MSc Thesis

Maria Violaki

UNIVERSITY OF PIRAEUS — DEPARTMENT OF INFORMATICS
MANEMIZTHMIO NEIPAIQZ — TMHMA NMAHPOO®OPIKHZ

MSc “Informatics”
MMZ «NAnpodopikn»

MSc Thesis
Metartuywokn Alotpln

Thesis Title:

TitAog AtatpLBnc:

“Wand: Design and Development of a Game Engine for
Visual Novels”

«Wand: Zxedilaon kat Avamtuén piag Mnxovig
Mayvidiwy yla Ontikd MuBlotoprpato»

Student’s name-surname: Maria Violaki
Ovopatenwvupo ¢otntn: Mapia BloAdkn
Father’s name: Christos
MNatpwvupo: Xprotog
Student’s ID No:

MMMNA19007

AplBuog Mntpwou:

Supervisor:

EruBAEnwy:

Themistoklis Panagiotopoulos, Professor

OepLotokAng NavaywwtonouAog, Kadbnyntng

July 2022 / loUAtog 2022

Wand: Design and Development of a Game Engine for Visual Novels

MSc Thesis Maria Violaki

3-Member Examination Committee

TplueAng E¢etaotikn Emtponn

Themistoklis Panagiotopoulos, Dionisios Sotiropoulos, loannis Tasoulas,
Professor Assistant Professor Assistant Professor
OeULOTOKAAG Alovi o106 ZWTNPOMouAog, lwavvng TacoUAag,
MNavaylwtonouAog, Kabnyntng Enikoupog KaBnyntng Enikoupog KaBnyntng

Wand: Design and Development of a Game Engine for Visual Novels 2

MSc Thesis Maria Violaki

ABSTRACT

The games industry is undergoing a rapid growth in the recent years, resulting in an
increasing demand for high-quality video games. Nowadays, games need to be built on top
of complex architectures whose goal is make development simpler, faster, and more
accessible to creators. This is the job of a game engine.

The present thesis analyzes the most important aspects of Wand, a simple visual novel
engine. Due to the central role of storytelling and visuals in this particular game genre,
heavy focus is placed on graphics and how they are managed by the engine. Rendering
graphics is a key component of any development environment for video games, and this is
especially true for visual novels.

Aside from the main features of a game engine, this study also summarizes Wand’s
functionality and provides examples as to how a game programmer might use it. The
primary goal of the APl is to provide a set of flexible and easy-to-use tools to the visual novel
creator while ensuring the efficiency of the end product.

Wand: Design and Development of a Game Engine for Visual Novels 3

MSc Thesis Maria Violaki

TABLE OF CONTENTS

L INErOAUCTION .cooiiice et e e e e e e st e e e e e e e e e eeeeas 5
1.1. The Need for Game ENGINES........uuuiiiiiiiiiiiiiiiiieieetteeeeeeesseeeeeeeeseeeeeeeseeeeeeeersaeaaeaa———.. 5
I o oY [=T ot 1T o) of o) PN 5

2. What Is @ Game ENGINE?uiiiiiiiiiieeecce et e e et e e e e e e e eeeasataeeeeeeeeeeessanes 7
2.0 DEFINITION ...t 7
2.2. POPUIAr GAME ENGINES ccovvuueiiiiieeeiieiiiiiie e e e eeeeeettceee e e e e e eeeeatteeeeeeeeeesssstaaeeeeeeeeeessnnnns 8
2.3. VisUGI NOVEI ENZINES ...covvviriiiieeiiiieeiiiei ettt e e e e e e e eeea e e e e e eeeesasbbeeeeeeeeeeesnsanes 8

2.3.1. Definition of @ ViSUal NOVElcccuriiiiiiiiiiiiieeeee e 8
2.3.2. POPUIAT ENGINES....ccoiiieiiiiiieiiieeeeeeeeteee ettt e s e e e e e e e ea e e e e eeeeeeessbaaeeeeeaaeees 9

3. Main Aspects of a GaME ENGINEcovviiiiiiiiiiiiiiiiiceee et eeeeees 10
3.1 WINAOW i e e e st e e e e e 10
I €] - o] o 11 oL PRSPPI 11

3.2.1. Definition and POPUIGr APIS........cuuuuiiiiiieieiieeiiiieee e eeeeeeevabeeeeeeeaeeens 11
3.2.2. The Graphics PiPeliNeuucciiiiiiieeeiiceee et e e e e e e e aeeees 12
I TR (T o Lo LT g T o T Y = o = RSP 13
3.2.4. Rendering Sprites and TeXL.....ccvvviiiiiie i e e e e e e e eees 16
3.3 AUIO -ttt e e e s e 17
3.4. State and Serializationccueieiiiiiiiii 18
3.5. Secondary ENgINe FEATUIESccvvviiiiiiei et e e e e e e e e aeaeean 18

4. Engine DeVelopMEeNt ..o e e e e e e e raaaaaa 20

I o 1= or 1= =Y | LSS 20
4.1.1. Details and LimitationSccooiiiiiiiiiiiiiiiiiiieeeee e 20
A o oY =Yoo 8 [1 U] PN 21
4.1.3. EXernal LIBrariesueeeeiiiiiiiiiiiiiiieeeee e 22

4.2. Main Classes and FUNCLIONSooiiiiiiiiiiiiiiiieiiiieeeeee et 23
4.2.0. COTE ClaSS@S ..ceeeiiiiiiiiiiieieee ettt e e e e e e e e e e 23

Wand: Design and Development of a Game Engine for Visual Novels 4

MSc Thesis Maria Violaki
4.2.2. EVENTS ClaSS@S ...ttt ettt e e et e e e e e 28
.23, INPUL ClaSSES ciiiiiieiiiiie e 31
4.2.4. Graphics ClasseS....cccuiiiiiiiiiiiiii 32
4.2.5. STAtE ClaSSES ceeiiieiiiiiiiiieee ettt e et e e e e e e e e e e e e reeeeeeeeas 39
B.2.6. Ul ClaSS@S ..eitiieieiiiiiiiitteee e e e e ettt e e e e e e s sttt e e e e e e e s s sabbb et e e eeeseessanbnbeeeeeeeeaeas 39
B.2.7. VN ClaSSES....ereieiiiiieieeietiee ettt e e e e e e e e e e e e e s e nnnneeeas 41
4.2.8. AUAIO ClaSSES .eeiineiiiieeiiieie et 43
4.2.9. Precompiled HEAEISccoeeeiiiiieiie et e e e e e e e e eeeeaaaanes 44

B AN EXAMPIE GAMIE ..oeeiinciceceeeici e et e e e e e e e e et e e e e e e e e eear b e e eaeeaees 46

5.1, GaAME DTS ..eeeiiieiee et 46
o0 0 YW [0 Y o =T YN 46

T B € - o] o 1 oL TP POUURRUUPPRRt 46
o0 0 TR o o =Tt) 4 Lot B =N 48

5.2. Main Classes and FUNCLIONSccoiiiiiiiiiiiiieee e 50
5.3. GAME COUR ANAIYSIS....cevrrieiiieeiiiieeiiiieei e eeeeeetieeeeeeeeeeeeaabraeeeeeeeeesssstaaeeeeeeseessssans 54
5.3.1. FUll SCENE EXAMPIE...ceiiiiiiii it e e e et e e e e aeeees 54
5.3.2. EXaMPIE FUNCLIONS .oevviiiiieiieeiiieeeiiteeee et e e et e e e e e e eeeebbbneeeeeaeeens 57

6. CONCIUSION ... e e e e e e e e e e e e e e 59
B.1. AFLEIWOID ... e e e e s e e s e e e e e e e e e e 59
6.2, FUTUIE WOTK ...t e e e 59
REFEIENCES.......eeeiiee et e e s e e e e s e e e e as 61

Wand: Design and Development of a Game Engine for Visual Novels 5

MSc Thesis Maria Violaki

1. INTRODUCTION

1.1. The Need for Game Engines

The fast-paced evolution of technology over the past few decades has caused the
production of video games to skyrocket. Millions of games have been created until this day,
and this number only keeps growing. The multitude of different platforms combined with
the release of game engines, easily accessible to independent developers, has certainly
played an important role in this advancement.

However, the more games are released, the higher the standards of the gaming community.
Many successful games are nowadays produced by large teams of programmers, designers,
artists, and other professionals in the field. Modern hardware can support heavier
operations, causing software developers to exploit this opportunity in order to create high-
quality products.

Eventually, the need for game engines arrived. Most modern games are very complex to be
built from the ground up, and their developers often require an architecture that hides
away this complexity and makes room for game logic. By managing feature-specific
operations and providing helpful tools to the creator, game engines can greatly reduce the
development time required for the production of a game.

1.2. Project Description

This paper aims to explore some of the most important aspects of a game engine. Its scope
is limited to a few basic components of a visual novel engine, but its features can easily be
generalized to more complex architectures. Although this study will analyze some key
concepts that can be applied to many similar projects, the focus will be mostly on the
specific features of Wand.

Regarding its technical details, the engine was created with C++ and Visual Studio, two of
the most commonly used tools in the games industry. The graphics-API chosen for this
project is OpenGL, mainly due to its simplicity and cross-platform availability. Wand also
integrates several third-party libraries which will be described in one of the following
sections. As for the Visual Studio solution, it consists of two projects: Wand and Game.

Wand: Design and Development of a Game Engine for Visual Novels 6

MSc Thesis Maria Violaki

Wand Engine provides tools for the creation of 2D games, and more specifically, visual
novels. Due to their story-driven gameplay and limited action and world exploration, most
games that belong in this genre do not require the entirety of features offered by many
popular game engines, such as Unity. Very often, the player only has to click on the screen
in order to progress in the story and, for this reason, the need for a level editor and other
complex GUI elements is less imperative.

Ren’Py, the most popular visual novel engine, serves as this project’s inspiration. It has a
relatively simple Graphical User Interface, and most of its development involves writing
code in scripts. Although Wand does not support scripting, it shares Ren’Py’s simplicity in
the sense that the entire visual novel can be created inside Visual Studio. As an engine,
Wand is statically linked to the Game project and has no GUI of its own.

