MSc Thesis

Maria Traga

UNIVERISTY OF PIRAEUS - DEPARTMENT OF INFORMATICS
MANENIZTHMIO MEIPAIQZ — TMHMA NAHPO®OPIKHX

MSc «Informatics»

MMZ «TAnpo@opIKi»

MSc Thesis
MeTatrTuxiakn AlaTpi3n

Thesis Title:
TitTAog AlaTpIBAG:

Creating a player-animal interaction farm simulator
using smart Animal Al Agents that utilize the
Behaviour Tree architecture in Unity.

Anpioupyia TpocopolwTh @Aapuasg aAAnAetidpaong TTaikTn-Jwou
XPNOIMOTTOIWVTAG £EUTTVOUG TTPAKTOPESG TN TTOU XPNOINOTTOIoUV
TNV APXITEKTOVIKH) TOU AévTpou SupTrepipopdg otn pnxavn Unity.

Student’s name-surname:

Maria Traga

Ap1Bu6g Mntpwou:

OvouaTeTWwVUPO QOITNTH: Mapia Tpaya
Father’s name: Nikolaos
Matpwvuyo: NikéAaog
Student’s ID No: MIMA19058

Supervisor:

EmBAéTTWYVY:

Themistoklis Panagiotopoulos, Professor

O¢epioTokANG MavayiwTtdtroulog, KaBnyntrig

July 2022 / loUAiog 2022

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG

aTtn unxavn Unity.

MSc Thesis Maria Traga

3-Member Examination Committee
TpiyeAng E¢etaoTikr EmiTpotm)

Themistoklis Dionisios Sotiropoulos loannis Tasoulas
Panagiotopoulos Assistant Professor Assistant Professor
Professor AlovUo10¢ 2wTnPOTTOUAOG lwavvng TacoUAag
OepIoTOKANG MNMavayiwToTToUAOG Emikoupog KaBnyntig Emikoupog KabnynTrg
Kabnyntrg

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

1. Acknowledgments/ EuxapioTieg

Oa BeAa va dwow £va PeYAAO EUXAPIOTW OTOUG YOVEIG JOU TToU e aThpIav ae KABe HEpog TNG (WG Jou
Kal you £dwaav 6An Tn Bondeia TTou Xpelalduouy yia va TTpayuaToTToINCowW Ta Ovelpd pou. ETriong, Ba nbeAa
Va EUXOPIOTACW ToV Ap. OepIoTOKAN MavayiwTOTTOUAO yia TN CNPAVTIKA Kal XPrCIKN UTTOOTAPIEN TTOU Jou
TTapeiXe Kal ge kaBodrynoe kad' 6An Tn dIGPKEIQ TWV AKAdNMAITKWY Pou oTroudwyv. TEAog, Ba rBeAa va
EUXaPIOTACOW Bepud Tov AnuARTPn MaAAIopn yia Tn BorBeId Tou Kal TRV UTTOCTAPIEA TOU o€ auTr] TN dIaTPIRN
Kal yia Tnv evBappuvon Tou aTn dnuioupyia autoU Tou £pyou.

| would like to give a big thank you to my parents for supporting me in every part of my life and giving
me all the help | needed to achieve my dreams. Furthermore, | would like to thank Dr. Themistoklis
Panagiotopoulos for providing me with important and helpful support and for guiding me throughout my
academic studies. Finally, | would like to give a heartfelt thank you to Dimitris Malliaris for his assistance
and support on this thesis and for giving me hope and encouragement in creating this project.

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

2. Abstract

The master thesis project, implements smart A.l. animal agents by using the Behaviour Tree architecture.
This implementation is handled by the Unity Engine in a game-like environment, where the user can interact
with various parts of the game scene. Such interactions include the ability to plant crops which grow with
the passage of time, the use of various tools on objects as well as the interaction with non-playable
characters which are either the smart animal agents or stationary objects like the shop. Furthermore, the
project features the passage of time from day to night and vice versa as well as an inventory system and a
shop where items can be sold. Finally, the smart A.l. agents have specific needs that they need to satisfy
as is defined by the structure of the Behaviour Tree. Specifically, their basic needs have been implemented,
which are thirst, hunger, tiredness, affection towards the user and overall happiness which is expressed
when the player character is nearby.

Keywords: Atrtificial Intelligence, Smart Animal Agents, Behaviour Tree Architecture, Unity engine

2. NMepiAnyn

H akéAoubn petatmtuyiakn diatpiBn, uAoTroliei £Eutva {wa Pe TEXVNTA vonuooUvn XPNOCIKMOTIoIWVTAG TNV
QPXITEKTOVIKI] TOU A€VTpou ZUMTTEPIQPOPAGS. AuTh n ulotroinon éyive péow TnG pnxavAg Unity oe éva
TEPIBAAAOV TTOU TTPOCOUOIAlel TTaIXVidI, 6TTOU 0 XPAOTNG UTTOPEl va aAANAeTIOpaael Pe did@opa Pépn Tou
K6aopou. Tétoleg aAAnAemdpdoeic mepIAauBdvouv TNV IKAvOTNTa Vva QUTEUOVTAl KOAAIEPYEIEG TTOU
avaTtrTicoovTal e TO TTEPACHA TOU XPOVOU, TN Xprion d1a@opwy EPYOAEiWY 0€ OPICUEVA AVTIKEIUEVA KABWG
Kal TNV GAANAETTIOPOON YE XOPOKTAPES TTOU Eival €iTe 01 €EUTTVOI TIPAKTOPEG €iTE aKivNTa AVTIKEIMEVA OTTWG
TO0 KatdoTnua. EmmAéov, 10 £pyo TrepIAauBdvel To TTEPAOUA Tou XpOvou atd Tn PEPQ OTn vUXTA Kal
avTioTpo@a KaBWG Kal éva oUOTNPa OTTOPAKEUONG QVTIKEIMEVWY OAAG Kal éva KATaoTnua yia
ayopammwAnaoieg autwv. TEAOG, o1 £EUTTVOI TTPAKTOPEG E€XOUV OUYKEKPIMEVEG QVAYKEG TTOU TTPETTEI va
IKAVOTTOIROOUV OTTWG opideTal atrd TN dopr Tou AEVTpoU ZUPTTEPIPOPAS. ZUYKEKPIPEVA, £XOUV UAOTTOINOEI
ol Baoikég Toug avdykeg TTou gival n diwa, n Teiva, n Kkoupaacn, N OTopyr) TTPOG TOV XPHOTN KAl N OUVOAIKA
TOUG guTUXia.

Aégeig-kAa1dia: Texvntr) Nonuoaouvn, ‘E¢utrva Zwa MpdkTopeg, APXITEKTOVIKH TOU AEVTPOU ZUPTTEPIPOPAG,
Mnxavr] Unity

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis

Table of Contents

3.

1 Acknowledgments/ EuxapioTieg
2. Abstract

2. MepiAnyn

3 Table of Contents

4 List of Figures

5 List of Abbreviations

6

Introduction
7. Artificial Intelligence
7.1. Intelligent Agents & Artificial Intelligence
7.2. Al in video games
7.3. Animal Behaviour
7.4. Animal needs
7.5. Unity Engine
8. Project Application
8.1. Game Features
8.1.1. Al Animal Agents
8.1.2. Crop System
8.1.3. Inventory System
8.14. Day and Night System
8.2. Project Setup
8.2.1. Game Manager Scripts
8.2.2. Player Scripts
8.3. Behaviour Tree Implementation
8.3.1. A.l. Agent Scripts
8.3.2. Behaviour Tree Scripts
8.3.3. Composite Node Scripts
8.3.4. Decorator Node Scripts
8.3.5. Action Node Scripts
9. Applying the Behaviour Tree

10. Conclusion

11. Bibliography & References

Appendix A - A.l. Agent Behaviour Tree Visual Representation
Appendix B — Important Information

