
MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 1

UNIVERSITY OF PIRAEUS – DEPARTMENT OF INFORMATICS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ – ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

MSc “Informatics”

ΠΜΣ «Πληροφορική»

MSc Thesis

Μεταπτυχιακή Διατριβή

Thesis Title:

Τίτλος Διατριβής:

“Wand: Design and Development of a Game Engine for
Visual Novels”

«Wand: Σχεδίαση και Ανάπτυξη μιας Μηχανής
Παιχνιδιών για Οπτικά Μυθιστορήματα»

Student’s name-surname:

Ονοματεπώνυμο φοιτητή:

Maria Violaki

Μαρία Βιολάκη

Father’s name:

Πατρώνυμο:

Christos

Χρήστος

Student’s ID No:

Αριθμός Μητρώου:
ΜΠΠΛ19007

Supervisor:

Επιβλέπων:

Themistoklis Panagiotopoulos, Professor

Θεμιστοκλής Παναγιωτόπουλος, Καθηγητής

July 2022 / Ιούλιος 2022

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 2

3-Member Examination Committee

Τριμελής Εξεταστική Επιτροπή

Themistoklis Panagiotopoulos,

Professor

Θεμιστοκλής
Παναγιωτόπουλος, Καθηγητής

Dionisios Sotiropoulos,

Assistant Professor

Διονύσιος Σωτηρόπουλος,
Επίκουρος Καθηγητής

Ioannis Tasoulas,

Assistant Professor

Ιωάννης Τασούλας,
Επίκουρος Καθηγητής

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 3

ABSTRACT

The games industry is undergoing a rapid growth in the recent years, resulting in an

increasing demand for high-quality video games. Nowadays, games need to be built on top

of complex architectures whose goal is make development simpler, faster, and more

accessible to creators. This is the job of a game engine.

The present thesis analyzes the most important aspects of Wand, a simple visual novel

engine. Due to the central role of storytelling and visuals in this particular game genre,

heavy focus is placed on graphics and how they are managed by the engine. Rendering

graphics is a key component of any development environment for video games, and this is

especially true for visual novels.

Aside from the main features of a game engine, this study also summarizes Wand’s

functionality and provides examples as to how a game programmer might use it. The

primary goal of the API is to provide a set of flexible and easy-to-use tools to the visual novel

creator while ensuring the efficiency of the end product.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 4

TABLE OF CONTENTS

1. Introduction .. 5

1.1. The Need for Game Engines ... 5

1.2. Project Description .. 5

2. What Is a Game Engine? .. 7

2.1. Definition ... 7

2.2. Popular Game Engines ... 8

2.3. Visual Novel Engines .. 8

2.3.1. Definition of a Visual Novel ... 8

2.3.2. Popular Engines... 9

3. Main Aspects of a Game Engine .. 10

3.1. Window ... 10

3.2. Graphics .. 11

3.2.1. Definition and Popular APIs ... 11

3.2.2. The Graphics Pipeline .. 12

3.2.3. Rendering Shapes .. 13

3.2.4. Rendering Sprites and Text.. 16

3.3. Audio ... 17

3.4. State and Serialization ... 18

3.5. Secondary Engine Features .. 18

4. Engine Development ... 20

4.1. Project Details ... 20

4.1.1. Details and Limitations .. 20

4.1.2. Project Structure ... 21

4.1.3. External Libraries .. 22

4.2. Main Classes and Functions ... 23

4.2.1. Core Classes .. 23

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 5

4.2.2. Events Classes ... 28

4.2.3. Input Classes ... 31

4.2.4. Graphics Classes .. 32

4.2.5. State Classes ... 39

4.2.6. UI Classes .. 39

4.2.7. VN Classes ... 41

4.2.8. Audio Classes .. 43

4.2.9. Precompiled Headers .. 44

5. An Example Game ... 46

5.1. Game Details ... 46

5.1.1. Summary ... 46

5.1.2. Graphics .. 46

5.1.3. Project Structure ... 48

5.2. Main Classes and Functions ... 50

5.3. Game Code Analysis... 54

5.3.1. Full Scene Example .. 54

5.3.2. Example Functions .. 57

6. Conclusion ... 59

6.1. Afterword .. 59

6.2. Future Work .. 59

References ... 61

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 6

1. INTRODUCTION

1.1. The Need for Game Engines

The fast-paced evolution of technology over the past few decades has caused the

production of video games to skyrocket. Millions of games have been created until this day,

and this number only keeps growing. The multitude of different platforms combined with

the release of game engines, easily accessible to independent developers, has certainly

played an important role in this advancement.

However, the more games are released, the higher the standards of the gaming community.

Many successful games are nowadays produced by large teams of programmers, designers,

artists, and other professionals in the field. Modern hardware can support heavier

operations, causing software developers to exploit this opportunity in order to create high-

quality products.

