
MSc Thesis Maria Traga

 1

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

UNIVERISTY OF PIRAEUS - DEPARTMENT OF INFORMATICS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ – ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

MSc «Informatics»

ΠΜΣ «Πληροφορική»

MSc Thesis

Μεταπτυχιακή Διατριβή

Thesis Title:

Τίτλος Διατριβής:

Creating a player-animal interaction farm simulator

using smart Animal AI Agents that utilize the

Behaviour Tree architecture in Unity.

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης παίκτη-ζώου
χρησιμοποιώντας έξυπνους πράκτορες ΤΝ που χρησιμοποιούν
την αρχιτεκτονική του Δέντρου Συμπεριφοράς στη μηχανή Unity.

Student’s name-surname:

Ονοματεπώνυμο φοιτητή:

Maria Traga

Μαρία Τράγα

Father’s name:

Πατρώνυμο:

Nikolaos

Νικόλαος

Student’s ID No:

Αριθμός Μητρώου:
ΜΠΠΛ19058

Supervisor:

Επιβλέπων:

Themistoklis Panagiotopoulos, Professor

Θεμιστοκλής Παναγιωτόπουλος, Καθηγητής

July 2022 / Ιούλιος 2022

MSc Thesis Maria Traga

 2

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

3-Member Examination Committee

Τριμελής Εξεταστική Επιτροπή

Themistoklis

Panagiotopoulos

Professor

Θεμιστοκλής Παναγιωτόπουλος

Καθηγητής

Dionisios Sotiropoulos

Assistant Professor

Διονύσιος Σωτηρόπουλος

Επίκουρος Καθηγητής

Ioannis Tasoulas

Assistant Professor

Ιωάννης Τασούλας

Επίκουρος Καθηγητής

MSc Thesis Maria Traga

 3

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

1. Acknowledgments/ Ευχαριστίες

Θα ήθελα να δώσω ένα μεγάλο ευχαριστώ στους γονείς μου που με στήριξαν σε κάθε μέρος της ζωής μου
και μου έδωσαν όλη τη βοήθεια που χρειαζόμουν για να πραγματοποιήσω τα όνειρά μου. Επίσης, θα ήθελα
να ευχαριστήσω τον Δρ. Θεμιστοκλή Παναγιωτόπουλο για τη σημαντική και χρήσιμη υποστήριξη που μου
παρείχε και με καθοδήγησε καθ' όλη τη διάρκεια των ακαδημαϊκών μου σπουδών. Τέλος, θα ήθελα να
ευχαριστήσω θερμά τον Δημήτρη Μάλλιαρη για τη βοήθειά του και την υποστήριξή του σε αυτή τη διατριβή
και για την ενθάρρυνση του στη δημιουργία αυτού του έργου.

I would like to give a big thank you to my parents for supporting me in every part of my life and giving
me all the help I needed to achieve my dreams. Furthermore, I would like to thank Dr. Themistoklis
Panagiotopoulos for providing me with important and helpful support and for guiding me throughout my
academic studies. Finally, I would like to give a heartfelt thank you to Dimitris Malliaris for his assistance
and support on this thesis and for giving me hope and encouragement in creating this project.

MSc Thesis Maria Traga

 4

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

2. Abstract

The master thesis project, implements smart A.I. animal agents by using the Behaviour Tree architecture.
This implementation is handled by the Unity Engine in a game-like environment, where the user can interact
with various parts of the game scene. Such interactions include the ability to plant crops which grow with
the passage of time, the use of various tools on objects as well as the interaction with non-playable
characters which are either the smart animal agents or stationary objects like the shop. Furthermore, the
project features the passage of time from day to night and vice versa as well as an inventory system and a
shop where items can be sold. Finally, the smart A.I. agents have specific needs that they need to satisfy
as is defined by the structure of the Behaviour Tree. Specifically, their basic needs have been implemented,
which are thirst, hunger, tiredness, affection towards the user and overall happiness which is expressed
when the player character is nearby.

Keywords: Artificial Intelligence, Smart Animal Agents, Behaviour Tree Architecture, Unity engine

2. Περίληψη

Η ακόλουθη μεταπτυχιακή διατριβή, υλοποιεί έξυπνα ζώα με τεχνητή νοημοσύνη χρησιμοποιώντας την
αρχιτεκτονική του Δέντρου Συμπεριφοράς. Αυτή η υλοποίηση έγινε μέσω της μηχανής Unity σε ένα
περιβάλλον που προσομοιάζει παιχνίδι, όπου ο χρήστης μπορεί να αλληλεπιδράσει με διάφορα μέρη του
κόσμου. Τέτοιες αλληλεπιδράσεις περιλαμβάνουν την ικανότητα να φυτεύονται καλλιέργειες που
αναπτύσσονται με το πέρασμα του χρόνου, τη χρήση διαφόρων εργαλείων σε ορισμένα αντικείμενα καθώς
και την αλληλεπίδραση με χαρακτήρες που είναι είτε οι έξυπνοι πράκτορες είτε ακίνητα αντικείμενα όπως
το κατάστημα. Επιπλέον, το έργο περιλαμβάνει το πέρασμα του χρόνου από τη μέρα στη νύχτα και
αντίστροφα καθώς και ένα σύστημα αποθήκευσης αντικειμένων αλλά και ένα κατάστημα για
αγοραπωλησίες αυτών. Τέλος, οι έξυπνοι πράκτορες έχουν συγκεκριμένες ανάγκες που πρέπει να
ικανοποιήσουν όπως ορίζεται από τη δομή του Δέντρου Συμπεριφοράς. Συγκεκριμένα, έχουν υλοποιηθεί
οι βασικές τους ανάγκες που είναι η δίψα, η πείνα, η κούραση, η στοργή προς τον χρήστη και η συνολική
τους ευτυχία.