Appendix C — Project Inspiration

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

Maria Traga

© © © 0o o 01~ MW

g o101 01 o0 B B DD W WWWDNDNDNDNDNMNDNDNEREERLPRE
N FP P OONOTWEFEONWWODNMNDMNMOOWRAEEPAEPMADNOOWO©E

MSc Thesis Maria Traga

4. List of Figures

Figure 1 - Simple reflex agent diagramcooiiiiiiiiiii e e s aanreeas 9
Figure 2 - Simple refleX Ag@NT.... ... et s b e e s e e 10
Figure 3 - Model-based refleX ageNnt..... ... e e e 10
Figure 4 - Model-based, goal-based agentcooiiiiii i 11
Figure 5 - Finite State MaChiNESuuiiiiiii i e e e s s e e e e e e s s e e e e e e e e s s nnnneees 12
Figure 6 - Monte Carlo SEarcCh Tree (MCST) ...ttt 13
Figure 7 - Behavioral DECIiSiON TrE@S (BT)....uuuiuriieiiiiiie ittt seitee ettt e s e e e e e 15
Figure 8 - Goal Oriented Action Planning (GOAP).......cccieiiiiee et r e a e e 17
Figure 9 - Neural Networks / Machine Learning (NN/ML)coccuiiiiiiieiiee e 17
Figure 10 - Maslow's MOtivation MOGEI.............uuuiuiuiiiiiiiiiiiiiieebe e rarererererererernrnrarnnns 19
Figure 11 - Hierarchy Of DOQG NEEUScoiiiiiiieiiiie ettt eebe e e 20
Figure 12 - Hierarchy of ChiCKEN NEEUSuuuuiuiiiiiiiiiiiiiiiiiiiiieieiaierereeeiereraraeererareeererererersrernrsrererernrarnnes 20
Figure 13. UNity ENQINE LOQO. ..uuuuiiiiiiiiiiiiiiiiiuiuiuietetetetereienererererererererererererererarererarerererersrersrernrnnnrnrnrnrnnnnns 22
FIgUIre 16 — UNItY LiT@ CYCIO .ottt e b e e s e e e 23
L o LU= R T O o] o IS A= (=0 0 1S 10 o 25
Figure 19 - Crop SYSTemM PIANTING ...oocuieiiiiiiiiieiee e eeb e e 25
Lo LU= O @ o &] o] = o S 26
Figure 21 - Crop ContaiNEr ODJECTuuiiiiiiiiiie ittt e e e e e e neee 27
FIQUIE 22 - IEEIM ODJECT ..eiiiiiiiiie ettt e b e s s bt e e e bt e e e eebe e e e e nees 28
Figure 23 - Inventory System Player INVENTOIYuuuuiuiiiiiiieiiieieieieinrerernrnrnrerererneren——————————————. 29
Figure 24 - Inventory System Chest CONTAINETcoouiiiiiiiiii et 29
L o LU LI AT [VA= T oL (0] Y @ o =T o3 S 30
Figure 26 - Day and NIight SYSTEIM ...ooueiiiiiiiie e bbb e e e e e e e 31
Figure 27 - Game Manager GamEODJECToii ittt 32
Figure 28 - Game Manager SiNGIEtON SCIIPTuuuuiuiiiiiiiiiiiiiiiiiiieirrr ... 33
Figure 29 - Day Night CYCIE SCIIPT .ot s e e e 34
Figure 30 - Item Drag Drop CONtroller SCIiPtuuuuiuieiiiiiiiiiiieieiuieieieieierereiararerereerre .. 35
Figure 31 - Game Scene ManAgEr SCIIPTuuiiiiiiiie ittt sebe e e 36
Figure 32 - Crops CONtIrOIEr SCIIPT ...uu ittt e e e eererererarsrsrersrnrsrnrnrsrnrnrnnnnns 37
Figure 33 - Player GamEODJECTuuuuuiiiiiiiiiiiiiiiitiiiiietereieierar e ee e e resseeresaeeesesssssreesrssnssrssssnnnssrnsnsnrnnns 39
Figure 34 - Character CoNntroller 2D SCIIPTiiuiii i 40
Figure 35 - Tools Character CoONtroller SCIPLuuuuuuiuiiiiiiiiiiiiiiiiiei . 41
Figure 36 - ShOP CONTIOIEr SCRIPT «ooiieiiiiiii ettt s s e e e e e e e neee 42
Figure 37 - A.l. AQENt GAMEODJECTuuiiiiiieii et e et e e e e e e e e e e e e e e e aneaeees 44
Figure 38 - ANimMal CONTIOIEr SCIIPL .uveiiiiiiiie et e e e e e e neee 45
FIgure 39 - ANTMAI Al SCIIPT .eiiiiiiiiii ettt e st e e s e et e s e nnb e e e e enbbeeeeneee 46
Figure 40 - Behaviour Tree ODjJECT SCIIPT ..ottt e e e e e e neeaeees a7
Figure 41 - Composite NOde Base ClasS SCIIPL....uciuiiiiiiiiie ittt 48

6

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Figure 42 - SEqUENCE NOUE SCIIPT...c ittt ettt e e s ab e e e s e e e e e e enbreeeeanees 49
Figure 43 - SEleCtor NOUE SCIIPL coiiiiiiiiiiie e e e e e e e e s e e e e e e e s s ann e e e e e aeeesannnrenes 50
Figure 44 - Decorator NOde Base ClasSS SCIIPTcuiiiiiieiiiiieiiiie ettt 51
o [O =R AR [V=T o =T gl A\ o Yo L= o o | o SRR 52
Figure 46 - Repeater NOGE SCIIPT ..oiiiiiiieiiiiii ettt e s ab e s e e e e aabne e e e nneee 53
Figure 47 - Action NOde Base ClasS SCIIPL ...ccuurriieieeeiiiiiiiieeee e e s ssite e e s e e e s s e e e e e e s s snnnraeeeeaee e s s nnnnenes 53
Figure 48 - Navigation NOGE SCIIPT ..uuuiiiiiieiiiiiiiiie e s e et r e e e e s s s e e e e e e s s st e e e e e e e e s s annraeeeeeeessnsnsnnenes 54
Figure 49 - Behaviour Tree HUNGEr SEOUENCEccciuiiiieiiiiie ettt e s e e 55
Figure 50 - Smart ANiMal ALl AQENTS .ot e e e e e e s s e e e e e e s s arara e e e e eeeeeannrnreees 56
Figure 51 - ANIMal BENAVIOUF TIEEuiiiiiiiiie ettt ettt ettt e s b e e e s nnn e e e s annreeas 1
Figure 52 - StardeW VallEY LOQO .. .uuuuuiuiuiiiiiiiiiiiiiiiuiuieieinietererererareeererererersrerererererererererararerarnrnrernrnrnrnrnrnnnnns 2

7

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis

5. List of Abbreviations
2D

3D

Al

API

BT
CPU
FSM
GOAP
HDRP
MCTS
ML

NN
NPC
STRIPS
ul

URP

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

Maria Traga

Two-dimensional
Three-dimensional

Artificial intelligence

Application programming interface
Behaviour tree

Central processing unit

Finite state machine

Goal oriented action planning
High Definition Render Pipeline
Monte Carlo tree search

Machine learning

Neural network

Non-player character

Stanford Research Institute Problem Solver
User interface

Universal Render Pipeline

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG

oTtn pnxavnA Unity.

MSc Thesis Maria Traga

6. Introduction

In the following sections, the most important aspects of the project will be explained. Most importantly,
Artificial Intelligence and its multiple versions and implementations as well as the Maslow’s Hierarchy of
Needs theorem, in order to explain the behaviour implemented on the smart animal agents.

7. Artificial Intelligence
7.1. Intelligent Agents & Artificial Intelligence

In artificial intelligence, an intelligent agent (I.A.) is anything which perceives its environment, takes actions
autonomously in order to achieve goals, and may improve its performance with learning or may use
knowledge. They may be simple or complex — a thermostat is considered an example of an intelligent
agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome
(Russell & Norvig, 2003). Intelligent agents is an area of interest that attracts researchers from different
Artificial Intelligence fields, such as distributed artificial intelligence, Al Planning and robotics, as well as
classical computer science fields, such as information systems, databases, and human-computer
interaction. The adjective “intelligent” is used to denote the involvement of Al research in agent technology.
Al has been considered as the main contributor to the field of intelligent agents (Marinagi, Panayiotopoulos
& Spyropoulos, 2005).

Leading Al textbooks define "artificial intelligence™ as the "study and design of intelligent agents”,
a definition that considers goal-directed behavior to be the essence of intelligence. These agents are, as
mentioned before, computational entities that perceive environmental conditions, act to affect conditions
and reason about conditions and actions (Marinagi, Panayiotopoulos & Spyropoulos, 2005).

f’ A)

percepts

AGENT Sensors -

What is the
warld like now

ENVIRONMMENT
Condition-action Action to
{ifthen) rules be done
actions
Actuators ol
by J o/

Figure 1 - Simple reflex agent diagram

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis

Maria Traga

The reactive agent architecture was introduced in order to allow robust performance in dynamic
environments, where the deliberative agents fail to perform. We divide reactive agent architectures into
three subcategories that signify the different underlying ideas on which they are based. These are: pure
reactive agents, simple reactive planning agents, and sophisticated reactive planning agents. Pure reactive
agents act without planning and do not include a symbolic model of the world. The reactive planning
approach adds an Al point of view to agents. They include a symbolic model of the world and apply reactive
reasoning to choose between alternative plans at run-time. Such reactive planners are considered as
simple, while sophisticated reactive planners include more complicated constructs in order to handle
execution failures or environmental changes (Marinagi, Panayiotopoulos & Spyropoulos, 2005).

According to Russell & Norvig (2003), agents can be classified based on their degree of perceived
intelligence and capability as follows:

e Simple reflex agents

o Model-based reflex agents
e Goal-based agents

e Utility-based agents

e Learning agents

-~

L.

