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Abstract 

Leaving in the 4th industrial revolution, the digitization in manufacturing in 
conjunction with the rapid increase of AI applications have raised new opportunities. 
In the context of this work, the infusion of machine learning on a real word 
manufacturing optimization knapsack-like problem will be researched and addressed 
by focusing on interpretability and generalization of the models. The problem will be 
described, modelized and formulated mathematically, the data collection and dataset 
construction will be presented, and machine learning techniques will be used and 
compared based on which achieves to extract the most information out of the data. 
Also, the explanation of the trained models is discussed, and the most efficient way of 
data constructions is checked in terms of generating a model that generalizes better. 
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1 Introduction

The first industrial revolution began between 1760 and 1840, a period in which
railroads constructed and steam engines invented. Then in the late 19th century
and in the early 20th century we had the second industrial revolution, in which
the electricity made mass productions possible. Later, in around the 1960s,
began the third industrial revolution, which was also called digital revolution,
because it was connected with the development of semiconductors, mainframes,
personal computing and the internet. In Germany from 2011 started the fourth
industrial revolution. (Schwab, 2016, pp. 15, [16]).

Today, we live in the fourth industrial revolution, which enables the smart
factories and tries to create a world in which virtual and physical systems co-
operate with each other in a flexible way. (Schwab, 2016, pp. 16, [16]).

On the other hand, Machine Learning (ML) and Artificial Intelligence (AI)
in general, has become more and more part of the products that are used daily.
We can find applications of ML in many areas such as:

• image/speech recognition,

• self-driving cars,

• traffic prediction,

• product recommendations,

• decision support, etc..

The rapid increase in AI applications, in conjunction with the evolution and
the digitization of manufacturing, raised new opportunities.

In the context of this work we conducted a research of ML applications in
manufacturing production planning.

Production planning is the future of production and is a key component in
the process of business manufacturing. Its purpose is to minimize the production
time and cost while in parallel help to increase profit.

In the next sections we will present a data driven tool that operates as a deci-
sion support alongside with an already implemented and existing combinatorial
algorithm that minimizes the production waste by solving a knapsack-like prob-
lem. In contrast with pertinent literature around the content, we approached
the problem as a black box and we focused more on the connection between the
input and the output, leaving out any clue related to the algorithm that solves
it.

The goal of the tool employed in this work, is to help manufacturing organ-
isations to increase their productivity, by reducing the required time to develop
a production plan. This tool, will act as an experienced user - expert in the
area, that even not familiar with the optimization procedure, he can still make
assumptions for the function that connects the input and the output. This tool
could also be utilized as the base to build a more complex architecture that
would potentially improve the computational performance.
The work presented in this document is organized as follows:
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• Presentation of background and related work,

• Problem definition,

• Experiments,

• Conclusions.

Figure 1: Document structure

The experiments include the following four big topics:

• Dataset construction: Understand the problem, explore the metadata
and construct datasets.

• Modeling the problem: Model and address the problem both as re-
gression and classification, perform experiments using ML and simple NN
models and find the most efficient combination of dataset (set of features)
- approach.

• Interpretability: As it is necessary to be able to explain a prediction, the
impact, the integration, inference time etc ), the model’s interpretability
is explored and further checked.

• Generalization: The dataset utilized for training cannot take into ac-
count the whole space of the parameters of this optimization problem. To
this end we split the dataset in train and test sets and we cross examine
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the accuracy and generalization capabilities of the ML models trained in
these parts.

Our contribution - the questions that will be answered are:

• Which is the best way to model a dataset in this knapsack-like problem.
Which information helps the ML models perform better? Which samples
can describe a bigger part of the input space?

• Which ML model performs the best and why?

• Can we explain the predictions?
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2 Background

In this section we will present the required background knowledge, like what
KBS (Knowledge Based Systems)/ML/Regression/Classification/NN/Optimization
problems are.

2.1 KBS/Machine learning

Based on Ahmed et al., 2019 [2] a Knowledge-Based System (KBS) is described
as a system which helps experts transfer knowledge into information systems.
The basic components of a KBS are the following:

• Knowledge base, contains the necessary knowledge for modeling the
problem,

• Inference Engine, brain of the system, extracts the methodology for
reasoning,

• Knowledge Acquisition, ability to enlarge knowledge base,

• Explanation Facility, ability to interpret results,

• User interface, interface which the user can interact with.

While the KBS requires the experts to pass the base knowledge, ML extracts
patterns from data and constructs the rules. ML is part of AI and can be
defined as a set of computational methods which use experience in order to try to
improve their performance or to make accurate predictions. As experience refers
to information - data, which are used to train these computational methods. ML
consists of designing efficient and accurate prediction algorithms which learn
and extract patterns from the input data. (Mohri et al, 2017, pp. 1, [12]). ML
consists of designing efficient and accurate prediction algorithms which learn
and extract patterns from the input data. (Mohri et al, 2017, pp. 1, [12]). ML
can be used in any type of problem such as:

• Predict a house’s price, or predict a student’s grade,

• Document classification, or mail spam filtering,

• Natural language processing,

• Speech recognition applications,

• Computer vision applications, etc..

ML problems can be distinguished into two big categories, the supervised
and unsupervised. The difference in these two big categories, is that in the first
one we provide to the algorithms the results of the data which gets trained on
while in the second, we ask from the algorithm to construct teams/categories.
In supervised learning models the algorithm gets as an input a labeled set of
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examples and makes predictions for unseen points. In Unsupervised learning,
the algorithms gets as input an unlabeled set of examples and makes predictions
for unseen points. (Mohri et al, 2017, pp. 6, [12]).

The two most famous types of supervised problems are the regression and
classification. The data utilized in the context of this work have labels. This
means that the problem is supervised, and approached as regression and clas-
sification. Regression consists of problems in which, an accurate value tries to
be predicted, such as predict a house’s price. Classification consists of problems
in which, a class tries to be predicted, such as a mail is spam or not. (Mohri
et al, 2017, pp. 2, [12]). Regression can be also defined as a problem in which
an algorithm tries to describe the space of the data, while classification as a
problem in which the algorithm tries to divide the space of the data.

2.2 Regression

As already mentioned, regression consists of using data to predict a value, as
closely as possible. Regression models construct a function which maps the
inputs X with the outputs Y.

In the context of this work we used, linear regression and rule based models.
Linear regression models, are models which try to describe the data in a linear
way and all of them can directly or indirectly be written in the form of equation
1. (Kuhn and Johnson, 2013, pp. 95, [9]).

yi = b0 + b1xi1 + b2xi2 + ...+ bpxip + ei (1)

On the other hand, there are the rule-based models, which consist of one
or more nested if-then statements and describe the space using rules, as shown
above.

i f FeatureA <= ValueA :
i f FeatureB <= ValueB :

return Pred i c t i on1
else :

return Pred i c t i on2
else :

return Pred i c t i on3

This type of models can describe more complex than linear problems because
it is not necessary the data to be linearly described.

Regarding the evaluation metrics in the context of this work we focused on
MAE, (2), which indicates the mean absolute difference between the predicted
value and the actual. MAE provides a mechanism to measure, the model’s
accuracy. As closest to zero the MAE is, the better the model can predict a
value.

MAE =
1

n

n∑
i=1

|xi − x| (2)
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Both types of regression models are easily interpretable and explainable. In
the first case the weights of each feature can be extracted and a function which
gets as input the value for each feature and give as output the prediction can
be made, while in the second the rules of the conditions can get extracted.

2.3 Classification

Classification consist of problems that use data to predict a class or a value in
general, out of a set of finite and discrete values. An example of a classification
problem is a feature for an email provider, which we want to learn which emails
are okay and which emails are spam. Classification models construct a function
which maps the inputs X with a value Yu out of a finite set of Y. (Han and
Kamber, 2012, pp. 330, [8]).

