timestamp attribute, which is 

part of the emitted data record itself. 

• Processing time, which indicates the time that the system processed the input 

record. It is just the current time according to the system clock. 

To better understand the difference between event and processing time, Figure 8 

presents an illustrative example. 

Efficient handling of time is of great interest in stream processing applications. In the 

real world, due to a variety of reasons, for example network delays, data do not arrive at 

the system in perfect order, as a result event time and processing time differs, and the 

ordering based on the event time is often not the same as the ordering based on the 

processing time. Both notions of time have their place in real-time applications. Some 

applications need results as fast as possible and they accept slightly inaccurate results, 

while other applications prioritizing correctness over speed. Finally, there is a chance that 

some applications need both speed and accuracy. For example, an application which 

counts the times an anomaly is observed but also provides an alert if an anomaly is 

detected, needs both the correctness of the counted numbers, but also the speed of the 

alert mechanism. 
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Figure 8: Difference between event and processing time [22] 
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3.  Technical Background 

 

In the era of big data and IoT, new challenges were raised for real-time data analysis. 

Stream processing frameworks are an ongoing process of great interest for researchers 

and technology companies. In this section, we briefly present some of the most common 

stream processing engines, we discuss their core concepts and provide comparisons 

between them. Finally, we discuss efficient storage techniques for big data applications, 

presenting the different types of NoSQL databases. 

 

 

3.1.  Stream Processing Frameworks 
 

Nowadays, there is an increasing need for big data analysis to transition from offline 

(batch) to online (streaming) systems. To serve this need, various streaming algorithms 

and streaming platforms have been developed [41]. In this thesis we are going to focus on 

the most widely used open-source streaming frameworks: Apache Storm, Apache Samza, 

Apache Flink, Kafka Streams and Spark Streaming  

 

 

3.1.1.  Apache Storm 
 

Apache Storm [23] is a scalable, distributed and fault-tolerant real-time processing 

engine, which was created by Nathan Marz at BackType and was open sourced after 

BackType was acquired by Twitter. 

It implements the dataflow model by representing the entire stream processing 

pipeline as a DAG called topology. Topology is a graph network of computation, in 

which each node contains processing logic, while each edge represents the data pass 

through mechanism. The core abstraction of Strom is the stream, an unbounded sequence 

of tuples, that is processed in a parallel and distributed way. A tuple is simply a named 

list of values. By default, tuples can contain integers, longs, shorts, bytes, strings, 

doubles, floats, booleans, byte arrays, but also custom types defined by user. Every 

stream is given an id when declared. Vertices of topology are of two different kinds: 

spouts and bolts. 

Spout is the source of streams in topology. Typically, a spout reads tuples from an 

external queuing broker, like Kafka or RabbitMQ, and emits them into the topology. 

There are two different types of spouts, reliable and unreliable. A reliable spout is 

capable of replaying a tuple if Storm fails to process it, whereas unreliable spout cannot 

replay any tuple as soon as it is emitted. More than one tuple can be emitted by a spout. 

Emitted streams are consumed by bolts. They are responsible for processing streams 

and can do any computation or transformation, such as filtering, aggregations, joins, 
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connecting to databases and more. Bolts take any number of streams as input and produce 

any number of streams as output making simple or more complex stream transformations. 

For more complex transformations, multiple bolts are required. Figure 9 presents an 

example of a Storm topology. 

 

 

 
Figure 9: An example of Storm topology [24] 

 

 

Each instance of a bolt or spout is called task. Tasks are inherently parallel, just like 

map and reduce tasks are inherently parallel in MapReduce. Tasks are spread among the 

different workers of a cluster 

Part of the implementation of a Storm topology is specifying for each bolt which 

streams should be received as input. Stream grouping defines how the stream should be 

partitioned among the bolt’s tasks. Although custom stream grouping can be 

implemented, there are eight built-in stream grouping techniques. 

1. Shuffle grouping, which distributes tuples using a random round-robin 

algorithm, ensuring that each bolt get an equal number of tuples. 

2. Fields grouping, which distributes tuples by fields specified in the grouping. 

For example, if the stream is grouped by the “user-id” field, tuples with the 

same “user-id” will always go to the same task, while tuples with different 

“user-id” may go to different tasks. 

3. Partial Key grouping, which works like fields grouping with the difference that 

stream load is balanced between two downstream bolts, which provides better 

utilization of resources when the incoming data are skewed. 

4. All grouping, which replicates the stream across all the bolt’s tasks. 

5. Global grouping, which sends the entire stream to the bolt’s task with the 

lowest id. 

6. None grouping, which indicates that the user does not care how the stream is 

grouped. Currently, none grouping is equivalent to shuffle grouping. 
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Eventually though, Storm will push down bolts with none grouping to execute 

in the same thread as the bolt or the spout they subscribed to. 

7. Direct grouping, which lets the producer of the tuple to decide which task of 

the consumer will receive this tuple. Direct grouping can only be declared on 

streams that have been declared as direct streams. 

8. Local or shuffle grouping. In this case, if the target bolt has one or more tasks 

in the same worker process, shuffles tuples to just those in-process tasks. 

Otherwise, it acts like a normal shuffle grouping. 

 

By default, Apache Storm provides at-least-once delivery guarantee. To achieve this, it 

tracks the tree of tuples triggered by every spout tuple and verifies that tree of tuples has 

been successfully completed. If Storm fails to detect that a spout tuple has been 

completed within a timeout, which is associated with every topology, it replays the tuple 

later. This mechanism may falsely classify several records as non-acknowledged. Hence, 

these data will have to be reprocessed leading to low throughput. In some use cases, 

missing some records is not a problem, so Storm offers to the user the option to disable 

this fault tolerance mechanism. To provide higher throughput, micro-batch processing 

with exactly once delivery guarantee, Trident was developed on top of Storm 

infrastructure. 

 

 

3.1.2.  Apache Flink 
 

Apache Flink [25] is a distributed, unified system for processing both streaming and 

batch data. Originally, it was developed under the project name “Stratosphere”, by 

researchers in Germany, but later was donated to Apache Software Foundation. 

It was developed from the beginning as a distributed processing framework for stateful 

operations over unbounded and bounded data streams, by running two core APIs on the 

same distributed streaming execution: 

• DataSet API, which is used for batch processing. 

• DataStream API, which is used for event stream processing. 

 

Using Flink, programs can be written from Java, Scala, Python to SQL. Applications 

can be deployed in local, cluster or cloud mode, providing flexibility to the developers 

[Figure 10]. It also supports built-in connectors to third-party systems for source and 

sinks, such as Apache Kafka, Apache Cassandra and Elasticsearch. 
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Figure 10: Flink’s stack [26] 

 

 

Flink implements the Dataflow programming approach. When executed, Flink 

programs are mapped to a DAG, consisting of streams (edges), and transformation 

operators (nodes). Each DAG starts with one or more source operator and results to one 

or more sink operator. Flink programs are executed, by their nature, in a parallel and 

distributed way. During execution a stream is divided into stream partitions and one or 

more operator subtasks. These subtasks are working independently and execute in 

different threads and if needed in different machines [Figure 11]. The number of each 

operator subtasks defines the parallelism of this specific operator. 
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Figure 11: Streaming dataflow of Flink application [26] 

 

 

As we mentioned before, time is one of the key concepts of any streaming application. 

Flink supports different notions of time to let developers define how events should be 

correlated [25]. Event, ingestion, and processing time notions are offered by Flink. 

• Event time refers to the data production time, hence it is attached to an element 

before it enters Flink application. 

• Ingestion time refers to the time that an event enters Flink application. Source 

operator is responsible to attach its current time as a timestamp attribute to the 

arriving event. 

• Processing time refers to the time of the machine that executes the operation to 

that event. 
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One of the most common challenges in the field of stream processing engines is the 

ability to efficiently handle out-of-order data. To overcome this challenge, Flink 

introduces watermarks. In essence, watermarks indicate global progress measure. A 

watermark of time t indicates that all events with lower timestamp than t have already 

entered an operator. 

Streaming applications are receiving and processing data continuously. Of course, we 

can process each incoming event as soon as it arrives, but there are some cases where an 

application needs to aggregate results of a bunch of events. Windows are the provided 

workaround of this problem. The simplest windows are those based on time. 

Computations are triggered when the ending time of the window is passed. Time 

windows are divided into tumbling and sliding. 

• Tumbling window, where window overlapping is not allowed [Figure 12]. 

 

• Sliding window, where windows slide over data. Thus, windows can be 

overlapping. This technique usually leads to a smoother aggregation over the 

incoming events [Figure 13] 

 

 

Another provided window by Flink is the session window. Sessions are periods of 

activity separated by frames of inactivity. In contrast to time windows, session windows 

do not have a fixed start and end time. When a specified time of inactivity passes then 

window is considered closed and aggregations are triggered. Apache Flink also supports 

global windows, which do not have a natural end time. In this type of window all 

elements with the same key are assigned to the same window, which never closes. 
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Figure 12: Tumbling window [26] 

 

 

 
Figure 13: Sliding window [26] 

 

 

Flink also provides an optional mechanism to define triggers. A trigger determines 

when a window is ready for data processing by the window function. Although each 

window comes in pair with a default trigger, user can define his own custom trigger. 

Flink provides different kind of triggers, like triggers based on event or processing time. 
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Triggers are used to invoke intermediate computations. In case of a global window, since 

it is never closes, the trigger function should be implemented for computations to be 

performed. 

Flink supports stateful operations, meaning that it is possible to maintain the state of 

previous events. While many operations in a dataflow look at one individual event at a 

time, there are operations that need to remember information of multiple previous events. 

In order to ensure fault tolerance, Flink uses checkpoint and stream replay 

mechanisms. The checkpoint is a global snapshot of the set of operators’ states. In case of 

failure, Flink selects the latest stored checkpoint and recovers the entire dataflow giving 

each operator the state that had when the failure occurred. 

With Flink it is possible to achieve any of the different levels of delivery guarantee (at 

most once, at least once and exactly once). As we mention above, exactly once is the 

ideal guaranteed level. This does not mean that every event is processed exactly once. 

Instead, it means that every event will affect the state being managed by Flink exactly 

once. 

 

 

3.1.3.  Apache Samza 
 

 

Apache Samza [1] is an open-source framework for distributed processing of high-

volume event streams. It has been developed by engineers at LinkedIn to provide 

scalable, stateful and fault tolerant data stream processing. Its design goal is also to 

achieve high throughput, and operational robustness. 

Apache Samza was built based on the following foundational abstractions: 

 

• Partitioned Data Processing Model: Processing model of Samza consists of 

streams and jobs. Stream is a collection of immutable, infinitive, and multi-

subscriber sequence of messages, which can be replayed and are lossless by 

design. Each stream is internally divided into multiple partitions. 

 

• Fault-tolerant Local State: To ensure fault tolerance, state of each task is stored on 

the local disk of the processing node. Also, to avoid loss of stored state on local 

disk, Samza stores an append-only log, named changelog, in Kafka topic. 

 

• Cluster-based Task Scheduling: Apache Samza has not a built-in mechanism for 

task scheduling and cluster management. By contrast, it relies on existing cluster 

managers, and supports two modes of distributed operators: 

(1) Hadoop Yarn and (2) stand-alone mode using Apache Zookeeper 
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The design of these low-level abstractions is strictly connected with the scalability and 

operational robustness of Apache Samza [2]. 

The core abstraction of Samza is the message. Samza processes streams, which are 

collections of immutable messages, usually of the same category. A job in Samza 

performs the logical transformation on a set of input streams and produces messages, 

which append to a set of output streams. 

 For scalability to be achieved, streams are divided into smaller units of parallelism, 

named partitions [Figure 14], and jobs are chopped to tasks [Figure 15]. Partitions are 

ordered sequences of messages, with a unique identifier, named offset, attached on it. 

Offset can be of integer, byte or string type. When a message is appended to the stream, it 

is appended to only one of the stream’s partitions. Each task consumes data from one 

partition for each of the job’s input streams. To achieve independently work from each 

task, there is no defined ordering across partitions and each task reads and processes 

messages, from partitions that are assigned to it, by sequential order of message’s offset. 