Along with the engine, one separate piece of software was developed: a simple visual novel
named Wand Tutorial that makes use of Wand'’s tools. Although this paper will analyze the
main features of both projects, the full code is freely available on GitHub. Their online
repositories can be found at the following URLs:

Wand: https://github.com/mariaviolaki/wand

Wand Tutorial: https://github.com/mariaviolaki/wand-tutorial

Wand: Design and Development of a Game Engine for Visual Novels 7

https://github.com/mariaviolaki/wand
https://github.com/mariaviolaki/wand-tutorial

MSc Thesis Maria Violaki

2. WHAT IS A GAME ENGINE?

2.1. Definition

tick.ogg

e & ©

/'
\

Game Engine

ch1.txt

A game engine can be defined as a set of tools that the programmer can use to build an
interactive application. Some engines, such as Unity or Unreal, are commercialized and
publicly released. Many others, though, often developed by big game studios like Valve and
Ubisoft, are internal to the company, built as platforms that can be used for the
development of video games. It is important to note, however, that the same engines can
be used for products other than games: Virtual Reality applications, architectural
visualizations, simulations, and many other interactive programs also display graphics in
real time and usually require the same set of tools that are built into a game engine.

A more specific definition would be centered around data transformation. The core function
of a game engine is the conversion of data from one form to another: It is responsible of
reading in a variety of files from the disk and transforming them in a way that can be easily
perceived by humans. Text, images, audio files, and many other forms of data are parsed
by the engine at runtime and are presented to the user along with ways to interact with
them (Chernikov, What is a GAME ENGINE?, 2018).

Wand: Design and Development of a Game Engine for Visual Novels 8

MSc Thesis Maria Violaki

2.2. Popular Game Engines

Nowadays, there is a variety of engines that the developer can use to build their game. One
of the most well-known and widely used ones is Unity. Launched in 2005, Unity Engine has
gained a sizable community and enjoys constant updates. It is often perceived as the top
choice for beginners and indie game developers, and the support for the creators is
significant. It can be used for free by anyone who earns less than 100K dollars per year and
has a store with a great variety of free and paid assets. In addition, not only can the engine
be used for the development of 2D and 3D games, it is also popular for its support for VR
and AR applications. At the same time, it is well-suited for the creation of games that run
on multiple platforms, including Android and iOS.

A slightly older yet equally popular choice for game developers is Unreal Engine. Like Unity,
it is cross-platform and can be used for AR and VR applications. However, while it provides
tools for the development of both 2D and 3D games, it is best suited for the latter. Unreal
Engine is considered more performant than other commercial engines, but this comes at
the cost of greater system requirements. Although it can also be used by indie creators as
well, it works best when it comes to the development of team projects. Many triple-A games
have been built with this engine, in fact, since it handles complicated tasks more efficiently.
Lastly, it is important to note that it also includes a Marketplace with free assets and also
offers a variety of useful tools, such as blueprints which can be valuable for non-
programmers.

Besides Unity and Unreal Engine, there are several other options that are less popular and
more limiting in one way or another. Godot, Phaser, GameMaker Studio, and RPG Maker
are some of the most well-known among them. (Schardon, 2022)

2.3. Visual Novel Engines

2.3.1. Definition of a Visual Novel

Visual Novels are a video game genre where the story plays a central role in development.
While there are several published 3D games of this type, the majority of Visual Novels are
2D applications. The characters and locations featured in them can be static or animated,
but the gameplay is rather limited compared to other types of games. Very often, Visual
Novels also include music, sound effects, as well as cutscenes, although as a rule, the
emphasis is put on narrative and visuals.

Wand: Design and Development of a Game Engine for Visual Novels 9

MSc Thesis Maria Violaki

2.3.2. Popular Engines

When it comes to the development of Visual Novels, Ren’Py is the most widely used engine.
Released in 2004, it is a free and open-source tool that only requires some basic knowledge
of Python. It is a straightforward engine that can be easily learned through tutorials since it
lacks much of the complexity of a typical game engine. It is very flexible and uses Python for
scripting, making it fairly easy to use by beginners.

There are also a few other known options for this genre, such as TyranoBuilder which allows
for less customization but is easier to use, or Visual Novel Maker which is pricier and has a
steeper learning curve but includes a full suite of features (Vincent, 2020). Additionally,
since Visual Novels and common video games share many similar features, the creator can
also use more complex engines such as Unity or Unreal for development. Such options,
however, are often considered unnecessarily hard and heavy on the system since Visual
Novels are typically a lot simpler.

Wand: Design and Development of a Game Engine for Visual Novels 10

MSc Thesis Maria Violaki

3. MAIN ASPECTS OF A GAME ENGINE

3.1. Window

One of the most crucial components in a game engine is the creation of a window, which
can be perceived as the basis of many other major subsystems, including graphics and user
input. For this reason, the developer often needs to use an external library that is
responsible of clearing and updating the graphics drawn every frame as well as keeping
track of the events triggered when the user interacts with it.

These events include keyboard presses, mouse button clicks, scrolling, and movement, as
well as others which are related to the window itself, such as setting the fullscreen mode,
resizing, and closing. The engine either needs to notify its various subsystems with its own
events when these window API events occur, or save their data so that they can be available
when the user—or any other part of the engine—requests them.

As for the graphics-related functions offered by the library API, they range from clearing the
existing graphics with a certain color to setting the blending mode for the shapes that are
drawn on top of it. In order to achieve the former, the window keeps track of two buffers;
the one on the back that is meant for writing and the front one that will be displayed. This
mechanism allows the engine to fill the back buffer with graphics while the front buffer
shows to the user the graphics of the latest frame. When the next frame is about to be
rendered, these buffers are swapped and the pixels of the new back buffer are overwritten
with new information (Gordan, 2021). The window follows these same steps continuously
until it is closed.

Wand: Design and Development of a Game Engine for Visual Novels 11

MSc Thesis Maria Violaki

< © ©

Game Engine

\ l / Front Buffer

Back Buffer

Blending can produce different results depending on the blending function and the blending
equation set by the engine developer. It determines how the fragment shader’s output
color is combined with the color that is already in the buffer. In this way, the new colored
pixel can be set to cover the already existing one according to of its transparency, or it can
even replace the old color entirely, regardless of the value of its alpha parameter.

3.2. Graphics

3.2.1. Definition and Popular APIs

Graphics is one of the most important systems in a game engine. It is essentially everything
that is displayed on the screen, including text, images, videos, or even basic shapes. The
hardware that is responsible for rendering graphics on the screen is the GPU, and it is
accessed and programmed by game engines in order to render 2D and 3D shapes as
efficiently as possible.

There are several APIs that allow the engine developer to access the graphics card: OpenGL
which is cross-platform and fairly easy to use by beginners, Vulkan which is more powerful
as well as cross-platform, DirectX which is available on Microsoft platforms, and Metal
which is used for i0OS and macOS platforms (Chernikov, 2017).

Wand: Design and Development of a Game Engine for Visual Novels 12

MSc Thesis Maria Violaki

3.2.2. The Graphics Pipeline

The programs that run on the GPU and are responsible of rendering graphics are called
shaders. Shaders are part of the rendering pipeline, a series of stages that converts data
into the final image that is displayed on the screen.

The Graphics Pipeline (de Vries)

VERTEX SHADER SHAPE ASSEMBLY GEOMETRY SHADER
')
VERTEX DATA[] 4
S5 iy
i -)
—g—
1
‘ Ll
| { §)
‘ TESTS AND BLENDING FRAGMENT SHADER RASTERIZATION
|
|

The data that is given as input to the graphics pipeline is in the form of vertices. As opposed
to those defined in mathematics, graphics vertices contain a lot more information than just
position coordinates. Color and texture coordinates are two such examples.

The vertex shader, that is, the first part of the graphics pipeline as seen above, is responsible
of receiving the vertices supplied by a program that runs on the CPU and transforming them
according to the needs of the application. In the next stage, the shape assembler connects
the final positions supplied by the vertex shader according to a primitive, i.e. a point, a line,
or a triangle. As for the geometry shader, it creates additional vertices, thus forming more
primitives from the already existing ones.

Wand: Design and Development of a Game Engine for Visual Novels 13

MSc Thesis Maria Violaki

This data is then rasterized. In other words, the accurate, mathematical shapes, created in
the following stages are transformed into pixels that will be displayed on the screen. These
pixels are colored in the fragment shader. The color of each pixel depends on multiple
factors such as lighting, shadows, and texture coordinates. However, there may be more
than one color corresponding to the same pixel since there may be multiple objects
overlapping in the same place. The final color is determined in the last stage of the graphics
pipeline where the blending of transparent, semi-transparent, and non-transparent objects
takes place (Gordan, 2021).

Taking everything into consideration, the vertex and fragment shaders are usually
considered as the most important ones and are often the only ones that need to be adjusted
in a game engine.

3.2.3. Rendering Shapes

In order to render any kind of shape in a graphics engine, the shape first needs to be divided
into triangles. This is the simplest arrangement of vertices in space so that they can form a
flat surface. The game developer should be able to create any kind of geometry depending
on their needs.

The most common shape that can be rendered by a graphics engine is a rectangle, which
can then be broken down into two triangles. Since each triangle consists of three vertices,
six vertices are needed in total for the shape to be drawn. However, two of these vertices
are duplicate and can result in a significantly lower performance when multiple and more
complex shapes need to be rendered in a single frame.

Wand: Design and Development of a Game Engine for Visual Novels 14

MSc Thesis Maria Violaki

In this case, in order to draw the rectangle depicted above, one would have to supply to the
GPU the vertices of these two triangles. That is, the vertices [0, 1, 2] and [3, 4, 5].

To avoid this waste of memory, the graphics engineer can make use of indices. As a first
step, instead of creating an array with vertices that hold the same data, they can supply to
the GPU four vertices for each rectangle. But since every shape needs to be broken down
into triangles, the engineer should also create a set of indices that point to the appropriate
vertex.

Wand: Design and Development of a Game Engine for Visual Novels 15

MSc Thesis Maria Violaki

If the resulting array of vertices then was [0, 1, 2, 3] the array of indices to draw two
triangles would be [0, 1, 3, 1, 2, 3]. The repetition of numbers in the index array is much
more preferable to a repetition in the vertex array because, as it has already been
mentioned, each vertex holds a lot more information than a single integer. For instance, the
data for a white point in the bottom left corner of the window would be: [0, O, 0, 255, 255,
255, 255]. The first three numbers correspond to the coordinates on the x, y, and z axis, and
the last four correspond to the RGBA color of non-transparent white. If a single vertex
contains all these seven numbers, the data needed to draw a rectangle would require 28
numbers in total.

The array of vertices is stored in an array buffer within the GPU, and the index array is also
stored in a respective buffer. The entity that keeps track of every number within a single
vertex is called Vertex Array, and it manages all the vertex buffers that are created in the
graphics card. It is also possible for the developer to store multiple shapes within the vertex
buffer, in which case the Vertex Array only manages the data of a single buffer.

Itis important to note, however, that the larger the vertex buffer grows, the larger the index
buffer becomes as well. For example, a vertex buffer containing data for a single rectangle

Wand: Design and Development of a Game Engine for Visual Novels 16

MSc Thesis Maria Violaki

stores four vertices, and the index buffer that corresponds to it holds six indices. A buffer
with two rectangles, and thus, eight vertices would require twelve indices, and so on.