As in the regression problems, in the classification there are also rule-based
models, where they construct a set of IF-THEN rules and predict specific classes.
In classification there are also the Bayesian type models which generate two
types of predictions, a regression-like, which is usually in a form of a probability,
and a class membership prediction. For most of the cases, the focus is on
the discrete prediction, although, the probability value contains very useful
information. (Han and Kamber, 2012, pp. 335, [8]).

About the evaluation metrics, in the context of this work we focused on
precision (10), which, as per Tharwat, 2018, [17], is the number of correct
predicted samples, divided by all the samples of this specific class. If the correct
predicted defined as True Positives (TP), and the not correct predicted False
Positives (FP), the precision value is the one described in equation 10.

Precision =
TP

TP + FP
(3)

Confusion matrices used in the classification experiments section. Confu-
sion is a 2D matrix in which, the one side presents the actual values and the
other the predicted. Every cell describes the correct predictions and the mis-
classifications.

Regarding the explainability of the results, it is not always easy and depends
on the type and the model that used.

2.4 Neural networks

As extension of ML algorithms, comes the Deep Learning (DL) which includes
artificial neural networks(ANN) and is a concept built over a powerful not lin-
ear regression technique, inspired from the mechanism of learning in biological
organisms. Artificial neural networks contain neurons that are connected to
each other just like the human nervous system contains cells. Each one of these
neurons in the artificial neural network, represent a combination of some or all
of the predictor variables.

The simplest neural network is the perceptron. Perceptron contains a single
input layer with an output node. A set of weights is getting assigned in the
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Figure 2: Perceptron basic architecture

input variables and then the output is getting calculated based on them. The
basic architecture of Perceptron is shown in figure 2.

Each training instance is of the form (X, y), where each X = [x1, ..., xd],
contain d features, and y is the value we want to predict.

The input layer contains d nodes transmitting the d features with multilayer
- weights W = [W1..Wd], to an output node. The output node calculates the

linear functionW ·X =
∑d

i=1 wjxj and returns the result-prediction. (Aggarwal,
2018, pp. 5, [1])

In addition to perceptron’s simple network, in DL, more complex archi-
tectures have been designed with perceptron like nodes. However because a
combination of linear models would only be able to construct a bigger and more
complex linear model, the activation function have been introduced at the end
of each node - in order to break the linearity. These activation functions act as
a regularizer and try to control the percentage of error that is being fed back
to the network in order to update the weights appropriately. One of the most
famous and most used ones is the Relu. (Kuhn and Johnson, 2013, pp. 141, [9])

2.5 Under-fit, over-fit and generalization

Bousquet et al., 2004, pp. 179, [4], describes the generalization error as the
ability of models to be able to predict unseen data. Almost all ML models and
DL architectures, are highly adaptable and able to describe complex relation-
ships. Sometimes it is possible the model to not perform well, while some other
times the model learns the structure of the training data so well, it can correctly
predict every sample. The first happens because the model has not been trained
enough and its getting called under-fit. The second happens because in addition
of learning the general pattern in the data, the model learns the characteristic
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of each sample’s unique noise. This type of model is said to be over-fit and
usually has poor accuracy when predicting a new sample. (Kuhn and Johnson,
2013, pp. 61, [9]).

Their is also the bias and variance. Bias can be defined as the accuracy of
the predictions while variance is a type of error that occurs due to a model’s
sensitivity to small fluctuations in the training set. High variance cause the
model to tend to over-fit, because it tries to learn the characteristics of each
sample’s unique noise. High bias would cause an algorithm to miss relevant
relations between the input features and the target outputs which is related to
the under-fitting which mentioned above.(Aggrawal, 2018, pp. 174, [1]).

Usually, a model’s goal is to be able to perform well in at least a bigger
subset, if not in the whole set, of the data that is trained on. In other words, is
desirable the model to generalize well. For this reason it is necessary to have a
balance between bias and variance.

2.6 Optimization problem

Optimization is a general term, and finds appliances in almost all fields. Opti-
mization problem, is any problem that involves making a decision of choosing
the best solution out of all feasible solutions. The task of decision making,
during the optimization process, includes the choice which constitutes the best
option. The measurement of goodness is described by an objective function.
(Chong, 2013, pp. 15, [6]).

For example, one of the most famous optimization problems, is the knapsack.
In this problem we have a bag in which we can fit at max a specific amount of
quantity. We also have items that we want to fit in the bag. Each item has a
specific quantity qi and a price pi. The goal is to fit in the bag the set of the
available items, which maximizes the summary of the prices, without exceeding
the maximum amount of quantity W which the bag can carry. The following
equation, formalizes mathematically the previously described problem. The xi
represents the existence of an item in the bag and takes values 0 or 1. Our goal
is to maximize the bags value, subject to not exceeding the maximum allowed
quantity.

max.
∑
xipi

s.t.
∑
xiqi ≤W,xi ∈ {0, 1}

(4)
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3 Related work

In this section we will present related work of ML in manufacturing, Inter-
pretability of ML models and usages of ML in optimization problems.

3.1 ML in manufacturing

While the KBS requires the experts to pass the base knowledge, ML extracts
patterns from data and constructs the rules.

Weichert et al., 2019 [20] expressed their opinion that the shortage of re-
sources leads to increasing the acceptance of new approaches, like the ML, for
the optimization of different processes like, energy, time, resource saving, waste
minimization. The first challenge of every ML problem is the data gathering
or in other words the construction of the dataset using which we will train the
models. For this reason we can classify the data types in the following categories:

• qualitative vs. quantitative,

• time series vs. workpiece-related data,

• controllable vs. uncontrollable data,

• present vs. historical data,

• measured vs. simulated data,

• observable quantities vs. process state variables.

Weichert et al., 2019 [20] concluded, that because the employed models suffer
from overfitting and lack of interpretability, it is necessary to review each step
of the process in order to avoid making a problem specific solution and provide
algorithms that generalize better. As well, Wuest et al., 2016 [21] focused in the
advantages, the challenges and the use of ML in manufacturing processes. As
advantages the authors present the ability of ML algorithms to solve NP hard
problems and to handle high dimensional problems, as well as the ability of
the algorithms to discover formerly unknown knowledge and to identify implicit
relationships in datasets. The challenges that the organisations face, are almost
always, the data collection, preprocessing and algorithm selection, but also there
is a high need to be able to explain the model’s prediction or in other words it
is almost necessary, at some degree, the interpretation of the results.

From the previous presented papers, we conclude that the intepretability
constitutes a hot topic in manufacturing.

3.2 ML interpretability

Based on Molnar, 2018, [13], interpretability is the degree to which the human
can understand the cause of a decision. The higher the interpretability of a ML
model, the easiest to explain the result of the output. interpretability is very
useful for a ML model because it converts it from a black box, into a system in
which we can:
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• ensure that a prediction is not biased,

• ensure that sensitive information is protected,

• ensure that small changes to specific features does not change entirely the
output of the model,

• being able to understand and explain the decision and so being able to
know how to change the input in order to get a specific output,

• it’s easier for humans to trust them.

Carvalho et al., 2019 [5] presented a survey on methods and metrics regarding
the interpretability. The evolution of the interpretability’s field started from the
increase of data collection and the rise of ML usage. Authors point that even if
the ML as a tool is powerfull, in the way that is being used, it lacks transparency,
and this has triggered global awareness. Interpretability’s research areas can be
separated into the following three research areas:

• Data science, study of ML algorithms,

• Human science, understand human nature and try to give a human ac-
ceptable explanation of the algorithms,

• Human computer interaction, study interaction and improve the trust
between the humans-users and the computer-models.

The main reason interpretability requires our attention is because, a single met-
ric, as the accuracy, cannot describe entirely a model’s success. Also it can
help to extract more information regarding the decision - output of the model.
In some cases we may not really care about the reason the model conclude to
an output, however in most of real world scenarios the explanation is required.
interpretability potentially can offer safety as we can explain a taken decision
and we can prove the fairness and that it is biased free.

ML interpretability can be classified according to different criteria:

• Pre/In/After-model, based on which step the explanation tried to be
given.