Agent

Precepts

SENS0rS ——

‘What the world

Figure 2 - Simple reflex agent

#

-
s i rvowe g
=
4
3
&
[Condition-action rniles] ——— What action | -

-_—_— should do now

* Actions
Actuators
.
— — — — -‘
al B .
PECEQIS
| ir-'rm:ra R —
[state] _L_-

[Iln the world svo .-r~-' - What the world m
__— i |ilkoe: Ao 3
| What my actions do |__-. - ='
—_— =
E
&

What action |
shauld do now

+

[Condition-action riles] m—

Actiong

Actuators

| Agent

Figure 3 - Model-based reflex agent

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG

oTtn pnxavnA Unity.

10

MSc Thesis Maria Traga

- —_— = — ™ r 3
i 1 Precepts
- . | SENSOrs —
State __L_-
. 1
[How the world svohves | ‘What the world
[5| |Whatthe o
s a |k now =
|_'-'~'|'-d'. iy actions do | - —
- I 2
3
i ARt it will be like IF]
| g action & ~
I- Eoal | What action |
= shauld do now
Actions
Actuators —
Agent
L g » L &

Figure 4 - Model-based, goal-based agent

Artificial intelligence is based on the principle that human intelligence can be defined in a way that
a machine can easily mimic it and execute tasks, from the most simple to those that are even more complex.
The goals of artificial intelligence include mimicking human cognitive activity. Researchers and developers
in the field are making surprisingly rapid strides in mimicking activities such as learning, reasoning, and
perception, to the extent that these can be concretely defined. Some believe that innovators may soon be
able to develop systems that exceed the capacity of humans to learn or reason out any subject. But others
remain skeptical because all cognitive activity is laced with value judgments that are subject to human
experience.

As technology advances, previous benchmarks that defined artificial intelligence become outdated.
For example, machines that calculate basic functions or recognize text through optical character recognition
are no longer considered to embody artificial intelligence, since this function is now taken for granted as an
inherent computer function.

Al is continuously evolving to benefit many different industries. Machines are wired using a cross-
disciplinary approach based on mathematics, computer science, linguistics, psychology, and more.

7.2. Al in video games

Al in gaming refers to responsive and adaptive video game experiences. These Al-powered interactive
experiences are usually generated via non-player characters, or NPCs, that act intelligently or creatively,
as if controlled by a human game-player. Al is the engine that determines an NPC’s behavior in the game
world.

While Al in some form has long appeared in video games, it is considered a booming new frontier
in how games are both developed and played. Al games increasingly shift the control of the game
experience toward the player, whose behavior helps produce the game experience.

11
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Artificial intelligence has been an integral part of video games since their inception in the 1950s. Al
in video games is a distinct subfield and differs from academic Al. It serves to improve the game-player
experience rather than machine learning or decision making. (Grant, Eugene F.; Lardner, Rex, 1952).

While the vast majority of Al academics (including the author) would claim that games are fully
scripted and still use 30-year old Al technology — such as A* and finite state machines — the game industry
had been making small, yet important, steps towards integrating nouvelle (or modern) Al (A.J.
Champandard, 2004) in their games (S. Woodcock, 2001) during the early days of game Al. A non-inclusive
list of games that advanced the game Al state-of-practice in industry (S.Rabin, 2002) includes the advanced
sensory system of guards in Thief (EIDOS, 1989); the advanced opponent tactics in Half-Life (Valve, 1998);
the fusion of machine learning techniques such as perceptrons, decision trees and reinforcement learning
coupled with the belief-desire intention cognitive model in Black and White (EA, 2000); the dynamic difficulty
adjustment (DDA) features in the Halo series (MS Game Studios); the imitation learning Drivatar system of
Forza Motorsport (MS Game Studios, 2005); the Al director of Left 4 Dead (Valve, 2008) 2 and the
neuroevolutionary training of platoons in Supreme Commander 2 (Square Enix, 2010). (Georgios N.
Yannakakis, 2012, Game Al revisited). All in all, the most common Al architectures used in video games
are:

¢ Finite State Machines (FSM)

Finite State Machine

Need more health points

=
' Find aid \f Evade

Player
attacks

Sufficient

health points Slayeric’s

Wander

S

Player is out of sight

Figure 5 - Finite State Machines

A finite state machine is an abstract machine that can exist in one of several different and
predefined states. A finite state machine also can define a set of conditions that determine when the state
should change. The actual state determines how the state machine behaves. Only a single state can be

12
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

active at the same time, so the machine must transition from one state to another in order to perform
different actions.

Finite state machines date back to the earliest days of computer game programming. For example,
the ghosts in Pac Man are finite state machines. They can roam freely, chase the player, or evade the
player. In each state they behave differently, and their transitions are determined by the player’s actions.
For example, if the player eats a power pill, the ghosts’ state might change from chasing to evading. We'll
come back to this example in the next section.

Although finite state machines have been around for a long time, they are still quite common and
useful in modern games. The fact that they are relatively easy to understand, implement, and debug
contributes to their frequent use in game development. In this chapter, we discuss the fundamentals of
finite state machines and show you how to implement them.

e Monte Carlo Search Tree (MCST)

Monte Carlo Search Tree Algorithm

Initial Identify possible Identify subsequent Calculate payback for
state actions outcomes each action

it

Defend Build Attack
Technology XY Z

Identify best action Take action Identify possible actions
from new state

Player) 6&
rei .*m.afj

—

Figure 6 - Monte Carlo Search Tree (MCST)

In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some
kinds of decision processes, most notably those employed in software that plays board games. In that
context MCTS is used to solve the game tree.

The focus of MCTS is on the analysis of the most promising moves, expanding the search tree
based on random sampling of the search space. The application of Monte Carlo tree search in games is
based on many playouts, also called roll-outs. In each playout, the game is played out to the very end by
selecting moves at random. The final game result of each playout is then used to weight the nodes in the
game tree so that better nodes are more likely to be chosen in future playouts.

13
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

The most basic way to use playouts is to apply the same number of playouts after each legal move
of the current player, then choose the move which led to the most victories. The efficiency of this method—
called Pure Monte Carlo Game Search—often increases with time as more playouts are assigned to the
moves that have frequently resulted in the current player's victory according to previous playouts. Each
round of Monte Carlo tree search consists of four steps:

Selection: Start from root R and select successive child nodes until a leaf node L is reached. The
root is the current game state and a leaf is any node that has a potential child from which no simulation
(playout) has yet been initiated. The section below says more about a way of biasing choice of child nodes
that lets the game tree expand towards the most promising moves, which is the essence of Monte Carlo
tree search.

Expansion: Unless L ends the game decisively (e.g. win/loss/draw) for either player, create one (or
more) child nodes and choose node C from one of them. Child nodes are any valid moves from the game
position defined by L.

Simulation: Complete one random playout from node C. This step is sometimes also called playout
or rollout. A playout may be as simple as choosing uniform random moves until the game is decided (for
example in chess, the game is won, lost, or drawn).

Backpropagation: Use the result of the playout to update information in the nodes on the path from
CtoR.

MCTS is a simple algorithm to implement. Moreover, Monte Carlo Tree Search is a heuristic
algorithm and can operate effectively without any knowledge in the particular domain, apart from the rules
and end conditions, and can find its own moves and learn from them by playing random playouts.

However, as the tree growth becomes rapid after a few iterations, it requires a huge amount of
memory. Also, there is a bit of a reliability issue with Monte Carlo Tree Search. In certain scenarios, there
might be a single branch or path, that might lead to loss against the opposition when implemented for those
turn-based games. This is mainly due to the vast number of combinations and each of the nodes might not
be visited enough number of times to understand its result or outcome in the long run. Finally, MCTS
algorithm needs a huge number of iterations to be able to effectively decide the most efficient path, thus,
there exists a speed issue.

14
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

e Behavioral Decision Trees (BT)

Sequence

— ¥ N

Wallk to Door Selector Walk through Door Close Door

v

Open Door Sequence Smash Door

AN

Unlock Door Qpen Door

Figure 7 - Behavioral Decision Trees (BT)

A behavior tree is a mathematical model of plan execution used in computer science, robotics,
control systems and video games. They describe switchings between a finite set of tasks in a modular
fashion. Their strength comes from their ability to create very complex tasks composed of simple tasks,
without worrying how the simple tasks are implemented. Behavior trees present some similarities to
hierarchical state machines with the key difference that the main building block of a behavior is a task rather
than a state. Its ease of human understanding make behavior trees less error prone and very popular in
the game developer community. Behavior trees have been shown to generalize several other control
architectures.

Behavior trees originate from the computer game industry as a powerful tool to model the behavior
of non-player characters (NPCs). They have been extensively used in high-profile video games such as
Halo, Bioshock, and Spore

Unlike a Finite State Machine, or other systems used for Al programming, a behaviour tree is a tree
of hierarchical nodes that control the flow of decision making of an Al entity. At the extents of the tree, the
leaves, are the actual commands that control the Al entity, and forming the branches are various types of
utility nodes that control the Al's walk down the trees to reach the sequences of commands best suited to
the situation.