3.2.4. Rendering Sprites and Text

Aside from displaying basic shapes, a game engine often needs to load images and fonts
from disk and draw them as well. For this purpose, it is often useful for the developer to use
external libraries to read in these files and convert them into a set of bytes. Similarly to basic
shapes, these bytes are also saved in buffers and sent to the GPU for rendering.

Two-dimensional sprites as well as three-dimensional models are also referred to as
textures. Sprites can be rendered on top of shapes, often rectangles. As it has already been
mentioned, part of the data that may be included in a vertex are the texture coordinates.
In this way, each edge of the rectangle can be associated to the respective edge of the sprite.
As a result, the final color of a pixel is determined not by an RGBA color, but by the
appropriate color in the texture.

Texture Coordinates Position Coordinates

(0,0) (1,0) S J

Wand: Design and Development of a Game Engine for Visual Novels 17

MSc Thesis Maria Violaki

As for text rendering, a similar procedure is followed. In order to draw characters on the
screen, the engine should at least take as input a font file, a text size, a color, and the string
that needs to be displayed. While the last parameters are usually straightforward, the font
needs to be loaded into memory and be used for the creation of a font atlas, which is
essentially a large texture. A font atlas, contains all the different characters, or glyphs, in a
font. These can be letters, numbers, and special characters.

Font Atlas
(0,20) (60,20) (120,20)
(0,0) (60,0) (120,0)

To render a single character, the developer would still need to supply the data of four
vertices to the GPU. Each vertex would at least contain position, color, and texture data.
For example, and according to the image above, in order to draw a red ‘B’ in a 60x80
rectangle placed at the bottom left corner of the window, the input to the graphics pipeline
would be the following for the top-right vertex: [60, 80, 0, 255, 0, 0, 255, 40, 20].

The first three numbers refer to the x, y, and z coordinates of the top-right corner of the
rectangle. The next four describe the color red. As for the last two numbers, they
correspond to the top-right corner of the glyph for the letter ‘B’ inside the font atlas.

3.3. Audio

Depending on the needs of the engine, audio can either be a simple or a very complex
subsystem. The use of dedicated libraries is often necessary for the engine programmer.
The application would need to read in an audio file at runtime, save it in memory, and adjust
the parameters of its playback. Both music and sound effects might need to be played at
different volumes, panning, and speed. Whether the track should loop or not is also a

Wand: Design and Development of a Game Engine for Visual Novels 18

MSc Thesis Maria Violaki

valuable piece of information since some audio sources are only meant to be played once.
This is often the case for sound effects and voice lines as opposed to background music.

3.4. State and Serialization

There can be various implementations when it comes to this particular aspect. Since the
majority of applications make use of data that should persist even after the user exits the
program, it is crucial that these data be stored on disk or even backed up online. This
conversion of data into a format which is then saved or transmitted into some form of
storage is known as serialization. The reverse process, deserialization, makes use of the
backed-up information to recreate the original objects and data types needed by the
application.

The engine needs to store data in a clear and concise way. For this reason, although it is
possible to save the state of the application in files that contain plain, unstructured text, it
is rarely the preferred method. The engine programmer can choose to serialize their data
in other formats, such as binary or JSON. While the former can be faster and more efficient
in terms of space, JSON serialization creates more portable files that can be parsed and read
by humans more easily.

3.5. Secondary Engine Features

A game engine can include many additional subsystems depending on its scope and goals
set by its programmer. For many engines, physics and collision detection is a core
component since a great number of games contain objects that move around in space,
overlap, and interact with one another. This feature is not particularly useful for a visual
novel because its developer rarely needs to apply physics to the relationship between game
objects or even to their relationship with the world. The visual novel developer often needs
to only tell a story and not include battles or similar mechanics in the gameplay. However,
it is also possible that some visual novels may require such a feature, and therefore the lack
of a physics and collision detection subsystem would be restrictive.

On the contrary, animation is something that almost every application may need to include.
Visual novels could make use of animated sprites, and even a simple Ul program might
require this functionality for operations such as the click of a button. In regard to visual
novels, the applications of animation vary. Some Ul-related functions would be the resizing
of a button when the user interacts with it, the release of particles or ripples starting from

Wand: Design and Development of a Game Engine for Visual Novels 19

MSc Thesis Maria Violaki

the position of a mouse click, and a smooth transition between menus. Moreover, there
have been released multiple visual novels that implement character animation for functions
such as blinking and breathing. Background animations can also add to the user experience
for such games and can be used in various occasions within a story. These include natural
phenomena like rain and snow, moving objects such as curtains and wind chimes, and even
background particles to create a certain atmosphere.

There is a lot more functionality that can be added to a game engine, and depending on the
needs of the project, some subsystems may play a more central role compared to others.
Particles, for instance, are also an important component for most games, and networking
can be also essential although it is mainly implemented by engines which aim to provide
tools for online multiplayer games. Another basic feature that the engine developer should
consider is scripting: Although the end product would be slower in performance and less
flexible, its development would require less time and technical knowledge. Lastly, Al is also
considered as an essential subsystem even though its usefulness depends on the types of
games that can be made with the engine. Other examples of secondary or smaller features
would be a mechanism generating random numbers and a logger that prints information
and error messages to the screen or afile.

In any case, one thing that all engines have in common is the system that binds them all
together and initializes the various components and main resources of the application. After
being initialized, the main components of the engine will in turn set up smaller subsystems
dependent on them, and this process will continue in the same manner until every crucial
feature of the engine is operational.

Wand: Design and Development of a Game Engine for Visual Novels 20

MSc Thesis Maria Violaki

4. ENGINE DEVELOPMENT

4.1. Project Details

4.1.1. Details and Limitations

Wand was developed with Visual Studio and is written in C++. Although the external
libraries used for this project are cross-platform, the games made with this engine are
aimed for Windows x64 machines and the game developer is encouraged to use Visual
Studio and C++ for programming.

The engine is also available on GitHub, and the root directory of the repository corresponds
to the root directory of the Visual Studio solution. It is composed of two main projects, each
of them in its own separate folder: Wand, which contains all the engine code, and Game,
which is intended for the game developer and includes the game’s code, assets, and states
which are generated at runtime. The repository of Wand Engine can be found at this URL:
https://github.com/mariaviolaki/wand

& mariaviolaki / wand

<> Code (Issues I Pullrequests (& Actions [Projects [Wiki © Security |~ Insights 8 Settings
¥ master ~ ¥ 1ba © 0tag Go to file Add file ~ m
e mariaviolaki Update README file f lays a O

Game
Wand

) .gitighore A and VNEntity fixe

Y LICENSE

M READMEmd

Wand.sin

(Y game,pg

Wand: Design and Development of a Game Engine for Visual Novels 21

https://github.com/mariaviolaki/wand

MSc Thesis Maria Violaki

4.1.2. Project Structure

As it was already mentioned, the Wand project folder contains all the engine code. Each file
is placed into a different folder, according to the category it belongs to. The main folders in
this directory are External and Source. The former includes all the external libraries that
have been linked to the engine, and the latter contains all the original engine code.

& mariaviolaki / wand

<> Code () Issues 171 Pullrequests () Actions [Projects [Wiki @ Security

¥ master + wand /Wand /

e mariaviolaki Update README file -. 6 days ago) History
External 20 days ago
Source days ago

[Wandvoxproj 19 days ago
Y Wand.vexprojfilters 19 days ago

The contents in Source summarize the engine’s main features, grouped in different folders:
Core contains all the major components. The majority of files in this directory contain
classes and functions that are called in the beginning of the program and are required for
the initialization of other subsystems. There are also several other major features which do
not belong in any of the other categories. The majority of the other directories within Source
are focused on some particular aspect of the engine: Events, Input, Graphics, Audio, State,
Ul, and VN have limited or no interaction with each other. Utils contains various tools that
are useful for the engine and the game developer. Their scope is small enough and they do
not belong in any other category.

Wand: Design and Development of a Game Engine for Visual Novels 22

MSc Thesis Maria Violaki

& mariaviolaki / wand Publi

<> Code (lssues 11 Pullrequests (& Actions [Projects [0 Wiki @ Security

¥ master + wand /Wand / Source /

e mariaviolaki Window, text, and VNEntity fixes ... 8 days ago) History
B Audio 9 days ago
M Core 8 days ago

Events 16 days ago

Graphics 8 days ago
B Input 16 days ago
B State 16 days ago
| u 18 days ago
i Utils 18 days ago
B VN 8 days ago
[Wand.cpp 3 months ago
@ Wandh 18 days ago
Y WandPCH.cpp 4 months ago
[WwandPCH.h 27 days ago

4.1.3. External Libraries

The folder External contains the following libraries and APIs: OpenGL for graphics rendering,
Glad for OpenGL initialization, GLFW for window creation and management, GLM for
mathematics for OpenGL, nlohmann/json for JSON serialization, stb_image for image
loading, FreeType for font rendering, and SoLoud for audio playback.

Wand: Design and Development of a Game Engine for Visual Novels 23

MSc Thesis Maria Violaki

& mariaviolaki / wand

<> Code (© Issues 171 Pullrequests () Actions [Projects [0 Wiki @ Security

¥ master + wand /Wand / External /

e mariaviolaki Prepare engine for release ... 20 days ago ¥ History

FreeType 20 days ago
GLFW 2 months ago
SolLoud 2 riionthe a6
glad 2 months ago
glm 2 months ado
nlohmann 2 moriths 366

stb 2 months ago

Some libraries only consist of header files, and every library that was linked to the game
engine was linked statically. In the cases when a ./ib file was required for the project to build,
two separate files were provided; one for Debug and one for Release mode.

4.2. Main Classes and Functions

4.2.1. Core Classes

All the code for the game engine is included within the wand namespace. For every class in
the project there is a header file and a source file created. Although the engine is built as a
static library and doesn’t have a starting point of execution, there is a main component from
which all the other major subsystems derive. As it will be explained later in the Example
Game section, the first object that should be instantiated in a Wand game is the App. App
contains the majority of features that the engine or the game developer might need while
the program runs.

