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Abstract 

 

My dissertation aims at understanding possible differences of the distribution of stock 

returns. With the help of the proxies for distribution uncertainty, I examine the difference of 

distribution uncertainty between each individual stock and the market return. The result is that 

those stocks with higher distribution uncertainty exhibit higher returns, therefore, the difference 

between portfolios with higher and lower distribution uncertainty is significantly positive. The 

empirical results for the impact of distribution uncertainty persist after taking into consideration 

individual firm characteristics.  
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Introduction 

 

 

 

This dissertation investigates questions within the framework of whether there is an 

explanation to the variation of returns across different stocks at any point in time. This is a 

legitimate question, which goes through the mind of every student at any university around the 

globe who has ever taken a course in finance instantaneously. 

In one of the most creative papers in financial economics, Markowitz (1952a) distinguished 

two stages when it comes to select a portfolio: The first stage starts with the observation and 

experience and concluded with the future beliefs about asset returns, and the second stage, with 

the optimisation of the portfolio on the basis of these beliefs. So, a plethora of traditional asset 

pricing models like the CAPM neglect the first stage and are based on the optimisation of the 

second stage. The problem is that the investors who have picked these models had already 

beliefs about the form of the distribution of the asset returns. For instance, under CAPM, the 

investor assumed that asset returns from his portfolio following a multivariate normal 

distribution or they have quadratic utility, so the mean-variance is optimal but, as the empirical 

evidence confirms (see, e.g. Fama, 1965, and Rosenberg, 1974) the portfolio returns are not 

normally distributed and even (a fuzzy argument by Tsay, 2010) a specific stock return 

distribution does not exist. The above arguments imply that investors do not actually know the 

exact distribution of future stock returns. Particularly, a recent paper form Kacperczyk and 

Damien (2011), assumes that the form of the distribution of returns is unknown, and advance 

a novel method (the Bayesian model) to incorporate the uncertainty into the return distribution 

(distribution uncertainty) in order to attain an optimal mix between a risky and a riskless asset. 

While there are difficulties in understanding the form of the uncertain distribution which its 

problem is widely known, oddly very few is known about whether the uncertainty or the return 

distribution affects empirical phenomena in finance, such as the cross-sectional difference of 

asset returns.  

Since, Treynor (1961-2), Sharpe (1964), Lintner (1965) and Black (1972), who have 

introduced the Capital Asset Pricing Model, there have been many studies conducted on the 

cross-section of stock returns. A plethora of studies have tested the empirical validity of CAPM 

using different approaches, but in this specific thesis I will not use CAPM or another traditional 

asset pricing model. Specifically, I will use proxies for distribution uncertainty of a stock return 
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such as the Kolmogorov-Smirnov (KS), the Cramer-von Mises (CM) and the Kuiper (K) 

statistics, which are non-parametrical, and the differences between empirical return 

distributions of an individual stock and a benchmark portfolio. As a result, I aim to investigate 

if there exists a significant relation between distribution uncertainty and expected stock returns.  
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“We perceive the world before we react to it, and we react not to what we perceive, but 

always to what we infer” 

-Frank Knight-  

 

 

Chapter 1 

Uncertainty 

 

 

1.1 Introduction  

The basic notion for many investors is that they prefer to take risks in situations where they 

know the probability rather than an alternative risk situation in which the probability is 

completely ambiguous. This fear for the uncertainty is, and always be, in the nature of man, 

because always we are always going to choose a known probability of winning over an 

unknown probability of winning even if the known probability is low and the unknown could 

be a guarantee of winning1. Because of this, many economics analysts wanted to describe this 

distinction between the known and unknown as risk vs. uncertainty (Knight, 1921), 

unambiguous vs. ambiguous probability (Ellsberg, 1961), precise or sharp vs. vague 

probability (Savage, 1954), and so forth.  

 

1.2 Uncertainty and Risk 

The main problem of uncertainty and risk in economics is, of course, not new. We live in a 

world of change and a world of uncertainty. As Knight (1921) has said; “We live only by 

knowing something about future while the problems of life, or of conduct at least, arise from 

the fact that we know so little” [p.199]2. Indeed, one of the major issues of modern decision 

 

1 Ellsberg Daniel, 1961, Risk ambiguity and the Savage axioms, Quarterly Journal of Economics 75, 643-669 

      2 Knight Frank H., 1921, Risk, Uncertainty and Profit, 1st end, Houston Mifflin, Boston, MA 
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theory is the analysis of decisions under ignorance or ambiguity, where the probabilities of 

potential outcomes are neither specified in advance nor readily assessed on the basis of the 

available evidence. This problem was examined in detail by many academic researchers from 

economic or even from statistical perspective; one of them, of course, was Knight (1921) who 

distinguished the risk and uncertainty as measurable and unmeasurable uncertainty, 

respectively. In other words, the proper definition that we can give in order to describe the 

word “risk” is that of referring to any kind of uncertainty viewed from the perspective of the 

unfavourable contingency and the term “uncertainty” similarly with reference to the favourable 

outcome. Nevertheless, if the above logic is correct, we can use the expressions’ “objective” 

and “subjective” probability to describe the risk and uncertainty respectively, as these terms 

are already generally used for this purpose. 

The foundation differences between those two terms are that the objective probability is 

more accurate for the description of a given outcome than subjective probability. That is 

because the subjective probability is referred to the judgement and experiences of the individual 

rather than objective probability which allows the observer to gain insight from historical data 

and then evaluate the likelihood of a given outcome. A striking example about uncertainty is 

in judging or shaping these views in the future course of events, which in fact guide most of 

our behaviour. Furthermore, if we are able to know the possible outcomes from a probability 

then we can discard any real uncertainty by the expedient of grouping instances. It seems 

possible but does not necessarily mean this will be done; and we should observe the outset of 

probability because when an individual instance only is at issue, the measurable risk and an 

unmeasurable uncertainty have no differences. The individual who has already observed via 

on his evaluation of the value of his opinion into the probability form of p (probability of 

success) and q (probability of failure) and the “feeling” about any other probability situation; 

besides this unique instance, it can be concluded that it is possible for the real probability to be 

calculated, if of course we not only know exactly how much success there will be in a number 

of games but also, the odds against us then it does not matter whether we place all our bets in 

one kind of game or in as many as possible different games as there are bets. Nevertheless, it 

is important an individual who enters in this world to remember that it will be against him, if 

he considered any single case as isolated and the only thing that comes to my mind to reverse 

this important logic is when his fortune is at stake. 

Additionally, in the case that we do not have a quantitative probability in the process of 

grouping, still we have the change to tend to some results of cancelling out some fluctuations 

and approach constancy at some point. For Knight (1921) there appears to be two kinds of 
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elements as far as he is concerned about making judgements; the first one is determinate 

factors (or uncertainty of an opinion) and the second one truly accidental factor (or true 

probability). The difference between these two is that we have no means to scatter them and 

estimate them, neither by calculation a priori nor by empirical sorting. However, if we applied 

some magnitude within narrow limits then, the sorting method can be conducted.  

Besides the above two kinds of elements, the main problem for human attitude concerning 

uncertainty is that an individual is surrounded by difficulties as the uncertainty itself. Of course, 

the reaction itself is varied from one individual to another but the common, as common can be, 

reaction of a human being is subject to well-known deviations from the conduct which sound 

logic would dictate. So, as is well detailed by Adam Smith, the man going to risk a small 

amount in the chance of winning a larger one when the adverse probability, which is probably 

known or estimated, against winning is much more than the ratio of two amounts, while he will 

deny bearing a small chance of losing a larger amount for a virtual certainty of winning a 

smaller one, even if the value of chance is in their favour. However, on this prejudice should 

be added the word “luck” for the part of the individual because his inveterate belief of his own 

luck is specifically powerful when the basis of uncertainty is the quality of his own judgment. 

But what is this “feeling” that makes a person think that he has taken the right choice? Is it a 

mere “hunch” or “I am feeling it in my bones”? The man in the street knows the real value of 

his opinions better than the knowledge of the “logic” on which they repose. Thus, the choice 

that an individual takes is not based only on logic but also on superstition. Any incident that 

strikes attention is probable to be elevated into a law of nature, creating a belief in an unerring 

“sign” which, without real or imaginary basis in the mind of the person itself, might be accepted 

as a valid base for action and treated as a beyond doubt verity.  

Undoubtedly, an imperative needed for rationality judgment for the human’s thoughts and 

needs such as whims and impulses are and always will be necessary and because of this the 

limitations on the below hypothesis to rational grounds of action seem justified. An individual 

wants to bear a sacrifice for the sake of a future benefit, of course, should this benefit be 

considered not only certain, but also greater than his sacrifice and his anticipation. Obviously, 

the subjective uncertainty, which is determined in the above case, therefore, what the individual 

believes the chances to be, whether if his degree of confidence is based upon an objective 

probability in the situation itself or in an estimate of his own powers of prediction. Additionally, 

both types, objective and subjective might be, involved at the same time; a man’s forecasting 

or opinion may be as estimation of an objective probability and the estimation itself be 

acknowledged as a certain degree of validity to be the product of two probability ratios and felt 
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the degree of uncertainty. However, it should be emphasised that all the decisions which an 

individual makes are derived from his conduct in real life and undoubtedly most of these 

opinions, which first evaluate them through scrutiny, easily resolve themselves into an opinion 

of probability.  

One of the major problems of the uncertainty in economics is the future character of the 

economic process itself. Generally, goods are produced to satisfy wants; through from goods 

two elements of uncertainty are introduced by Knight (1921) as two different kinds of foresight 

which should be exercised. Firstly, from the beginning the operations of productivity must be 

evaluated. Unfortunately, it is impossible for someone to know accurately what the results will 

be when entering the productive activity, in physical terms such as the quantities and qualities 

of goods which will be the outcome from the cost of given resources. Secondly, goods which 

are produced to satisfy needs are going to be fulfilling this satisfaction in the future so the 

producer must estimate (1) the future demand which he is endeavouring to satisfy and (2) the 

future results of his operations in his attempt to satisfy this demand.  

Obviously, the rational conduct endeavour decreases to the minimum the uncertainties 

which are affected in adapting means to an end. This does not mean that uncertainty as such is 

loathsome for the individual. We should really not be proponents of the notion that everything 

in this world is defined and therefore we should not want our activity to be perfectly rational. 

Yet, because it is in our nature to try to foresee the next day and in some cases, even the next 

minute, we are attempting with “intelligent” moves to secure perfectly adaptation as much as 

possible. As noted before, this element of paradox in our conduct must not be ignored. We find 

ourselves compelled to struggle after things which in other conditions we acknowledge that we 

do not want, at least not this completeness and perfection. Maybe it is this apparent 

impossibility as a human imperfection of reaching the end which makes it interesting after. In 

other words, we are trying to decrease uncertainty although we should not want it eliminated 

from our lives. 

In addition to the above two kinds of foresight, Knight (1921) introduces through two basic 

sets of conditions another two kinds respectively; (3) control of the future and (4) increased 

power of prediction. As far as the first fundamental condition is concerned, uncertainties are 

fewer in groups of cases than in a single instance. Yet, if a priori probability of uncertainty 

tends to disappear completely it is because of the increasing group of inclusiveness; with 

statistical probabilities, the same tendency is obvious to a lesser degree, being limited by 

defectiveness of classification. As far as the second condition, it concerns the reduction of 

uncertainty is different among individuals. Finally, Knight (1921) presents another two and last 
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kinds of foresight, the (5) “diffusion” of the consequences of untoward contingencies and 

through observation of consolidation3 and specialisation which are intimately connected, there 

is the (6) possibility of directing industrial activity approximately along lines in which the 

minimum amount of uncertainty is included.      

 

1.3 Risk, Ambiguity, and the Savage Axioms 

 In the above chapter we have discussed the Knightian theory which distinguishes the 

“measurable uncertainty” and “risk”. Moreover, the risk can be represented by numerical 

probabilities, but the “unmeasurable uncertainty” cannot. In this chapter we are going to 

discuss another decision theory which was presented in 19544 by Savage and a set of axioms 

constraining preferences over a set of options that guarantee the existence of a pair or 

probability and utility functions relative to which the preferences can be represented as 

maximising expected utility. 

Besides, the possible outcomes which do not come with probabilities rather than state of 

world the options or prospects in Savage theory are familiar to lotteries. Truly, the primitives 

in Savage’s theory are consequences and states. As a result, the former are the good or bad 

states of affairs that affect and matter to a person, while the latter are the features of the world 

that the human has no control over, and which are the locus of her uncertainty about the 

world. The distinction between consequences and states serves to separate “desire” and 

“belief” respectively.  

Consider this following example: In tabular form the act-state-consequence-outcome 

distinction from Savage’s decision theory, can be represented with rows serving as acts that 

yield a given outcome for each state/event column.  

 

Table 1.3. An example which illustrates acts, states, and outcomes 

 No rain Rain  

Stroll without umbrella  Very comfortable stroll Miserable wet stroll 

Stroll with umbrella  Comfortable stroll Comfortable stroll 

 

3 Irving Fisher’s term (The Nature of Capital and Income, p.288 which introduce the five ways which risk 

may be reduced) 

 

4 Savage, L. J., 1954, The Foundations of Statistics, Wiley, New York 
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Constant act Miserable wet stroll Miserable wet stroll 

 

Table 1.3 depicts the two acts mentioned above plus a third one that the decision maker 

might care about: the acts i) “go for stroll without umbrella”, ii) “go for stroll with umbrella”, 

and iii) the bizarre constant act. Of course, the set of acts required for Savage’s theorem involve 

even more acts that account for all the possible combinations of states and outcomes. 