Λέξεις-κλειδιά: Τεχνητή Νοημοσύνη, Έξυπνα Ζώα Πράκτορες, Αρχιτεκτονική του Δέντρου Συμπεριφοράς,
Μηχανή Unity

MSc Thesis Maria Traga

 5

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

3. Table of Contents

1. Acknowledgments/ Ευχαριστίες 3

2. Abstract 4

2. Περίληψη 4

3. Table of Contents 5

4. List of Figures 6

5. List of Abbreviations 8

6. Introduction 9

7. Artificial Intelligence 9

7.1. Intelligent Agents & Artificial Intelligence 9

7.2. AI in video games 11

7.3. Animal Behaviour 18

7.4. Animal needs 18

7.5. Unity Engine 22

8. Project Application 24

8.1. Game Features 24

8.1.1. AI Animal Agents 24

8.1.2. Crop System 24

8.1.3. Inventory System 28

8.1.4. Day and Night System 30

8.2. Project Setup 32

8.2.1. Game Manager Scripts 32

8.2.2. Player Scripts 39

8.3. Behaviour Tree Implementation 43

8.3.1. A.I. Agent Scripts 43

8.3.2. Behaviour Tree Scripts 47

8.3.3. Composite Node Scripts 48

8.3.4. Decorator Node Scripts 51

8.3.5. Action Node Scripts 53

9. Applying the Behaviour Tree 55

10. Conclusion 57

11. Bibliography & References 58

Appendix A - A.I. Agent Behaviour Tree Visual Representation 1

Appendix Β – Important Information 1

Appendix C – Project Inspiration 2

MSc Thesis Maria Traga

 6

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

4. List of Figures

Figure 1 - Simple reflex agent diagram ... 9

Figure 2 - Simple reflex agent .. 10

Figure 3 - Model-based reflex agent .. 10

Figure 4 - Model-based, goal-based agent ... 11

Figure 5 - Finite State Machines .. 12

Figure 6 - Monte Carlo Search Tree (MCST) ... 13

Figure 7 - Behavioral Decision Trees (BT) .. 15

Figure 8 - Goal Oriented Action Planning (GOAP)... 17

Figure 9 - Neural Networks / Machine Learning (NN/ML) .. 17

Figure 10 - Maslow's Motivation Model ... 19

Figure 11 - Hierarchy of Dog Needs .. 20

Figure 12 - Hierarchy of Chicken Needs ... 20

Figure 13. Unity Engine Logo. ... 22

Figure 16 – Unity Life Cycle ... 23

Figure 18 - Crop System Shop ... 25

Figure 19 - Crop System Planting ... 25

Figure 20 - Crop Object .. 26

Figure 21 - Crop Container Object .. 27

Figure 22 - Item Object ... 28

Figure 23 - Inventory System Player Inventory .. 29

Figure 24 - Inventory System Chest Container .. 29

Figure 25 - Inventory Object... 30

Figure 26 - Day and Night System ... 31

Figure 27 - Game Manager Gameobject ... 32

Figure 28 - Game Manager Singleton Script ... 33

Figure 29 - Day Night Cycle Script .. 34

Figure 30 - Item Drag Drop Controller Script ... 35

Figure 31 - Game Scene Manager Script .. 36

Figure 32 - Crops Controller Script ... 37

Figure 33 - Player Gameobject .. 39

Figure 34 - Character Controller 2D Script ... 40

Figure 35 - Tools Character Controller Script .. 41

Figure 36 - Shop Controller Script .. 42

Figure 37 - A.I. Agent Gameobject .. 44

Figure 38 - Animal Controller Script ... 45

Figure 39 - Animal AI Script ... 46

Figure 40 - Behaviour Tree Object Script ... 47

Figure 41 - Composite Node Base Class Script ... 48

MSc Thesis Maria Traga

 7

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 42 - Sequence Node Script ... 49

Figure 43 - Selector Node Script ... 50

Figure 44 - Decorator Node Base Class Script .. 51

Figure 45 - Inverter Node Script .. 52

Figure 46 - Repeater Node Script .. 53

Figure 47 - Action Node Base Class Script .. 53

Figure 48 - Navigation Node Script ... 54

Figure 49 - Behaviour Tree Hunger Sequence ... 55

Figure 50 - Smart Animal A.I. Agents .. 56

Figure 51 - Animal Behaviour Tree .. 1

Figure 52 - Stardew Valley Logo .. 2

MSc Thesis Maria Traga

 8

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

5. List of Abbreviations

2D Two-dimensional

3D Three-dimensional

AI Artificial intelligence

API Application programming interface

BT Behaviour tree

CPU Central processing unit

FSM Finite state machine

GOAP Goal oriented action planning

HDRP High Definition Render Pipeline

MCTS Monte Carlo tree search

ML Machine learning

NN Neural network

NPC Non-player character

STRIPS Stanford Research Institute Problem Solver

UI User interface

URP Universal Render Pipeline

MSc Thesis Maria Traga

 9

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

6. Introduction

In the following sections, the most important aspects of the project will be explained. Most importantly,
Artificial Intelligence and its multiple versions and implementations as well as the Maslow’s Hierarchy of
Needs theorem, in order to explain the behaviour implemented on the smart animal agents.

7. Artificial Intelligence

7.1. Intelligent Agents & Artificial Intelligence

In artificial intelligence, an intelligent agent (I.A.) is anything which perceives its environment, takes actions
autonomously in order to achieve goals, and may improve its performance with learning or may use
knowledge. They may be simple or complex — a thermostat is considered an example of an intelligent
agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome
(Russell & Norvig, 2003). Intelligent agents is an area of interest that attracts researchers from different
Artificial Intelligence fields, such as distributed artificial intelligence, AI Planning and robotics, as well as
classical computer science fields, such as information systems, databases, and human-computer
interaction. The adjective “intelligent” is used to denote the involvement of AI research in agent technology.
AI has been considered as the main contributor to the field of intelligent agents (Marinagi, Panayiotopoulos
& Spyropoulos, 2005).

Leading AI textbooks define "artificial intelligence" as the "study and design of intelligent agents",
a definition that considers goal-directed behavior to be the essence of intelligence. These agents are, as
mentioned before, computational entities that perceive environmental conditions, act to affect conditions
and reason about conditions and actions (Marinagi, Panayiotopoulos & Spyropoulos, 2005).

Figure 1 - Simple reflex agent diagram

MSc Thesis Maria Traga

 10

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

The reactive agent architecture was introduced in order to allow robust performance in dynamic
environments, where the deliberative agents fail to perform. We divide reactive agent architectures into
three subcategories that signify the different underlying ideas on which they are based. These are: pure
reactive agents, simple reactive planning agents, and sophisticated reactive planning agents. Pure reactive
agents act without planning and do not include a symbolic model of the world. The reactive planning
approach adds an AI point of view to agents. They include a symbolic model of the world and apply reactive
reasoning to choose between alternative plans at run-time. Such reactive planners are considered as
simple, while sophisticated reactive planners include more complicated constructs in order to handle
execution failures or environmental changes (Marinagi, Panayiotopoulos & Spyropoulos, 2005).

According to Russell & Norvig (2003), agents can be classified based on their degree of perceived
intelligence and capability as follows:

• Simple reflex agents

• Model-based reflex agents

• Goal-based agents

• Utility-based agents

• Learning agents

Figure 2 - Simple reflex agent

Figure 3 - Model-based reflex agent

MSc Thesis Maria Traga

 11

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 4 - Model-based, goal-based agent

Artificial intelligence is based on the principle that human intelligence can be defined in a way that
a machine can easily mimic it and execute tasks, from the most simple to those that are even more complex.
The goals of artificial intelligence include mimicking human cognitive activity. Researchers and developers
in the field are making surprisingly rapid strides in mimicking activities such as learning, reasoning, and
perception, to the extent that these can be concretely defined. Some believe that innovators may soon be
able to develop systems that exceed the capacity of humans to learn or reason out any subject. But others
remain skeptical because all cognitive activity is laced with value judgments that are subject to human
experience.