• Intrinsic or Post-hoc, is another way to classify whether the interpretabil-
ity achieved through constraints imposed on the complexity of the ML
model (intrinsic) or by applying methods that analyze the model after
training (post hoc).

• Model specific or Model agnostic. Model specific means that we are study-
ing model specific parameters, like the weight of a linear regression model,
while model agnostic means that we are studying the features of the
dataset.
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• Results that each method produce, this includes: feature summary - statis-
tic explanations for features, model internals - explanation output of all
intrinsic models, data point - methods that return a data point to make
a model interpret-able.

Regarding the interpretability’s scope, the main goal is the transparency and
the comprehensions of the model.

The easiest way to achieve interpretability is by using algorithms that pro-
duce interpretable models. Algorithms like these are linear regression, logistic
regression, decision trees, etc. Rubin, 2019 [15] presented the problems of ex-
plainable ML and the challenges that comes with interpretability. He expressed
the opinion that because ML started getting used very frequent in high stakes
predictions which impact human lives, black box models should be replaced
by interpretable ones. Apart from that, interpretability helps also in model’s
troubleshooting. As black box the author consider either a function that is too
complicated for a human - like neural networks, or a function that is proprietary.
Regarding explainable ML, he supports that:

• It provides explanations that are not faithful to what the original model
computes, that’s because the explanation model cannot have perfect fi-
delity with respect to the original model as if they were, they would be
the same,

• Explanations often do not make sense or do not provide enough detail to
understand what the black box is doing,

• Black box models makes harder database expansion and explanations can
lead to an overly complicated decision pathway.

He believes that the governments should force organization to use interpret-able
models and by recognizing that this is not easy, he presents the main algorithmic
challenges, which are:

• Logical model construction, like decision trees,

• Optimal sparse scoring system construction,

• Define interpretability for specific domains and create methods accord-
ingly.

3.3 Production planning

Regarding to some more related to production planning researches, Lubosch
at al., 2018 [10] studied and suggested a different way of solving production
scheduling problems by combining the Monte Carlo Tree Search algorithm and
ML. In that way, they tried to get omit expert knowledge. In order for Monte
carlo search algorithm to work, an environment with all possible states and the
actions from each state has to be defined. The transmission from one state
to another one is being done with the help of the selection function. The two
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most frequent selection functions are the Upper Confidence Bound and the e-
Greedy. The authors tested this theory using the production of microchips
wafers dataset, and although the results were really promising, they couldn’t
guarantee that this approach would always find the optimal solution.

Gonzalez Rodriguez at al., 2019 [7] presented a research for Industry 4.0 fo-
cused on making an intelligent decision support system for production planning
based on ML. They presented a methodology for solving a Closed-Loop Supply
Chain (CLSC) management problem using fuzzy logic built on ML. In CLSC the
final products are obtained by either processing raw materials or components,
new or re-used ones. The basic terms of CLSC are:

• Productive availability (PA), as the estimated production capacity,

• Uncertainties in the quantities (SKUN),

• Errors in the stocks demanded by the consumers (SKD), nondeterminism
in the returned stock due to logistic constraints.

The existence of uncertainties (SKUN) in the quantities is one of the main
challenges in production planning and it makes it hard to define strict criteria
when making decisions. Fuzzy logic dealt with this issue. Decision trees ML
model were also used, and trained using the 10-fold cross-validation in order to
reduce the over fitting possibility. The key problem when using a fuzzy inference
system, is to define the distribution of the membership function. This is solved
by extracting this information from regression trees. They divided their general
methodology into two categories, in the data collection - preprocessing and then
the regression tree train and FIS (fuzzy inference system) creation. Their idea
was applied in an Industrial Hospital Laundry with 16 tons of daily production
integrated in a CLSC. In numbers this means 4000 litres of fuel and 280.000
litres of water, daily. For the models validation, the authors used the MSE for
the decision tree and for the FIS the squared error difference of the predicted
and the actual value. The 80% of the predictions matched the decisions taken
by the experts with an error lower than 5%. Based on the authors this means
that this new designed system maybe cannot entirely plan the production, but
it can be used for event recognition.

Usuga Cadavid et al., 2020 [18] reviewed 69 papers related to Production
Planning and Control (PPC) and analyzed them based on four different cate-
gories

• Methods, techniques and tools,

• Data sources to implement ML in PPC,

• use cases analysis,

• new tools of Industry 4.0 usage.

They grouped applications by their existence and found that there is a lack of
researches related to data acquisition and exploration and constant adaptation
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of proposed model to the environment dynamics. Regarding the techniques and
the models, Neural Networks, Q-Learning, Decision Trees, Clustering, Regres-
sion and Ensemble learning are most frequently used. Also most common ML
types are the supervised and reinforcement learning. About the tools, Matlab,
R, Python and RapidMiner are used, although this may not be representative
for business as the papers have a more academic character. About the data
sources, the authors mention that the organisation seems to focus more on
collection from information systems rather than taking advantage of the IoT
sources. The most addressed use cases were Smart Planning and Scheduling
and Time estimation while inventory and distribution control and Smart design
of products and processes is less.

Vitui and Chen, 2021 [19] presented a methodology for capacity planning
prediction, named ML Assisted Capacity Planning (MLASP). Their paper fo-
cus on industrial environments where is critical to find out the capacity of the
systems, like e-commerce websites. Capacity planning constitutes a critical ac-
tivity and can impact the revenue of an industry. This process usually includes
the tune of many parameters, and is being done after engineers perform many
different tests and understand how these parameters affect the KPIs. However
the size of the parameter’s space makes this work challenging and costly. The
MLASP uses ML models in order to define these system’s KPIs. The paper’s
goal was to answer which is the accuracy of this architecture and then to com-
pare it with the same models but trained with less examples. They applied
their methodology into two large scale Erickson’s enterprise systems, although
because of the company’s security policies they were no able to publish much
of internal information and result and for this reason they worked also with the
open source Apache Kafka. The methodology included three main parts

• Dataset generation - running of load tests,

• Data pre-processing - feature engineering and selection,

• Apply of ML techniques.

About the ML models, tree-based (Random forest, XGBoost), deep neural net-
works (MLP, CNN, LSTM) and traditional (linear regression) models used. For
performance evaluation, many different metrics used but the authors focused
mostly on Mean Absolute Percentage Error (MAPE). The MAPE values were
low for XGBoost AND MLP neural network which may indicate that these
models may be better at capturing the relationship between the configuration
parameters and the system throughput. On the subset of tests experiments, the
XGBoost achieved the best results compared to the other models.

3.4 Dissertation context

Inspired by the described related work, in the context of this dissertation, a re-
search over a manufacturing optimization problem was done. The optimization
problem is modeled as a knapsack-like and will be explained and formalized in
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the next section. We will present a data driven tool that operates as a decision
support alongside with an already developed and existing combinatorial algo-
rithm which solves it, in order to minimize the waste of a paper industry given
a set of constraints. In contrast with the research already conducted around the
content, we approach the optimization problem as a black box and we focuse
more on the connection between the input and the output by examining the
interpretability of the proposed method.
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4 Problem definition

This section contains an introduction into the paper industry, the definition of
the problem.

4.1 Paper industry

Paper industry is the manufacturing sector that is associated with the produc-
tion of any type of paper. Paper production usually starts with the production
of large reels - also called jumbo through the factory’s Primary machine. These
jumbo reels are usually very large, both in length and width and rarely end up
being the final product that will be shipped to the customers. There are many
different routes that a jumbo reel can follow in order to be converted into a final
product. In one of the most common, the jumbo get cut both in length and
width through the winders. This is the point of production where if the right
choices are made the wastage can be minimized to a great extent.