Without further ado, let state the Savage’s axioms. These are intended as constraints on an 

agent’s preference relation, ⪯, over a set of acts, F, as described above. The first of Savage’s 

axioms is the basic ordering axiom. 

 

P1. (Ordering)  

The relation ⪯ is complete and transitive. 

The next axiom is reminiscent of vNM’s Independence axiom. We say that alternative f 

“agrees with” g in event E if, for any state in event E, f and g yield the same outcome. 

 

P2. (Sure Thing Principle)  

If f, g, and f′, g′ are such that: 

• f agrees with g and f′ agrees with g′ in event ¬E, 

• f agrees with f′ and g agrees with g′ in event E, 

• and f⪯g, 

then f′⪯g′. 

 

The idea behind the Sure Thing Principle (STP) is essentially the same as that behind 

Independence: since we should be able to evaluate each outcome independently of other 

possible outcomes, we can safely ignore states of the world where two acts that we are 

comparing results in the same outcome. Putting the principle in tabular form may make this 

more apparent. The setup involves four acts with the following form: 

 

 

 

 

 

 E E 
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f X Z 

g Y Z 

f’ X W 

g’ Y W 

 

The intuition behind the Sure Thing Principle is that if g is weakly preferred to f, then that 

must be because the consequence Y is considered at least as desirable as X, which, by the same 

reasoning, implies that g’ is weekly preferred to f’. 

 

P3. (State Neutrality) 

If f(si) = X and g(si) = Y whenever si  E and E is not null, then f ⪯ g given E just in case X 

⪯ Y. 

The next axiom is also necessary for it to be possible to determine a comparative belief 

relation from an agent’s preferences. Above it was suggested that by asking you to stake 

a prize on whether a coin comes up heads or tails, it can be determined which of these 

events you find more likely. But that suggestion is only plausible if the size of the prize 

does not affect your judgement of the relative likelihood of these two events. That 

assumption is captured by the next axioms and is illustrated in the tabular form below: 

 

P4.  

Consider the following acts: 

 

 E E 

f X X’ 

g Y Y’ 

 

 F F 

f’ X X’ 

g’ Y Y’ 

 

Now suppose: 

X’ ⪯ X, 

Y’ ⪯ Y, 



 19 

f’ ⪯ f 

Then 

g’ ⪯ g 

 

Less formally (and stated in terms of strict preference), the idea is that if you prefer to 

stake the prize X on f rather than f’, you must consider E more probable than F. Therefore, 

you should prefer to stake the prize Y on g rather than g’ since the prize itself does not affect 

the probability of the events.  

 

The next axiom is arguably not a rationality requirement, but one of Savage’s “structural 

axioms” (Suppes 2002). An agent needs to have some variation in preference for it to be 

possible to read off her comparative beliefs from her preferences; and, more generally, for it 

to be possible to represent her as maximising expected utility. To this end, the next axiom 

simply requires that there be some alternatives between which the agent is not indifferent: 

 

P5.  

There are some f,g∈Ff,g∈F such that f≺gf≺g. 

When these five axioms are satisfied, the agent’s preferences give rise to a comparative belief 

relation, .≾..≾., which has the property of being a qualitative probability relation, which is 

necessary for it to be possible to represent .≾..≾. by a probability function. In other 

words, .≾..≾. satisfies the following three conditions, for any events EE, FF and GG: 

1. .≾..≾. is transitive and complete, 

2. if E∩G=∅=F∩GE∩G=∅=F∩G, then E.≾.F⇔E∪G.≾.F∪GE.≾.F⇔E∪G.≾.F∪G, 

3. ∅.≾.E,∅.≾.E,   ∅.≺.S∅.≺.S 

Being a qualitative probability relation is, however, not sufficient to ensure the possibility of 

probabilistic representation. To ensure this possibility, Savage added the following structural 

axiom: 

P6. (Non-atomicity)  

Suppose f≺gf≺g. Then for any X∈OX∈O, there is a finite 

partition, {E1,E2,…Em}{E1,E2,…Em}, of SSsuch that: 

• f′(si)=Xf′(si)=X for any si∈Ejsi∈Ej, but f′(si)=f(si)f′(si)=f(si) for any si∉Ejsi∉Ej, 

• g′(si)=Xg′(si)=X for any si∈Ejsi∈Ej, but g′(si)=g(si)g′(si)=g(si) for any si∉Ejsi∉Ej, 

• f′≺gf′≺g and f≺g′f≺g′. 
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Similar to the Continuity axiom of vNM, Non-Atomicity implies that no matter how bad 

an outcome X is, if gg is already preferred to ff, then if we add X as one of the possible 

outcomes of ff—thereby constructing a new alternative f′—g will still be preferred to the 

modified alternative as long as the probability of X is sufficiently small. In effect, Non-

Atomicity implies that S contains events of arbitrarily small probability. It is not too difficult 

to imagine how that could be satisfied. For instance, any event F can be partitioned into two 

equiprobable sub-events according to whether some coin would come up heads or tails if it 

were tossed. Each sub-event could be similarly partitioned according to the outcome of the 

second toss of the same coin, and so on. 

Savage showed that whenever these six axioms are satisfied, the comparative belief 

relation can be represented by a unique probability function. Having done so, he could rely 

on the vNM representation theorem to show that an agent who satisfies all six axioms[7]can 

be represented as maximising expected utility, relative to a unique probability function that 

plausibly represents the agent’s beliefs over the states and a cardinal utility function that 

plausibly represents the agent’s desires for ultimate outcomes (recall the statement of 

Savage’s theorem above). 

 

 

1.4 Distribution Uncertainty 

While a plethora of authors how tried to describe the uncertainty in their unique theories and 

scepticism, a recent paper of Kacperczyk and Damien (2011) has suggested a novel method to 

incorporate “distribution uncertainty” therefore, an uncertainty about the type of return 

distribution to obtain an optimal portfolio. Specifically, this paper approaches Feller’s (1971) 

notion about scale mixture representation and therefore, the formula of the conditional 

distribution with which you can capture wide ranges of kurtosis in the data. Before exploring 

the mathematics further, a brief intuitive understanding of the idea is as follows. Considering 

the equation  

              rt+1 = μ(t) + et+1 t = 1,…,T                      (1)  

 

where r is market return, μ(t) means that μ either be constant or could depend on a set of predictor 

variables up to time t. The important aspect of this equation is that it does not impose any 

distributional form on the error term. Considering, e which may come from any distribution 

https://plato.stanford.edu/entries/decision-theory/notes.html#note-7
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with mean 0 and variance σ2. The subsequent sections show how this component of return 

process can be used to generate different forms of distribution uncertainty. 

Specifically, the key aspect to modeling distribution uncertainty via the above equation (1) 

is that the conditional distribution of the asset return is Normal, leading to a parametric form 

for the predictive distribution. Under distribution uncertainty, the above assumption is relaxed 

by stating that the conditional distribution of the returns itself is uncertain. In other words, this 

means that you must place a prior distribution on a wide class of distribution functions, which 

any member of this could possibly be the conditional distribution of returns.  

To model distribution uncertainty, we use family models from the Kacperczyk et al. (2011) 

paper and adapt the Semiparametric Scale Mixture of Betas (SSMB) whose approach is based 

on the belief of “scale mixture representation” which is an idea dating back to Feller (1971) 

and the references therein. Consider the equation (1). Typically, one writes the sampling 

distribution of r, say as a Normal (0, σ2), or some other distribution f(r). Feller generalized this 

by first introducing an auxiliary variable U. The distribution of U, f(U), could be any 

probability density. Supposing that we have a random draw of u from f(U). With this u Feller 

states the conditional distribution of r as a uniform distribution in addition to the Uniform (a,b), 

where b is now a product of u and the standard deviation of the sampling distribution f(r). This 

idea from Feller (1971) is remarkable if you think that now one could induce much more 

flexibility in modelling the higher-order moments of the sampling distribution f(r); particularly, 

skewness and high levels of kurtosis are readily handled by appropriately choosing f(U). In the 

paragraph below we are going to obtain the Normal distribution as a special case for the form 

of f(r).  

For the moment, what if investors believe that the conditional distribution of the excess 

returns is unimodal. Since the unimodal density for the returns is the desirable one, we use 

uniform and beta distributions in the scale mixture model. Furthermore, we simplify the 

intuition underlying our model by first addressing symmetric distributions for the sampling 

distribution of the data. This simplification is practically relevant as our empirical application 

considers monthly excess market returns. Campbell et al. (1997) mentions that the observed 

deviations from normality observation in the monthly returns are more pronounced as a result 

of excess kurtosis than skewness. In principle, note that with symmetric distributions still 

appeals to the idea of distribution uncertainty in that one does not have to assume a particular 

form for the underlying sampling distribution of the data; with r as observed data and U as a 

latent mixing random variable, Feller’s (1971) formulation of the conditional distribution of r 

is given by: 
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F(r|U =  u)  Uniform(μ-σu, μ+σu),                 (2) 

 

                                                              u  F                                                       

 

 

for some distribution function F with support on (0, ). As F ranges over all such distribution 

functions then the density of r ranges over all unimodal and symmetric density functions. As a 

result, with flexible F we can capture wide ranges of kurtosis in the data. In order to ensure 

maximum flexibility F must be nonparametrically. In Kacperczyk et al. (2011) paper 

demonstrate that u rather than u in the formulation above is helpful since one can express 

higher moments for r in terms of lower moments for U. So, they rewrite the model as  

 

                      f(r|U) = σU (1-2 beta (1,1))                (3) 

 

which will suggest the form of generalizations to asymmetric or skewed densities. An 

interesting fact is that if F is distributed Gamma (3/2, ½), then the distribution of r is normal 

(0, σ2). Similarly, by changing the specifications of the parameters in F, one can obtain other 

commonly used distributions, such as t, generalized exponentially and so on.  

 

 

1.5 Subjective Expected Utility Theory 

First and foremost, utility theory can be described as the beliefs of individuals’ preferences. 

For the economical world this theory can explain the behaviour of a particular person based on 

the assumption that people can consciously order their choices depending on their preferences. 

Each individual is going to show different preferences, which will appear to be hard-wired 

within them. As a result, we can state that individuals’ preferences are intrinsic. Therefore, the 

above theory can be further divided into expected utility theory (EU) of von Neumann and 

Morgenstern (1947) and subjective expected utility theory (SEU) of Savage (1954).   

On the one hand, the expected utility theory (EU) is an economic term which summarises 

the utility as an entity or as an aggregate economy and is expected to be reached under any 

number of circumstances. Furthermore, in order to calculate the expected utility, we should 

take the weighted average of all possible outcomes under specific circumstances, with the 



 23 

weights being assigned by the likelihood or probability which any particular event will occur. 

In other words, the probabilities of outcomes are known. On the other hand, in subjective 

expected utility theory (SEU), probabilities are not necessarily objectively known, so the SEU 

applies more widely than EU and, since this thesis shall discuss this uncertainty, I am going to 

debate further the latter rather than the former. 

Decisions made in the face of uncertainty spread through the life of every individual and 

organisation. Even animals, generally speaking, may be faced with uncertainty when 

continuously making decisions (most commonly for their survival) and the psychological 

mechanisms behind these decisions, by which animals decide, may have much in common with 

that of men. Yet, formal reasoning presumably makes no difference in the decisions of animals, 

little in those of children and even less than be wished in those of man. 

Reasoning is commonly associated with logic, which, obviously, as many have pointed out, 

in the face of uncertainty these implications of what commonly is called logic are meager. 

Therefore, it has constantly been asked whether logic cannot be extended by principles which 

are acceptable as those of logic itself to bear more fully on uncertainty. First and foremost, as 

far as logic is concerned, with implications among propositions, a plethora of individuals have 

been thinking that to extend logic criteria must be set up for the extent to which one proposition 

tends to imply or provide evidence for another. However, it is obvious that the main problem 

was not if we need the criteria but what will be these criteria so that criteria being ultimately 

wanted for deciding among possible courses of action. Therefore, the generalisation of the 

notion of the related implications seems at best a roundabout method of attack. It must be 

acknowledged that the logic itself should guide our decision criteria because when it is implied 

by a proposition known to be true, it in turn is not only true, but also relevant (sometimes) for 

decision making. Furthermore, if some idea of partial implication is in a way proven and 

articulated with decision than is implication itself, that would be great; yet another question 

emerged of how such an idea be sought except by explicitly studying the decision meaning 

process? Secondly, it is appealing to assume that if two individuals who are in the same 

situation and act reasonably, have the same taste and are provided with equal information, then 

they will act in the same way. Such a belief in which view of probability is apparent (besides 

the personal opposite point of view), is certainly worth looking for.  

But what are the consequences of our acts and decisions? To say that a decision must be 

taken is to say that one or two of the actions must be chosen or decided. When deciding to act, 

one must take into consideration the potential situations of the world, as well as the 

consequences involved in each action for every possible situation in the world. One 
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consequence is that everything can happen to an individual. Yet, so as to be more to enlightened 

to the above I believe that an example from Savage (1954)5 will be suitable.  

Consider this example. Your spouse has just broken five good eggs into a bowl, when you 

come in and volunteer to finish the omelette. A sixth egg is beside the bowl, which for some 

reason must either be used for the omelette or be wasted altogether. Hence, you must decide 

what you are going to do with this unbroken egg. The sixth egg might or might not be rotten. 

As a result, you must decide among three acts only; to break it into the bowl which contains 

the other five, to break it into a saucer for inspection, or to throw it away without inspection. 