The trees can be extremely deep, with nodes calling sub-trees which perform particular functions,
allowing for the developer to create libraries of behaviours that can be chained together to provide very
convincing Al behaviour. Development is highly iterable, where one can start by forming a basic behaviour,
then create new branches to deal with alternate methods of achieving goals, with branches ordered by their
desirability, allowing for the Al to have fallback tactics should a particular behaviour fail.

A behaviour tree is made up of several types of nodes, however some core functionality is common
to any type of node in a behaviour tree. This is that they can return one of three statuses, which are Success,
Failure or Running.

15
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

The first two, as their names suggest, inform their parent that their operation was a success or a
failure. The third means that success or failure is not yet determined, and the node is still running. The node
will be ticked again next time the tree is ticked, at which point it will again have the opportunity to succeed,
fail or continue running. There are three main archetypes of a behaviour tree node: Composite, Decorator,
Leaf/Action.

Composite

A composite node is a node that can have one or more children. They will process one or more of
these children in either a first to last sequence or random order depending on the particular composite node
in question, and at some stage will consider their processing complete and pass either success or failure
to their parent, often determined by the success or failure of the child nodes. During the time they are
processing children, they will continue to return Running to the parent.

Decorator

A decorator node, like a composite node, can have a child node. Unlike a composite node, they
can specifically only have a single child. Their function is either to transform the result they receive from
their child node's status, to terminate the child, or repeat processing of the child, depending on the type of
decorator node.

Leaf/Action

These are the lowest level node type, and are incapable of having any children. Leafs are however
the most powerful of node types, as these will be defined and implemented by the game to do the game
specific or character specific tests or actions required to make the tree do useful stuff.

16
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

e Goal Oriented Action Planning (GOAP)

Figure 8 - Goal Oriented Action Planning (GOAP)

Goal oriented action planning is an artificial intelligence system for agents that allows them to plan
a sequence of actions to satisfy a particular goal. The particular sequence of actions depends not only on
the goal but also on the current state of the world and the agent. This means that if the same goal is supplied
for different agents or world states, you can get a completely different sequence of actions., which makes
the Al more dynamic and realistic.

GOAP refers to a simplified STRIPS-like planning architecture specifically designed for real-time
control of autonomous character behavior in games. The specified Al helps decouple the actions from each
other, and allows for focusing on each action individually.

e Neural Networks / Machine Learning (NN/ML)

Inputs Hidden Layer(s) Outputs

e -

Figure 9 - Neural Networks / Machine Learning (NN/ML)
17
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis Maria Traga

Machine learning is a subset of artificial intelligence that focuses on using algorithms and statistical
models to make machines act without specific programming. This is in sharp contrast to traditional methods
of artificial intelligence such as search trees and expert systems.

Information on machine learning techniques in the field of games is mostly known to public through
research projects as most gaming companies choose not to publish specific information about their
intellectual property. The most publicly known application of machine learning in games is likely the use of
deep learning agents that compete with professional human players in complex strategy games. There has
been a significant application of machine learning on games such as Atari/ALE, Doom, Minecraft, StarCraft,
and car racing. Other games that did not originally exists as video games, such as chess and Go have also
been affected by the machine learning.

7.3. Animal Behaviour

An essential element in intelligent virtual agents is the concept of believability, a notion that refers to creating
the illusion of interaction with living characters, as mentioned in (Riedl and Young, 2005). This sense of
believability is in turn of major importance in order to enhance the sense of immersion and presence,
elements that according to Zeltzer (1992), are among the sine qua non for an engaging virtual reality
experience.

In this project, in order to give ‘life’ to the animal NPCs the Behavioural Decision Tree architecture
was used. The implementation of the produced Behaviour Tree objects was done via the Unity Engine and
the C# programming language. Before proceeding to the actual implementation of these said Trees, first
the Al agents’ motivations must be understood. This is of great importance and is vital in order to simulate
a believable animal-behaving agent.

7.4. Animal needs

All living organisms have a plethora of needs in order to live a healthy life. Basic needs such as air, water,
food and protection from environmental dangers are necessary for an organism to live. Needs are
distinguished from wants. In the case of a need, a deficiency causes a clear adverse outcome: a dysfunction
or death. In other words, a need is something required for a safe, stable and healthy life (e.g. air, water,
food, land, shelter) while a want is a desire, wish or aspiration.

Maslow's hierarchy of needs is an idea in psychology proposed by American Abraham Maslow in
his 1943 paper "A Theory of Human Motivation" in the journal Psychological Review (Maslow, A.H. 1943).

18
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

MASLOW'S MOTIVATION MODEL

Growth Needs

Esteom Neods

Belonging and Love Needs

Satoty Neods

Deficiency Needs ¢

<+

Physiological Needs

Figure 10 - Maslow's Motivation Model

Maslow’s hierarchy consists of:

Physiological

Safety

Love/Belonging

Esteem and

Self-actualization needs.

Although this hierarchy’s main goal is to describe what drives the human species, it can also be

applied to a certain extent to other animals. Below, follows an implementation of the above hierarchy
modified to meet dogs’ needs and how it affects their training and relationship with their human companion.

19
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis

Hierarchy of Dog Needs®

Standards of Care and Best Force-free Practices

Force-free Training: Choose any or all methods

+ Management
To Increase, Redirect or Decrease Behavior: Rearrange environment. Remove or

NEEDg

Antecedent Modification
To Increase, Decrease or Redirect Behavior: Change events (triggers) that happen

befors the behavior
Fo,
+ Positive Reinforcement T::CEF REE
To Increase Behavior: Reward desired behavior. ¢.g., capture, lure, shape, madel A’NWG

NEEDS

Differential Reinforcement
To Redirect, Decrease or Increase Behavior: Reward for preferred
Incompatible, altarnate, other, or change in the rate of behavior

Classical and Counter-Conditioning S
To Changs i : Create OC;AL NEEDS
* Desensitization

To Decrease Emotional Response: Develop a systematic
graduated expasure therapy plan

Premack Principle
To Increass, Decrease or Redirect Bohavior;

Use a high probabifity (preferred) behavior to EMOT'ONAL NEEDS

relnforce & low probability behavior

Social Learning/
Observational

To Increase, Decrease or Redirect
Behavior: Use s dog of human
mode! a5 sample behavior.
&.g., imitation, emulation,
contagion

Figure 11 - Hierarchy of Dog Needs

W
distance triggers. e.g., baby gates, dog-riendly fencing, puppy-proofing COGNfTe promen
SO

Do
wanagemert

Maria Traga

There is never a justification to use pain, fear,
dominance devices or training methods with

our dogs.

o Harm’

an
Learning

ponding
ith people a0
W ola

Securtty
Love
Trust
Consisten
Benev olent

0!
\n(i(f:@““e Groomin

dDogs

~ Linda Michaels,
M.A. Psychology

Dogs, like us, need to feel safe, at peace
and loved. They depend on us to fill these
9 needs and we are obligated to do so.

~ Dr: Marc Bekoff,
PhD - Animal Behavior

Dogs must be happy in order
to learn, pay attention and
problem solve.

~ Dr. Simon Gadbois,
PhD - Animal Behavior

dership

A A e
(Shelter S2t€ Gentle yeterinary €2

The above hierarchy was designed by Linda Michaels, M.A., Psychology and it can be understood
that it is not that different from that of a human’s. Moreover, another implementation that concerns farm
animals can be seen in the next figure.

A

Maslow’s
Chicken Pyramid

Love/belonging

Figure 12 - Hierarchy of Chicken Needs

Eatm Anienal Welfare Committee (UK)

1 Freedom fiom bunger and Sarmt

2 Froodem Gom Sscomfort

3. Freedom from pai gy, or dsease
4 Treedom % express normal behaver
§ Freodem fom fex xad datens
sclapred by ASPCA

In conclusion a general simplified figure of farm animal’s hierarchy of needs could be the figure

below which is the one that is going to be used in this project.

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

20

MSc Thesis

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

Maria Traga

21

MSc Thesis Maria Traga

7.5. Unity Engine

Unity is a cross-platform game engine developed by Unity Technologies, first announced and released in
June 2005 at Apple Worldwide Developers Conference as a Mac OS X game engine. The engine has since
been gradually extended to support a variety of desktop, mobile, console and virtual reality platforms. It is
particularly popular for iOS and Android mobile game development and is considered easy to use for
beginner developers and is popular for indie game development.

1! Unity

The engine can be used to create three-dimensional (3D) and two-dimensional (2D) games, as
well as interactive simulations and other experiences. The engine has been adopted by industries outside
video gaming, such as film, automotive, architecture, engineering, construction, and the United States
Armed Forces.

Figure 13. Unity Engine Logo.

Unity gives users the ability to create games and experiences in both 2D and 3D, and the engine
offers a primary scripting APl in C# using Mono, for both the Unity editor in the form of plugins, and games
themselves, as well as drag and drop functionality. Prior to C# being the primary programming language
used for the engine, it previously supported Boo, which was removed with the release of Unity 5, and a
Boo-based implementation of JavaScript called UnityScript, which was deprecated in August 2017, after
the release of Unity 2017.1, in favor of C#.