The primary machine usually converts raw material into paper. It can pro-
duce many different types of paper, depending on the final products of the
factory. The type of paper is related to the recipe of the raw material which
is fed to it. The production of each different type of paper, should be done
based on the existing orders, and forecasts based on experience. This happens
because it is very difficult to store this type of reel due to their size. It is also
impossible to constantly switch from one type to another because this requires
a lot of time which means a reduction in profit. For this reason, production
planners try to fulfil the highest quantity of a specific type, during when the
machine is set to produce it, in order to fulfil as many orders as they can and
also, keep the number of alternations low. The production unit of a particular
type of paper is called a run. The machine can produce a certain range of paper
width (which is quite large) and this is related to its construction.

Winders is usually the type of machine that comes as a second step in pro-
duction. As input take the reels produced by the primary machine and cut them
into smaller ones both in width and length.

Run is the unit of measurement for producing a particular type of paper. A
run contains orders which in turn contain the number of reels and the widths
that a customer wants.

Example of runs:

• RunA,

1. OrderA1,

(a) 1 reel of 4000mm width,

(b) 2 reels of 800mm width,

2. OrderA2,

(a) 3 reels of 3200mm width,
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(b) 1 reel of 5000mm width,

(c) 6 reels of 700mm width,

3. OrderA3,

(a) 15 reels of 600mm width,

(b) 10 reel of 500mm width,

• RunB

1. OrderB1,

(a) 15 reel of 1500mm width,

(b) 1 reels of 6000mm width,

(c) 23 reels of 2450mm width,

(d) 15 reels of 1230mm width,

2. OrderB2,

(a) ...

3. ...

The manufacturer goal is to reduce the waste and therefore to produce
these runs in the most efficient way. The planner is the person inside the
manufacturing organisation, who defines which orders will be included in a run.

There are many different ways to produce the orders of a run. The goal is
to perform the production using the most efficient way, or in other words, the
one that reduces the most the waste. For example, supposing that a primary
machine produces jumbos of 3600mm and using them needs to fulfill an order
of 6 reels of 1000mm. These reels production can be done, in many different
ways, like for example:

• get 1 reel of 1000mm from every jumbo of 3600mm (2600mm waste, 72%)

• get 2 reel of 1000mm from every jumbo of 3600mm (1600mm waste, 44%)

• get 3 reel of 1000mm from every jumbo of 3600mm (600mm waste, 16%)

For this case, the ideal production is to use 2 jumbos, and cut 3 reels from each
one of them. However this is a very simple example, and most of the times the
runs contain a big number of different widths and number of reels, which makes
them hard to be planned from a human. Here comes Greycon, which using
XTrim in order to solve the combinatorial optimization problem and returns
the best plan for the set of orders that the planner chose under a specific run.
This is being done, by providing the patterns to cut the jumbos for the winder
machines. XTrim receives, a run - set of orders to be produced and provides
the most efficient plan for the cutting. The planner decides which orders he
wants to fulfill inside a specific run and asks from the XTrim to provide the
plan - how to cut them. This can be a very time consuming process as for
each change the planner performs, he has to manually deploy again the XTrim’s
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Figure 3: Jumbo reels waiting to be loaded

algorithm and wait to check whether the new produced plan has less or higher
waste percentage.

The ”solution” is the plan provided by XTrim. In figure 4, we can see a
solution. Every row refers to a jumbo. The grey boxes represent ordered reels
while the light blue the wasted part of the jumbo.

4.2 The problem

After the planner decides the orders to be included in a run, asks from the XTrim
to provide the solution. The solution is the ideal plan for these orders, and is the
one with the minimum waste. Although, this minimum waste sometimes may
be more than a desirable upper bound value, and so the planner may have to
edit the orders, by removing or adding new ones. After the edit of the run, the
planner has to re-run the XTrim’s algorithm and wait for the new solution to
check whether is better or not. The new solution is not provided instantly, but
requires some time to get calculated, based on the given parameters. Repeating
these actions again and again during a work day, constitutes a time consuming
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Figure 4: XTrim solution

process. Goal of this work, is to develop a model which will predict the total
waste inside an acceptable space, without having to run the XTrim’s algorithm,
and to give back to the user, an instant feedback about the given orders. The
feedback will be an anticipation about the potential waste. The model will
act as an experienced planner who, may know in advance that a specific set of
orders can end up in a good solution. After discussions with experts, the target
in order for the tool to be valuable, is set to MAE ≤ 1.

The problem can be modeled as knapsack-like optimization procedure. We
are trying to find the least set of bags, which fits all the available items and
which items belong to which bag. In that way we will achieve the minimum
waste for the specific combination of input variables. For our case, the bag is
the input jumbo’s width, while the ordered reels are the items that we are trying
to fit in.

Our problem can be mathematically formulated as follows. Given:

• a set of objects O = oi, 0 < i < N1, and ws, 0 < s < N2 each item’s
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weight/value in O, we want to find a partitioning P of O, creating K
groups of Gj , 0 < j <= K, where Gj ⊂ O,

• the capacity of a machine is M,

• Each group Gj have a waste

waste(Gj) = M −
∑

(wl, wl ∈ Gj) (5)

and the overall waste can be formulated as

W (P ) =
∑

waste(Gj) (6)

We search for a P that minimizes the following: Given that M is each bags/-
machine capacity and wi each items weight, we are trying to find K, which
represents the number of bags, in which we can fit all the items.

Minimize W(P), K

Subject to ∑
(wi) < M,wi ∈ (Gj) (7)

We can represent the assignment of a wi to a Gj , through a membership
variable m(wi, Gj), where m equals to 1 when wi has been assigned to Gj ,
otherwise m equals to 0. Searching P is equivalent to finding the m function.

Our motivation is to employ a data driven approach that approximates the
total waste given a set of initial constraints referring to the number of items,
number of rolls etc.

We want, given a set of orders S, to select a partitioning of the orders B(S),
such that the sum of waste across all partitions S’ generated by B(S) is mini-
mum. Calculating the waste for a S’ is very expensive. We create an estimation
function W(S’) which approximates the waste. W(S’) is our machine learning
model.

We focus on W(S’) because if it is efficient enough, we can perform even
exhaustive search to find a good enough solution for the B(S), in a fragment of
the time we would need using the full, combinatorial solution.

By using the W(S’) approximator we will be even able to find the best set of
inputs, by checking and estimating the waste of all possible input combinations.

For example, supposing that we have three orders, the o1, o2, o3. We can
have the following six possible partitions, [o1], [o2], [o3], [o1, o2], [o1, o3], [o2,
o3], [o1, o2, o3]. Without our model, in order to find which of these partitions
provide the best plan in terms of giving the min waste, we would have to solve
the combinatorial problem seven times, which means seven multiplied by, on
average, one minute. Using the approximator that we will try to employ we will
be able to have an instant estimation about the total waste of all these partitions.
This means that we will reduce the required time to solve the combinatorial
problem from seven to one. This example consist of only three orders. In real
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word we have on average more than twenty orders in each plan and so the
advantage that we get is huge.

From ML perspective, the problem can be addressed both as regression and
classification. In case of regression, we will try to predict the exact percentage
of waste, while in the case of classification we will have to define classes and
predict a specific class. For example two or more classes can be defined based
on the total waste value (%) as:

• Totalwaste(%) ≤ 3, good waste, class 0,

• Totalwaste(%) > 3, bad waste, class 1.

The classification approach might render easier the model’s work, however a
smaller error might be more beneficial. For example, suppose we have a run with
total waste (%) of 2.9, a prediction of total waste (%) of 3.1, in regression means
0.2 error which is acceptable while in classification means miss classification.
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5 Dataset

In this section we will present the data generation and datasets construction by
exploring the metadata.

5.1 Dataset generator

For the train and evaluation process of the models, data from a dataset generator
tool was used. This was an already existing project developed from Greycon,
and it automates the process of: generate random runs and provide the XTrim
algorithm’s solution. The user defines a set of rules and the tool generates the
runs based on then. For example, we can ask to generate N runs with:

• Order of type A,

– 1 to 40 reels,

– widths between 500-6500mm,

• Order of type B,

– 1 to 5 reels,

– widths between 100-700mm,

The rules that where utilized in order to construct the datasets for the
experiments are shown in table 1. The artificial datasets were constructed in a
way to mimic a real production situation. Each cell represents a category. For
example, A represents the existence of 1-10 reels of 1000-2000 mm width in a
run. The combinations of runs constructed for the dataset are the following:
ACE, ACF, ADE, ADF, BCE, BDE, BDF.