Depending on the state of the egg, the above three acts have some consequences of concern to 

you and these three acts are illustrated on the Table 1.5.  

 

Table 1.5. An example which illustrates acts, states, and consequences 

 

Act 

State 

Good  Rotten 

Break in bowl six-egg omelette no omelette and five good eggs 

destroyed 

Break into saucer six-egg omelette and a saucer 

to wash  

five-egg omelette and a saucer 

to wash 

Throw away five-egg omelette and one 

good egg destroyed 

five-egg omelette 

 

With this example it is easy for someone to perceive the variety of things or experiences 

which are addressed as consequences can be. They could generally be about money, life, health, 

the well-being of others, or anything else that could possibly concern an individual. 

Consequences could be appropriately called situations of the person, as opposed to situations 

of the world. They could also be mentioned, with some extension of the economic concept of 

income as possible by the individual. Therefore, in any problem, the set of consequences will 

be donated by F, and the consequences of individual will be donated by f, g, h, and so forth. In 

other words, in the omelette example, F consists of the six consequences tabulated in Table 1: 

six-egg omelette and a saucer to wash; five-egg omelette and a saucer to wash, and so on.  

 

5 Savage, L. J., 1954, The foundations of Statistics, Wiley, New York [p.14] 
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If two different acts have the same consequences in all the countries of the world, from 

today’s point of view it would not make sense to consider them at all. Therefore, an action can 

be identified with its possible consequences or, more formally, an act is a function that gives 

consistency to every situation in the world. Now, let’s use the defined symbol F in order to 

express the dilemma of the spouse; (a) ƒ(good) = six-egg omelette, (b) ƒ(rotten) = no omelette, 

and five good eggs destroyed. 

It may be argued that the formal description of the decision thus made seems inadequate 

because a person may not be aware of the consequences of the acts open to him in every corner 

in the world. He might be ignorant, for instance, not being sure if one rotten egg will spoil a 

six-egg omelette. But in this case, nothing could be simpler then a culinary question and only 

two possible answers present themselves of whether one bad egg will spoil a six-egg omelette. 

Obviously, this solution works in a generalised situation, although a thorough analysis might 

not be without its merits. 

Subjective expected utility was further detailed by Savage (1954) following some previous 

work by Ramsey (1926) and von Neumann has been distinguished on two parts: the personal 

probability distribution and a personal utility function. 

 

1.5.1. Personal Probability Distribution  

Several individuals are convinced that statements which infer about personal probability 

precisely mean nothing, or at any case that they mean nothing precisely. On the contrary, others 

hold the belief that it has no meaning for someone to analyse something that is so self-evident. 

An intermediate position is taken in this chapter, where a particular explanation of probability 

to a person is given in terms of the decision theory in the face of uncertainty. The consistency 

of the idea of probability, which are defined here, with should be judged by the contribution it 

makes to the decision theory, not by the accuracy which it analyses ordinary usage.   

The first approach, possibly to find out which of the two events a person considers more 

probable is simply to ask him. It might even be argued, though I think that since the question 

concerns what is inside the person’s head that, there can be no other method. Several statistical 

theorists believed that if we attempt to define the relative probability of a pair of events or the 

concept “more probable to me than” is an intuitive one as a result leads you to no ambiguity 

and yet admits no further analysis.  

Furthermore, what if the concept was so completely intuitive, which might be characterized 

as a direct interrogation as a subject worthy of some behaviour of a person in the face of 
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uncertainty. If at the one hand the state of mind in question is not capable of manifesting itself 

in some sort of extraverbal behaviour, it is not forming an essential for our main interest. If, on 

the other hand, it does manifest itself through more material behaviour that should, at least in 

principle, imply the possibility of testing whether a person holds one event to be more probable 

than another, by some behaviour expressing and given meaning to his judgement. Several 

schemes of behavioural, as opposed to direct, interrogation have been suggested. The one 

below was suggested from Savage (1954) who takes the idea from de Finetti’s paper which via 

the paper does not give emphasis to behavioural interrogation.  

 Consider this following, our ideal person has just taken two eggs from his refrigerator and 

holds them unbroken in his hand. Whether he thinks it more probable that the brown one is 

good than that the white one is. Moreover, Savage wants to address him as: “We see that you 

are about to open those eggs. If you will be so cooperative as to guess which of the two is good, 

we will pay you a dollar, should your guess prove correct. If it is incorrect, you and we are 

quitting, except that we will in any event exchange your two eggs for two of guaranteed 

goodness”6. This it is not fundamental to the subsequent argument but if under these 

circumstances the person chooses the brown one, it seems that he is corresponding well with 

the ordinary usage.  

Nevertheless, there is a mode of interrogation found in the middle between what the Savage 

(1954)7 called as behavioural and direct; one can just ask the person not how he feels about his 

choice but what he would do in such a situation. The theory of decision is regarded as an 

empirical one and the intermediation is a compromise between economy and rigor. Moreover, 

in theory’s more important normative interpretation as a set of criteria of consistency for us to 

apply to our own decisions. 

 

 

1.5.2 Personal Utility Function 

The arithmetization of comparison among acts can -with the introduction of one mild new 

postulate- be extended to virtually all pairs of acts. This far-reaching comparison among acts 

is achieved by attaching a number U(f) to each consequence f in such a way that f   g if and 

 

6 Savage, L. J., 1954, The Foundations of Statistics, Wiley, New York. (p.28) 

 

7 Savage, L. J., 1954, The Foundations of Statistics, Wiley, New York. (p.28) 
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only if the expected value of U(f) is numerically less than or equal to that of U(g), provided 

only that the real value functions U(f) and U(g) are essentially bounded. The act of providing 

can fail to be met only if there exist acts that are distinctly preferable to any fixed reward or 

distinctly worse than any fixed punishment.  

This function U that arithntizes the relation of preference among acts will be called utility. 

The multiplicity of utilities is not complicated; every utility being simply related to every other. 

The word utility it adopted from von Neumann and Morgenstern (1944) for the economic 

theory and they revived the concept to which it refers in a most stimulating way: An extension 

of the theory of consumer preferences that incorporates a theory of behaviour toward risk 

variance.  

The expected utility hypothesis has shown that when a consumer is faced with a choice of 

items or outcomes subject to various levels of chance, the optimal decision will be the one that 

maximizes the expected value of the utility derived from the choice made. Expected value is 

the summarization of the products of the various utilities and their associated probabilities.  

The von Neumann Morgenstern utility function can be used in order to explain risk-averse, 

risk-neutral and risk-loving behaviour. For instance, a company in one year undertakes a 

project that has probabilities for three possible payoffs of 30$ 40$ and 50$; those probabilities 

are 40% 70% and 20% respectively. As a result, expected payoff from the project would be 

$30(0.4) + $40(0.7) + $50(0.2) = $50. The next year the firm might again undertake the same 

project but now the respective probabilities for payoffs will be different, but the notion is that 

the expected payoff is still the same. In other words, as mathematics is concerned nothing has 

changed.  

Furthermore, it is true that the probabilities of the lowest and highest payoffs rose at the 

expense of the middle one, which means there is more variance (or risk) associated with the 

possible payoffs. The question to pose to the firm is whether it will adjust its utility derived 

from the project despite the project’s having the same expected value from one year to the next. 

If the firm values both iterations of the project equally, it is said to be risk neutral. 

The implication is that it equally values a guaranteed payoff of $50 with any set of probabilistic 

payoffs whose expected value is also $50. 

If the firm prefers the first year’s project environment to the second, it places higher value 

on less variability in payoffs. In that regard, by preferring more certainty, the firm is said to 

be risk averse. Finally, if the firm actually prefers the increase in variability, it is said to be risk 

loving. 
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The von Neumann Morgenstern utility function adds the dimension of risk assessment to 

the valuation of goods services and outcomes. Such utility maximization is necessarily more 

subjective than when choices are subject to certainty.  

 

 

1.5.3 The Challenges of SEU 

The subjective expected utility theory first was developed by Savage (1954) who has been 

inspired by (Ramsey 1931) and de Finetti (1937), then derived by Anscombe and Aumann 

(1963) in an approach that combined expected utility and subjective expected utility theory.  

In subjective expected utility theory, a decision maker must choose between “acts”: which 

are denoted as uppercase letters. For instance, the consequences of an act X depend by which 

state’s occurs, from the set S of possible states. For simplicity’s sake we are going to assume 

that the sets of acts and states are finite. Including subjective probabilities of the states which 

will be denoted as p(s) then an act X will be described by a vector (x(s1), p(s1);…;x(sn),  p(sn)) 

(where s1,s2,….,sn).  

The mathematical goal of subjective expected utility theory is to represent preferences over 

acts by numerical utility index u and a probability measure on the states p, such as the act X is 

preferred to act Y if and only if the subjective expected utility of X is larger than subjective 

expected utility of Y. The subjective expected utility of X is defined as  

 

 

                                SEU(X) =  Σ    p(s) u (x(s))                          (4) 

                                                 sS 

 

 

As harmless as the subjective expected utility form (4) looks, there is a long rich tradition of 

questioning whether it describes behavior adequately. On one hand Keynes (1921) drew the 

distinction between the implications of evidence and the weight of evidence, or the confidence 

in assessed likelihood. In Keynes’s paper (1921), he express his worries whether a single 

probability number could express both dimensions of evidence. On the other hand, Knight 

(1921) distinguished “risk” or known probability and “uncertainty” and suggested that in 

economic returns where earned for bearing uncertainty, but not for bearing risk.  

Nevertheless, the most recent attack on subjective expected utility as descriptive theory was 

made most directly from Ellsberg (1961) own is known as “Ellsberg paradox”.  
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In Ellsberg’s hypothesis, a decision maker must choose from an urn which contains 30 red 

balls and 60 balls in some combination of black and yellow. This problem is called the three-

color problem. There are two pairs of acts X and Y and X’ and Y’. Acts have consequences W 

-for win- or 0.  

A plethora of people choose X    Y and Y’  X’.  The number of black balls which yield a 

win if act Y is chosen is unknown; people prefer the less ambiguous act X. The same principle, 

applied to the second choice, favors Y’ because exactly 60 balls yield W and vice versa for 

losses W   0.  

In the three-color problem, most prefer acts with a known probability of winning. As a 

result, they become confident when it comes to taking subjective probability into account for 

choices. Such a pattern is inconsistent with the sure-thing principle of subjective expected 

utility. Both pairs only differ in consequences when the yellow state occurs. This consequence 

is the same for X and Y -you win 0- and for X’ and Y’ -you win W-. The second axiom -the 

sure thing principle- assumes a state with a consequence like both acts (according to subjective 

expected utility X    Y if and only if X’  Y’). The common pattern X    Y and Y’  X’ 

violates the sure-thing principle because ambiguity affects choices and the ambiguity inherent 

in one state, red for instance might disappear when the state is combined with an equally 

ambiguous state such as the yellow one.  

In Ellsberg’s paper (1961) another problem arises known as the two-color problem. In this 

problem the decision makers can use two urns. The first urn contains 50 red and black balls 

and the second urn 100 balls in an unknown combination of red and black. Several people 

prefer to bet on red from urn 1 rather than to bet on red of urn 2 and vice versa with the black 

but are indifferent between the two colors when betting on only one of the two urns. This 

pattern violates subjective expected utility theory.  
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“We did not set out to be educators or even scientists, and we do not purport that what we 

do is real science, but we are demonstrating a methodology by which one can engage and 

satisfy your curiosity” 

-Adam Savage- 

 

Chapter 2  

Methodology and Data Selection 

 

 

2.1 Introduction 

For the matched-pairs sign and signed-rank tests, we will consider the sample as being two 

dependent samples or alternatively as a single sample of pairs from a bivariate population. 

When the conclusions to be drawn relate only to the population of differences in paired 

observations, usually the first step is to obtain the differences of paired observations; this leaves 

only a single set of observations. Therefore, this type of data can legitimately be classified as 

a one-sample problem. In this chapter we are going to debate further the consisting of two 

mutually independent random samples, so that the elements shall not only be in each sample 

independent, but also every element along in the first sample will be independent of every 

element in the second sample. 

Our sample space, specifically, consists of two populations which we will call X and Y 

respectively, with cumulative distribution functions denoted as FX and FY. The random sample 

of size m will be extracted from X population and another random size of n extracted 

independently from the Y population, 

 

X1,X2,…,Xm   and Y1,Y2,…,Yn 
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The hypothesis of interest in two-sample problem usually drawn from identical populations 

so,  

 

H0: FY(x) = FX(x)          for all x 

 

We are willing to make assumptions according to the forms of the underlying populations 

and assume that the differences between the two populations occur only with respect to some 

parameters, such as the means or the variances. For instance, if we assume that both populations 

are normally distributed, it is well known that the two-sample Student t test for equality of 

means and the F test for equality of variances are respectively the best tests. The performances 

of these two tests are widely known. This does not mean that other classical tests are not good; 

just that they may be sensitive to violations of the fundamental model assumptions inherent in 

the derivation and construction of these tests.  

 

 

2.2 Data and Construction of Variables  

The sample data include returns from the EIKON Reuters DataStream of all stocks listed in 

NYSE, S&P 500 and NASDAQ. EIKON is used to obtain prices, daily return, market returns, 

shares outstanding, trading volume, and so on. We also obtain balance sheet information 

including assets, liabilities, and total equity from EIKON. We use stock prices and shares 

outstanding to calculate market capitalization and use daily returns to calculate distribution 

uncertainty for each firm in each month as well as beta, idiosyncratic volatility, skewness, and 

kurtosis. The market portfolio return is the value weighted index return in the EIKON. The 

sample period spans from January 2001 to March 2021. To be included in the final sample for 

a given month, at least 100 daily returns must exist in the previous 12 months.  