As technology advances, previous benchmarks that defined artificial intelligence become outdated.
For example, machines that calculate basic functions or recognize text through optical character recognition
are no longer considered to embody artificial intelligence, since this function is now taken for granted as an
inherent computer function.

AI is continuously evolving to benefit many different industries. Machines are wired using a cross-
disciplinary approach based on mathematics, computer science, linguistics, psychology, and more.

7.2. AI in video games

AI in gaming refers to responsive and adaptive video game experiences. These AI-powered interactive
experiences are usually generated via non-player characters, or NPCs, that act intelligently or creatively,
as if controlled by a human game-player. AI is the engine that determines an NPC’s behavior in the game
world.

While AI in some form has long appeared in video games, it is considered a booming new frontier
in how games are both developed and played. AI games increasingly shift the control of the game
experience toward the player, whose behavior helps produce the game experience.

MSc Thesis Maria Traga

 12

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Artificial intelligence has been an integral part of video games since their inception in the 1950s. AI
in video games is a distinct subfield and differs from academic AI. It serves to improve the game-player
experience rather than machine learning or decision making. (Grant, Eugene F.; Lardner, Rex, 1952).

While the vast majority of AI academics (including the author) would claim that games are fully
scripted and still use 30-year old AI technology — such as A* and finite state machines — the game industry
had been making small, yet important, steps towards integrating nouvelle (or modern) AI (A.J.
Champandard, 2004) in their games (S. Woodcock, 2001) during the early days of game AI. A non-inclusive
list of games that advanced the game AI state-of-practice in industry (S.Rabin, 2002) includes the advanced
sensory system of guards in Thief (EIDOS, 1989); the advanced opponent tactics in Half-Life (Valve, 1998);
the fusion of machine learning techniques such as perceptrons, decision trees and reinforcement learning
coupled with the belief-desire intention cognitive model in Black and White (EA, 2000); the dynamic difficulty
adjustment (DDA) features in the Halo series (MS Game Studios); the imitation learning Drivatar system of
Forza Motorsport (MS Game Studios, 2005); the AI director of Left 4 Dead (Valve, 2008) 2 and the
neuroevolutionary training of platoons in Supreme Commander 2 (Square Enix, 2010). (Georgios N.
Yannakakis, 2012, Game AI revisited). All in all, the most common AI architectures used in video games
are:

• Finite State Machines (FSM)

Figure 5 - Finite State Machines

A finite state machine is an abstract machine that can exist in one of several different and
predefined states. A finite state machine also can define a set of conditions that determine when the state
should change. The actual state determines how the state machine behaves. Only a single state can be

MSc Thesis Maria Traga

 13

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

active at the same time, so the machine must transition from one state to another in order to perform
different actions.

Finite state machines date back to the earliest days of computer game programming. For example,
the ghosts in Pac Man are finite state machines. They can roam freely, chase the player, or evade the
player. In each state they behave differently, and their transitions are determined by the player’s actions.
For example, if the player eats a power pill, the ghosts’ state might change from chasing to evading. We’ll
come back to this example in the next section.

Although finite state machines have been around for a long time, they are still quite common and
useful in modern games. The fact that they are relatively easy to understand, implement, and debug
contributes to their frequent use in game development. In this chapter, we discuss the fundamentals of
finite state machines and show you how to implement them.

• Monte Carlo Search Tree (MCST)

Figure 6 - Monte Carlo Search Tree (MCST)

In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some
kinds of decision processes, most notably those employed in software that plays board games. In that
context MCTS is used to solve the game tree.

The focus of MCTS is on the analysis of the most promising moves, expanding the search tree
based on random sampling of the search space. The application of Monte Carlo tree search in games is
based on many playouts, also called roll-outs. In each playout, the game is played out to the very end by
selecting moves at random. The final game result of each playout is then used to weight the nodes in the
game tree so that better nodes are more likely to be chosen in future playouts.

MSc Thesis Maria Traga

 14

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

The most basic way to use playouts is to apply the same number of playouts after each legal move
of the current player, then choose the move which led to the most victories. The efficiency of this method—
called Pure Monte Carlo Game Search—often increases with time as more playouts are assigned to the
moves that have frequently resulted in the current player's victory according to previous playouts. Each
round of Monte Carlo tree search consists of four steps:

Selection: Start from root R and select successive child nodes until a leaf node L is reached. The
root is the current game state and a leaf is any node that has a potential child from which no simulation
(playout) has yet been initiated. The section below says more about a way of biasing choice of child nodes
that lets the game tree expand towards the most promising moves, which is the essence of Monte Carlo
tree search.

Expansion: Unless L ends the game decisively (e.g. win/loss/draw) for either player, create one (or
more) child nodes and choose node C from one of them. Child nodes are any valid moves from the game
position defined by L.

Simulation: Complete one random playout from node C. This step is sometimes also called playout
or rollout. A playout may be as simple as choosing uniform random moves until the game is decided (for
example in chess, the game is won, lost, or drawn).

Backpropagation: Use the result of the playout to update information in the nodes on the path from
C to R.

MCTS is a simple algorithm to implement. Moreover, Monte Carlo Tree Search is a heuristic
algorithm and can operate effectively without any knowledge in the particular domain, apart from the rules
and end conditions, and can find its own moves and learn from them by playing random playouts.

However, as the tree growth becomes rapid after a few iterations, it requires a huge amount of
memory. Also, there is a bit of a reliability issue with Monte Carlo Tree Search. In certain scenarios, there
might be a single branch or path, that might lead to loss against the opposition when implemented for those
turn-based games. This is mainly due to the vast number of combinations and each of the nodes might not
be visited enough number of times to understand its result or outcome in the long run. Finally, MCTS
algorithm needs a huge number of iterations to be able to effectively decide the most efficient path, thus,
there exists a speed issue.

MSc Thesis Maria Traga

 15

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

• Behavioral Decision Trees (BT)

Figure 7 - Behavioral Decision Trees (BT)

A behavior tree is a mathematical model of plan execution used in computer science, robotics,
control systems and video games. They describe switchings between a finite set of tasks in a modular
fashion. Their strength comes from their ability to create very complex tasks composed of simple tasks,
without worrying how the simple tasks are implemented. Behavior trees present some similarities to
hierarchical state machines with the key difference that the main building block of a behavior is a task rather
than a state. Its ease of human understanding make behavior trees less error prone and very popular in
the game developer community. Behavior trees have been shown to generalize several other control
architectures.