For each one of these categories, we generated 50 runs, so the dataset contains
in total 350 instances.

The Dataset generator generates the metadata and from them a dataset was
constructed.
For the datasets construction it is necessary to focus on:

• Number of ordered reels per order,

• Width of ordered reels,

• Solution’s total waste (%)

Following we see, how the orders table looks. Each row represents an order and
contains:

• The Run in which the order belongs,

• The Order’s name,

• The Number of reels. The number of ordered reels of a specific width from
a customer
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Dataset rules
Widths/ Number of
reels

1-10 11-40

1000-2000 A B
2000-3500 C D
3500-5000 E F

Table 1: Dataset rules.

• Width (mm). The width in mm of the ordered reels

Apart from the order’s related information, we need also the results for these
runs after running the algorithm. This information includes:

• The run number,

• Total waste (%), the XTrim solution achieved.

The challenge with the dataset construction is how we will achieve this infor-
mation to be represented in feature sets of stable size.

5.2 Statistical dataset

The objective is, given a set of orders, estimate the total waste percentage.
This means that based on our metadata, we need to find a way to represents
the orders in a vector of stable size. For example, for the table 2 we have with
green the orders of the run 1, with yellow the orders of the run 2 and with blue
the orders of the run 3. This means that we have:

• 4 rows, reference Run 1,

• 2 rows, reference Run 2,

• 3 rows, reference Run 3,

So the challenge is that we want somehow to depict the information of this
variable number of orders into a specific number of features. In the first dataset
attempt, each row represents a solution for a run. The information from the
orders is presented using statistical values. These are:

• Number of orders, the number of different orders in the run,

• Number of distinct widths, the number of different widths in the run,

• Average width, the average width (mm),

• Max width, the maximum width (mm),

• Min width, the minimum width (mm),
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Orders
Run Order Number of reels Width (mm)
1 1A 5 100
1 1B 12 100
1 1C 32 500
1 1D 17 1600
2 2A 19 700
2 2B 90 900
3 3A 43 500
3 3B 120 600
3 3C 4 1000

Solutions
Run Total waste (%)
1 3
2 5
3 1

Table 2: Orders classified by run.

• Deviation, the width’s deviation,

• Weighted average, the average of multiplication of number of reels with
the widths.

• Average number of reels, the average number of ordered reels.

For example for the previous presented tables the dataset looks as presented in
table 3.

Statistical dataset
Run Number

of or-
der

Number
of dis-
tinct
widths

Average
width(mm)

Max
width(mm)

Min
width(mm)

Deviation Weighted
average

Average
number
of reels

Total
waste
(%)

1 4 3 575 1600 100 1507500 123 16.5 3
2 2 2 800 1600 100 1207500 123 54.5 5
3 3 3 700 1000 500 140000 123 55.7 1

Table 3: Statistical dataset.

5.3 Extended dataset

There are multiple different ways that this problem could be approached. In
effort to include more information in the dataset and inspired from natural
language processing, we tried to find a way to map different widths with existed
instances. If every unique width was treated alone, then this would mean that
we would have a very big in feature size dataset. Every unique width would have
to be a separate feature and this feature would represent the number of instances
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Orders
Run Order Number of reels Width (mm)
1 1A 5 100
1 1B 12 100
1 1C 32 500
1 1D 17 1600
2 2A 19 700
2 2B 90 900
3 3A 43 500
3 3B 120 600
3 3C 4 1000

Solutions
Run Total waste (%) Class
1 3 0
2 5 1
3 1 0

Table 4: Classification approach.

of this width in the run. The dataset would have to contain features from zero
mm to jumbos width size mm, with a step of 10mm. Also we would need a lot
more data, in order to cover all different possibilities or else, the models would
end up to be biased from the widths of the training process. In order this to be
avoided, but also to improve the contained information, in this second approach
of the dataset, we extended the already existing information by following the
idea of dividing the input jumbo in ten pieces, and extract the statistical values
of the previous dataset for each of these pieces. This would mean that it will be
easier for the model to construct rules like, ”as bigger is the width of the reels
which have width between [0, jumboswidth/10], as harder it is to make a good
solution”. Also this way of modeling allows the categorization/quantification of
the widths into small ones, slightly biggers, slightly b, etc..

5.4 Classification approach

As already presented and discussed in the previous section, the problem can be
addressed also as a classification, as shown in table (4). For the classification’s
dataset both statistical and extended dataset used again and the Total waste
(%) column replaced by the class.
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6 Statistical dataset regression experiments

This section contains data pre-processing, visualization and the regression exper-
iments for the statistical dataset. The follwoing section is structured a follows:

• Data visualization

• ML simple models evaluation

• Data preprocessing

• ML simple models tuning and interpretability

• NN experiments

• Generalization tests

Figure 5: Experiments flow

At the end of this section, we will be able to answer:

• Do we need to pre-process the data? And which pre-process technique
helps the models to perform better?

• Which features should be used?

• Can we achieve to perform a MAE of ≤ 1? Can we explain models pre-
dictions?

• Which is the best way to construct a base dataset ( which will be able to
define a model with better generalization capabilities)?
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6.1 Data visualization

Starting from the statistical dataset, we will start by analyzing it and getting
some insights about the features.

The dataset contains 350 runs. The most of the solutions total waste (%)
belongs between [0, 10]. The model is necessary to be able to predict the solu-
tions inside this space. Out of this space, the produced solution means that is
already going to be bad, so it is not necessary to be able to predict an accurate
value.

Figure 6: Total waste percentage distribution

The basic attributes of the features can be found in table 5.
After plotting the pairwise relationships between the variables, there is no

any obvious observation that can be done.
The correlation matrix presents the correlation between the variables. The

correlation values are between -1 and 1. Negative correlation means that when
the value of the one variable increases the other one decrease while positive
correlations means that both increase or decrease together. As closer to the
bounds of -1, 1 the correlation value is, more correlated the variables are, and it
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Describe features
Max width Min width Number of

orders
Average
width

Deviation Average
number of
reels

Weighted av-
erage

Total waste
(%)

count 350 350 350 350 350 350 350 350
mean 4784.28 685.14 125.21 2621.95 1123.79 961.45 2616.49 1.72
std 296.51 302.7228 73.23 505.29 200.41 548.37 510.07 2.62
min 3500 500 18 1316.66 566.14 124.27 1197.28 0.00
25% 4700 500 60 2241.05 999.40 477.06 2259.9619 0.31
50% 4900 600 114 2667.36 1121.62 883.49 2664.11 0.94
75% 5000 700 165 2987.91 1267.40 1281.28 2960.87 1.63
max 5000 2000 410 3750 1644.77 2581.50 3933.29 23.41

Table 5: Describe features.

Model evaluation without pre-processing
Regressor MAE APT
Random forest 0.913 0.000457
XGBoost 0.946 0.000019
Decision tree 1.18 0.000036
Polynomial of 2nd degree 1.32 0.000002
Polynomial of 3rd degree 1.37 0.000003
Bayesian ridge 1.38 0.000359
Elastic net 1.39 0.000033
Linear 1.39 0.000040

Table 6: Model evaluation without pre-processing.

means that one of them contains all the required information for all. (Han and
Kamber, 2012, pp. 55, [8]). For this reason we decided, because the average
number of reels is highly correlated with the number of orders, not to include
the values of the latter in the optimization procedure.

6.2 ML experiments

ML models evaluation section without pre-processing.