Eventually, the need for game engines arrived. Most modern games are very complex to be

built from the ground up, and their developers often require an architecture that hides

away this complexity and makes room for game logic. By managing feature-specific

operations and providing helpful tools to the creator, game engines can greatly reduce the

development time required for the production of a game.

1.2. Project Description

This paper aims to explore some of the most important aspects of a game engine. Its scope

is limited to a few basic components of a visual novel engine, but its features can easily be

generalized to more complex architectures. Although this study will analyze some key

concepts that can be applied to many similar projects, the focus will be mostly on the

specific features of Wand.

Regarding its technical details, the engine was created with C++ and Visual Studio, two of

the most commonly used tools in the games industry. The graphics-API chosen for this

project is OpenGL, mainly due to its simplicity and cross-platform availability. Wand also

integrates several third-party libraries which will be described in one of the following

sections. As for the Visual Studio solution, it consists of two projects: Wand and Game.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 7

Wand Engine provides tools for the creation of 2D games, and more specifically, visual

novels. Due to their story-driven gameplay and limited action and world exploration, most

games that belong in this genre do not require the entirety of features offered by many

popular game engines, such as Unity. Very often, the player only has to click on the screen

in order to progress in the story and, for this reason, the need for a level editor and other

complex GUI elements is less imperative.

Ren’Py, the most popular visual novel engine, serves as this project’s inspiration. It has a

relatively simple Graphical User Interface, and most of its development involves writing

code in scripts. Although Wand does not support scripting, it shares Ren’Py’s simplicity in

the sense that the entire visual novel can be created inside Visual Studio. As an engine,

Wand is statically linked to the Game project and has no GUI of its own.

Along with the engine, one separate piece of software was developed: a simple visual novel

named Wand Tutorial that makes use of Wand’s tools. Although this paper will analyze the

main features of both projects, the full code is freely available on GitHub. Their online

repositories can be found at the following URLs:

Wand: https://github.com/mariaviolaki/wand

Wand Tutorial: https://github.com/mariaviolaki/wand-tutorial

https://github.com/mariaviolaki/wand
https://github.com/mariaviolaki/wand-tutorial

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 8

2. WHAT IS A GAME ENGINE?

2.1. Definition

A game engine can be defined as a set of tools that the programmer can use to build an

interactive application. Some engines, such as Unity or Unreal, are commercialized and

publicly released. Many others, though, often developed by big game studios like Valve and

Ubisoft, are internal to the company, built as platforms that can be used for the

development of video games. It is important to note, however, that the same engines can

be used for products other than games: Virtual Reality applications, architectural

visualizations, simulations, and many other interactive programs also display graphics in

real time and usually require the same set of tools that are built into a game engine.

A more specific definition would be centered around data transformation. The core function

of a game engine is the conversion of data from one form to another: It is responsible of

reading in a variety of files from the disk and transforming them in a way that can be easily

perceived by humans. Text, images, audio files, and many other forms of data are parsed

by the engine at runtime and are presented to the user along with ways to interact with

them (Chernikov, What is a GAME ENGINE?, 2018).

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 9

2.2. Popular Game Engines

Nowadays, there is a variety of engines that the developer can use to build their game. One

of the most well-known and widely used ones is Unity. Launched in 2005, Unity Engine has

gained a sizable community and enjoys constant updates. It is often perceived as the top

choice for beginners and indie game developers, and the support for the creators is

significant. It can be used for free by anyone who earns less than 100K dollars per year and

has a store with a great variety of free and paid assets. In addition, not only can the engine

be used for the development of 2D and 3D games, it is also popular for its support for VR

and AR applications. At the same time, it is well-suited for the creation of games that run

on multiple platforms, including Android and iOS.

A slightly older yet equally popular choice for game developers is Unreal Engine. Like Unity,

it is cross-platform and can be used for AR and VR applications. However, while it provides

tools for the development of both 2D and 3D games, it is best suited for the latter. Unreal

Engine is considered more performant than other commercial engines, but this comes at

the cost of greater system requirements. Although it can also be used by indie creators as

well, it works best when it comes to the development of team projects. Many triple-A games

have been built with this engine, in fact, since it handles complicated tasks more efficiently.

Lastly, it is important to note that it also includes a Marketplace with free assets and also

offers a variety of useful tools, such as blueprints which can be valuable for non-

programmers.

Besides Unity and Unreal Engine, there are several other options that are less popular and

more limiting in one way or another. Godot, Phaser, GameMaker Studio, and RPG Maker

are some of the most well-known among them. (Schardon, 2022)

2.3. Visual Novel Engines

2.3.1. Definition of a Visual Novel

Visual Novels are a video game genre where the story plays a central role in development.