It is not possible the number of tasks to exceed the number of input partitions. The 

assignment of partitions to tasks is permanent. If a task is assigned to a machine and it 

fails, this task is restarted elsewhere, but still consuming the same stream partitions. To 

achieve this, Samza tracks if a message is successfully delivered or not utilizing a 

checkpoint system, but it can only deliver at least once guarantee. 

 

 

 
Figure 14: A partitioned stream in Samza [27] 
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Figure 15: Distributed execution in Samza [27] 

 

 

3.1.4.  Kafka Streams 
 

Apache Kafka [28] was first proposed by engineers at LinkedIn, but later was donated 

to Apache Software Foundation. It is a distributed and scalable messaging system which 

offers high throughput. It combines three key concepts to provide end-to-end event 

streaming: 

• Publish and subscribe to streams of records 

 

• Fault-tolerant durable storage of stream records 

 

• Processing stream records as they occur or retrospectively 

 

The core abstraction of Kafka is the topic. The topic is the storage of the events, which 

are records with key, value, and timestamp information. A topic is by default multi-

producer and multi-subscriber, meaning that more than one producer can write events to 

a topic and more than one subscriber can read and process events from a topic. Also, 

producers can write to more than one topic and subscriber can read and process events 

from more than one topic. 

Topics are divided into several partitions. These partitions can be located on more 

than one Kafka server, named brokers. Brokers are designed so they can operate in a 

cluster mode. The described architectural design is promoting scalability since it allows 

multiple producers and subscribers to write and read messages respectively at the same 

time. 
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Kafka provides five core APIs: 

• Admin API, which is used to manage and inspect Kafka objects. 

 

• Producer API, which is used to publish events records to one or more Kafka 

topics. 

 

• Consumer API, which is used to read and process events records from one or 

more Kafka topics. 

 

• Kafka Streams API, which is used to implement stream processing applications 

and microservices. 

 

• Kafka Connect API, which is used to build and run data connectors to allow 

external systems and applications to integrate with Kafka 

 

 

Our focus is given to Kafka Streams API. Kafka Stream can be used to build highly 

scalable, elastic, fault-tolerant, distributed applications and microservices [29].  

The basic abstraction of Kafka Streams is the stream, which represents an infinite, 

continuously updating data set. To achieve scalability, parallelization and fault-tolerance, 

Kafka Streams supports running multiple instances of an application. These instances of 

the application can be deployed in different machines and automatically work together on 

the data processing. Every Kafka Stream application implements and executes at least 

one topology [Figure 16], which is a graph representation (DAG) of the computational 

logic of the application. Each topology consists of nodes, called stream processors, and 

edges, called streams. Stream processors are just operators, which receive one input at the 

time form the parent processor, apply data transformation, and produce one or more 

output records to its downstream processors. There are two special processors on the 

topology: 

• Source processor, which is responsible for consuming records from one or 

more Kafka topics and passing them to its downstream processors. 

 

• Sink processor, which is responsible for sending any received records from its 

parent processors to a desginated Kafka topic. 

Kafka Streams provides two APIs to define stream processors: 

1. Declarative, functional DSL (Domain Specific Language), which helps the 

users to define a stream-processing application in just a few lines of code, by 

implementing a sequence of transformations to events in the stream. This API 
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provides not only stateless, but also stateful transformations. When stateful 

operators are used, it automatically creates and manages state storage. In 

order to work correctly, state stores ensure fault tolerance by default. 

 

2. Processor API, which is a low-level, flexible, and powerful API. It allows 

users to define arbitrary stream processor that receives one record at a time 

and processes it, either in a stateless or in a stateful manner. When this API is 

used, developers compose the processor topology, implementing a 

customized processing logic. For stateful process to be achieved, one or more 

state storage must be provided manually. The user can choose from available 

state storage types, which have fault tolerance enabled by default, or 

implement their own custom storage type. The defined processor and 

associated state storage are connected for the processor topology to be 

composed. 

 

Kafka Streams supports at least once and exactly once delivery guarantee. 

 

 

Figure 16: A Kafka Stream topology [29] 
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3.1.5. Spark Streaming 
 

Apache Spark [30] was originally developed by researchers at the AMPLab of 

Berkley’s University and later was donated to Apache Software Foundation. It is a 

unified analytics engine for large-scale distributed data processing, which supports the 

following programming languages: Scala, Java, Python and R. Spark makes 

implementation and maintenance of data pipelines a lot easier since it provides high-level 

APIs (Application Programming Interface) including Spark SQL for SQL queries, MLib 

for machine learning, GraphX for graph processing and Spark Streaming for streaming 

processing [Figure 17]. It can be deployed as a standalone installation, but also on 

Hadoop Yarn, Mesos or Kubernetes. 

The key abstraction of Apache Spark is the RDDs (Resilient Distributed Dataset), 

which are immutable, fault-tolerant data collections partitioned across nodes of a cluster 

that can be operated in parallel. The user can apply transformations to RDDs, such as 

map, filter, and groupBy. 

 To support stream processing, an extension of Spark core API was developed. Spark 

Streaming supports scalable, high throughput, and fault-tolerant processing of live data 

streams. It receives live data streams as input, divides the data into batches and then 

processes these batches to generate the output stream in the form of batches [Figure 18]. 

 

 

 
Figure 17: Spark Stack [31] 
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Figure 18: Spark Streaming processing approach [32] 

 

 

The abstraction of Spark Streaming is called discretized stream (D-Stream), and is 

represented as a sequence of RDDs [34]. D-Streams can be generated from many sources, 

like Kafka, HDFS, databases or from other D-Stream output. Internally, D-Streams 

contain data of a specified, small time interval size [Figure 19]. D-Streams support both 

stateless operations, which apply independently in each time interval, like map 

operations, and stateful operations, like aggregation over a sliding window, which apply 

on multiple intervals. Spark Streaming provides two different types of operators over D-

Streams: transformation and output operators. 

  

• Transformation operators, which output a new D-Stream from one or more parent 

D-Streams. 

• Output operators, which allow program to save data to external systems, such as 

HDFS. 

 

 
Figure 19: D-Stream: the abstraction of Spark Streaming [32] 

 

 

Adopting the micro-batch methodology, Spark achieves high throughput, but also 

higher latency than native streaming engines, like Storm or Flink. Zaharia et al [34] 

mention that even though Spark Streaming achieves higher latency than true streaming 

approach, latency can be minimized as low as a second, which is acceptable for the most 

use cases, due to in memory computations of RDDs. 

Spark Streaming also provides windowed computations, which allow user to perform 

calculations on a sliding window of data, by specifying two parameters: window length, 

which is the duration of window, and sliding interval, which identifies the interval in 

which the window operation is performed [Figure 20]. 

To achieve fault tolerance, Spark Streaming implements the approach of parallel 

recovery, by periodically checkpointing some of the state of RDDs. By utilizing parallel 

recovery, it provides faster and with lower computational cost recovery. Spark Streaming 



51 

 

also guarantees that batch level processing will be executed in an exactly once mode, by 

tracking the lineages in each D-Stream. 

 

 
Figure 20: Illustration of window in Spark [32] 

 

 

3.2.  Comparison of Stream Processing Frameworks 
 

Over the last few years, comparisons between different Data Stream Processing 

Systems have gained the attention of the scientific community. Not only researchers, but 

also business world is interested in the performance of these systems since more and 

more companies need to incorporate real-time processing tools into their data analysis 

pipeline. Many benchmarking experiments have been published, comparing the streaming 

engines that we discussed in the previous section. To shed some light on the performance 

of the aforementioned systems, we provide some results of experiments, which compare 

these stream processing frameworks. 

Karimov et al. [6] measure the latency and throughput of Storm, Flink and Spark in 

production environment, by introducing a benchmarking framework. They conclude that 

if a stream contains skewed data, Spark is the best choice. On the other hand, Storm and 

Flink are equally robust to fluctuations in the data arrival rate in aggregation workloads, 

while Flink responds better on join queries. Flink is the best choice for use-cases that 

latency is the priority. Overall, Flink has better throughput both for aggregation and join 

queries. 

Another very interesting experiment conducted by Perera et al. [7], compares Flink 

with Spark, using a deployment orchestration engine which is developed to automate 

reproducible experiments on both cloud and bare-metal environments. The Yahoo 

streaming benchmark was reproduced for the stream processing experiment. Both Spark 

and Flink performed similarly under different loads, but Flink outperformed Spark at 
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lower event rates. CPU behavior was observed similar in both systems, but Flink tended 

to consume less memory while executing. 

Chintapalli et al. [8] developed a streaming benchmark for Flink, Spark Streaming and 

Storm. In order to mimic real-world production scenarios, a full data-pipeline, using 

Kafka and Redis, was tested. According to the results, Flink and Storm have much lower 

latency than Spark Streaming at fairly high throughput, while Spark Streaming can 

handle higher throughput. Table 1 presents a briefly comparison between the most 

common stream processing frameworks. 

 

 Apache Storm Apache Flink Apache 

Samza 

Kafka 

Streams 

Spark 

Streaming 

Processing 

Model 

Streaming Hybrid Streaming Streaming Micro-Batch 

Streaming 

Abstraction 

Tuple DataStream Message K-Stream D-Stream 

Latency Very Low Very Low Low Low Medium 

Throughput Low High High Medium High 

Stateful 

Operations 

No Yes Yes Yes Yes 

Delivery 

Guarantee 

At least once 

(Exactly once 

with Trident) 

Exactly once At least once Exactly 

once 

Exactly once 

Fault 

tolerance 

Yes Yes Yes Yes Yes 

Programming 

language 

Support 

Any Java, Scala, 

Python 

JVM Java Java, Scala, R, 

Python 

Table 1: Comparison of Data Streaming Engines 

 

 

Even though performance plays a significant role in the choice of the data stream 

processing framework, it is not the only factor, and we cannot completely rely on it. Real-

time stream processing is rapidly evolving and so do the corresponding frameworks. 

Hence, we cannot conclude to a clear winning framework, but the choice should be based 

on the requirements of different applications. 
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3.3.  Big Data Storage 
 

Instead of effective real-time processing, effective storage of the output result should 

be taken into consideration. Under this scope, a database which is able to comply with the 

characteristics of Big Data should be used. Typical relational databases were not 

developed to address the agility and scalability requirements of modern applications [9]. 

The tendency to swift from structured to unstructured, schema-less data, the complexity 

of data generated by web resources, and the exponential growth of daily produced data 

have raised challenges for traditional data management systems [10]. 

NoSQL databases were developed to overcome the problems that relational databases 

could not resolve. They offer efficient storage, reduced operational costs, high scalability, 

availability, fault tolerance and consistency. Hence, NoSQL databases have become the 

default technology for storing big data. 

In this section we will briefly introduce the different types of NoSQL databases, 

explain the differences and how they work. 

 

 

3.3.1.  NoSQL Databases 
 

NoSQL databases can be categorized into key-value stores, document databases, column-

oriented databases, and graph databases. 

• Document databases store data in JavaScript Object Notation (JSON), Binary 

JavaScript Object Notation (BSON), or Extensible Markup Language (XML) 

documents. Each document can be accessed using a unique key as identifier. Also, 

this kind of database gives the capability to the user to execute queries to extract 

documents that satisfy the query requirements. This functionality differs 

document databases from key-value stores, since in key-value stores, values are 

black boxes, while document databases also keep metadata from the stored 

documents. Documents can be grouped together to a structure called collection. If 

documents are analogous to a row, then collection is analogous to a table in 

relational database world. One of their greater advantages is that they provide 

schema flexibility. Stored documents in such databases can be very similar but 

also completely different. This flexibility is very convenient for the developers 

because data are under the control of the developers, and there is no need for the 

structure to change. Elasticsearch and MongoDB are two examples of this type of 

database. Most common use cases of document databases include ecommerce and 

trading platforms. 

• Graph databases store data as a graph, focusing on the relationships between 

them. Each graph consists of edges, which are the stored objects, and edges 

connecting them, which are called links or relationships. Data are stored without 
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predefined schema; hence graph databases are very flexible. Most graph databases 

are ACID compliant. Graph databases are optimized to search the connections 

between data elements. A well-known graph database is Neo4j. Most common use 

cases of graph databases include fraud detection and social networks. 