Wand: Design and Development of a Game Engine for Visual Novels 24

MSc Thesis

(Global Scope)

Maria Violaki

#pragma once

E#include "Window.h"

#include "CursorManager.h"
#include "Input/Input.h”
#include "Graphics/Renderer.h"
#include "UI/UIEntity.h"
#include "EntityManager.h"
#include "Input/InputManager.h”
#include "Events/EventManager.h"
#include "State/StateManager.h”
#include "Graphics/FontManager.h"
#include "Audio/AudioManager.h”
#include "FileManager.h"

Fnamespace wand
{

Bl class App

{

public:

height = 54@);
~App();

void Clear() const;
void Update() const;
bool IsRunning() const;
void Exit() const;

void OnEvent(Event* event);

Input* GetInput() const;

Window* GetWindow() const;
CursorManager* GetCursorManager() const;
EntityManager* GetEntityManager() const;
StateManager* GetStateManager() const;
FontManager* GetFontManager() const;
AudioManager* GetAudioManager() const;
FileManager* GetFileManager() const;

@ Mo issues found

Wand: Design and Development of a Game Engine for Visual Novels

Ch: 1

App(std: :string name = "Wand Game", unsigned int width = 960, unsigned int

25

MSc Thesis Maria Violaki

(Global Scope)

private:
// Use shared pointers for each subsystem so that app can be copied
std: :shared_ptr<Window> mWindow;
std: :shared_ptr<CursorManager> mCursorManager;
std: :shared_ptr<Input> mInput;
std: :shared_ptr<Renderer> mRenderer;
std: :shared_ptr<EntityManager> mEntityManager;
std: :shared_ptr<InputManager> mInputManager;
std: :shared_ptr<EventManager> mEventManager;
std: :shared_ptr<StateManager> mStateManager;
std: :shared_ptr<FontManager> mFontManager;
std: :shared_ptr<AudioManager> mAudioManager;
std: :shared_ptr<FileManager> mFileManager;

};

e

® No issues found :1 Ch:1 TABS CRLF

As it can be seen above, the game developer can request some major subsystems directly
from the App. One of these is the Window which initializes and manages the most important
graphics-related resources of the engine. By accessing the Window, the programmer can
change the window’s title, size, icon, fullscreen mode, and aspect ratio. This class also keeps
track of the events that are directly related to it.

Wand: Design and Development of a Game Engine for Visual Novels 26

MSc Thesis Maria Violaki

Window.h

(Global Scope)

#pragma once

1

2

3 #define GLFW_INCLUDE_NONE // to avoid header conflicts with glad
u p#include "GLFW/glfw3.h"

5 #include "glm/glm.hpp"

6 #include "Events/Event.h"

7

8

9

Fnamespace wand

{

18 é struct WindowData

11 {

12 unsigned int width;

13 unsigned int height;

14 std: :function<void(Event*)> EventCallback;
15 0k

16
17] class Window
18 {

19 public:

20 Window(std: :string name, unsigned int width, unsigned int height);
21 ~wWindow();

22
23 void Init(std::function<void(Event* event)> eventCallback, std::function<void()
> updateCallback);

24
25 glm: :vec2 GetAspectRatio() const;
26 float GetStartWidth() const;

27 float GetStartHeight() const;

28 float GetWidth() const;

29 float GetHeight() const;

38 std: :string GetName() const;

31 bool IsFullscreen() const;

32
33 void SetAspectRatio(unsigned int numer, unsigned int denom);
34 void SetWidthCunsigned int width);

35 void SetHeight(unsigned int height);

36 void SetName(std::string name);

37 void SetFullscreen(bool fullscreen);

38 void SetIcon(std::string imagePath);

39
© No issues found : Ch: 1

Wand: Design and Development of a Game Engine for Visual Novels 27

MSc Thesis Maria Violaki

[F Wand (Global Scope)
39
ue GLFWwindow* GetGLFWWindow() const;
u1 bool IsClosed() const;
u2 // Save a function that will run before the app exits
43 void OnClose(std: :function<void()> closeFunction);
uy // Run all the OnClose functions before exiting
45 void RunCloseFunctions();
us
u7 void Clear() const;
ug void Update() const;
49 void Close() const;
50
51 private:

52 GLFwwindow* mWindow;

53 std: :string mName;

54 glm: :vecld mBackgroundColor;

55 glm: :vec2 mStartDimens;

56 glm: :vec2 mAspectRatio;

57 glm: :ivec2 mPosition;

58 WindowData mData;

59 bool mIsFullscreen;

60 GLFwimage mIcons[1];

61 std: :vector<std::function<void()>> mCloseFunctions;
62 std: :function<void()> mUpdateCallback;

63
6u bool InitGLFW() const;
65 bool InitWindow();

66 bool InitGLAD() const;
67 void SetupwWindow();

68 void SetupCallbacks();
69 o h

70 3

b

71
® No issues found Ln:1 Ch:1 TABS CRLF

The last major class within Core is the EntityManager. The purpose of this class is to save
and keep track of all the Ul entities created in a game. These are Rectangles, Sprites,
TextBoxes, and Buttons which can either be created with a Rectangle and a TextBox, or a
Sprite and a TextBox. All these entities can be altered during runtime, and EntityManager
always keeps the updated version of them. It can send them to other subsystems within the
engine or even to the game programmer if they request them.

Wand: Design and Development of a Game Engine for Visual Novels 28

MSc Thesis Maria Violaki

EntityManager.h

EntityManagerh + X

[F Wand 'I (Global Scope) 'I ~|%=

#pragma once a

E#include "UI/UIEntity.h"
#include "UI/Rectangle.h"
#include "UI/Sprite.h"
#include "UI/TextBox.h"
#include "UI/Button.h"

Lo I B e 4 I =R PR S)

Fnamespace wand

{
E] class EntityManager
{
public:
EntityManager();

void Init(FontManager* fontManager);

// Create and render a new rectangle

Rectangle* AddRectangle(Color color = Color(255, 255, 255, @));
// Create and render a new sprite

Sprite* AddSprite(const std::string& imagePath);

// Create and render a new textbox

TextBox* AddTextBox(const std::string& fontName, unsigned int fontSize, Color
color);

// Create and render a new image button

Button* AddButton(std::string imagePath, std::string fontName, unsigned int
fontSize, Color textColor);

// Create and render a new rectangle button

Button* AddButton(Color bgColor, std::string fontName, unsigned int fontSize,
Color textColor);

// Get all the UI entities that have been created

std: :vector<std::unique_ptr<UIEntity>>& GetEntities();

private:
std: :vector<std: :unique_ptr<UIEntity>> mEntities;
FontManager* mFontManager;

3u // Set the font manager needed for the text's initialization
35 void SetFontManager(TextGFX* textGFX) const;

36 h
37

38
® No issues found

4.2.2. Events Classes

Even though Events are dependent on other engine components, they remain a central
subsystem that affects many other classes, including the Window, the Input, the UlEntities,
and the Renderer. There are many different types of Events as shown below:

Wand: Design and Development of a Game Engine for Visual Novels 29

MSc Thesis Maria Violaki

enum class EventCategory

{
Window, Input
}i
enum class EventType
{
WindowResize, WindowClose,
KeyRelease, KeyPress, MouseButtonRelease, MouseButtonPress,
MouseScrollX, MouseScrollY, MouseMove
}

Events that belong to the category Input have their mouse and keyboard data saved in the
Input class from which the game programmer can later request the current state. Window
Events can be used to adjust the window’s aspect ratio after resizing, change the scale of
the entities displayed, or notify the engine that the application is about to close. The class
that keeps track of Events is called EventManager, and it is responsible of notifying and
altering all the interested components of the engine every time some change is detected
on the window.

Wand: Design and Development of a Game Engine for Visual Novels 30

MSc Thesis Maria Violaki

EventManager.h

EventManagerh + <

-] (Global Scope)

#pragma once

B#include "Event.h"
#include "UL/UIEntity.h"
#include "Core/Window.h"
#include "Input/Input.h”
#include "Graphics/Renderer.h”
#include "Graphics/Base/Transform.h"
#include "Core/CursorManager.h”

Fnamespace wand
{

B class EventManager

{

public:
EventManager();
void Init(Window* window, Input* input, Renderer* renderer,

CursorManager* cursorManager);

// Clear the events of the last frame
void Clear();
// save the entities for this frame
void SetEntities(std::vector<std::unique_ptr<UIEntity>=& entities);
// Handle window and input events
void HandleEvent(Eventx event);

private:
std: :vector<UIEntity*> mEntities;
std: :vector<UIEntity*> mActiveEntities;
Window* mWindow;
Input* mInput;
Renderer* mRenderer;
CursorManager* mCursorManager;
double mXPos;
double mYPos;

void HandleWindowEvent(Event* windowEvent);
void HandleInputEvent(Event* inputEvent);

37
© No issues found : Ch: 1

Wand: Design and Development of a Game Engine for Visual Novels 31

MSc Thesis Maria Violaki

EventManagerh = X

[Wand -] (Global Scope) -
37
38 void ProcessWindowResize(WindowResizeEventx event);
39 bool ProcessUIEvent(Event* event);
ue // Run a function corresponding to a UI entity
u1 bool ProcessUIFunction(UIEntity* entity, Event* event);
u2
u3 void ResetWindowBounds(WindowResizeEvent* event, glm::vec2& pos,

glm: :vec2& dimens);

uy void ResizeEntities(glm::vec2 scale);

us // Return true if the cursor is inside the entity bounds

us bool IsMouseInArea(Transform* transform);

u7 // Sort entities based on their depth in the window

usg void SortEntities(std::vector<UIEntity*>& entities) const;

uo I Y

58

51

@ No issues found Lm:1 Ch:1 TABS

4.2.3. Input Classes

As it was explained in the previous sections, the window detects any interaction of the
player with the user interface and sends the appropriate event to the engine. Those of the
category Input are related to mouse and keyboard events. The most recent ones are
temporarily stored in the Input class from which the game developer may request the
current state at any given time. This class is being kept up to date by the EventManager
which sends it any new input-related changes every frame.

Wand: Design and Development of a Game Engine for Visual Novels 32

MSc Thesis Maria Violaki

(Global Scope)

#pragma once

E#include "Events/Event.h”
#include "InputMacros.h"

amespace wand

=n
K
=

class Input

{

public:
Input();

/* Search this frame's events for a specific type of input =/
bool MouseMoved() const;

int Getx() const;

int Get¥() const;

bool KeyPressed(int key) const;

bool KeyReleased(int key) const;

bool MouseButtonPressed(int button) const;
bool MouseButtonReleased(int button) const;
bool ScrollX() const;

bool Scrollv() const;

float GetScrollX() const;

float GetScrollvy() const;

// Clear the last frame's events

void ClearEvents();

// Add a new event for this frame

void AddEvent(Event* event);

// set the latest mouse position

void SetMousePos(double xPos, double yPos);

private:
std::vector<std::unique_ptr<Event>> mEvents;
double mXPos;
double mYPos;

h

b
@ Mo issues found Ln:1 Ch:1

4.2.4. Graphics Classes

Graphics is a substantial component of a game engine. The classes in this category contain
all the necessary data for rendering rectangles, sprites, and text, as these are the main
building blocks of all the Ul entities in Wand Engine. These three types of 2D graphics are

Wand: Design and Development of a Game Engine for Visual Novels 33

MSc Thesis Maria Violaki

also considered drawables and their data is sent to the GPU for rendering once per frame—
unless the window is resized, in which case they are rendered again.