Behavior trees originate from the computer game industry as a powerful tool to model the behavior
of non-player characters (NPCs). They have been extensively used in high-profile video games such as
Halo, Bioshock, and Spore

Unlike a Finite State Machine, or other systems used for AI programming, a behaviour tree is a tree
of hierarchical nodes that control the flow of decision making of an AI entity. At the extents of the tree, the
leaves, are the actual commands that control the AI entity, and forming the branches are various types of
utility nodes that control the AI’s walk down the trees to reach the sequences of commands best suited to
the situation.

The trees can be extremely deep, with nodes calling sub-trees which perform particular functions,
allowing for the developer to create libraries of behaviours that can be chained together to provide very
convincing AI behaviour. Development is highly iterable, where one can start by forming a basic behaviour,
then create new branches to deal with alternate methods of achieving goals, with branches ordered by their
desirability, allowing for the AI to have fallback tactics should a particular behaviour fail.

A behaviour tree is made up of several types of nodes, however some core functionality is common
to any type of node in a behaviour tree. This is that they can return one of three statuses, which are Success,
Failure or Running.

MSc Thesis Maria Traga

 16

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

The first two, as their names suggest, inform their parent that their operation was a success or a
failure. The third means that success or failure is not yet determined, and the node is still running. The node
will be ticked again next time the tree is ticked, at which point it will again have the opportunity to succeed,
fail or continue running. There are three main archetypes of a behaviour tree node: Composite, Decorator,
Leaf/Action.

Composite

A composite node is a node that can have one or more children. They will process one or more of
these children in either a first to last sequence or random order depending on the particular composite node
in question, and at some stage will consider their processing complete and pass either success or failure
to their parent, often determined by the success or failure of the child nodes. During the time they are
processing children, they will continue to return Running to the parent.

Decorator

A decorator node, like a composite node, can have a child node. Unlike a composite node, they
can specifically only have a single child. Their function is either to transform the result they receive from
their child node's status, to terminate the child, or repeat processing of the child, depending on the type of
decorator node.

Leaf/Action

These are the lowest level node type, and are incapable of having any children. Leafs are however
the most powerful of node types, as these will be defined and implemented by the game to do the game
specific or character specific tests or actions required to make the tree do useful stuff.

MSc Thesis Maria Traga

 17

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

• Goal Oriented Action Planning (GOAP)

Figure 8 - Goal Oriented Action Planning (GOAP)

Goal oriented action planning is an artificial intelligence system for agents that allows them to plan
a sequence of actions to satisfy a particular goal. The particular sequence of actions depends not only on
the goal but also on the current state of the world and the agent. This means that if the same goal is supplied
for different agents or world states, you can get a completely different sequence of actions., which makes
the AI more dynamic and realistic.

GOAP refers to a simplified STRIPS-like planning architecture specifically designed for real-time
control of autonomous character behavior in games. The specified AI helps decouple the actions from each
other, and allows for focusing on each action individually.

• Neural Networks / Machine Learning (NN/ML)

Figure 9 - Neural Networks / Machine Learning (NN/ML)

MSc Thesis Maria Traga

 18

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Machine learning is a subset of artificial intelligence that focuses on using algorithms and statistical
models to make machines act without specific programming. This is in sharp contrast to traditional methods
of artificial intelligence such as search trees and expert systems.

Information on machine learning techniques in the field of games is mostly known to public through
research projects as most gaming companies choose not to publish specific information about their
intellectual property. The most publicly known application of machine learning in games is likely the use of
deep learning agents that compete with professional human players in complex strategy games. There has
been a significant application of machine learning on games such as Atari/ALE, Doom, Minecraft, StarCraft,
and car racing. Other games that did not originally exists as video games, such as chess and Go have also
been affected by the machine learning.

7.3. Animal Behaviour

An essential element in intelligent virtual agents is the concept of believability, a notion that refers to creating
the illusion of interaction with living characters, as mentioned in (Riedl and Young, 2005). This sense of
believability is in turn of major importance in order to enhance the sense of immersion and presence,
elements that according to Zeltzer (1992), are among the sine qua non for an engaging virtual reality
experience.

In this project, in order to give ‘life’ to the animal NPCs the Behavioural Decision Tree architecture
was used. The implementation of the produced Behaviour Tree objects was done via the Unity Engine and
the C# programming language. Before proceeding to the actual implementation of these said Trees, first
the AI agents’ motivations must be understood. This is of great importance and is vital in order to simulate
a believable animal-behaving agent.

7.4. Animal needs

All living organisms have a plethora of needs in order to live a healthy life. Basic needs such as air, water,
food and protection from environmental dangers are necessary for an organism to live. Needs are
distinguished from wants. In the case of a need, a deficiency causes a clear adverse outcome: a dysfunction
or death. In other words, a need is something required for a safe, stable and healthy life (e.g. air, water,
food, land, shelter) while a want is a desire, wish or aspiration.

Maslow's hierarchy of needs is an idea in psychology proposed by American Abraham Maslow in
his 1943 paper "A Theory of Human Motivation" in the journal Psychological Review (Maslow, A.H. 1943).

MSc Thesis Maria Traga

 19

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 10 - Maslow's Motivation Model

Maslow’s hierarchy consists of:

• Physiological

• Safety

• Love/Belonging

• Esteem and

• Self-actualization needs.

Although this hierarchy’s main goal is to describe what drives the human species, it can also be
applied to a certain extent to other animals. Below, follows an implementation of the above hierarchy
modified to meet dogs’ needs and how it affects their training and relationship with their human companion.

MSc Thesis Maria Traga

 20

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 11 - Hierarchy of Dog Needs

The above hierarchy was designed by Linda Michaels, M.A., Psychology and it can be understood
that it is not that different from that of a human’s. Moreover, another implementation that concerns farm
animals can be seen in the next figure.

Figure 12 - Hierarchy of Chicken Needs

In conclusion a general simplified figure of farm animal’s hierarchy of needs could be the figure
below which is the one that is going to be used in this project.

MSc Thesis Maria Traga

 21

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Social Needs,
Interact with
other animals

Safety, Security,
Shelter, Thermal

Comfort

Oxygen, Food, Water

MSc Thesis Maria Traga

 22

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

7.5. Unity Engine

Unity is a cross-platform game engine developed by Unity Technologies, first announced and released in
June 2005 at Apple Worldwide Developers Conference as a Mac OS X game engine. The engine has since
been gradually extended to support a variety of desktop, mobile, console and virtual reality platforms. It is
particularly popular for iOS and Android mobile game development and is considered easy to use for
beginner developers and is popular for indie game development.