• Key-value store is the simplest type of a NoSQL database. It implements a 

schema-less model, in which data are stored as a key-value pair. Strings, numbers, 

binaries, and other objects can be stored as values and accessed with the help of 

the corresponding key. Thus, key is used as a reference for the value. They are 

very efficient, providing low latency for queries. A well-known key-value store is 

Redis. Most common use cases of key-value databases include user preferences 

and shopping carts. 

• Column-oriented databases are organized as a set of columns, while a relational 

database stores data as rows. Column-oriented databases are highly scalable and 

consistent. Moreover, aggregations can be performed efficiently because of the 

inherent structure of this database. Data read and retrieval in such systems can be 

executed quite fast. A well-known column-oriented database is Apache 

Cassandra. Most common use cases of a column-oriented database include 

content management systems and blogging platforms. 

 

 

3.3.2.  Elasticsearch 
 

Elasticsearch [43] is an open-source, distributed search and analytics engine built on 

top of Apache Lunce. 

In Elasticsearch, data are stored into one or more indices. Index is analogous to a table 

in the relational database world. Indexes are used to store documents. Document is the 

main entity in Elasticsearch, which consists of fields and values. Each field can contain 

one or more values. Documents are schema-less, meaning that they may have different 

set of fields. From user’s point of view, a document is in JSON format and corresponds to 

a row in a relational database, while fields correspond to columns. Documents have 

unique IDs, which can be assigned to them either by the user or automatically by 

Elasticsearch. 

Elasticsearch allows the user to store, search and analyze huge volume of data and 

return answers in near real-time latency. It can efficiently store, and index structured, 

semi-structured and unstructured data. 

Elasticsearch’s tight integration with Kibana – a free open-source frontend layer that 

effectively visualize data indexed in Elasticsearch – makes it ideal for use cases where 

dashboards of stored data should also be implemented. 
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4.  Implementation 
 

In this section we initially discuss the proposed architecture of the application that was 

developed as part of this thesis, the requirements and the challenges that we faced. 

Afterwards, we present how the desired statistics are calculated, by providing examples 

and the used algorithms. Finally, we explain how our application handles the delayed 

data. 

 

 

4.1.  Requirements and Challenges 
 

In the most used implementation, the route report [Figure 1] of the vehicle, is 

calculated when requested by the user. Emitted data from vehicle’s sensors are stored into 

a database and the calculations are triggered when the end user is asking for the report 

[Figure 21]. This implementation can lead to undesirable waiting times, especially if the 

amount of data is growing continuously.  

 

 

 
Figure 21: Most used architecture 

 

 

One of the requirements that our system needs to address is the desired statistics to be 

calculated in real-time, and not when the user asks for the route report. The already 

calculated statistics of a given trip should be stored in an efficient way, so as when the 

report is requested by the user, no calculations, but only search of the desired 

information, will be triggered [Figure 22]. Another important requirement that our 

application needs to address is the correct handling of delayed data. Correct handling of 

this kind of data is of crucial importance since the lack of handling out-of-order data can 

lead to wrongful and meaningless results. 
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Figure 22: Proposed architecture 

 

 

Reliability of the calculated trip’s statistics is one of the main challenges of the 

proposed system. As we mentioned above, the first step of the implementation, that is 

shown in Figure 21, is to store all the emitted data. Thus, when the user asks for the 

statistics of all the trips performed by a specific vehicle, all the corresponding data are 

already stored. This means that for the computed results, all the corresponding data are 

taken into consideration. With the implementation that is shown in Figure 22, there is a 

chance that the values of a given trip have been calculated, without taken into account all 

the corresponding data. To clarify the challenges that we faced, we introduce the 

following example. 

 

Example 1 

 

Let us assume that Table 2 presents the already processed GPS data. 

 

 vehicleID Date EngineStatus lat lon speed 

1 7059 2021-12-02 

10:00:00 

motion 37.939013 23.648045 10.0 

2 7059 2021-12-02 

10:05:00 

motion 37.939020 23.648050 15.0 

3 7059 2021-12-02 

10:10:00 

motion 37.939025 23.648055 25.0 

4       

5 7059 2021-12-02 

10:15:00 

motion 37.939030 23.648060 12.0 

6 7059 2021-12-02 

10:20:00 

idling 37.939035 23.648065 0.0 

7 7059 2021-12-02 

10:25:00 

parked 37.939040 23.648070 0.0 

Table 2: GPS data that arrived at the system as an example of the challenges that our application needs to face 
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As we have mentioned in Section 1.1., trip duration is one of the values that should be 

presented in the route report. Since the architecture that is proposed in this thesis is the 

one shown in Figure 22, statistics of the trip are already computed and available to the 

user. Thus, by this time, some of the provided information is that vehicle 7059 has 

performed one trip and the duration of this trip was 25 minutes. 

Let us now assume that the GPS record that is shown in the following table is the GPS 

record that just arrived at the application. This delayed GPS record should be the fourth 

data of the trip. As soon as the following GPS record arrives at the system, the already 

calculated values should be corrected.  

 

 

 vehicleID Date EngineStatus lat lon speed 

4 7059 2021-12-02 10:12:00 parked 37.939027 23.648057 0.0 

Table 3: Delayed GPS record that arrived at the system as an example of the challenges that our application needs to 
face 

 

 

The information that should be presented in the route report is that two trips have been 

performed. The duration of the first trip is 12 minutes and the duration of the second trip 

is 10 minutes. These recalculations that should be performed in case of out-of-order GPS 

data is the most challenging part of our proposed application. 

 

 

4.2.  System Architecture 
 

In this chapter we briefly discuss the proposed architecture of our application. Emitted 

GPS data are stored into a topic of Apache Kafka. Then, Apache Flink consumes these 

GPS data, it computes the required values for a given trip and passes these values to 

Elasticsearch, which is the storage layer of our implementation. We choose to integrate 

Apache Flink with Apache Kafka, since it is a way to overcome low throughput issues 

that may occur due to backpressure. Moreover, Elasticsearch is used because of its ability 

to perform extremely fast searches, while it is also scalable and schema free. The final 

step of our proposed implementation is the data visualization. Kibana, which is built on 

top of Elasticsearch, provides a fast and efficient way to visualize the stored data. 
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Figure 23: Proposed architecture and tools 

 

 

4.3.  Solution Approach 
 

As we mentioned above our implementation is based on Flink’s DataStream API. We 

designed and developed a real-time application, in which Apache Flink continuously 

reads data from an Apache Kafka topic, processes the data in order to compute the 

desired values, and then loads these values to Elasticsearch. 

First, Flink reads the emitted data, which have been stored into a Kafka topic, and 

model them to a GPSEvent class. GPSEvent is a custom object, which is designed to have 

the fields that are presented in the following table. 

 

 

GPSEvent Object Fields 

String   vehicleID 

long      date 

Enum    EngineStatus 

double   lon 

double   lat 

double   speed 

Table 4: Fields of GPSEvent class 
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To achieve this in the first part of the designed pipeline, we continuously use a custom 

map function, which takes as input a comma separated String value, that is saved into a 

Kafka topic, and transforms it to a GPSEvent object with defined fields. Thus, we create 

a DataStream of GPSEvent objects. Each GPSEvent object of the DataStream has 

assigned information of vehicleID, date, EngineStatus, longitude, latitude, and speed. All 

these values are essential for computing the statistics of each vehicle’s trip. 

The GPSEvents may arrive in an out of order way for a variety of reasons that we have 

explained in Section 1.1. In order to handle the delayed events, we need to assign 

timestamps and watermarks in the DataStream, using the AscendingTimestampExtractor 

function that is provided by Apache Flink and defining as event time the date field of the 

GPSEvent object. 

The next part of the designed pipeline is to compute the desired statistics. Since the 

statistics of a given trip should be computed for each vehicle separately, we need to 

logically separate the GPSEvent objects before we proceed with the calculations. To 

achieve this, we use the keyBy operator of Flink’s DataStream API, which partitions the 

DataStream into disjoint partitions, based on the vehicleID field of GPSEvent object. 

After partition of the DataStream is performed, we use a process operator, which is 

responsible for the core computations of our application. The process operator calls 

TripFunction, a custom function, which extends KeyedProcessFunction of Flink’s 

DataStream API. By extending KeyedProcessFunction, our implemented function gains 

access to the basic building blocks of a streaming application, namely events, state, and 

timers. This function is invoked for each GPS data received. It first checks whether the 

GPS record is delayed, or not and then it computes the statistics of each trip and creates 

or updates the values of the Trip object. To update the values of the Trip object, we need 

to store the values in memory. For this purpose, we use a HashMap data structure with 

vehicleID as keys and list of Trip objects as values. When we need to update the values 

of a given vehicle’s trip, we retrieve the list of the trips of this specific vehicle and then 

we retrieve from this list the Trip object, whose values need to be updated. The logic that 

was used for the calculation of each value will be presented in detail in the following 

sections. After the processing of each GPS record and the calculation of the fields of the 

trip object, Elasticsearch is accessed, for the trip object to be stored. For each generated 

trip, a new record is stored into Elasticsearch. 
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Trip is a custom implemented class, designed to have the following fields. 

 

 

Trip Object Fields 

int          _Id  double      _motionDuration 

String     VehicleId double      _idleDuration     

Enum     EngineStatus double      _parkedDuration 

long        starting_ts double      _avgSpeed 

double    starting_lat int            _cntSpeedViolations  

double    starting_lon int             TripCount 

long        ending_ts  

double    ending_lat  

double    ending_lon  

Enum     TripStatus  

long        LatestTimestamp  

ArrayList <GPSEvent> Data  

double     _tripDuration  

double     _maxSpeed   

Table 5: Fields of Trip class 

 

 

The following table presents a brief explanation of how each of the Trip object’s fields 

is used. 
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Field of Trip Object Usage 

int          _Id  A unique id of the trip. 

String     VehicleId The id of the vehicle that performed the trip. 

Enum     EngineStatus The engine status (motion, idling or parked) of the last data of 

this trip. 

long        starting_ts The starting timestamp of the trip. 

double    starting_lat The starting latitude of the trip. 

double    starting_lon The starting longitude of the trip. 

long        ending_ts The ending timestamp of the trip. 

double    ending_lat The ending latitude of the trip. 

double    ending_lon The ending longitude of the trip. 

Enum     TripStatus The status of the trip (ongoing or completed) 

long        LatestTimestamp The timestamp of the last data of the trip.      

ArrayList <GPSEvent> Data An ArrayList that stores all the GPS data that are related to 

this trip. 

double     _tripDuration The duration of the trip. 

double     _maxSpeed  The max speed of the trip. 

double      _motionDuration The time that the vehicle was in motion during the trip. 

double      _idleDuration     The time that the vehicle was idle during this trip. 

double      _parkedDuration The time that the vehicle was parked during this trip. 

double      _avgSpeed The average speed of this trip. 

int            _cntSpeedViolations  Number of speed violations occurred. 

int               TripCount Number of the trip. 

Table 6: Usage of each field of the trip object 

 

 



63 

 

4.4.  Calculations of the required values 
 

 

In this chapter we present the logic that we follow to calculate of each desired value. 

Table 7 presents the adopted computation rules for each value that needs to be calculated 

per trip. In the following chapters we are going to discuss in detail all these rules. 

 

 

VALUE RULE 

Starting time We define as starting time of a trip the timestamp of a GPS 

event of status “motion” or “idling” which is the first GPS 

event of a given vehicle, or it chronologically follows a GPS 

event of status “parked”. 

Starting location We define as starting location of a trip the location of a GPS 

event of status “motion” or “idling” which is the first GPS 

event of a given vehicle, or it chronologically follows a GPS 

event of status “parked”. 

Ending time We define as ending time of a trip the timestamp of a GPS 

event of status “parked”, which follows a GPS event of status 

“motion” or “idling”. 

Ending location We define as ending location of a trip the location of a GPS 

event of status “parked”, which follows a GPS event of status 

“motion” or “idling”. 