While there are several published 3D games of this type, the majority of Visual Novels are

2D applications. The characters and locations featured in them can be static or animated,

but the gameplay is rather limited compared to other types of games. Very often, Visual

Novels also include music, sound effects, as well as cutscenes, although as a rule, the

emphasis is put on narrative and visuals.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 10

2.3.2. Popular Engines

When it comes to the development of Visual Novels, Ren’Py is the most widely used engine.

Released in 2004, it is a free and open-source tool that only requires some basic knowledge

of Python. It is a straightforward engine that can be easily learned through tutorials since it

lacks much of the complexity of a typical game engine. It is very flexible and uses Python for

scripting, making it fairly easy to use by beginners.

There are also a few other known options for this genre, such as TyranoBuilder which allows

for less customization but is easier to use, or Visual Novel Maker which is pricier and has a

steeper learning curve but includes a full suite of features (Vincent, 2020). Additionally,

since Visual Novels and common video games share many similar features, the creator can

also use more complex engines such as Unity or Unreal for development. Such options,

however, are often considered unnecessarily hard and heavy on the system since Visual

Novels are typically a lot simpler.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 11

3. MAIN ASPECTS OF A GAME ENGINE

3.1. Window

One of the most crucial components in a game engine is the creation of a window, which

can be perceived as the basis of many other major subsystems, including graphics and user

input. For this reason, the developer often needs to use an external library that is

responsible of clearing and updating the graphics drawn every frame as well as keeping

track of the events triggered when the user interacts with it.

These events include keyboard presses, mouse button clicks, scrolling, and movement, as

well as others which are related to the window itself, such as setting the fullscreen mode,

resizing, and closing. The engine either needs to notify its various subsystems with its own

events when these window API events occur, or save their data so that they can be available

when the user—or any other part of the engine—requests them.

As for the graphics-related functions offered by the library API, they range from clearing the

existing graphics with a certain color to setting the blending mode for the shapes that are

drawn on top of it. In order to achieve the former, the window keeps track of two buffers;

the one on the back that is meant for writing and the front one that will be displayed. This

mechanism allows the engine to fill the back buffer with graphics while the front buffer

shows to the user the graphics of the latest frame. When the next frame is about to be

rendered, these buffers are swapped and the pixels of the new back buffer are overwritten

with new information (Gordan, 2021). The window follows these same steps continuously

until it is closed.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 12

Blending can produce different results depending on the blending function and the blending

equation set by the engine developer. It determines how the fragment shader’s output

color is combined with the color that is already in the buffer. In this way, the new colored

pixel can be set to cover the already existing one according to of its transparency, or it can

even replace the old color entirely, regardless of the value of its alpha parameter.

3.2. Graphics

3.2.1. Definition and Popular APIs

Graphics is one of the most important systems in a game engine. It is essentially everything

that is displayed on the screen, including text, images, videos, or even basic shapes. The

hardware that is responsible for rendering graphics on the screen is the GPU, and it is

accessed and programmed by game engines in order to render 2D and 3D shapes as

efficiently as possible.

There are several APIs that allow the engine developer to access the graphics card: OpenGL

which is cross-platform and fairly easy to use by beginners, Vulkan which is more powerful

as well as cross-platform, DirectX which is available on Microsoft platforms, and Metal

which is used for iOS and macOS platforms (Chernikov, 2017).

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 13

3.2.2. The Graphics Pipeline

The programs that run on the GPU and are responsible of rendering graphics are called

shaders. Shaders are part of the rendering pipeline, a series of stages that converts data

into the final image that is displayed on the screen.

The Graphics Pipeline (de Vries)

The data that is given as input to the graphics pipeline is in the form of vertices. As opposed

to those defined in mathematics, graphics vertices contain a lot more information than just

position coordinates. Color and texture coordinates are two such examples.

The vertex shader, that is, the first part of the graphics pipeline as seen above, is responsible

of receiving the vertices supplied by a program that runs on the CPU and transforming them

according to the needs of the application. In the next stage, the shape assembler connects

the final positions supplied by the vertex shader according to a primitive, i.e. a point, a line,

or a triangle. As for the geometry shader, it creates additional vertices, thus forming more

primitives from the already existing ones.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 14

This data is then rasterized. In other words, the accurate, mathematical shapes, created in

the following stages are transformed into pixels that will be displayed on the screen. These

pixels are colored in the fragment shader. The color of each pixel depends on multiple

factors such as lighting, shadows, and texture coordinates. However, there may be more

than one color corresponding to the same pixel since there may be multiple objects

overlapping in the same place. The final color is determined in the last stage of the graphics

pipeline where the blending of transparent, semi-transparent, and non-transparent objects

takes place (Gordan, 2021).