Figure 13. Unity Engine Logo.

The engine can be used to create three-dimensional (3D) and two-dimensional (2D) games, as
well as interactive simulations and other experiences. The engine has been adopted by industries outside
video gaming, such as film, automotive, architecture, engineering, construction, and the United States
Armed Forces.

Unity gives users the ability to create games and experiences in both 2D and 3D, and the engine
offers a primary scripting API in C# using Mono, for both the Unity editor in the form of plugins, and games
themselves, as well as drag and drop functionality. Prior to C# being the primary programming language
used for the engine, it previously supported Boo, which was removed with the release of Unity 5, and a
Boo-based implementation of JavaScript called UnityScript, which was deprecated in August 2017, after
the release of Unity 2017.1, in favor of C#.

Within 2D games, Unity allows importation of sprites and an advanced 2D world renderer. For 3D
games, Unity allows specification of texture compression, mipmaps, and resolution settings for each
platform that the game engine supports, and provides support for bump mapping, reflection mapping,
parallax mapping, screen space ambient occlusion (SSAO), dynamic shadows using shadow maps, render-
to-texture and full-screen post-processing effects.

Two separate render pipelines are available, High Definition Render Pipeline (HDRP) and Universal
Render Pipeline (URP), in addition to the legacy built-in pipeline. All three render pipelines are incompatible
with each other. Unity offers a tool to upgrade shaders using the legacy renderer to URP or HDRP.

Running a Unity script executes a number of event functions in a predetermined order. The diagram
below summarizes how Unity orders and repeats event functions over a script’s lifetime.

MSc Thesis Maria Traga

 23

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 14 – Unity Life Cycle

MSc Thesis Maria Traga

 24

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

8. Project Application

In order for the game to be created, the Unity Engine 2020.3.2f1 was used and the programming language
for the scripts was C#. The game features, which will be further analyzed in the following sections, are the
following:

● Animals that behave according to their defined Behaviour Tree AI.

● Likeness of the animals towards certain actions of the player.

● Crops that grow and produce various items.

● Inventory system that allows the player to store items on the internal inventory as well as
external storage containers.

● Day and night cycle that cycles through the time of each day.

● Interactable objects such as a shop and NPCs.

8.1. Game Features

The core feature of the game are as follows:

8.1.1. AI Animal Agents

When referring to AI animal agents, I mean the agents that will implement the Behaviour Tree architecture.
These animals will act upon their defined AI and, in accordance with the respective data that each animal
holds, will select which action to take (e.g. drink water, eat, etc.). Moreover, the animals hold data regarding
their likeness towards the player which is calculated based on the interactions between them.

When the animals are content based on the necessary calculations, they will express their feeling when
the player is nearby and will produce certain items depending on whether their needs are satisfied or not.
The animals and their Behaviour Tree will be further explained in the following sections.

8.1.2. Crop System

A feature that is present in the game is the ability to purchase seeds and grow crops that will produce
various items. These items can then be sold for profit.

MSc Thesis Maria Traga

 25

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 15 - Crop System Shop

As seen above, the player has 5 coins available and can purchase certain seeds that are in stock from
the shop. After purchasing the seeds, the player can seed them in fertile soil, as presented on the image
below.

Figure 16 - Crop System Planting

MSc Thesis Maria Traga

 26

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

The crops will start growing with varying speed based on the plant and when they get fully grown, they
can be harvested with an empty hand. Each crop is stored in a scriptable object that defines the item that
will spawn after harvesting, as well as the amount, the time it takes to grow, etc.

Figure 17 - Crop Object

Moreover, in order for the crops to be displayed on the map, the location of each crop on the tilemap
must be stored. To achieve that, I created a scriptable object to hold all the positions available for growing
crops. As such, when a crop gets planted its necessary data will be stored as presented below.

MSc Thesis Maria Traga

 27

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 18 - Crop Container Object

The item is also stored in a scriptable object, which has the following data.

MSc Thesis Maria Traga

 28

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 19 - Item Object

Each item can either be stackable or not. This means that it will either be a tool which can only exist
once for the player (e.g. an axe) or it will be an object that the player will want to have more than one in
order to sell or store (e.g. carrots).

8.1.3. Inventory System

In order for the player to have the items that have been described above, an inventory system must be
implemented. When the player wants to access the inventory, the “I” button must be pressed, which displays
the screen below.

MSc Thesis Maria Traga

 29

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 20 - Inventory System Player Inventory

Furthermore, aside from the player inventory there are multiple storages available, such as chests,
where the player can deposit or withdraw items.

Figure 21 - Inventory System Chest Container

MSc Thesis Maria Traga

 30

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

The scriptable object architecture was used in the inventory system, in order for the items to have their
position and quantity display correctly when the player interacts with any storage.

Each inventory/storage is a scriptable object, which holds the slots of the container (e.g. 30 for player
inventory). Consequently, each slot holds the item object and the amount of the item, as shown below.

Figure 22 - Inventory Object

In certain cases, some storage containers need to accept only one specific item (e.g. animal feeder
accepts only hay), and the player will only be able to deposit the specified item.

8.1.4. Day and Night System
Another system that has been implemented is the change between day and night as well as the passing of
each day. Moreover, a time agent has been created which depends on the day/night system, in order to
invoke methods on certain intervals (e.g. 15 in game seconds).

When the in game time reaches a certain point, the appearance of the map changes with the help of the
universal render pipeline (URP) to simulate the perspective of night in a 2D environment.

MSc Thesis Maria Traga

 31

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 23 - Day and Night System

The global volume of the URP changes by evaluating a defined animation curve.

Finally, when the day changes into night, all the lights on the map get activated to give the illusion of
lighting on a 2D environment. The lights implement the point light 2D system of the Unity Engine.

MSc Thesis Maria Traga

 32

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

8.2. Project Setup
In order for the application to function as intended, certain scripts with relative game logic needed to be
implemented. The gameobjects that hold the majority of the most important scripts are:

• Game Manager

• Player

8.2.1. Game Manager Scripts

The Game Manager gameobject holds some of the most necessary scripts for the game. Such scripts will
be presented in the following paragraphs.

Figure 24 - Game Manager Gameobject

MSc Thesis Maria Traga

 33

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Game Manager Singleton

Figure 25 - Game Manager Singleton Script

The GameManager script is a singleton script which ensures that when the instance gets created it will
always remain the same and will not be destroyed when, for example, another scene is loaded.

Generally, a singleton in Unity is a global accessible class that exists in the scene, but can only exist
once. Any other script can access the singleton, allowing for easy connection between unrelated objects
and global systems such as the audio manager, by using the Instance variable.

The singleton script above holds the references for certain gameobjects that will also get the abilities of
a singleton, for easier use throughout the project.