Trip duration We define as trip duration the time that the vehicle spent in 

order to move from the starting location to the ending location. 

Motion duration We define as motion duration of a trip, the time that the vehicle 

spent being in motion during a given trip. 

Idle duration We define as idle duration of a trip, the time that the vehicle 

spent being idle during a given trip. 

Parked duration We define as parked duration of a given trip the time passed 

between the end of this trip and the start of a new trip. If a new 

trip has not yet started, parked duration is defined as the 

difference between the timestamp of the last emitted GPS 

event of status “parked” and the first emitted GPS event of 

status “parked” for a given trip. 

Average speed To compute the average speed, we take into consideration only 

the speed of emitted GPS data of status “motion” and “idling”.  

Speed violations We define as speed violation the surpass of a predefined speed 

threshold. Consecutive GPS events with speed greater than the 

predefined speed threshold are considered as one occurred 

speed violation. For a new speed violation to be counted, the 

speed of the vehicle for a given trip should be dropped below 

the speed threshold and surpass it again. 

Table 7: Adopted rules for each value of a given trip 
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4.4.1.  Computation of Starting Time and Location 
 

To compute the starting time and location of the trip we need to identify the timestamp 

and location of the first record (GPSEvent) that is of “motion” or “idling” engine status, 

and its previous engine status was “parked”, which means that the previous trip of the 

vehicle was finished, or its previous engine status was “NA”, which means that this trip is 

the first trip of the vehicle. Thus, to be able to identify the desired information, we need 

to check if the vehicle has already performed at least one trip. If it has already performed 

at least one trip, we need to identify if its last trip was completed, or if it is still on going. 

Algorithm of this implementation is presented right below. 

 

Algorithm 1: Compute Starting Time and Location of a New Trip 

 Input: H, HashMap with VehicleID as key and List of Trip Objects as values 

gpsEvent, the GPSEvent object arrived at the system 

 Output: Starting time and location of a new trip 

1 containsVehicleID ← H.containsKey (gpsEvent.vehicleID) 

2 if containsVehicleID = true then 

3  Identify the latestTrip 

4 end if 

5 if containsVehicleID = false or (latestTrip.TripStatus = finished and 

gpsEvent.EngineStatus = parked) then 

6  Initialize a new trip object with trip.starting_ts = gpsEvent.date 

                                                   trip.starting_lon = gpsEvent.lon 

                                                   trip.starting_lat = gpsEvent.lat 

7 end if 
 

Algorithm 1: Compute starting time and location of a new trip 

 

 

Following we introduce some examples to clarify this implementation. 

 

Example 2: 

First, let us assume that the vehicle with ID 7059 has not performed any previous trip, 

so the presented record in Table 8 is the first GPS record that arrives at the system. Since 

no previous trips were performed by this vehicle, the Trip object’s fields contain the 

values that are shown in Table 9. Right after the first GPS record has arrived, the required 

computations are triggered. Table 10 presents the Trip object’s fields after the finish of 

the computations. Table 9 and 10 display only the required fields for this example and not 

all the fields that were introduced in Table 5. 
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 vehicleID Date EngineStatus lat lon speed 

1 7059 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

Table 8: First GPS record that arrived at the system as an example on how starting time and location of the first trip of 

a vehicle is computed 

 

 

_Id VehicleID EngineStatus starting_ts starting_lat starting_lon 

0 null NA 0 0.0 0.0 

Table 9: Trip object’s fields before the arrival of the first GPS record 

 

 

_Id VehicleID EngineStatus starting_ts starting_lat starting_lon 

1 7059 motion 1638482400 37.939013 23.648045 

Table 10: Trip object’s fields after the arrival of the GPS record 

 

 

Example 3: 

For this example, we assume that the vehicle with ID 7059 has already performed at 

least one trip. Table 11 presents the GPS data that has arrived at the system. The first six 

rows represent data that have already arrived and processed by the application, while the 

seventh row is the GPS emitted record that has just arrived at the system and it has not 

yet been processed by the application. Table 12 shows the state of Trip object before the 

processing of the last arrived record, while Table 13 presents the state of Trip object after 

the processing of the last arrived record. Table 12 and 13 displays only the required fields 

for this example and not all the fields that were introduced in Table 5. 
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 vehicleID Date EngineStatus lat lon speed 

1 7059 2021-12-02 

10:00:00 

motion 37.939013 23.648045 10.0 

2 7059 2021-12-02 

10:05:00 

motion 37.939020 23.648050 15.0 

3 7059 2021-12-02 

10:10:00 

motion 37.939025 23.648055 25.0 

4 7059 2021-12-02 

10:15:00 

motion 37.939030 23.648060 12.0 

5 7059 2021-12-02 

10:20:00 

idling 37.939035 23.648065 0.0 

6 7059 2021-12-02 

10:25:00 

parked 37.939040 23.648070 0.0 

7 7059 2021-12-02 

10:30:00 

idling 37.939045 23.648075 0.0 

Table 11: GPS data arrived at the system as an example on how starting time and location of a trip is computed, if at 
least one trip has already performed 

 

 

_Id VehicleID EngineStatus starting_ts starting_lat starting_lon 

1 7059 parked 1638482400 37.939013 23.648045 

Table 12: Trip object’s fields before the arrival of the seventh GPS record 

 

 

_Id VehicleID EngineStatus starting_ts starting_lat starting_lon 

2 7059 idling 1638484200 37.939045 23.648075 

Table 13: Trip object's fields after the arrival and the processing of the last GPS record 

 

 

As shown in the second example of this section, when the previous engine status is 

“parked” and the currently received GPS record is “idling” or “motion”, a new Trip 

object is generated. This Trip object has starting_ts, starting_lat and starting_lon fields 

initialized with the respectively values of fields date, lat and long of GPSEvent object, 

which is the first observed GPS data of this trip. 
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4.4.2.  Computation of Trip Duration 
 

Another critical part of our application is the identification of the duration of each trip 

performed by a specific vehicle. To compute this value, we have taken into consideration 

two different scenarios. First, for the ongoing trips, since we have already stored the 

starting time of the trip, we compute the difference between currently received GPS data 

timestamp and starting timestamp of the corresponding trip. For the completed trips, we 

compute the difference between ending and starting timestamp of the trip. 

 

Algorithm 2: Compute the Duration of a Trip 

 Input: gpsEvent, the GPSEvent object arrived at the system 

 Output: _tripDuration, the duration of a given Trip 

1 if Trip.ending_ts = 0 then // trip is ongoing 

2  _tripDuration ← gpsEvent.date – Trip.starting_ts 

3 else // trip is completed 

4  _tripDuration ← Trip.ending_ts – Trip.starting_ts 

5 end if 

Algorithm 2: Compute the duration of a trip 

 

In the following we present some examples of this implementation. 

 

Example 4: 

First, we assume that the trip of vehicle 3030 has not yet completed. Every time a new 

GPS record arrives at the system, the implemented method for computation of the trip 

duration is being triggered. Table 14 displays a sequence of emitted GPS data for a 

specific trip of vehicle 3030. 
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 vehicleID Date EngineStatus lat lon speed 

1 3030 2021-12-02 

10:00:00 

motion 37.939013 23.648045 10.0 

2 3030 2021-12-02 

10:05:00 

motion 37.939020 23.648050 15.0 

3 3030 2021-12-02 

10:10:00 

motion 37.939025 23.648055 25.0 

4 3030 2021-12-02 

10:15:00 

motion 37.939030 23.648060 12.0 

5 3030 2021-12-02 

10:20:00 

idling 37.939035 23.648065 0.0 

Table 14: GPS data arrived at the system as an example on how trip duration of an ongoing trip is computed 

 

 

Given that the received and already processed GPS data are these of Table 14, the Trip 

object with the required fields for this example is shown in Table 15.  

 

 

_Id VehicleID EngineStatus starting_ts ending_ts _tripDuration 

1 3030 idling 1638482400 0 1200 (seconds) 

Table 15: Trip duration of an ongoing trip 
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Example 5: 

For this example, we assume that a specific trip of vehicle 3030 has been completed. 

The received data for this example are shown in Table 16. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 3030 2021-12-02 

10:00:00 

motion 37.939013 23.648045 10.0 

2 3030 2021-12-02 

10:05:00 

motion 37.939020 23.648050 15.0 

3 3030 2021-12-02 

10:10:00 

motion 37.939025 23.648055 25.0 

4 3030 2021-12-02 

10:15:00 

motion 37.939030 23.648060 12.0 

5 3030 2021-12-02 

10:20:00 

idling 37.939035 23.648065 0.0 

6 3030 2021-12-02 

10:25:00 

parked 37.939040 23.648070 0.0 

Table 16: GPS data arrived at the system as an example on how trip duration of a completed trip is computed 

 

 

Given that the received and already processed GPS data are these of Table 16, the Trip 

object with the required fields for this example is shown in Table 17. 

 

 

_Id VehicleID EngineStatus starting_ts ending_ts _tripDuration 

1 3030 idling 1638482400 1638433500000 1500 (seconds) 

Table 17: Trip object with defined _tripDuration field for completed trip 

 

 

The reason why we do not compute the trip duration of a completed trip by computing 

the difference between currently received GPS data timestamp and starting timestamp of 

the trip, can be understood if we assume that the received GPS data are these that are 

presented in Table 18. In this sequence, application receives two consecutive “parked” 

GPS data. Since the current GPS data timestamp is the one shown in the last row, if we 

have followed the same computation logic as we did for the ongoing trips, the resulting 

trip duration would be 35 minutes. The definition of the trip duration is the time a vehicle 

spent to move from the starting location to the ending location. As we have already 

mentioned, we assume that the ending location of the trip is representing by the 
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geographic coordinates of the first “parked” record of the trip. Thus, the results would be 

wrong since the correct trip duration in this example is 25 minutes [Table 19]. To resolve 

this issue, we decided to compute the trip duration of completed trips using the following 

equation: 

 

trip duration = ending timestamp – starting timestamp. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 3030 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

2 3030 2021-12-02 10:05:00 motion 37.939020 23.648050 15.0 

3 3030 2021-12-02 10:10:00 motion 37.939025 23.648055 25.0 

4 3030 2021-12-02 10:15:00 motion 37.939030 23.648060 12.0 

5 3030 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

6 3030 2021-12-02 10:25:00 parked 37.939040 23.648070 0.0 

7 3030 2021-12-02 10:35:00 parked 37.939040 23.648070 0.0 

Table 18: GPS data arrived at the system as an example on how trip duration is computed when more than one data 

with “parked” engine status have arrived at the system 

 

 

_Id VehicleID EngineStatus starting_ts ending_ts _tripDuration 

1 3030 idling 1638482400 1638433500000 1500 (seconds) 

Table 19: Trip duration field for a completed trip with more than one “parked” GPS data emitted 
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4.4.3.  Computation of Motion, Idle & Parked Duration 
 

In this section, we present how the duration that the vehicle spent, being in “idling”, 

“motion” or “parked” state for a given trip is calculated. 

To compute the duration that a vehicle was in “idling” state the following algorithm is 

designed.  

 

 

Algorithm 3: Compute the Idle Duration of a given Trip 

 Input: gpsEvent, the GPSEvent object arrived at the system 

 Output: _idleDuration, the duration that the vehicle spent being on “idling” engine  

status during a given trip. 

1 doCalculation ← false 

2 if Trip.EngineStatus ≠ “idling” and gpsEvent = “idling” then 

3  _idleStartingTimestamp ← gpsEvent.date 

4 else if Trip.EngineStatus = “idling” then 

5  _idleCurrentTimestamp ← gpsEvent.date 

6  doCalculation ← true 

7 end if 

8 if doCalculations = true then 

9  _idleDuration ← _idleDuration + (_idleCurrentTimestamp - _idleStartingTimestamp) 

10  _idleStartingTimestamp ← gpsEvent.date 

11 end if 

 

Algorithm 3: Compute the idle duration of a given trip 
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Algorithms 4 and 5 are used to respectively calculate the “motion” duration and “parked” 

duration of a given trip. 