6.2.1 Train and test dataset split

For the models evaluation, the dataset split into train and test set. The train
contained the 80% of statistical data while the test was the rest 20%. K-Fold
cross-validation used as well. Bengio and Grandvalet, 2004, [3], described K-
Fold cross-validation as an intensive train and test procedure using all the avail-
able examples. The algorithm works as follows: divide the data into K equal
subsets, and perform K times train and test the models by leaving out each
time a single different subset of the data from the training process to use it for
testing.
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6.2.2 Metrics

For the models evaluation we focused mostly on Mean absolute error (MAE).
In some tables in this document you will see also that we include the Average
Predict Time. The APT is calculated by measuring the time that takes to
predict the test set and dividing it by their number.

6.2.3 ML models

The ML models which used from the experiments are:

• Linear regression

• Polynomial of 2nd degree regression

• Polynomial of 3rd degree regression

• Bayesian ridge regression

• Elastic net regression

• XGBoost regression

• Random forest regression

• Decision tree regression

The previous referred regressors can be separated into the ones that construct
a function which describes the data and the ones that describe the data using
rules. Random forest and Decision tree are originally classification models and
when they are used in regression problems they describe the data with rules -
if then statements - refer applied predicting modeling book.

6.2.4 Results

In table 6 we see the results of the model evaluation without pre-processing.

6.3 Data pre-processing

In this section data pre-processing techniques and more specifically two nor-
malization techniques that will be discussed and presented. Models will be
evaluated again for each different technique.

There are multiple ways that information can be represented. For example,
numbers that represent mass depend on their unit. Their value shown in kilos
would be a smaller number than their value shown in grammage. This can cause
issues as the models are not able to recognize these differences and transform.
Models, end up giving more ”importance” to features that take bigger values. In
order this to be avoided data can get standardized or normalized. Normalization
reduces their range from [−∞,+∞] → [−1,+1] while standardization reduces
their range from [−∞,+∞] → [0,+1]. Normalizing the data attempts to give
all attributes an equal weight.w (Han and Kamber, 2012, pp. 112, [8]).
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Model evaluation with min max scaler
Regressor MAE APT
Random forest 0.92 0.000125
XGBoost 0.94 0.000005
Polynomial of 2nd degree 1.05 0.000001
Decision tree 1.20 0.000002
Bayesian ridge 1.37 0.000002
Linear 1.39 0.000002
Elastic net 1.61 0.0000003
Polynomial of 3rd degree 1.71 0.00002

Table 7: Model evaluation with min-max scaler.

6.3.1 Min max scaler

Min-max scaler uses the min-max normalization which performs a linear trans-
formation over the original data. Supposing that the minA and maxA repre-
sent the minimum and maximum value of a feature A, this type of normalization
maps a value vi of a feature A to new vi in the range of [new minA, new maxA]
by using the formula shown in equation 8. (Han and Kamber, 2012, pp. 112,
[8]).

new vi =
vi −minA

maxA −minA
(new maxA − new minA) + new minA (8)

This type of normalization preserves a relationship between the vi and new vi.
In case we cannot be sure about the range of future used data, this cannot by
used, as in case the a vi is outside of the original minA and maxA range, will
encounter an out of bounds exception. (Han and Kamber, 2012, pp. 112, [8]).

The results after this transformation got applied in the data are shown in
the table 7.

6.3.2 Standard scaler

Standardization or z-score normalization is a different normalization technique.
In this type of transformation, a feature A is normalized based on it’s mean and
standard deviation. The formula used for this transformation type is shown in
equation 9.

new vi =
vi −A
σA

(9)

The results after this transformation got applied in the data are shown in
the table 8.

Even if the results seems to be quite close experiments will continue using
the stardard scaler due to the following two main reasons:
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Model evaluation with standard scaler
Regressor MAE APT
Random forest 0.91 0.000155
XGBoost 0.94 0.000013
Polynomial of 2nd degree 1.07 0.000002
Decision tree 1.17 0.000017
Elastic net 1.31 0.0000016
Bayesian ridge 1.38 0.000015
Linear 1.39 0.000021
Polynomial of 3rd degree 1.40 0.000003

Table 8: Model evaluation with standard scaler.

Model evaluation after tuning
Regressor MAE
Random forest 0.885
Elastic net 1.384
Bayesian ridge 1.375
Decision tree 1.053

Table 9: Model evaluation after tuning.

• Normalization on average seems like it helps models perform better when
compared with without pre-processing schems.

• Min max scaler out of bounds exception. We cannot be sure that all the
future values will be inside the bounds of the data using which we trained
the models and we developed the scaler.

6.4 Model tuning

Many models have parameters which cannot get directly estimated from the
data. This type of parameters are named tuning parameter because there is
no analytical formula available to calculate an appropriate value. (Kuhn and
Johnson, 2013, pp. 64, [9]). The tuning of the models is done by using extensive
grid search, in which, a set of values for each parameter is defined and an
extensive search on all possible combination of them, and comparison of the
results is being conducted. In the experiments we compare the MAE of each
combination after 10-fold cross-validation.

The results after tuning are shown in the table 9

6.4.1 Results discussion

The advantage of the regression models against classification but in general ML
models against DL, is that the results can be more easily explained. Especially
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Bayesian regression - statistical dataset weights
Column name weight
Weighted average width 1.176609
Min width 0.433434
Average reel width 0.046081
Max width 0.012132
Deviation of widths -0.140826
Number of ordered reels -0.498461

Table 10: Bayesian ridge statistical dataset weights

regression models because they construct a function after all, it is quite easy
by extracting the weights of each feature given from the model to the function,
to understand how each one of them affects the results. On the other hand,
because as already have been referred, tree models have been used and tree
models are using rules, weights cannot be extracted from them as they work in
a different way. Although the rules can be extracted and applied. These models,
classify the input features by their importance. There are many different ways,
this importance can get calculated. For these experiments, used the gini index.
Based on Menze et al., 2009, [11] the purpose of gini index is to describe a
feature’s importance as a ranking and represents a number which is calculated
as the sum of the number of splits that includes it, divided by the number of
samples, it splits. In other words it is an approximation of the entropy which
pass from it.

Bayesian ridge achieved the best performance from the regression models
with 1.375 MAE, by having constructed the function with the weights shown in
table 10. This table can be translated to ”The average multiplication of widths
with number of reels and the minimum width increase while the deviation of the
widths and the number of ordered reels decrease the total waste percentage.”

Elastic net, achieved similar performance to Bayesian ridge and more specif-
ically, achieved 1.384 MAE. The two dominant fields which increase the waste
percentage, are the same as before. The strange is that this model has entirely
ignored the deviation and the number of ordered reels. The weights are in table
11.

From the other hand, the best performed regression model, Random forest,
has ordered the features with not as similar sequence. As has already been
referred because of its a type of rule model, does not construct weights but
extracts feature importance. 12.

Finally, decision tree regressor have achieved a slightly worst performance
and interesting with an almost entirely different order of the features, table 13.

6.5 NN

In this section the steps followed and results of the NN experiments will be
presented. The number of the samples is not ideal for using DL, however a
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Elastic net regression - statistical dataset weights
Column name weight
Weighted average width 1.263152
Min width 0.586354
Max width 0.181213
Deviation of widths 0.000000
Number of ordered reels 0.000000
Average reel width -0.144277

Table 11: Elastic net statistical dataset weights

Random forest - statistical dataset feature importance
Column name feature

importance
Min width 0.402933
Weighted average 0.230533
Average number of reels 0.164966
Average width 0.076853
Deviation 0.075120
Maximum width 0.049615

Table 12: Random forest statistical dataset features importance

Decision tree - statistical dataset feature importance
Column name feature

importance
Average reel width 0.541101
Max width 0.222852
Min width 0.100663
Weighted average width 0.061040
Number of ordered reels 0.054209
Deviation of widths 0.020135

Table 13: Decision tree statistical dataset features importance
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effort was made.