MSc Thesis Maria Traga

 34

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Day Night Cycle Script

Figure 26 - Day Night Cycle Script

The script above handles the change from day to night, holds the amount of days that passed from the
beginning of the game and invokes certain time agents on specific time periods (e.g. once per tick, once
per day).

The time agents utilize the events architecture of the Unity Engine. Specifically, it is possible to create
modular connections between scripts and objects by using events and delegates. These help trigger game
logic as it happens, without relying on tight connections between scripts.

In order to handle certain states of a script it is best to use the event system, considering that if everything
is checked every update, meaning every frame, then it could be highly constraining and burdening for the
game. For example, the time agent gets invoked every 15 ingame minutes, which is significantly less time
than handling a certain check every frame.

A method that helps utilize events is the Observer Pattern. This pattern allows for creating modular logic
that can be executed when an event is triggered. It typically works by allowing observers, in this case, other
scripts, to subscribe one or more of their own functions to a subject’s event. Then, when the event is

MSc Thesis Maria Traga

 35

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

triggered by the subject, the observers’ functions are called in response. For example, the player’s health
script could declare an On Player Death event, that’s called when the player runs out of health.

This means that connecting different pieces of game logic with the actual events of a game can be done
easily without needing to manage specific script to script connections.

Finally, in order to create an observer-style system in Unity, a common method is to use delegates,
which are essentially function containers. They allow for storing and calling a function as if it were a variable.

Item Drag Drop Controller Script

Figure 27 - Item Drag Drop Controller Script

The player can drag and drop an item from the inventory to any storage, as well as, drop the selected
item on the world. The script shown above, handles the respective feature by creating a copy of the item
clicked in any storage on the mouse. When the item is clicked, an image is shown to the player, following
the mouse movement, with the selected item and an instance of the item data (e.g. item object, stack
amount) is stored temporarily in the memory. After the player clicks for a second time, either on the
overworld or in any slot in a storage, the held item will be added either as a gameobject instance or will be
added in the inventory slot of the active inventory scriptable object, respectively. Following that, the stored
data will be cleared from the memory.

MSc Thesis Maria Traga

 36

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Game Scene Manager Script

Figure 28 - Game Scene Manager Script

When the player reaches certain spots on the map, a transition gets called that can either be moving,
on the same scene, in a specific location or switching between different scenes.

The GameSceneManager script, handles the case of switching between scenes. In order for the
transition to occur smoothly, the coroutine functionality of Unity is used. When the transition happens, for
seconds, the screen turns darker gradually, and then the first scene gets unloaded, while the second scene
gets the respective references and gets loaded. After everything is set the screen shows the changed
scene.

A coroutine allows the spread of tasks across several frames. In most situations, when a method is
called, it runs to completion and then returns control to the calling method, plus any optional return values.
This means that any action that takes place within a method must happen within a single frame update. In
Unity, a coroutine is a method that can pause execution and return control to Unity but then continue where

MSc Thesis Maria Traga

 37

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

it left off on the following frame. However, coroutines are not threads and any code that gets executed
within them will run on the main thread.

Crops Controller Script

Figure 29 - Crops Controller Script

MSc Thesis Maria Traga

 38

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

The CropsController script gets the reference of the CropsTilemapController, which handles the
functionality of the crop system and the growth of the crops after a certain amount of time (per tick).

The scripts above handle and interact with the tilemap system of Unity. Specifically, the tilemap
component is mostly used in 2D game development and allows for storing tile assets, in order to create 2D
levels. It transfers the required information from the tiles placed on it to other related components such as
the Tilemap Renderer and the Tilemap Collider 2D.

In order for the crop system to function, the related scripts handle the information from the tilemap and
identify whether the soil in front of the player is available for planting seeds. Moreover, they allow for storing
the location on the tilemap as well as the data of the seeded tile. After that, through these scripts, the player
can water the seeded tiles that are selected by the cursor and then pick them up once they are fully grown.
In order for the player to pick up the items, a spawn item system was introduced, which instantiates the
item object in the spot of the plant. Lastly, the scripts above also handle the growth of each plant by
cooperating with the time system, as explained previously.

MSc Thesis Maria Traga

 39

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

8.2.2. Player Scripts

The Player gameobject refers to the character that the user sees on the screen. The gameobject holds
some necessary scripts for the player movement and controls. Such scripts will be presented in the following
paragraphs.

Figure 30 - Player Gameobject

MSc Thesis Maria Traga

 40

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Character Controller 2D Script

Figure 31 - Character Controller 2D Script

The script presented above handles the movement of the player character. Specifically, when the user
presses the arrow keys, the movement variable registers the input axis. Consequently, the velocity of the
rigidbody component on the player gameobject, updates and moves the character towards the axis as
indicated by the user’s input.

Furthermore, an interact area can be created through the CreateInteractArea function, which creates
colliders in the facing direction of the player.

MSc Thesis Maria Traga

 41

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Tools Character Controller Script

Figure 32 - Tools Character Controller Script

In order for the player to be able to use tools (e.g. axe, watering can) the respective functionality should
be implemented. The ToolsCharacterController script handles the required logic by connecting the item -
tool selected by the player from the toolbar with the input required, and calls the onAction function of each
tool.

A tool can be used in two different situations, on the tilemap and on the world. In the case of using a tool
to interact with the tilemap (e.g. with the crops) then the position of the selected tile is stored and the
respective function gets initiated, as explained in detail in the previous section.

However, when a tool needs to be used on the world (e.g. for cutting trees), then the player needs to be
able to interact with a gameobject instance, as opposed to tilemap data. In order to be able to translate the
position of the pointer to the position of the interactable gameobject on the world the ScreenToWorldPoint
function of Unity needs to be used. This function returns the worldspace point created by converting the
screen space point at the provided distance z from the camera plane.

MSc Thesis Maria Traga

 42

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Shop Controller Script

Figure 33 - Shop Controller Script

The ShopController script handles the player input regarding the interaction with the ingame shop. When
the player interacts with the shop, the UI canvas stops being inactive. Consequently, when the UI is active
then, by clicking the respective interaction key or by moving away from the shop, it will become inactive.
The same functionality applies to the item containers and the player inventory.

Moreover, when the player clicks on an item from the shop item selection then the respective item gets
added to the player’s inventory object and money get subtracted from the player’s data. The data is a
scriptable object related to the player. Additionally, when the player clicks on an item in the inventory, then
similar logic applies.

Finally, the sound manager plays the correct sound regarding the player’s activities (e.g. buy, sell).

MSc Thesis Maria Traga

 43

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

8.3. Behaviour Tree Implementation

The application features the implementation of the behaviour tree architecture for the A.I. functionality of
the animal agents.