 

 

Algorithm 4: Compute the Motion Duration of a given Trip 

 Input: gpsEvent, the GPSEvent object arrived at the system 

 Output: _motionDuration, the duration that the vehicle spent being on “motion” engine  status 

during a given trip. 

1 doCalculation ← false 

2 if Trip.EngineStatus ≠ “motion” and gpsEvent = “motion” then 

3  _motionStartingTimestamp ← gpsEvent.date 

4 else if Trip.EngineStatus = “motion” then 

5  _motionCurrentTimestamp ← gpsEvent.date 

6  doCalculation ← true 

7 end if 

8 if doCalculations = true then 

9  _motionDuration ← _motionDuration + (_motionCurrentTimestamp -_motionStartingTimestamp) 

10  _motionStartingTimestamp ← gpsEvent.date 

11 end if 

 

Algorithm 4: Compute the motion duration of a given trip 
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Algorithm 5: Compute the Parked Duration of a given Trip 

 Input: gpsEvent, the GPSEvent object arrived at the system 

 Output: _parkedDuration, the duration that the vehicle spent being on “parked” engine  status 

during a given trip. 

1 doCalculation ← false 

2 if Trip.EngineStatus ≠ “parked” and gpsEvent = “parked” then 

3  _parkedStartingTimestamp ← gpsEvent.date 

4 else if Trip.EngineStatus = “parked” then 

5  _parkedCurrentTimestamp ← gpsEvent.date 

6  doCalculation ← true 

7 end if 

8 if doCalculations = true then 

9  _parkedDuration ← _parkedDuration + (_parkedCurrentTimestamp - _parkedStartingTimestamp) 

10  _parkedStartingTimestamp ← gpsEvent.date 

11 end if 

 

Algorithm 5: Compute the parked duration of a given trip 

 

 

To clarify our implementation, we introduce the following example. 

 

Example 6: 

Let us assume that the emitted GPS data are shown in Table 20. Then, according to the 

algorithms that we presented above, “idling” duration should be equal to 25 minutes, 

“motion” duration should be equal to 8 minutes and “parked” duration should be equal to 

2 minutes. 
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 vehicleID Date EngineStatus lat lon speed 

1 3030 2021-12-02 10:00:00 parked 37.939013 23.648045 0.0 

2 3030 2021-12-02 10:05:00 idling 37.939013 23.648045 0.0 

3 3030 2021-12-02 10:10:00 idling 37.939013 23.648045 0.0 

4 3030 2021-12-02 10:15:00 idling 37.939013 23.648045 0.0 

5 3030 2021-12-02 10:20:00 idling 37.939013 23.648045 0.0 

6 3030 2021-12-02 10:30:00 motion 37.939018 23.648050 40.0 

7 3030 2021-12-02 10:32:00 motion 37.939018 23.648050 50.0 

8 3030 2021-12-02 10:38:00 parked 37.939018 23.648050 0.0 

9 3030 2021-12-02 10:40:00 parked 37.939018 23.648050 0.0 

Table 20: GPS data arrived at the system as an example on how we compute idle duration of a trip 

 

 

The duration that a vehicle spent being in “motion” or “parked” state is calculated in a 

similar way. 
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4.4.4.  Computation of Average Speed 
 

To compute the average speed of a given trip, we need to store the sum of the speed 

for all the emitted GPS data that is in the “idling” or “motion” engine state, and the count 

of that data. Bellow we present the pseudocode and an example of this implementation. 

 

Algorithm 6: Compute the Average Speed of a given Trip 

 Input: gpsEvent, the GPSEvent object arrived at the system 

 Output: _avgSpeed, the average speed of a given trip 

1 if gpsEvent.EngineStatus ≠ “parked” then 

2  _nonParkedNumData ← _nonParkedNumData + 1  

3  _sumOfSpeed ← _sumOfSpeed + gpsEvent.speed 

4 end if 

11 _avgSpeed ← _sumOfSpeed / _nonParkedNumData 

 

Algorithm 6: Compute the average speed of a given trip 

 

Example 7: 

Table 21 presents the received GPS data for a specific trip of vehicle 3030. To 

calculate the average speed of the trip, we need to store the sum of the speed and the 

number of non “parked” records. In this example, sum of speed is equal to 72.0 km/h and 

non “parked” records are 5. Thus, average speed in this case should be equal to 12.4 

km/h. 

 

 vehicleID Date EngineStatus lat lon speed 

1 3030 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

2 3030 2021-12-02 10:05:00 motion 37.939020 23.648050 15.0 

3 3030 2021-12-02 10:10:00 motion 37.939025 23.648055 25.0 

4 3030 2021-12-02 10:15:00 motion 37.939030 23.648060 12.0 

5 3030 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

6 3030 2021-12-02 10:25:00 parked 37.939040 23.648070 0.0 

7 3030 2021-12-02 10:35:00 parked 37.939040 23.648070 0.0 

Table 21: GPS data arrived at the system as an example on how we calculate the average speed of a trip 
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4.4.5.  Computation of Maximum Speed 
 

 

To identify maximum speed of each trip, we check if the current speed value is greater 

than all the previous speed values of this vehicle for a given trip. To achieve this, we 

store the maximum speed value in a variable, named _maxSpeed, and we compare with 

this variable every GPS data, corresponding to this trip, that arrives at the system. If a 

GPS record has greater speed value, then _maxSpeed variable should be updated. Below 

we present the pseudocode of this implementation. 

 

Algorithm 7: Compute the Maximum Speed of a given Trip 

 Input: gpsEvent, the GPSEvent object arrived at the system 

 Output: _maxSpeed, the average speed of a given trip 

1 if gpsEvent.speed > _maxSpeed then 

2  _maxSpeed ← gpsEvent.speed 

3 end if 

 

Algorithm 7: Compute of the maximum speed of a given trip 

 

4.4.6.  Computation of Speed Violations 
 

The amount of speed violations performed by a driver is also considered as a very 

significant and meaningful measurement. In our implementation, when speed is greater 

than a predefined threshold and the speed of the exact previous GPS record is lower than 

the predefined threshold, then we assume that a speed violation has occurred. Below we 

present the pseudocode and examples of this implementation. 

 

Algorithm 8: Compute the Speed Violations of a given trip 

 Input: gpsEvent, the GPSEvent object arrived at the system 

t, the predefined speed threshold 

 Output: _cntSpeedViolations, the number of occurred speed violations 

1 if gpsEvent.speed > t and _speedViolated = false then 

2  _cntSpeedViolations ← _cntSpeedViolations + 1  

3  _speedViolated ← true  

4 else if gpsEvent.speed ≤ t then 

5  _speedViolated ← false 

6 end if 

Algorithm 8: Compute of the speed violations of a given trip 
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Example 8: 

For this example, we assume that Table 22 displays the received data for a trip of the 

vehicle 8581 and that the predefined speed threshold is 60 km/h. This is a global value 

which applies on every vehicle, and it is an assumption for this example. According to the 

designed algorithm, when the record of the third row arrives at the system, a speed 

violation is counted. The record of the fourth row has also speed greater than the 

predefined speed threshold, but since speed violation has occurred in the exact previous 

record, we assume that the amount of speed violations remains unchangeable. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 8581 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

2 8581 2021-12-02 10:05:00 motion 37.939020 23.648050 55.0 

3 8581 2021-12-02 10:10:00 motion 37.939025 23.648055 65.0 

4 8581 2021-12-02 10:15:00 motion 37.939030 23.648060 70.0 

5 8581 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

Table 22: GPS data arrived at the system as an example on how we compute the speed violations of a given trip 
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Example 9: 

For this example, we assume that Table 23 presents the received data for a trip of the 

vehicle 8581 and that the predefined speed threshold is 60 km/h. After the processing of 

the data, we assume that three speed violations have occurred. The first speed violation 

should be counted when the GPS record of the third row arrives at the system, the second 

speed violation should be counted when the GPS record of the eighth row arrives at the 

system and the third speed violation should be counted when the GPS record of the last 

row arrives at the system.  

 

 vehicleID Date EngineStatus lat lon speed 

1 8581 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

2 8581 2021-12-02 10:05:00 motion 37.939020 23.648050 55.0 

3 8581 2021-12-02 10:10:00 motion 37.939025 23.648055 65.0 

4 8581 2021-12-02 10:15:00 motion 37.939030 23.648060 70.0 

5 8581 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

6 8581 2021-12-02 10:25:00 idling 37.939035 23.648065 0.0 

7 8581 2021-12-02 10:30:00 motion 37.939040 23.648070 55.0 

8 8581 2021-12-02 10:40:00 motion 37.939045 23.648075 65.0 

9 8581 2021-12-02 10:45:00 motion 37.939050 23.648080 70.0 

10 8581 2021-12-02 10:50:00 motion 37.939060 23.648085 45.0 

11 8581 2021-12-02 10:55:00 motion 37.939065 23.648090 80.0 

Table 23: GPS data arrived at the system as a second example on how we compute the speed violation of a given trip 
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4.4.7.  Computation of Ending Time and Location 
 

 

A very important information that a trip route report should include is the destination 

and the time that the vehicle arrives at this destination. To correctly identify when and 

where a trip has been completed, we should maintain the timestamp, longitude, and 

latitude values of the first emitted GPS data with “parked” engine status value. It is 

possible that for a specific trip, more than one GPS record with “parked” engine status 

arrive at the system. In this case, we assume that the ending time and location of the trip 

are the corresponding values of the first emitted “parked” GPS record. To clarify our 

implementation, we introduce the following algorithm. 

 

Algorithm 9: Compute the ending  Time and Location of a given Trip 

 Input: gpsEvent, the GPSEvent object arrived at the system 

 Output: _maxSpeed, the average speed of a given trip 

1 if gpsEvent.EngineStatus = “parked” and trip.TripStatus = “ongoing”  then 

2  Trip.ending_ts ← gpsEvent.date 

  Trip.ending_lat ← gpsEvent.lat 

  Trip.ending_lont ← gpsEvent.lon 

  trip.TripStatus ←  “finished”   

3 end if 

Algorithm 9: Compute the ending time and location of a given trip 

 

Example 10: 

For this example, we assume that the received data for a trip of vehicle 5052 are 

presented in Table 24. 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

2 5052 2021-12-02 10:05:00 motion 37.939020 23.648050 15.0 

3 5052 2021-12-02 10:10:00 motion 37.939025 23.648055 25.0 

4 5052 2021-12-02 10:15:00 motion 37.939030 23.648060 12.0 

5 5052 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

6 5052 2021-12-02 10:25:00 parked 37.939040 23.648070 0.0 

7 5052 2021-12-02 10:35:00 parked 37.939040 23.648070 0.0 

Table 24: Sequence of GPS data arrived at the system as an example on how to compute ending time and location of a 

trip 
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After computations, trip object’s fields corresponding to the ending timestamp and 

location are displayed in the following table. 

 

 

_Id VehicleID EngineStatus starting_ts ending_ts ending_lat ending_lon 

1 5052 parked 1638482400 1638433500000 37.939040 23.648070 

Table 25: Ending time and location of given trip 

 

 

As we mentioned above, ending timestamp, ending latitude, and ending longitude are 

the respectively values of the chronologically first GPS record with “parked” engine 

status. 

 

 

4.5.  Handling of Delayed Data 
 

A challenging part of this thesis is to correctly update the computed statistics, when 

data arrive at the system later than expected. As we have mentioned above, one of the 

core concepts of any streaming application is the time semantics. A streaming processing 

pipeline can depend either on processing time, or on event time. Processing time refers to 

the current time of the machine clock, while event time refers to the time that an event 

has occurred, and it is usually embedded within the record. In our case, the timestamp 

field of GPSEvent is defined as the event time. To calculate all the statistics, our 

implementation is depending on the event time, namely the timestamp within the emitted 

GPS data. 

As we presented in Table 6, for each trip, an ArrayList with all the corresponding data 

for the specific trip is created. Since we keep an ArrayList with the corresponding data 

for each trip, every time we identify a delayed event, we insert it into the correct index of 

the List, using a binary search algorithm. Thus, our application identifies the index that 

the delayed GPS record should be and the necessary recalculations are triggered. 