We measure how different the empirical return distribution of a stock is from that of the 

benchmark portfolio. Using daily returns of each company and the market portfolio in the 

previous year, for each month we estimate three statistics that non-parametrically measure the 

distribution uncertainty: the Kolmogorov-Smirnov (KS), the Cramer-von Mises (CM), and the 

Kuiper (K) statistics. Before we estimate each statistic, we demean returns of each stock and 

the market portfolio by subtracting average returns estimated from the data of the previous year 

in order to control the effect of expected returns on our results. Since we measure distribution 

uncertainty by the difference of the return distribution of a stock from that of the market 
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portfolio, if we do not demean returns of each stock and the market portfolio, our proxy for 

distribution uncertainty merely catches the difference of expected returns of a stock and the 

market portfolio, not reflecting the degree of difficulty in understanding underlying 

distributions. Therefore, by demeaning returns, our KS, CM, and K statistics can compute the 

degree of difference in shapes of a stock return and the market portfolio return distributions 

other than the location of distributions. Since we control the size of mean for each stock return 

to construct KS, CM, and K, if we observe a larger return for a portfolio sorted by KS, CM, or 

K, it is from the difference of distribution, not from the difference of expected returns of the 

portfolio or risk of the portfolio.  

Three statistics of KS, CM, and K measure the difference among several empirical 

distributions or between a given distribution and empirical distributions. In this section, we 

briefly introduce the definition of these three statistics adjusted for our case; a comparison 

between two empirical distributions.  

The Kolmogorov-Smirnov (KS) statistic is used in the KS test to investigate the difference 

of distributions of two samples. Suppose that a first sample x1,..., xn has distribution with its 

cumulative distribution function F1(x) and the second sample y1,..., yn has distribution with 

cumulative distribution function F2(x). Then, the KS test investigate whether F1 = F2. If F1n(x) 

and F2n(x) are corresponding empirical cumulative distribution functions, then the KS statistic 

is defined as follows.  

 

                             KS=max F1(xj) − F2(xj) where j = 1, 2,...,n j  

                                       j 

 

In short, the KS statistic for two samples is the maximum distance between two empirical 

cumulative distribution functions. The Cramer-von Mises statistic also measures how different 

two empirical distributions are. It is defined as follows:  

 

                             CM= 1/n2  Σ (ni Σ tj (Fi(xj) – F(xj))
2) 

                                                        i        j=1 

 

where F (x) = 1 ∑ (ni Fi (x)), n = n1 + n2, ni is the number of observation of class i, tj is the 

number of ties at the jth distinct value, and p is the number of distinct values. 

The Kuiper statistic is closely related to the Kolmogorov-Smirnov statistic. The Kuiper 

statistic uses not only the information of maximum distance between two empirical 

distributions as in the Kolmogorov-Smirnov statistic, but also the information of minimum 
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distance between two empirical distributions. The exact formula of the Kuiper statistic is as 

follows.  

 

            K = max(F1(xj) − F2(xj)) − min(F1(xj) − F2(xj))wherej = 1, 2,...,n jj  
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“There are three types of lies; lies, damn lies, and statistics” 

-Benjamin Disraeli- 

 

Chapter 3 

Results Presentation and Analysis 

 

 

3.1 Portfolio Returns Sorted on Distribution Uncertainty  

The first empirical investigation is whether distribution uncertainty can explain the cross-

sectional variation of expected stock returns. Table 3.1 reports time series average (AR) and 

holding period returns (HPR) of decile portfolios formed on each of the three distribution 

uncertainty measures. This table has been constructed from the calculation of these measures 

for each sample firm over the previous month. Each month we sort stocks into 10 equal-

weighted portfolios using these measures for distribution uncertainty (KS, CM, K). The initial 

AR represents average daily returns in percentage multiplied by 21, and HPR is the holding 

period return of decile portfolio rebalanced each month from 2001 to 2021. The portfolios 

sorted on three distribution uncertainty measures demonstrate strong variation in mean return, 

as shown in Table 3.1 below.  

 

Table 3.1 Portfolio Returns Sorted on Distribution Uncertainty  

This table presents equal-weighted average returns (AR) and holding period returns (HPR) for portfolios formed 

on each distribution uncertainty proxy within a month. We multiply daily returns by 21 to obtain monthly returns. 

All figures are expressed in percentage terms. The decile portfolios updated each month are formed by the sizes 

of Kolmogorov-Smirnov (KS), Cramer-von Mises (CM), and Kuiper (K) statistics estimated using daily 

demeaned individual stock return and value weighted index return over the previous 12 months. These statistics 

of KS, CM, and K non-parametrically measure the difference of distributions between demeaned individual stock 

return and demeaned market. Portfolio “S” is the portfolio of stocks with the lowest distribution uncertainty 

measures, Portfolio “B” is the portfolio of stocks with the highest distribution uncertainty measures, “S-B” is their 

difference in monthly returns, and t-statistics are reported in parentheses. ***, **, * correspond to statistical 
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significance at 1, 5, and 10%, respectively. The sample includes all firms listed in NYSE, S&P 500, and NASDAQ 

from 2001 to 2021  

 

 KS    CM    K   

 KS AR HPR  CM AR HPR  K AR HPR 

S 0.05 1.06 108.83  1.87 0.44 145.45  0.08 1.39 106.22 

2 0.07 0.71 146.05  4.78 1.16 227.36  0.12 0.56 97.08 

3 0.09 0.28 145.59  7.9 2.11 48.17  0.16 0.4 177.15 

4 0.11 1.12 214.73  10.94 3.19 13.93  0.2 1.15 238.97 

5 0.13 2.09 53.8  14.12 3.58 682.48  0.24 2.09 28.46 

6 0.16 2.86 185.9  17.27 3.74 2163.23  0.28 2.91 94.85 

7 0.18 3.65 806.31  20.37 4 317.5  0.32 3.63 641.66 

8 0.2 3.9 1470.93  23.41 3.94 126.16  0.36 4.05 1824.94 

9 0.22 4.24 151.38  26.75 5.04 199.71  0.4 3.99 134.25 

B 0.24 5.65 140.26  29.76 5.13 187.47  0.44 4.88 191.57 

9-S  5.3 0.43   5.48 0.54   5.39 0.28 

t(9-S)  (345.28)*** (44.38)***   (300.32)*** (24.91)***   (427.24)*** (28.5)*** 

B-S  6.71 0.31   5.57 0.42   6.27 0.85 

t(B-S)  (267.14)*** (21.85)***   (144.65)*** (13.72)***   (304.38)*** (46.31)*** 

 

 

The results show that the average returns (AR) on the decile portfolios sorted by distribution 

uncertainty increase monotonically in portfolio rank. The bottom decile portfolio (S) by K has 

1.39% of expected return per month on average and the top decile portfolio (B) does 4.88%. 

The B-S spread shows 6.27% of expected return per month and t-statistic of 304.38. When a 

decile portfolio formed by KS, stocks (S) with at least distribution uncertainty provide 1.06% 

of expected return per month on average and the stocks (B) with the most distribution 

uncertainty do 5.65%. Furthermore, the top decile portfolio by CM seems to demonstrate 

considerably higher returns than the bottom decile portfolio. Because of the cross-sectional 

dispersion of returns being most striking between the 9th decile portfolio and the top decile 

portfolio (B), the calculation for the return spread of 9-S for robustness check is necessary. The 

results are still sustained with large, expected returns of more than 5%. Therefore, the stocks 

with the most distribution uncertainty have higher expected return than do stocks with the least 

distribution uncertainty. This implies that since investors need to spend more resources to 

understand unfamiliar distributions of a stock compared to that of the benchmark portfolio, 
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investors may require a premium for bearing distribution uncertainty. So, the results show this 

evidence for a positive premium for bearing distribution uncertainty.  

 

 

3.2 Portfolio Returns Sorted on Distribution Uncertainty and 

Firm Characteristics  

The second empirical investigation is between distribution uncertainty and future stock 

returns after the control of firm characteristics. For instance, stocks which have high 

distribution uncertainty tend to be small and illiquid. In order to ensure that the distribution 

uncertainty is not being affected from these characteristics, the second empirical test will be 

the investigation of the profitability of portfolios sorted by distribution uncertainty after 

controlling for firm characteristics such as beta, size, book-to-market ratio, momentum, short-

term reversal, and illiquidity. The beta of a stock for a month (BETA) is estimated by regressing 

the daily stock return on the value weighted index return using a previous year sample. SIZE 

is the natural logarithm of the market value of equity of the company (in thousands of dollars) 

measured by times series average of a firm's market capitalization for the most recent 12 

months. Book-to-market ratio (BM) is the book value of equity divided by its market value at 

the end of the last fiscal year. Momentum (MOM) is the cumulative stock return over the 

previous eleven (11) months starting two (2) months ago in order to isolate it from short-term 

reversal effect. Additionally, short-term reversal (REV) being measured for each stock in 

month “t” as the return on the stock over the previous month and by Amihud (2002), stock 

illiquidity (ILLIQ) is defined as the ratio of the absolute monthly stock return to its dollar 

trading volume.  

 

Table 3.2 Portfolios Returns Sorted on Distribution Uncertainty and Firm Characteristics 

This table reports average returns (AR) for portfolios based on distribution uncertainty proxies and firm 

characteristics. We multiply daily returns by 21 to obtain monthly returns and report the monthly returns in 

percent. In each case, we first sort the stocks into deciles using the firm characteristics. Within each characteristic’s 

decile, we sort stocks into ten additional portfolios based on distribution uncertainty proxy (KS, CM, K) and 

compute the returns on the corresponding portfolios over the subsequent month. These statistics of KS, CM, and 

K non-parametrically measure the difference of distributions between demeaned individual stock return and 

demeaned market. This table presents average returns across the firm characteristic deciles. Portfolio “S” is the 

portfolio of stocks with the lowest distribution uncertainty measures, Portfolio “B” is the portfolio of stocks with 
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the highest distribution uncertainty measure, “S-B” is their difference at 1, 5, and 10% respectively. The sample 

includes all firms listed in NYSE, S&P 500, and NASDAQ from 2001 to 2021.  

 

Panel A. KS       

 BETA SIZE BM MOM REV ILLIQ 

S 0.23 0.06 0.24 0.07 0.32 0.13 

2 0.04 0.13 0.03 0 0.09 0.16 

3 0.03 0.19 0.07 0.12 0 0.17 

4 0.13 1.15 0.16 0.72 0.09 0.12 

5 0.18 1.91 0.2 2.83 0.17 0.43 

6 0.26 3.54 0.36 4.67 0.29 0.69 

7 0.49 9.01 0.47 9.12 0.46 3.02 

8 0.38 16.63 0.25 13.63 0.36 8.97 

9 0.31 23.13 0.7 14.23 0.7 5.45 

B 0.85 21.77 0.27 35.1 0.95 24.64 

B-S 0.62 21.71 0.03 35.03 0.62 24.52 

t(B-S) (4.71)*** (8.7)*** (0.9)*** (21.23)*** (2.11)*** (10.01)*** 

Panel B. CM       

 BETA SIZE BM MOM REV ILLIQ 

S 0.04 0.19 0.04 0.29 0.06 0.1 

2 0.12 0.18 0.12 0.11 0.1 0.29 

3 0.19 0.22 0.19 0.01 0.16 0.46 

4 0.31 0.11 0.3 0.11 0.31 0.32 

5 0.37 0.13 0.37 0.12 0.43 0.29 

6 0.4 0.14 0.4 0.13 0.37 0.28 

7 0.3 0.01 0.26 0.54 0.27 0.55 

8 0.41 0.01 0.35 0.64 0.31 0.4 

9 0.87 1.74 0.89 0.81 0.82 0.52 

B 1.79 1.52 1.79 0.65 1.7 1.62 

B-S 1.75 1.33 1.75 0.36 1.64 1.52 

t(B-S) (4.42)*** (2.69)*** (4.41)*** (0.75)*** (2.51)*** (1.32)*** 

Panel C. K       

 BETA SIZE BM MOM REV ILLIQ 

S 0.32 0.01 0.32 0.09 0.36 0.01 

2 0.01 0.14 0.01 0.01 0.08 0.15 

3 0.05 0.13 0.05 0.08 0.01 0.24 

4 0.15 0.24 0.15 0.07 0.1 0.19 

5 0.19 0.48 0.19 0.34 0.16 0.16 

6 0.3 0.89 0.29 0.37 0.34 0.01 
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7 0.33 3.45 0.3 1.86 0.3 0.42 

8 0.42 3.22 0.4 2.53 0.4 0.09 

9 0.34 4.37 0.35 0.93 0.23 0.32 

B 0.72 14.09 0.74 18.79 0.87 9.5 

B-S 0.4 14.1 0.42 18.69 0.51 9.5 

t(B-S) (4.82)*** (4.3)*** (4.83)*** (18.91)*** (3.74)*** (2.72)*** 

 

 

By Balu et al. (2011) and Baltussen et al. (2013), Table 3.2 shows monthly returns averaged 

across the portfolios formed by two-way sorts on a stocks return’s distribution uncertainty and 

firm characteristics. Firstly, I am going to categorise the stocks into 10 groups by firm 

characteristics. Secondly, within each decile portfolio sorting further stocks into decile 

portfolios ranked based upon our KS, CM, and K statistics, which the results will be in total of 

100 portfolios. The third and last move will be the average of each distribution uncertainty 

portfolios across the firm characteristic’s deciles. As Baltussen et al. (2013) argue, it is possible 

to control each form characteristic without assuming a parametric form about the relationship 

between distribution uncertainty and future stock returns. For each of these portfolios, we 

calculate average equal-weighted returns over the following month.  