Such implementation requires certain scripts to be created, namely, a script to execute the behaviour
tree, scriptable objects that will hold the parameters of each A.I. agent and their respective controller.
Finally, the structure for the behaviour tree needed to be implemented.

Specifically, the required behaviour tree structure has certain nodes which are as follows:

• Composite Nodes

• Decorator Nodes

• Selector Nodes

The visual representation of the A.I. agents’ behaviour tree is presented in the appendices below.

8.3.1. A.I. Agent Scripts

In order for the behaviour tree to function, the following scripts needed to be implemented to each A.I.
agent.

MSc Thesis Maria Traga

 44

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Figure 34 - A.I. Agent Gameobject

MSc Thesis Maria Traga

 45

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Animal Controller Script

Figure 35 - Animal Controller Script

The AnimalController script handles certain functionality regarding the data of each animal. Specifically,
each separate A.I. agent has data defined by using the scriptable object functionality, as explained earlier.
This data needs to be able to change based on certain criteria, like the passage of ingame time or the
interaction with the player (e.g. hunger increments when time passes).

Moreover, certain functions that are needed in the behaviour tree of each agent, are defined in the script
above. The navigation nodes mostly need some information from the AnimalController, particularly the
availability of food on the map as well as its location.

MSc Thesis Maria Traga

 46

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Animal AI Script

Figure 36 - Animal AI Script

The script above connects the behaviour tree scriptable object with the agent gameobject (i.e. the
animal). In order for the behaviour tree to function correctly, firstly a clone of the original scriptable object
is made and then the owner of the tree is passed to the tree by using the function Bind(), which will be
explained further in the next section.

MSc Thesis Maria Traga

 47

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

8.3.2. Behaviour Tree Scripts

Behaviour Tree Object Script

Figure 37 - Behaviour Tree Object Script

As explained previously, each node of the behaviour tree can return one of three available states,
RUNNING in case it is still executing without an end result, SUCCESS in case the node succeeds in doing
a certain task or FAILURE in case it fails.

For the behaviour tree scriptable object, the above functions needed to be implemented. The Update()
function of the tree calls the Update() function of the root node (i.e. the first node) in the case that it returns
RUNNING state.

Moreover, the function Clone() creates a copy of the object in order to prevent duplicate trees and
permanent SUCCESS state. Since the BT is a scriptable object, if the same tree tries to get executed twice
then the first will run correctly and return a specific state (e.g. SUCCESS) but the second time it will not get
executed considering that the state will still be the result of the first. Specifically, scriptable objects maintain
the data and then can access it by reference. This means that there is one copy of the data in memory.

MSc Thesis Maria Traga

 48

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Finally, with the Bind() function, each node, as well as the behaviour tree can have access to the
gameobject that holds the tree, thus creating a bridge between the A.I. and all the necessary data of each
agent.

8.3.3. Composite Node Scripts

Composite Node Base Class

Figure 38 - Composite Node Base Class Script

A composite node is a node that can have one or more children. Each composite node will process these
children nodes, which in turn will either return SUCCESS or FAILURE. After that the composite node will,
in most cases, return that state to its parent. During the time the composite node is processing children, it
will continue to return RUNNING to the parent. Usually, the most used composite nodes are the sequence
node and the selector node.

MSc Thesis Maria Traga

 49

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Sequence Node

Figure 39 - Sequence Node Script

A sequence node is derived from the composite node base class and processes each child in a
sequence. Specifically, when the child returns a SUCCESS state then the node starts processing the next
child, from left to right. In the case that any child returns FAILURE then the whole process stops and the
composite node returns FAILURE to its parent node. After every child was processed successfully, the
node returns SUCCESS to the parent.

MSc Thesis Maria Traga

 50

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Selector Node

Figure 40 - Selector Node Script

A selector node is derived from the composite node base class and processes child nodes until one
succeeds. Specifically, when the child returns a SUCCESS state then the node stops processing the next
children, and returns that state to its parent. In the case that the child returns FAILURE then the selector
moves on to the next child. After every child was processed and none returned SUCCESS, then the node
returns FAILURE to the parent.

MSc Thesis Maria Traga

 51

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

8.3.4. Decorator Node Scripts

Decorator Node Base Class

Figure 41 - Decorator Node Base Class Script

A decorator node is a node that can only have one child. Their function is either to transform the result they
receive from their child node's status, to terminate the child, or repeat processing of the child, depending
on the type of decorator node.

Such decorator nodes, that are oftenly used, are the inverter node and the repeater node.

MSc Thesis Maria Traga

 52

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Inverter Node

Figure 42 - Inverter Node Script

The inverter node gets the result of its child and returns to the parent the opposite state. For example,
when the child of the inverter returns SUCCESS then the inverter will pass to its parent FAILURE.

MSc Thesis Maria Traga

 53

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Repeater Node

Figure 43 - Repeater Node Script

The repeater node allows for repeating the following nodes of the tree infinitely. Specifically, the repeater
will always return RUNNING state to its parent regardless of the child nodes result.

8.3.5. Action Node Scripts

Action Node Base Class

Figure 44 - Action Node Base Class Script

The action node is a node that can have no children and is the leaf of a behaviour tree. Usually, most
functionality of an A.I. agent is written in an action node.

These mostly include true or false checks on certain criteria (e.g. check proximity of an agent to an
object) or application specific actions (e.g. go eat action on an agent). An important action node that has
been implemented in the project is the navigation node.

MSc Thesis Maria Traga

 54

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

Navigation Node

Figure 45 - Navigation Node Script

This node allows the agent to handle the movement to a specific location. When the agent reaches the
destination then the node returns SUCCESS to its parent or if it still is computing then the node will return
RUNNING.

MSc Thesis Maria Traga

 55

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

9. Applying the Behaviour Tree

The A.I. agents’ behaviour tree, as is implemented in Unity, will be presented in the section below.

The behaviour tree of an animal agent is divided in 5 main sections, the Sleep Sequence, Thirst
Sequence, Hunger Sequence, Happiness Sequence and Wander Sequence which are implemented and
occur in that order.

In order for the behaviour tree to be presented in action, the Hunger Sequence is selected as an
example.

Specifically, when it is not time for the animal to sleep and the animal is not thirsty yet then the hunger
sequence begins.