Within 2D games, Unity allows importation of sprites and an advanced 2D world renderer. For 3D
games, Unity allows specification of texture compression, mipmaps, and resolution settings for each
platform that the game engine supports, and provides support for bump mapping, reflection mapping,
parallax mapping, screen space ambient occlusion (SSAQO), dynamic shadows using shadow maps, render-
to-texture and full-screen post-processing effects.

Two separate render pipelines are available, High Definition Render Pipeline (HDRP) and Universal
Render Pipeline (URP), in addition to the legacy built-in pipeline. All three render pipelines are incompatible
with each other. Unity offers a tool to upgrade shaders using the legacy renderer to URP or HDRP.

Running a Unity script executes a number of event functions in a predetermined order. The diagram
below summarizes how Unity orders and repeats event functions over a script’s lifetime.

22
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis

Legend

User callback)]

Resetis caled when the scriptis attached and not in playmode.

Start is only ever called once for a given script [

The physics cycle may happen more than once per frame if
the fixed time step s less than the actual frame update time.

Internal animation update
b

L

e Te—
Internal physics update

Internal animation update.

f a coroutine has yielded previously but s now due to
resuma then execution takes place during this part of the
update.

Internal animation update

.

(" StteMacinsBehaviour calbacks)
¢ S

—_—
C Awake (———
-

C

OnEnsbla)

s 5
C Stant D)

———4—
 ——

v
C FixedUpdate)

OnStateMachineEntar/Exit)

Fire animation events)

OnnimatorMove:)

OnAnimatorlK.

(" OnTriggentx)

OnCallsiont) -~

(yield WaitForFixedUpdate)

(OnMouseXXX)

C)

C Update D)
C yiold b)

yield WaitForSsconds)
¢ yield WWW)

(_yield StartCoroutine)

OnStateMachineEntar/Exit

(Fire animation events
StateMachineBehaviour callbacks
L

OnAnimatorMove

(LacUpdate)
(onPrecul D}
(___OnWiRenderobject)

L OmWiRenderObjed)
OnBecameVisible)

OnBecamelnvisble)

o is only called

OnGUI s called muliple time per frame update.

OnApplicationPause is called after the rame whers the.
ih before. Iy p

(" OnPreRender)
OnRenderObiect)
(OnPosmender)
T OrRendeimage)
C onvmi\ mage)
(o i)
p
C OnGUI

((yield WaitForEndOfFrame)

pause occurs but issues.

e , 3
C J

-

v
(— onapplicationQuit

OnDisable is called only when disabled during
the fra

me. OnEnable will ba called it is enabled again. (_

Figure 14 — Unity Life Cycle

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

OnDisable

C OnDestroy b

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG

aTtn pnxavn Unity.

Initialization

Editor
Initialization

Physics

Input events

Game logic

Scene rendering

Gizmo rendering

GUI rendering

End of frame
Pausing

Decommissioning

Maria Traga

23

MSc Thesis Maria Traga

8. Project Application

In order for the game to be created, the Unity Engine 2020.3.2f1 was used and the programming language
for the scripts was C#. The game features, which will be further analyzed in the following sections, are the
following:

Animals that behave according to their defined Behaviour Tree Al.
Likeness of the animals towards certain actions of the player.
Crops that grow and produce various items.

Inventory system that allows the player to store items on the internal inventory as well as
external storage containers.

Day and night cycle that cycles through the time of each day.
Interactable objects such as a shop and NPCs.

8.1. Game Features

The core feature of the game are as follows:

8.1.1. Al Animal Agents

When referring to Al animal agents, | mean the agents that will implement the Behaviour Tree architecture.
These animals will act upon their defined Al and, in accordance with the respective data that each animal
holds, will select which action to take (e.g. drink water, eat, etc.). Moreover, the animals hold data regarding
their likeness towards the player which is calculated based on the interactions between them.

When the animals are content based on the necessary calculations, they will express their feeling when
the player is nearby and will produce certain items depending on whether their needs are satisfied or not.
The animals and their Behaviour Tree will be further explained in the following sections.

8.1.2. Crop System

A feature that is present in the game is the ability to purchase seeds and grow crops that will produce
various items. These items can then be sold for profit.

24
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Tam Moalk

(e, i sl
e ik o (e

Figure 15 - Crop System Shop

As seen above, the player has 5 coins available and can purchase certain seeds that are in stock from
the shop. After purchasing the seeds, the player can seed them in fertile soil, as presented on the image
below.

IMNVENTORY: |

Figure 16 - Crop System Planting

25
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis Maria Traga
The crops will start growing with varying speed based on the plant and when they get fully grown, they

can be harvested with an empty hand. Each crop is stored in a scriptable object that defines the item that
will spawn after harvesting, as well as the amount, the time it takes to grow, etc.

Elemen

Elemen
Elem

Figure 17 - Crop Object

Moreover, in order for the crops to be displayed on the map, the location of each crop on the tilemap
must be stored. To achieve that, | created a scriptable object to hold all the positions available for growing
crops. As such, when a crop gets planted its necessary data will be stored as presented below.

26
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis

Figure 18 - Crop Container Object

The item is also stored in a scriptable object, which has the following data.

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

Maria Traga

27

MSc Thesis Maria Traga

O nspector 4 MNavigation

6;, Carrot (ltem Object)

Mame Carrot

Meone (Tool Action Object)
On Tile Map Actio Mone (Tool Action Object)
On Item Used Mone (Tool Action Object)
Crop Mone (Crop Object)
Animation Trigg
Can Sell

Price

Figure 19 - Item Object

Each item can either be stackable or not. This means that it will either be a tool which can only exist
once for the player (e.g. an axe) or it will be an object that the player will want to have more than one in
order to sell or store (e.g. carrots).

8.1.3. Inventory System

In order for the player to have the items that have been described above, an inventory system must be
implemented. When the player wants to access the inventory, the “I” button must be pressed, which displays
the screen below.

28
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis Maria Traga

Figure 20 - Inventory System Player Inventory

Furthermore, aside from the player inventory there are multiple storages available, such as chests,
where the player can deposit or withdraw items.

Figure 21 - Inventory System Chest Container

29
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis Maria Traga

The scriptable object architecture was used in the inventory system, in order for the items to have their
position and quantity display correctly when the player interacts with any storage.

Each inventory/storage is a scriptable object, which holds the slots of the container (e.g. 30 for player
inventory). Consequently, each slot holds the item object and the amount of the item, as shown below.

Clear container

Inventory Slots

Element O

Mane (Item O

Element 1

Element 2
6) layer Inventory (Inventory

Clear container

Mane (Iltem Ob

Figure 22 - Inventory Object

In certain cases, some storage containers need to accept only one specific item (e.g. animal feeder
accepts only hay), and the player will only be able to deposit the specified item.

8.1.4. Day and Night System

Another system that has been implemented is the change between day and night as well as the passing of
each day. Moreover, a time agent has been created which depends on the day/night system, in order to
invoke methods on certain intervals (e.g. 15 in game seconds).

When the in game time reaches a certain point, the appearance of the map changes with the help of the
universal render pipeline (URP) to simulate the perspective of night in a 2D environment.

30
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis Maria Traga

INVENTORY: |
INTERACT: ENTER
USE ITEM: SPACE
QuiT: ESc

| sEeEEE

Figure 23 - Day and Night System

The global volume of the URP changes by evaluating a defined animation curve.

Finally, when the day changes into night, all the lights on the map get activated to give the illusion of
lighting on a 2D environment. The lights implement the point light 2D system of the Unity Engine.

31
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

8.2. Project Setup

In order for the application to function as intended, certain scripts with relative game logic needed to be
implemented. The gameobjects that hold the majority of the most important scripts are:

e Game Manager
e Player
8.2.1. Game Manager Scripts

The Game Manager gameobject holds some of the most necessary scripts for the game. Such scripts will
be presented in the following paragraphs.

Prefab
B Transform

Game Manager (Script)

Global Volume B Global Volume (Volume)

Crops Controller B Game Mana (
Tooltip A Tooltip (Tooltip)
Shop Controller B Player (Shop Controller)

i

Cy 1= t)

Item Drag Drop Controller (Script)

i

Item Spawn Manager (Script)

i

* Dialogue Controller (Script)

i

- Game Scene Manager (Script)

i

PDDDDD

Crops Controller (Script)

i

Add Component

Figure 24 - Game Manager Gameobject

32
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis Maria Traga

Game Manager Singleton

r _instance;

r Instance { {return _instance;} }

[]—{1]

if(_instance!= &% _instance !=
i
Destroy(.gameObject);

else

_instance =

ry;
dragDropController;
timeController;
dialogueController;
globalVolum

nt cropsController;
) tooltip;
hopController;

Figure 25 - Game Manager Singleton Script

The GameManager script is a singleton script which ensures that when the instance gets created it will
always remain the same and will not be destroyed when, for example, another scene is loaded.