The following sections describe how recalculations of each desired statistics are 

performed. 
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4.5.1.  Starting Time and Location for Late Events 
 

As we mentioned above after system detectss that a record arrived at the system later 

than expected and is inserted into the corresponding ArrayList, in the correct order, 

recalculations are triggered. Recalculations of starting time and location of a trip are 

executed only if a delayed event should be the first record of the specific trip. In any 

other case there is no need to recalculate the starting time and location since it will not be 

changed. The new starting time and location are those of the record that was late and just 

arrived at the application. Following we present an example to clarify our proposed 

solution. 

 

Example 11: 

Let us assume that Table 26 presents the data that have been arrived at the system for a 

specific trip of the vehicle 5052. 

According to these data, starting time is 2021-12-02 10:00:00, starting latitude is 

37.939013 and starting longitude is 23.648045. 

 

 

 vehicleID Date EngineStatus lat lon speed 

Late event should go here 

2 5052 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

3 5052 2021-12-02 10:05:00 motion 37.939020 23.648050 15.0 

4 5052 2021-12-02 10:10:00 motion 37.939025 23.648055 25.0 

5 5052 2021-12-02 10:15:00 motion 37.939030 23.648060 12.0 

6 5052 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

7 5052 2021-12-02 10:25:00 parked 37.939040 23.648070 0.0 

8 5052 2021-12-02 10:35:00 parked 37.939040 23.648070 0.0 

Table 26: GPS data that arrived at the system as an example on how we compute starting timestamp and location in 
case of delayed data 
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The following table presents the next data that arrive at the system which is obviously 

late since its timestamp indicates that it should be the first record of the trip. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 09:00:00 idling 37.939000 23.648020 0.0 

Table 27: Delayed GPS record that just arrived at the system and it should be the first GPS data of the trip 

 

 

After the arrival of the delayed data, starting time, starting latitude, and starting 

longitude should be recalculated considering the delayed data. Thus, the values should be 

updated. After the amendment of the values, starting timestamp is 2021-12-02 09:00:00, 

starting latitude is 37939000 and starting longitude is 23.648020. 

 

 

4.5.2.  Trip Duration for Late Events 
 

Recalculation of the trip duration should only be triggered if a GPS event is late and it 

should be the first or the last record of a trip. If the record that arrived later than expected 

is placed on the first or the last index of the corresponding ArrayList, which stores the 

data of the trip, then the same procedure as described in Section 4.2.2 is followed. 

 

 

4.5.3.  Motion & Idle Duration for Late Events 
 

In this section we discuss how the time duration that a vehicle spent being in “motion” 

or “idling” state is calculated, when delayed data arrive at the system. To effectively 

update the motion and idle duration of a trip in case of out-of-order GPS records, we 

consider the cases that are presented in the below table. 
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Case Description 

1 

The delayed event is of engine status “motion” 

or “idling”, it should be the first record of the 

trip, and it is followed by a record with the 

same engine status. 

2 

The delayed event is of engine status “motion” 

or “idling”, it should be the first record of the 

trip, and it is followed by a record with 

different engine status. 

3 

The delayed event is of engine status “motion” 

or “idling”, it should be the last record of the 

trip, and the previous GPS event is of the same 

engine status. 

4 

The delayed event is of engine status “motion”, 

it should be the last record of the trip, and the 

previous record is of engine status “idling”, 

or 

the late event is of engine status “idling”, it 

should be the last record of the trip, and the 

previous record is of engine status “motion” 

5 

The delayed event is of engine status “motion”, 

while both previous and subsequence records 

are of engine status “idling”, 

or 

the delayed event is of engine status “idling”, 

while both previous and next records are of 

engine status “motion”. 

6 

The delayed event is of engine status “motion”, 

the previous record is of engine status 

“motion”, while the subsequence record is of 

engine status “idling”, 

or 

the delayed data is of engine status “idling”, the 

previous record is of engine status “idling”, and 

the subsequence record is of engine status 

“motion”. 

7 

The delayed event is of engine status “motion”, 

the previous record is of engine status “idling”, 

while the subsequence record is of engine 

status “motion”, 

or 

the delayed event is of engine status “idling”, 

the previous record is of engine status 

“motion”, and the subsequence record is of 

engine status “idling” 

Table 28: Different cases for recalculating motion or idling duration of a trip in case of delayed data 
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Below we discuss in more detail the aforementioned cases, given some examples to 

clarify the designed implementation. 

 

Case 1: 

The delayed event is of engine status “motion”, it should be the first data of the trip, 

and it is followed by data of the same engine status, namely “motion”. To illustrate this 

scenario, Table 29 presents the already arrived data, and Table 30 displays the delayed 

data that just arrived at the system. Before the arrival of the delayed data, motion duration 

is 15 minutes. After arrival of the delayed data, motion duration should be 1 hour and 20 

minutes. To achieve this, we just compute the difference between the first and the second 

record of the trip and add this difference to the already calculated motion duration. The 

exact same procedure is followed if the delayed event is of engine status “idling”, it 

should be the first data of the trip and it is followed by a record of the same engine status, 

namely “idling” 

 

 vehicleID Date EngineStatus lat lon speed 

Late event should go here 

2 5052 2021-12-02 10:05:00 motion 37.939020 23.648050 15.0 

3 5052 2021-12-02 10:10:00 motion 37.939025 23.648055 25.0 

4 5052 2021-12-02 10:15:00 motion 37.939030 23.648060 12.0 

5 5052 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

6 5052 2021-12-02 10:25:00 parked 37.939040 23.648070 0.0 

7 5052 2021-12-02 10:35:00 parked 37.939040 23.648070 0.0 

Table 29: GPS data as an example on how to compute motion & idle duration in case of late first GPS record, which is 

followed by a GPS record with the same engine status field 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 09:00:00 motion 37.939000 23.648020 30.5 

Table 30: Delayed GPS record that just arrived at the system as an example on how to compute motion & idle duration 

in case of late first GPS record, which is followed by a GPS record with the same engine status field status 
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Case 2: 

The delayed event is of engine status “motion”, it should be the first data of the trip, 

and it is followed by a GPS record of different engine status, namely “idling” or 

“parked”. To illustrate this scenario, Table 31 displays the sequence of already arrived 

data, and Table 32 presents the delayed record that just arrived at the system. Before the 

arrival of the delayed record, motion duration is 5 minutes and idle duration is 15 

minutes. After arrival of the delayed record, motion duration should be 1 hour and 10 

minutes, and idle duration should be 15 minutes. To achieve this, we just compute the 

difference between the first and the second record of the trip and add this difference to 

the already calculated motion duration. The same procedure is followed if the delayed 

event is of engine status “idling”, it should be the first data of the trip and it is followed 

by a record with different engine status, namely “idling” or “parked”. 

 

 

 vehicleID Date EngineStatus lat lon speed 

Late event should go here 

2 5052 2021-12-02 10:05:00 idling 37.939020 23.648050 0.0 

3 5052 2021-12-02 10:10:00 idling 37.939025 23.648055 0.0 

4 5052 2021-12-02 10:15:00 motion 37.939030 23.648060 12.0 

5 5052 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

6 5052 2021-12-02 10:25:00 parked 37.939040 23.648070 0.0 

7 5052 2021-12-02 10:35:00 parked 37.939040 23.648070 0.0 

Table 31: GPS data as an example on how to compute motion & idle duration in case of delayed first GPS record, 

which is followed by a GPS record with different engine status field 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 09:00:00 motion 37.939000 23.648020 30.5 

Table 32: Delayed GPS record that just arrived at the system as an example on how to compute motion & idle duration 

in case of delayed first GPS record, which is followed by a GPS record with different engine status field status 
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Case 3: 

The delayed event is of engine status “motion”, it should be the last data of the trip, 

and the previous GPS event is of the same engine status, namely “motion”. To illustrate 

this case, Table 33 presents the already arrived data, and the Table 34 displays the 

delayed GPS event that just arrived at the system. Before the arrival of the delayed GPS 

event, motion duration is 5 minutes. After the arrival of delayed GPS event, motion 

duration should be 15 minutes. To achieve this, we just compute the time difference 

between the last and the previous GPS event (delayed record) and add this difference to 

the already computed motion duration. The same procedure is used if the delayed event is 

of engine status “idling”, it should be the last data, and the previous GPS event is of the 

same engine status, namely “idling”. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:05:00 idling 37.939020 23.648050 0.0 

2 5052 2021-12-02 10:10:00 idling 37.939025 23.648055 0.0 

3 5052 2021-12-02 10:15:00 motion 37.939030 23.648060 12.0 

4 5052 2021-12-02 10:20:00 motion 37.939035 23.648065 30.0 

Late event should go here 

Table 33: GPS data as an example on how to compute motion & idle duration, when the delayed  GPS record should 

be the last record and the previous GPS record is of the same engine status 

 

 

 vehicleID Date EngineStatus lat lon speed 

5 5052 2021-12-02 10:30:00 motion 37.939060 23.648090 55.8 

Table 34: Delayed GPS record that just arrived at the system as an example on how to compute motion & idle 
duration, when the delayed  GPS record should be the last record and the previous GPS record is of the same engine 

status 

 

Case 4: 

The delayed event is of engine status “motion”, it should be the last data of the trip, 

and the previous data is of “idling” engine status. Table 35 presents the already processed 

data, while Table 36 shows the delayed GPS record that just arrived at the system. Based 

on the already arrived data, motion duration is equal to 5 minutes, and idle duration is 

equal to 10 minutes. After processing of the delayed record, motion duration should be 5 

minutes and idle duration should be 20 minutes. To achieve this, we compute the time 
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difference between the delayed GPS record and the previous GPS record of the given trip, 

and we add it to the computed idle duration. 

Like the aforementioned calculations, if the delayed event is of engine status “idling”, 

it should be the last data of the trip, and the previous GPS record is of different engine 

status, namely “motion”, the difference between the delayed GPS record and the previous 

GPS record is calculated and added to the motion duration. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:05:00 idling 37.939020 23.648050 0.0 

2 5052 2021-12-02 10:10:00 idling 37.939025 23.648055 0.0 

3 5052 2021-12-02 10:15:00 motion 37.939030 23.648060 12.0 

4 5052 2021-12-02 10:20:00 idling 37.939035 23.648065 30.0 

Late event should go here 

Table 35: GPS data as an example on how to compute motion & idle duration, when the delayed  GPS record should 

be the last record and the previous GPS record is of different engine status 

 

 

 vehicleID Date EngineStatus lat lon speed 

5 5052 2021-12-02 10:30:00 motion 37.939000 23.648020 30.5 

Table 36: Delayed GPS record that just arrived at the system as an example on how to compute motion & idle 

duration, when the delayed  GPS record should be the last record and the previous GPS record is of different engine 

status 

 

 

Case 5: 

In this case, the delayed event is of engine status “motion”, while the previous and the 

next records are of engine status “idling”. To clarify this scenario, Table 37 shows the 

already arrived and processed data, while Table 38 presents the delayed GPS record that 

just arrived at the system. Based on the already processed data, the motion duration is 

equal to 25 minutes, while idle duration is equal to 30 minutes. After the processing of 

the delayed data, the motion duration should be 35 minutes, while the idle duration 

should be equal to 20 minutes. To achieve this, we compute the difference between the 

next and the delayed GPS record. Then, we add the difference to the already calculated 

motion duration and subtract it from the calculated idle duration. 