Taking everything into consideration, the vertex and fragment shaders are usually

considered as the most important ones and are often the only ones that need to be adjusted

in a game engine.

3.2.3. Rendering Shapes

In order to render any kind of shape in a graphics engine, the shape first needs to be divided

into triangles. This is the simplest arrangement of vertices in space so that they can form a

flat surface. The game developer should be able to create any kind of geometry depending

on their needs.

The most common shape that can be rendered by a graphics engine is a rectangle, which

can then be broken down into two triangles. Since each triangle consists of three vertices,

six vertices are needed in total for the shape to be drawn. However, two of these vertices

are duplicate and can result in a significantly lower performance when multiple and more

complex shapes need to be rendered in a single frame.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 15

In this case, in order to draw the rectangle depicted above, one would have to supply to the

GPU the vertices of these two triangles. That is, the vertices [0, 1, 2] and [3, 4, 5].

To avoid this waste of memory, the graphics engineer can make use of indices. As a first

step, instead of creating an array with vertices that hold the same data, they can supply to

the GPU four vertices for each rectangle. But since every shape needs to be broken down

into triangles, the engineer should also create a set of indices that point to the appropriate

vertex.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 16

If the resulting array of vertices then was [0, 1, 2, 3] the array of indices to draw two

triangles would be [0, 1, 3, 1, 2, 3]. The repetition of numbers in the index array is much

more preferable to a repetition in the vertex array because, as it has already been

mentioned, each vertex holds a lot more information than a single integer. For instance, the

data for a white point in the bottom left corner of the window would be: [0, 0, 0, 255, 255,

255, 255]. The first three numbers correspond to the coordinates on the x, y, and z axis, and

the last four correspond to the RGBA color of non-transparent white. If a single vertex

contains all these seven numbers, the data needed to draw a rectangle would require 28

numbers in total.

The array of vertices is stored in an array buffer within the GPU, and the index array is also

stored in a respective buffer. The entity that keeps track of every number within a single

vertex is called Vertex Array, and it manages all the vertex buffers that are created in the

graphics card. It is also possible for the developer to store multiple shapes within the vertex

buffer, in which case the Vertex Array only manages the data of a single buffer.

It is important to note, however, that the larger the vertex buffer grows, the larger the index

buffer becomes as well. For example, a vertex buffer containing data for a single rectangle

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 17

stores four vertices, and the index buffer that corresponds to it holds six indices. A buffer

with two rectangles, and thus, eight vertices would require twelve indices, and so on.

3.2.4. Rendering Sprites and Text

Aside from displaying basic shapes, a game engine often needs to load images and fonts

from disk and draw them as well. For this purpose, it is often useful for the developer to use

external libraries to read in these files and convert them into a set of bytes. Similarly to basic

shapes, these bytes are also saved in buffers and sent to the GPU for rendering.

Two-dimensional sprites as well as three-dimensional models are also referred to as

textures. Sprites can be rendered on top of shapes, often rectangles. As it has already been

mentioned, part of the data that may be included in a vertex are the texture coordinates.

In this way, each edge of the rectangle can be associated to the respective edge of the sprite.

As a result, the final color of a pixel is determined not by an RGBA color, but by the

appropriate color in the texture.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 18

As for text rendering, a similar procedure is followed. In order to draw characters on the

screen, the engine should at least take as input a font file, a text size, a color, and the string

that needs to be displayed. While the last parameters are usually straightforward, the font

needs to be loaded into memory and be used for the creation of a font atlas, which is

essentially a large texture. A font atlas, contains all the different characters, or glyphs, in a

font. These can be letters, numbers, and special characters.

Font Atlas

To render a single character, the developer would still need to supply the data of four

vertices to the GPU. Each vertex would at least contain position, color, and texture data.

For example, and according to the image above, in order to draw a red ‘B’ in a 60x80

rectangle placed at the bottom left corner of the window, the input to the graphics pipeline

would be the following for the top-right vertex: [60, 80, 0, 255, 0, 0, 255, 40, 20].

The first three numbers refer to the x, y, and z coordinates of the top-right corner of the

rectangle. The next four describe the color red. As for the last two numbers, they

correspond to the top-right corner of the glyph for the letter ‘B’ inside the font atlas.

3.3. Audio

Depending on the needs of the engine, audio can either be a simple or a very complex

subsystem. The use of dedicated libraries is often necessary for the engine programmer.

The application would need to read in an audio file at runtime, save it in memory, and adjust

the parameters of its playback. Both music and sound effects might need to be played at

different volumes, panning, and speed. Whether the track should loop or not is also a

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 19

valuable piece of information since some audio sources are only meant to be played once.

This is often the case for sound effects and voice lines as opposed to background music.