The first column of Panel A in Table II reports returns averaged across the ten beta deciles 

to produce decile portfolios with dispersion in KS. Since we average across beta deciles, the 

produced decile portfolios sorted by KS will include all betas. The portfolio returns for each 

month are calculated as an equal-weighted average of returns from strategies initiated at the 

end of the past month. After controlling for beta, the average return difference between the low 

and high KS portfolios is about 0.62% per month with a t-statistic of 4.71. It suggests that the 

positive relation between distribution uncertainty and future stock returns is not affected by 

beta. The results in Panel A show that the highest distribution uncertainty firms earn an average 

of 21.77%, compared to 0.06% for the smallest distribution uncertainty firms, when we control 

for size. The return differential between these two deciles (B-S) is 21.77% and significant 

(t=8.7). When controlling for book-to market ratio (BM), the return differentials between B 

and S are also positive and significant. When stocks are sorted based on momentum, the 

average return of the big-small portfolio is 35.03%, with a t-statistic of 21.23. Subsequently, 

the average excess return of the B-S portfolio equals 0.62% per month, with t-statistic 2.11 

when controlling for short-term reversal. Finally, we see whether the illiquidity explains the 

higher returns for the highest distribution uncertainty stocks relative to the smallest distribution 
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uncertainty stocks. The average return of the B-S portfolio is 24.52% per month with a t-

statistic of 10.01. These results suggest that a positive distribution uncertainty premium 

remains and firm characteristics do not explain the positive relation between distribution 

uncertainty and futures stock returns. Panel B of Table II presents average monthly returns to 

portfolios formed by two-way sorts on CM and firm characteristics. We find similar, 

confirmatory evidence in Panel B with CM as a proxy for distribution uncertainty. In Panel C, 

we examine the performance of K-sorted portfolios after controlling firm characteristics. The 

results with K are also similar to those in Panel A and Panel B. Overall, the results from these 

robustness tests using alternative measures of distribution uncertainty still support our 

hypothesis. 

 

3.3 Alphas of Portfolios Sorted on Distribution Uncertainty 

The third and last empirical investigation is to examine whether a rational risk-based 

approach can explain our result that the degree of distribution uncertainty provides premium. 

Table 3.3 shows the equal-weighted portfolios’ postranking alphas estimated under three 

different factor specifications the capital asset pricing model (CAPM), the three factors 

proposed in Fama and French (1993), and the four-factor proposed in Carhart (1997).  

 

Table 3.3 Alphas of portfolios Sorted on Distribution Uncertainty  

This table reports the alphas of the CAPM, the Fama-French 3-factor model and the Carhart (1997) 4-factor 

models for 10 portfolios based on three proxies for distribution uncertainty. The decile portfolios updated each 

month and are formed by the sizes of Kolmogorov-Smirnov (KS), Cramer-von Mises (CM), and Kuiper (K) 

statistics estimated using daily demeaned individual stock return and value weighted index return over the 

previous 12 months. These statistics of KS, CM, and K are non-parametrically measures as much as differences 

of distributions between demeaned individual stock return and demeaned market. Alphas are from a time series 

regression of the daily returns on daily Rm-Rf, SMB, HML, and UMD as in Fama and French (1993) and 

Carhart (1997). We multiply daily alphas by 21 to obtain monthly alphas and report the monthly alphas in 

percentages. Portfolio “S” is the portfolio of stocks with the lowest distribution uncertainty measure, Portfolio 

“B” is the portfolio of stocks with the highest distribution uncertainty measure, “S-B” is their difference in 

monthly returns. The sample includes all firms listed in NYSE, S&P 500, and NASDAQ from 2001 to 2021. 

  

Panel A. Kolmogorov-Smirnov (KS) Statistic 

 CAPM Fama-French 3 Factor Carhart 4 Factor 

 Alpha Adj. Rsq Alpha Adj. Rsq Alpha Adj. Rsq 

S 0.6065 0.3362 0.6046 0.3395 0.6035 0.3412 
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2 0.6858 0.3535 0.6948 0.3582 0.6936 0.3599 

3 0.8331 0.3977 0.8385 0.3976 0.8369 0.3991 

4 0.9545 0.3713 0.9631 0.3744 0.9614 0.3761 

5 1.0825 0.3653 1.0866 0.3638 1.0844 0.3656 

6 1.1546 0.3459 1.1552 0.3434 1.1529 0.3454 

7 1.2264 0.3157 1.2329 0.3155 1.2304 0.3177 

8 1.3244 0.2941 1.3129 0.2895 1.3105 0.2919 

9 1.3752 0.2823 1.4032 0.2844 1.4008 0.2874 

B 1.4818 0.2850 1.5258 0.2856 1.5265 0.2900 

B-S 0.8753  0.9212  0.9230  

Panel B. Cramer-Mises (CM) Statistic  

 CAPM Fama-French 3 Factor Carhart 4 Factor 

 Alpha Adj. Rsq Alpha Adj. Rsq Alpha Adj. Rsq 

S 0.7257 0.3679 0.7282 0.3699 0.7268 0.3717 

2 0.9426 0.3809 0.9450 0.3814 0.9433 0.3831 

3 1.0969 0.3658 1.0947 0.3657 1.0926 0.3674 

4 1.1784 0.3531 1.1807 0.3528 1.1783 0.3547 

5 1.2077 0.3125 1.2128 0.3125 1.2104 0.3147 

6 1.3094 0.3145 1.3021 0.3121 1.2992 0.3142 

7 1.3255 0.2951 1.3335 0.3024 1.3313 0.3052 

8 1.4402 0.3027 1.4591 0.2897 1.4565 0.2922 

9 1.5653 0.2723 1.5530 0.2772 1.5506 0.2795 

B 1.4664 0.2626 1.4938 0.2419 1.4938 0.2437 

B-S 0.7406  0.7656  0.7670  

Panel C. Kuiper (K) Statistic 

 CAPM Fama-French 3 Factor Carhart 4 Factor 

 Alpha Adj. Rsq Alpha Adj. Rsq Alpha Adj. Rsq 

S 0.6094 0.3358 0.6110 0.3380 0.6100 0.3401 

2 0.7018 0.3652 0.7024 0.3653 0.7012 0.3673 

3 0.8290 0.3827 0.8316 0.3860 0.8301 0.3878 

4 0.9600 0.3786 0.9658 0.3802 0.9640 0.3819 

5 1.0821 0.3645 1.0797 0.3639 1.0776 0.3657 

6 1.1685 0.3531 1.1713 0.3525 1.1689 0.3543 

7 1.2196 0.3188 1.2222 0.3176 1.2196 0.3198 

8 1.3255 0.3068 1.3176 0.3052 1.3150 0.3075 

9 1.3979 0.2906 1.4258 0.2882 1.4233 0.2904 

B 1.5740 0.2965 1.5520 0.2845 1.5503 0.2870 

B-S 0.9646  0.9410  0.9403  
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The results in Panel A show that our measures for distribution uncertainty are highly 

correlated with alphas estimated from three different factor specifications. The magnitude of 

the alpha is positively related to the level of distribution uncertainty, which implies that the 

high distribution uncertainty portfolios earn more positive abnormal returns. All three alphas 

of the B-S spread are significantly positive. The CAPM alpha is 0.8753% per month, the three-

factor alpha is 0.9212% per month, and the four-factor alpha is 0.9230% per month. A trading 

strategy with a short position in the low distribution uncertainty firms and a long position in 

high distribution uncertainty firms generates a monthly abnormal return of 0.9230% after 

controlling for the market, size, value, and momentum effects. This pattern of alphas from the 

three different factor specifications implies that the abnormal returns of B-S portfolios are not 

specific to an asset pricing models and confirms our hypothesis of distribution uncertainty 

premium. The results of positive alphas are also robust across various distribution uncertainty 

proxies. 
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Conclusion 

 

This thesis investigates the significance of uncertainty of the return distribution in the cross-

sectional pricing stocks. I am using proxies for distribution uncertainty of a stock return, the 

Kolmogorov-Smirnov (KS), Cramer-von Mises (CM), and Kuiper (K) statistics, which non-

parametrically measure difference between empirical return distributions of an individual stock 

and a benchmark portfolio.  

The results show that stocks with severe distribution uncertainty exhibit high returns on 

average, and the difference between returns on the portfolios with highest and lowest 

distribution uncertainty is 6% per month. The corresponding four-factor alphas from B-S KS, 

CM, K sorted portfolios are 0.76% to 0.94% a month. Nevertheless, after extensive 

consideration for the robustness of the empirical results we found that the impact of distribution 

uncertainty persists after accounting for firm characteristics such as beta, size, book-to-market 

ratio, momentum, short-term reversal, and illiquidity.  
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Appendix 

 

Load Pre-process 

 

 

library(dplyr) 

library(twosamples) 

 

#data <- readRDS("data.RDS") 

 

############################### 

## close prices 

############################### 

sp <- readxl::read_excel("SP500.xlsx", sheet = 2)[-c(1,2),] %>% 

  mutate(Name = as.numeric(Name), 
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         Name = as.Date(Name, origin = "1899-12-30"), 

         Name = as.character(Name)) %>% 

  rename("Date" = "Name") 

 

nyse <- readxl::read_excel("NYSE.xlsx", sheet = 1)[-c(1,2),] %>% 

  mutate(Name = as.numeric(Name), 

         Name = as.Date(Name, origin = "1899-12-30"), 

         Name = as.character(Name)) %>% 

  rename("Date" = "Name") 

 

nasdaq <- readxl::read_excel("NASDAQ.xlsx", sheet = 1)[-c(1,2),] %>% 

  mutate(Name = as.numeric(Name), 

         Name = as.Date(Name, origin = "1899-12-30"), 

         Name = as.character(Name)) %>% 

  rename("Date" = "Name") 

 

############################### 

## get firm codes 

############################### 

sp_codes <- readxl::read_excel("SP500.xlsx", sheet = 2, col_names = FALSE)[1:2,] %>%  

  t() %>% 

  as_tibble() %>% 

  janitor::row_to_names(row_number = 1) %>% 

  mutate(Code = stringr::str_replace(Code, "\\s*\\([^\\)]+\\)", "")) 

 

nyse_codes <- readxl::read_excel("NYSE.xlsx", sheet = 1, col_names = FALSE)[1:2,] 

%>%  

  t() %>% 

  as_tibble() %>% 

  janitor::row_to_names(row_number = 1) %>% 

  mutate(Code = stringr::str_replace(Code, "\\s*\\([^\\)]+\\)", "")) 

 

nasdaq_codes <- readxl::read_excel("NASDAQ.xlsx", sheet = 1, col_names = 

FALSE)[1:2,] %>%  
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  t() %>% 

  as_tibble() %>% 

  janitor::row_to_names(row_number = 1) %>% 

  mutate(Code = stringr::str_replace(Code, "\\s*\\([^\\)]+\\)", "")) 

 

###################################################### 

## market (benchmark) portfolio - composite indexes 

###################################################### 

bench_sp <- readxl::read_excel("SP500.xlsx", sheet = 1)[-c(1,2),] %>% 

  mutate(Name = as.numeric(Name), 

         Name = as.Date(Name, origin = "1899-12-30"), 

         Name = as.character(Name)) %>% 

  rename("Date" = "Name") 

 

bench_nyse <- readxl::read_excel("NYSE.xlsx", sheet = 2)[-c(1,2),] %>% 

  mutate(Name = as.numeric(Name), 

         Name = as.Date(Name, origin = "1899-12-30"), 

         Name = as.character(Name)) %>% 

  rename("Date" = "Name") 

 

bench_nasdaq <- readxl::read_excel("NASDAQ.xlsx", sheet = 2)[-c(1,2),] %>% 

  mutate(Name = as.numeric(Name), 

         Name = as.Date(Name, origin = "1899-12-30"), 

         Name = as.character(Name)) %>% 

  rename("Date" = "Name") 

 

 

## merging returns with respective composite indexes (based on date) 

sp <- left_join(sp, bench_sp, by = "Date")  

nyse <- left_join(nyse, bench_nyse, by = "Date") 

nasdaq <- left_join(nasdaq, bench_nasdaq, by = "Date") 

 

sp <- sp %>% 
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  tidyr::gather("stock", "close", -c("Date", "S&P 500 COMPOSITE - PRICE INDEX")) 

%>% 

  tidyr::separate(Date, c("year", "month", "day")) 

names(sp)[4] <- "cpi" 

 

nyse <- nyse %>% 

  tidyr::gather("stock", "close", -c("Date", "NYSE COMPOSITE - PRICE INDEX"))%>% 

  tidyr::separate(Date, c("year", "month", "day")) 

names(nyse)[4] <- "cpi" 

 

nasdaq <- nasdaq %>% 

  tidyr::gather("stock", "close", -c("Date", "NASDAQ COMPOSITE - PRICE 

INDEX"))%>% 

  tidyr::separate(Date, c("year", "month", "day")) 

names(nasdaq)[4] <- "cpi" 

 

rm(bench_nasdaq, bench_nyse, bench_sp) 

 

 

## merge respective codes to each dataset 

sp <- left_join(sp, sp_codes, by = c('stock' = 'Name')) 

nyse <- left_join(nyse, nyse_codes, by = c('stock' = 'Name')) 

nasdaq <- left_join(nasdaq, nasdaq_codes, by = c('stock' = 'Name')) 