Some of the most important classes in this category is the Drawable from which rectangles,
sprites, and text inherit their common features, the FontManager that saves and searches
for different Fonts with different names and sizes, the Transform which contains position,
size, and rotation data for a single drawable, and the Renderer that collects all the relevant
information in order to display a set of drawables to the screen.

It is also important to note that the Graphics directory contains many graphics API-specific
classes, such as VertexArray, VertexBuffer, IndexBuffer, Texture, and ShaderProgram. Lastly,
there are two additional files for the vertex and fragment shader code that is required by
ShaderProgram. These two files contain instructions to the GPU about how to determine
the final position of each vertex on the window and the final pixel color respectively.

Drawable.h

Drawable.h +

Flwand - {Global Scope) - v

#pragma once “~

-i#include "Graphics.h"
#include "Base/Transform.h"
#include "Color.h"

-Inamespace wand
{
= enum class LayoutPosition

{

G -1 W E Wk

LEFT, MIDLEFT, MIDDLEX, MIDRIGHT, RIGHT, // horizontal
BOTTOM, MIDBOTTOM, MIDDLEY, MIDTOP, TOP // vertical

};

struct ParentLayoutPos

{
LayoutPosition horizontal;
LayoutPosition vertical;

|

struct ParentlLayoutCoords

{
float x;
float y;
Y

v

@ No issues found Ln:1 Ch:1 TABS CRLF

Wand: Design and Development of a Game Engine for Visual Novels 34

MSc Thesis Maria Violaki

Drawable.h = X

[Wand -] (Global Scope)
26
27 E class Drawable
28 {
29 public:
30 static unsigned int GetIndexCount();
31
32 /#* Transform operations =/
33 Transform* GetTransform() const;
34 const Transform* GetParentTransform() const;
35 void SetParentTransform(Transform* transform);
36 void SetParentLayoutPos(LayoutPosition horizontal, LayoutPosition
vertical);
37 void SetParentLayoutCoords(float x, float y);
38 /* Operations used for rendering */
39 virtual unsigned int GetItemCount() const = ©;
ue virtual unsigned int GetBuffersize() const = @;
u1 virtual const std::vector<Vertex>& GetVertexData() = @;
u2 virtual unsigned int GetTexId() const { return ®; };
u3 virtual void SetTexturesSlot(int slot) {};
uy virtual Color GetColor() const { return Color(255, 255, 255, @); };
45 virtual void setColor(Color color) {};
us
u7 protected:
us static const unsigned int sIndexCount;
u9 std: :unique_ptr<Transform= mTransform;
58 Transform* mParentTransform;
51
52 Drawable();
53 void UpdateTransform();
54
55 private:
56 std::unique_ptr<ParentlLayoutPos> mParentlLayoutPos;
57 std: :unique_ptr<ParentLayoutCoords> mParentLayoutCoords;
58
59 float FindHorizontalPos();
60 float FindverticalPos();
61
62
63

@ No issues found : Ch: 1

Wand: Design and Development of a Game Engine for Visual Novels 35

MSc Thesis Maria Violaki

FontManager.h

FontManagerh + X

[F] Wand vI (Global Scope) vI >

#pragma once -

#include "Base/Font.h"

=namespace wand

{
E class FontManager
{
public:
FontManager();

0o -0 E WK

// save a new font

void Add(std::string filepath, std::string name);

// Use an existing font

Font* Get(const std::string& fontName, unsigned int fontSize);

private:
std: :vector<std: :unique_ptr> mFonts;

b

21
® No issues found :1 Ch:1 TABS CRLF

Transform.h

Transform.h + X

[F] Wand vI (Global Scope) vI >

#pragma once A

#include "glm/glm.hpp"

Enamespace wand

{

= struct Vector2

{

0o -J00;E WwRKKH

float x;
float y;
};

enum class FlipAxis { FLIP_NONE, FLIP_X, FLIP_Y, FLIP_XY };

hd

15
@ No issues found Ln:1 Ch:1 TABS CRLF

Wand: Design and Development of a Game Engine for Visual Novels 36

MSc Thesis Maria Violaki

Transform.h + X

] Wand -] (Global Scope)
15
16 3 class Transform
17 {
18 public:
19 Transform();
28
21 Vector2 GetPos() const;
22 Vector2 GetScale() const;
23 float GetLayer() const;
24 float Getwidth() const;
25 float GetHeight() const;
26 float GetRotation() const;
27 FlipAxis GetFlip() const;
28 // Change the given position according to the saved rotation/flip axis
29 Vector2 GetTransformedPos(float x, float y);
3@
31 void SetPos(float x, float v);

32 void SetScale(float x, float y);

33 void SetLayer(float layer);

34 void SetwWidth(float width);

35 void SetHeight(float height);

36 void SetRotation(float rotation);

37 void SetFlip(FlipAxis flipAxis);

38 void SetLayoutChild(bool isLayoutChild);

39
ue private:

u1 glm: :vec? mPos;

42 glm: :vec2 mScale;

u3 glm: :vec? mDimens;
uy float mRotation;

us FlipAxis mFlipAxis;
us float mLayer;

uy bool mIsLayoutChild;
us I
u9 '}

56
@ No issues found

Wand: Design and Development of a Game Engine for Visual Novels 37

MSc Thesis Maria Violaki

Renderer.h

Rendererh =
(Global Scope)

#pragma once

E#include "Base/VertexArray.h"
#include "Base/VertexBuffer.h"
#include "Base/IndexBuffer.h"
#include "Base/ShaderProgram.h"
#include "Drawable.h"

#include "UI/UIEntity.h"

Fnamespace wand

{

B class Renderer

{

public:
Renderer();

void Init(float windowwidth, float windowHeight, std::string shaderPath);

// Adjust the projection matrix in the shader when the window is resized
void ResetProjectionMatrix(float xMin, float yMin, float xMax, float yMax);
// Submit the entities that should be considered for rendering in this frame
void Submit(std::vector<std::unique_ptr<UIEntity>=& entities);

private:
// Variables
std: :unique_ptr<VertexArray> mvAO;
std: :unique_ptr<VertexBuffer> mvBO;
std: :unique_ptr<IndexBuffer> mIBO;
std: :unique_ptr<ShaderProgram> mShaderProgram;
std::array<int, MAX_TEXTURES> mSavedTexSlots;
std: :vector<Drawable*> mRenderQueue;

// Private Methods

void SetupBuffers();

void SetupShaderProgram(float windowwidth, float windowHeight, std::string
shaderPath);

void SaveTextureSlot(Drawable* sprite, unsigned int& slotIndex);

void FillVertexBuffer(unsigned int& drawablesInBuffer, unsigned int&
itemsInBuffer);

void Render();

- h
39 }
@ No issues found : Ch: 1

Wand: Design and Development of a Game Engine for Visual Novels 38

MSc Thesis Maria Violaki

Standard.vert — Vertex Shader

#version 338 core

[y

layout(location = @) in vec3 position;
layout(location = 1) in vecd color;
layout(location = 2) in vec2 texCoords;
layout(location = 3) in float texSlot;
layout(location = 4) in float isText;
out vecd vColor;

out vec2 vTexCoords;

out float vTexSlot;

out float vIsText;

W o E WM

uniform matd uProjection;

void main()
{
gl_Position = uProjection * vecd(position, 1.0);
vColor = color;
vTexCoords = texCoords;
vTexSlot = texSlot;
vIsText = isText;

hd

@ No issues found ;1 Ch:1 TABS CRLF

Standard.frag — Fragment Shader

Standard.frag =
#version 330 core

[y

in vecd vColor;

in vec2 vTexCoords;
in float vTexSlot;
in float vIsText;
out vecd color;

W o E WM

uniform sampler2D uTexSlots[16];

=
[o]

void main()

{

e
M

if (vIsText == 0.8)
{

H

17 else

18 {

19 color = vecd(vColor.rgb, texture(uTexSlots[int(vTexSlot)], vTexCoords).r =
vColor.a);

o
£ w

color = texture(uTexSlots[int(vTexSlot)], vTexCoords) * vColor;

[
[]

20
21 %

hd

22
@ No issues found : ;1 SPC CRLF

Wand: Design and Development of a Game Engine for Visual Novels 39

MSc Thesis Maria Violaki

4.2.5. State Classes

The game state in Wand Engine is saved in JSON format in text files on the disk. A single
state can include a series of key-value pairs, corresponding to the name of the variable that
is being saved and its respective value. The data types allowed to be saved in a pair are
integers, doubles, bools, and strings. Although there can be multiple states in a game, a new
state will overwrite an old one if they both have the same name.

StateManager.h

StateManagerh +

[£) Wand - (Global Scope) - -

#pragma once a

—#include "State.h"
#include "Core/FileManager.h"

- namespace wand
{
- class StateManager
{
public:
StateManager();

[T I o T B = WY S]

e e
N = O W

void Init(FileManager* fileManager);

// Save a given state to memory and write it to a file

void SaveState(std::shared_ptr<State> state, const std::string& filename);
// Overwrite the states in memory with the ones loaded from a file

void LoadStates(const std::string& filename);

// Use a state name to get an already loaded state

Statex GetState(const std::string& stateName);

MEEEE R
D W o010 E W

private:
std: :unordered_map<std: :string, std::shared_ptr<State>> mStates;
FileManager* mFileManager;

[ISR
W M =

Y

=]
=

}

=]
o

-

@ No issues found Ln:1 Ch:13 TABS CRLF

=]
o

4.2.6. Ul Classes

As it was already mentioned, drawables are the building blocks of Ul entities. The former
include all the necessary information for graphics to be drawn to the window, whereas the
latter are the objects that the player interacts with. One or more drawables can be used for
a single Ul entity, depending on its complexity. In addition, every Ul entity contains
functions that run when the user clicks or hovers over them and optional labels that can be

Wand: Design and Development of a Game Engine for Visual Novels 40

MSc Thesis Maria Violaki

used by the programmer in order to distinguish between them. These objects can also use
other entities as their layouts and be positioned relative to them. They can be hidden, in
which case they are not chosen for rendering, or disabled so that the player cannot interact
with them.