Similar procedure has been adopted when the delayed event is of engine status 

“idling”, while the previous and the next records are of engine status “motion”. The one 
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and only change is that we added the difference to the idle duration and subtract it from 

the motion duration. 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

2 5052 2021-12-02 10:05:00 motion 37.939020 23.648050 55.0 

3 5052 2021-12-02 10:10:00 motion 37.939025 23.648055 65.0 

4 5052 2021-12-02 10:15:00 motion 37.939030 23.648060 70.0 

5 5052 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

6 5052 2021-12-02 10:25:00 idling 37.939035 23.648065 0.0 

Late event should go here 

8 5052 2021-12-02 10:40:00 idling 37.939045 23.648075 65.0 

9 5052 2021-12-02 10:45:00 idling 37.939050 23.648080 70.0 

10 5052 2021-12-02 10:50:00 motion 37.939060 23.648085 45.0 

11 5052 2021-12-02 10:55:00 motion 37.939065 23.648090 80.0 

Table 37: GPS data as an example on how to compute motion & idle duration, when before and after the delayed data, 

there are GPS records of the same engine status 

 

 

 vehicleID Date EngineStatus lat lon speed 

7 5052 2021-12-02 10:30:00 motion 37.939040 23.648070 55.0 

Table 38: Delayed data as an example on how to compute motion & idle duration, when before and after the delayed 

data, there are GPS records of the same engine status 

 

 

Case 6: 

Another scenario that is worth to mention is the following: the delayed GPS record is 

of engine status “motion”, the previous record is of engine status “motion”, while the 

next record is of engine status “idling”. Tables 39 and 40 illustrate this scenario. After 

calculations on the already arrived data, motion duration is equal to 40 minutes, while 

idle duration is equal to 15 minutes. After the processing of the delayed data, motion and 

idle duration should remain the same as it was calculated by the application before the 

arrival of the delayed record. 
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Like the aforementioned procedure, when the delayed record is of engine status 

“idling”, the previous record is of engine status “idling”, and the next record is of engine 

status “motion”, then the calculated motion and idle duration should remain unchanged. 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:00:00 motion 37.939013 23.648045 10.0 

2 5052 2021-12-02 10:05:00 motion 37.939020 23.648050 55.0 

3 5052 2021-12-02 10:10:00 motion 37.939025 23.648055 65.0 

4 5052 2021-12-02 10:15:00 motion 37.939030 23.648060 70.0 

5 5052 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

6 5052 2021-12-02 10:25:00 motion 37.939035 23.648065 0.0 

Late event should go here 

8 5052 2021-12-02 10:40:00 idling 37.939045 23.648075 65.0 

9 5052 2021-12-02 10:45:00 idling 37.939050 23.648080 70.0 

10 5052 2021-12-02 10:50:00 motion 37.939060 23.648085 45.0 

11 5052 2021-12-02 10:55:00 motion 37.939065 23.648090 80.0 

Table 39: GPS data as an example on how to compute motion & idle duration, when before the delayed GPS record 

there is a GPS record of the same engine status and after the delayed data, there is a GPS record of different engine 

status 

 

 

 vehicleID Date EngineStatus lat lon speed 

7 5052 2021-12-02 10:30:00 motion 37.939040 23.648070 55.0 

Table 40: Delayed GPS record as an example on how to compute motion & idle duration, when before the delayed 

GPS record there is a GPS record of the same engine status and after the delayed data, there is a GPS record of 

different engine status 

 

 

Case 7: 

For this scenario, we assume that the delayed GPS record is of engine status “motion”, 

the previous record is of engine status “idling”, while the next record is of engine status 

“motion”. Table 41 displays the already processed data, while Table 42 shows the 

delayed record that just arrived at the system. Motion duration calculated on the data that 

have already processed by the application is equal to 10 minutes, while idle duration is 
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equal to 25 minutes. After processing all the data (including the delayed data), motion 

duration should be 20 minutes, while idle duration should be 15 minutes. To correctly 

calculate the motion and the idle duration considering the delayed data, we calculate the 

time difference between the delayed record and the next record, we add this difference to 

the already calculated motion duration and subtract it from the already calculated idle 

duration. 

If the delayed record is of engine status “idling”, the previous record is of engine 

status “motion”, and the next record is of engine status “idling”, then the procedure is 

similar, but the difference is added to the already calculated idle duration and it is 

subtracted from the motion duration. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:20:00 idling 37.939035 23.648065 0.0 

2 5052 2021-12-02 10:25:00 idling 37.939035 23.648065 0.0 

Late event should go here 

4 5052 2021-12-02 10:40:00 motion 37.939045 23.648075 65.0 

5 5052 2021-12-02 10:45:00 idling 37.939050 23.648080 70.0 

6 5052 2021-12-02 10:50:00 motion 37.939060 23.648085 45.0 

7 5052 2021-12-02 10:55:00 motion 37.939065 23.648090 80.0 

Table 41: GPS data as an example on how to compute motion & idle duration, when before the delayed GPS record 

there is a GPS record of different engine status and after the delayed data, there is a GPS record of the same engine 
status 

 

 

 vehicleID Date EngineStatus lat lon speed 

3 5052 2021-12-02 10:30:00 motion 37.939040 23.648070 55.0 

Table 42: Delayed GPS data as an example on how to compute motion & idle duration, when before the delayed GPS 

record there is a GPS record of different engine status and after the delayed data, there is a GPS record of the same 
engine status 
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4.5.4.  Parked Duration for Late Events 
 

In this section, we try to clarify the procedure that we follow to correctly compute the 

parked duration of a vehicle in case of out-of-order data. The parked duration of a trip 

needs to be recalculated in the following cases. 

Case 8: 

Let us assume that Table 43 displays the already processed data. Two trips are 

completed, and the delayed GPS record, which is shown in Table 44, belongs to the 

second trip. As we already mentioned, the parked duration is defined as the time duration 

from a record of engine-off status (“parked”) until a record of engine-on status (“idling” 

or “motion”). 

With that said, before the processing of the delayed data, the parked duration of the 

first trip is equal to 13 minutes. After the processing of the delayed data, the parked 

duration of the first trip should be 8 minutes. As we discussed in Section 4.3.1., when a 

delayed record should be the first data of a trip, recalculation of starting time is triggered. 

Moreover, we have already defined as parked duration of a given trip the time passed 

between the end of this trip and the start of a new trip.  Thus, to calculate the parked 

duration we simply compute the difference between the starting time of the trip, whose 

delayed record should be the first, and the ending time of the previous trip. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:10:00 idling 37.939035 23.648065 0.0 

2 5052 2021-12-02 10:15:00 idling 37.939035 23.648065 0.0 

3 5052 2021-12-02 10:30:00 motion 37.939045 23.648075 65.0 

4 5052 2021-12-02 10:32:00 parked 37.939048 23.648080 0.0 

Late event should go here 

5 5052 2021-12-02 10:45:00 idling 37.939140 23.648277 0.0 

6 5052 2021-12-02 10:45:00 idling 37.939150 23.648280 0.0 

7 5052 2021-12-02 10:50:00 motion 37.939160 23.648285 45.0 

8 5052 2021-12-02 10:55:00 motion 37.939165 23.648290 80.0 

Table 43: GPS data as an example on how to compute parked duration of a trip in case of delayed first data of the next 

trip 
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 vehicleID Date EngineStatus lat lon speed 

3 5052 2021-12-02 10:40:00 motion 37.939120 23.648170 55.0 

Table 44: Delayed data that just arrived at the system, and it should be the first data of a next trip 

 

 

Case 9: 

In this case, only one trip is completed, and Table 45 shows the already arrived and 

processed data. It is possible more than one record of engine status “parked” to be 

emitted for a specific trip. When no trip has been started after a completed trip, then the 

parked duration for the completed trip is calculated considering the data of engine status 

“parked”. Thus, based on displayed in Table 45 data, parked duration is 13 minutes. 

After the delayed record [Table 46] reaches the system, the parked duration should be 

18 minutes. To calculate the parked duration, we just compute the time difference 

between the current “parked” record and the ending time of the trip. As we have already 

mentioned, we assume that the ending time of a given trip is the timestamp of the first 

emitted “parked” GPS record. 

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:10:00 idling 37.939035 23.648065 0.0 

2 5052 2021-12-02 10:15:00 idling 37.939035 23.648065 0.0 

3 5052 2021-12-02 10:30:00 motion 37.939045 23.648075 65.0 

4 5052 2021-12-02 10:32:00 parked 37.939048 23.648080 0.0 

5 5052 2021-12-02 10:45:00 parked 37.939140 23.648277 0.0 

Late event should go here 

Table 45: GPS data as an example on how to compute parked duration if the delayed GPS data is of engine status 

parked and no other trip is performed. 

 

 

 vehicleID Date EngineStatus lat lon speed 

6 5052 2021-12-02 10:50:00 parked 37.939155 23.648288 0.0 

Table 46: Delayed data that just arrived at the system, it is of engine status parked and it should be the last GPS record 

of the trip. 
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4.5.5.  Average & Maximum Speed for Late Events 
 

 

Calculation of average and maximum speed have been discussed in Section 4.2.4. and 

4.2.5 respectively. For the computation of these statistics considering out-of-order data, 

we follow the same procedure. The only crucial part is to assign the delayed data to the 

correct order. For the maximum speed we compare the already calculated maximum 

speed with the speed of the delayed GPS record. If the speed of the delayed data is 

greater, then the maximum speed is the one of this data. For the average speed of a trip, if 

the delayed GPS record is of engine status “motion” or “idling” the same procedure as 

described in Section 4.2.4 is followed. 

 

4.5.6.  Speed Violations for Late Events 
 

 

In Section 4.2.6., we described the procedure that we follow to count the occurred 

speed violations. In case of a delayed record, we compare its speed with the speed of the 

next and previous record. If the delayed GPS record has greater speed than the specified 

threshold, and both the next and the previous records have speed below the speed 

violation threshold, then speed violation has been occurred. Thus, we increase by one the 

already counted speed violation. If at least one from the next or the previous GPS records 

has also greater speed than the specified threshold, speed violation has been already 

counted so we do not increase the already calculated value. 

 

 

4.5.7.  Ending Time and Location for Late Events 
 

As we have mentioned before, the ending time and the location in our implementation 

is the timestamp and the location of the first emitted data of engine status “parked” for a 

given trip. Thus, the only case where we update the ending time and the location is when 

the delayed record should be the first “parked” record of a given trip. In any other case, 

the already calculated ending time and the location should not be changed. 

 

 

4.5.8.  Updating Trip Statistics if a Parked GPS Data is Late 
 

Correct identification of a trip is of crucial importance for our application. A trip starts 

when the driver switches on the engine of the vehicle, and it is considered as completed 

when the engine is switched off. Thus, when after a “parked” GPS record, a GPS record 

of engine status “idling” or “motion” reaches the system, then a new trip is generated. 

When a GPS record of engine status “parked” arrives at the system, we assume that the 

corresponding trip has been completed. There is a chance that a GPS record that should 
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be the last data of a trip is delayed. In this case, trips are not separated in a proper way 

and statistics are incorrectly computed. Our application should be able to correctly 

identify trips even in case of out-of-order “parked” data. To illustrate this scenario, let us 

assume that Table 47 displays the already arrived and processed data.  

 

 

 vehicleID Date EngineStatus lat lon speed 

1 5052 2021-12-02 10:10:00 idling 37.939035 23.648065 0.0 

2 5052 2021-12-02 10:15:00 idling 37.939035 23.648065 0.0 

3 5052 2021-12-02 10:30:00 motion 37.939045 23.648075 65.0 

4 5052 2021-12-02 10:32:00 motion 37.939048 23.648080 77.0 

5 5052 2021-12-02 10:45:00 motion 37.939140 23.648277 95.2 

Late data event should go here 

7 5052 2021-12-02 10:49:00 idling 37.939150 23.648280 0.0 

8 5052 2021-12-02 10:50:00 motion 37.939160 23.648285 45.0 

9 5052 2021-12-02 10:55:00 motion 37.939165 23.648290 80.0 

10 5052 2021-12-02 11:15:00 idling 37.939266 23.648299 0.0 

11 5052 2021-12-02 11:35:00 idling 37.939393 23.648300 0.0 

Table 47: GPS data as an example on how to compute trip statistics in case of delayed parked GPS record, which 

should be the last GPS record of a trip 

 

 

Since no GPS data of engine status “parked” have arrived at the system, all data will 

be considered as data of the same trip. Thus, the idle duration of the trip is 41 minutes, 

the motion duration is 44 minutes, the parked duration is 0 minutes, and the trip duration 

is equal to 85 minutes. Also, the maximum speed is equal to 80.00 km/h and the average 

speed is equal to 36.22 km/h. Assuming that the speed threshold is 50 km/h, two speed 

violations have occurred. 

Assuming now that the record that is shown in Table 48 is delayed and just arrived at 

the system, it is easily understood that statistics for two trips should be computed. 