3.4. State and Serialization

There can be various implementations when it comes to this particular aspect. Since the

majority of applications make use of data that should persist even after the user exits the

program, it is crucial that these data be stored on disk or even backed up online. This

conversion of data into a format which is then saved or transmitted into some form of

storage is known as serialization. The reverse process, deserialization, makes use of the

backed-up information to recreate the original objects and data types needed by the

application.

The engine needs to store data in a clear and concise way. For this reason, although it is

possible to save the state of the application in files that contain plain, unstructured text, it

is rarely the preferred method. The engine programmer can choose to serialize their data

in other formats, such as binary or JSON. While the former can be faster and more efficient

in terms of space, JSON serialization creates more portable files that can be parsed and read

by humans more easily.

3.5. Secondary Engine Features

A game engine can include many additional subsystems depending on its scope and goals

set by its programmer. For many engines, physics and collision detection is a core

component since a great number of games contain objects that move around in space,

overlap, and interact with one another. This feature is not particularly useful for a visual

novel because its developer rarely needs to apply physics to the relationship between game

objects or even to their relationship with the world. The visual novel developer often needs

to only tell a story and not include battles or similar mechanics in the gameplay. However,

it is also possible that some visual novels may require such a feature, and therefore the lack

of a physics and collision detection subsystem would be restrictive.

On the contrary, animation is something that almost every application may need to include.

Visual novels could make use of animated sprites, and even a simple UI program might

require this functionality for operations such as the click of a button. In regard to visual

novels, the applications of animation vary. Some UI-related functions would be the resizing

of a button when the user interacts with it, the release of particles or ripples starting from

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 20

the position of a mouse click, and a smooth transition between menus. Moreover, there

have been released multiple visual novels that implement character animation for functions

such as blinking and breathing. Background animations can also add to the user experience

for such games and can be used in various occasions within a story. These include natural

phenomena like rain and snow, moving objects such as curtains and wind chimes, and even

background particles to create a certain atmosphere.

There is a lot more functionality that can be added to a game engine, and depending on the

needs of the project, some subsystems may play a more central role compared to others.

Particles, for instance, are also an important component for most games, and networking

can be also essential although it is mainly implemented by engines which aim to provide

tools for online multiplayer games. Another basic feature that the engine developer should

consider is scripting: Although the end product would be slower in performance and less

flexible, its development would require less time and technical knowledge. Lastly, AI is also

considered as an essential subsystem even though its usefulness depends on the types of

games that can be made with the engine. Other examples of secondary or smaller features

would be a mechanism generating random numbers and a logger that prints information

and error messages to the screen or a file.

In any case, one thing that all engines have in common is the system that binds them all

together and initializes the various components and main resources of the application. After

being initialized, the main components of the engine will in turn set up smaller subsystems

dependent on them, and this process will continue in the same manner until every crucial

feature of the engine is operational.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 21

4. ENGINE DEVELOPMENT

4.1. Project Details

4.1.1. Details and Limitations

Wand was developed with Visual Studio and is written in C++. Although the external

libraries used for this project are cross-platform, the games made with this engine are

aimed for Windows x64 machines and the game developer is encouraged to use Visual

Studio and C++ for programming.

The engine is also available on GitHub, and the root directory of the repository corresponds

to the root directory of the Visual Studio solution. It is composed of two main projects, each

of them in its own separate folder: Wand, which contains all the engine code, and Game,

which is intended for the game developer and includes the game’s code, assets, and states

which are generated at runtime. The repository of Wand Engine can be found at this URL:

https://github.com/mariaviolaki/wand

https://github.com/mariaviolaki/wand

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 22

4.1.2. Project Structure

As it was already mentioned, the Wand project folder contains all the engine code. Each file

is placed into a different folder, according to the category it belongs to. The main folders in

this directory are External and Source. The former includes all the external libraries that

have been linked to the engine, and the latter contains all the original engine code.

The contents in Source summarize the engine’s main features, grouped in different folders:

Core contains all the major components. The majority of files in this directory contain

classes and functions that are called in the beginning of the program and are required for

the initialization of other subsystems. There are also several other major features which do

not belong in any of the other categories. The majority of the other directories within Source

are focused on some particular aspect of the engine: Events, Input, Graphics, Audio, State,

UI, and VN have limited or no interaction with each other. Utils contains various tools that

are useful for the engine and the game developer. Their scope is small enough and they do

not belong in any other category.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 23

4.1.3. External Libraries

The folder External contains the following libraries and APIs: OpenGL for graphics rendering,

Glad for OpenGL initialization, GLFW for window creation and management, GLM for

mathematics for OpenGL, nlohmann/json for JSON serialization, stb_image for image

loading, FreeType for font rendering, and SoLoud for audio playback.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 24

Some libraries only consist of header files, and every library that was linked to the game

engine was linked statically. In the cases when a .lib file was required for the project to build,

two separate files were provided; one for Debug and one for Release mode.