UlEntity.h
UlEntityh + X v T
[%s] Wand - (Global Scope) - |

1 #pragma once a
2

3 E#include "Graphics/Base/Transform.h"

U #include "Graphics/Drawable.h"

5

6 Fnamespace wand

7 |{

8 = class UIEntity

9 {
18 public:
11 virtual Drawable* GetDrawable() const = @;
12 virtual Transform* GetTransform() const = @;
13 /* Visibility methods set if the entity should be rendered or not %/
14 bool Isvisible() const;
15 virtual void Show();
16 virtual void Hide();
17 /* These methods set if the user can interact with the entity or not =/
18 bool IsEnabled() const;

19 virtual void Enable();

20 virtual void Disable();

21 /* Use a label to distinguish UI entities x/

22 std::string GetLabel() const;

23 void SetLabel(const std::string& label);

24 /* Get/Set functions that run depending on user input x/

25 std: :function<void()> GetLeftClickFunction() const;

26 std: :function<void()> GetRightClickFunction() const;

27 std: :function<void()> GetHoverFunction() const;

28 void OnLeftClick(const std::function<void()=& fun);

29 void OnRightClick(const std::function<void()=& fun);

30 void OnHover(const std::function<void()=& fun);

31 /#* Functions for entities that are children of another entity =/

32 void SetParentLayout(Transform* layout);

33 void SetLayoutPosition(float x, float y);

34 void SetLayoutPosition(LayoutPosition horizontal, LayoutPosition vertical);

35

36 protected:

37 UIEntity(bool isEnabled = true);

38 bool mIsvisible;

39 bool mIsEnabled;

up B

@ No issues found Ln:1 Ch:1 TABS CRLF

Wand: Design and Development of a Game Engine for Visual Novels 41

MSc Thesis Maria Violaki

UlEntity.h + X
(Global Scope)

private:
std: :function<void()> mLeftClickFunction;
std: :function<void()> mRightClickFunction;
std: :function<void()> mHoverFunction;
std::string mLabel;

i A

'}

@ No issues found

4.2.7. VN Classes

VNEntity
[Character] [Background]
\\ //
UIEntity \ /
[TextBox [Rectangle Sprite (Rg(:]t:ggle)] (Sl?t?:)i}
~_ ~ ~ —

TextGFX RectangleGFX SprteGFX

Visual Novel entities are constructs that manage and group together a set of sprites. There
are two types of VNEntities that can be created in Wand Engine and these are either
Characters or Backgrounds. Their purpose is to offer the developer an easy way to alternate
between expressions for the same character or different backgrounds that belong in the
same category. They function similarly to UlEntities, but require different labels so that
every sprite has an original name within the group.

Wand: Design and Development of a Game Engine for Visual Novels 42

MSc Thesis

VNEntity.h

VNEntityh + x

&
5
3

(Global Scope)

Maria Violaki

#pragma once

#include "UI/Sprite.h"

Fnamespace wand

{
E class VNEntity

{

protected:
VNEntity(std::string name);

LT I S I = FUR S

e e
M= O

ublic:
? /******************** VN-RELATED METHODS ***********&************/
// Add and manage an already loaded sprite
void AddSprite(Sprite* sprite);
// only show and enable the sprite with the specified label
void SetSprite(std::string spriteLabel);
/* The name that all sprites have in common */
void SetName(std::string name);
std::string GetName() const;

MM E R R R e
O W10 ;mE W

/**************** TRANSFORM-RELATED METHODS *********************/
Transformx GetTransform();
Vector2 GetPos() const;

Vector2 GetScale() const;

float GetLayer() const;

float GetWidth() const;

float GetHeight() const;

float GetRotation() const;
FlipAxis GetFlipAxis() const;
void SetPos(float x, float v);
void SetScale(float x, float y);
void SetLayer(float layer);

void SetWidth(float width);

void SetHeight(float height);
void SetRotation(float rotation);
void SetFlip(FlipAxis flipAxis);

© No issues found

Wb W WwwwrMMNRNRN N
0 100 E WKNKHWOWOW-JOhWLm E WM

Wand: Design and Development of a Game Engine for Visual Novels

Ch: 1

TABS

hd

CRLF

43

MSc Thesis Maria Violaki

VNEntity.h = X
(Global Scope)

[HErrrrRHR IR IR KRR *2%% UI-RELATED METHODS Fkk Fkk *k */

/* Visibility methods set if the entity should be rendered or not */
bool Isvisible() const;

virtual void Show();

virtual void Hide();

/* These methods set if the user can interact with the entity or not =/
bool IsEnabled() const;

virtual void Enable();

virtual void Disable();

/* Use a label to distinguish UI entities */

std::string GetLabel() const;

void SetLabel(const std::string& label);

/* Set functions that run depending on user input =*/

void OnLeftClick(const std::function<void()=& fun);

void OnRightClick(const std::function<void()=& fun);

void OnHover(const std::function<void()=& fun);

/* Functions for entities that are children of another entity =/

void SetParentLayout(Transform* layout);

void SetLayoutPosition(float x, float y);

void SetLayoutPosition(LayoutPosition horizontal, LayoutPosition vertical);

private:
std: :vector<Sprite*> mSprites;
Sprite* mCurrentSprite;
std::string mName;

i H

'}
© No issues found

4.2.8. Audio Classes

When the game developer first loads an audio file to the engine, they need to set a name
and whether the playback should be looping or not. This name can then be used to start or
stop the playback. Optionally, the developer can also choose to set a custom volume,
panning, and speed when the audio source begins playing.

Wand: Design and Development of a Game Engine for Visual Novels 44

MSc Thesis Maria Violaki

AudioManager.h

AudioManager.h +

[£) Wand - (Global Scope) - -

#pragma once a

i#include "AudioSource.h”
#include "soloud/soloud.h"

-namespace wand
{
- class AudioManager
{
public:
AudioManager();
~BudioManager();

[T I o T B = WY S]

Boe e
w N = O W

// Add an audio file to the map

void Add(std::string filepath, std::string name, bool looping);

// Play an audio file from the map

void Play(const std::string& name, float volume = 1.0f, float panning = 0.0f,
float speed = 1.0f);

// Stop an audio file from the map

void Stop(const std::string& name);

MR
1o E

private:
std: :unique_ptr<SoLoud: :Soloud> mSoLoud;
std: :unordered_map<std: :string, std::unigue_ptr<AudioSource>> mAudioSources;

Y

}

@ No issues found

4.2.9. Precompiled Headers

Precompiled headers is a technique that reduces compilation time and is often used in large
projects. Long header files that are unlikely to change during the development of an
application can be added to a single header file called precompiled header. This type of file
is processed faster and is only compiled when any of the headers it contains is modified. It
should be included in every source file of the project and it gives access to all its headers.
However, while it is advised to add mostly external libraries to a precompiled header, not
everything should be included in it. Headers that are only used in a few files in the project’s
codebase should often be kept in the original file as this improves its readability. In such a
case, it would be easy to deduce which library is used in this particular file and how it relates
to the developer’s code.

Wand: Design and Development of a Game Engine for Visual Novels 45

MSc Thesis Maria Violaki

WandPCH.h

&
5
3

(Global Scope)

#pragma once

E#include <iostream=
#include <fstream=
#include <sstream=
#include <chrono>
#include <algorithm=
#include <filesystem>
#include <random=>

1
2
3
u
5
6
7
8
9

e
= ©

#include <memory=
#include <string>
#include <array=
#include <vector>
#include <unordered_map=>
#include <functional>

B e
wmoE WM

=
o

hd

@ No issues found : 1 TABS CRLF

=
=1

Wand: Design and Development of a Game Engine for Visual Novels 46

MSc Thesis Maria Violaki

5. AN EXAMPLE GAME

5.1. Game Details

5.1.1. Summary

Wand Tutorial is a simple visual novel made with Wand. The game's main character, Void,
explains the main features of the engine, including choice buttons, game states, audio, and
positioning sprites on the screen. Depending on how the player reacts to Void, his likability
increases or decreases in the duration of the game, and he will give different answers
according to its level. The game runs on Windows x64 platforms and is developed in C++
with Visual Studio.

5.1.2. Graphics

* Wand Tutorial

Y /L)

..Why is the background so creepy?

g =

VOID

Iwas tasked with explaining to youhow Wand Engine works. So I hope you're as
impatient asIam, yes?

Wand: Design and Development of a Game Engine for Visual Novels 47

MSc Thesis Maria Violaki

As can be seen in the image above, Wand Tutorial contains many different elements. The
semi-transparent grey rectangles, the textboxes on top of them, and the two buttons are
all UlEntities. The main character as well as the background are VNEntities. The window title
is set to ‘Wand Tutorial’ and its icon is set to a custom image.

The need to create a VNEntity becomes clear upon watching all the different expressions a
character might have. Even though every image that is loaded to the engine is stored as a
single sprite, it is often more convenient for the developer to refer to the character just by
using their name. In order to alternate between the different expressions, it would then
make sense to use the label of the appropriate sprite.

In the same logic, for a simple game, only a single background is needed. Backgrounds are
usually rendered behind other Ul entities and have the same width and height as the
window. Therefore, every time the developer needs to move the plot to a different place,
they would only need to choose the sprite with the appropriate label.

Wand: Design and Development of a Game Engine for Visual Novels 48

MSc Thesis Maria Violaki

Images that have very few variations can be loaded as simple sprites. Except for the sprite-
changing functionality, they have the same functions available and it is not necessary to set
custom labels. Button images and random objects often belong in this category.

5.1.3. Project Structure

In order to create a game with Wand Engine, the developer would first have to download
the wand repository from GitHub. Any changes to the already existing Visual Studio solution
would then need to be made within the Game project. All the code, assets, and saved states
should be able to be found in the respective folder. The online repository of the example
game made with Wand can be found here: https://github.com/mariaviolaki/wand-tutorial

Wand: Design and Development of a Game Engine for Visual Novels 49

https://github.com/mariaviolaki/wand-tutorial

MSc Thesis

& mariaviolaki / wand-tutorial Pub

{> Code

¥ master ~

@ Issues

11 Pull requests

wand-tutorial / Game /

(™ Actions

B Projects

e mariaviolaki Project cleanup, credits, and minor improvements ...

0O 0000 00O

Audio

Code

Fonts

Images

Credits.txt
Game.vcxproj
Game.vexproj filters
Main.cpp
WandTutorial.aps
WandTutorial.rc

resource.h

M wiki

10 days ago

Maria Violaki

@© Security

O History

11 days ago
10 days ago
10 days ago
10 days ago
10 days ago
10 days ago
10 days ago
10 days ago
10 days ago

10 \Idr,w ago

10 days ago

Most of the source and header files for Wand Tutorial can be found inside Code. Audio,
Fonts, and Images are all directories generated by the engine automatically as it will search
for any assets in these specific paths. The game developer can request these paths from the
App’s file manager. Similarly, even though it is not shown above, as soon as the game runs,
one additional folder will be created inside Game: the folder Saves, where the engine will
store any states saved at runtime. Main.cpp is the file from which the program’s execution
begins, and the last three files shown in the image are created by Visual Studio
automatically when the developer sets a custom icon for the executable.