Figure 46 - Behaviour Tree Hunger Sequence

Firstly, the AmIHungry node will be processed which checks whether the animals’ hunger variable has
fallen below a certain threshold and will return SUCCESS, considering that the parent node is a sequence,
this means that the A.I. will move on to the next node which is the IsFoodAvailable. This node checks if
food exists on the map, which also returns SUCCESS. Following that, another composite node which is the
GoToFood selector node, is implemented. This means that if the first of its children, which is the
AmINearFood, returns SUCCESS, then the whole selector will stop executing and pass that state to the
hunger sequence. Differently, the GoToFeeder node will also be executed which is a navigation node. After
that, the action EatFood is executed which returns SUCCESS after the hunger variable reaches a certain

MSc Thesis Maria Traga

 56

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

point of saturation. Finally, the two following nodes, allow for pausing the behaviour tree with the Wait node
and after that for initiating the hunger process to start counting down again with the BeginHunger node.

Figure 47 - Smart Animal A.I. Agents

As presented above, from left to right, the first agent being in the Hunger Sequence started eating, the
second agent is wandering by reaching the Wander Sequence and the third agent is drinking water through
the Thirst Sequence.

MSc Thesis Maria Traga

 57

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

10. Conclusion

In conclusion to the project, the most important aspect of this work was the implementation and visualization
of the Behaviour Tree architecture. Through this, it is made clear that one of the most efficient ways to
handle Artificial Intelligence in a game-like environment is by using the beforementioned architecture.
Consequently, by visualizing the A.I. with Behaviour Trees, developers can escape the implementation of
multiple if statements and clauses of the FSM architecture which can be reason for mistakes and difficult
to fix, errors, if mishandled, and instead focus on structuring correct trees seeing as, after their initial code
implementation, are much easier to use, maintain and scale. Another important aspect of this work is the
cooperation and interaction of multiple features that were needed in order for the project to have a complete
and working system. Such feat was not an easy task, but was made possible through the multiple features
that the Unity Engine had to offer.

Finally, the work presented above, can be further developed by implementing more needs of the animal
agents, as well as creating new Behaviour Trees for different agents such as possible enemies or friendly
characters. Thank you for taking the time to read my Master Thesis.

MSc Thesis Maria Traga

 58

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity.

11. Bibliography & References

1. AI for Game Developers, Glenn Seemann, David M Bourg, 2004

2. AI Game Development. New Riders Publishing, A. J. Champandard, 2004

3. AI Game Programming Wisdom. Charles River Media, Inc., S. Rabin, 2002.

4. AI Planning and Intelligent Agents, Marinagi, Panayiotopoulos & Spyropoulos, 2005.

5.
Artificial Intelligence A Modern Approach Second Edition Stuart J. Russell and Peter Norvig, 2003

6.

Behavior Trees in Robotics and AI: An Introduction, Michele Colledanchise, Petter Ögren, 2017-08-
31

7. Finite State Machines – Brilliant Math & Science Wiki. brilliant.org. Retrieved 2018-04-14.

8.

G.M.J.B. Chaslot; M.H.M. Winands; J.W.H.M. Uiterwijk; H.J. van den Herik; B. Bouzy (2008).
"Progressive Strategies for Monte-Carlo Tree Search"

9.

Game AI: The State of the Industry 2000-2001: It’s not Just Art, It’s Engineering., S. Woodcock,
2001

10. http://www.dogpsychologistoncall.com/hierarchy-of-dog-needs-tm/

11. https://docs.Unity.com

12. https://en.wikipedia.org/

13. https://gamedevbeginner.com/

14. https://poultryhealthtoday.com/maslows-pyramid-self-actualization-for-chickens/

15. https://shubibubi.itch.io/

16. https://towardsdatascience.com/designing-ai-agents-behaviors-with-behavior-trees-b28aa1c3cf8a

17. https://www.gamedeveloper.com/

18. https://www.geeksforgeeks.org/

19. https://www.investopedia.com

20. https://www.oreilly.com/library/view/ai-for-game/0596005555/ch01.html

21. Maslow, A. H., 1943. A theory of human motivation

22. Practical Game AI Programming, Micael DaGraca, 2017

23.

Riedl and Young, 2005. An objective character believability evaluation procedure for multi-agent
story generation systems

24. The Talk of the Town – It., Grant, Eugene F.; Lardner, Rex, 1952.

25. The World and Mind of Computation and Complexity, Greg Schaffter, 2012

26.

Unity Artificial Intelligence Programming: Add powerful, believable, and fun AI entities in your game
with the power of Unity, 5th Edition, Dr. Davide Aversa, 03-28-2022

27. Yannakakis, G. N. (2012, May). Game AI revisited

28. Zeltzer, 1992. Autonomy,Interaction,and Presece

http://www.dogpsychologistoncall.com/hierarchy-of-dog-needs-tm/
https://docs.unity3d.com/
https://en.wikipedia.org/
https://gamedevbeginner.com/
https://poultryhealthtoday.com/maslows-pyramid-self-actualization-for-chickens/
https://shubibubi.itch.io/
https://towardsdatascience.com/designing-ai-agents-behaviors-with-behavior-trees-b28aa1c3cf8a
https://www.gamedeveloper.com/
https://www.geeksforgeeks.org/
https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp
https://www.oreilly.com/library/view/ai-for-game/0596005555/ch01.html

MSc Thesis Maria Traga

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity. 1

Appendix A - A.I. Agent Behaviour Tree Visual Representation

Figure 48 - Animal Behaviour Tree

MSc Thesis Maria Traga

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity. 2

Appendix Β – Important Information

• All of the non-referenced material written in this work, derive either from the presentations of Dr
Panayiotopoulos or the author’s ideas.

• Most assets used in the project were created by the author using the Aseprite application.

• Credits for the soundtracks used in the project go to Dimitris Malliaris.

• The version of Unity used for the creation of the project was Unity Engine 2020.3.2f1.

MSc Thesis Maria Traga

Δημιουργία προσομοιωτή φάρμας αλληλεπίδρασης

παίκτη-ζώου χρησιμοποιώντας έξυπνους πράκτορες ΤΝ

που χρησιμοποιούν την αρχιτεκτονική του Δέντρου Συμπεριφοράς

στη μηχανή Unity. 3

Appendix C – Project Inspiration

Figure 49 - Stardew Valley Logo

Stardew Valley is a simulation role-playing video game developed by Eric "ConcernedApe" Barone. Players
take the role of a character who takes over their deceased grandfather's dilapidated farm in a place known
as Stardew Valley. The game was released for Microsoft Windows in February 2016 before being ported
to several other computer, console, and mobile platforms.

Stardew Valley is open-ended, allowing players to take on activities such as growing crops, raising
livestock, mining and foraging, selling produce, and socializing with the townspeople, including the ability
to marry and have children. It also allows up to three other players to play online together.

Barone developed Stardew Valley by himself over four years. He was heavily inspired by the Harvest
Moon series, with additions to address some of the shortcomings of those games. He used it as an exercise
to improve his own programming and game design skills. British studio Chucklefish approached Barone
midway through development with the offer to publish the game, allowing him to focus more on completing
it.