4.2. Main Classes and Functions

4.2.1. Core Classes

All the code for the game engine is included within the wand namespace. For every class in

the project there is a header file and a source file created. Although the engine is built as a

static library and doesn’t have a starting point of execution, there is a main component from

which all the other major subsystems derive. As it will be explained later in the Example

Game section, the first object that should be instantiated in a Wand game is the App. App

contains the majority of features that the engine or the game developer might need while

the program runs.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 25

App.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 26

As it can be seen above, the game developer can request some major subsystems directly

from the App. One of these is the Window which initializes and manages the most important

graphics-related resources of the engine. By accessing the Window, the programmer can

change the window’s title, size, icon, fullscreen mode, and aspect ratio. This class also keeps

track of the events that are directly related to it.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 27

Window.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 28

The last major class within Core is the EntityManager. The purpose of this class is to save

and keep track of all the UI entities created in a game. These are Rectangles, Sprites,

TextBoxes, and Buttons which can either be created with a Rectangle and a TextBox, or a

Sprite and a TextBox. All these entities can be altered during runtime, and EntityManager

always keeps the updated version of them. It can send them to other subsystems within the

engine or even to the game programmer if they request them.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 29

EntityManager.h

4.2.2. Events Classes

Even though Events are dependent on other engine components, they remain a central

subsystem that affects many other classes, including the Window, the Input, the UIEntities,

and the Renderer. There are many different types of Events as shown below:

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 30

Events that belong to the category Input have their mouse and keyboard data saved in the

Input class from which the game programmer can later request the current state. Window

Events can be used to adjust the window’s aspect ratio after resizing, change the scale of

the entities displayed, or notify the engine that the application is about to close. The class

that keeps track of Events is called EventManager, and it is responsible of notifying and

altering all the interested components of the engine every time some change is detected

on the window.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 31

EventManager.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 32

4.2.3. Input Classes

As it was explained in the previous sections, the window detects any interaction of the

player with the user interface and sends the appropriate event to the engine. Those of the

category Input are related to mouse and keyboard events. The most recent ones are

temporarily stored in the Input class from which the game developer may request the

current state at any given time. This class is being kept up to date by the EventManager

which sends it any new input-related changes every frame.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 33

Input.h

4.2.4. Graphics Classes

Graphics is a substantial component of a game engine. The classes in this category contain

all the necessary data for rendering rectangles, sprites, and text, as these are the main

building blocks of all the UI entities in Wand Engine. These three types of 2D graphics are

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 34

also considered drawables and their data is sent to the GPU for rendering once per frame—

unless the window is resized, in which case they are rendered again.

Some of the most important classes in this category is the Drawable from which rectangles,

sprites, and text inherit their common features, the FontManager that saves and searches

for different Fonts with different names and sizes, the Transform which contains position,

size, and rotation data for a single drawable, and the Renderer that collects all the relevant

information in order to display a set of drawables to the screen.

It is also important to note that the Graphics directory contains many graphics API-specific

classes, such as VertexArray, VertexBuffer, IndexBuffer, Texture, and ShaderProgram. Lastly,

there are two additional files for the vertex and fragment shader code that is required by

ShaderProgram. These two files contain instructions to the GPU about how to determine

the final position of each vertex on the window and the final pixel color respectively.

Drawable.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 35

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 36

FontManager.h

Transform.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 37

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 38

Renderer.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 39

Standard.vert – Vertex Shader

Standard.frag – Fragment Shader

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 40

4.2.5. State Classes

The game state in Wand Engine is saved in JSON format in text files on the disk. A single

state can include a series of key-value pairs, corresponding to the name of the variable that

is being saved and its respective value. The data types allowed to be saved in a pair are

integers, doubles, bools, and strings. Although there can be multiple states in a game, a new

state will overwrite an old one if they both have the same name.

StateManager.h

4.2.6. UI Classes

As it was already mentioned, drawables are the building blocks of UI entities. The former

include all the necessary information for graphics to be drawn to the window, whereas the

latter are the objects that the player interacts with. One or more drawables can be used for

a single UI entity, depending on its complexity. In addition, every UI entity contains

functions that run when the user clicks or hovers over them and optional labels that can be

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 41

used by the programmer in order to distinguish between them. These objects can also use

other entities as their layouts and be positioned relative to them. They can be hidden, in

which case they are not chosen for rendering, or disabled so that the player cannot interact

with them.