6.5.1 Architecture

Because off the number of features is quite low (6), simple model architectures
are used. All the architectures started with a dense layer of input size the same
as the features (6) and end with a dense layer of size of one (1). In the internal
part of the network we tried with one and two extra dense layers. In every
dense layer the relu activation function used except from the last one in which
we assessed both relu and linear activation function. As loss function again was
used MAE. Chosen optimizer was the ADAM. All models trained in a maximum
of 4000 epochs with batch size of 2 and used early stopping when the validation
loss does not decrease for a maximum of 10 epochs. In case of early stopping
the best weights are restored.

6.5.2 Results

The best performance achieved with two internal dense layers and relu activation
in the last on as show in the image 7.

Figure 7: Statistical dataset neural network architecure

Models train stopped after 164 epochs and achieved a MAE in the validation
set of 0.68. Even if the results of DL are quite better than the results of ML
model, there are still reasons to use the seconds.

6.6 Generalization tests

From the previous experiments we conclude that only the Random forest re-
gressor and DL can achieve the requested performance. In this section the
generalization performance of them is tested and compared. As described in
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Figure 8: Loss diagrams

Generalization tests - statistical dataset
Used for validation Random forest regressor DL
BDE 0.4428 0.5727
BCE 0.4445 0.6329
BDF 0.5219 0.6015
ADE 0.8123 1.3568
ACE 1.0825 2.3218
ACF 1.3695 2.8166
ADF 1.9445 3.9272

Table 14: Generalization test on statistical dataset without preprocessing

the problem’s definition section the dataset contains runs of 7 different cate-
gories. Each of these categories will be used as a validation - test set on models
trained with the other six. For the ML experiments, the model was trained
using the whole dataset without including the runs of validation. For the DL
experiments the model was trained with the 80% of the disjoint dataset, the
rest 20% was used as a validation of the training process. In table 14 we see
the results of these experiments without having applied any pre-processing in
the data, while in the table 15 the standard scaler was constructed using the
training data and was used for both the train and validation set. The method
where scale the data using standard scaler seems to generalize slightly better.
Also, it seems that the datasets that contain smaller number of reels, the width
can be used as predictor for datasets with higher values, while the opposite is
no true.
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Generalization tests - statistical dataset - standard scaled
Used for validation Random forest regressor DL
BDE 0.4380 0.4022
BCE 0.4460 0.4500
BDF 0.5212 0.4294
ADE 0.8130 1.0985
ACE 1.1063 1.1514
ACF 1.3688 1.4654
ADF 1.8804 3.7837

Table 15: Generalization test on statistical dataset with data standard scaled

6.7 Summary

Following back to the questions which set in the beginning of this section:

• Do we need to pre-process the data? And which pre-process technique
helps the models to perform better?

The experiments showed that data pre-processing helped the models to
perform better. Normalization on average seems like it helps models per-
form better.

• Which features should be used?

Correlation matrix showed high correlation between the average number
of reels and the number of orders and for this reason the second one was
excluded from the experiments.

• Can we achieve a MAE of ≤ 1? Can we explain models predictions?

Random forest regressor and the presented NN architectures achieved the
baseline set in the context of this work (MAE ≤ 1). Regarding the random
forest regressor, it validates the findings of the related work presented
in the previous sections. After tuning and using 10-Fold validation, we
achieved a MAE of 0.885. The model ordered the input features as shown
in table 12. Regarding NN, it achieved a MAE ≤ 1 and more specifically
a MAE of 0.68. The architecture used to performed this, can be seen in
image 7. Although the NN architecture performs better than the random
forest regressor, it is harder to explain the predictions. So, about which
model is suggested to be used, the answer depends on what we need.
There is a trade off between better performance and interpretability. In
case we want to provide suggestions and also to be able to explain specific
predictions, it would be better to use the ML model while in case we care
only about the accuracy it would be better to use the NN.

• Which is the best way to construct a base dataset?

The experiments showed models trained on a dataset which is constructed
from reels with smaller reels can achieve higher accuracy while the opposite
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is not true. Furthermore the dataset based on the experiments should be
normalized.
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Model evaluation without pre-processing
Regressor MAE APT
Random forest 0.93 0.000133
XGBoost 0.96 0.000007
Bayesian ridge 1.22 0.000034
Decision tree 1.24 0.000021
Elastic net 1.25 0.000034
Linear 1.26 0.000003
Polynomial of 2nd degree 5.10 0.000062
Polynomial of 3rd degree 2.01 0.000070

Table 16: Extended dataset - Model evaluation without pre-processing.

Model evaluation with min max scaler
Regressor MAE APT
Random forest 0.93 0.000133
XGBoost 0.96 0.000007
Bayesian ridge 1.19 0.000002
Decision tree 1.25 0.000002
Linear 1.26 0.000003
Polynomial of 3rd degree 1.55 0.000070
Elastic net 1.61 0.000003
Polynomial of 2nd degree 1.82 0.000062

Table 17: Extended dataset - Model evaluation with min max scaler.

7 Extended statistical dataset regression exper-
iments

In this section the results of the experiments using the extended statistical
dataset will be shown and will be compared with the results of the statistical
one. The flow which followed was the same. In this section mostly we will focus
on the comparison of the simple statistical dataset with the extended one and
we will answer the question which is better to use. Also an effort will be made
by extracting the same number of features as we had in the previous section,
using PCA.

7.1 Results and comparison

In table 16 we can see the results of the model evaluation without pre-processing,
while in table 17 and in table 18 the results after having pre-processed the data
with min max and standard scaler. Compared with the previous version of the
dataset, the results does not seem to be as better in order to give a reason to
use a more complex input and so a harder model to explain.
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Model evaluation with standard scaler
Regressor MAE APT
Random forest 0.92 0.000129
XGBoost 0.96 0.000008
Bayesian ridge 1.19 0.000002
Polynomial of 3rd degree 1.25 0.000089
Linear 1.26 0.000003
Decision tree 1.26 0.000002
Elastic net 1.27 0.000003
Polynomial of 2nd degree 1.77 0.000006

Table 18: Extended dataset - Model evaluation with standard scaler.

Random forest - statistical dataset feature importance
Column name feature

importance
Average width 0.451670
Min width 0.017200
Weighted average 0.230533
Deviation 0.009526
Number of orders 0.004959
Maximum width 0.000582

Table 19: Extended dataset - Random forest statistical dataset features impor-
tance

After the models tuning, random forest regressor, achieves the best perfor-
mance with MAE 0.897. The related position of the fields are not the same,
so, it cannot be said that the extra information improved the already created
models, but made new. The order and the importance can be found in table 19.

Regarding the deep learning experiments using this dataset, the model did
not achieve similar results as using the statistical dataset. The reason which
could explain this is that the number of training data was not enough in order
to train the model to ”learn” the extra weights.

About the generalization of this architecture, the results of the experiments
can be seen in table 20. As before, the models trained with runs generated to
have a smaller range of widths - reels seems like can predict quite good, runs
with bigger widths - amount of reels, while the opposite is not true. Although,
also it is worth to mention that in this case a mix of low and high number of
reels performed better from just having trained the models with only the sets
of low numbers.
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Generalization tests - statistical dataset - standard scaled
Used for validation Random forest regressor
BDE 1.0978
ACF 1.0767
BDF 0.9911
ACE 0.9778
BCE 0.7985
ADE 0.8155
ADF 0.4942

Table 20: Generalization test on extended statistical dataset with data standard
scaled

7.2 Principal component analysis

In this section, principal component analysis technique will be used in order to
extract specific number of features out of the extended dataset. More specif-
ically, in this section we tried to extract the same number of features as the
statistical dataset has, and so to compare, whether the extra features of the
extended dataset, can feed the models with extra information. Principal com-
ponent analysis is a mathematical algorithm which reduces the dimensions of
the data. This reduction is being done by identifying directions among the data,
called principal components. Out of these components, new variables are getting
generated, which are linear combination of the original ones. (Ringnér, 2008,
[14]). Similarly as in the previous experiments, the data get first pre-processed
by applying into them min max scaler or standard scaler and then tries are
being done using different models and deep learning. Unfortunately with the
PCA, models did not achieved to perform MAE ≤ 1. Apart from this, using
PCA would make it even harder to explain the results.