Wand: Design and Development of a Game Engine for Visual Novels

50

MSc Thesis

5.2. Main Classes and Functions

Maria Violaki

The main classes for Wand Tutorial is the AssetManager that is responsible of loading and
initializing game assets, the SceneDataManager which saves and loads scene data in a single
state, the SceneManager which plays all the scenes in the correct order and starts from the
last saved one, as well as the Scene. Scene contains the information that all the different

scenes have in common, including variables and functions.

I mariaviolaki / wand-tutorial ' Public

<> Code () lIssues 11 Pull requests ® Actions @ Projects [Wiki o Security ..

¥ master + wand-tutorial / Game / Code /

e mariaviolaki Project cleanup, credits, and minor improvements ... 10 days ago

Scenes
AssetManager.cpp
AssetManager.h
SceneDataManager.cpp
SceneDataManager.h

SceneManager.cpp

0O 00 000

SceneManager.h

) History

10 days ago
10 days ago
11 days ago
11 days ago
11 days ago
11 days ago

11 days ago

It is important to note at this point that the codebase for this game is only an example; a

possible implementation using the tools that Wand Engine has to offer.

Wand: Design and Development of a Game Engine for Visual Novels

51

MSc Thesis Maria Violaki

Main.cpp
Main.cpp = *
[Fs] WandTutorial - (Global Scope) - -
1 E#include "Wand.h" -
2 #include "Code/AssetManager.h" i1
3 | #include "Code/SceneManager.h"
u
5 // Entry point for windows applications
6 int APIENTRY wWinMain(_In_ HINSTANCE hInstance, _In_opt_ HINSTANCE hPrevInstance, _In_
El' LPWSTR lpCmdLine, _In_ int nCmdShow)
7 {
8 // Create a new app
9 auto app = std::make_shared<wand: :App>("Wand Tutorial");
10 auto assetManager = std::make_shared<AssetManager>(app.get());
11 auto sceneManager = std::make_unique<SceneManager>(app, assetManager);
12
13 = while (app->IsRunning())
4
15 app->Clear();
16
17 sceneManager->PlayScenes();
18
19 app—>Update();
20 }
21 I return @;
22 '}
23 v
@ No issues found Ln:1 Ch:1 TABS CRLF
AssetManager.h

AssetManagerh +

[*] WandTutorial vI (Global Scope) vI -

#pragma once a
#include "Wand.h"

[y

Eiclass AssetManager
{
public:

AssetManager(wand: : App* app);

W E W

template<typename T>

T Get(std::string label) {};

template<=>

wand: :Spritex Get(std::string label);
template<=>

wand: :Rectangle* Get(std::string label);
template<=>

wand: : TextBox* Get(std::string label);
template<=>

wand: :Button* Get(std::string label);
template<=>

wand: :Background* Get(std::string label);
template<=>

wand: :Character* Get(std::string label);

hd

23
@ No issues found : 1 TABS CRLF

Wand: Design and Development of a Game Engine for Visual Novels 52

MSc Thesis Maria Violaki

AssetManagerh + X

[*] WandTutorial vI (Global Scope) vI -
F

23
2u private:

25 wand: :App* mApp;

26 std::vector<wand::Sprite*> mSprites;

27 std::vector<wand: :Rectangle*> mRectangles;

28 std::vector<wand: :TextBox*> mTextBoxes;

29 std::vector<wand: :Button*> mButtons;

36 std: :vector<std: :shared_ptr<wand: :Background>> mBackgrounds;
31 std: :vector<std: :shared_ptr<wand: :Character>> mCharacters;
32
33 // Load fonts

34 void LoadFonts();

35 // Load UI entities

36 void LoadSprites();

37 void LoadRectangles();

38 void LoadTextBoxes();

39 void LoadButtons();

ue // Load visual novel entities
41 void LoadBackgrounds();

u2 void LoadCharacters();

u3 // Load audio files

uy void LoadAudio();

us RE

us
© No issues found

SceneManager.h

SceneManagerh =

[*] WandTutorial vI (Global Scope) vI -

1 #pragma once -
E#include "Wand.h"

#include "AssetManager.h"

#include "SceneDataManager.h"

#include "Scenes/Scene.h"

Elclass SceneManager

{

public:

18 SceneManager(std: :shared_ptr<wand: :App> app, std::shared_ptr<AssetManager>
assetManager);

2
3
u
5
6
7
8
9

11

12 void PlayScenes();

13

14 private:

15 std: :shared_ptr<wand: : App> mApp;

16 std: :shared_ptr<AssetManager> mAssetManager;

17 std: :shared_ptr<SceneDataManager> mSceneDataManager;

18 std: :unordered_map<unsigned int, std::unique_ptr<Scene>> mScenes;

19 unsigned int mSceneIndex;

20 RE

21 v
@ No issues found Ln:1 Ch:1 TABS CRLF

Wand: Design and Development of a Game Engine for Visual Novels 53

MSc Thesis Maria Violaki

SceneDataManager.h

SceneDataManagerh =

[*] WandTutorial vI (Global Scope) vI -
F

#pragma once
#include "Wand.h"

[y

Estruct SceneData
{
int lastScenelIndex;
int likability;
std::string backgroundSprite;
bool musicOn;

0o E W

=
[o]

ER

e
M

Elclass SceneDataManager
{
public:

SceneDataManager(std: :shared_ptr<wand: :App> app);

R e
S E W

void SaveData(SceneData* sceneData);
void LoadData();
SceneData* GetData() const;

[S R
= @ W 0

private:
std: :shared_ptr<wand: : App> mApp;
std: :unique_ptr<SceneData> mSceneData;

[IS R S N]
wmE Wk

void SaveSceneState();

=]
o

ER

]
=]

hd

@ No issues found ;1 Ch:1 TABS CRLF

Wand: Design and Development of a Game Engine for Visual Novels 54

MSc Thesis Maria Violaki

Scene.h

[Fs] WandTutorial (Global Scope)
#pragma once
E#include "Wand.h"
#include "../AssetManager.h"
#include "../SceneDataManager.h"

Eiclass Scene
{
public:

// Returns true when the scene is finished

virtual bool Play() = @;

void ProceedToScenePart(unsigned int scenePart, bool playSound = false);

void ProceedAndPlaySound(unsigned int scenePart);

protected:
std: :shared_ptr<wand: : App> mApp;
std: :shared_ptr<AssetManager> mAssetManager;
std: :shared_ptr<SceneDataManager> mSceneDataManager;
unsigned int mPart; // the specific part of the scene
bool mIsDataSaved;
std: :unique_ptr<SceneData> mSceneData;
// Assets that all scenes should have access to
wand: :Rectangle* mChoiceButtonRect;
wand: : TextBox* mNameBox;
wand: : TextBox* mTextBox;
wand: :Background* mBackground;
wand: :Character* mVoid;
wand: :Button* mChoiceButtonl;
wand: :Button* mChoiceButton2;
wand: :Sprite* mBlob;

Scene(std: :shared_ptr<wand: :App> app, std::shared_ptr<AssetManager> assetManager,
std: :shared_ptr<SceneDataManager> sceneDataManager);

void LoadData();

void SaveData();

ER
@ No issues found

5.3. Game Code Analysis

5.3.1. Full Scene Example

Due to the nature of the game genre which is centered around storytelling, the developer
of a visual novel usually spends most of their time working on code that contains a lot of
repetition. Therefore, it is crucial that the steps they need to follow are as clear and concise
as possible.

Wand: Design and Development of a Game Engine for Visual Novels 55

MSc Thesis Maria Violaki

Scene0.cpp

[F:] WandTutorial) Play(
#include "Scene®.h"

[

Scene®: :Scene@(std: :shared_ptr<wand: :App> app, std::shared_ptr<AssetManager> assetManager,
B std: :shared_ptr<SceneDataManager> sceneDataManager)
: Scene(app, assetManager, sceneDataManager)

R}

Ebool Scened::Play()
{

W0 EWN

[
(o]

bool isPlaying = true;

o
(Y™

if (mPart == @)
{

[
w

// Initialize scene
mSceneDataManager—>LoadData();
LoadData();

mPart = 1;

O e e
S ot B

H
else if (mPart == 1)
{

[e
= ® O oW

mBackground->SetSprite("weird forest");
mvoid->SetSprite("void smile");
mNameBox->SetText("?77");

mTextBox->SetText("Why, hello there, fellow dev.");
ProceedToScenePart(2);

[T IS R N)
0E Wk

}
else if (mPart == 2)
{

(SR SRS]
O -] G

mNameBox->SetText(wand: :Utils: : ToUpper(mVoid->GetName()));
mTextBox->SetText("You may call me Void.");
ProceedToScenePart(3);

wow
e

}
else if (mPart == 3)
{

W www
mE W

mTextBox->SetText("I was tasked with explaining to you how Wand Engine works. "
+ std: :string("So I hope you're as impatient as I am, yes?"));
ProceedToScenePart(y);

wow
=1 3

}
® No issues found Lm: 121 Ch:23 Cok26 TABS

w
[+:]

Wand: Design and Development of a Game Engine for Visual Novels 56

MSc Thesis Maria Violaki

[*5) WandTutorial J Scened
39 B else if (mPart == 4)
ue {
u1 mChoiceButtonl->SetText("YAS!");
42 mChoiceButtonl-=0OnLeftClick([this]() { (mSceneData->likability)++; this->mPart
43 mChoiceButtonl->Show();
uy mChoiceButton2-=SetText("...why is the background so creepy?");
45 mChoiceButton2-=0OnLeftClick([this]() { (mSceneData-=likability)-—; this-=>mPart
ug mChoiceButton2->Show();
u7 }
us else if (mPart == 5)
u9 {
50 mChoiceButtonl-=Hide();
51 mChoiceButton2->Hide();
52 mVoid->SetSprite("void shy smile");
53 mTextBox->SetText("I'm glad.");
50 ProceedToScenePart(14);
55 }
56 else if (mPart == &)
57 {
58 mChoiceButtonl->Hide();
59 mChoiceButton2-=Hide();
60 mvoid->SetSprite("void surprised");
61 mTextBox->SetText("Oh? Let's change it, then.");
62 ProceedToScenePart(7);
63
6U else if (mPart == 7)
65 {
66 mBackground->SetSprite("creepy forest");
67 mVoid->SetSprite("void evil");
68 mTextBox—>SetText("How about now? Is this more to your liking?");
69 ProceedToScenePart(8);
70 }

@ No issues found Ln:121 Ch:23 Cok26 TABS

Scenel.cpp R X t
[F:] WandTutorial + ||, Scened ~ || @ PlayQ ME
71 g else if (mPart == 8) ..} -
81 @ else if (mPart == 9) ..}
89 @ else if (mPart == 1) { ... }
95 B else if (mPart == 11)] { ... }
101 Bl else if (mPart == 12)[{ ... %
109 g else if (mPart == 13) { ... }
115 E else if (mPart == 14)
116 {
117 mVoid-=SetSprite("void smile");
118 mTextBox->SetText("So let's move on with the main part then, shall we?");
119 ProceedToScenePart(15);
120 }
121 E else if (mPart == 15)
122 {
123 mSceneData—>lastSceneIndex = ©;
124 SsaveData();
125 isPlaying = false;
126 I }
127
128 return isPlaying;
129 [}
130 -
90 % hd ® No issues found Ln:62 Ch:25 Col: 31 TABS CRLF

Wand: Design and Development of a Game Engine for Visual Novels 57

MSc Thesis Maria Violaki

As can be seen in the images above, some of the most common methods being called for
displaying graphics are the SetSprite for VNEntities and SetText for TextBoxes. Show/Hide,
OnLeftClick, as well as many others can be used for any Ul or VN entity.