 

 

 vehicleID Date EngineStatus lat lon speed 

6 5052 2021-12-02 10:47:00 parked 37.939155 23.648288 0.0 

Table 48: Delayed GPS record of engine status “parked” that it should be the last GPS record of a trip 
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After processing the delayed GPS record, the statistics of the first trip should be the 

following: the idle duration is equal to 20 minutes, the motion duration is 17 minutes, the 

parked duration is 2 minutes, the trip duration is 37 minutes, the maximum speed is 95.2 

km/h, the average speed is 47.44 km/h, and one speed violation have occurred. For the 

second trip the statistics should be the following: the idle duration is 21 minutes, the 

motion duration is 25 minutes, the parked duration is 0 minutes, the trip duration is 46 

minutes, the maximum speed is 80 km/h, the average speed is equal to 25 km/h, and one 

speed violation has been performed. 

To correctly calculate trip statistics, when a delayed GPS record of engine status 

“parked” arrives at the system, we need to generate a new trip and assign the 

corresponding data to this new trip. To achieve this, we loop through the data that should 

be in the new trip, we add them one by one to this trip, and we delete them from the trip 

that they were wrongly assigned. To calculate the statistics for the new trip we use the 

same logic that we have described above for events that have arrived at the system in the 

correct order. 

Since some of the data were mistakenly taken into consideration for the calculations of  

the statistics of the completed trip, we need to recompute some of these statistics. For this 

reason, the following rules have been adopted. The starting time and the starting location 

are unchanged. For the ending timestamp and the ending location we just use the 

timestamp and location of the delayed “parked” GPS data. For the trip duration we 

compute the difference between the ending timestamp and the starting timestamp of the 

trip. Parking duration is calculated by calculating the difference between the starting 

timestamp of the new trip and the ending timestamp of the completed trip. For updating 

the other durations, we need to detect in what engine status was the trip before the 

“parked” GPS record. If the trip was in “motion” status, then motion duration is 

computing using the formula: 

 

Completed trip’s motion duration = already computed motion duration – new trip’s 

motion duration – parked duration. 

 

To compute the idle duration, we use the formula: 

 

Completed trip’s idle duration = already computed idle duration – new trip’s idle duration 

 

In a similar way, we compute the durations if the trip was in “idling” status. If this is the 

case, the used formulas are the following: 

 

Completed trip’s idle duration = already computed idle duration – new trip’s idle 

duration – parked duration. 

 

Completed trip’s motion duration = already computed motion duration – new trip’s motion 

duration 
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To compute the maximum speed of the new trip we calculate the max speed of the 

ArrayList of the corresponding data. To compute the average speed of the new trip we 

calculate the sum of the corresponding non parked data and we divided by the number of 

these data. Moreover, we need to recalculate the average speed of the completed trip. To 

achieve this, we use the following equations. 

 

Completed trip’s sum of speed = already computed sum of speed – new trip’s sum of 

speed 

 

Completed trip’s non parked data = already computed non parked data – new trip’s non 

parked data 

 

Completed trip’s average speed = completed trip’s sum of / completed trip’s non parked 

data 

 

 

Finally, to compute the performed speed violations we need to consider the following 

cases: If in the previous and next records of a “parked” GPS data, speed violation has 

occurred, then the following formula is used: 

Completed trip’s speed violations = already computed speed violations – new trip’s 

speed violations + 1 

In any other case the following formula is used: 

Completed trip’s speed violations = already computed speed violations – new trip’s 

speed violations 
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4.6.  Storage & Visualization 
 

In the proposed architecture, Elasticsearch is used as a storage layer in order to store 

the aggregated results and provide an efficient query service to the user. To add a 

visualization layer in our application we used Kibana on top of Elasticsearch. 

First, we create an index called “gps_event_idx” using a PUT request from Dev Tools 

of Kibana. In the following Table we present the properties of this index and their 

corresponding types. 

 

 

Properties Type 

VehicleID text 

TripCount integer 

Starting_ts date 

Starting_lat double 

Starting_lon double 

Starting_location geo_point 

Ending_ts date 

Ending_lat double 

Ending_lon double 

Ending_location geo_point 

TripDuration double 

MotionDuration double 

IdleDuration double 

ParkedDuration double 

AvgSpeed double 

MaxSpeed double 

CntSpeedViolations integer 

Table 49: Properties & types of Elasticsearch index 

 

 

As we have mentioned in Section 4.2., every time that a new GPS record arrives at our 

proposed application, a custom function, which is responsible for the computations of the 

values of a given trip, is triggered. 
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After the processing of each GPS record, the fields of the trip object are updated and 

this trip object is sent to Elasticsearch. Thus, Elasticsearch stores one document (JSON) 

for each trip, with defined values for all the fields that are presented in Table 49. 

As soon as the aggregated data are stored into Elasticsearch, the users have access to 

the dashboards, which help them have a clear overview of vehicles’ trips. The user can 

select the vehicle and the trip, for which he wants to examine the statistics. If no trip is 

selected, then the statistics for all the trips of the selected vehicle will be shown. Figure 

24 presents the table and the values which are shown in Kibana’s dashboard. This data 

representation is equivalent to the route report that is presented in Figure 1. 

 

 

 

Figure 24: Statistics of all trips per vehicle in table format. 

 

 

Another useful graphic representation is the bar chart, which presents the duration of 

the trip and the time that the selected vehicle spent being in motion, idle or parked state 

per trip. Figure 25 displays an example of this bar chart. 

 

 

Figure 25: Bar chart of durations per trip. 
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Monitoring the average and the maximum speed per trip is also particularly important 

for a fleet management application. For this scope, the following area chart, which 

presents the average and the maximum speed per trip, was implemented.  

 

 

 

Figure 26: Area chart which presents average and maximum speed per trip. 

 

 

Figure 27 shows the overview of all trips per vehicle. It presents the total trip duration 

of a vehicle, the total duration that it has spent being in each of the different engine status 

(motion, idling, parked), the total speed violations and the average speed of all trips that it 

performed. 

 

 

 

Figure 27: Total statistics of all trips performed by a vehicle. 
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Moreover, we add a map layer in the frontend part of our implementation, which 

presents the starting and ending location of each trip for the selected vehicle. 

 

 

Figure 28: Map that presents starting and ending location of each trip. 

  



101 
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5.  Performance Evaluation 
 

In this section we present the dataset that was used throughout this thesis and we 

discuss the performance of our proposed solution. 

 

5.1.  Dataset Description 
 

The dataset that was used throughout this study has been provided by Vodafone 

Innovus, a company which offers fleet management services. It is a synthetic set of data 

containing anonymous GPS traces from virtual vehicles. This dataset contains 1 million 

records of the following information: vehicle, utcDate, engine status, longitude, latitude, 

altitude, angle, speed, odometer, satellites. Table 50 presents the description of the data 

schema. For our implementation we will focus on the following data: vehicle, utcDate, 

engine status, location points, and speed. Table 51 displays a sample of the data that we 

are going to use in the experiments. 

 

 

 Description Type Format Unit Source 

vehicle 

 

Vehicle Random Key String   Custom Generated 

utcDate UTC Date  Date YYYY-MM-DD 

hh:mi:ss.mmm 

 GPS Date 

engineStatus Indicates if vehicle is 

moving, idling, or 

parked 

String Idling, Parked, 

Motion 

 Engine Power 

longitude GPS Longitude Decimal WGS84 Number GPS Sensor 

latitude GPS Latitude Decimal WGS84 Number GPS Sensor 

altitude GPS Altitude Integer  Meters GPS Sensor 

angle Degrees 

(0-360o) based on two 

consecutive GPS 

coordinates 

Integer  Degrees GPS, Device 

speed Speed of the vehicle 

based on GPS 

Decimal  Km/h GPS, Device 

odometer Distance in meters 

between two 

consecutive GPS 

coordinates 

Integer  Meters GPS, Device 

satellites Number of satellites 

seen by GPS Antenna 

Integer  Number GPS Sensor 

Table 50: Data schema 
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vehicle utcDate engineStatus longitude latitude speed 

7059 2016-04-12 10:20:42.000 motion 29.92465148 72.45767708 70.0 

5069 2016-04-12 10:20:43.000 motion 29.92465148 72.45767708 45.0 

7059 2016-04-12 10:22:43.000 idling 29.92465200 72.45768100 0.0 

5069 2016-04-12 10:22:43.000 idling 29.92465321 72.45767728 0.0 

7059 2016-04-12 10:24:43.000 parked 29.92465200 72.45768100 0.0 

7059 2016-04-12 10:29:25.000 idling 29.92465200 72.45768100 0.0 

5069 2016-04-12 10:29:25.000 idling 29.92465321 72.45767728 0.0 

Table 51: Sample of the provided data 
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5.2.  Performance 
 

To begin with, we executed performance experiments, using a computer, which is 

equipped with 4 CPU cores and 16 GB RAM. We conducted 4 experiments using 25%, 

50%, 75% and 100% of the data. The following figure shows the number of trips that 

were produced during these experiments. 

 

 

 

Figure 29: Generated trips vs GPS Records 

 

 

Our main goal was to examine how the increase of parallelism level affects the 

processing time. To check this, we have executed each experiment with different job 

parallelism level (1, 2, 4 & 8). We have observed that when we increase job parallelism, 

the execution time decreases. In the following figures we present the results from our 

experiments. 
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Figure 30: Processing time vs parallelism for 1M GPS records 

 

 

 

Figure 31: Processing time vs parallelism for 750K GPS records 
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Figure 32: Processing time vs parallelism for 500K GPS records 

 

 

 

Figure 33: Processing time vs parallelism for 250K GPS records 
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Figure 34: Processing time vs parallelism for all experiments 
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Another metric that we have taken into consideration during the experiments was the 

throughput. We wanted to examine how the increase of job parallelism affects the 

number of GPS records that our application is processing per second. As it was expected, 

as we double the parallelism level, the throughput almost doubles as well. The following 

figures presents the results of each experiment. 

 

 

 

Figure 35: Throughput vs parallelism for 1M GPS Records 
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Figure 36: Throughput vs parallelism for 750K GPS records 

 

 

 

Figure 37: Throughput vs parallelism for 500K GPS records 
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Figure 38: Throughput vs parallelism for 250K GPS records 
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6.  Conclusions & Future Work 
 

In this master thesis we proposed an application which can be considered as a proof of 

concept on how to compute statistics in real time. These statistics can be used for 

trajectory analysis of moving vehicles, and for creating a route report [Figure 1]. Our 

purpose was to design and implement an application, which calculates and updates 

statistics of a vehicle’s trip as soon as new data, emitted by GPS devices, arrive at the 

system. Since GPS devices may face malfunctions or signal loss, data may arrive at the 

application later than they have been generated. Thus, for our application to be reliable, 

the requirements included correct handling of out-of-order data, which may arrive at the 

system on delay, and update respectively the statistics. The computed trip statistics are 

stored into Elasticsearch, which provides a fast search engine for users to find the desired 

metrics for the vehicle and the trip of interest. Last part of the proposed design is the 

visualization of the metrics, which is handled by Kibana. 

For the main part of computations, we used Apache Flink, which is a scalable, 

distributed and fault-tolerant processing engine that can be used for calculations on 

bounded (finite) or unbounded (infinite) data. It is a true streaming engine that provides 

excellent performance with low-latency and high-throughput. 

For data ingestion to the application, we used Apache Kafka. Integration of Apache 

Flink with Apache Kafka provides backpressure handling and guarantees data durability. 

 

 

As future work we could add into our implementation the following functionalities: 

 

• For computing the speed violations performed by a vehicle per trip, we compare 

the speed with a predefined threshold. An improvement on this could be to 

dynamically set the speed threshold based on the current location of the vehicle 

and the traffic rules. 

 

• Another improvement could be to apply validation rules on the data before 

performing the computations. We could train machine learning algorithms to 

detect erroneous data and filter them out to exclude them from the computations. 

 

• To make this application suitable for production, fault tolerance could also be 

checked and optimized. If our application unexpectedly fails, it should be able to 

recover properly, so as not to lose any significant data. 
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