Generally, a singleton in Unity is a global accessible class that exists in the scene, but can only exist
once. Any other script can access the singleton, allowing for easy connection between unrelated objects
and global systems such as the audio manager, by using the Instance variable.

The singleton script above holds the references for certain gameobjects that will also get the abilities of
a singleton, for easier use throughout the project.

33
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Day Night Cycle Script

AddTimeAgent (Ti timeAgent)

timeAgents.add(tim

RemoveTimeAgent(T ent timeAgent)
. O
Hours
Minutes
. Q
1taTime * timeScale;
9

if (time > secondsInDay)

by
InvokeTimeAgents();

InvokeTimeAgents()

currentPhase = (}{time / phaseLength};

if (oldPhase != currentPhase)
{
oldPhase = ntPhase;
for { i : timeAgents.Count; i++)

timeAgents[i]. InvokeTime();

Figure 26 - Day Night Cycle Script

The script above handles the change from day to night, holds the amount of days that passed from the
beginning of the game and invokes certain time agents on specific time periods (e.g. once per tick, once
per day).

The time agents utilize the events architecture of the Unity Engine. Specifically, it is possible to create
modular connections between scripts and objects by using events and delegates. These help trigger game
logic as it happens, without relying on tight connections between scripts.

In order to handle certain states of a script it is best to use the event system, considering that if everything
is checked every update, meaning every frame, then it could be highly constraining and burdening for the
game. For example, the time agent gets invoked every 15 ingame minutes, which is significantly less time
than handling a certain check every frame.

A method that helps utilize events is the Observer Pattern. This pattern allows for creating modular logic
that can be executed when an event is triggered. It typically works by allowing observers, in this case, other
scripts, to subscribe one or more of their own functions to a subject’'s event. Then, when the event is

34
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

triggered by the subject, the observers’ functions are called in response. For example, the player’s health
script could declare an On Player Death event, that’s called when the player runs out of health.

This means that connecting different pieces of game logic with the actual events of a game can be done
easily without needing to manage specific script to script connections.

Finally, in order to create an observer-style system in Unity, a common method is to use delegates,
which are essentially function containers. They allow for storing and calling a function as if it were a variable.

Item Drag Drop Controller Script

.inventoryslot.Item.Stackable)

ySlot.ItemStack + count);

.inventoryslot

t.set(item, count);

UpdateDragDropImage();

UpdateDragDropImage ()|

setDragbropImagePosition()

Figure 27 - Item Drag Drop Controller Script

The player can drag and drop an item from the inventory to any storage, as well as, drop the selected
item on the world. The script shown above, handles the respective feature by creating a copy of the item
clicked in any storage on the mouse. When the item is clicked, an image is shown to the player, following
the mouse movement, with the selected item and an instance of the item data (e.g. item object, stack
amount) is stored temporarily in the memory. After the player clicks for a second time, either on the
overworld or in any slot in a storage, the held item will be added either as a gameobject instance or will be
added in the inventory slot of the active inventory scriptable object, respectively. Following that, the stored
data will be cleared from the memory.

35
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIUOTIOIOUV TNV OPXITEKTOVIKH TOU AEVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Game Scene Manager Script

Initswitchscene(

startCoroutine(HandleTransition(sceneNa

=] IEnumerator HandleTransition(sceneName, targetPosition, V volumeProfile, AL
i
Hand1el
transi

etactivescene(.GetSceneByName(currentScene));

cameraconfinercontroller.updateBounds();

volumeProfile, Au walkSound)

m playerTransform = -Instance.player.transform;

C ¢ currentCamera = iain. GetComponent<Cinemachin: ema a
currentc era.onTargetob] d{playerTransform, target - y rm.position);

r.Instance.player.transform.position = targ
r.Instance.globalvolume.profile = volumeProfi
r.Instance.player.GetComponent. -walkSound = walkSound;

Figure 28 - Game Scene Manager Script

When the player reaches certain spots on the map, a transition gets called that can either be moving,
on the same scene, in a specific location or switching between different scenes.

The GameSceneManager script, handles the case of switching between scenes. In order for the
transition to occur smoothly, the coroutine functionality of Unity is used. When the transition happens, for
seconds, the screen turns darker gradually, and then the first scene gets unloaded, while the second scene
gets the respective references and gets loaded. After everything is set the screen shows the changed
scene.

A coroutine allows the spread of tasks across several frames. In most situations, when a method is
called, it runs to completion and then returns control to the calling method, plus any optional return values.
This means that any action that takes place within a method must happen within a single frame update. In
Unity, a coroutine is a method that can pause execution and return control to Unity but then continue where

36
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis

Maria Traga

it left off on the following frame. However, coroutines are not threads and any code that gets executed

within them will run on the main thread.

Crops Controller Script

growTimer;
growstage = @;

crop;
renderer;
position;
watered =

completed

Harvest

opsTilemapController;

PickupTile t pos

CheckIfPlantedTile(V nt position)

Plantse

Tick()
ontainer.crops ==
return;
h (i pTile in contail

F (!IsTilemapavailable()) {

pTile.crop ==

F (lcropTile.watered) { co

pTile.Completed) {

cropTile.growTimer += 1;

MoveGrowthToNextStage(cropTile);

IsTilemapavailable()|

MoveGrowthToNextstag cropTile)

PickupTile(

ResetTilestat

Figure 29 - Crops Controller Script

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

37

MSc Thesis Maria Traga

The CropsController script gets the reference of the CropsTilemapController, which handles the
functionality of the crop system and the growth of the crops after a certain amount of time (per tick).

The scripts above handle and interact with the tilemap system of Unity. Specifically, the tilemap
component is mostly used in 2D game development and allows for storing tile assets, in order to create 2D
levels. It transfers the required information from the tiles placed on it to other related components such as
the Tilemap Renderer and the Tilemap Collider 2D.

In order for the crop system to function, the related scripts handle the information from the tilemap and
identify whether the soil in front of the player is available for planting seeds. Moreover, they allow for storing
the location on the tilemap as well as the data of the seeded tile. After that, through these scripts, the player
can water the seeded tiles that are selected by the cursor and then pick them up once they are fully grown.
In order for the player to pick up the items, a spawn item system was introduced, which instantiates the
item object in the spot of the plant. Lastly, the scripts above also handle the growth of each plant by
cooperating with the time system, as explained previously.

38
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis

8.2.2. Player Scripts

Maria Traga

The Player gameobject refers to the character that the user sees on the screen. The gameobject holds
some necessary scripts for the player movement and controls. Such scripts will be presented in the following

paragraphs.

Figure 30 - Player Gameobject

.
&

n.
.
..
o

.
.
%.

¢ Character (Script)

Rigidbody 2D

/ Box Collider 2D

¢ Tools Character Controller (Script)

¢ Interactable Character Controller (Script)
¢ Circle Collider 2D

Inventory Controller (Script)

/ Toolbar Controller (Script)

/ Item Container Controller (Script)

¢ Shop Controller (Script)

Add Component

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG

aTtn pnxavn Unity.

O 00000000

39

MSc Thesis Maria Traga

Character Controller 2D Script

movement = t.GetAxisRaw("H "}, Input.GetAxisRaw("vertical™)).normalized;

changeFacingDirection();

Movel);

rb.velocity = movement * movementSpeed;

thf.Approximately(rb.velocity. a) IMathf. Approximately(rb.velocity

ChangeFacingbhirection()

setFacingpirection(horizontal, vertical)

)[] createInteractarea(o tDiste - sizeofInteractableArea)

interactPesition = rb.position + lastPosition * o

[1 interactablecColliders = .OverlapCircleAll{interactPosition, sizeOfInteractableArea);

n interactableColliders;

Figure 31 - Character Controller 2D Script

The script presented above handles the movement of the player character. Specifically, when the user
presses the arrow keys, the movement variable registers the input axis. Consequently, the velocity of the
rigidbody component on the player gameobject, updates and moves the character towards the axis as
indicated by the user’s input.

Furthermore, an interact area can be created through the CreatelnteractArea function, which creates
colliders in the facing direction of the player.

40
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Tools Character Controller Script

GetTileMapReader()

canselectTile()

osition);
stanceFromPlayer;

selectTile()

selectedTilePos = tilemapReadController.GetGridPosition(Input.mousePosition,

PlaceMarker()|

UseToolwWorld()
n = rb.position + characterController.lastPosition * offsetDistance;

item = toolbarController.GetItem;

iscompleted - item.onAction.OnApp
sCompleted ==

if (item.onItemused !=)
{
item.onItemused.OnItemUsed{item, ¢ .Instance. inventory);

1
L

return isCompleted;

UseToolGrid()

Figure 32 - Tools Character Controller Script

In order for the player to be able to use tools (e.g. axe, watering can) the respective functionality should
be implemented. The ToolsCharacterController script handles the required logic by connecting the item -
tool selected by the player from the toolbar with the input required, and calls the onAction function of each
tool.