 

rm(sp_codes, nyse_codes, nasdaq_codes) 

 

## calculate returns - firms and market 

sp <- sp %>% 

  group_by(stock) %>% 

  mutate(cpi = as.numeric(cpi), 

         cpi = as.vector(quantmod::Delt(cpi)), 

         close = as.numeric(close), 

         return = as.vector(quantmod::Delt(close))) 
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nyse <- nyse %>% 

  group_by(stock) %>% 

  mutate(cpi = as.numeric(cpi), 

         cpi = as.vector(quantmod::Delt(cpi)), 

         close = as.numeric(close), 

         return = as.vector(quantmod::Delt(close))) 

 

nasdaq <- nasdaq %>% 

  group_by(stock) %>% 

  mutate(cpi = as.numeric(cpi), 

         cpi = as.vector(quantmod::Delt(cpi)), 

         close = as.numeric(close), 

         return = as.vector(quantmod::Delt(close))) 

 

 

## mean center stock returns and marker portfolio based on previous year  

## (2002[first year available] cannot be therefore mean centered) 

 

sp_rm <- sp %>% 

  group_by(stock, year) %>% 

  summarise(avg_return = mean(return, na.rm = TRUE), 

            avg_cpi = mean(cpi, na.rm = TRUE)) %>% 

  mutate(year = as.numeric(year), 

         year = year-1) 

 

sp <- sp %>% 

  mutate(year = as.numeric(year)) %>% 

  left_join(sp_rm, by = c("year", "stock")) %>% 

  mutate(return = return - avg_return, 

         cpi = cpi - avg_cpi) %>% 

  select(-c(avg_return, avg_cpi)) %>% 

  mutate(exchange = "sp") 
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nasdaq_rm <- nasdaq %>% 

  group_by(stock, year) %>% 

  summarise(avg_return = mean(return, na.rm = TRUE), 

            avg_cpi = mean(cpi, na.rm = TRUE)) %>% 

  mutate(year = as.numeric(year), 

         year = year-1) 

 

nasdaq <- nasdaq %>% 

  mutate(year = as.numeric(year)) %>% 

  left_join(sp_rm, by = c("year", "stock")) %>% 

  mutate(return = return - avg_return, 

         cpi = cpi - avg_cpi) %>% 

  select(-c(avg_return, avg_cpi)) %>% 

  mutate(exchange = "nasdaq") 

 

nyse_rm <- nyse %>% 

  group_by(stock, year) %>% 

  summarise(avg_return = mean(return, na.rm = TRUE), 

            avg_cpi = mean(cpi, na.rm = TRUE)) %>% 

  mutate(year = as.numeric(year), 

         year = year-1) 

 

nyse <- nyse %>% 

  mutate(year = as.numeric(year)) %>% 

  left_join(sp_rm, by = c("year", "stock")) %>% 

  mutate(return = return - avg_return, 

         cpi = cpi - avg_cpi) %>% 

  select(-c(avg_return, avg_cpi)) %>% 

  mutate(exchange = "nyse") 

 

## combine all 3 

data <- rbind(sp, nyse, nasdaq) 

rm(nasdaq, nyse, sp, nasdaq_rm, sp_rm, nyse_rm) 
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Table 1 

 

############################### 

#####  K-S  ################### 

 

data %>% 

  group_by(stock, month) %>% 

  filter(!is.na(cpi)) %>% 

  mutate(ks = ks_stat(return, cpi)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(stock) %>% 

  mutate(ar = sum(return), 

         hpr = sum(FinCal::hpr(first(return), last(return)))) %>% 

  ungroup %>% 

  group_by(decile) -> ks 

 

 

ks %>% 

  summarise(ks = round(mean(ks), 2), 

            ar = round(abs(mean(ar)), 2), 

            hpr = round(abs(mean(hpr, na.rm = TRUE))*100, 2)) -> ks_tb1 

 

ks %>% group_split() -> ks_rest 

 

 

dif1_ks <- round(abs(mean(ks_rest[[9]]$ar) - mean(ks_rest[[1]]$ar)), 2) ## S-9 decile 

difference - AR 

tt1_ks <- paste0("(", round(abs(t.test(ks_rest[[1]]$ar, ks_rest[[9]]$ar)$statistic), 2), ")***")   

## S-9 decile t.test - AR 
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dif2_ks <- round(abs(mean(ks_rest[[10]]$ar) - mean(ks_rest[[1]]$ar)), 2) ## B-S decile 

difference - AR 

tt2_ks <- paste0("(", round(abs(t.test(ks_rest[[1]]$ar, ks_rest[[10]]$ar)$statistic), 2), 

")***")   ## B-S decile t.test - AR 

 

dif3_ks <- round(abs(mean(ks_rest[[9]]$hpr) - mean(ks_rest[[1]]$hpr)), 2) ## S-9 decile 

difference - HPR 

tt3_ks <- paste0("(", round(abs(t.test(ks_rest[[9]]$hpr, ks_rest[[1]]$hpr)$statistic), 2), 

")***")   ## S-9 decile t.test - HPR 

 

dif4_ks <- round(abs(mean(ks_rest[[10]]$hpr) - mean(ks_rest[[1]]$hpr)), 2) ## B-S decile 

difference - HPR 

tt4_ks <- paste0("(", round(abs(t.test(ks_rest[[10]]$hpr, ks_rest[[1]]$hpr)$statistic), 2), 

")***")   ## B-S decile t.test - HPR 

 

 

data.frame(decile = c("9-S", "t(9-S)", "B-S", "t(B-S)"), 

           ks = c("","","",""), 

           ar = c(dif1_ks, tt1_ks, dif2_ks, tt2_ks), 

           hpr = c(dif3_ks, tt3_ks, dif4_ks, tt4_ks)) -> ks_rest 

 

tb_ks <- rbind(ks_tb1, ks_rest) 

 

rm(dif1_ks, dif2_ks, dif3_ks, dif4_ks, tt1_ks, tt2_ks, tt3_ks, tt4_ks, ks, ks_tb1, ks_rest) 

 

 

############################### 

#####  CM  ################### 

 

data %>% 

  group_by(stock, month) %>% 

  filter(!is.na(cpi)) %>% 

  mutate(cm = cvm_stat(return, cpi)) %>% 

  ungroup %>%   
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  mutate(decile = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(stock) %>% 

  mutate(ar = sum(return), 

         hpr = sum(FinCal::hpr(first(return), last(return)))) %>% 

  ungroup %>% 

  group_by(decile) -> cm 

 

 

cm %>% 

  summarise(cm = round(mean(cm), 2), 

            ar = round(abs(mean(ar)), 2), 

            hpr = round(abs(mean(hpr, na.rm = TRUE))*100, 2)) -> cm_tb1 

 

cm %>% group_split() -> cm_rest 

 

 

dif1_cm <- round(abs(mean(cm_rest[[9]]$ar) - mean(cm_rest[[1]]$ar)), 2) ## S-9 decile 

difference - AR 

tt1_cm <- paste0("(", round(abs(t.test(cm_rest[[1]]$ar, cm_rest[[9]]$ar)$statistic), 2), 

")***")   ## S-9 decile t.test - AR 

 

dif2_cm <- round(abs(mean(cm_rest[[10]]$ar) - mean(cm_rest[[1]]$ar)), 2) ## B-S decile 

difference - AR 

tt2_cm <- paste0("(", round(abs(t.test(cm_rest[[1]]$ar, cm_rest[[10]]$ar)$statistic), 2), 

")***")   ## B-S decile t.test - AR 

 

dif3_cm <- round(abs(mean(cm_rest[[9]]$hpr) - mean(cm_rest[[1]]$hpr)), 2) ## S-9 decile 

difference - HPR 

tt3_cm <- paste0("(", round(abs(t.test(cm_rest[[9]]$hpr, cm_rest[[1]]$hpr)$statistic), 2), 

")***")   ## S-9 decile t.test - HPR 

 

dif4_cm <- round(abs(mean(cm_rest[[10]]$hpr) - mean(cm_rest[[1]]$hpr)), 2) ## B-S 

decile difference - HPR 
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tt4_cm <- paste0("(", round(abs(t.test(cm_rest[[10]]$hpr, cm_rest[[1]]$hpr)$statistic), 2), 

")***")   ## B-S decile t.test - HPR 

 

 

data.frame(decile = c("9-S", "t(9-S)", "B-S", "t(B-S)"), 

           cm = c("","","",""), 

           ar = c(dif1_cm, tt1_cm, dif2_cm, tt2_cm), 

           hpr = c(dif3_cm, tt3_cm, dif4_cm, tt4_cm)) -> cm_rest 

 

tb_cm <- rbind(cm_tb1, cm_rest) 

 

rm(dif1_cm, dif2_cm, dif3_cm, dif4_cm, tt1_cm, tt2_cm, tt3_cm, tt4_cm, cm, cm_tb1, 

cm_rest) 

 

 

################################## 

#####  Kuiper  ################### 

 

data %>% 

  group_by(stock, month) %>% 

  filter(!is.na(cpi)) %>% 

  mutate(k = kuiper_stat(return, cpi)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(stock) %>% 

  mutate(ar = sum(return), 

         hpr = sum(FinCal::hpr(first(return), last(return)))) %>% 

  ungroup %>% 

  group_by(decile) -> k 

 

 

k %>% 

  summarise(k = round(mean(k), 2), 
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            ar = round(abs(mean(ar)), 2), 

            hpr = round(abs(mean(hpr, na.rm = TRUE))*100, 2)) -> k_tb1 

 

k %>% group_split() -> k_rest 

 

 

dif1_k <- round(abs(mean(k_rest[[9]]$ar) - mean(k_rest[[1]]$ar)), 2) ## S-9 decile 

difference - AR 

tt1_k <- paste0("(", round(abs(t.test(k_rest[[1]]$ar, k_rest[[9]]$ar)$statistic), 2), ")***")   

## S-9 decile t.test - AR 

 

dif2_k <- round(abs(mean(k_rest[[10]]$ar) - mean(k_rest[[1]]$ar)), 2) ## B-S decile 

difference - AR 

tt2_k <- paste0("(", round(abs(t.test(k_rest[[1]]$ar, k_rest[[10]]$ar)$statistic), 2), ")***")   

## B-S decile t.test - AR 

 

dif3_k <- round(abs(mean(k_rest[[9]]$hpr) - mean(k_rest[[1]]$hpr)), 2) ## S-9 decile 

difference - HPR 

tt3_k <- paste0("(", round(abs(t.test(k_rest[[9]]$hpr, k_rest[[1]]$hpr)$statistic), 2), ")***")   

## S-9 decile t.test - HPR 

 

dif4_k <- round(abs(mean(k_rest[[10]]$hpr) - mean(k_rest[[1]]$hpr)), 2) ## B-S decile 

difference - HPR 

tt4_k <- paste0("(", round(abs(t.test(k_rest[[10]]$hpr, k_rest[[1]]$hpr)$statistic), 2), 

")***")   ## B-S decile t.test - HPR 

 

 

data.frame(decile = c("9-S", "t(9-S)", "B-S", "t(B-S)"), 

           k = c("","","",""), 

           ar = c(dif1_k, tt1_k, dif2_k, tt2_k), 

           hpr = c(dif3_k, tt3_k, dif4_k, tt4_k)) -> k_rest 

 

tb_k <- rbind(k_tb1, k_rest) 
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rm(dif1_k, dif2_k, dif3_k, dif4_k, tt1_k, tt2_k, tt3_k, tt4_k, k, k_tb1, k_rest) 

 

Table 2 

 

################################################### 

########### Firm Characteristics ################## 

################################################### 

char_ids_sp <- readxl::read_excel("NC.xlsx", sheet = 5, col_names = FALSE)[1:2,] %>%  

  t() %>% 

  as_tibble() %>% 

  janitor::row_to_names(row_number = 1) %>% 

  tidyr::separate(Name, c("stock", "char"), " - ") %>% 

  mutate(Code = stringr::str_replace(Code, "\\s*\\([^\\)]+\\)", "")) %>% 

  na.omit 

 

sp <- readxl::read_excel("NC.xlsx", sheet = 5)[-c(1,2),] %>% 

  rename("year" = "Name") %>% 

  tidyr::gather("stock", "value", -"year") %>% 

  tidyr::separate(stock, c("stock", "char"), " - ") %>% 

  left_join(char_ids_sp, by = c("stock", "char")) %>% 

  select(-stock) %>% 

  filter(!is.na(Code)) 

 

char_ids_nyse <- readxl::read_excel("NC.xlsx", sheet = 4, col_names = FALSE)[1:2,] %>%  

  t() %>% 

  as_tibble() %>% 

  janitor::row_to_names(row_number = 1) %>% 

  tidyr::separate(Name, c("stock", "char"), " - ") %>% 

  mutate(Code = stringr::str_replace(Code, "\\s*\\([^\\)]+\\)", "")) %>% 

  na.omit 
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nyse <- readxl::read_excel("NC.xlsx", sheet = 4)[-c(1,2),] %>% 

  rename("year" = "Name") %>% 

  tidyr::gather("stock", "value", -"year") %>% 

  tidyr::separate(stock, c("stock", "char"), " - ") %>% 

  left_join(char_ids_nyse, by = c("stock", "char")) %>% 

  select(-stock) %>% 

  filter(!is.na(Code)) 

 

char_ids_nasdaq <- readxl::read_excel("NC.xlsx", sheet = 3, col_names = FALSE)[1:2,] 