UIEntity.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 42

4.2.7. VN Classes

Visual Novel entities are constructs that manage and group together a set of sprites. There

are two types of VNEntities that can be created in Wand Engine and these are either

Characters or Backgrounds. Their purpose is to offer the developer an easy way to alternate

between expressions for the same character or different backgrounds that belong in the

same category. They function similarly to UIEntities, but require different labels so that

every sprite has an original name within the group.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 43

VNEntity.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 44

4.2.8. Audio Classes

When the game developer first loads an audio file to the engine, they need to set a name

and whether the playback should be looping or not. This name can then be used to start or

stop the playback. Optionally, the developer can also choose to set a custom volume,

panning, and speed when the audio source begins playing.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 45

AudioManager.h

4.2.9. Precompiled Headers

Precompiled headers is a technique that reduces compilation time and is often used in large

projects. Long header files that are unlikely to change during the development of an

application can be added to a single header file called precompiled header. This type of file

is processed faster and is only compiled when any of the headers it contains is modified. It

should be included in every source file of the project and it gives access to all its headers.

However, while it is advised to add mostly external libraries to a precompiled header, not

everything should be included in it. Headers that are only used in a few files in the project’s

codebase should often be kept in the original file as this improves its readability. In such a

case, it would be easy to deduce which library is used in this particular file and how it relates

to the developer’s code.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 46

WandPCH.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 47

5. AN EXAMPLE GAME

5.1. Game Details

5.1.1. Summary

Wand Tutorial is a simple visual novel made with Wand. The game's main character, Void,

explains the main features of the engine, including choice buttons, game states, audio, and

positioning sprites on the screen. Depending on how the player reacts to Void, his likability

increases or decreases in the duration of the game, and he will give different answers

according to its level. The game runs on Windows x64 platforms and is developed in C++

with Visual Studio.

5.1.2. Graphics

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 48

As can be seen in the image above, Wand Tutorial contains many different elements. The

semi-transparent grey rectangles, the textboxes on top of them, and the two buttons are

all UIEntities. The main character as well as the background are VNEntities. The window title

is set to ‘Wand Tutorial’ and its icon is set to a custom image.

The need to create a VNEntity becomes clear upon watching all the different expressions a

character might have. Even though every image that is loaded to the engine is stored as a

single sprite, it is often more convenient for the developer to refer to the character just by

using their name. In order to alternate between the different expressions, it would then

make sense to use the label of the appropriate sprite.

In the same logic, for a simple game, only a single background is needed. Backgrounds are

usually rendered behind other UI entities and have the same width and height as the

window. Therefore, every time the developer needs to move the plot to a different place,

they would only need to choose the sprite with the appropriate label.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 49

Images that have very few variations can be loaded as simple sprites. Except for the sprite-

changing functionality, they have the same functions available and it is not necessary to set

custom labels. Button images and random objects often belong in this category.

5.1.3. Project Structure

In order to create a game with Wand Engine, the developer would first have to download

the wand repository from GitHub. Any changes to the already existing Visual Studio solution

would then need to be made within the Game project. All the code, assets, and saved states

should be able to be found in the respective folder. The online repository of the example

game made with Wand can be found here: https://github.com/mariaviolaki/wand-tutorial

https://github.com/mariaviolaki/wand-tutorial

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 50

Most of the source and header files for Wand Tutorial can be found inside Code. Audio,

Fonts, and Images are all directories generated by the engine automatically as it will search

for any assets in these specific paths. The game developer can request these paths from the

App’s file manager. Similarly, even though it is not shown above, as soon as the game runs,

one additional folder will be created inside Game: the folder Saves, where the engine will

store any states saved at runtime. Main.cpp is the file from which the program’s execution

begins, and the last three files shown in the image are created by Visual Studio

automatically when the developer sets a custom icon for the executable.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 51

5.2. Main Classes and Functions

The main classes for Wand Tutorial is the AssetManager that is responsible of loading and

initializing game assets, the SceneDataManager which saves and loads scene data in a single

state, the SceneManager which plays all the scenes in the correct order and starts from the

last saved one, as well as the Scene. Scene contains the information that all the different

scenes have in common, including variables and functions.

It is important to note at this point that the codebase for this game is only an example; a

possible implementation using the tools that Wand Engine has to offer.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 52

Main.cpp

AssetManager.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 53

SceneManager.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 54

SceneDataManager.h

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 55

Scene.h

5.3. Game Code Analysis

5.3.1. Full Scene Example

Due to the nature of the game genre which is centered around storytelling, the developer

of a visual novel usually spends most of their time working on code that contains a lot of

repetition. Therefore, it is crucial that the steps they need to follow are as clear and concise

as possible.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 56

Scene0.cpp

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 57

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 58

As can be seen in the images above, some of the most common methods being called for

displaying graphics are the SetSprite for VNEntities and SetText for TextBoxes. Show/Hide,

OnLeftClick, as well as many others can be used for any UI or VN entity.

Scene0 is an example of how all the scenes in Wand Tutorial are set up. Each of them

consists of several parts, and every time the player clicks on the left mouse button mPart is

set to a different number. Waiting for user input is often the only way to progress through

a scene, except for a few cases when mPart is explicitly changed immediately in order to

avoid executing a block of code more than once.