Scene0 is an example of how all the scenes in Wand Tutorial are set up. Each of them
consists of several parts, and every time the player clicks on the left mouse button mPart is
set to a different number. Waiting for user input is often the only way to progress through
a scene, except for a few cases when mPart is explicitly changed immediately in order to
avoid executing a block of code more than once.

5.3.2. Example Functions

Although the game does not explore every feature that Wand has to offer, it can be useful
to list all the different functions that were used for its development:

Scene Functions

int i = wand::Random::GetInt(1, 10);

bool isButtonClicked = mApp->GetInput()->MouseButtonReleased(MOUSE_BUTTON_LEFT);

bool isKeyPressed = mApp->GetInput()->KeyReleased(KEY_SPACE);

float scale = mBackground->GetTransform()->GetScale().x;

mVoid->SetSprite("void smile");

mNameBox->SetText(wand: :Utils: : Toupper(mvoid->GetName()));

mChoiceButtonl->Show();

mChoiceButton2->Hide();

mChoiceButtonl->0OnLeftClick([this]() { mSceneData->likability++; this->mPart = 5; });
mChoiceButtonl->GetTextTransform()->SetWidth(mChoiceButtonl->GetTransform()->Getwidth() - 20);
mChoiceButtonl->GetTextTransform()->SetHeight(mChoiceButtonl->GetTransform()->GetHeight() - 20);
mVoid->SetParentLayout(mBackground->GetTransform());

mVoid->SetLayoutPosition(wand: :LayoutPosition: :MIDDLEX, wand::LayoutPosition::BOTTOM);
mBlob->GetTransform()->SetFlip(wand: :FlipAxis::FLIP_Y);
mBlob->GetTransform()—->SetRotation(u5.6f);

mApp->GetAudioManager()->Play("whip", ©.5f, 1.6f, 1.5f);
mApp->GetAudioManager()->Stop("whip");

Wand: Design and Development of a Game Engine for Visual Novels 58

MSc Thesis Maria Violaki

AssetManager Functions

std::string root = mApp->GetFileManager()->GetRootFolder();
mApp—->GetWindow()->SetIcon(root + "Game/Images/wand.png");
mApp->GetAudioManager()->Add(

root + "Game/Audio/whip.ogg"”, "whip", true);
mApp—->GetFontManager()->Add(

root + "Game/Fonts/neuton-regular.ttf", "neuton-regular");
wand: : TextBox* nameBox = mApp->GetEntityManager()->AddTextBox(

"neuton-regular”, 46, wand::Color(237, 175, 184, 255));
wand: :Rectangle* textRect = mApp->GetEntityManager()->AddRectangle(

wand: :Color(102, 106, 134, 210));
wand: :Buttonx choiceButton = mApp->GetEntityManager()->AddButton(

root + "Game/Images/choice_button.png”, "neuton-regular", 25, wand::Color(255, 255, 255, 255));
wand: :Spritex blob = mApp->GetEntityManager()->AddSprite(

root + "Game/Images/blob.png");
std: :shared_ptr<wand: :Background> background = std::make_shared<wand: :Background>("main background");
wand: :Sprite*x weirdForest = mApp—>GetEntityManager()->AddSprite(

root + "Game/Images/weird_forest.png");
weirdForest->SetLabel("weird forest");
weirdForest->GetTransform()->SetPos(@, ©);
weirdForest->GetTransform()->SetLayer(e);
weirdForest->GetTransform()->SetWidth(mApp->GetWindow()->GetStartwidth());
weirdForest->GetTransform()->SetHeight (mApp->GetWindow()->GetStartHeight());
background->AddSprite(weirdForest);

SceneDataManager Functions

std: :shared_ptr<wand: :State> state = std::make_shared<wand: :State>("Statee");
state->Add(new wand::Pair("likability", mSceneData->likability));
state->Add(new wand::Pair("lastSceneIndex", mSceneData->lastSceneIndex));
state->Add(new wand::Pair("backgroundSprite", mSceneData->backgroundSprite));
state->Add(new wand::Pair("musicOn", mSceneData->musicOn));
mApp—>GetStateManager()->SaveState(state, "states.txt");
mApp—>GetStateManager()->LoadStates("states.txt");
wand: :Statex state = mApp->GetStateManager()->GetState("Statee");
for (const std::shared_ptr<wand::Pair>& pair : state->GetStateData())
{
if (pair—->GetName() == "likability")
mSceneData->likability = pair->GetIntvalue();
else if (pair->GetName() == "lastSceneIndex")
mSceneData->lastSceneIndex = pair->GetIntvalue();
else if (pair->GetName() == "backgroundSprite")
mSceneData->backgroundSprite = pair->GetStringvalue();
else if (pair->GetName() == "musicOn")
mSceneData->musicOn = pair->GetBoolvalue();

Wand: Design and Development of a Game Engine for Visual Novels

59

MSc Thesis Maria Violaki

6. CONCLUSION

6.1. Afterword

This paper analyzed the role of game engines as well as their most basic components. More
specifically, special emphasis was put on visual novels and the features that set them apart
from common games. Taking into account all these factors was a crucial step before starting
to build a visual novel engine. Similarly to any problem that is in need of a solution, the first
steps that ought to be taken is understanding all its different parameters and clearly
defining its boundaries as well as the end goal.

Game engines need to implement various features, including window and state
management, graphics rendering, and audio playback. The more each of these features is
optimized, the more efficient and flexible the end product can be. This is the reason why
many popular engines are maintained by extensive development teams working on
improving performance and adding new features.

In any case, however, the creation of a game engine—however small—can be a valuable
experience even to developers who are working outside teams. Apart from the engine-
specific skills that can be acquired, there are many others that can be learned throughout
this process, such as linking different libraries, optimizing the program’s performance,
searching for help online, and even debugging the project.

6.2. Future Work

The optimization of Wand’s already existing features will always have a high priority in the
list of future improvements. While is it important for an engine to offer a wide range of
tools to game developers, it is often better to establish a robust and high performant
architecture first. Wand’s various subsystems could be adjusted so that they become more
flexible and efficient, a change that would also affect the quality of the end product.

Regarding changes on a greater scope, it was already mentioned that Wand applications
need to be developed in Visual Studio and, upon being built, they create Windows x64
executables. Since all the external libraries that are currently linked into the engine can run
on multiple platforms, one of the primary goals of this project would be to make Wand

Wand: Design and Development of a Game Engine for Visual Novels 60

MSc Thesis Maria Violaki

cross-platform. As it is the case for many other popular architectures in the field, both the
engine and its games would need to be able to function on different platforms.

Moreover, one new feature that would need to be added eventually is animation. The
addition of movement to already existing graphics would render the gameplay much more
engaging and would make the stories come to life. Similarly, the use of a particle system
could cause the end product to feel more vibrant and less static.

There are several other features that could be added to Wand, although these would be
less useful given the needs of this particular engine. 3D rendering, for example, is not
preferred by the majority of applications of this genre, and complex physics and Al
subsystems are even more rarely used.

The less a game focuses on simple storytelling and static images, the less it reminds the
player of a visual novel. Very often, giving the developer more options can be helpful in the
sense that it does not limit their creativity. Nevertheless, very much like the developer of a
game engine, every creator ought to consider all the aspects of the problem they are trying
to solve: The features and limitations of the game need to be known beforehand so that
the appropriate engine can be selected. If the application is going to require more tools
than a visual novel engine can offer, it might be a better choice for the developer to choose
an engine with a greater variety of features, such as Unity.

Wand: Design and Development of a Game Engine for Visual Novels 61

MSc Thesis Maria Violaki

REFERENCES

Chernikov, Y. (2017, September 17). OpenGL. Retrieved from The Cherno:
https://www.youtube.com/playlist?list=PLIrATfBNZ98foTJPJ Ev03020g3-GGOS2

Chernikov, Y. (2017, September 17). Welcome to OpenGL. Retrieved from The Cherno:
https://www.youtube.com/watch?v=W3gAzLwfIPO

Chernikov, Y. (2018, September 30). Game Engine. Retrieved from The Cherno:
https://www.youtube.com/playlist?list=PLIrATfBNZ98dC-V-N3m0Go4deliWHPFwT

Chernikov, Y. (2018, October 14). What is a GAME ENGINE? Retrieved from The Cherno:
https://www.youtube.com/watch?v=vtWdgtMo1T4

de Vries, J. (n.d.). Hello Triangle. Retrieved from LearnOpenGL:
https://learnopengl.com/Getting-started/Hello-Triangle

Glaiel, T. (2021, November 18). How to make your own game engine (and why). Retrieved
from Game Developer: https://www.gamedeveloper.com/blogs/how-to-make-
your-own-game-engine-and-why-

Gordan, V. (2021, April 27). OpenGL Course - Create 3D and 2D Graphics With C++.
Retrieved from freeCodeCamp.org:
https://www.youtube.com/watch?v=45MIykWJ-C4

Schardon, L. (2022, February 22). Best Game Engines for 2022 — Which Should You Use?
Retrieved from Zenva Pty Ltd: https://gamedevacademy.org/best-game-engines/

Vincent, B. (2020, April 3). The best engines for making your own visual novel. Retrieved
from PC Gamer: https://www.pcgamer.com/the-best-visual-novel-engines/

Wand: Design and Development of a Game Engine for Visual Novels 62