A tool can be used in two different situations, on the tilemap and on the world. In the case of using a tool
to interact with the tilemap (e.g. with the crops) then the position of the selected tile is stored and the
respective function gets initiated, as explained in detail in the previous section.

However, when a tool needs to be used on the world (e.g. for cutting trees), then the player needs to be
able to interact with a gameobject instance, as opposed to tilemap data. In order to be able to translate the
position of the pointer to the position of the interactable gameobject on the world the ScreenToWorldPoint
function of Unity needs to be used. This function returns the worldspace point created by converting the
screen space point at the provided distance z from the camera plane.

41
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Shop Controller Script

item)

playerDat.

r.Instance.Flay(onNotEnoughMoneyAudioClip);

-Instance.invento
Money item.Pi

Instance.Play(onBuyAudioClip);

{item.Name}.");

Figure 33 - Shop Controller Script

The ShopController script handles the player input regarding the interaction with the ingame shop. When
the player interacts with the shop, the Ul canvas stops being inactive. Consequently, when the Ul is active
then, by clicking the respective interaction key or by moving away from the shop, it will become inactive.
The same functionality applies to the item containers and the player inventory.

Moreover, when the player clicks on an item from the shop item selection then the respective item gets
added to the player’'s inventory object and money get subtracted from the player's data. The data is a
scriptable object related to the player. Additionally, when the player clicks on an item in the inventory, then
similar logic applies.

Finally, the sound manager plays the correct sound regarding the player’s activities (e.g. buy, sell).

42
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

8.3. Behaviour Tree Implementation

The application features the implementation of the behaviour tree architecture for the A.l. functionality of
the animal agents.

Such implementation requires certain scripts to be created, namely, a script to execute the behaviour
tree, scriptable objects that will hold the parameters of each A.l. agent and their respective controller.
Finally, the structure for the behaviour tree needed to be implemented.

Specifically, the required behaviour tree structure has certain nodes which are as follows:

e Composite Nodes
e Decorator Nodes
e Selector Nodes

The visual representation of the A.l. agents’ behaviour tree is presented in the appendices below.

8.3.1. A.l. Agent Scripts

In order for the behaviour tree to function, the following scripts needed to be implemented to each A.l.
agent.

43
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis

o %
=

i Layer
Select
Transform

Rigidbody 2D

7 Polygon Collider 2D

 Resource Mode (Script)

Item Spawner (Script)

 Time Agent (Script)

 Animal Controller (Script)

Mav Mesh Agent
Circle Collider 2D
Animal Inter

Animal Al (Script)

Animal Behaviour Tree

Figure 34 - A.l. Agent Gameobject

h Variables

st ent

- Tooltip Activator (Script)

Add Component

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG

aTtn pnxavn Unity.

Animal

©e00 0000

Maria Traga

44

MSc Thesis Maria Traga

Animal Controller Script

description { =» animalobject.GetName(); }

FixRotationForan()

pecrementThirst()

DecrementHunger()

IsFoodavailable(rm feederLocation)

m FeederLocation()

HandleParticles(activate)

CalculateHappinessFactor()}

HandleHappiness()

HandleResourceHappiness()

Figure 35 - Animal Controller Script

The AnimalController script handles certain functionality regarding the data of each animal. Specifically,
each separate A.l. agent has data defined by using the scriptable object functionality, as explained earlier.
This data needs to be able to change based on certain criteria, like the passage of ingame time or the
interaction with the player (e.g. hunger increments when time passes).

Moreover, certain functions that are needed in the behaviour tree of each agent, are defined in the script
above. The navigation nodes mostly need some information from the AnimalController, particularly the
availability of food on the map as well as its location.

45
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis

Animal Al Script

ourTree;
ootNode ;

navMeshAgent;

behaviourTree = behavicurTree.Clone();
behaviourTree.Bind(15

FixRotationFor2n();

0O

behaviourTree.Update();

FixRotationFor2o()

navMeshAgent .updateRotation =
navMeshAgent . updateupaxis =

Figure 36 - Animal Al Script

Maria Traga

The script above connects the behaviour tree scriptable object with the agent gameobject (i.e. the
animal). In order for the behaviour tree to function correctly, firstly a clone of the original scriptable object
is made and then the owner of the tree is passed to the tree by using the function Bind(), which will be
explained further in the next section.

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIUOTIOIOUV TNV OPXITEKTOVIKH TOU AEVTPOU ZUMTTEPIPOPAG

oTtn pnxavnA Unity.

46

MSc Thesis Maria Traga

8.3.2. Behaviour Tree Scripts

Behaviour Tree Object Script

Node.Nodestate update()

if (rootNode.state == NodesState. RUNNING)
{
treestate = rootNode.update()
¥
return treestate;

1
I
#1f UNITY_EDITOR

CreateNode(
DeleteNode(Node node)
Addchild(Node parent, Mode child)

Removechild(Mode parent, Node child))

e> GetChildren(Node parent)

Traverse

ree Clone()

Bind(A ownery)

Traverse(rootNode, node =»

node.owner = owner;
node.blackboard = blackboard;

Figure 37 - Behaviour Tree Object Script

As explained previously, each node of the behaviour tree can return one of three available states,
RUNNING in case it is still executing without an end result, SUCCESS in case the node succeeds in doing
a certain task or FAILURE in case it fails.

For the behaviour tree scriptable object, the above functions needed to be implemented. The Update()
function of the tree calls the Update() function of the root node (i.e. the first node) in the case that it returns
RUNNING state.

Moreover, the function Clone() creates a copy of the object in order to prevent duplicate trees and
permanent SUCCESS state. Since the BT is a scriptable object, if the same tree tries to get executed twice
then the first will run correctly and return a specific state (e.g. SUCCESS) but the second time it will not get
executed considering that the state will still be the result of the first. Specifically, scriptable objects maintain
the data and then can access it by reference. This means that there is one copy of the data in memory.

47
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Finally, with the Bind() function, each node, as well as the behaviour tree can have access to the
gameobject that holds the tree, thus creating a bridge between the A.l. and all the necessary data of each
agent.

8.3.3. Composite Node Scripts

Composite Node Base Class

de node Instantiate(1

ldrendodes = childrenNodes.ConvertAll{c => C.

return node;

Figure 38 - Composite Node Base Class Script

A composite node is a node that can have one or more children. Each composite node will process these
children nodes, which in turn will either return SUCCESS or FAILURE. After that the composite node will,
in most cases, return that state to its parent. During the time the composite node is processing children, it
will continue to return RUNNING to the parent. Usually, the most used composite nodes are the sequence
node and the selector node.

48
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Sequence Node

currentChild;

onstart()

currentchild = @;

onSstop(}

Nodestate onupdate()

Nodes [currentChild];

currentChild++;
break;
estate.FAILURE:

return Nodestate.FAILURE;

return currentChild == childrenNodes.Count ? NodeState.SUCCESS : NodeState.RUNNING;

Figure 39 - Sequence Node Script

A sequence node is derived from the composite node base class and processes each child in a
sequence. Specifically, when the child returns a SUCCESS state then the node starts processing the next
child, from left to right. In the case that any child returns FAILURE then the whole process stops and the
composite node returns FAILURE to its parent node. After every child was processed successfully, the
node returns SUCCESS to the parent.

49
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Selector Node

currentchild;

onstart(})

currentchild = e;

onStop()

Nodestate onupdate()

hildrendodes[currentchild];

currentChilds++;
break;

return currentChild == childrenNodes.Count ? ModeState.FAILURE : NodeState.RUNNING;

Figure 40 - Selector Node Script

A selector node is derived from the composite node base class and processes child nodes until one
succeeds. Specifically, when the child returns a SUCCESS state then the node stops processing the next
children, and returns that state to its parent. In the case that the child returns FAILURE then the selector
moves on to the next child. After every child was processed and none returned SUCCESS, then the node
returns FAILURE to the parent.

50
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

8.3.4. Decorator Node Scripts

Decorator Node Base Class

ie childnode;

e Clone()

de node = Instantiate(
ildNode = childMode.Clone();

return node;

Figure 41 - Decorator Node Base Class Script

A decorator node is a node that can only have one child. Their function is either to transform the result they
receive from their child node's status, to terminate the child, or repeat processing of the child, depending
on the type of decorator node.

Such decorator nodes, that are oftenly used, are the inverter node and the repeater node.

51
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Inverter Node

Nodestate _state;

onstart()

onstop(}

Nodestate onupdate(}

ch (childwode.Update

case ModeState.RUNNING:
ate . RUNNING;
.FAILURE;

LURE :
estate.SUCCESS;

Figure 42 - Inverter Node Script

The inverter node gets the result of its child and returns to the parent the opposite state. For example,
when the child of the inverter returns SUCCESS then the inverter will pass to its parent FAILURE.

52
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Repeater Node

onstart()

onStop()

Nodestate OnUpdate()

childwode.Update();
return Modestate.RUNNING;

Figure 43 - Repeater Node Script

The repeater node allows for repeating the following nodes of the tree infinitely. Specifically, the repeater
will always return RUNNING state to its parent regardless of the child nodes result.