5.3.2. Example Functions

Although the game does not explore every feature that Wand has to offer, it can be useful

to list all the different functions that were used for its development:

Scene Functions

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 59

AssetManager Functions

SceneDataManager Functions

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 60

6. CONCLUSION

6.1. Afterword

This paper analyzed the role of game engines as well as their most basic components. More

specifically, special emphasis was put on visual novels and the features that set them apart

from common games. Taking into account all these factors was a crucial step before starting

to build a visual novel engine. Similarly to any problem that is in need of a solution, the first

steps that ought to be taken is understanding all its different parameters and clearly

defining its boundaries as well as the end goal.

Game engines need to implement various features, including window and state

management, graphics rendering, and audio playback. The more each of these features is

optimized, the more efficient and flexible the end product can be. This is the reason why

many popular engines are maintained by extensive development teams working on

improving performance and adding new features.

In any case, however, the creation of a game engine—however small—can be a valuable

experience even to developers who are working outside teams. Apart from the engine-

specific skills that can be acquired, there are many others that can be learned throughout

this process, such as linking different libraries, optimizing the program’s performance,

searching for help online, and even debugging the project.

6.2. Future Work

The optimization of Wand’s already existing features will always have a high priority in the

list of future improvements. While is it important for an engine to offer a wide range of

tools to game developers, it is often better to establish a robust and high performant

architecture first. Wand’s various subsystems could be adjusted so that they become more

flexible and efficient, a change that would also affect the quality of the end product.

Regarding changes on a greater scope, it was already mentioned that Wand applications

need to be developed in Visual Studio and, upon being built, they create Windows x64

executables. Since all the external libraries that are currently linked into the engine can run

on multiple platforms, one of the primary goals of this project would be to make Wand

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 61

cross-platform. As it is the case for many other popular architectures in the field, both the

engine and its games would need to be able to function on different platforms.

Moreover, one new feature that would need to be added eventually is animation. The

addition of movement to already existing graphics would render the gameplay much more

engaging and would make the stories come to life. Similarly, the use of a particle system

could cause the end product to feel more vibrant and less static.

There are several other features that could be added to Wand, although these would be

less useful given the needs of this particular engine. 3D rendering, for example, is not

preferred by the majority of applications of this genre, and complex physics and AI

subsystems are even more rarely used.

The less a game focuses on simple storytelling and static images, the less it reminds the

player of a visual novel. Very often, giving the developer more options can be helpful in the

sense that it does not limit their creativity. Nevertheless, very much like the developer of a

game engine, every creator ought to consider all the aspects of the problem they are trying

to solve: The features and limitations of the game need to be known beforehand so that

the appropriate engine can be selected. If the application is going to require more tools

than a visual novel engine can offer, it might be a better choice for the developer to choose

an engine with a greater variety of features, such as Unity.

MSc Thesis Maria Violaki

Wand: Design and Development of a Game Engine for Visual Novels 62

REFERENCES

Chernikov, Y. (2017, September 17). OpenGL. Retrieved from The Cherno:

https://www.youtube.com/playlist?list=PLlrATfBNZ98foTJPJ_Ev03o2oq3-GGOS2

Chernikov, Y. (2017, September 17). Welcome to OpenGL. Retrieved from The Cherno:

https://www.youtube.com/watch?v=W3gAzLwfIP0

Chernikov, Y. (2018, September 30). Game Engine. Retrieved from The Cherno:

https://www.youtube.com/playlist?list=PLlrATfBNZ98dC-V-N3m0Go4deliWHPFwT

Chernikov, Y. (2018, October 14). What is a GAME ENGINE? Retrieved from The Cherno:

https://www.youtube.com/watch?v=vtWdgtMo1T4

de Vries, J. (n.d.). Hello Triangle. Retrieved from LearnOpenGL:

https://learnopengl.com/Getting-started/Hello-Triangle

Glaiel, T. (2021, November 18). How to make your own game engine (and why). Retrieved

from Game Developer: https://www.gamedeveloper.com/blogs/how-to-make-

your-own-game-engine-and-why-

Gordan, V. (2021, April 27). OpenGL Course - Create 3D and 2D Graphics With C++.

Retrieved from freeCodeCamp.org:

https://www.youtube.com/watch?v=45MIykWJ-C4

Schardon, L. (2022, February 22). Best Game Engines for 2022 – Which Should You Use?

Retrieved from Zenva Pty Ltd: https://gamedevacademy.org/best-game-engines/

Vincent, B. (2020, April 3). The best engines for making your own visual novel. Retrieved

from PC Gamer: https://www.pcgamer.com/the-best-visual-novel-engines/