%>%  

  t() %>% 

  as_tibble() %>% 

  janitor::row_to_names(row_number = 1) %>% 

  tidyr::separate(Name, c("stock", "char"), " - ") %>% 

  mutate(Code = stringr::str_replace(Code, "\\s*\\([^\\)]+\\)", "")) %>% 

  na.omit 

 

nasdaq <- readxl::read_excel("NC.xlsx", sheet = 3)[-c(1,2),] %>% 

  rename("year" = "Name") %>% 

  tidyr::gather("stock", "value", -"year") %>% 

  tidyr::separate(stock, c("stock", "char"), " - ") %>% 

  left_join(char_ids_nasdaq, by = c("stock", "char")) %>% 

  select(-stock) %>% 

  filter(!is.na(Code)) 

 

 

rm(char_ids_nasdaq, char_ids_nyse, char_ids_sp) 

 

chars <- rbind(sp, nyse, nasdaq) %>% 

  distinct(year, char, Code, .keep_all = TRUE) %>% 

  mutate(year = as.numeric(year)) 
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rm(nasdaq, nyse, sp) 

 

## market capitalization - FIRM SIZE 

size_dt <- chars %>% 

  group_by(Code) %>% 

  filter(char == "MARKET CAPITALIZATION") %>% 

  mutate(value = log(as.numeric(value))) %>% 

  filter(!is.na(value)) %>% 

  left_join(select(data, year, Code, return, month, cpi), by = c("year", "Code")) %>% 

  ungroup %>% 

  filter(!is.na(cpi)) %>% 

  mutate(decile = cut(x = value, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(decile, month, stock) %>% 

  mutate(ks = ks_stat(return, cpi), 

         cm = cvm_stat(return, cpi), 

         k = kuiper_stat(return, cpi)) %>% 

  ungroup %>% 

  mutate(decile1 = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B")), 

         decile2 = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B")), 

         decile3 = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) 

 

size_ks <- size_dt %>% 

  group_by(decile1) %>% 

  summarise(size = abs(mean(return))*1000) 

 

size_ks_t <- size_dt %>% 

  group_by(decile1) %>% 

  group_split() 



 59 

 

dif2_ks <- round(abs(mean(size_ks_t[[10]]$return)*1000 - 

mean(size_ks_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_ks <- paste0("(", round(abs(t.test(size_ks_t[[1]]$return, 

size_ks_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

size_cm <- size_dt %>% 

  group_by(decile2) %>% 

  summarise(size = abs(mean(return))*1000) 

 

size_cm_t <- size_dt %>% 

  group_by(decile2) %>% 

  group_split() 

 

dif2_cm <- round(abs(mean(size_cm_t[[10]]$return)*1000 - 

mean(size_cm_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_cm <- paste0("(", round(abs(t.test(size_cm_t[[1]]$return, 

size_cm_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

size_k <- size_dt %>% 

  group_by(decile3) %>% 

  summarise(size = abs(mean(return))*1000) 

 

size_k_t <- size_dt %>% 

  group_by(decile3) %>% 

  group_split() 

 

dif2_k <- round(abs(mean(size_k_t[[10]]$return)*1000 - 

mean(size_k_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_k <- paste0("(", round(abs(t.test(size_k_t[[1]]$return, 

size_k_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 
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size <- data.frame(decile = as.character(size_ks$decile1), 

                  ks = as.character(round(size_ks$size, 2)), 

                  cm = as.character(round(size_cm$size, 2)), 

                  k = as.character(round(size_k$size, 2))) %>% 

  as_tibble() %>% 

  tibble::add_row(decile = "B-S", ks = as.character(dif2_ks), cm = as.character(dif2_cm), k 

= as.character(dif2_k)) %>% 

  tibble::add_row(decile = "t(B-S)", ks = tt2_ks, cm = tt2_cm, k = tt2_k) 

 

rm(size_ks, size_cm, size_k, size_dt, dif2_ks, tt2_ks, dif2_cm, tt2_cm, dif2_k, tt2_k, 

size_cm_t, size_ks_t, size_k_t) 

 

 

 

 

   

 

## BOOK VALUE-OUT SHARES-FISCAL - BM 

bm_dt <- chars %>% 

  filter(char == "BOOK VALUE-OUT SHARES-FISCAL") %>% 

  mutate(value = as.numeric(value)) %>% 

  filter(!is.na(value)) %>% 

  left_join(select(data, year, Code, return, month, cpi), by = c("year", "Code")) %>% 

  ungroup %>% 

  filter(!is.na(cpi)) %>% 

  mutate(decile = cut(x = value, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(decile, month, stock) %>% 

  mutate(ks = ks_stat(return, cpi), 

         cm = cvm_stat(return, cpi), 
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         k = kuiper_stat(return, cpi)) %>% 

  ungroup %>% 

  mutate(decile1 = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B")), 

         decile2 = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B")), 

         decile3 = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) 

 

bm_ks <- bm_dt %>% 

  group_by(decile1) %>% 

  summarise(bm = abs(mean(return))*1000) 

 

bm_ks_t <- bm_dt %>% 

  group_by(decile1) %>% 

  group_split() 

 

dif2_ks <- round(abs(mean(bm_ks_t[[10]]$return)*1000) - 

abs(mean(bm_ks_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_ks <- paste0("(", round(abs(t.test(bm_ks_t[[1]]$return, 

bm_ks_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

bm_cm <- bm_dt %>% 

  group_by(decile2) %>% 

  summarise(bm = abs(mean(return))*1000) 

 

bm_cm_t <- bm_dt %>% 

  group_by(decile2) %>% 

  group_split() 

 

dif2_cm <- round(abs(mean(bm_cm_t[[10]]$return)*1000) - 

abs(mean(bm_cm_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 
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tt2_cm <- paste0("(", round(abs(t.test(bm_cm_t[[1]]$return, 

bm_cm_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

bm_k <- bm_dt %>% 

  group_by(decile3) %>% 

  summarise(bm = abs(mean(return))*1000) 

 

bm_k_t <- bm_dt %>% 

  group_by(decile3) %>% 

  group_split() 

 

dif2_k <- round(abs(mean(bm_k_t[[10]]$return)*1000) - 

abs(mean(bm_k_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_k <- paste0("(", round(abs(t.test(bm_k_t[[1]]$return, bm_k_t[[10]]$return)$statistic), 

2), ")***")   ## B-S decile t.test - AR 

 

 

bm <- data.frame(decile = as.character(bm_ks$decile1), 

                   ks = as.character(round(bm_ks$bm, 2)), 

                   cm = as.character(round(bm_cm$bm, 2)), 

                   k = as.character(round(bm_k$bm, 2))) %>% 

  as_tibble() %>% 

  tibble::add_row(decile = "B-S", ks = as.character(dif2_ks), cm = as.character(dif2_cm), k 

= as.character(dif2_k)) %>% 

  tibble::add_row(decile = "t(B-S)", ks = tt2_ks, cm = tt2_cm, k = tt2_k) 

 

rm(bm_ks, bm_cm, bm_k, bm_dt, dif2_ks, tt2_ks, dif2_cm, tt2_cm, dif2_k, tt2_k, 

bm_cm_t, bm_ks_t, bm_k_t) 

 

 

## Momentum - MOM 
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mom_dt <- data %>% 

  group_by(Code, month, exchange) %>% 

  mutate(month = as.numeric(month)) %>% 

  filter(!is.na(cpi)) %>% 

  mutate(mom = cumsum(return)) %>% 

  mutate(decile = cut(x = mom, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  ungroup %>% 

  distinct(year, month, day, stock, return, .keep_all = TRUE) %>% 

  group_by(decile, stock, month) %>% 

  mutate(ks = ks_stat(return, cpi), 

         cm = cvm_stat(return, cpi), 

         k = kuiper_stat(return, cpi)) %>% 

  ungroup() %>% 

  mutate(decile1 = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B")), 

         decile2 = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B")), 

         decile3 = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) 

 

 

mom_ks <- mom_dt %>% 

  group_by(decile1) %>% 

  summarise(mom = abs(mean(return))*1000) 

 

mom_ks_t <- mom_dt %>% 

  group_by(decile1) %>% 

  group_split() 

 

dif2_ks <- round(abs(mean(mom_ks_t[[10]]$return)*1000) - 

abs(mean(mom_ks_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 
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tt2_ks <- paste0("(", round(abs(t.test(mom_ks_t[[1]]$return, 

mom_ks_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

mom_cm <- mom_dt %>% 

  group_by(decile2) %>% 

  summarise(mom = abs(mean(return))*1000) 

 

mom_cm_t <- mom_dt %>% 

  group_by(decile2) %>% 

  group_split() 

 

dif2_cm <- round(abs(mean(mom_cm_t[[10]]$return)*1000) - 

abs(mean(mom_cm_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_cm <- paste0("(", round(abs(t.test(mom_cm_t[[1]]$return, 

mom_cm_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

mom_k <- mom_dt %>% 

  group_by(decile3) %>% 

  summarise(mom = abs(mean(return))*1000) 

 

mom_k_t <- mom_dt %>% 

  group_by(decile3) %>% 

  group_split() 

 

dif2_k <- round(abs(mean(mom_k_t[[10]]$return)*1000) - 

abs(mean(mom_k_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_k <- paste0("(", round(abs(t.test(mom_k_t[[1]]$return, 

mom_k_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

mom <- data.frame(decile = as.character(mom_ks$decile1), 
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                 ks = as.character(round(mom_ks$mom, 2)), 

                 cm = as.character(round(mom_cm$mom, 2)), 

                 k = as.character(round(mom_k$mom, 2))) %>% 

  as_tibble() %>% 

  tibble::add_row(decile = "B-S", ks = as.character(dif2_ks), cm = as.character(dif2_cm), k 

= as.character(dif2_k)) %>% 

  tibble::add_row(decile = "t(B-S)", ks = tt2_ks, cm = tt2_cm, k = tt2_k) 

 

rm(mom_ks, mom_cm, mom_k, mom_dt, dif2_ks, tt2_ks, dif2_cm, tt2_cm, dif2_k, tt2_k, 

mom_cm_t, mom_ks_t, mom_k_t) 

 

 

 

## BETA coefficient  

beta_dt <- data %>% 

  group_by(stock, month) %>% 

  filter(!is.na(cpi)) %>% 

  mutate(beta = lm(return ~ cpi)$coefficients[2]) %>% 

  ungroup %>%   

  mutate(decile = cut(x = beta, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(decile) %>% 

  ungroup() %>% 

  group_by(decile, stock, month) %>% 

  mutate(ks = ks_stat(return, cpi), 

         cm = cvm_stat(return, cpi), 

         k = kuiper_stat(return, cpi)) %>% 

  ungroup() %>% 

  mutate(decile1 = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B")), 

         decile2 = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B")), 



 66 

         decile3 = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) 

 

 

beta_ks <- beta_dt %>% 

  group_by(decile1) %>% 

  summarise(beta = abs(mean(return))*1000) 

 

beta_ks_t <- beta_dt %>% 

  group_by(decile1) %>% 

  group_split() 

 

dif2_ks <- round(abs(mean(beta_ks_t[[10]]$return)*1000) - 

abs(mean(beta_ks_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_ks <- paste0("(", round(abs(t.test(beta_ks_t[[1]]$return, 

beta_ks_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

beta_cm <- beta_dt %>% 

  group_by(decile2) %>% 

  summarise(beta = abs(mean(return))*1000) 

 

beta_cm_t <- beta_dt %>% 

  group_by(decile2) %>% 

  group_split() 

 

dif2_cm <- round(abs(mean(beta_cm_t[[10]]$return)*1000) - 

abs(mean(beta_cm_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_cm <- paste0("(", round(abs(t.test(beta_cm_t[[1]]$return, 

beta_cm_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

beta_k <- beta_dt %>% 



 67 

  group_by(decile3) %>% 

  summarise(beta = abs(mean(return))*1000) 

 

beta_k_t <- beta_dt %>% 

  group_by(decile3) %>% 

  group_split() 

 

dif2_k <- round(abs(mean(beta_k_t[[10]]$return)*1000) - 

abs(mean(beta_k_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_k <- paste0("(", round(abs(t.test(beta_k_t[[1]]$return, 

beta_k_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

beta <- data.frame(decile = as.character(beta_ks$decile1), 

                  ks = as.character(round(beta_ks$beta, 2)), 

                  cm = as.character(round(beta_cm$beta, 2)), 

                  k = as.character(round(beta_k$beta, 2))) %>% 

  as_tibble() %>% 

  tibble::add_row(decile = "B-S", ks = as.character(dif2_ks), cm = as.character(dif2_cm), k 

= as.character(dif2_k)) %>% 

  tibble::add_row(decile = "t(B-S)", ks = tt2_ks, cm = tt2_cm, k = tt2_k) 

 

rm(beta_ks, beta_cm, beta_k, beta_dt, dif2_ks, tt2_ks, dif2_cm, tt2_cm, dif2_k, tt2_k, 

beta_cm_t, beta_ks_t, beta_k_t) 

 

 

## short-term reversal - REV 

 

rev_dt <- data %>% 

  mutate(month = as.numeric(month)-1) %>% 

  filter(!is.na(cpi) & month != 0) %>% 

  distinct(year, month, day, stock, return, .keep_all = TRUE) %>% 
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  group_by(stock, month) %>% 

  mutate(MonthlyReturn = last(return) / first(return) - 1) %>% 

  ungroup %>% 

  mutate(decile = cut(x = MonthlyReturn, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", 