8.3.5. Action Node Scripts

Action Node Base Class

Figure 44 - Action Node Base Class Script

The action node is a node that can have no children and is the leaf of a behaviour tree. Usually, most
functionality of an A.l. agent is written in an action node.

These mostly include true or false checks on certain criteria (e.g. check proximity of an agent to an
object) or application specific actions (e.g. go eat action on an agent). An important action node that has
been implemented in the project is the navigation node.

53
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

Navigation Node

onstart()

onstop()

Nodestate onUpdate()

dist istance{owner.transform.position, target.transform.position);
(distance > navMeshaAgent.stoppingDistance)

Move();
HandleAnimati

RUNNING;

stopMove();

H

tal;‘get .transform.position);

Handleanimation()

Figure 45 - Navigation Node Script

This node allows the agent to handle the movement to a specific location. When the agent reaches the
destination then the node returns SUCCESS to its parent or if it still is computing then the node will return
RUNNING.

54
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

9. Applying the Behaviour Tree
The A.l. agents’ behaviour tree, as is implemented in Unity, will be presented in the section below.
The behaviour tree of an animal agent is divided in 5 main sections, the Sleep Sequence, Thirst

Sequence, Hunger Sequence, Happiness Sequence and Wander Sequence which are implemented and
occur in that order.

In order for the behaviour tree to be presented in action, the Hunger Sequence is selected as an
example.

Specifically, when it is not time for the animal to sleep and the animal is not thirsty yet then the hunger
sequence begins.

Am | Hungry? Is Food Available? Gotofo ctor Wait Begin Hunger

Figure 46 - Behaviour Tree Hunger Sequence

Firstly, the AmIHungry node will be processed which checks whether the animals’ hunger variable has
fallen below a certain threshold and will return SUCCESS, considering that the parent node is a sequence,
this means that the A.l. will move on to the next node which is the IsFoodAvailable. This node checks if
food exists on the map, which also returns SUCCESS. Following that, another composite node which is the
GoToFood selector node, is implemented. This means that if the first of its children, which is the
AmlINearFood, returns SUCCESS, then the whole selector will stop executing and pass that state to the
hunger sequence. Differently, the GoToFeeder node will also be executed which is a navigation node. After
that, the action EatFood is executed which returns SUCCESS after the hunger variable reaches a certain

55
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

point of saturation. Finally, the two following nodes, allow for pausing the behaviour tree with the Wait node
and after that for initiating the hunger process to start counting down again with the BeginHunger node.

ey EE

Figure 47 - Smart Animal A.l. Agents

As presented above, from left to right, the first agent being in the Hunger Sequence started eating, the
second agent is wandering by reaching the Wander Sequence and the third agent is drinking water through
the Thirst Sequence.

56
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
aTtn pnxavn Unity.

MSc Thesis Maria Traga

10. Conclusion

In conclusion to the project, the most important aspect of this work was the implementation and visualization
of the Behaviour Tree architecture. Through this, it is made clear that one of the most efficient ways to
handle Artificial Intelligence in a game-like environment is by using the beforementioned architecture.
Consequently, by visualizing the A.l. with Behaviour Trees, developers can escape the implementation of
multiple if statements and clauses of the FSM architecture which can be reason for mistakes and difficult
to fix, errors, if mishandled, and instead focus on structuring correct trees seeing as, after their initial code
implementation, are much easier to use, maintain and scale. Another important aspect of this work is the
cooperation and interaction of multiple features that were needed in order for the project to have a complete
and working system. Such feat was not an easy task, but was made possible through the multiple features
that the Unity Engine had to offer.

Finally, the work presented above, can be further developed by implementing more needs of the animal
agents, as well as creating new Behaviour Trees for different agents such as possible enemies or friendly
characters. Thank you for taking the time to read my Master Thesis.

57
Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng
TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN
TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

MSc Thesis Maria Traga

11. Bibliography & References

P owbd PR

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.

26.
27.
28.

Al for Game Developers, Glenn Seemann, David M Bourg, 2004

Al Game Development. New Riders Publishing, A. J. Champandard, 2004

Al Game Programming Wisdom. Charles River Media, Inc., S. Rabin, 2002.

Al Planning and Intelligent Agents, Marinagi, Panayiotopoulos & Spyropoulos, 2005.

Artificial Intelligence A Modern Approach Second Edition Stuart J. Russell and Peter Norvig, 2003

Behavior Trees in Robotics and Al: An Introduction, Michele Colledanchise, Petter Ogren, 2017-08-
31

Finite State Machines — Brilliant Math & Science Wiki. brilliant.org. Retrieved 2018-04-14.

G.M.J.B. Chaslot; M.H.M. Winands; J.W.H.M. Uiterwijk; H.J. van den Herik; B. Bouzy (2008).
"Progressive Strategies for Monte-Carlo Tree Search"

Game Al: The State of the Industry 2000-2001: It's not Just Art, It's Engineering., S. Woodcock,
2001

http://www.dogpsychologistoncall.com/hierarchy-of-dog-needs-tm/

https://docs.Unity.com

https://en.wikipedia.org/

https://gamedevbeginner.com/

https://poultryhealthtoday.com/maslows-pyramid-self-actualization-for-chickens/
https://shubibubi.itch.io/

https://towardsdatascience.com/designing-ai-agents-behaviors-with-behavior-trees-b28aalc3cf8a

https://www.gamedeveloper.com/

https://www.geeksforgeeks.org/

https://www.investopedia.com
https://www.oreilly.com/library/view/ai-for-game/0596005555/ch01.html
Maslow, A. H., 1943. A theory of human motivation

Practical Game Al Programming, Micael DaGraca, 2017

Riedl and Young, 2005. An objective character believability evaluation procedure for multi-agent
story generation systems

The Talk of the Town — It., Grant, Eugene F.; Lardner, Rex, 1952,
The World and Mind of Computation and Complexity, Greg Schaffter, 2012

Unity Artificial Intelligence Programming: Add powerful, believable, and fun Al entities in your game
with the power of Unity, 5th Edition, Dr. Davide Aversa, 03-28-2022

Yannakakis, G. N. (2012, May). Game Al revisited
Zeltzer, 1992. Autonomy,Interaction,and Presece

58

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG
oTtn pnxavnA Unity.

http://www.dogpsychologistoncall.com/hierarchy-of-dog-needs-tm/
https://docs.unity3d.com/
https://en.wikipedia.org/
https://gamedevbeginner.com/
https://poultryhealthtoday.com/maslows-pyramid-self-actualization-for-chickens/
https://shubibubi.itch.io/
https://towardsdatascience.com/designing-ai-agents-behaviors-with-behavior-trees-b28aa1c3cf8a
https://www.gamedeveloper.com/
https://www.geeksforgeeks.org/
https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp
https://www.oreilly.com/library/view/ai-for-game/0596005555/ch01.html

MSc Thesis Maria Traga

Appendix A - A.l. Agent Behaviour Tree Visual Representation

Figure 48 - Animal Behaviour Tree

Anpioupyia TrpocopoiwTh @apuag aAANAeTTIdpaong

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAkTOopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTpou ZUMTTEPIPOPAG
aTtn ynxavn Unity.

MSc Thesis Maria Traga

Appendix B - Important Information

¢ All of the non-referenced material written in this work, derive either from the presentations of Dr
Panayiotopoulos or the author’s ideas.

e Most assets used in the project were created by the author using the Aseprite application.

e Credits for the soundtracks used in the project go to Dimitris Malliaris.

e The version of Unity used for the creation of the project was Unity Engine 2020.3.2f1.

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG

aTtn pnxavn Unity. 2

MSc Thesis Maria Traga

Appendix C - Project Inspiration

\RDEW.
(S I,

Figure 49 - Stardew Valley Logo

Stardew Valley is a simulation role-playing video game developed by Eric "ConcernedApe" Barone. Players
take the role of a character who takes over their deceased grandfather's dilapidated farm in a place known
as Stardew Valley. The game was released for Microsoft Windows in February 2016 before being ported
to several other computer, console, and mobile platforms.

Stardew Valley is open-ended, allowing players to take on activities such as growing crops, raising
livestock, mining and foraging, selling produce, and socializing with the townspeople, including the ability
to marry and have children. It also allows up to three other players to play online together.

Barone developed Stardew Valley by himself over four years. He was heavily inspired by the Harvest
Moon series, with additions to address some of the shortcomings of those games. He used it as an exercise
to improve his own programming and game design skills. British studio Chucklefish approached Barone
midway through development with the offer to publish the game, allowing him to focus more on completing
it.

Anpioupyia TrpocopoiwTh @apuag aAANAeTTiIdpacng

TTaiKTN-CWOU XPNOIYOTTOIVTAG £EUTTVOUG TTpAKTopEG TN

TTOU XPNOIYOTIOIOUV TNV OPXITEKTOVIKF TOU AéVTPOU ZUMTTEPIPOPAG

aTtn pnxavn Unity. 3