7.3 Summary

Summarising the results of this section, seems like the extra information of this
dataset, didn’t help the models to perform better than before. The most of the
times, the results were similar, but there were cases in which the results was
not as good as in the experiments of the previous section, like for example in
the NN experiments. This could be related to the small amount of samples.
Also, a try made, the same number of features as in the statistical dataset to
be extracted from the extended, using the PCA technique, in order to check
whether the extra information helped, however the results showed that did not.
The answer to the question whether to utilize a simple statistical dataset or the
extended, is to utilize the statistical, as using the extended did not translate to a
better performance for the models. Also even for the cases in which the models
performed the same, the simple statistical would be a better choice, because
using it we construct simpler models and so predictions get to explained more
easily.
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8 Classification experiments

In this section the problem will be modeled and addressed as classification.
As already have been mentioned, it is more correct for the specific case the
problem to be treated as regression, however this can be a part of a bigger
pipeline, in where first we check if a run is good or bad (classification’s model
prediction), and only in case it is good, we try to perform a more accurate
prediction (regression’s model prediction). So, in this section we will answer,
whether we can address with success this problem as classification.

8.1 Problem definition

As presented in the problem definition section, there are two approaches that
the problem can be addressed. Either as regression or as classification. In the
previous two sections the results of the regression experiments presented, while
now the flow and the results of the classification will. For the classification
experiments, both datasets used as before. The classes made in that way in
which they are specific, clear and discrete.

8.2 Experiments

The rules that classes made based on the total waste percentage, are the:

• Totalwaste(%) ≤ 1, class 0,

• Totalwaste(%) > 1 and also Totalwaste(%) ≤ 2, class 1.

• Totalwaste(%) > 2, class 2.

The distribution of the samples for each class can be seen in figure 9. The
dominant class is the 0, with number of samples as almost the summary of the
other two.
The classification models used are the following:

1. Logistic regression,

2. Gaussian Naive Bayes,

3. Random forest,

4. XGBoost,

5. K neighbors,

6. Decision tree,

7. Linear discriminant analysis,

8. SVM.
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Figure 9: 1st classification approach distribution

Because of the number of samples in each class is different, models compared
based on the weighted average precision value and then by their confusion ma-
trix. As per Tharwat, 2018, [17], precision is the number of correct predicted
samples, divided by all the samples of this specific class. If the correct predicted
defined as True Positives (TP), and the not correct predicted False Positives
(FP), the precision value is the one described in equation 10.

Precision =
TP

TP + FP
(10)

This value is being evaluated for every different class, and then the weighted
average of them is evaluated.

Confusion matrix is a 2D matrix in which, the one side presents the actual
values and the other the predicted. Every cell describes the correct predictions
and the mis-classifications.

The results can be seen in table 21. The best performance achieved by K
neighbors model, although in the confusion matrix of figure 10, it’s clear that
the model, have learned to separate class 0 from class 2, and has miss-classified
almost all the class 1 to class 0. The model does not perform well.

A second attempt using the same dataset will be done, after fixing the im-
balance of the classes by oversampling the training input using the synthetic
minority oversampling technique (SMOTE), as shown in figure 11. Oversam-
pling of minority classes helps the model to reduce the bias caused by the im-
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Classification experiments - statistical dataset
Model Precision
K neighbors 0.65
Logistic regression 0.63
Decision tree 0.60
Random forest 0.56
XGBoost 0.56
Gaussian naive bayes 0.55
Linear disciminant analysis 0.54
SVM 0.46

Table 21: Classification experiments statistical dataset

Classification experiments - statistical dataset after oversampling
Model Precision
Random forest 0.59
XGBoost 0.63
K neighbors 0.56
Decision tree 0.54
Logistic regression 0.54
Gaussian naive bayes 0.48
Linear disciminant analysis 0.54
SVM 0.52

Table 22: Classification experiments statistical dataset after oversampling

balanced data. The results at these experiments are slightly better than before.
The models still seems to not be able to recognize all the three classes. It ap-
pears that the oversampling does not guarantee better performance, since it
only brings improvements to specific algorithms, as shown in the results table.
22.

Similar results achieved with the extended dataset and seems as like in the
regression experiments that the extra information did not help the models to
perform better.

8.3 Summary

Summarising the results of this section, seems like the models cannot predict
with very high accuracy between 3 classes, even when the models are trained
using similar number of samples for each class. Further tries and experiments
should be done. ]
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Figure 10: Statistical dataset - K neighbors confusion matrix

9 Conclusion

In this section a discussion about the results of the experiments will be con-
ducted and also future work will be proposed.

9.1 Summary of contribution

Summarizing the work conducted in the context of this thesis we started from
defining the problem continued with metadata generation and conclusively we
constructed datasets that were utilized in the experiments. The problem was
approached both as regression and classification. Also the interpretability of the
regression models was discussed. The generalization capabilities of the proposed
methods was also evaluated.

The produced and presented regression models can help organizations to
save time and increase their productivity, but significantly reducing the time
needed to select a production plan. Coupling the estimator with an automated
parameter generator can allow a very quick search in the parameter space of
a production plan to reduce the waste. This reduced the need for an expert
who would suggest specific input parameters, thus allowing people with little
domain knowledge to suggest promising production plans. The search process
itself provides suggestions to reduce production waste.

Following back to the questions that were set in the introduction, the ques-
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Figure 11: Statistical dataset classification approach distribution after oversam-
pling

tions that answered are:

• Which is the best way to model a dataset in this knapsack-like problem.
Does the extra information help the ML models perform better? Which
samples can describe a bigger part of the input space?

• Which ML model performs the best and why?

• Can we explain the predictions?

9.1.1 Dataset

The experiments showed that using both the statistical and the extended sta-
tistical datasets helped the models to predict accurately the total waste. The
performance was almost the same with the statistical dataset, that performed
slightly better in some cases like in NN and in Random forest regressor experi-
ments, while the extended statistical dataset performed better to some others,
like in Bayesian ridge regressor. The extra information that was passed into the
models, did not seemed to help them in terms of accuracy. Furthermore it had a
negative impact on the interpretability of them. The correlated position of the
common fields was not the same, meaning that the models constructed using
the second dataset are not the same as the ones constructed with the first, fed
with extra information. The features comprising the Statistical datasets seemed
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enough (as shown by the experiments conducted) for the models to have an ac-
ceptable performance in terms of accuracy within statistical significance. The
generalization of the models that achieved the goal was also also by taking ad-
vantage of the way the dataset was constructed (table 1). Out of the six groups
of runs we were leaving one of them out on, and we were training the models
with the other five. The experiments showed that the ones trained with the
groups which contained reels with lower width values can construct predictor in
comparison with the ones with greater width values. Especially when a model
gets trained with a combination of big and small groups it performs better. Also
the normalization of the data, helped the models to generalize better.

9.1.2 Which ML model performs the best and why?

Baseline ML models and custom NN architectures were both utilized in the
context of this work. Both approaches seemed to pass the threshold of MAE
that was set for the purposes of this work, as demonstrated in the experiments
in section 4. Custom NN architectures performed better than ML algorithms,
while the latter provided easier explainability - interpretability of the results.
In case that it is not mandatory to focus on the explanation of the prediction,
or we do not want to construct a system which will also give suggestions, the
author of this work proposes that a Deep Learning model should be used, while
in the other cases, simple ML models can also be utilized.

9.1.3 Can we explain the predictions

Interpretability by its self is a research subject. For the experiments of the
context of this thesis, the interpretability only of the simple machine learning
models was examined. The explanation of the prediction of the models, increase
our confidence to use them, and help us to understand how the models work.

9.2 Future work

As future work, this thesis can be extended to:

• Focus on model’s interpretability - explainability. Give suggestions for the
input in order to reduce the total waste percentage.

• Construct a reinforcement learning agent which will use any of the already
constructed models as a reward function. This agent will act as a planner.
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