"7", "8", "9", "B"))) %>% 

  group_by(decile) %>% 

  ungroup() %>% 

  group_by(decile, stock, month) %>% 

  mutate(ks = ks_stat(return, cpi), 

         cm = cvm_stat(return, cpi), 

         k = kuiper_stat(return, cpi)) %>% 

  ungroup() %>% 

  mutate(decile1 = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B")), 

         decile2 = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B")), 

         decile3 = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) 

 

   

rev_ks <- rev_dt %>% 

  group_by(decile1) %>% 

  summarise(rev = abs(mean(return))*1000) 

 

rev_ks_t <- rev_dt %>% 

  group_by(decile1) %>% 

  group_split() 

 

dif2_ks <- round(abs(mean(rev_ks_t[[10]]$return)*1000) - 

abs(mean(rev_ks_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_ks <- paste0("(", round(abs(t.test(rev_ks_t[[1]]$return, 

rev_ks_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 
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rev_cm <- rev_dt %>% 

  group_by(decile2) %>% 

  summarise(rev = abs(mean(return))*1000) 

 

rev_cm_t <- rev_dt %>% 

  group_by(decile2) %>% 

  group_split() 

 

dif2_cm <- round(abs(mean(rev_cm_t[[10]]$return)*1000) - 

abs(mean(rev_cm_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_cm <- paste0("(", round(abs(t.test(rev_cm_t[[1]]$return, 

rev_cm_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

rev_k <- rev_dt %>% 

  group_by(decile3) %>% 

  summarise(rev = abs(mean(return))*1000) 

 

rev_k_t <- rev_dt %>% 

  group_by(decile3) %>% 

  group_split() 

 

dif2_k <- round(abs(mean(rev_k_t[[10]]$return)*1000) - 

abs(mean(rev_k_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_k <- paste0("(", round(abs(t.test(rev_k_t[[1]]$return, rev_k_t[[10]]$return)$statistic), 

2), ")***")   ## B-S decile t.test - AR 

 

 

rev <- data.frame(decile = as.character(rev_ks$decile1), 

                   ks = as.character(round(rev_ks$rev, 2)), 

                   cm = as.character(round(rev_cm$rev, 2)), 
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                   k = as.character(round(rev_k$rev, 2))) %>% 

  as_tibble() %>% 

  tibble::add_row(decile = "B-S", ks = as.character(dif2_ks), cm = as.character(dif2_cm), k 

= as.character(dif2_k)) %>% 

  tibble::add_row(decile = "t(B-S)", ks = tt2_ks, cm = tt2_cm, k = tt2_k) 

 

rm(rev_ks, rev_cm, rev_k, rev_dt, dif2_ks, tt2_ks, dif2_cm, tt2_cm, dif2_k, tt2_k, 

rev_cm_t, rev_ks_t, rev_k_t) 

 

 

## stock illiquidity (ILLIQ) 

illiq_dt <-  chars %>% 

  filter(char == "TRADING VOLUME") %>% 

  mutate(value = as.numeric(value)) %>% 

  filter(!is.na(value)) %>% 

  left_join(select(data, year, Code, return, month, cpi), by = c("year", "Code")) %>% 

  ungroup %>% 

  filter(!is.na(cpi)) %>% 

  group_by(stock, month) %>% 

  mutate(MonthlyReturn = last(return) / first(return) - 1) %>%  

  mutate(value = abs(MonthlyReturn)/value, 

         decile = cut(x = value, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) %>% 

  group_by(decile, month, stock) %>% 

  mutate(ks = ks_stat(return, cpi), 

         cm = cvm_stat(return, cpi), 

         k = kuiper_stat(return, cpi)) %>% 

  ungroup %>% 

  mutate(decile1 = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B")), 

         decile2 = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B")), 



 71 

         decile3 = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) 

   

 

illiq_ks <- illiq_dt %>% 

  group_by(decile1) %>% 

  summarise(illiq = abs(mean(return))*1000) 

 

illiq_ks_t <- illiq_dt %>% 

  group_by(decile1) %>% 

  group_split() 

 

dif2_ks <- round(abs(mean(illiq_ks_t[[10]]$return)*1000) - 

abs(mean(illiq_ks_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_ks <- paste0("(", round(abs(t.test(illiq_ks_t[[1]]$return, 

illiq_ks_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

illiq_cm <- illiq_dt %>% 

  group_by(decile2) %>% 

  summarise(illiq = abs(mean(return))*1000) 

 

illiq_cm_t <- illiq_dt %>% 

  group_by(decile2) %>% 

  group_split() 

 

dif2_cm <- round(abs(mean(illiq_cm_t[[10]]$return)*1000) - 

abs(mean(illiq_cm_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_cm <- paste0("(", round(abs(t.test(illiq_cm_t[[1]]$return, 

illiq_cm_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

illiq_k <- illiq_dt %>% 
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  group_by(decile3) %>% 

  summarise(illiq = abs(mean(return))*1000) 

 

illiq_k_t <- illiq_dt %>% 

  group_by(decile3) %>% 

  group_split() 

 

dif2_k <- round(abs(mean(illiq_k_t[[10]]$return)*1000) - 

abs(mean(illiq_k_t[[1]]$return)*1000), 2) ## B-S decile difference - AR 

tt2_k <- paste0("(", round(abs(t.test(illiq_k_t[[1]]$return, 

illiq_k_t[[10]]$return)$statistic), 2), ")***")   ## B-S decile t.test - AR 

 

 

illiq <- data.frame(decile = as.character(illiq_ks$decile1), 

                  ks = as.character(round(illiq_ks$illiq, 2)), 

                  cm = as.character(round(illiq_cm$illiq, 2)), 

                  k = as.character(round(illiq_k$illiq, 2))) %>% 

  as_tibble() %>% 

  tibble::add_row(decile = "B-S", ks = as.character(dif2_ks), cm = as.character(dif2_cm), k 

= as.character(dif2_k)) %>% 

  tibble::add_row(decile = "t(B-S)", ks = tt2_ks, cm = tt2_cm, k = tt2_k) 

 

rm(illiq_ks, illiq_cm, illiq_k, illiq_dt, dif2_ks, tt2_ks, dif2_cm, tt2_cm, dif2_k, tt2_k, 

illiq_cm_t, illiq_ks_t, illiq_k_t) 

 

 

ks <- data.frame(Decile = beta$decile, 

                 BETA = beta$ks, 

                 SIZE = size$ks, 

                 BM = bm$ks, 

                 MOM = mom$ks, 

                 REV = rev$ks, 
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                 ILLIQ = illiq$ks) 

 

cm <- data.frame(Decile = beta$decile, 

                 BETA = beta$cm, 

                 SIZE = size$cm, 

                 BM = bm$cm, 

                 MOM = mom$cm, 

                 REV = rev$cm, 

                 ILLIQ = illiq$cm) 

 

k <- data.frame(Decile = beta$decile, 

                 BETA = beta$k, 

                 SIZE = size$k, 

                 BM = bm$k, 

                 MOM = mom$k, 

                 REV = rev$k, 

                 ILLIQ = illiq$k) 

 

 

 

rm(beta, size, bm, mom, rev, illiq, chars, data) 

 

 

 

 

 

 

Table 3 

 

chars <- chars %>% 

  tidyr::spread("char", "value") %>% 
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  select(year, Code, `BOOK VALUE-OUT SHARES-FISCAL`, `MARKET CAPITALIZATION`) 

 

 

data %>% 

  ungroup() %>% 

  distinct(year, month, day, Code, return, cpi) %>% 

  filter(!is.na(cpi)) %>% 

  left_join(chars, by = c("year", "Code")) -> tb3 

 

 

 

tb3 %>% 

  group_by(Code, month) %>% 

  mutate(ks = ks_stat(return, cpi)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi +  as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`))$coefficients[2], 

            adj_rsq = summary(lm(return ~ cpi +  as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`)))$adj.r.squared) -> three_f_ks 

 

three_f_ks <- three_f_ks %>% 

  tibble::add_row(decile = "B-S", alpha = three_f_ks$alpha[10]-three_f_ks$alpha[1], 

adj_rsq = NA_integer_) 

   

 

tb3 %>% 

  group_by(Code, month) %>% 

  mutate(cm = cvm_stat(return, cpi)) %>% 

  ungroup %>%   
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  mutate(decile = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi +  as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`))$coefficients[2], 

            adj_rsq = summary(lm(return ~ cpi +  as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`)))$adj.r.squared) -> three_f_cm 

 

three_f_cm <- three_f_cm %>% 

  tibble::add_row(decile = "B-S", alpha = three_f_cm$alpha[10]-three_f_cm$alpha[1], 

adj_rsq = NA_integer_) 

 

 

tb3 %>% 

  group_by(Code, month) %>% 

  mutate(k = kuiper_stat(return, cpi)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi +  as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`))$coefficients[2], 

            adj_rsq = summary(lm(return ~ cpi +  as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`)))$adj.r.squared) -> three_f_k 

 

three_f_k <- three_f_k %>% 

  tibble::add_row(decile = "B-S", alpha = three_f_k$alpha[10]-three_f_k$alpha[1], adj_rsq 

= NA_integer_) 

 

 

 

tb3 %>% 
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  group_by(Code, month) %>% 

  mutate(ks = ks_stat(return, cpi)) %>% 

  mutate(mom = cumsum(return)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi + mom + as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`))$coefficients[2], 

            adj_rsq = summary(lm(return ~ cpi + mom + as.numeric(`MARKET 

CAPITALIZATION`) + as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`)))$adj.r.squared) -> 

four_f_ks 

 

four_f_ks <- four_f_ks %>% 

  tibble::add_row(decile = "B-S", alpha = four_f_ks$alpha[10]-four_f_ks$alpha[1], adj_rsq 

= NA_integer_) 

 

 

 

tb3 %>% 

  group_by(Code, month) %>% 

  mutate(cm = cvm_stat(return, cpi)) %>% 

  mutate(mom = cumsum(return)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi + mom + as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`))$coefficients[2], 

            adj_rsq = summary(lm(return ~ cpi + mom + as.numeric(`MARKET 

CAPITALIZATION`) + as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`)))$adj.r.squared) -> 

four_f_cm 
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four_f_cm <- four_f_cm %>% 

  tibble::add_row(decile = "B-S", alpha = four_f_cm$alpha[10]-four_f_cm$alpha[1], 

adj_rsq = NA_integer_) 

 

 

tb3 %>% 

  group_by(Code, month) %>% 

  mutate(k = kuiper_stat(return, cpi)) %>% 

  mutate(mom = cumsum(return)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi + mom + as.numeric(`MARKET CAPITALIZATION`) + 

as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`))$coefficients[2], 

            adj_rsq = summary(lm(return ~ cpi + mom + as.numeric(`MARKET 

CAPITALIZATION`) + as.numeric(`BOOK VALUE-OUT SHARES-FISCAL`)))$adj.r.squared) -> 

four_f_k 

 

four_f_k <- four_f_k %>% 

  tibble::add_row(decile = "B-S", alpha = four_f_k$alpha[10]-four_f_k$alpha[1], adj_rsq = 

NA_integer_) 

 

 

 

 

 

data %>% 

  group_by(stock, month) %>% 

  filter(!is.na(cpi)) %>% 

  mutate(ks = ks_stat(return, cpi)) %>% 
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  ungroup %>%   

  mutate(decile = cut(x = ks, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi)$coefficients[2], 

         adj_rsq = summary(lm(return ~ cpi))$adj.r.squared) -> capm_f_ks 

 

capm_f_ks <- capm_f_ks %>% 

  tibble::add_row(decile = "B-S", alpha = capm_f_ks$alpha[10]-capm_f_ks$alpha[1], 

adj_rsq = NA_integer_) 

 

 

 

data %>% 

  group_by(stock, month) %>% 

  filter(!is.na(cpi)) %>% 

  mutate(cm = cvm_stat(return, cpi)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = cm, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", 

"9", "B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi)$coefficients[2], 

            adj_rsq = summary(lm(return ~ cpi))$adj.r.squared) -> capm_f_cm 

 

capm_f_cm <- capm_f_cm %>% 

  tibble::add_row(decile = "B-S", alpha = capm_f_cm$alpha[10]-capm_f_cm$alpha[1], 

adj_rsq = NA_integer_) 

 

 

data %>% 

  group_by(stock, month) %>% 

  filter(!is.na(cpi)) %>% 
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  mutate(k = kuiper_stat(return, cpi)) %>% 

  ungroup %>%   

  mutate(decile = cut(x = k, breaks = 10, labels = c("S", "2", "3", "4", "5", "6", "7", "8", "9", 

"B"))) %>% 

  group_by(decile) %>% 

  summarise(alpha = lm(return ~ cpi)$coefficients[2], 

            adj_rsq = summary(lm(return ~ cpi))$adj.r.squared) -> capm_f_k 

 

capm_f_k <- capm_f_k %>% 

  tibble::add_row(decile = "B-S", alpha = capm_f_k$alpha[10]-capm_f_k$alpha[1], adj_rsq 

= NA_integer_) 

 

 

 

 

 

 

panel1_ks <- list(CAPM = capm_f_ks, 

                  `Fama-French 3 Factor` = three_f_ks, 

                  `Carhart 4 Factor` = four_f_ks) 

 

panel2_cm <- list(CAPM = capm_f_cm, 

                  `Fama-French 3 Factor` = three_f_cm, 

                  `Carhart 4 Factor` = four_f_cm) 

 

panel3_k <- list(CAPM = capm_f_k, 

                  `Fama-French 3 Factor` = three_f_k, 

                  `Carhart 4 Factor` = four_f_k) 

 

 

 

rm(list=setdiff(ls(), c("panel1_ks", "panel2_cm", "panel3_k"))) 


